PERIODIC REVIEW REPORT

July 29, 2019 to August 29, 2021

1966E Broadhollow Road Farmingdale, NY 11735 Site #152119

Prepared for: Curtiss-Wright Corporation

1966 E Broadhollow Road Farmingdale, NY 11735

Prepared by: Tyll Engineering and Consulting, PC

169 Commack Road, Suite 173 Commack, New York 11725

September 2021 (revised October 2021)

Table of Contents

1.0	INTRODUCTION1
1.1	Site Overview
1.2	Site History1
1.3	Summary of Site Remedy2
1.4	Site Closure Criteria3
1.5	Deviations from the Remedial Action Work Plan3
2.0	EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS4
3.0	INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIANCE REPORT5
3.1	Engineering Controls5
3.2	Institutional Controls5
3.3	Status of Controls6
3.3	.1 Corrective Measures7
3.4	IC/EC Certification
4.0	MONITORING PLAN COMPLIANCE REPORT8
4.1	Summary of Indoor Air Sampling During the Reporting Period9
4.2	Abandonment of the On-Site Monitoring Wells10
5.0	OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT11
5.1	UST Cap Area11
5.2	HVAC System11
6.0	CONCLUSIONS AND RECOMMENDATIONS

Figures

Figure 1 – Site Location Map

Figure 2 – Site Layout Plan

Figure 3 – West Building

Appendices

Appendix A – Site Wide Inspection Form

Appendix B – PRR Certification Forms

Appendix C – HVAC Pressure Investigation April 16, 2021

Appendix D – 2020 Indoor Air Quality Investigation

Appendix E – Well Abandonment Report

Appendix F - Site Photos

1.0 INTRODUCTION

The following Periodic Review Report (PRR) has been prepared by Tyll Engineering and Consulting, PC (TEC) on behalf of Curtiss-Wright Flow Control (Curtiss-Wright) for the property located at 1966 E Broadhollow Road, in East Farmingdale, New York (Site) (Figure 1). This PRR document was prepared in accordance with the Site Management requirements set forth in of the Site as detailed in the Site Management Plan (SMP) prepared by TetraTech for the New York State Department of Environmental Control (NYSDEC) dated July 2019 (NYSDEC site number 1-52-119). DER-10 and the site specific SMP. This document was prepared in accordance with the Site Management Plan (SMP) dated July 2019 for NYSDEC Site Number: 1-52-119.

1.1 Site Overview

The Site is located in East Farmingdale, County of Suffolk, New York and is identified as Section 17, Block 14, Lots 11 and 12 on the East Farmingdale Tax Map. The Site is approximately 11-acres in size and is bounded by commercial properties and parking lots to the north and east, a residential neighborhood to the south, (Alexander Avenue), and an apartment building to the west (on Melville Road) See Figures 1 and 2.

The site contains two manufacturing buildings designated as "East" and "West". The West building is 400 feet x 250 feet and is used for manufacturing and office space; the East building is 350 feet x 300 feet and is used for shipping and receiving, valve testing, and contains additional manufacturing and office space.

1.2 Site History

The Site was originally used as a sand and gravel bank. In 1972, the East building was constructed and housed a J.C. Penney warehouse until 1981 when Target Rock Corporation (Target Rock) moved into the building. The exact date of construction of the West building is unknown. It was leased for office space by Target Rock who then purchased the property and expanded the building by 40,000 ft2 in 1975.

Several environmental investigations have been performed at the Site over may years, the results of which have determined that there are no current or future environmental exposure pathways that require active remediation.

Between 1983 and 2009, several soil investigations were performed at the Site. The investigations were associated with a former 550-gallon UST that was the confirmed source of chlorinated volatile organic compounds in soil. The tank was removed in 2003/2004. In 2009, two (2) soil borings were advanced in the former UST area and soil samples were collected from each boring at 7.5 - 9.5 feet and 13 to 15 feet below grade. Three of the samples had no exceedances of the NYSDEC Soil

Cleanup Objectives (SCOs)s, however, one sample from the 13 to- 15 foot interval contained a marginal exceedance of tetrachloroethene (PCE) above the NYSDEC Unrestricted Use SCOs. This was the last soil investigation conducted at the Site. Though localized residual contamination remains at depth in the former UST area, the area is overlain by an asphalt capping system and no longer considered an environmental concern.

Between 1992 and 2010, seven (7) groundwater monitoring wells, TRMW_1 through TRMW-7, were installed at the Site and groundwater sampling for volatile organic compounds (VOCs) has been conducted. In 2011, based on the results of historic groundwater investigations, it was determined that no active groundwater remediation was required at the Site. Subsequent groundwater data collected during two sampling events in 2012 revealed no exceedances of NYSDEC groundwater standards for VOCs in any of the wells. As a result, groundwater use restrictions were deemed unnecessary at the Site.

1.3 Summary of Site Remedial Actions

The site was remediated in accordance with the NYSDEC March 2011 Record of Decision (ROD) which approved the Proposed Remedial Action Work Plan dated February 2011.

The following is a summary of the remedial actions performed at the site:

- 1. Imposition of an institutional control (IC) in the form of an environmental easement that required (1) limiting the use and development of the property to restricted residential use, which would also permit commercial or industrial uses; (2) compliance with the approved site management plan; and (3) completion and submittal of a periodic certification of engineering and institutional controls (EC/IC) to NYSDEC.
- 2. Development of a Site Management Plan (SMP) which includes the following EC/IC: (1) subsequent evaluation of the potential for vapor intrusion for any buildings developed on the site, including provisions for implementing actions recommended to address exposures related to soil vapor intrusion; (2) monitoring of groundwater, soil vapor, sub-slab vapors, and indoor air; (3) identification of any use restrictions on the site; and (4) provisions for the continued proper operation and maintenance of the components of the remedy.
- 3. Periodic certification of EC/IC, prepared and submitted by a professional engineer or such other expert acceptable to the Department, by the property owner until the Department indicates in writing that this certification is no longer needed. This submittal includes (1) certification that the EC/ICs put in place are still in place and are either unchanged from the previous certification or are compliant with Department-approved modifications; (2)

allowing the Department access to the site; and (3) certification that nothing has occurred that would impair the ability of the control to protect public health or the environment, or constitute a violation or failure to comply with the SMP unless otherwise approved by the Department.

- 4. The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the Department determines that continued operation is technically impracticable or not feasible.
- 5. Based on the potential presence of VOCs beneath the buildings, continued operation, maintenance and monitoring of the building HVAC system is required. Operation of the HVAC system, in conjunction with the building's competent concrete floor slab, mitigates the potential for indoor air to be impacted from sub-slab vapor intrusion.

1.4 Site Closure Criteria

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

1.5 Deviations from the Remedial Action Work Plan

No changes to the remedial design were reported or observed during the reporting period.

2.0 EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

An annual evaluation/inspection is completed at the Site to document the operation and effectiveness of the HVAC and soil cap.

The Site-wide inspection was conducted on June 27, 2021 by Karen Tyll, P.E. The inspection included the asphalt cap and the parking lots. The inspection form is enclosed as Appendix A. Select photographs taken during the inspection are also provided in Appendix A.

No additional inspections were conducted during this reporting period as there were no events that warranted inspections or emergency inspections. The Engineering Controls at the Site have been and continue to be in place and operating effectively to meet Remedial Action Objectives for both groundwater and soil vapor.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIANCE REPORT

3.1 Engineering Controls

Engineering controls (ECs) at the Site consist of a soil and asphalt cap and the building HVAC System. Assurance of the ECs developed for the Site will be achieved using a combination of site inspections and annual certifications. The engineering control (UST cap) was inspected and evaluated on October 14, 2020 and June 27, 2021 by Karen Tyll, PE.

The UST cap prevents access to the localized residual contamination that remains beneath the former UST area, located in the northwest section of the site. This residual contamination in the former UST area is reported to be present at a depth of 12 to 15 feet below grade. This area is overlain by an asphalt cap system thus eliminating any potential for exposure. This cap system consists of the asphalt pavement, gravel sub-base and on-site soils. Procedures for the inspection and maintenance of this cap are provided in the Monitoring Plan included in Section 4 of the SMP.

The engineering controls (HVAC System) was inspected and pressure tested on April 16, 2021 by Chris Channing, PE. The operation of the HVAC to keep the building under positive pressure, in conjunction with the building's competent concrete floor slab, mitigates the potential for indoor air to be contaminated from sub-slab vapor intrusion. Accordingly, continued operation and maintenance of the building HVAC system is be necessary until such time that residual VOCs in the subsurface are no longer present at a level that may cause an exceedance of the NYSDOH air quality criteria in the building.

3.2 Institutional Controls

A series of ICs is required by the ROD to: (1) implement, maintain, and monitor EC systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and (3) limit the use and development of the site to commercial, industrial, and restricted residential uses only. Adherence to these ICs on the Site is required by the Environmental Easement and will be implemented under this SMP. These ICs are:

Compliance with the Environmental Easement and the SMP by the Grantor and the Grantor's successors and assigns must be met.

- All ECs must be operated and maintained as specified in the SMP.
- All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.
- Operation of the HVAC system in the West Building must be performed as defined in the SMP.
- Data and information pertinent to site management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The Site has a series of ICs in the form of site restrictions. Adherence to these ICs is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- 1. The property may only be used for commercial, industrial, or restricted residential use provided that the long-term Engineering and Institutional Controls included in the SMP are employed.
- 2. The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC.
- 3. All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP.
- 4. The potential for vapor intrusion must be evaluated for any buildings developed in the area, and any potential impacts that are identified must be monitored or mitigated.
- 5. Vegetable gardens and farming on the property are prohibited.
- 6. The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

The environmental easement for the site was executed by the Department on October 19, 2017 and filed with the Suffolk County Clerk on October 19, 2017. The County Recording Identifier number for this filing is D00012934 and Page number 420 and DT# 17-09607. A copy of the easement and proof of filing is provided in Appendix B of the Site Management Plan (not attached).

3.3 Status of Controls

At the time of this PRR, the Engineering Controls in the form of the UST cap and building HVAC system are operating as designed. The IC in the form of the environmental easement was completed and obtained on October 19, 2017.

3.3.1 Corrective Measures

During the June 27, 2021 Site inspection, cracks were observed in the asphalt UST cap that needed to be sealed. Curtiss-Wright sealed the cracks on August 2, 2021.

There are no other known deficiencies associated with the Engineering Control (HVAC System) or of the Institutional Controls at this time. As a result, no additional corrective measures are warranted.

3.4 IC/EC Certification

The annual certification for the Site consists of completed NYSDEC IC/EC Certification Forms. The completed IC/EC Certification Forms were signed on September 15, 2021 and are enclosed in Appendix B. The annual certification was prepared in accordance with the SMP and has been signed by the property owner, Curtiss-Wright Flow Control ,and Karen Tyll, P.E., a professional engineer licensed to practice in New York State, as the Qualified Environmental Professional (QEP).

4.0 MONITORING PLAN COMPLIANCE REPORT

The Monitoring Plan describes the measures required for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site and all affected Site media identified below, if required. The Monitoring Plan may only be revised with the approval of NYSDEC.

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., indoor air, soil vapor);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance;
- Assessing that Engineering Controls are in place and properly maintained (i.e., the asphalt cap is in good repair and the HVAC system is operating properly to maintain positive pressure within the building).
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, the Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells.
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Annual monitoring of the performance of the remedy and overall reduction in contamination onsite and off-site will be conducted for the first five years. The frequency thereafter will be determined by NYSDEC. Trends in contaminant levels in air, soil, and/or groundwater in the affected areas, will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring program requirements are summarized below:

Matrix	Frequency	Analysis	Compliance Date (for the current review period)
Groundwater	TBD	VOCs	N/A
Soil	TBD, sampling may be required if Site conditions change		
Soil Vapor	TBD, Sampling may be required if EC are not operating as required or if site conditions change,	VOC (TO-15 over 8 hours)	N/A
Indoor Air	Once during 2019-2020 Heating Season. Sampling may be required if EC are not operating as required or if site conditions change,	VOC (TO-15 over 8 hours)	February 27, 2020
HVAC Inspection	Annually between November and May	N/A	April 16, 2021
Soil Cap Inspection	Biannually; in the Fall (September to December) and in the Spring (March to June)	N/A	October 14, 2020 June 27, 2021

4.1 Summary of Indoor Air Sampling During the Reporting Period

The approved SMP required that one additional indoor air quality monitoring event be performed during the 2019 – 2020 heating season (approximately between November 15, 2019, to March 31, 2020). On February 27, 2020, TEC conducted indoor air sampling; the sampling was conducted in accordance with previous indoor air sampling that occurred in August 2018.

Samples were collected in/from the same/proximate locations as those in 2018. The samples were analyzed for PCE, trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA).

A total of twelve (12) indoor air samples were collected, four (4) in the East building and eight (8) samples from the West building. A review of the indoor air data indicates that indoor air detections of PCE and TCE were well below the NYSDOH Air Guideline Values of 30 micrograms per cubic meter (mcg/m3) and 2 mcg/m3, respectively. Indoor air sampling results can be found in Appendix D.

4.2 Abandonment of Site Monitoring Wells

On August 10th & 11th, 2021, PG Environmental Services, Inc. (PG Environmental) was contracted by Curtiss-Wright to abandon the seven on-site monitoring wells, TRMW-1 through TRMW-7. NYSDEC approved proposed abandonment activities on August 5, 2021. Six (6) of the seven (7) monitoring wells were abandoned as per NYSDEC CP-43- Groundwater Monitoring Well Decommissioning Policy. TRMW-4 was unable to be located after magnetometer and probing was attempted by PG Environmental; it is believed that this well was previously covered over with up to 12" asphalt. Well abandonment activities are captured in the Well Abandonment Report which was submitted to NYSDEC on September 21, 2021 and is provided in Appendix E.

5.0 OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT

5.1 UST Cap Area

The cap over the former UST area was constructed to minimize the infiltration of water into the subsurface and the subsequent migration of residual VOCs into the groundwater. This EC may require the following operation and maintenance activities:

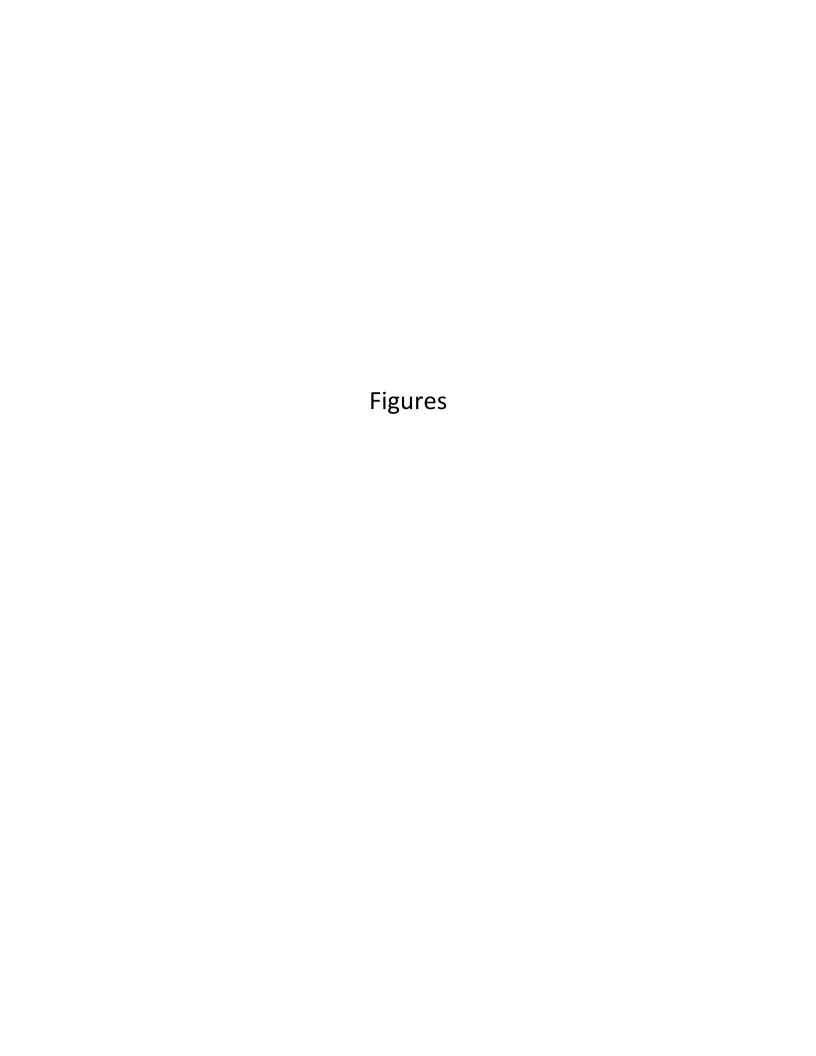
- Biannual inspection to observe the integrity of the asphalt to shed water
- Periodic sealing of the asphalt
- Periodic sealing of cracks in the asphalt
- Period patching of potholes in the asphalt

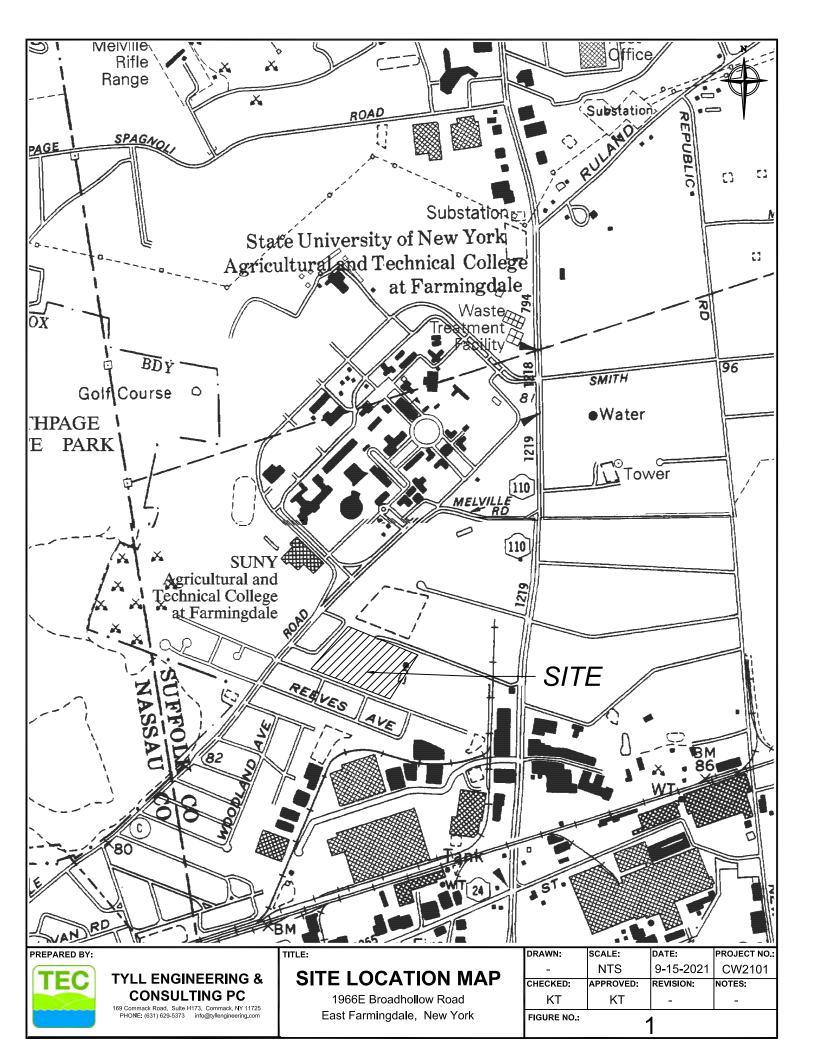
Maintenance will be performed on an as-needed basis based on biannual inspections.

During the June 27, 2021 Site inspection, cracks were observed in the asphalt UST cap that needed to be sealed. Curtiss-Wright sealed the cracks on August 2, 2021.

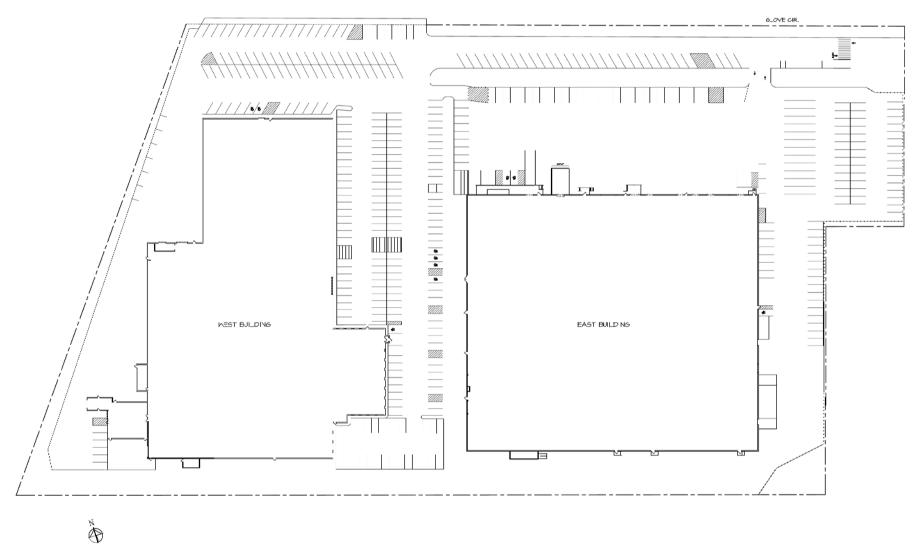
5.2 HVAC System

Operation of the HVAC system is a mechanical control intended to maintain positive pressure in the building to mitigate the migration of soil vapors into the building. This EC may require the following operation and maintenance activities:


- Annual verification of the positive pressure within the building
- Evaluation and or modification of HVAC system components (air handlers, conveyance system, etc.) should the inspection indicate the positive pressure is not being maintained
- Evaluation of sub-slab soil gas and/or indoor air quality should the inspection indicate the positive pressure is not being maintained
- Evaluation of changes to the building structure that may affect air flow

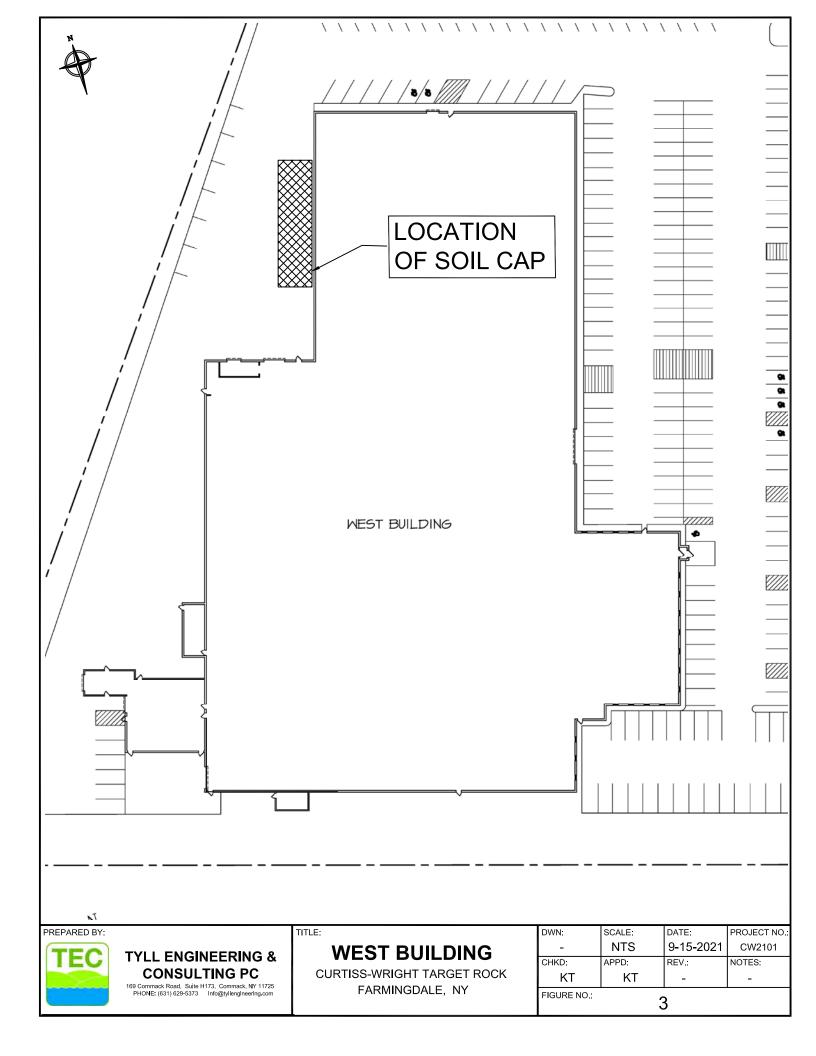

Maintenance will be performed on an as-needed basis based on annual inspections.

The HVAC system was inspected and pressure tested on April 16, 2021 by Chris Channing, PE. Results of the testing indicated that the HVAC system is running as designed and producing positive pressure in the building.


6.0 CONCLUSIONS AND RECOMMENDATIONS

During the reporting period, the Site ECs were determined to be operating as required by the ROD. No modifications to the ECs are required at this time.

PREPARED BY:


TYLL ENGINEERING & CONSULTING PC

169 Commack Road, Sulte H173, Commack, NY 11725 PHONE: (631) 629-5373 Info@tyllenglneering.com TITLE:

SITE LAYOUT MAP

CURTISS-WRIGHT TARGET ROCK FARMINGDALE, NY

DRAWN:	SCALE:	DATE:	PROJECT NO.:
-	NTS	9-15-2021	CW2101
CHECKED:	APPROVED:	REVISION:	NOTES:
KT	KT	=	-
FIGURE NO.:	2	2	
	CHECKED:	- NTS CHECKED: APPROVED: KT KT	- NTS 9-15-2021 CHECKED: APPROVED: REVISION: KT KT -

Appendix A Site-wide Inspection Form

ANNUAL SITE-WIDE INSPECTION FORM

Note: This document will be used to complete the annual certification of the Engineering Control (EC) at the site. The completed site inspection form will be provided in any Periodic Review Reports (PRR).

I. Background Site Information

A. Facility Name and Location:

Business Name: Curtiss-Wright Corporation

Name of the current operator at the site (if different than above):

Property Street Address: 1966 E Broadhollow Road

Municipality (-ies): East Farmingdale County (-ies): Suffolk

State: New York

Blocks: Section 17 Block 14

Lots: 11 and 12

Year of Tax map from which this information is obtained:

B. Person responsible for submitting the biennial certification monitoring report for a Deed Notice & Engineering Control (Self Explanatory)

Person's Name: Thomas Gianni

Person's Title: Senjor Manager Facilities & Safety

Business Name: Curtiss-Wright Corporation

Relationship to the Site (check as appropriate): Owner and Operator

Street Address: 1966 E Broadhollow Road

City: East Farmingdale State: New York

Telephone Number: (631) 396-4414

FAX Number:

E-mail Address: Tgianni@curtisswright.com

C. Case Specific Information (Complete all that apply)

- Program Interest Name: Curtiss-Wright Corporation
- Site #: 152119
- Order of Consent #: W1-1031-04-10
- Date of Record of Decision (ROD) for No Further Action for the site: 31 March 2011

- Name and Bureau of assigned Case Manager: Robert Corcoran, Division of Environmental Remediation
- D. Existing Site Conditions (Complete below or include as Attachment 1: Existing Site Conditions)
 - Describe the physical characteristics of the Site: The site is approximately 11 acres, located in the south-west corner of a commercial/industrial area off of Broad Hollow Road. The site is bounded to the north and east by large, widely-spaced commercial buildings and parking lots; to the south by a residential neighborhood, the closest street being Alexander Avenue; and to the west by an apartment building on Melville Road. Across Melville Road lies the SUNY Farmingdale campus. Site elevation ranges from 73 feet to 67 feet above sea level. The site is relatively flat, gradually sloping downward to the east and southeast. Because the site is part of a former sand and gravel mine, a sharp rise in elevation, approximately 30 feet, occurs at the southern and western property boundaries. Bedrock is approximately 1200 feet below sea level. Soils around the site consist of minor amounts of fill, sand and gravel in the medium to fine range, getting finer with depth.
 - Describe the current site operations: Curtiss-Wright manufactures valves for nuclear submarine power operations. These valves are manufactured and tested at the site.
 - Describe each engineering control that applies to the Restricted Areas: The remaining on-site soil contamination is fill is capped with asphalt. The majority of the site is capped with asphalt or concrete slab foundations.

II. Protectiveness Evaluation

А. І	Evaluation of Institutional and Engineering Controls (The appropriate box on the left must be checked for each of the following items.)				
	1. Zoning or Land Use Change (Complete below or include as Attachmen 3: Zoning or Land-Use Changes)	ıt			

a.	Has the land use	changed?	Yes	No X	-			
	Current land use on-Residential X			gricultur	al	Other	X	

If the current land use is different than the land use at the time the EC/IC was filed, explain how the remedial action, which included the EC/IC, remains protective of public health and safety. Include the Case Manager's name and Bureau that approved this change, if applicable.

c. Has there been an actual or pending zoning or land-use change for the Restricted Area on which the Deed Notice/DER is filed?
Yes No X
 Inspections (Complete below or include as Attachment 4: Inspections: Excavations and Disturbances)
Have periodic inspections of the site identified any excavation or other disturbance activities that have taken place within the restricted areas?
esNo_ X (If Yes, please describe below)
Date(s) of Disturbance: Duration of Disturbance: Years Months Days Date the NYSDEC was called to report disturbance: Description of the disturbance and methods to address the disturbance:
Name of Contact Person Relative to the Disturbance: Title: Street Address: City: State: Zip Code: Telephone Number: Email Address:
Was all soil excavated and returned to the Restricted Area?
YesNo (If No, provide an explanation)
Quantity of soil generated for disposal (if applicable): Attach Transportation/disposal documentation.
State precautions taken during the above activities to prevent contaminant exposure:

Provide an explanation of how the engineering control was replaced following the disturbance?

3. Changes to Laws and Regulations (Complete below or include as Attachment 5: Changes to Laws and Regulations)

a. Are there any subsequently promulgated or modified environmental laws or regulations (see Table 1), which apply to the site?

Yes No X (If No, proceed to #4 below)

b. If Yes, has the evaluation also determined that each EC/IC, as applicable, meets the requirements of the new laws and regulations?

Yes___No___ (If Yes, proceed to #4 below)

c. Each EC/IC, as applicable that did not meet the requirements of the new laws and regulations has been addressed in the following manner to bring them into compliance:

4. Detailed Maintenance Logs (Complete below or include as Attachment 6: Detailed Inspection and Maintenance Logs)

Attach a copy of the detailed maintenance log of how the persons responsible for monitoring and ensuring the protectiveness of the remedial action have maintained and evaluated the EC:

The detailed maintenance log must be:

- i. completed each time a site inspection is performed to evaluate ECs at the site and
- ii. a copy of the detailed maintenance log attached to this certification in addition to the following information:

Date(s) of all Inspections: 10/14/2020 & 6/27/2021

Name(s) of Inspectors: Karen Tyll, PE

Inspection was completed on each date above at the location of the Asphalt UST Cap on the western side of the building. The asphalt cap was inspected for cracks, holes, and gaps.

III. Certifications

A. Certification, Copying and Reporting

Semi-annual certification monitoring inspection forms will be included in all PRRs. These forms will be available to the NYSDEC case manager upon request.

B. Person Responsible for the Annual Certification Monitoring Inspections:

Based upon all of the information that I have provided above, I hereby certify that the remedial action(s) for which this EC/IC was established remain protective of public health and safety and of the environment.

Name	(print or Type):	Karen Tyll, PE, Environmental Consultant
Title:	1)	3/m/1
Signate	are: Fer	n 1/0 C
Name	of Company or (Corporation: Tyll Engineering and Consulting, PC
Date:	9/27/2021	

Appendix H

	Engineering	Control ((EC)	Checklist
--	-------------	-----------	------	-----------

Site Name: Target Rock

Location: 1966 Broadhollow Road, East Farmingdale, Suffolk County, NY

Site No.: 1966E

Case Manager: Robert Corcoran

The SMP for the aforementioned site includes at a minimum an Institutional Control (IC) and EC as well as provision for the periodic certification of the IC and EC and includes a Site Monitoring Plan. Each of these individual areas of reporting will need to meet the minimum requirements detailed below.

The	e SMP for the site addresses:	
Χ	The entire site	BUILDING HVAC AND ASPHALT UST CAP
	An operable unit of the site i	dentified as:
	An IRM for operable unit	identified as
	A groundwater restriction an	d IC/EC for the site
ΑP	eriodic Report Review (PRR) will be submitted following sampling events.

Institutional Control and Engineering Control (IC/EC) Certification: The applicant or site owner must make a periodic certification of the IC/EC to the Department. The requirements of this periodic IC/EC certification will be described in the SMP and the certification must be included in the PRR, which is prepared and submitted for the Department-approved certification period. The IC/EC certification will clearly identify the periodic review period and certify that:

X The institutional controls and/or engineering controls employed at such site are:

unchanged from the date the control was put in place, unless otherwise approved by the Department;

in place and effective;

performing as designed;

nothing has occurred that would impair the ability of the controls to protect the public health and environment; and

nothing has occurred that constitutes a violation or failure to comply with any operation and maintenance plan for such controls.

- X Use of the site complies with the environmental easement;
- X Access to the site will be provided to the Department to evaluate the remedy and verify continued maintenance of such controls.
- X If a financial assurance mechanism is required, the mechanism remains valid and sufficient for the intended purpose.

If the remedy requires only institutional controls, the certification may be made by the property owner. If the remedy includes engineering controls, the certification must be made by a qualified environmental professional or, if engineering evaluations are required, a licensed professional engineer.

Appendix B Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	152119	Site	e Details		Box 1	
Sit	e Name Ta	rget Rock Co	rp.				
City Co		st Farmingdale	adhollow Road e	Zip Code: 11735			
Re	porting Perio	od: July 29, 20)19 to August 29,	2021			
						YES	NO
1.	Is the inform	mation above o	correct?			X	
	If NO, inclu	de handwrittei	n above or on a se	eparate sheet.			
2.			e property been song this Reporting	old, subdivided, merg Period?	ged, or undergone a	 	X
3.		peen any chan RR 375-1.11(d		ite during this Report	ting Period		X
4.			and/or local perming this Reporting	ts (e.g., building, disc Period?	charge) been issued		X
					entation or evidence is certification form.		
5.	Is the site of	currently under	going developme	nt?		_	X .
						Box 2	
6.			nsistent with the u ommercial, and Ir	se(s) listed below?		YES	NO
7.	Are all ICs	in place and fu	ınctioning as desi	gned?	X	1.1	
	IF TI			TION 6 OR 7 IS NO, 9 T OF THIS FORM. O	sign and date below a otherwise continue.	and	
A (Corrective M	easures Work	Plan must be su	bmitted along with tl	his form to address t	hese iss	sues.
-							
Sig	nature of Ow	ner. Remedial	Party or Designate	ed Representative	Date		

SITE NO. 152119 Box 3

Description of Institutional Controls

<u>Parcel</u>

<u>Owner</u>

0100031000100002002 Target Rock Corp.

Institutional Control

Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan O&M Plan

IC/EC Plan

Ground Water Use Restriction

Compliance with the Environmental Easement and the SMP by the Grantor and the Grantor's successors and assigns must be met.

All ECs must be operated and maintained as specified in the SMP.

All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.

Operation of the HVAC system in the West Building must be performed as defined in the SMP.

Data and information pertinent to site management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

The property may only be used for commercial, industrial, or restricted residential use provided that the long-term Engineering and Institutional Controls included in the SMP are employed.

The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC.

All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP.

Vegetable gardens and farming on the property are prohibited.

0100031000100002003

Target Rock Corp.

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Building Use Restriction
Monitoring Plan
Site Management Plan
O&M Plan
IC/EC Plan

Compliance with the Environmental Easement and the SMP by the Grantor and the Grantor's successors and assigns must be met.

All ECs must be operated and maintained as specified in the SMP.

All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.

Operation of the HVAC system in the West Building must be performed as defined in the SMP.

Data and information pertinent to site management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

The property may only be used for commercial, industrial, or restricted residential use provided that the long-term Engineering and Institutional Controls included in the SMP are employed.

The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC.

All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP.

Vegetable gardens and farming on the property are prohibited.

0100031000100002004

TARGET ROCK CORP

O&M Plan
IC/EC Plan
Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Building Use Restriction
Monitoring Plan
Site Management Plan

Compliance with the Environmental Easement and the SMP by the Grantor and the Grantor's successors and assigns must be met.

All ECs must be operated and maintained as specified in the SMP.

All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.

Operation of the HVAC system in the West Building must be performed as defined in the SMP.

Data and information pertinent to site management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

The property may only be used for commercial, industrial, or restricted residential use provided that the long-term Engineering and Institutional Controls included in the SMP are employed.

The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC.

All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP.

Vegetable gardens and farming on the property are prohibited.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

0100031000100002002

Vapor Mitigation Cover System

Localized residual contamination remains beneath the former UST area, located in the northwest section of the site. This residual contamination in the former UST area is present at a depth of 12 to 15 feet below grade. This area is overlain by an asphalt cap system thus eliminating any potential for exposure. This cap system consists of the asphalt pavement, gravel sub-base and on-site soils. Procedures for the inspection and maintenance of this cap are provided in the Monitoring Plan included in Section 4 of the SMP.

The HVAC system keeps the building under positive pressure. Operation of the HVAC, in conjunction with the building's competent concrete floor slab, mitigates the potential for indoor air to be contaminated from sub-slab vapor intrusion. Accordingly, continued operation and maintenance of the building HVAC system will be necessary until such time that residual VOCs in the subsurface are no longer present at a level that may cause an exceedance of the NYSDOH air quality criteria in the building.

0100031000100002003

Parcel

Engineering Control
Vapor Mitigation
Cover System

Localized residual contamination remains beneath the former UST area, located in the northwest section of the site. This residual contamination in the former UST area is present at a depth of 12 to 15 feet below grade. This area is overlain by an asphalt cap system thus eliminating any potential for exposure. This cap system consists of the asphalt pavement, gravel sub-base and on-site soils. Procedures for the inspection and maintenance of this cap are provided in the Monitoring Plan included in Section 4 of the SMP.

The HVAC system keeps the building under positive pressure. Operation of the HVAC, in conjunction with the building's competent concrete floor slab, mitigates the potential for indoor air to be contaminated from sub-slab vapor intrusion. Accordingly, continued operation and maintenance of the building HVAC system will be necessary until such time that residual VOCs in the subsurface are no longer present at a level that may cause an exceedance of the NYSDOH air quality criteria in the building.

0100031000100002004

Vapor Mitigation Cover System

Localized residual contamination remains beneath the former UST area, located in the northwest section of the site. This residual contamination in the former UST area is present at a depth of 12 to 15 feet below grade. This area is overlain by an asphalt cap system thus eliminating any potential for exposure. This cap system consists of the asphalt pavement, gravel sub-base and on-site soils. Procedures for the inspection and maintenance of this cap are provided in the Monitoring Plan included in Section 4 of the SMP.

The HVAC system keeps the building under positive pressure. Operation of the HVAC, in conjunction with the building's competent concrete floor slab, mitigates the potential for indoor air to be contaminated from sub-slab vapor intrusion. Accordingly, continued operation and maintenance of the building HVAC system will be necessary until such time that residual VOCs in the subsurface are no longer present at a level that may cause an exceedance of the NYSDOH air quality criteria in the building.

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	engineering practices, and the information presented is accurate and compete. YES NO
	X =
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X 3
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 152119

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

THOMAS (SIANNI	1966 E Broadhollow F East Farmingdale, NY	
print name		print business addre	ess
am certifying as	Owner		(Owner or Remedial Party)
1 1	in the Site Details S	Section of this form. 77 AND SAFETY MANAGE	= 9/1/21
- U	er, Remedial Party, o	or Designated Representative	Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Karen Tyll, PE	169 Commack Road, Suite H173, Commack, NY 11725
print name	print business address
am certifying as a Qualified Enviro	onmental Professional for the
	OF NEW

Appendix C
HVACPPressure
IInvestigation
4/4/16/2021

C.P. CHANNING P.E. 132 PINE ST. EAST MORICHES, NY. 11940 PHONE (516) 381-3032 CPCHANNING@OPTONLINE.NET

Project location:

Curtis Wright Corp Target Rock West building 1966E Broadhollow Rd Farmingdale, N.Y. 11735

Task Description: Measure pressure relationships between the inside of the building and outside to verify the building is under positive pressure.

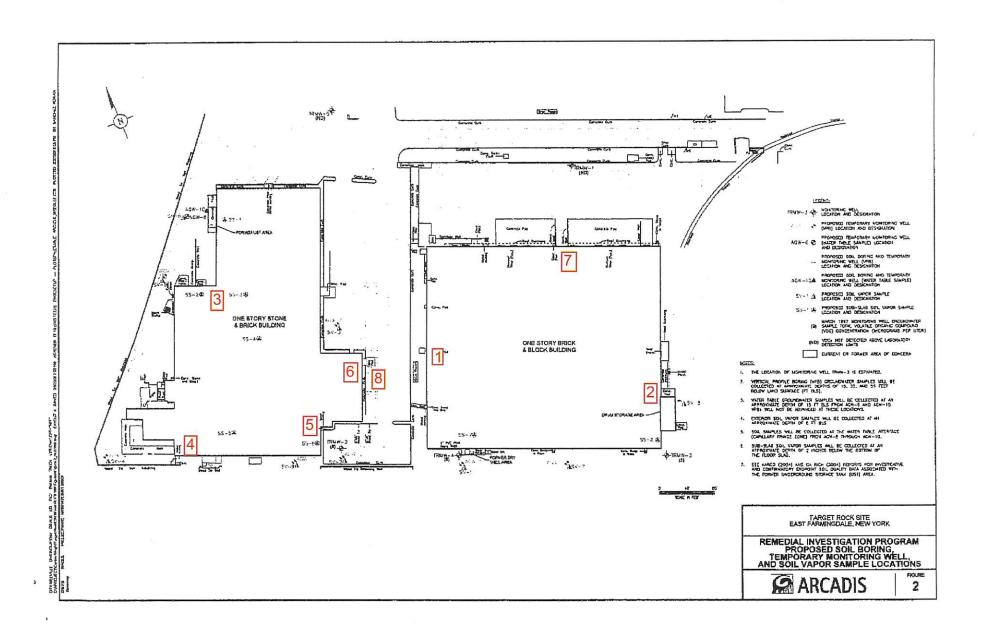
Objective: Confirm pressure relationship between inside of building and outside

Test methodology: Differential pressure between inside and outside was measures at 7 locations at three intervals during the course of a day. Locations of inside reading are indicated on attached drawing. Readings were taken on 4/16/21.

Measurements were taken with TSI Velocicalc differential digital manometer with +/- 1% accuracy and measured in inch of water column.

DATA 4/16/21

All readings show positive pressurization and are in inches of water column


Location		9:00 Reading	12:00 Reading	14:00 reading		
	1	.025	.022	.021		
	2	.015	.015	.016		
	3	.016	.017	.017		
	4	.018	.018	.017		
	5	.014	.013	.013		
	6	.016	.017	.017		
Lobby .017		.018	.018			

Conclusion

Space pressure in relation to outside was at positive pressure at all location and intervals during the inspection period.

Chris Channing P.E.

Appendix D 2020 Indoor Air Quality Investigation

July 7, 2020

Mr. Jared Donaldson
Project Manager
Remedial Bureau A
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, 12th Floor
Albany, NY 12233-7015

Re: Summary of 2020 Indoor Air Quality Investigation
Curtiss Wright Flow Control Corporation
Target Rock Division, 1966 E Broadhollow Road, Farmingdale, NY

Dear Mr. Donaldson:

Tyll Engineering and Consulting, PC (TEC) has prepared the following report summarizing an Indoor Air Quality (IAQ) investigation conducted at the above-referenced site (Site) in February 2020. The IAQ investigation was performed in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Site Management Plan (SMP) for the subject Site which requires IAQ sampling be conducted during the 2019/2020 heating season.

SCOPE OF WORK

IAQ sampling was conducted to evaluate current air quality at the Site as it pertains to three chlorinated solvent compounds, namely tetrachloroethene (PCE or PERC), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA). Previous IAQ sampling events were completed in 2012 and 2018. 2020 sampling locations were intended to be the same/proximate to those locations sampled in 2018.

DISCUSSION

On February 26, 2020, TEC visited the site to prepare the sampling equipment and identify previous sampling locations. Sampling locations were intended to correspond to the locations of existing sub-slab vapor points, however, some of these points were unable to be found. Chemical inventories at each sample location were completed before and during the sampling event. Field sampling records are provided in Attachment 1.

On February 27, 2020, twelve indoor ambient air samples (**CW-IA-1 to CW-IA-12**) were collected within the Eastern and Western buildings. All samples were collected in six-liter Summa canisters with flow-controlling regulators over an eight-hour period. Samples were collected between 7:00 AM and 4:30 PM (depending on start times) over an eight-hour period.

As indicated, samples were intended to be collected at the same locations sampled in 2018, some of which were co-located with sub-slab vapor points. Many of the previous sampling and sub-slab vapor points were not able to be identified, however, due to the presence of equipment, shelving, and pallets that had been relocated/moved since the 2018 sampling. Site personnel were enlisted to help find the former sampling locations, but they were also unable to locate many of the former points. As a result, 2020 samples were located as close as possible/proximate to the 2018 sampling locations based on available descriptions and maps.

Figures 2 and 3 present the locations of IAQ samples collected in 2020 by building. A description of sample locations is as follows:

Western Building

CW-IA-1 was collected adjacent to SS-6, approximately 2.5 feet above the floor in the lab in the southeastern corner of the Western building by the parking lot (**Photo#1**). The Photoionization detector (PID) yielded a reading of 3.2 parts per million (ppm) total volatiles in this location; acetone, isopropyl alcohol squirt bottles and P-37 anti-seize paste were observed in the vicinity.

CW-1A-2 was collected approximately 2.5 feet above the floor west of the main aisle of the Assembly & Test (A&T) shop across from the NuTorque area (**Photo#2**). The PID yielded a reading of 1.0 ppm total volatiles in this area and several acetone and isopropyl alcohol squirt bottles and a small pail of PF-HP Degreaser PF-145 were observed in the area.

CW-IA-3 was collected approximately 2.5 feet above the floor in the Hydraulic Operating Gate Valve area adjacent to the main aisle (**Photo#3**). A PID reading of 0.8 ppm total volatiles was recorded in the vicinity. Several squirt bottles of acetone and isopropyl alcohol and Formula LNC2 electrolyte solution were observed in the surrounding area.

The 2018 location of sample SS-4 was unable to be located so **CW-IA-4** was collected approximately 2.5 feet above the floor in the storage area adjacent to the main aisle outside of the western stockroom door/gate (**Photo#4**). The PID yielded a reading of 0.6 ppm total volatiles in the sample vicinity; no chemicals were observed in the surrounding area.

CW-IA-5 was collected adjacent to SS-1, approximately 2.5 feet above the floor in the Weld Shop at the northwestern corner of the western building (**Photo#5**). The PID yielded a reading of 1.8 ppm total volatiles; several acetone and isopropyl alcohol bottles, Dychem Blue, Spotcheck, Tank #34 – 50 Gallons Liquid Penetrant Inspection (LPI) Wastewater, SKD-52 Aerosol, SKI-SK2 Aerosol Penetrant (red), stainless steel cleaner (EP-1306), SKC-S Spot Check,

and various other cleaners were observed in the vicinity of the sample location and within the flammable cabinet.

The 2018 sample location for SS-3 was unable to be located so **CW-IA-6** was collected approximately 2.5 feet above the floor in the center of the A&T shop area adjacent to the main aisle (**Photo#6**). The PID yielded a reading of 1.3 ppm total volatiles and several acetone and isopropyl alcohol squirt bottles were observed in the area.

Similar to location SS-3, the 2018 sample location for SS-2 was also unable to be located. Accordingly, **CW-IA-7** was collected approximately 6.0 feet above the floor on the top step of metal stairs in the Rear Dock area adjacent to the Clean Room (**Photo#7**). A PID reading of 0.6 ppm total volatiles was recorded in the vicinity of the sample and acetone and isopropyl alcohol drums were stored in the area.

CW-1A-8 was collected approximately 4.5 feet above ground, on a table in the Hot Loop area adjacent to a 200-gallon Hydrochloric Acid Tank (#12) and a 200-gallon Caustic Tank (#13) (**Photo#8**). A PID reading of 0.1 ppm total volatiles was recorded in the sample vicinity; several acetone and isopropyl alcohol squirt bottles and ZEP Cleaner were observed proximate to this location.

Eastern Building

CW-1A-9 was collected in the Training Area (**Photo#9**) in the vicinity of the 2018 location of SS-7 which was unable to be located. The summa canister was placed on a small step stool which brought the sampling port approximately 4.5 feet above the floor. PID readings in the area surrounding the canister were 0.2 ppm total volatiles; several bottles of acetone, multiple cans of latex paint, spackle, Windex, and a machine coolant spray bottle were noted in the vicinity.

CW-IA-10 was collected at ground level adjacent to the 2018 location of SS-8 outside the drum storage and compressor rooms (**Photo#10**). PID readings of 1.5 ppm total volatiles were recorded in the vicinity of the sample location. Squirt bottles of acetone and isopropyl alcohol, drums of Hocut 795 machine coolant, Windex, ArmaKleen Parts Cleaner, Aeon 900 compressor oil, Master Stages Clean 2017 Spray cleaner, Mobil grease and motor oil, machine coolants and cutting oils, pipe dope, and various other small containers of chemicals/oils were located nearby.

CW-IA-11 was collected adjacent to the main aisle of the East Shop and was placed on the ground in an area used for storage (**Photo#11**). The PID reading in this location was 0 ppm; acetone and various cleaners were observed in the vicinity.

CW-IA-12 was collected on a metal rack located approximately 5.5 feet above the floor in the E1 Inspection area adjacent to the Facilities offices (**Photo#12**). A PID reading of 2.1 parts per million (ppm) total volatiles was recorded in the vicinity. Acetone, wire pulling lubricant,

concrete patch, PVC cement, primer and cleaner, pipe dope, Ready mix concrete patch, Raid, and Pre-mixed gas/oil mixture were observed in the area.

Upon completion of the IAQ sampling, the samples were taken by lab courier to Alpha Analytical Laboratories in Mansfield, MA (NYSDOH ELAP #11148) and analyzed according to EPA Method TO-15 low level (SIM for chlorinated compounds).

RESULTS

Table 1 presents sample details for the IAQ samples and analytical results are presented in Table 2. The Laboratory Analytical Data Package is provided in Attachment 2. Analytical results were evaluated using the Air Guideline Values (AGV) in NYSDOH's October 2006 "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" and the Fact Sheets for PERC and TCE.

Comparison of the sample results for PCE, TCE and 1,1,1-TCA to applicable New York State Department of Health (NYSDOH) air guideline values is provided in Table 2. Though there were concentrations of chlorinated compounds detected in some of the indoor air samples, none of the detections were above respective NYSDOH AGVs for PCE or TCE. There is no listed NYSDOH AGV for 1,1,1-TCA.

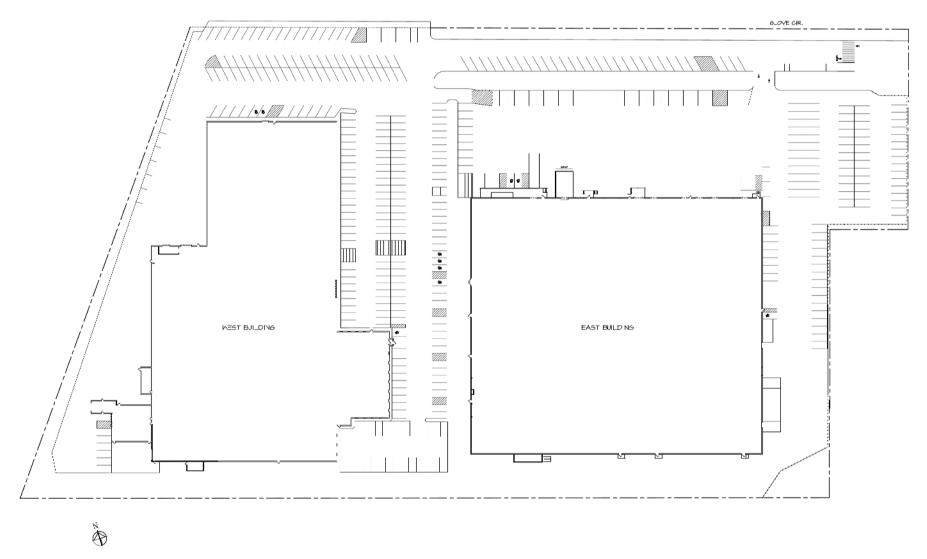
CONCLUSIONS

Results for IAQ samples collected in February 2020 did not detect concentrations of PCE, TCE or 1,1,1-TCA above applicable NYSDOH criteria in any of the samples.

If you have any questions concerning the 2020 IAQ results or information contained in this report, please do not hesitate to contact us.

Very truly yours,

TYLL ENGINEERING AND CONSULTING PC

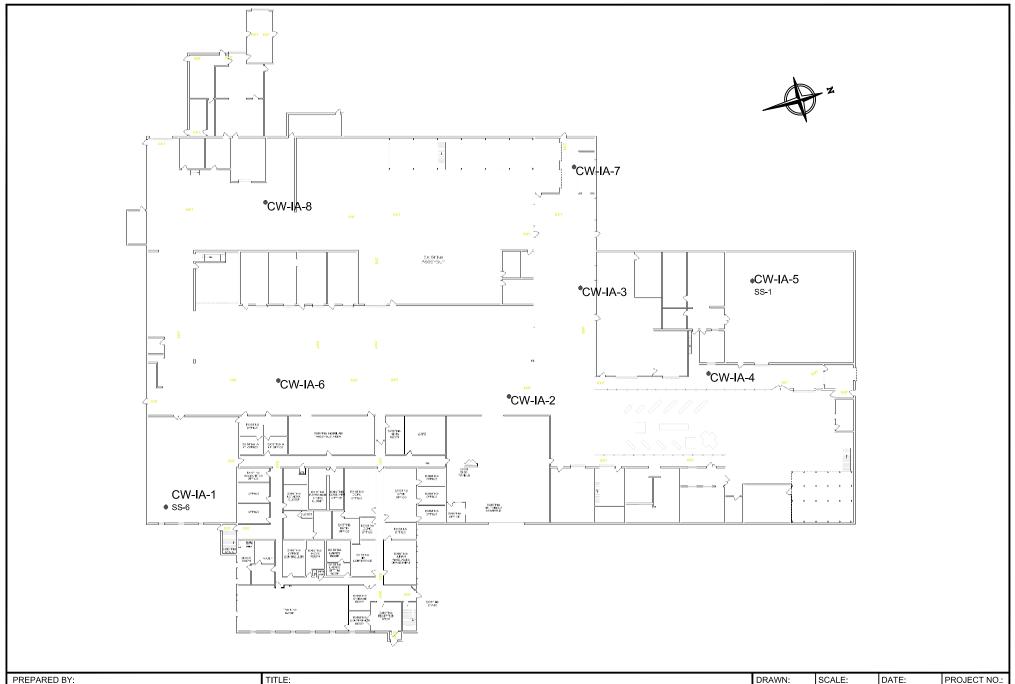

Karen G. Tyll, P.E.

President

CC: Tom Gianni, Curtiss-Wright
Michael Cinque, Curtiss-Wright
Carolyn Straton, Curtiss-Wright

FIGURES

PREPARED BY:


TYLL ENGINEERING & CONSULTING PC

169 Commack Road, Sulte H173, Commack, NY 11725 PHONE: (631) 629-5373 Info@tyllenglneering.com TITLE:

SITE LOCATION MAP

CURTISS-WRIGHT TARGET ROCK FARMINGDALE, NY

DRAWN:	SCALE:	DATE:	PROJECT NO.:
-	NTS	3-25-2020	CW2001
CHECKED:	APPROVED:	REVISION:	NOTES:
KT	KT	=	-
FIGURE NO.:	,	<u> </u>	

TEC


TYLL ENGINEERING & CONSULTING PC

169 Commack Road, Sulte H173, Commack, NY 11725 PHONE: (631) 629-5373 Info@tyllenglneering.com

INDOOR AIR SAMPLING LOCATION MAP - WEST

CURTISS-WRIGHT TARGET ROCK FARMINGDALE, NY

DRAWN:	SCALE:	DATE:	PROJECT NO.:
=	NTS	3-25-2020	CW2001
CHECKED:	APPROVED:	REVISION:	NOTES:
KT	KT	=	=
FIGURE NO.:	2	2	

TEC

TYLL ENGINEERING & CONSULTING PC

169 Commack Road, Sulte H173, Commack, NY 11725
PHONE: (631) 629-5373 Info@tyllengineering.com

INDOOR AIR SAMPLING LOCATION MAP - EAST

CURTISS-WRIGHT TARGET ROCK FARMINGDALE, NY

DRAWN:	SCALE:	DATE:	PROJECT NO.:
-	NTS	3-15-2020	CW2001
CHECKED:	APPROVED:	REVISION:	NOTES:
KT	KT	-	-
FIGURE NO.:	•	1	

TABLES

Table 1 Indoor Air Quality Study Data Curtiss-Wright Target Rock Farmingdale, New York

Sample ID	Sampling Date	Start Time	End Time	Start Pressure	End Pressure	Canister ID	Flow Controller ID
EAST BUILDING							
CW-IA-9	2/27/2020	7:22	15:22	-29.28	-4.94	2933	01791
CW-IA-10	2/27/2020	7:30	15:34	-30.04	-6.04	902	01825
CW-IA-11	2/27/2020	7:26	15:26	-29.47	-6.14	2284	0724
CW-IA-12	2/27/2020	7:27	15:29	-29.44	-1.08	1642	01633
WEST BUILDING							
CW-IA-1	2/27/2020	8:07	16:07	-29.36	-6.24	590	01525
CW-IA-2	2/27/2020	8:04	16:04	-29.54	-6.55	2594	01787
CW-IA-3	2/27/2020	7:50	15:51	-29.04	-3.78	3285	01591
CW-IA-4	2/27/2020	7:56	15:56	-28.26	-5.4	642	01647
CW-IA-5	2/27/2020	7:57	15:59	-29.53	-5.74	593	0758
CW-IA-6	2/27/2020	8:10	16:11	-29.49	-6.32	1652	01774
CW-IA-7	2/27/2020	7:48	15:48	-29.23	-5.88	2680	01619
CW-IA-8	2/27/2020	7:44	15:44	-29.09	-6.2	2987	01706

Table 2
Indoor Air Quality Study Results
Curtiss-Wright Target Rock
Farmingdale, New York

		Sample	NYSDOH Air
Sample ID	Analyte	Result	Guidance Value
Sample ID	Analyte		
		(ug/m³)	(ug/m³)
WEST BUILDIN	IG		
	Tetrachloroethene	0.522	30
CW-IA-1	Trichloroethene	< 0.107	2
	1,1,1-Trichloroethane	<0.109	N/A
	Tetrachloroethene	0.488	30
CW-IA-2	Trichloroethene	<0.107	2
	1,1,1-Trichloroethane	<0.109	N/A
	Tetrachloroethene	0.475	30
CW-IA-3	Trichloroethene	< 0.107	2
	1,1,1-Trichloroethane	<0.109	N/A
	Tetrachloroethene	0.441	30
CW-IA-4	Trichloroethene	<0.107	2
	1,1,1-Trichloroethane	<0.109	N/A
	Tetrachloroethene	0.651	30
CW-IA-5	Trichloroethene	<0.107	2
	1,1,1-Trichloroethane	0.115	N/A
	Tetrachloroethene	0.549	30
CW-IA-6	Trichloroethene	<0.107	2
	1,1,1-Trichloroethane	<0.109	N/A
	Tetrachloroethene	0.427	30
CW-IA-7	Trichloroethene	<0.107	2
	1,1,1-Trichloroethane	<0.109	N/A
	Tetrachloroethene	0.597	30
CW-IA-8	Trichloroethene	<0.107	2
	1,1,1-Trichloroethane	<0.109	N/A
EAST BUILDIN	G		
	Tetrachloroethene	0.292	30
CW-IA-9	Trichloroethene	< 0.107	2
	1,1,1-Trichloroethane	< 0.109	N/A
	Tetrachloroethene	0.468	30
CW-IA-10	Trichloroethene	< 0.107	2
	1,1,1-Trichloroethane	0.289	N/A
	Tetrachloroethene	0.237	30
CW-IA-11	Trichloroethene	< 0.107	2
	1,1,1-Trichloroethane	< 0.109	N/A
	Tetrachloroethene	0.251	30
CW-IA-12	Trichloroethene	< 0.107	2
	1,1,1-Trichloroethane	< 0.109	N/A

ATTACHMENT 1

Air Sampling
Data Sheets

ite Locati	on: 1966 E Broadho	ollow Road East Farmingda	le, New York
ample ID	CW-IA-1	Canister ID	590
mpler	K.Tyll	Canister Volume	6 liter
cation	lab corner by powlary lot	Flow Controller ID	015 25
ght		Flow Controller Setting	8 hour
mole Typ	e (sub-slab, soil gas, amb, indoor)	indoor air	

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	8:07	-29.36
Final Canister Vacuum	2/27/20	16:07	- 6.24

PID at Location	on: 3,2 ppm	
Comments:	chemical inventory	IPA + Acetone squiet bottle

Site Locati	on: 1966 E Broadhollo	w Road East Farmingda	le, New York
Sample ID	CW-IA-2	Canister ID	2594
Sampler	K.Tyll	Canister Volume	6 liter
Location	AT outside of New York	Flow Controller ID	01787
Height	ground	Flow Controller Setting	8 hour
Sample Typ	e (sub-slab, soil gas, amb, indoor)	indoor air	

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	8:04	-29.54
Final Canister Vacuum	2/27/20	16:04	-6.55

Weather or An	nbient Conditions:
PID at Location	n: 1.0 ppm
Comments:	chemical inventory
	Acetone PF-HP Degreaser PF-145

Broadhollow Road		
Ca		
	anister ID	3285
Ca	anister Volume	6 liter
FIG	ow Controller ID	01591
FIG	ow Controller Setting	8 hour
	FIG.	Canister Volume Flow Controller ID Flow Controller Setting indoor air

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	7:50	-29.04
Final Canister Vacuum	2/27/20	15:51	-3.78

	0.8	(17 Hard Part)
PID at Location	on: OD PPM	(6.7 max in area adjacent)
Comments:	chemical inventory	
	I a latter 1	relture > 17A, electrolyte solution

Site Locati	on: 1966 E Broadl	nollow Road East Farmingda	le, New York
Sample ID	CW-IA-4	Canister ID	642
Sampler	K.Tyll	Canister Volume	6 liter
ocation.	Stockroom Chargette	Flow Controller ID	01647
Height		Flow Controller Setting	8 hour
Sample Typ	e (sub-slab, soil gas, amb, indoo	indoor air	

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	7:56	- 28.26
Final Canister Vacuum	2/27/20	15:56	- 5.40

Weather or A	mbient Conditions:	
PID at Locati	on: 0.6 ppm	
Comments:	chemical inventory	
	hone seen	

rioject.		tis-Wright Indoor Air - West Building	10 00 1 1300		
Site Locati	on: 1	1966 E Broadhollow Road East Farmingdale, New Yo			
Sample ID	CW-IA-	Canister ID	593		
Sampler	K.Tyll	Canister Volume	6 liter		
Location	Weldsha	Flow Controller ID	0758		
Height	ground	Flow Controller Setting	8 hour		
		s, amb, indoor) indoor air			

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	7:57	-29.53
Final Canister Vacuum	2/27/20	15,59	- 5.74

at Location	
D at Location	9 1111
omments:	chemical inventory
	Dykem Blue, Spotchelle, Acetone, IPA, Anti-Freeze/coola
	TANK #34 - LPI Wantewater 50 sal, SKD-S2 Acrosol, SKI-SP2. Acrosol Stainless Steel Cleaner (EP-1306), SKC-S Spot Check, Various Cleaner 189 Commack Road, Suite H173 - Commack, NY 11725 - 631-629-5373 - www.tyllengineering.com

2/27/2020

Date:

Site Locati	on:	1966 E Broadhol	low Road East	v Road East Farmingdal	
Sample ID	CW-IA	A-6	Canister II	Canister ID Canister Volume Flow Controller ID	
Sampler	K.Tyll		Canister V		
ocation	Center	AT	Flow Cont		
Height	2 0		Flow Cont	Flow Controller Setting	
Sample Typ	e (sub-slab, s	oil gas, amb, indoor)	indoor air		_
Sample Typ	e (sub-slab, s	oil gas, amb, indoor) DATE		VACUU	M
			TIME		

Weather or Ambient Conditions:

PID at Location:

Comments:

1.3 ppm

chemical inventory

	1066 E Broadhall	ow Bood East Farmingdo	la Nau Varle
Site Locati	on: 1900 E BIOAUTION	1966 E Broadhollow Road East Farmingdale, New Yor	
Sample ID	CW-IA-7	Canister ID	2680
Sampler	K.Tyll	Canister Volume	6 liter
Location	Rec/ DOCK/Cleha Room	Flow Controller ID	01619
Height	telly best 6'	Flow Controller Setting	8 hour
	e (sub-slab, soil gas, amb, indoor)	indoor air	

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	7:48	- 29.23
Final Canister Vacuum	2/27/20	15:48	- 5.88

0.6 ppm	
chemical inventory	Acetone + IPA drums
	chemical inventory

Project: Curtis-Wright ind		ndoor Air - West Building	erevitor a
Site Locati	on: 1966 E Broadho	llow Road East Farmingda	ie, New York
Sample ID	CW-IA-8	Canister ID	2987
Sampler	K.Tyll	Canister Volume	6 liter
Location	Hot loop	Flow Controller ID	01706
Height	table 25' to top	Flow Controller Setting	8 hour
		indoor air	

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	7:44	- 29.09
Final Canister Vacuum	2/27/20	15:44	- 6.2

PID at Location	on: 0.1 PPM
Comments:	chemical inventory
	Zep cleaners, IPA acetone
	HCI tank, constic Fink invailts
	#12 200 gel #13 169 Commack Road, Suite H173 Commack, NY 11725 631-629-5373 www.tyllengineering.com

ite Location: 1966 E Broadhollow Road East Farmingda		le, New York	
Sample ID	CW-IA-9	Canister ID	2933
Sampler	K.Tyll	Canister Volume	6 liter
Location	Training Area	Flow Controller ID	01791
Height	41	Flow Controller Setting	8 hour

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	722	- 29.28
Final Canister Vacuum	2/27/20	1522	-4.94

Weather or A	mbient Conditions:
PID at Location	on: 0.2 ppb
Comments:	chemical inventory
	Acetone bottle, latex paint, spalle
	winder, coolant spray bothe

1066 E Broad	collow Road East Farmingdal	e New York
1900 E BIOAUI	lonow Road East Farmingual	
CW-IA-10	Canister ID	902
K.Tyll	Canister Volume	6 liter
Drum Storage Aron	Flow Controller ID	01825
1	Flow Controller Setting	8 hour
	CW-IA-10 K.Tyll	CW-IA-10 K.Tyll Canister ID Canister Volume Flow Controller ID

READING	DATE	TIME	VACUUM	54
Initial Canister Vacuum	2/27/20	7:30	- 30.04	
Final Canister Vacuum	2/27/20	15:34	-6.04	

PID at Location	Delpo 1.5 ppb	
Comments:	chemical inventory	E
	winder, Hocut 795, acetane + IPA squirt bothes	4-4-
	Plas cleaner Aeon 900 syn coolant / Armatheen	Cleaner
	McSter Stages Clean 2017 Spray Cheaner 169 Commack Road, Suite H173 Commack, NY 11725 - 631-629-5373 www.tyllengineering.com	

Project:		ndoor Air - East Building	
Site Locati	on: 1966 E Broadho	ollow Road East Farmingda	le, New York
Sample ID	CW-IA-11	Canister ID	2284
Sampler	K.Tyll	Canister Volume	6 liter
Location	East Shop Main aude	Flow Controller ID	0724
Height	grund	Flow Controller Setting	8 hour
		indoor air	

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	7:26	-29,47
Final Canister Vacuum	2/27/20	15:26	-6.14

Weather or A	mbient Conditions:					
PID at Locati	on: 0.0 ppb					
Comments:	chemical inventory	Aletone)	cleane	15		
	SANDER & OBOR	gon, Sayant Cookse	5 della	08450	70°C	
#12	par mixed gas for	cant concile	porteh	PVC	cenent	raid
7		173 Commack NV 11725 691				

Project: Curtis-vvright ii				
Site Locati	on: 1966 E Broadhollow	/ Road East Farmingda	le, New York	
Sample ID	CW-IA-12	Canister ID	_1642	
Sampler	K.Tyll	Canister Volume	6 liter	
Location	Shelf Inspection Area	Flow Controller ID	01633	
	Area	Flow Controller Setting	8 hour	

READING	DATE	TIME	VACUUM
Initial Canister Vacuum	2/27/20	7:27	- 29.44
Final Canister Vacuum	2/27/20	15:29	-1.08

Weather or A	Ambient Conditions:	
PID at Locati	on:	
Comments:	chemical inventory	
	cleaners, raid, Wire pulling lubricant, concrete parter ready mix,	
	Pre-mixed goofall mixture, PVC Cement, primer, + cleaner, pipedo	
	A CETO NE 169 Commack Road, Suite H173 - Commack, NY 11725 - 631-629-5373 - www.tyllengineering.com	

ATTACHMENT 2

Photographs from Sampling Event

Photo #1 - CW-IA-1 located in the Laboratory Area at the southeastern corner of the building by the Parking Lot.

Photo #3 - CW-IA-3 located adjacent to the main aisle of the HOG area.

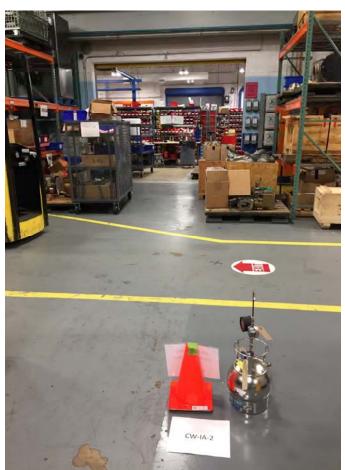


Photo #2 - CW-IA-2 located adjacent to the main aisle outside of the New Torque area.

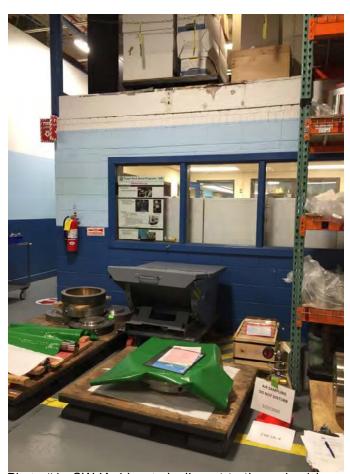


Photo #4 - CW-IA-4 located adjacent to the main aisle outside of the (western) Stockroom door/gate.

Photo #5 - CW-IA-5 located adjacent to SS-1 in the Welding Shop at the Northwestern corner of the building.

Photo #7 - CW-IA-7 located in the Rear Dock Area adjacent to the Clean Room.

Photo #6 - CW-IA-6 located in the Center of the AT shop area adjacent to the main walkway.

Photo #8 - CW-IA-8 was located in the Hot Loop Area adjacent to a 200-gallon Hydrochloric Acid Tank #12 and a 200-gallon Caustic Tank #13.

Photo #9 - CW-IA-9 located in the Training Area

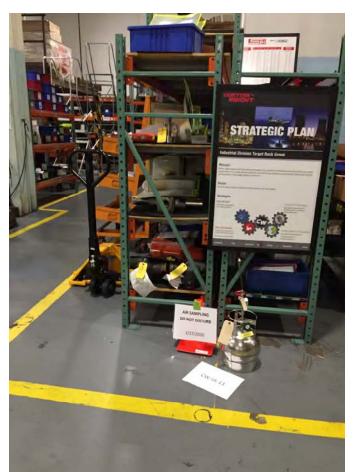


Photo #11 - CW-IA-11 located in the main aisle of the East Shop.

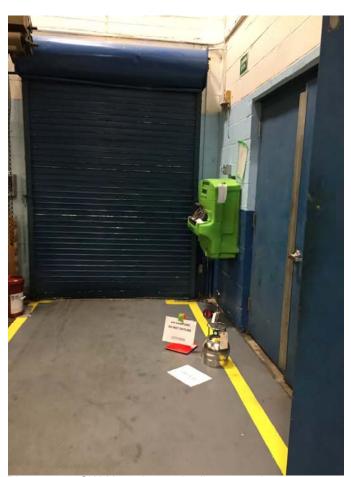


Photo #10 - CW-IA-10 located adjacent to the Compressor Room and Drum Storage Room.

Photo #12 - CW-IA-12 located on the Rack in the E1 Inspection area adjacent to the Facilities Offices.

ATTACHMENT 3

Laboratory Analytical

Data Package

ANALYTICAL REPORT

Lab Number: L2008847

Client: Tyll Engineering and Consulting PC

169 Commack Road

Suite H173

Commack, NY 11725

ATTN: Karen Tyll Phone: (631) 664-6477

Project Name: C-W

Project Number: Not Specified Report Date: 03/06/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: C-W

Project Number: Not Specified

 Lab Number:
 L2008847

 Report Date:
 03/06/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2008847-01	CW-IA-1	AIR	1966 E BROADHOLLOW ROAD	02/27/20 16:07	02/27/20
L2008847-02	CW-IA-2	AIR	1966 E BROADHOLLOW ROAD	02/27/20 16:04	02/27/20
L2008847-03	CW-IA-3	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:51	02/27/20
L2008847-04	CW-IA-4	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:56	02/27/20
L2008847-05	CW-IA-5	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:59	02/27/20
L2008847-06	CW-IA-6	AIR	1966 E BROADHOLLOW ROAD	02/27/20 16:11	02/27/20
L2008847-07	CW-IA-7	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:48	02/27/20
L2008847-08	CW-IA-8	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:44	02/27/20
L2008847-09	CW-IA-9	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:22	02/27/20
L2008847-10	CW-IA-10	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:34	02/27/20
L2008847-11	CW-IA-11	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:26	02/27/20
L2008847-12	CW-IA-12	AIR	1966 E BROADHOLLOW ROAD	02/27/20 15:29	02/27/20

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.					

Serial_No:03062016:19

Project Name:C-WLab Number:L2008847Project Number:Not SpecifiedReport Date:03/06/20

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 26, 2020. The canister certification results are provided as an addendum.

L2008847-01-07: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2008847-10: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

The WG1347232-3 LCS recovery for 3-chloropropene (135%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of this analyte.

WG1347232-5: The relative percent difference for trichlorofluoromethane (28%) is above the RPD limit of 25%. This compound represented less than 10% of the compounds detected, therefore no further action was taken.

The WG1347708-3 LCS recovery for 1,2,4-trichlorobenzene (132%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of this analyte.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/06/20

Christopher J. Anderson

AIR

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 16:07

Client ID: CW-IA-1 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 18:44

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.459	0.200		2.27	0.989			1
Chloromethane	0.641	0.200		1.32	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	87.9	5.00		166	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2330	1.00		5530	2.38		E	1
Trichlorofluoromethane	1.58	0.200		8.88	1.12			1
Isopropanol	492	0.500		1210	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.807	0.500		2.38	1.47			1
Ethyl Acetate	0.557	0.500		2.01	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-01

Client ID: CW-IA-1

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected:

02/27/20 16:07

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:

ppbV ug/m3 Dilution

Possults Pl MDI Qualifier Factor

Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.229	0.200		0.732	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.333	0.200		1.25	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	0.543	0.400		2.36	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2008847

Project Name: C-W Lab Number:

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-01

Client ID: CW-IA-1

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected: 02/27/20 16:07

Date Received: 02/27/20

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	18.8	0.200		113	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	109		60-140
Bromochloromethane	111		60-140
chlorobenzene-d5	109		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 16:07

Client ID: CW-IA-1 Date Received: 02/27/20
Sample Location: 1966 F RPOADHOLLOW ROAD

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 18:44

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.064	0.020		0.403	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.077	0.020		0.522	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	108		60-140
bromochloromethane	109		60-140
chlorobenzene-d5	109		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-01 D Date Collected: 02/27/20 16:07

Client ID: CW-IA-1 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/06/20 05:51

Analyst: TS

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Acetone	4990	36.1		11900	85.8			36.13
Isopropanol	631	18.1		1550	44.5			36.13

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	92		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 16:04

Client ID: CW-IA-2 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 19:23

	ppbVug/m3				Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.458	0.200		2.26	0.989			1
Chloromethane	0.539	0.200		1.11	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	86.1	5.00		162	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	877	1.00		2080	2.38		Е	1
Trichlorofluoromethane	1.25	0.200		7.02	1.12			1
Isopropanol	666	0.500		1640	1.23		Е	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	16.6	0.500		49.0	1.47			1
Ethyl Acetate	1.18	0.500		4.25	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-02

CW-IA-2 Client ID:

Sample Location: 1966 E BROADHOLLOW ROAD Date Collected:

02/27/20 16:04

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:

ppbV ug/m3 **Dilution Factor** RL MDL Qualifier Results Results **Parameter** RL MDL Volatile Organics in Air - Mansfield Lab 1,2-Dichloroethane ND 0.200 ND 0.809 1 n-Hexane ND 0.200 ND 0.705 1 ----Benzene 0.219 0.200 0.700 0.639 1 Cyclohexane ND 0.200 ND 0.688 1 ----1,2-Dichloropropane ND 0.200 ND 1 0.924 Bromodichloromethane ND 0.200 ND 1 1.34 ----1,4-Dioxane ND 0.200 ND 0.721 ----1 2,2,4-Trimethylpentane 2.04 0.200 9.53 0.934 1 Heptane 1 ND 0.200 --ND 0.820 -cis-1,3-Dichloropropene ND 0.200 ND 0.908 1 ----4-Methyl-2-pentanone ND 0.500 ND 2.05 1 -trans-1,3-Dichloropropene ND 0.200 1 --ND 0.908 --1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene 0.292 0.200 1.10 0.754 1 2-Hexanone ND 0.200 --ND 0.820 --1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND --1.54 --1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 1 0.294 0.200 --1.28 0.869 -p/m-Xylene 1.27 0.400 5.52 1.74 1 ----Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 --ND 0.852 --1 1,1,2,2-Tetrachloroethane ND 0.200 __ ND 1.37 __ 1 o-Xylene 0.397 0.200 1.72 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1 ----1,3,5-Trimethylbenzene

ND

0.200

ND

0.983

1

L2008847

Project Name: C-W Lab Number:

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-02

Client ID: CW-IA-2

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected: 02/27/20 16:04

Date Received: 02/27/20

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	0.292	0.200		1.44	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	11.9	0.200		71.5	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	102		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 16:04

Client ID: CW-IA-2 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 19:23

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.091	0.020		0.572	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.072	0.020		0.488	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	100		60-140
bromochloromethane	101		60-140
chlorobenzene-d5	101		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-02 D Date Collected: 02/27/20 16:04

Client ID: CW-IA-2 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/06/20 06:27

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
Acetone	1010	10.0		2400	23.8			10
Isopropanol	741	5.00		1820	12.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	85		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-03 Date Collected: 02/27/20 15:51

Client ID: CW-IA-3 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 20:03

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.456	0.200		2.25	0.989			1
Chloromethane	0.527	0.200		1.09	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	48.6	5.00		91.6	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	843	1.00		2000	2.38		Е	1
Trichlorofluoromethane	1.23	0.200		6.91	1.12			1
Isopropanol	424	0.500		1040	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	6.50	0.500		19.2	1.47			1
Ethyl Acetate	1.13	0.500		4.07	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-03

Client ID: CW-IA-3

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected:

02/27/20 15:51

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.228	0.200		0.728	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.440	0.200		2.06	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	0.254	0.200		0.957	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.293	0.200		1.27	0.869			1
o/m-Xylene	1.22	0.400		5.30	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.381	0.200		1.65	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2008847

Project Name: C-W Lab Number:

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-03

Client ID: CW-IA-3

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected: 02/27/20 15:51

Date Received: 02/27/20

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	0.271	0.200		1.33	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	8.28	0.200		49.8	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	103		60-140
chlorobenzene-d5	101		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-03 Date Collected: 02/27/20 15:51

Client ID: CW-IA-3 Date Received: 02/27/20
Sample Location: 1966 F BROADHOLLOW ROAD

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 20:03

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.086	0.020		0.541	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.070	0.020		0.475	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	102		60-140
chlorobenzene-d5	101		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-03 D Date Collected: 02/27/20 15:51

Client ID: CW-IA-3 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/06/20 07:03

Analyst: TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Acetone	981	5.00		2330	11.9			5
Isopropanol	432	2.50		1060	6.15			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	92		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	89		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:56

Client ID: CW-IA-4 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 21:22

ults	RL						Dilution
	1,_	MDL	Results	RL	MDL	Qualifier	Factor
166	0.200		2.30	0.989			1
556	0.200		1.15	0.413			1
ID	0.200		ND	1.40			1
ID	0.200		ND	0.442			1
ID	0.200		ND	0.777			1
ID	0.200		ND	0.528			1
3.8	5.00		120	9.42			1
ID	0.200		ND	0.874			1
14	1.00		1700	2.38		E	1
752	0.200		4.23	1.12			1
13	0.500		1020	1.23		E	1
ID	0.500		ND	1.52			1
367	0.500		3.01	1.74			1
ID	0.200		ND	0.626			1
ID	0.200		ND	0.623			1
ID	0.200		ND	1.53			1
ID	0.200		ND	0.793			1
ID	0.200		ND	0.809			1
ID	0.200		ND	0.721			1
16	0.500		18.2	1.47			1
943	0.500		3.40	1.80			1
ID	0.200		ND	0.977			1
ID	0.500		ND	1.47			1
	466 556 ID ID ID ID 3.8 ID 14 752 13 ID	556 0.200 ID 0.500 ID 0.200 ID 0.200	0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.3.8 5.00 0.200 0.44 1.00 0.200	556 0.200 1.15 ID 0.200 ND ID 0.500 ND ID 0.500 ND ID 0.200 ND ID 0.500 ND ID 0.200 ND ID 0.200 ND ID 0.500 <td< td=""><td>556 0.200 1.15 0.413 ID 0.200 ND 1.40 ID 0.200 ND 0.442 ID 0.200 ND 0.777 ID 0.200 ND 0.528 3.8 5.00 120 9.42 ID 0.200 ND 0.874 14 1.00 1700 2.38 752 0.200 ND 0.874 13 0.500 1020 1.23 1D 0.500 ND 1.52 367 0.500 ND 1.52 367 0.500 ND 0.626 3D 0.200 ND 0.623 3D 0.200 ND 0.793 3D 0.200 ND 0.721 3D 0.200 ND 0.721 3D 0.500 <td< td=""><td>556 0.200 1.15 0.413 ID 0.200 ND 1.40 ID 0.200 ND 0.442 ID 0.200 ND 0.777 ID 0.200 ND 0.528 3.8 5.00 120 9.42 ID 0.200 ND 0.874 ID 0.200 ND 0.874 ID 0.200 4.23 1.12 ID 0.500 1020 1.23 ID 0.500 ND 1.52 ID 0.500 ND 0.626 ID 0.200 ND 0.623 ID 0.200 ND 0.793 ID 0.200 ND 0.721 ID <td< td=""><td>1.15</td></td<></td></td<></td></td<>	556 0.200 1.15 0.413 ID 0.200 ND 1.40 ID 0.200 ND 0.442 ID 0.200 ND 0.777 ID 0.200 ND 0.528 3.8 5.00 120 9.42 ID 0.200 ND 0.874 14 1.00 1700 2.38 752 0.200 ND 0.874 13 0.500 1020 1.23 1D 0.500 ND 1.52 367 0.500 ND 1.52 367 0.500 ND 0.626 3D 0.200 ND 0.623 3D 0.200 ND 0.793 3D 0.200 ND 0.721 3D 0.200 ND 0.721 3D 0.500 <td< td=""><td>556 0.200 1.15 0.413 ID 0.200 ND 1.40 ID 0.200 ND 0.442 ID 0.200 ND 0.777 ID 0.200 ND 0.528 3.8 5.00 120 9.42 ID 0.200 ND 0.874 ID 0.200 ND 0.874 ID 0.200 4.23 1.12 ID 0.500 1020 1.23 ID 0.500 ND 1.52 ID 0.500 ND 0.626 ID 0.200 ND 0.623 ID 0.200 ND 0.793 ID 0.200 ND 0.721 ID <td< td=""><td>1.15</td></td<></td></td<>	556 0.200 1.15 0.413 ID 0.200 ND 1.40 ID 0.200 ND 0.442 ID 0.200 ND 0.777 ID 0.200 ND 0.528 3.8 5.00 120 9.42 ID 0.200 ND 0.874 ID 0.200 ND 0.874 ID 0.200 4.23 1.12 ID 0.500 1020 1.23 ID 0.500 ND 1.52 ID 0.500 ND 0.626 ID 0.200 ND 0.623 ID 0.200 ND 0.793 ID 0.200 ND 0.721 ID <td< td=""><td>1.15</td></td<>	1.15

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-04

Client ID: CW-IA-4

Sample Location: 1966 E BROADHOLLOW ROAD Date Collected:

02/27/20 15:56

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:		ppbV		ug/m3				5 11 41
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mans			MDE		- 11-			
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.215	0.200		0.687	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.505	0.200		2.36	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.302	0.200		1.14	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.244	0.200		1.06	0.869			1
p/m-Xylene	1.06	0.400		4.60	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.333	0.200		1.45	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID:

L2008847-04

CW-IA-4

Client ID: Sample Location: 1966 E BROADHOLLOW ROAD Date Collected:

02/27/20 15:56

Date Received:

02/27/20

Field Prep:

Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	0.221	0.200		1.09	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	7.38	0.200		44.4	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	104		60-140
chlorobenzene-d5	103		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:56

Client ID: CW-IA-4 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 21:22

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.072	0.020		0.453	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.065	0.020		0.441	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	101		60-140
chlorobenzene-d5	102		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-04 D Date Collected: 02/27/20 15:56

Client ID: CW-IA-4 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/06/20 07:40

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Acetone	800	4.17		1900	9.91			4.167
Isopropanol	437	2.08		1070	5.11			4.167

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	90		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:59

Client ID: CW-IA-5 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 22:02

Qualifier	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1
	1 1 1
	1 1 1
	1
	1
	1
	1
	1
E	1
	1
E	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	E

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-05

Client ID: CW-IA-5

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected:

02/27/20 15:59

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.213	0.200		0.680	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
I,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.534	0.200		2.49	0.934			1
Heptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.330	0.200		1.24	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.260	0.200		1.13	0.869			1
o/m-Xylene	1.11	0.400		4.82	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.355	0.200		1.54	0.869			1
I-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-05

Client ID: CW-IA-5

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected: 02/27/20 15:59

Date Received: 02/27/20

Field Prep: Not Specified

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	0.209	0.200		1.03	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	7.54	0.200		45.3	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	101		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:59

Client ID: CW-IA-5 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 22:02

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	/I - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	0.021	0.020		0.115	0.109			1
Carbon tetrachloride	0.090	0.020		0.566	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.096	0.020		0.651	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	101		60-140
chlorobenzene-d5	100		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-05 D Date Collected: 02/27/20 15:59

Client ID: CW-IA-5 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/06/20 08:17

Analyst: TS

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
Acetone	1540	7.14		3660	17.0			7.143
Isopropanol	381	3.57		937	8.78			7.143

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	88		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-06 Date Collected: 02/27/20 16:11

Client ID: CW-IA-6 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 22:41

		Vdqq		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.541	0.200		2.68	0.989			1
Chloromethane	0.593	0.200		1.22	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	81.0	5.00		153	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1150	1.00		2730	2.38		E	1
Trichlorofluoromethane	1.30	0.200		7.31	1.12			1
Isopropanol	336	0.500		826	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	3.81	0.500		11.2	1.47			1
Ethyl Acetate	1.66	0.500		5.98	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-06

CW-IA-6 Client ID:

Sample Location: 1966 E BROADHOLLOW ROAD Date Collected: 02/27/20

02/27/20 16:11

Date Received: Field Prep:

Not Specified

Sample Depth:

ppbV ug/m3 **Dilution Factor** RL MDL Qualifier Results Results **Parameter** RL MDL Volatile Organics in Air - Mansfield Lab 1,2-Dichloroethane ND 0.200 ND 0.809 1 n-Hexane ND 0.200 ND 0.705 1 ----Benzene 0.277 0.200 0.885 0.639 1 Cyclohexane ND 0.200 ND 0.688 1 ----1,2-Dichloropropane ND 0.200 ND 1 0.924 Bromodichloromethane ND 0.200 1 ND 1.34 ----1,4-Dioxane ND 0.200 ND 0.721 ----1 2,2,4-Trimethylpentane 0.240 0.200 0.934 1 1.12 Heptane 1 ND 0.200 --ND 0.820 -cis-1,3-Dichloropropene ND 0.200 ND 0.908 1 ----4-Methyl-2-pentanone ND 0.500 ND 2.05 1 -trans-1,3-Dichloropropene ND 0.200 ND 1 --0.908 --1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene 0.262 0.200 0.987 0.754 1 2-Hexanone ND 0.200 --ND 0.820 --1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND --1.54 --1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 1 0.448 0.200 --1.95 0.869 -p/m-Xylene 1.98 0.400 8.60 1.74 1 ----Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 --ND 0.852 --1 1,1,2,2-Tetrachloroethane ND 0.200 __ ND 1.37 __ 1 o-Xylene 0.625 0.200 2.71 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1 ----1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-06 Date Collected: 02/27/20 16:11 Client ID: CW-IA-6 Date Received: 02/27/20

Client ID: CW-IA-6 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	0.284	0.200		1.40	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	14.2	0.200		85.4	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	105		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	107		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 16:11

Client ID: CW-IA-6 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 22:41

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.083	0.020		0.522	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.081	0.020		0.549	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	105		60-140
bromochloromethane	106		60-140
chlorobenzene-d5	106		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-06 D Date Collected: 02/27/20 16:11

Client ID: CW-IA-6 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/06/20 09:42

Analyst: TS

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
Acetone	1330	6.25		3160	14.8			6.25
Isopropanol	296	3.12		728	7.67			6.25

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	89		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-07 Date Collected: 02/27/20 15:48

Client ID: CW-IA-7 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/04/20 23:21

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.565	0.200		2.79	0.989			1
Chloromethane	0.634	0.200		1.31	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	54.2	5.00		102	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	819	1.00		1950	2.38		E	1
Trichlorofluoromethane	1.13	0.200		6.35	1.12			1
Isopropanol	359	0.500		882	1.23		Е	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.894	0.200		2.78	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	7.18	0.500		21.2	1.47			1
Ethyl Acetate	1.15	0.500		4.14	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-07

Client ID: CW-IA-7

Sample Location: 1966 E BROADHOLLOW ROAD Date Collected:

02/27/20 15:48

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:		ppbV		ug/m3				
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mans			IIIDE					
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.223	0.200		0.712	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.701	0.200		3.27	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.243	0.200		0.916	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.292	0.200		1.27	0.869			1
p/m-Xylene	1.25	0.400		5.43	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.378	0.200		1.64	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2008847

Project Name: Lab Number: C-W

Project Number: Report Date:

Not Specified 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-07

Client ID: CW-IA-7

Sample Location: 1966 E BROADHOLLOW ROAD Date Collected: 02/27/20 15:48

Date Received: 02/27/20

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	0.263	0.200		1.29	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	8.32	0.200		50.0	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	112		60-140
Bromochloromethane	116		60-140
chlorobenzene-d5	113		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:48

Client ID: CW-IA-7 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 23:21

		ppbV	υ, Vc		ug/m3	ug/m3		Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.101	0.020		0.635	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.063	0.020		0.427	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	112		60-140		
bromochloromethane	115		60-140		
chlorobenzene-d5	114		60-140		

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-07 D Date Collected: 02/27/20 15:48

Client ID: CW-IA-7 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/06/20 10:18

Analyst: TS

		ppbV	ug/m3		ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Acetone	893	3.57		2120	8.48			3.571
Isopropanol	354	1.78		870	4.38			3.571

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	83		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:44

Client ID: CW-IA-8 Date Received: 02/27/20 Sample Location: 1966 F BROADHOLLOW ROAD

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/05/20 00:01

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.475	0.200		2.35	0.989			1
Chloromethane	0.581	0.200		1.20	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	31.6	5.00		59.5	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	347	1.00		824	2.38			1
Trichlorofluoromethane	0.972	0.200		5.46	1.12			1
Isopropanol	122	0.500		300	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.35	0.500		3.98	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-08

Client ID: CW-IA-8

Sample Location: 1966 E BROADHOLLOW ROAD Date Collected:

02/27/20 15:44

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RI Results MDL Qualifier Results

Volatile Organics in Air - Mansfield Lab Volatile Organics in Ai									Dilation
1.2-Dichloroethane	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
ND	Volatile Organics in Air - Mansfi	eld Lab							
Benzene 0.287 0.200 0.917 0.639 1 1.2-Dichloropropane ND 0.200 ND 0.688 1 1.2-Dichloropropane ND 0.200 ND 0.924 1 Bromodichloromethane ND 0.200 ND 1.34 1 1.4-Dioxane ND 0.200 ND 0.721 1 1.2-L'inimethylpentane ND 0.200 ND 0.934 1 1.2-L'inimethylpentane ND 0.200 ND 0.934 1 1.2-L'inimethylpentane ND 0.200 ND 0.820 1 1.2-Dichloropropene ND 0.200 ND 0.908 1 1.2-Trichloropropene ND 0.200 ND 0.908 1 1.1,12-Trichloroethane ND 0.200 ND 0.908 1 1.1,12-Trichloroethane ND 0.200 ND 1.09 1 1.1,12-Trichloroethane ND 0.200 ND 1.09 1 1.1-2-Dibromochloromethane ND 0.200 ND 1.70 1 1.2-Dibromochloromethane ND 0.200 ND 1.54 1 1.2-Dibromochloromethane ND 0.200 ND 1.54 1 1.2-Dibromochloromethane ND 0.200 ND 1.54 1 1.2-Dibromochloromethane ND 0.200 ND 0.921 1 1.2-Dibromochloromethane ND 0.200 ND 0.923 1 1.2-Dibromochloromethane ND 0.200 ND 0.923 1 1.2-Dibromochlorome	1,2-Dichloroethane	ND	0.200		ND	0.809			1
Cyclohexane ND 0.200 ND 0.688 1 1.2-Dichloropropane ND 0.200 ND 0.924 1 Bromodichloromethane ND 0.200 ND 1.34 1 1.4-Dioxane ND 0.200 ND 0.721 1 1.4-Dioxane ND 0.200 ND 0.934 1 1.4-Dioxane ND 0.200 ND 0.934 1 1.4-Dioxane ND 0.200 ND 0.934 1 1.4-Petrichloropropene ND 0.200 ND 0.982 1 1.4-Methyl-2-pentanone ND 0.200 ND 0.908 1 1.4-Methyl-2-pentanone ND 0.200 ND 0.908 1 1.1,1-2-Trichloroethane ND<	n-Hexane	ND	0.200		ND	0.705			1
1.2-Dichloropropane	Benzene	0.287	0.200		0.917	0.639			1
ND 0.200 ND 1.34 1	Cyclohexane	ND	0.200		ND	0.688			1
1,4-Dioxane	1,2-Dichloropropane	ND	0.200		ND	0.924			1
ND 0.200 ND 0.934 1	Bromodichloromethane	ND	0.200		ND	1.34			1
ND 0.200 ND 0.820 ND 0.820 1	1,4-Dioxane	ND	0.200		ND	0.721			1
ND 0.200 ND 0.908 1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
4-Methyl-2-pentanone	Heptane	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene ND 0.200 ND 0.908 1 1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene 0.226 0.200 0.852 0.754 1 2-Hexanone ND 0.200 ND 0.820 1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 1.07 0.200 ND 0.921 1 Ethylbenzene 1.07 0.200 ND 0.921 1 Styrene ND 0.200 ND 2.07 1 Styrene ND 0.200 ND 1.37 1 1- 1,2,2-Tetrachloroethane ND 0.200 ND 0.983 1	cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
Toluene 0.226 0.200 0.852 0.754 1 2-Hexanone ND 0.200 ND 0.820 1 1.2-Dibromochloromethane ND 0.200 ND 1.70 1 1.2-Dibromoethane ND 0.200 ND 1.54 1 1.2-Dibromoethane ND 0.200 ND 1.54 1 1.2-Dibromoethane ND 0.200 ND 0.921 1 Ethylbenzene ND 0.200 ND 0.921 1 Ethylbenzene 1.07 0.200 4.65 0.869 1 Ethylbenzene 4.72 0.400 20.5 1.74 1 Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 ND 0.852 1 1.1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 0-Xylene 1.51 0.200 6.56 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1	trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
2-Hexanone	1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 1.07 0.200 4.65 0.869 1 p/m-Xylene 4.72 0.400 20.5 1.74 1 Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 4-Ethyltoluene ND 0.200 ND 0.983 1	Toluene	0.226	0.200		0.852	0.754			1
1,2-Dibromoethane	2-Hexanone	ND	0.200		ND	0.820			1
Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 1.07 0.200 4.65 0.869 1 p/m-Xylene 4.72 0.400 20.5 1.74 1 Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 0-Xylene 1.51 0.200 6.56 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1	Dibromochloromethane	ND	0.200		ND	1.70			1
Ethylbenzene 1.07 0.200 4.65 0.869 1 p/m-Xylene 4.72 0.400 20.5 1.74 1 Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene ND 0.200 ND 0.983 1	1,2-Dibromoethane	ND	0.200		ND	1.54			1
p/m-Xylene 4.72 0.400 20.5 1.74 1 Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene 1.51 0.200 6.56 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1	Chlorobenzene	ND	0.200		ND	0.921			1
Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene 1.51 0.200 6.56 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1	Ethylbenzene	1.07	0.200		4.65	0.869			1
Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene 1.51 0.200 6.56 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1	p/m-Xylene	4.72	0.400		20.5	1.74			1
1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 o-Xylene 1.51 0.200 6.56 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1	Bromoform	ND	0.200	<u></u>	ND	2.07			1
0-Xylene 1.51 0.200 6.56 0.869 1 4-Ethyltoluene ND 0.200 ND 0.983 1	Styrene	ND	0.200		ND	0.852			1
4-Ethyltoluene ND 0.200 ND 0.983 1	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
· · · · · · · · · · · · · · · · · · ·	o-Xylene	1.51	0.200		6.56	0.869			1
1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1	4-Ethyltoluene	ND	0.200		ND	0.983			1
	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2008847

Project Name: Lab Number: C-W

Project Number: Report Date: Not Specified 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-08

Client ID: CW-IA-8

Sample Location: 1966 E BROADHOLLOW ROAD

02/27/20 15:44 Date Collected:

Date Received: 02/27/20

Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	2.49	0.200		15.0	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	101		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:44

Client ID: CW-IA-8 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/05/20 00:01

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.063	0.020		0.396	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.088	0.020		0.597	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	100		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:22

Client ID: CW-IA-9 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/05/20 00:41

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	nsfield Lab							
Dichlorodifluoromethane	0.545	0.200		2.69	0.989			1
Chloromethane	0.551	0.200		1.14	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	128	5.00		241	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	314	1.00		746	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	39.6	0.500		97.3	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.14	0.500		3.36	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-09

Client ID: CW-IA-9

Sample Location: 1966 E BROADHOLLOW ROAD Date Collected:

02/27/20 15:22

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:		ppbV			ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mans			IIIDE					
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.259	0.200		0.827	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.364	0.200		1.37	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.358	0.200		1.55	0.869			1
p/m-Xylene	1.27	0.400		5.52	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.592	0.200		2.57	0.869			1
4-Ethyltoluene	0.365	0.200		1.79	0.983			1
1,3,5-Trimethylbenzene	0.470	0.200		2.31	0.983			1

L2008847

Project Name: Lab Number: C-W

Project Number: Report Date: Not Specified

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-09

Client ID: CW-IA-9

Sample Location: 1966 E BROADHOLLOW ROAD

02/27/20 15:22 Date Collected:

Date Received: 02/27/20

Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	1.55	0.200		7.62	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	0.556	0.200		3.34	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108		60-140
Bromochloromethane	109		60-140
chlorobenzene-d5	111		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:22

Client ID: CW-IA-9 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specification:

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/05/20 00:41

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	0.293	0.020		1.60	0.109			1
Carbon tetrachloride	0.068	0.020		0.428	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.043	0.020		0.292	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	108		60-140
bromochloromethane	108		60-140
chlorobenzene-d5	110		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:34

Client ID: CW-IA-10 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 01:20

0.989 0.413 1.40	MDL	Qualifier	Factor 1
0.413 1.40			1
0.413 1.40			1
1.40			
			1
			1
0.442			1
0.777			1
0.528			1
9.42			1
0.874			1
2.38		Е	1
1.12			1
1.23			1
1.52			1
1.74			1
0.626			1
0.623			1
1.53			1
0.793			1
0.809			1
0.721			1
1.47			1
1.80			1
0.977			1
1.47			1
	0.442 0.777 0.528 9.42 0.874 2.38 1.12 1.23 1.52 1.74 0.626 0.623 1.53 0.793 0.809 0.721 1.47 1.80 0.977	0.442 0.777 0.528 9.42 0.874 2.38 1.12 1.52 1.74 0.626 0.623 1.53 0.793 0.809 1.47 1.80 0.977	0.442 0.777 0.528 9.42 0.874 2.38 E 1.12 1.23 1.52 1.74 0.626 0.623 1.53 0.793 0.809 0.721 1.47 1.80 0.977

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-10

Client ID: CW-IA-10

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected:

02/27/20 15:34

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.319	0.200		1.02	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
leptane	ND	0.200		ND	0.820			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
ans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.318	0.200		1.20	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
thylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2008847

Project Name: Lab Number: C-W

Project Number: Report Date: Not Specified 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-10 Client ID: CW-IA-10

Sample Location: 1966 E BROADHOLLOW ROAD

02/27/20 15:34 Date Collected:

Date Received: 02/27/20 Field Prep: Not Specified

Sample Depth:

Campie Deptii.		ppbV		ug/m3	Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
1,2,4-Trimethylbenzene	0.399	0.200		1.96	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	0.651	0.200		3.91	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	105		60-140
Bromochloromethane	106		60-140
chlorobenzene-d5	104		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:34

Client ID: CW-IA-10 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/05/20 01:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	0.053	0.020		0.289	0.109			1
Carbon tetrachloride	0.063	0.020		0.396	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.069	0.020		0.468	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	105		60-140
bromochloromethane	104		60-140
chlorobenzene-d5	103		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-10 D Date Collected: 02/27/20 15:34

Client ID: CW-IA-10 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/06/20 09:14

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Acetone	1440	5.00		3420	11.9			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	94		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:26

Client ID: CW-IA-11 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/05/20 02:00

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Dichlorodifluoromethane	0.437	0.200		2.16	0.989			1
Chloromethane	0.531	0.200		1.10	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	32.4	5.00		61.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	212	1.00		504	2.38			1
Trichlorofluoromethane	0.251	0.200		1.41	1.12			1
Isopropanol	51.4	0.500		126	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	0.601	0.200		2.38	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-11

Client ID: CW-IA-11

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected: 0

02/27/20 15:26

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:

ppbV ug/m3 **Dilution Factor** RL MDL Qualifier Results Results **Parameter** RL MDL Volatile Organics in Air - Mansfield Lab 1,2-Dichloroethane ND 0.200 ND 0.809 1 n-Hexane ND 0.200 0.705 1 --ND --Benzene 0.442 0.200 1.41 0.639 1 Cyclohexane ND 0.200 ND 0.688 1 ----1,2-Dichloropropane ND 0.200 ND 0.924 1 Bromodichloromethane ND 0.200 1 ND 1.34 ----1,4-Dioxane ND 0.200 ND 0.721 ----1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 1 Heptane 1 ND 0.200 --ND 0.820 -cis-1,3-Dichloropropene ND 0.200 ND 0.908 1 ----4-Methyl-2-pentanone ND 0.500 ND 2.05 1 -trans-1,3-Dichloropropene ND 0.200 ND 1 --0.908 --1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene 0.329 0.200 1.24 0.754 1 2-Hexanone ND 0.200 --ND 0.820 --1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 --ND 1.54 --1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 1 ND 0.200 --ND 0.869 -p/m-Xylene ND 0.400 ND 1.74 1 ----Bromoform ND 0.200 ND 2.07 1 Styrene ND 0.200 --ND 0.852 --1 1,1,2,2-Tetrachloroethane ND 0.200 __ ND 1.37 __ 1

ND

ND

ND

0.200

0.200

0.200

--

ND

ND

ND

0.869

0.983

0.983

--

1

1

1

o-Xylene

4-Ethyltoluene

1,3,5-Trimethylbenzene

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-11 Date Collected: 02/27/20 15:26 Client ID: Date Received: 02/27/20

Client ID: CW-IA-11 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL		Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	0.274	0.200		1.35	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	1.10	0.200		6.61	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	100		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:26

Client ID: CW-IA-11 Date Received: 02/27/20

Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/05/20 02:00

		ppbV			ug/m3	Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.073	0.020		0.459	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.035	0.020		0.237	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	98		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-12 Date Collected: 02/27/20 15:29

Client ID: CW-IA-12 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 02:40

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.448	0.200		2.22	0.989			1
Chloromethane	0.539	0.200		1.11	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	60.8	5.00		115	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	173	1.00		411	2.38			1
Trichlorofluoromethane	0.213	0.200		1.20	1.12			1
Isopropanol	30.5	0.500		75.0	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

SAMPLE RESULTS

Lab ID: L2008847-12

Client ID: CW-IA-12

Sample Location: 1966 E BROADHOLLOW ROAD

Date Collected:

02/27/20 15:29

Date Received: Field Prep:

02/27/20 Not Specified

Sample Depth:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.434	0.200		1.39	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	0.329	0.200		1.24	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2008847

Project Name: C-W Lab Number:

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: L2008847-12 Date Collected: 02/27/20 15:29

Client ID: CW-IA-12 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Sample Depth:

Parameter		ppbV			ug/m3		Dilution	
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	0.271	0.200		1.33	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	0.416	0.200		2.50	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	104		60-140
Bromochloromethane	105		60-140
chlorobenzene-d5	104		60-140

Project Number: Not Specified Report Date: 03/06/20

SAMPLE RESULTS

Lab ID: Date Collected: 02/27/20 15:29

Client ID: CW-IA-12 Date Received: 02/27/20 Sample Location: 1966 E BROADHOLLOW ROAD Field Prep: Not Specified

Tield Tiep

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/05/20 02:40

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.063	0.020		0.396	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.037	0.020		0.251	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	104		60-140
bromochloromethane	104		60-140
chlorobenzene-d5	103		60-140

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 17:25

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	·12 Batch	n: WG13472	232-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 17:25

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab for samp	ole(s): 01-	-12 Batch	n: WG13472	32-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/04/20 17:25

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01-	-12 Batch	n: WG13472	232-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 03/04/20 18:04

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	/I - Mansfield Lab f	or sample	e(s): 01-1	2 Batch: W	G134723	33-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 15:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 10	Batch:	WG1347708-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 15:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 10	Batch:	WG1347708-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
	IND	0.400		ND	1.74			ı

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 15:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab for samp	ole(s): 10	Batch: \	WG1347708-	-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 14:56

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab for samp	ole(s): 01	-07 Batch:	: WG13477	716-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 14:56

Parameter Volatile Organics in Air - Mansfield La Tetrahydrofuran 1,2-Dichloroethane n-Hexane 1,1,1-Trichloroethane Benzene	ND ND ND ND ND ND ND ND	RL 0.500 0.200 0.200 0.200 0.200 0.200 0.200	MDL -07 Batch:	ND ND ND	RL 116-4 1.47 0.809 0.705 1.09	MDL	Qualifier	1 1 1
Tetrahydrofuran 1,2-Dichloroethane n-Hexane 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND	0.500 0.200 0.200 0.200 0.200		ND ND ND	1.47 0.809 0.705			1
1,2-Dichloroethane n-Hexane 1,1,1-Trichloroethane	ND ND ND ND	0.200 0.200 0.200 0.200		ND ND ND	0.809 0.705			1
n-Hexane 1,1,1-Trichloroethane	ND ND ND	0.200 0.200 0.200		ND ND	0.705			
1,1,1-Trichloroethane	ND ND ND	0.200 0.200		ND				1
· ·	ND ND	0.200			1.09			•
Benzene	ND							1
		0.200		ND	0.639			1
Carbon tetrachloride		0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: C-W Lab Number: L2008847

Project Number: Not Specified Report Date: 03/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/05/20 14:56

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 01	-07 Batch	: WG13477	716-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: C-W

Project Number: Not Specified

Lab Number: L2008847

Report Date: 03/06/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-12	Batch: WG134723	32-3				
Dichlorodifluoromethane	107		-		70-130	-		
Chloromethane	108		-		70-130	-		
Freon-114	124		-		70-130	-		
Vinyl chloride	110		-		70-130	-		
1,3-Butadiene	116		-		70-130	-		
Bromomethane	111		-		70-130	-		
Chloroethane	114		-		70-130	-		
Ethanol	77		-		40-160	-		
Vinyl bromide	105		-		70-130	-		
Acetone	102		-		40-160	-		
Trichlorofluoromethane	118		-		70-130	-		
Isopropanol	89		-		40-160	-		
1,1-Dichloroethene	115		-		70-130	-		
Tertiary butyl Alcohol	99		-		70-130	-		
Methylene chloride	98		-		70-130	-		
3-Chloropropene	135	Q	-		70-130	-		
Carbon disulfide	104		-		70-130	-		
Freon-113	107		-		70-130	-		
trans-1,2-Dichloroethene	110		-		70-130	-		
1,1-Dichloroethane	112		-		70-130	-		
Methyl tert butyl ether	105		-		70-130	-		
2-Butanone	116		-		70-130	-		
cis-1,2-Dichloroethene	115		-		70-130	-		

Project Name: C-W

Project Number: Not Specified

Lab Number: L2008847

Report Date: 03/06/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-12 E	Batch: WG134723	32-3				
Ethyl Acetate	124		-		70-130	-		
Chloroform	114		-		70-130	-		
Tetrahydrofuran	118		-		70-130	-		
1,2-Dichloroethane	112		-		70-130	-		
n-Hexane	101		-		70-130	-		
1,1,1-Trichloroethane	92		-		70-130	-		
Benzene	95		-		70-130	-		
Carbon tetrachloride	100		-		70-130	-		
Cyclohexane	100		-		70-130	-		
1,2-Dichloropropane	100		-		70-130	-		
Bromodichloromethane	99		-		70-130	-		
1,4-Dioxane	101		-		70-130	-		
Trichloroethene	98		-		70-130	-		
2,2,4-Trimethylpentane	103		-		70-130	-		
Heptane	102		-		70-130	-		
cis-1,3-Dichloropropene	100		-		70-130	-		
4-Methyl-2-pentanone	106		-		70-130	-		
trans-1,3-Dichloropropene	84		-		70-130	-		
1,1,2-Trichloroethane	96		-		70-130	-		
Toluene	102		-		70-130	-		
2-Hexanone	114		-		70-130	-		
Dibromochloromethane	106		-		70-130	-		
1,2-Dibromoethane	104		-		70-130	-		

Project Name: C-W

Project Number: Not Specified Lab Number:

L2008847

Report Date:

03/06/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01-12	Batch: WG134723	32-3				
Tetrachloroethene	108		-		70-130	-		
Chlorobenzene	111		-		70-130	-		
Ethylbenzene	103		-		70-130	-		
p/m-Xylene	106		-		70-130	-		
Bromoform	105		-		70-130	-		
Styrene	102		-		70-130	-		
1,1,2,2-Tetrachloroethane	115		-		70-130	-		
o-Xylene	104		-		70-130	-		
4-Ethyltoluene	100		-		70-130	-		
1,3,5-Trimethylbenzene	102		-		70-130	-		
1,2,4-Trimethylbenzene	104		-		70-130	-		
Benzyl chloride	104		-		70-130	-		
1,3-Dichlorobenzene	108		-		70-130	-		
1,4-Dichlorobenzene	108		-		70-130	-		
1,2-Dichlorobenzene	108		-		70-130	-		
1,2,4-Trichlorobenzene	120		-		70-130	-		
Hexachlorobutadiene	109		-		70-130	-		

Project Name: C-W

Project Number:

Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated s	ample(s):	01-12 Batch: WG	31347233-3	3				
Vinyl chloride	107		-		70-130	-		25	
1,1-Dichloroethene	111		-		70-130	-		25	
cis-1,2-Dichloroethene	109		-		70-130	-		25	
1,1,1-Trichloroethane	88		-		70-130	-		25	
Carbon tetrachloride	90		-		70-130	-		25	
Trichloroethene	90		-		70-130	-		25	
Tetrachloroethene	102		-		70-130	-		25	

Project Name: C-W

Project Number: Not Specified

Lab Number: L

L2008847

Report Date:

03/06/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	sociated sample(s)	: 10 Batch	n: WG1347708-3					
Dichlorodifluoromethane	98		-		70-130	-		
Chloromethane	98		-		70-130	-		
Freon-114	100		-		70-130	-		
Vinyl chloride	101		-		70-130	-		
1,3-Butadiene	100		-		70-130	-		
Bromomethane	101		-		70-130	-		
Chloroethane	96		-		70-130	-		
Ethanol	93		-		40-160	-		
Vinyl bromide	92		-		70-130	-		
Acetone	86		-		40-160	-		
Trichlorofluoromethane	111		-		70-130	-		
Isopropanol	98		-		40-160	-		
1,1-Dichloroethene	104		-		70-130	-		
Tertiary butyl Alcohol	96		-		70-130	-		
Methylene chloride	101		-		70-130	-		
3-Chloropropene	109		-		70-130	-		
Carbon disulfide	94		-		70-130	-		
Freon-113	105		-		70-130	-		
trans-1,2-Dichloroethene	101		-		70-130	-		
1,1-Dichloroethane	104		-		70-130	-		
Methyl tert butyl ether	93		-		70-130	-		
2-Butanone	105		-		70-130	-		
cis-1,2-Dichloroethene	107		-		70-130	-		

Project Name: C-W

Project Number: Not Specified

Lab Number: L2008847

Report Date: 03/06/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s)	: 10 Bato	h: WG1347708-3					
Ethyl Acetate	112		-		70-130	-		
Chloroform	103		-		70-130	-		
Tetrahydrofuran	105		-		70-130	-		
1,2-Dichloroethane	100		-		70-130	-		
n-Hexane	102		-		70-130	-		
1,1,1-Trichloroethane	98		-		70-130	-		
Benzene	97		-		70-130	-		
Carbon tetrachloride	101		-		70-130	-		
Cyclohexane	102		-		70-130	-		
1,2-Dichloropropane	105		-		70-130	-		
Bromodichloromethane	101		-		70-130	-		
1,4-Dioxane	101		-		70-130	-		
Trichloroethene	104		-		70-130	-		
2,2,4-Trimethylpentane	101		-		70-130	-		
Heptane	102		-		70-130	-		
cis-1,3-Dichloropropene	105		-		70-130	-		
4-Methyl-2-pentanone	105		-		70-130	-		
trans-1,3-Dichloropropene	89		-		70-130	-		
1,1,2-Trichloroethane	106		-		70-130	-		
Toluene	103		-		70-130	-		
2-Hexanone	113		-		70-130	-		
Dibromochloromethane	108		-		70-130	-		
1,2-Dibromoethane	104		-		70-130	-		

Project Name: C-W

Project Number: Not Specified

Lab Number: L2008847

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Ass	sociated sample(s):	10	Batch: WG1347708-3					
Tetrachloroethene	103		-		70-130	-		
Chlorobenzene	104		-		70-130	-		
Ethylbenzene	106		-		70-130	-		
p/m-Xylene	105		-		70-130	-		
Bromoform	109		-		70-130	-		
Styrene	104		-		70-130	-		
1,1,2,2-Tetrachloroethane	112		-		70-130	-		
o-Xylene	108		-		70-130	-		
4-Ethyltoluene	103		-		70-130	-		
1,3,5-Trimethylbenzene	105		-		70-130	-		
1,2,4-Trimethylbenzene	110		-		70-130	-		
Benzyl chloride	115		-		70-130	-		
1,3-Dichlorobenzene	112		-		70-130	-		
1,4-Dichlorobenzene	111		-		70-130	-		
1,2-Dichlorobenzene	112		-		70-130	-		
1,2,4-Trichlorobenzene	132	Q	-		70-130	-		
Hexachlorobutadiene	121		-		70-130	-		

Project Name: C-W

Project Number: Not Specified

Lab Number: L2008847

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab As	sociated sample(s):	01-07	Batch: WG134771	6-3				
Dichlorodifluoromethane	81		-		70-130	-		
Chloromethane	85		-		70-130	-		
Freon-114	86		-		70-130	-		
Vinyl chloride	83		-		70-130	-		
1,3-Butadiene	87		-		70-130	-		
Bromomethane	86		-		70-130	-		
Chloroethane	76		-		70-130	-		
Ethanol	75		-		40-160	-		
Vinyl bromide	82		-		70-130	-		
Acetone	74		-		40-160	-		
Trichlorofluoromethane	82		-		70-130	-		
Isopropanol	76		-		40-160	-		
1,1-Dichloroethene	83		-		70-130	-		
Tertiary butyl Alcohol	72		-		70-130	-		
Methylene chloride	92		-		70-130	-		
3-Chloropropene	89		-		70-130	-		
Carbon disulfide	83		-		70-130	-		
Freon-113	89		-		70-130	-		
trans-1,2-Dichloroethene	78		-		70-130	-		
1,1-Dichloroethane	89		-		70-130	-		
Methyl tert butyl ether	87		-		70-130	-		
2-Butanone	100		-		70-130	-		
cis-1,2-Dichloroethene	88		-		70-130	-		

Project Name: C-W

Project Number: Not Specified

Lab Number: L2008847

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01-07	Batch: WG134771	16-3				
Ethyl Acetate	87		-		70-130	-		
Chloroform	95		-		70-130	-		
Tetrahydrofuran	92		-		70-130	-		
1,2-Dichloroethane	90		-		70-130	-		
n-Hexane	86		-		70-130	-		
1,1,1-Trichloroethane	97		-		70-130	-		
Benzene	93		-		70-130	-		
Carbon tetrachloride	107		-		70-130	-		
Cyclohexane	87		-		70-130	-		
1,2-Dichloropropane	93		-		70-130	-		
Bromodichloromethane	99		-		70-130	-		
1,4-Dioxane	94		-		70-130	-		
Trichloroethene	97		-		70-130	-		
2,2,4-Trimethylpentane	90		-		70-130	-		
Heptane	102		-		70-130	-		
cis-1,3-Dichloropropene	101		-		70-130	-		
4-Methyl-2-pentanone	107		-		70-130	-		
trans-1,3-Dichloropropene	84		-		70-130	-		
1,1,2-Trichloroethane	100		-		70-130	-		
Toluene	106		-		70-130	-		
2-Hexanone	116		-		70-130	-		
Dibromochloromethane	124		-		70-130	-		
1,2-Dibromoethane	114		-		70-130	-		

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01-07	Batch: WG13477	16-3				
Tetrachloroethene	111		-		70-130	-		
Chlorobenzene	115		-		70-130	-		
Ethylbenzene	112		-		70-130	-		
p/m-Xylene	112		-		70-130	-		
Bromoform	120		-		70-130	-		
Styrene	114		-		70-130	-		
1,1,2,2-Tetrachloroethane	119		-		70-130	-		
o-Xylene	117		-		70-130	-		
4-Ethyltoluene	116		-		70-130	-		
1,3,5-Trimethylbenzene	119		-		70-130	-		
1,2,4-Trimethylbenzene	120		-		70-130	-		
Benzyl chloride	98		-		70-130	-		
1,3-Dichlorobenzene	107		-		70-130	-		
1,4-Dichlorobenzene	95		-		70-130	-		
1,2-Dichlorobenzene	113		-		70-130	-		
1,2,4-Trichlorobenzene	60	Q	-		70-130	-		
Hexachlorobutadiene	122		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: C-W

Project Number: Not Specified

Lab Number: L20

L2008847

Parameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-12	QC Batch ID: WG1347232-5	QC Sample:	L2008847-	03 Client ID:	CW-IA-3
Dichlorodifluoromethane	0.456	0.520	ppbV	13		25
Chloromethane	0.527	0.579	ppbV	9		25
Freon-114	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethanol	48.6	50.6	ppbV	4		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	843E	909E	ppbV	8		25
Trichlorofluoromethane	1.23	0.930	ppbV	28	Q	25
Isopropanol	424E	446E	ppbV	5		25
Tertiary butyl Alcohol	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
Freon-113	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25
2-Butanone	6.50	6.59	ppbV	1		25
Ethyl Acetate	1.13	1.17	ppbV	3		25

Lab Duplicate Analysis Batch Quality Control

Project Name: C-W

Project Number: Not Specified

Lab Number: L2008847

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	•	QC Batch ID: WG1347232-5			03 Client ID: CW-IA-3
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
Benzene	0.228	0.232	ppbV	2	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	0.440	0.442	ppbV	0	25
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.254	0.261	ppbV	3	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.293	0.289	ppbV	1	25

Lab Duplicate Analysis Batch Quality Control

Project Name: C-W

Project Number: Not Specified

Lab Number:

L2008847

Report Date:

03/06/20

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab Assoc	iated sample(s): 01-12 G	QC Batch ID: WG1347232	-5 QC Sar	nple: L2008847-0	03 Client ID: CW-IA-3
p/m-Xylene	1.22	1.24	ppbV	2	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	0.381	0.372	ppbV	2	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	0.271	0.276	ppbV	2	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	8.28	8.45	ppbV	2	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	1-12 QC Batch ID: WG1	347233-5	QC Sample: L20	008847-03 Client ID: CW-IA-3
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.086	0.090	ppbV	5	25
Trichloroethene	ND	ND	ppbV	NC	25
Tetrachloroethene	0.070	0.067	ppbV	4	25

Lab Number: L2008847

Report Date: 03/06/20

Project Number:

Project Name:

C-W

Canister and Flow Controller Information

							Initial	Pressure	Flow			
Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check			Controler	Flow Out mL/min	Flow In mL/min	% RPD
CW-IA-1	01525	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	9.8	2
CW-IA-1	590	6.0L Can	02/26/20	314755	L2007511-05	Pass	-29.0	-5.7	-	-	-	-
CW-IA-2	01787	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	9.8	2
CW-IA-2	2594	6.0L Can	02/26/20	314755	L2007768-01	Pass	-29.0	-6.1	-	-	-	-
CW-IA-3	01591	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	9.7	3
CW-IA-3	3285	6.0L Can	02/26/20	314755	L2007768-03	Pass	-29.1	-2.8	-	-	-	-
CW-IA-4	01647	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	9.6	4
CW-IA-4	642	6.0L Can	02/26/20	314755	L2007768-02	Pass	-29.5	-4.4	-	-	-	-
CW-IA-5	0758	Flow 3	02/26/20	314755		-	-	-	Pass	10.0	9.8	2
CW-IA-5	593	6.0L Can	02/26/20	314755	L2007768-03	Pass	-28.9	-5.1	-	-	-	-
CW-IA-6	01774	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	9.9	1
CW-IA-6	1652	6.0L Can	02/26/20	314755	L2007511-05	Pass	-29.0	-5.7	-	-	-	-
CW-IA-7	01619	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	10.0	0
CW-IA-7	2680	6.0L Can	02/26/20	314755	L2007768-03	Pass	-29.0	-5.1	-	-	-	
CW-IA-8	01706	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	10.1	1
	CW-IA-1 CW-IA-2 CW-IA-2 CW-IA-3 CW-IA-3 CW-IA-4 CW-IA-5 CW-IA-5 CW-IA-6 CW-IA-7 CW-IA-7	CW-IA-1 590 CW-IA-2 01787 CW-IA-2 2594 CW-IA-3 01591 CW-IA-3 3285 CW-IA-4 01647 CW-IA-5 0758 CW-IA-5 593 CW-IA-6 01774 CW-IA-7 01619 CW-IA-7 2680	Client ID Media ID CW-IA-1 01525 Flow 4 CW-IA-1 590 6.0L Can CW-IA-2 01787 Flow 4 CW-IA-2 2594 6.0L Can CW-IA-3 01591 Flow 4 CW-IA-3 3285 6.0L Can CW-IA-4 01647 Flow 4 CW-IA-5 0758 Flow 3 CW-IA-5 593 6.0L Can CW-IA-6 01774 Flow 4 CW-IA-6 1652 6.0L Can CW-IA-7 01619 Flow 4 CW-IA-7 2680 6.0L Can	Client ID Media ID Prepared CW-IA-1 01525 Flow 4 02/26/20 CW-IA-1 590 6.0L Can 02/26/20 CW-IA-2 01787 Flow 4 02/26/20 CW-IA-2 2594 6.0L Can 02/26/20 CW-IA-3 01591 Flow 4 02/26/20 CW-IA-3 3285 6.0L Can 02/26/20 CW-IA-4 01647 Flow 4 02/26/20 CW-IA-4 642 6.0L Can 02/26/20 CW-IA-5 0758 Flow 3 02/26/20 CW-IA-5 593 6.0L Can 02/26/20 CW-IA-6 01774 Flow 4 02/26/20 CW-IA-6 1652 6.0L Can 02/26/20 CW-IA-7 01619 Flow 4 02/26/20 CW-IA-7 2680 6.0L Can 02/26/20	Client ID Media ID Prepared Order CW-IA-1 01525 Flow 4 02/26/20 314755 CW-IA-1 590 6.0L Can 02/26/20 314755 CW-IA-2 01787 Flow 4 02/26/20 314755 CW-IA-2 2594 6.0L Can 02/26/20 314755 CW-IA-3 01591 Flow 4 02/26/20 314755 CW-IA-3 3285 6.0L Can 02/26/20 314755 CW-IA-4 01647 Flow 4 02/26/20 314755 CW-IA-4 642 6.0L Can 02/26/20 314755 CW-IA-5 0758 Flow 3 02/26/20 314755 CW-IA-6 01774 Flow 4 02/26/20 314755 CW-IA-6 1652 6.0L Can 02/26/20 314755 CW-IA-7 01619 Flow 4 02/26/20 314755 CW-IA-7 2680 6.0L Can 02/26/20 314755	Client ID Media ID Prepared Order Batch ID CW-IA-1 01525 Flow 4 02/26/20 314755 L2007511-05 CW-IA-1 590 6.0L Can 02/26/20 314755 L2007511-05 CW-IA-2 01787 Flow 4 02/26/20 314755 L2007768-01 CW-IA-2 2594 6.0L Can 02/26/20 314755 L2007768-01 CW-IA-3 01591 Flow 4 02/26/20 314755 L2007768-03 CW-IA-3 3285 6.0L Can 02/26/20 314755 L2007768-03 CW-IA-4 01647 Flow 4 02/26/20 314755 L2007768-03 CW-IA-5 0758 Flow 3 02/26/20 314755 L2007768-02 CW-IA-5 593 6.0L Can 02/26/20 314755 L2007768-03 CW-IA-6 1652 6.0L Can 02/26/20 314755 L2007768-03 CW-IA-7 01619 Flow 4 02/26/20 314755 L2007511-05 CW-I	Client ID Media ID Prepared Order Batch ID Check CW-IA-1 01525 Flow 4 02/26/20 314755 - CW-IA-1 590 6.0L Can 02/26/20 314755 L2007511-05 Pass CW-IA-2 01787 Flow 4 02/26/20 314755 L2007768-01 Pass CW-IA-2 2594 6.0L Can 02/26/20 314755 L2007768-01 Pass CW-IA-3 01591 Flow 4 02/26/20 314755 L2007768-03 Pass CW-IA-3 3285 6.0L Can 02/26/20 314755 L2007768-03 Pass CW-IA-4 01647 Flow 4 02/26/20 314755 L2007768-03 Pass CW-IA-4 642 6.0L Can 02/26/20 314755 L2007768-02 Pass CW-IA-5 593 6.0L Can 02/26/20 314755 L2007768-03 Pass CW-IA-6 1652 6.0L Can 02/26/20 314755 L2007511-05 Pas	Client ID Media ID Prepared Order Batch ID Check (in. Hg) CW-IA-1 01525 Flow 4 02/26/20 314755 L2007511-05 Pass -29.0 CW-IA-1 590 6.0L Can 02/26/20 314755 L2007511-05 Pass -29.0 CW-IA-2 01787 Flow 4 02/26/20 314755 L2007768-01 Pass -29.0 CW-IA-3 01591 Flow 4 02/26/20 314755 L2007768-01 Pass -29.0 CW-IA-3 3285 6.0L Can 02/26/20 314755 L2007768-03 Pass -29.1 CW-IA-4 01647 Flow 4 02/26/20 314755 L2007768-03 Pass -29.1 CW-IA-6 0758 Flow 3 02/26/20 314755 L2007768-03 Pass -29.5 CW-IA-6 593 6.0L Can 02/26/20 314755 L2007768-03 Pass -28.9 CW-IA-6 1652 6.0L Can 02/26/20 314755 L	Client ID Media ID Media Type Parepared Boottle Batch ID Calcaling Batch ID Check Check (fin. Hg) Pressite (fin. Hg) CW-IA-1 01525 Flow 4 02/26/20 314755 L2007511-05 Pass -29.0 -5.7 CW-IA-1 590 6.0 L Can 02/26/20 314755 L2007511-05 Pass -29.0 -5.7 CW-IA-2 2594 6.0 L Can 02/26/20 314755 L2007768-01 Pass -29.0 -6.1 CW-IA-3 01591 Flow 4 02/26/20 314755 L2007768-01 Pass -29.0 -6.1 CW-IA-3 3285 6.0 L Can 02/26/20 314755 L2007768-03 Pass -29.1 -2.8 CW-IA-4 01647 Flow 4 02/26/20 314755 L2007768-03 Pass -29.1 -2.8 CW-IA-4 642 6.0 L Can 02/26/20 314755 L2007768-02 Pass -29.5 -5.1 CW-IA-5 593 6.0 L Can 02/26/20	Client ID Media ID Media Type Prepared Prepared Prepared Order Prepared Order Batch ID Order Batch	Client ID Media Media Frepared Rott Statin Clear Can Lock Richard Richard	Client ID Media ID Media ID Prepara Bottle Sactor Cleaning Each of Run (in. High) Control (in. High) Flow (in. High) <

Lab Number: L2008847

Report Date: 03/06/20

Project Number:

C-W

Project Name:

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check				Flow Out mL/min	Flow In mL/min	% RPD
L2008847-08	CW-IA-8	2987	6.0L Can	02/26/20	314755	L2007511-05	Pass	-28.9	-5.8	-	-	-	-
L2008847-09	CW-1A-9	01791	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	9.7	3
L2008847-09	CW-IA-9	2933	6.0L Can	02/26/20	314755	L2007511-05	Pass	-28.9	-4.8	-	-	-	-
L2008847-10	CW-IA-10	01825	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	10.2	2
L2008847-10	CW-IA-10	902	6.0L Can	02/26/20	314755	L2007768-03	Pass	-29.0	-5.2	-	-	-	-
L2008847-11	CW-IA-11	0724	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	10.0	0
L2008847-11	CW-IA-11	2284	6.0L Can	02/26/20	314755	L2007768-01	Pass	-29.1	-5.4	-	-	-	-
L2008847-12	CW-IA-12	01633	Flow 4	02/26/20	314755		-	-	-	Pass	10.0	9.6	4
L2008847-12	CW-IA-12	1642	6.0L Can	02/26/20	314755	L2007768-01	Pass	-29.1	0.0	-	-	-	-

L2007511

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Date Collected: 02/19/20 16:00 Client ID: **CAN 783 SHELF 43** Date Received: 02/20/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 02/20/20 21:02

Analyst: GΡ

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2007511

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Date Collected: 02/19/20 16:00 Client ID: **CAN 783 SHELF 43** Date Received: 02/20/20

Sample Location:

Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
Xylenes, total	ND	0.600		ND	0.869			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2007511

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Date Collected: 02/19/20 16:00 Client ID: **CAN 783 SHELF 43** Date Received: 02/20/20

Sample Location:

Field Prep: Not Specified

Запіріе Беріп.		ppbV			ug/m3			D
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2007511

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Date Collected: 02/19/20 16:00 Client ID: **CAN 783 SHELF 43** Date Received: 02/20/20

Sample Location:

Field Prep: Not Specified

Запріє Веріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
1,2,3-Trimethylbenzene	ND	0.200		ND	0.983			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2007511

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Date Collected: 02/19/20 16:00 Client ID: **CAN 783 SHELF 43** Date Received:

02/20/20 Sample Location: Field Prep: Not Specified

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Dilution Factor Results Qualifier Units **RDL** Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	82		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	78		60-140

L2007511

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Date Collected: 02/19/20 16:00 Client ID: **CAN 783 SHELF 43** Date Received: 02/20/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 02/20/20 21:02

Analyst: GΡ

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L2007511

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Date Collected: 02/19/20 16:00 Client ID: **CAN 783 SHELF 43** Date Received: 02/20/20

Sample Location:

Field Prep: Not Specified

Запре Бериі.		ppbV		ug/m3				Dilection
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air by SIM - M								
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2007511

Project Number: CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007511-05

Client ID: CAN 783 SHELF 43

Sample Location:

Date Collected:

02/19/20 16:00

Date Received:

02/20/20

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	79		60-140
bromochloromethane	80		60-140
chlorobenzene-d5	77		60-140

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: 02/20/20 16:00 CAN 3152 SHELF 51 Client ID: Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 02/22/20 17:54

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2007768

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: 02/20/20 16:00 Client ID: CAN 3152 SHELF 51 Date Received: 02/21/20

Sample Location: Field Prep:

Затріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: 02/20/20 16:00 Client ID: CAN 3152 SHELF 51 Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Запре Верш.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: 02/20/20 16:00 Client ID: CAN 3152 SHELF 51 Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Запріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

02/20/20 16:00

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2007768

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: Client ID: CAN 3152 SHELF 51 Date Received:

02/21/20

Field Prep: Not Specified

Sample Depth:

Sample Location:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	91		60-140

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: 02/20/20 16:00 Client ID: CAN 3152 SHELF 51 Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 02/22/20 17:54

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L2007768

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: 02/20/20 16:00 Client ID: CAN 3152 SHELF 51 Date Received: 02/21/20

Sample Location: Field Prep:

	<u> </u>	ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2007768

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-01

Date Collected: 02/20/20 16:00 Client ID: CAN 3152 SHELF 51 Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Campic Doptii.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	92		60-140

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007768-02

Date Collected: 02/20/20 16:00 Client ID: **CAN 920 SHELF 52** Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 02/22/20 18:32 Analytical Date:

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab	1							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2007768

03/06/20

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:**

Air Canister Certification Results

Lab ID: L2007768-02

Date Collected: 02/20/20 16:00 Client ID: **CAN 920 SHELF 52** Date Received: 02/21/20

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-02

Date Collected: 02/20/20 16:00 Client ID: **CAN 920 SHELF 52** Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Запре Верш.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2007768

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-02

Date Collected: 02/20/20 16:00 Client ID: **CAN 920 SHELF 52** Date Received: 02/21/20

Sample Location:

Запріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2007768

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-02

Date Collected: 02/20/20 16:00 Client ID: **CAN 920 SHELF 52** Date Received: 02/21/20

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	92		60-140

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-02

Date Collected: 02/20/20 16:00 Client ID: **CAN 920 SHELF 52** Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 02/22/20 18:32

Analyst: RY

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.050		ND	0.349			1
ND	0.020		ND	0.051			1
ND	0.020		ND	0.044			1
ND	0.020		ND	0.078			1
ND	0.100		ND	0.264			1
ND	1.00		ND	2.38			1
ND	0.050		ND	0.281			1
ND	0.500		ND	1.09			1
ND	0.020		ND	0.079			1
ND	0.500		ND	1.74			1
ND	0.050		ND	0.383			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.081			1
ND	0.200		ND	0.721			1
ND	0.500		ND	1.47			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.098			1
ND	0.020		ND	0.081			1
ND	0.020		ND	0.109			1
ND	0.100		ND	0.319			1
ND	0.020		ND	0.126			1
ND	0.020		ND	0.092			1
	Sfield Lab ND ND ND ND ND ND ND ND ND N	ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 1.00 ND 0.500 ND 0.500 ND 0.500 ND 0.050 ND 0.050 ND 0.020 ND 0.020	Results RL MDL sfield Lab ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 0.050 ND 0.500 ND 0.020 ND 0.050 ND 0.020 ND 0.020 ND 0.020	Results RL MDL Results sfield Lab ND 0.200 ND ND 0.200 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.100 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 <td>Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND</td> <td>Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<></td>	Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND	Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<>	Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989

L2007768

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-02

Date Collected: 02/20/20 16:00 Client ID: **CAN 920 SHELF 52** Date Received: 02/21/20

Sample Location: Field Prep:

Запріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007768-02

Client ID: CAN 920 SHELF 52

Sample Location:

Date Collected:

Lab Number:

02/20/20 16:00

Date Received:

02/21/20

L2007768

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	95		60-140		
bromochloromethane	93		60-140		
chlorobenzene-d5	93		60-140		

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Date Collected: 02/20/20 16:00 Client ID: **CAN 1640 SHELF 53** Date Received: 02/21/20

Sample Location: Field Prep:

Not Specified

Sample Depth:

Project Number:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 02/22/20 19:10

Analyst: RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Date Collected: 02/20/20 16:00 Client ID: **CAN 1640 SHELF 53** Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Запріє Беріп.	ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Factor
Volatile Organics in Air - Mansfield Lab)						
Tertiary butyl Alcohol	ND	0.500		ND	1.52		1
Methylene chloride	ND	0.500		ND	1.74		1
3-Chloropropene	ND	0.200		ND	0.626		1
Carbon disulfide	ND	0.200		ND	0.623		1
Freon-113	ND	0.200		ND	1.53		1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793		1
1,1-Dichloroethane	ND	0.200		ND	0.809		1
Methyl tert butyl ether	ND	0.200		ND	0.721		1
Vinyl acetate	ND	1.00		ND	3.52		1
2-Butanone	ND	0.500		ND	1.47		1
Xylenes, total	ND	0.600		ND	0.869		1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793		1
Ethyl Acetate	ND	0.500		ND	1.80		1
Chloroform	ND	0.200		ND	0.977		1
Tetrahydrofuran	ND	0.500		ND	1.47		1
2,2-Dichloropropane	ND	0.200		ND	0.924		1
1,2-Dichloroethane	ND	0.200		ND	0.809		1
n-Hexane	ND	0.200		ND	0.705		1
Diisopropyl ether	ND	0.200		ND	0.836		1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836		1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00		1
1,1,1-Trichloroethane	ND	0.200		ND	1.09		1
1,1-Dichloropropene	ND	0.200		ND	0.908		1
Benzene	ND	0.200		ND	0.639		1
Carbon tetrachloride	ND	0.200		ND	1.26		1
Cyclohexane	ND	0.200		ND	0.688		1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836		1

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Date Collected: 02/20/20 16:00 Client ID: **CAN 1640 SHELF 53** Date Received: 02/21/20

Sample Location: Field Prep: Not Specified

Запре Верш.	ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Factor
Volatile Organics in Air - Mansfield Lab)						
Dibromomethane	ND	0.200		ND	1.42		1
1,2-Dichloropropane	ND	0.200		ND	0.924		1
Bromodichloromethane	ND	0.200		ND	1.34		1
1,4-Dioxane	ND	0.200		ND	0.721		1
Trichloroethene	ND	0.200		ND	1.07		1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934		1
Methyl Methacrylate	ND	0.500		ND	2.05		1
Heptane	ND	0.200		ND	0.820		1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908		1
4-Methyl-2-pentanone	ND	0.500		ND	2.05		1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908		1
1,1,2-Trichloroethane	ND	0.200		ND	1.09		1
Toluene	ND	0.200		ND	0.754		1
1,3-Dichloropropane	ND	0.200		ND	0.924		1
2-Hexanone	ND	0.200		ND	0.820		1
Dibromochloromethane	ND	0.200		ND	1.70		1
1,2-Dibromoethane	ND	0.200		ND	1.54		1
Butyl acetate	ND	0.500		ND	2.38		1
Octane	ND	0.200		ND	0.934		1
Tetrachloroethene	ND	0.200		ND	1.36		1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37		1
Chlorobenzene	ND	0.200		ND	0.921		1
Ethylbenzene	ND	0.200		ND	0.869		1
o/m-Xylene	ND	0.400		ND	1.74		1
Bromoform	ND	0.200		ND	2.07		1
Styrene	ND	0.200		ND	0.852		1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		1

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Date Collected: 02/20/20 16:00 Client ID: **CAN 1640 SHELF 53** Date Received: 02/21/20

Sample Location: Field Prep: Not Specified

Sample Depth:

Затріє Беріп.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2007768

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Client ID: **CAN 1640 SHELF 53**

Sample Location:

Date Collected: Date Received: 02/20/20 16:00

02/21/20

Field Prep:

Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Date Collected: 02/20/20 16:00 Client ID: **CAN 1640 SHELF 53** Date Received: 02/21/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 02/22/20 19:10

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L2007768

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Date Collected: 02/20/20 16:00 Client ID: **CAN 1640 SHELF 53** Date Received: 02/21/20

Sample Location: Field Prep: Not Specified

Sample Depth:

Запріє Беріп.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

02/20/20 16:00

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2007768

Project Number: CANISTER QC BAT **Report Date:** 03/06/20

Air Canister Certification Results

Lab ID: L2007768-03

Date Collected: Client ID: **CAN 1640 SHELF 53** Date Received:

02/21/20 Sample Location: Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	93		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	93		60-140

Project Name: C-W Lab Number: L2008847 Project Number: Not Specified

Report Date: 03/06/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler NA Present/Intact

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2008847-01A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2008847-02A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2008847-03A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2008847-04A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2008847-05A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2008847-06A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2008847-07A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2008847-08A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2008847-09A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2008847-10A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2008847-11A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2008847-12A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)

Project Name: Lab Number: C-W L2008847 **Project Number:** Not Specified **Report Date:** 03/06/20

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

- Matrix Spike Sample Duplicate: Refer to MS. MSD

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

- Not Ignitable. NI

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: Data Usability Report

Project Name:C-WLab Number:L2008847Project Number:Not SpecifiedReport Date:03/06/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

L2008847

Lab Number:

Project Name: C-W

Project Number: Not Specified Report Date: 03/06/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:C-WLab Number:L2008847Project Number:Not SpecifiedReport Date:03/06/20

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Aq, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Aq, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Client Informatical Client Tyll Engineer Address 169 Common Commack, NY 11725 Phone: 631-664-647 Fax: Email: karen@tylleng	ansfield, MA 02048 FAX: 508-822-32 ation ering and Consultin mack ROad, Suite 25 77 ngineering com have been Previous	g, PC H 173 sly analyzed	by Alpha	F P P A A T	Project Nat Project Loc Project # Project Mar LPHA Que urn-Arc	me: C-W cation: 196 mager: Kar ote #:	% E Broadh ren Tyll		oad		R	1 FAX 1 ADEX egula Sta	/Data	Deliv	erabl	es In EMA Add'I	format	Same as Client in	on 0 PO#				
Client Information Client Tyll Engineer Address: 169 Common Commack, NY 11725 Phone: 631-664-647 Fax: Email: karen@tylleng These samples have Other Project Special	FAX: 508-822-32 Prior and Consulting and Consultin	g, PC H 173 sly analyzed		F P A A II	Project Nat Project Loc Project # Project Mar LPHA Que urn-Arc	me: C-W cation: 196 mager: Kar ote #:	66 E Broadh ren Tyll me Rush (on			ere-approved)	R	1 FAX 1 ADEX egula Sta	tory F	Requi		Add'i	L Delivera eport l	ion Billing Informati Same as Client informations Same as Client informations	on 0 PO#				
Client Information Client Tyll Engineer Address: 169 Common Commack, NY 11725 Phone: 631-664-647 Fax: Email: karen@tylleng These samples have Cother Project Special	FAX: 508-822-32 Prior and Consulting and Consultin	g, PC H 173 sly analyzed		P P A T T E	Project Loc Project # Project Mar LPHA Que Urn-Arc	nager. Kar ote #:	men Tyll Me Rush (on			ere-approved)	R	agula Sta	tory F	Requi	⊠	Add'i	Delivera	imits					
Client Information Client Tyll Engineer Address, 169 Commack, NY 11729 Phone: 631-664-647 Fax: Email: karen@tylleng These samples have	ering and Consultin mack RCad, Suite 25 177 Ingineering com have been Previous ecific Requireme	g, PC H 173 sly analyzed		P A	Client Information Client Tyll Engineering and Consulting, PC Address, 169 Commack, RCad, Suite H 173 Commack, NY 11725 Phone: 631-664-6477 Fax: Email: karen@tyllengineering.com													imits	Commercial				
Client Tyll Engineer Address, 169 Comm Commack, NY 11729 Phone: 631-664-647 Fax: Email: karen@tylleng These samples ha	ering and Consultin mack RCad, Suite 25 177 Ingineering com have been Previous ecific Requireme	t 173		A D	roject Mar LPHA Que urn-Arc	ote#	me Rush (on	ly confi	med if p	re-approved)		Sti	tory F ste/Fed	Requi	emer				Commercial				
Address, 169 Comm Commack, NY 11725 Phone: 631-664-647 Fax: Email: kareri@tylleng These samples had Other Project Speci	mack RCad, Suite 25 177 Ingineering com have been Previou	t 173		A D	LPHA Que	ote#	me Rush (on	ly confi	med if p	re-approved)		Sti	ete/Fed						Commercial				
Phone: 631-664-647 Fax: Email: karen@tylleng These samples his	25 177 Ingineering com have been Previou	sly analyzed		5	urn-Arc	ound-Ti	Rush (on	ly confi	med if p	re-approved)	A												
Phone: 631-664-647 Fax: Email: karen@tylleng These samples hi Other Project Speci	ngneering com have been Previou	nts/Comme		5	Standa		Rush (on	ly confir	med if p	re-approved)	A												
Fax: Email: karen@tylleng These samples hi Other Project Spec	ngineering com have been Previou ecific Requireme	nts/Comme				rd 🗀		ly confir	med if p	re-approved)	A												
Email: karen@tylleng These samples ha	have been Previou	nts/Comme		Di	ate Due:				, and it is	o approved)	A	Analysis											
☐ These samples ha	have been Previou	nts/Comme		D	ate Due:		Time					naiy	sis										
Other Project Spec	ecific Requireme	nts/Comme					1111100																
Other Project Spec	ecific Requireme	nts/Comme									-												
All Columns Below					Must Be Filled Out							5		N Subtract non-petroleum HCs		Subtract non- GASES							
Lab Use		Collection			Sample		Sampler	Can	ID	ID	10	TO-15 SIM		DGA	Jes &			Sample Specific C	San Control				
Only	mple ID End I	Time	1000	Initial Vac	Final Vac	Matrix*	Initials	Size	Can	Flow	TO-15	10-1	APH	FIXED	Suffides			(i.e. PID)					
247-01 DW-14-1			1607	-29.36	-6.24	AA	KT	6L	590	01525		100	1	1				1013/64					
CS CWHA-2		2.00	16.04	-29.54	-6.9	-AA	KT	BL	2594	01787													
CB CW-IA-3			16:51	-29.04	-378	AA	KT	6L	3285	01591													
CH CW-IA-4		1000	1556	-28.26	-540	AA.	KT	6L	642	01647													
05 CW-IA-5		(21.90)	1559	-29.53	-5.74	AA	KT	B.L.	583	0758													
CG CWIA-5	2/27/2	D8:10	16:11	-29.49	-6.32	AA	KT	6 L	1652	01774	П	X											
AMPLE MATRIX C									Con	ntainer Type	-	-	-	ш									
A = Ambient Air (Inc V = Soil Vapor/Land	ndfill Gas/SVF			Г			Relinquish	ed By	-	ional Type	Date/Ti				-				Please print clearly legibly and complete				
Other = Please Speci	cify				Ken	me	e v	ANNA	70.11		-		15	-	Meck	eived B	1/10	1630	Samples cannot be logged in and turn around time clock wi				
101-00 (G Few 25-Sept-15					7	MI	4	M	IN	7.2	2/27/2	1905	5.7 PM	N'	W	196	WE	A42) 2-27.20'	not start until any ambiguities are				
						10		110	1	hi L	1100	5 6	7	1	12	12	1	200	resolved. All sample submitted are subject				

			AIR	ANAL	YSI	S				PAGE	OF	l n	ate Box	ald in I	Sec.	21	an I	-	11424	inc or car	_	_
1	LPHA	CHAIN	OF CU	STODY	Р	roject l	nformat	tion				_	ate Red							HA Job#:	LZ	-00884
6.0	LYSTERAL					oject Nam							FAX	Data	Deliv		EMAIL	ormatio		ng Inform		-
320 Forbes TEL: 508-8	Blvd, Mansfield, MA 22-9300 FAX: 508	02048		-	-		E Broadho	ollow Ro	ad		-	ADEX					deliverable		ame as Clie	nt info	PO#	
Client In	formation				Pr	oject#						Re	telune	tory R	emuir	omar	te/De	port Li				
Client Tyll	Engineering and C	onsulting. Po				-	ager: Kare	n Tull				-		te/Fed	equi	emen		pont Li	mits	Reside	ntiel/Com	and the same of th
	69 Commack ROad					PHA Quo		ar zyn				-								710200	mer CD//	armerciei
Commack,	NY 11725						und-Tir	no				-	_			-			+-			
Phone: 631	-664-6477					Standard			(m	140	THE L											
Fax:					10	Standard	ш	Hush (onl	y confin	med if pr	re-approved)	Analysis										
Email: kare	n@tyllengineering.	com			Da	te Due:		Time														
	amples have been		nalvzed he	Alpha	1 00	ic Dire		Tittige				1_										
		All	Column	s Belov	v Must	Be Fill	ed Out							Subtract non	GASES	& Mercaptans by						
Alpha ab Use	0.75			Collection			Sample	Sampler	Can	ip	10	15	TO-15 SIM		D G	Suifides 8			Sar	mple Spec	ific Con	nments
Only	Sample ID	End Date	Start Time	End Time	Vac	Vac	Matrix*	Initials	Size	Can	Flow Controller	TO-15	5	APH	FIXED	Sulf					PID)	
07	CW4A-7	2/27/20	07.48	1548	-29.23	-528	AA	KT	6L	2680	01619		×									
68	CW-IA-8	2/27/20	07.44	15.44	-29.09	- G.Z.	AA	KT	6L	2987	01706		×									
09	CW-IA-9	2/27/20	07:22	5:27	-29.28	-4,94	AA.	KT	61	2933	01791		Ø					1				
10	CW-IA-10	2/27/20	7:30	5.34	-30.04	-6.04	AA	KT	81	902	01825		×	0								
11	CW4A-11	2/27/20	07.26	15:26	-29.47	-6.14	AA	кт	6L	2284	0724		×									
12	CW4A-12	2/27/20	07:27	15:24	-29,44	-1,08	AA	KT	6L	1642	01633		Ø					П				
	ATRIX CODES:									Cor	ntainer Type		-	18.5	-	-	- Land	-	_	_	- P-	ease print clear
= Soil V	nt Air (Indoor/Ou apor/Landfill Gas ase Specify	rtdoor) s/SVE				Kag	Ru	Relinquish Kure,	-		2/27	Date/T	ime 3.250^	M	4)	Rec MG	elved E	(A	42)	Date/Tim	leg Saro log aro	pibly and comple imples cannot b iged in and turn ound time clock t start until any
(q)-Q(()) Rev	25-Sept-15					V	hp	120	GK	25	12-27-2		05			1	2 /	2 -	acio	10,	am	biguities are loved. All same

Appendix EE Well Abandonment Report August 26, 2021

175 Commerce Drive, Suite P, Hauppauge NY 11788 T (631) 901-1888 / F (631) 901-1889 www.pgenviro.com

August 26, 2021

Mr. Thomas Gianni Facility and Safety Manager 1966 E Broadhollow Road East Farmingdale, NY 11735

Re: Well Abandonment Services

1966 Broadhollow Road, East Farmingdale NY

Dear Mr. Gianni:

PG Environmental Services, Inc. (PGES) has performed contacting services involving the abandonment of seven (7) monitoring wells at the subject site.

SITE DESCRIPTION

The Site consist of an irregular shaped lot and is approximately 344,000 square feet. The subject site is currently a 1-story commercial building with a parking lot.

WELL ABANDONMENT

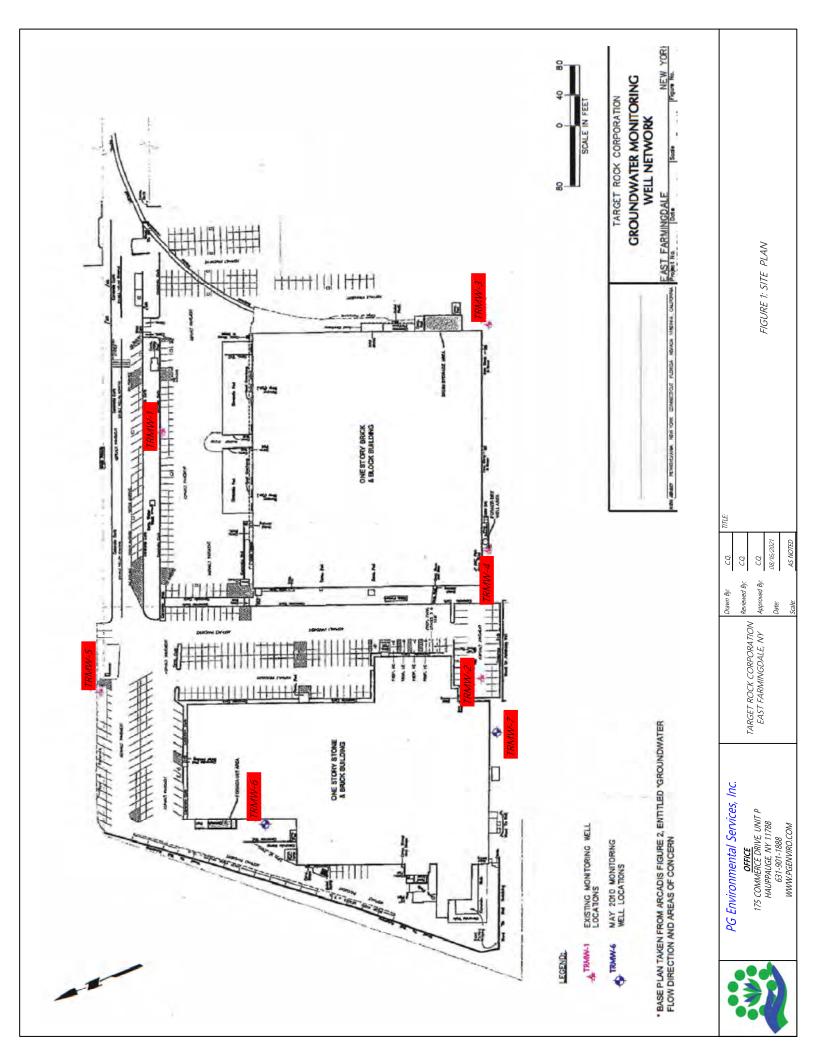
The wells were abandoned following protocols from NYSDEC CP-43: Groundwater Monitoring Well Decommissioning Policy. PGES utilized our Geoprobe grout injection unit GP-300 to properly abandoned six (6) monitoring wells of the projected seven (7). One of the wells TRMW-4 was not located. PGES attempted locating the metal cover with a magnetometer along with picks, but it was unsuccessful. The six (6) wells ranged in depth between 20 and 30 feet below grade. **Appendix A** provide a site plan with monitoring well locations.

Initially, the wells were accessed atop to inspect their integrity with the manhole covers removed. The grout pump was then utilized by mixing Cetco Bentonite grouting gel and pump into the wells from the bottom to the surface. The top of each monitoring well was finished at grade with cement for proper seal. **Appendix B** provide pictures of the fieldwork.

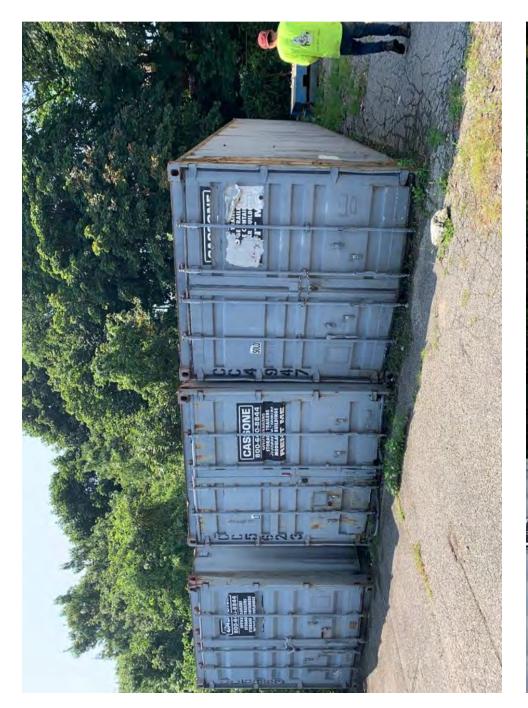
We appreciate the opportunity to provide you with our services and hope the information presented above has proven valuable to this phase of your project. Please do not hesitate to contact us at your convenience.

Very Truly Yours,

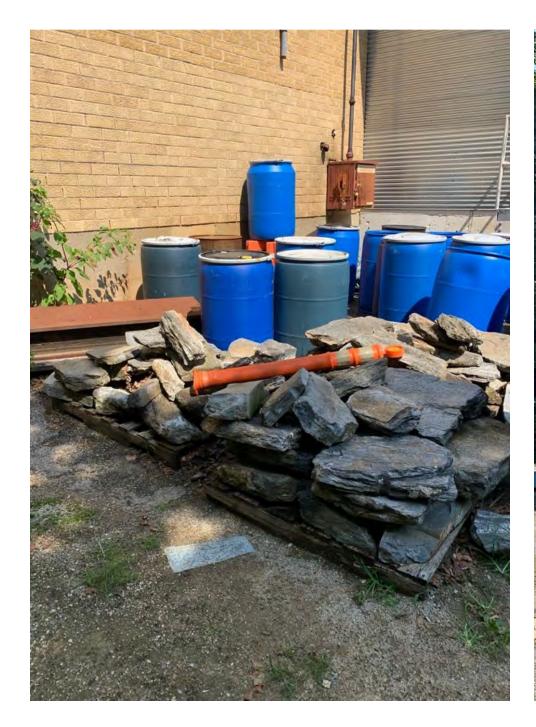
PG Environmental Services, Inc.

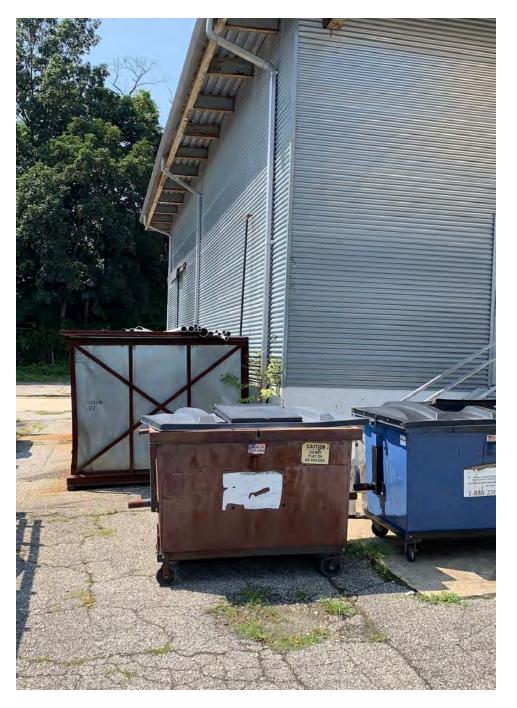

Carlos Quinonez

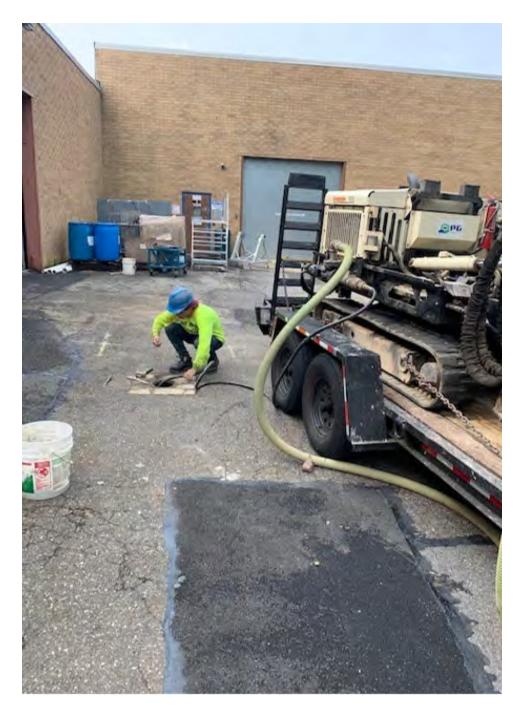
Vice President of Operations

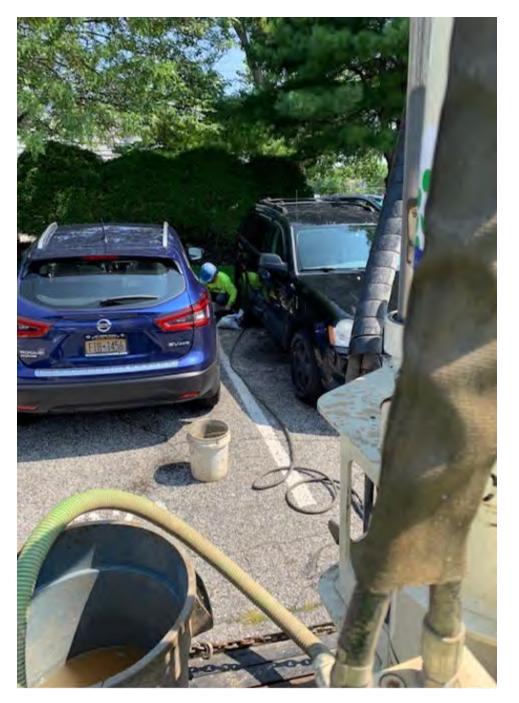

CQ/bq Encl.

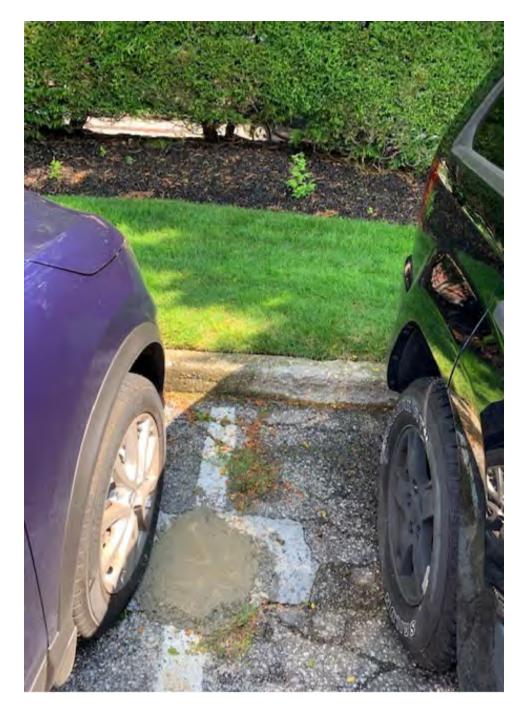
Cc: PGES File 11578 w/Encs.







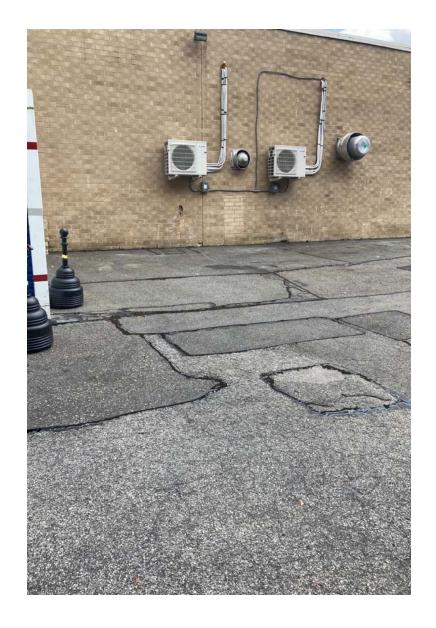


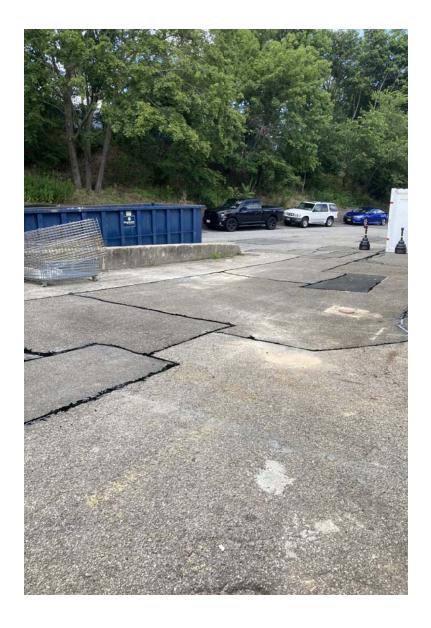




Appendix F
Site Photos

Inspection Photos October 14, 2020




Inspection Photos

August 2, 2021 (after cracks were sealed)

