

consulting engineering construction operations 100 Crossways Park West, Suite 415 Woodbury, New York 11797 Tel: 516 496-8400 Fax: 516 496-8864

December 3, 1998

Mr. Gerard Burke, P.E.
Project Manager
Bureau of Eastern Remedial Action
Division of Environmental Remediation
New York State Department of Environmental Conservation
50 Wolf Road
Albany, New York 12233-7010

Subject: Active Industrial Uniform, Lindenhurst NY, Site No. 1-52-125: Phase II Remedial Design Investigation Report

Dear Mr. Burke:


Camp Dresser & McKee (CDM) has completed the review of unvalidated soil and groundwater data generated as part of Task 5 - Phase II Remedial Design Investigation. This report presents the field and laboratory data generated as part of this Task. Note that the results of the groundwater modeling studies completed by CDM under Task 5 are summarized in a separate letter report.

Introduction

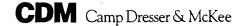
In July 1998, CDM completed a Phase I Investigation of the Active Industrial Uniform site as part of the NYSDEC Remedial Design Work Assignment No. D002925-28. The objective was to assess the current concentration and distribution of volatile organic compounds (VOCs) within and downgradient of the site. The findings of this investigation were presented to NYSDEC in an August 31, 1998 letter report. On September 16, 1998, NYSDEC and CDM met to discuss the results and implications as they pertain to the remedial actions selected in the 1997 Record of Decision (ROD). During this meeting, NYSDEC authorized CDM to develop a scope of work to further define onsite and offsite contamination through additional field investigations and to perform groundwater modeling studies to assess various pumping scenarios needed to control and remediate onsite and offsite groundwater contamination.

In response, CDM developed a Phase II Remedial Design Investigation scope of work for the site. The objectives include:

- Further define the nature and extent of contamination within onsite septic systems and leaching pools.
- Estimate the total thickness of contaminated sediments within the septic systems/leaching pools.

Mr. Gerald Burke, P.E. December 3, 1998 Page 2

- Estimate the quantity of unsaturated sediment that could be removed from each pool as part of site remediation.
- Further define the degree of VOC contamination within downgradient groundwater.
- Model selected groundwater pumping scenarios to control and remediate both onsite and offsite groundwater contamination.
- Collect additional data on the inorganic quality of onsite and offsite groundwater as this relates to the design of the groundwater extraction and treatment facility.


Onsite Geoprobe Investigation

In order to complete the Phase II scope of work, CDM completed a series of Geoprobe borings within and downgradient the Active Industrial Uniform site. Figure 1 provides the location of the Phase II Investigation borings as well as the previously completed Phase I borings. The Phase II Investigation sampling procedures were consistent with the Phase I Investigation and the approved Work Assignment Work Plan and SOP/QAPP.

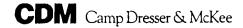
A total of eleven Geoprobe borings were advanced onsite. Seven borings were placed through onsite septic/leaching pools that were not sampled during the Phase I Investigation. Additionally, CDM completed four borings immediately outside selected pools in order to assess soil conditions immediately adjacent to each pool. Table 1 summarizes the depth of each boring, boring objective and the total number of soil and groundwater samples selected for lab analysis. In general, soil samples exhibiting the highest PID measurements at each boring location were selected for laboratory analysis. Boring logs are provided in Attachment A. Attachment B provides schematics of each leaching pool noting the total void space and the estimated thickness of unsaturated and saturated contaminated soil.

Table 2 summarizes laboratory data for soil samples collected from onsite Geoprobe borings and compares the results to NYSDEC generic cleanup guidelines. Contaminants exceeding the respective cleanup guideline have been identified by bold type. (Note that the Phase I Investigation data has undergone third party data validation and the summary table includes all added data qualifiers. Validation of the Phase II data remains pending. CDM expects the validation of the Phase II data to be completed by December 18, 1998, at which time, CDM will update Table 2 to include any additional data qualifications. The updated table will be provided to NYSDEC. Table 3 summarizes the Toxic Characteristic Leaching Procedure (TCLP) and waste characteristic analytical results for samples GP-18 (5-8 ft.) and GP-22 (2-6 ft.) Sample GP-22 (2-6 ft.) was selected for full TCLP analysis as well as waste characteristic analysis given field PID measurements indicated the sample to be highly contaminated. Sample GP-18 (5-8 ft.) was selected for TCLP (VOCs only) given field PID measurements indicated the sample to be moderately contaminated. The objective of the TCLP analysis was to assess likely disposal options under the Preliminary Design Subtask for soil removed from the leaching pools.

Results of the Phase II Investigation confirm that onsite septic system/leaching pools are a major source of contamination within the site. Total VOC concentrations observed in soils collected

Mr. Gerald Burke, P.E. December 3, 1998 Page 3

within leaching pools ranged from a maximum of 760 ppm (GP-22) to a minimum of 0.160 ppm (GP-20). In general the highest observed contamination was within the leaching pools located on the southeastern portion of the site (Figure 1). TCLP analysis of GP-22 (2-6 fbg) indicates PCE at 16,000 ug/l whereas the USEPA hazardous waste threshold is 700 ug/l, indicating the material would have to be disposed as a hazardous waste.


As depicted in the schematic drawings of each leaching pool (Attachment B), the void space within each leaching pool varied from no void space at GP-18 to a maximum of eight feet at GP-9. Sediment samples collected from all leaching pools, with the exception of GP-22, consisted of a heavily stained sand with varying amounts of organic matter. Staining of soil decreased with increasing depth. The majority of recovered samples exhibited a petroleum-solvent like odor.

Borings completed on the outside of the leaching pools, including GP-4, GP-10, GP-25, GP-27 and GP-28, indicated stained soil with a petroleum-solvent like odor from seven to 20 feet below grade. Though most samples were not selected for laboratory analysis at these locations, PID measurements ranged between 12 and 199 ppm indicating relatively high levels of VOCs adjacent to each leaching pool. However GP-26, installed adjacent to leaching pools designated by GP-19 and GP-20, was found to be relatively free of visibly contaminated soil and exhibited a maximum PID measurement of 13 ppm.

Tetrachloroethene (PCE) and trichloroethene (TCE) and associated breakdown products such as 1,2-dichloroethene (DCE) were observed within four out of nine pools exceeding NYSDEC cleanup standards. Xylene, the most commonly detected VOC, was observed in seven of nine pools exceeding cleanup standards. Additionally, toluene and ethyl benzene exceed cleanup standards in five of nine pools. Only one pool, designated by Geoprobe boring GP-20, was found to be free of VOCs exceeding the NYSDEC generic soil cleanup standards.

Table 4 summarizes the total estimated depth and volume of unsaturated sediment within each leaching pool. It also provides an estimated volume of sediment/soil located below the water table that appears to be contaminated by VOCs. The volume estimates assume that all leaching pools have a eight foot diameter (based on the available site survey). In most cases, the water table was estimated to be at approximately ten feet below grade, though several locations appeared to have saturated sediment as shallow as eight feet below grade. As shown in Table 4, only the leaching pool designated by GP-18, appears to contain no unsaturated sediment, given the presence of the relatively large void space of eight feet.

Based on the completed Geoprobe borings and the encountered location of the water table, the total estimated volume of unsaturated contaminated sediment which can be removed from onsite leaching pools is approximately 2,135 cubic feet, or 79 cubic yards. If sediment from GP-18 were subtracted from this estimate, given contaminant concentrations appear to be below NYSDEC generic cleanup guidelines, this volume would be reduced to approximately 1,733 cubic feet, or 64 cubic yards. The actual method of removal, storage and offsite disposal of the unsaturated soil and subsequent backfilling of the leaching pools will be determined as part of the Remedial Design Task of the Active Industrial Uniform Work Assignment. However, TCLP analysis likely will classify the removed soil as a USEPA characteristic hazardous waste.

Gerard Burke PE December 1, 1998 Page 4

The total volume of saturated contaminated sediment/soil which would remain in the ground is estimated to be approximately 4,344, cubic yards or 161 cubic yards. If GP-18 were to be subtracted from this estimate due to the presence of low level contamination, this estimate would be reduced to approximately 3,741 cubic feet, or 139 cubic yards.

Offsite Geoprobe Investigation

Five offsite Geoprobe borings were completed to better define groundwater contamination previously identified at Geoprobe boring GP-14 completed during the Phase I Investigation. The most significant contamination was observed at 36-40 feet below grade at the GP-14 location; therefore, the Phase II groundwater samples were collected at intervals of 24-30, 36-40 and 46-50 feet and analyzed for TCL VOAs. In addition to VOA analysis, two Geoprobe groundwater samples and one sample from a groundwater extraction well located at a bowling alley approximately 200 feet east of the Active Industrial Uniform site were also selected for TAL metals and conventional parameter analysis to assess possible pretreatment requirements for the planned groundwater treatment system.

Table 1 summarizes the depth of each completed boring offsite, boring objective and the total number of soil and groundwater samples selected for lab analysis. Boring logs are provided as Attachment A. Figure 2 provides the location of each completed offsite boring. Table 5 summarizes VOC data for all Phase I and Phase II Geoprobe groundwater samples. Table 6 summarizes all VOC data for samples collected from existing monitoring wells completed as part of the Phase I Investigation. Note that the Phase I Investigation data has undergone third party validation and Tables 5 and 6 include the qualifiers associated with that validation. To date, validation of the Phase II data has not been completed. CDM expects the validation of the Phase II data to be completed by December 18, 1998, at which time, Tables 5 and 6 will be updated to include any additional data qualifiers. The updated Tables will be provided to NYSDEC. Table 7 provides inorganic sample results for existing monitoring wells and the three Phase II Investigation samples.

Figure 3 summarizes the total VOC concentrations for all offsite Geoprobe locations and groundwater monitoring wells. Geoprobe boring GP-29 and GP-30 located east of GP-14 indicates some lateral spread of VOC contamination within the Upper Glacial aquifer at 26 to 40 feet below grade, though the most significant contamination appears to remain west of these locations. The offsite groundwater data indicates the majority of VOC contamination is migrating in a southwesterly direction with Geoprobes GP-11, GP-13, GP-14 and GP-31 showing the highest levels of contamination. With the exception of GP-11 located immediately downgradient of the Active Industrial Uniform site, the most significant VOC contamination is present in the Upper Glacial aquifer, between 26 to 40 feet below grade, at the offsite Geoprobe boring locations.

Geoprobe boring GP-33, the farthest downgradient point, shows significantly lower levels of contamination when compared to the next farthest downgradient point, GP-31. This suggests the contamination is migrating in a westerly direction toward Little Neck Creek. This change in plume migration is consistent with completed model simulations as detailed in CDM's Groundwater Modeling Letter Report, dated December 3, 1998. Based on the groundwater data

Gerard Burke PE December 1, 1998 Page 5

and model simulations, Little Neck Creek does appear to be the discharge point for the contaminant plume. Sample results for monitoring well MW-9S do not correlate well with this conclusion given only low levels of VOCs were observed at this well. Though the reason for this discrepancy is not readily apparent, it is possible that the majority of groundwater contamination remains relatively deep before up welling into the creek, thereby missing the shallow well which is screened at 12 to 22 feet below grade.

The groundwater samples collected from GP-32, GP-33 and the Werner's Bowling Alley extraction well located approximately 200 feet east of the Active Industrial Uniform site indicate elevated levels of iron, manganese and sodium. In comparison to the inorganic data from the two onsite monitoring wells collected during the Phase I Investigation, the bowling alley influent is probably most representative of a continuous pumping scenario for onsite groundwater. The bowling alley influent sample exhibits lower inorganic concentrations than the two offsite Geoprobe samples in most cases and significantly lower concentrations than the sample collected from onsite monitoring well MW-4S.

Using the Phase II data, the iron concentrations range from 1.37 to 4.03 ppm and the manganese concentrations range from 2.83 to 10.1 ppm (Table 7). Iron and manganese are oxidized during the air stripping process and will precipitate out of solution. This precipitate will cause fouling of air stripper systems during its operation. However, at these concentrations, the fouling should be controllable through routine acid recirculation without a pre-treatment system. Another problem caused by the oxidation of iron and manganese is fouling of systems downstream of the air stripper. For this reason, liquid phase carbon polishing will not be suitable for the Active Industrial Uniform groundwater treatment system. Design issues related to the observed groundwater iron and manganese will be evaluated as part of the Preliminary Design Subtask.

The sodium, chloride and Total Dissolved Solids (TDS) results for GP-33 indicates significant salt water influence on groundwater quality at this location. As shown in the CDM Groundwater Model Letter Report, the offsite extraction well will be installed within the general location of GP-33. The salt water influence at this location will likely increase after pumping is initiated. As result, inorganic concentrations will likely be even greater within extracted offsite groundwater than currently observed at GP-33. The presence of elevated levels of sodium within groundwater undergoing treatment has the potential of causing corrosion of metal surfaces exposed to the water. Therefore, the elevated sodium concentration may effect the materials selected for piping and equipment. The potential for corrosion and selection of piping and equipment materials will be further evaluated as part of the Preliminary Design Subtask.

CDM Camp Dresser & McKee

Gerard Burke PE December 1, 1998 Page 6

If you have any questions or comments regarding this project report or recommendations, please feel free to call me at (516) 496-8400.

Very truly yours,

CAMP DRESSER & MICKEE

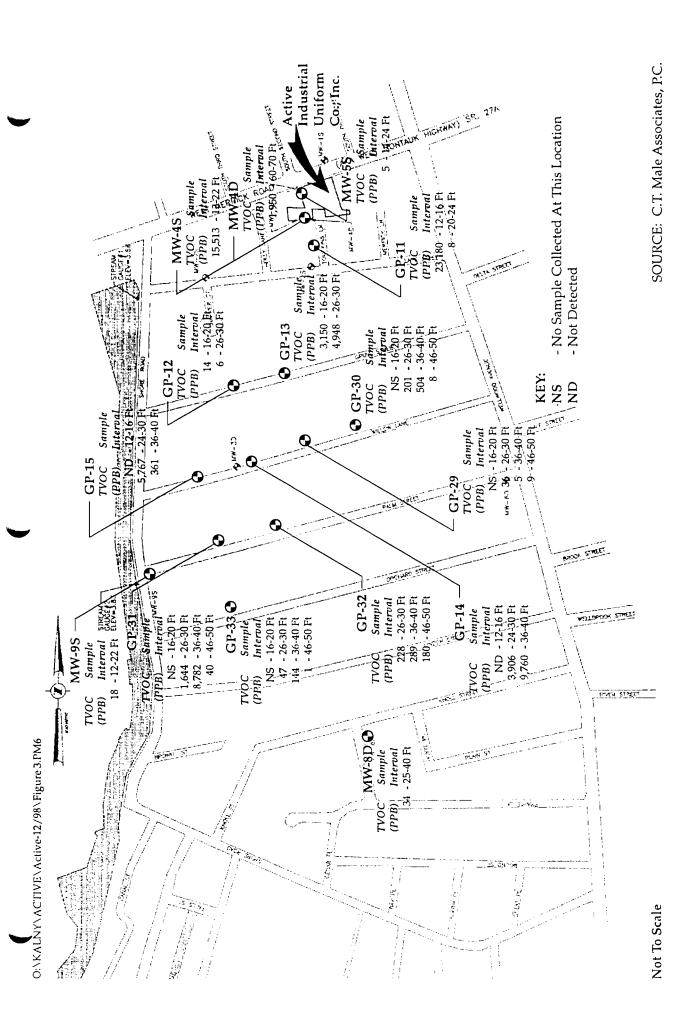
David J. Keil, P.G. Project Manager

cc: M. Memoli

L. Guterman

B. Beckerer (NYSDEC)

File: 2.1.2\ 7.1


(o:\active\phaseii\report2)

Figures

Figure 1
On-Site Geoprobe Locations
Updated To Include Phase II Probe Locations

Off-Site Geoprobe Locations Updated To Include Phase II Probe Locations

CDM Camp Dresser & McKee

Tables

Table 1 Geoprobe Boring Summary Table Active Industrial Uniform Remedial Design Investigation NYSDEC Site No. 1-52-125

	NYSDEC S	Site No. 1-52-	125	
Geoprobe ID	Objective	Total Depth (ft)	Number of Soil Samples for TCL VOA Analysis	Number of Groundwater Samples for TCL VOA Analysis
GP-1	Define western limit of soil/GW contamination	26	1	1
GP-2	Assess current VOA soil contamination adjacent to removed PCE UST	22	2	0
GP-3	Assess current VOA contamination at north cess pools	20	2	1
GP-4	Assess current VOA contamination at north cess pools	20	2	1
GP-5	Define eastern limit of soil/GW contamination	22	1	1
GP-6	Assess current VOA contamination at abandoned wash water UST	22	2	1
GP-7	Assess current VOA contamination at removed PCE ASTs	47	4	0
GP-8	Assess effectiveness of SVES IRM	28	2	1
GP-9	Assess current soil/GW contamination at south cess pools - Assess effectiveness of SVES system.	32	3	1
GP-10	Assess current soil/GW contamination at south cess pools	22	2	1
GP-11	Assess shallow aquifer contamination at hot spot	24	0	2
GP-12	Assess shallow aquifer contamination down gradient of hot spot	30	0	2
GP-13	Assess shallow aquifer contamination down gradient of hot spot	30	0	2
GP-14	Assess shallow aquifer contamination down gradient of hot spot	40	0	3
GP-15	Assess shallow aquifer contamination down gradient of hot spot	40	0	3
GP-16	Assess contamination within center of property	22	1	1
GP-17	Assess contamination within center of property	22	1	1
GP-18	Assess contamination within drywell	20	I VOA, I TCLP	0
GP-19	Assess contamination within drywell	12	1	0
GP-20	Assess contamination within drywell	12	1	0
GP-21 GP-22	Assess contamination within drawell	22	I VOA I TOLD	0
GP-22 GP-23	Assess contamination within drywell Assess contamination within drywell	20	1 VOA, 1 TCLP	0
GP-24	Assess contamination within drywell	20	1	0

File: o:\active\Geoprobe.xls Last Revised: 12/3/98

Table 1 Geoprobe Boring Summary Table Active Industrial Uniform Remedial Design Investigation NYSDEC Site No. 1-52-125

Number of Soil Number of Geoprobe Total Depth Samples for TCL VOA Objective Groundwater Samples ID (ft) Analysis for TCL VOA Analysis Assess contamination along north side of the GP-25 20 0 0 Assess contamination along north side of the 0 16 0 GP-26 site Assess contamination along south side of the 20 0 GP-27 0 site Assess contamination along south side of the 0 0 GP-28 20 site Assess offsite groundwater quality GP-29 0 3 50 downgradient from the site. Assess offsite groundwater quality GP-30 0 3 50 downgradient from the site. Assess offsite groundwater quality GP-31 50 0 3 downgradient from the site. Assess offsite groundwater quality 0 3 GP-32 50 downgradient from the site. Assess offsite groundwater quality GP-33 0 3 50 downgradient from the site.

> File: o:\active\Geoprobe.xls Last Revised: 12/3/98

Summary of Soil Volatile Organic Analysis Active Industrial Uniform Remedial Design Phase I and Phase II Investigations

Volatiles - (11g/kg)	Generic Soil Cleanup	GP1(9-11)	GP2(10-12)	GP2(20-22)	GP3(7-8)	GP3(7-8)DL	GP3(12-14)	GP3(12-14)DL	GP4(7-8)	GP4(10-12)
	Objectives (ug/kg)	07/13/98	07/13/98	07/13/98	07/13/98	07/13/98	07/13/98	86/51/10	07/13/98	07/13/98
		(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase 1)	(Phase I)
Chloromethane		111 21	111 61	III IX	11111		11.65	11 0051	=	111 80
Remonstrate			11 6	3 5	S =	200		2 2 2	3 5	111 86
Vinelablanda	061	2 2	12 02	5 5	3 E			2 6 5	3 5	78 00
Alaranthana	0001			5 5	5 =		3 5		3 5	50 07
Mathematic	861	2 2	17 17	5 5	5 = =	200	3 3	0 000	3 =	0 87
Prediction chickens	3			0 15		1		0 000	= :	0 87
Acelone	011	12.0	12 0)	0 15	5			1500 U	5	28 UJ
Carbon disusfide	2700	12 UJ	12 UJ	D K	D II		S	1500 U	5 =	28 UJ
1,1-Dichloroethene		12 UJ	12 UJ	31 (0)	i ci		53 UJ	1500 U	5 =	28 UJ
1,1-Dichloroethane		12 UJ	12 UJ	ນາ ເນ	(U U)	1400 U	f 81	1500 U	n =	28 UJ
1,2-Dichloroethene (Total)	300	LD 21	12 UJ	U) IE	68 J	480	430	2900	50 ==	28 UJ
2-Butanone	300	12 UJ	12 UJ	31 W	5 ::	1400 U	U SS UI	U 0051	n n	28 UJ
Chloreform	300	12 UJ	12 UJ	31 00	m II	1400 U		D 0051	n :	28 UJ
1,2-Dichloroethane	100	12 UJ	12 UJ	31 50	m II	1400 U	m ss	J 0051	n ::	28 UJ
1,1,1-Trichlorocthane	160	12 UJ	12 UJ	31 W		1400 U		1200	5	28 UJ
Carbon tetrachloride	009	12 UJ	12 UJ	U IE	m 11	D 00+1	S3 UI	D 0051	n :	28 UJ
Bromodichloromethane		12 UJ	12 UJ	31 UJ	3 =	1400		D 0051	5=	28 UJ
1,2-Dichloropropane		12 UJ	12 UJ	31 UJ	5 1	1400		D 0051	3	28 UJ
cis-1,3-Dichloropropene		12 UJ	12 UJ	31 W	m n	1400 U		1 500 U	D :-	28 UJ
Trichloroethene	700	12 UI	12 UJ	31 W	f 001		_	1400 J	<u>1</u>	28 UJ
Benzene	09	12 UJ	12 UJ	31 UJ	6 0 II			D 0051	n n	28 UJ
Dibromochloromethane	N/A	12 UJ	12 UJ	n u	m 11	1400 U	S3 UJ	1500 U	3 =	28 UJ
trans-1,3-Dichloropropene		12 UJ	12 UJ	31 UJ	tu 11			J 0051	n E	U 85
1,1,2-Trichforoethane		12 UJ	12 UJ	ω E	I) U	1400 U	53 UJ	1500 U	5 =	28 UJ
Bromoform	-	12 UJ	12 UJ	u ic	II W			1500 U	n n	28 UJ
4-Methyl-2-pentanone	1000	12 UJ	12 UJ	31 00	ה בו	1400 U	S3 UJ	1500 U	5 =	28 UJ
2-Ffexanone		12 UJ	n:	Σ. Ω.	M II	1400 U	S3 UJ	1500 UJ	5	28 UJ
Tetrachloroethene	1400	12 UJ	52 J	υ Σ	1400 1	14000	9700 E	26000	24 J	20 J
1,1,2,2-Tetrachloroethane	009	12 UJ	12 01	Ξ.	m n	1400 U		1500 U	Б: =	5 8.7 8.7
Toluenc	1500	12 UJ	12 UJ	ı. D	D 11			D 0051	<u>n</u> :	28 UJ
Chlorobenzene	1700	12 UJ	12 UJ	31 U	3	1400 U	u es	D 0051	n :	28 CJ
Ethylbenzene	5500	12 UJ	12 UJ	31 (2)	n n	1400 U	200	440 J	m :	28 UJ
Styrene		12 UJ	12 UJ	31 UJ	<u>n</u>	1400 U	so UI	D 0051	n :	28 UJ
Xylenes (total)	1200	12 UJ	12 UJ	31 W	II UJ	1400 U	\$30 J	1100	D ::	28 UJ
Total Volatile Organic Compounds		<u></u>		<u> </u>					;	:
(TOTAL VUC.3)		ON .	75	AD.	1369	05551	<u>8</u>	33230	24	20
Yotal Tentatively Identified Compounds (Total TIC's)		94	19720	148	ND	8280	549	Q.	1473	1630

NOTES

- (1) Soil Cleanup Objectives utilize soil organic carbon content of 1%
- (NYSDEC TAGM, 04/95). "-----" indicates no criteria provided for this compound.
 - (2) Bold values indicate execedance of the Generic Soil Cleanup Value.
 - (3) U indicates analyte was not detected at or below the Contract
- Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.
- (4) J is the associated numerical value that is an estimated quantity
- (5) B indicates that the compound was also detected in the laboratory blank.
- (6) E, reported value estimated due to quantitation above the calibration range
 - (7) D represents values from diluted sample analysis. (8) ND indicates values were not detected.

Taure 2

Summary of Soil Volatile Organic Analysis Active Industrial Uniform Remedial Design Phase I and Phase II Investigations

Volatiles - (ug/kg)	Generic Soil Cleanup	GP4(10-12)RE	GP5(9-11)	GP6(8-10)	GP6(20-22)	GP7(9-12)	GP7(14-16)	GP7(14-16)DL	GP7(24-26)
	Objectives (ug/kg)	07/13/98	07/13/98	07/14/98	07/14/98	07/13/98	07/13/98	07/13/98	07/13/98
		(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)
						<u> </u>			Î
Chloromethane	•••••	30 UJ	12 UJ	12 UJ	12 UJ	עט וו	5600 U	28000 U	נט וו
Bromomethane	***************************************	30 UJ	12 UJ	12 UJ	12 UJ	11 UJ	5600 U	28000 U	נט וו
Vinyl chloride	120	30 UJ	12 UJ	12 UJ	12 UJ	נט וו	5600 U	28000 U	11 UJ
Chloroethane	1900	30 UJ	I2 UJ	12 UJ	12 UJ	ע וו	5600 U	28000 U	II UJ
Methylene chloride	100	30 U	12 U	12 U	12 U	11 U	5600 U	28000 U	11 U
Acetone	110	30 UJ	12 UJ	12 UJ	12 UJ	12 J	5600 U	28000 U	נט וו
Carbon disulfide	2700	30 UJ	12 UJ	12 UJ	12 UJ	נט וו	5600 U	28000 U	11 UJ
1,1-Dichloroethene	************	30 UJ	I2 UJ	I2 ÜJ	12 UJ	II UJ	5600 U	28000 U	11 UJ
1,1-Dichloroethane	***********	30 UJ	12 UJ	12 UJ	12 UJ	נט וו	5600 U	28000 U	11 UJ
1,2-Dichloroethene (Total)	300	30 UJ	12 UJ	12 UJ	I2 UJ	II UJ	5600 U	28000 U	נט וו
2-Butanone	300	30 UJ	12 UJ	I2 UJ	12 UJ	II UJ	5600 U	28000 U	II UJ
Chloroform	300	30 UJ	12 UJ	12 UJ	12 UJ	11 UJ	5600 U	28000 U	11 07
1,2-Dichloroethane	100	30 UJ	וט 12	12 UJ	IŽ UJ	11 UJ	5600 U	28000 U	11 UJ
1.1.1-Trichloroethane	760	30 UJ	וט 12	12 UJ	12 UJ	11 UJ	5600 U	28000 U	11 UJ
Carbon tetrachloride	600	30 UJ	12 UJ	12 UJ	·	11 11	5600 U	28000 U	11 U
Bromodichloromethane		30 UJ	12 UJ	12 UJ	12 UJ	וט וו	5600 U	28000 U	11 11
1,2-Dichloropropane	***************************************	30 UJ	I2 UJ	12 UJ	12 UJ	11 UJ	5600 U	28000 U	11 0
cis-1,3-Dichloropropene		30 UJ	12 ()	12 UJ	12 UJ	11 - 11	5600 U	28000 U	11 - 01
Trichloroethene	700	, 30 m	12 UJ	12 UJ	12 UJ	נט וו	2400 JD	28000 U	נט וו
Benzene	60	30 UJ	ີ 12 ບັນ	12 UJ	12 7	ינט־־־יו	5600 U	28000 U	נט וו
Dibromochloromethane	N/A	30 UJ	12 UJ	12 UJ	I2 UJ	11 70	5600 U	28000 U	נט וו
trans-1,3-Dichloropropene		30 UJ	12 UJ	12 UJ	12 01	ונט וו	5600 U	28000 U	וו ט
1,1,2-Trichlorocthane		30 UJ	12 UJ	12 UJ	12 Uj	11 03	5600 U	28000 U	וו עט
Bromoform		30 UJ	12 ÛJ	12 UJ	12 0	וו עו	5600 U	28000 U	וו ע
4-Methyl-2-pentanone	1000	30 UJ	12 UJ	12 UJ	12 UJ	נט וו	5600 U	28000 U	וֹט וו
2-Hexanone	*********	30 UJ	12 UJ	12 UJ	12 UJ	נט וו	5600 U	28000 U	נט וו
Tetrachloroethene	1400	13 J	2 J	12 UJ	12 UJ	4 J	310000 E	270000 D	
1,1,2,2-Tetrachloroethane	600	30 UJ	12 UJ	12 UJ	12 UJ	II UJ	5600 U	4800 JD	וו טו
Toluene	1500	30 UJ	12 UJ	12 UJ	12 UJ	11 UJ	5600 U	28000 U	וו ט
Chlorobenzene	1700	30 UJ	12 UJ	12 UJ		נט וו	5600 U	28000 U	11 03
Ethylbenzene	5500	30 UJ	12 UJ	12 UJ	12 UJ	11 UJ	5600 U	28000 U	וו ט
Styrene		30 UJ	12 UJ	12 UJ	12 UJ	11 UJ	5600 U	28000 U	11 07
Xylenes (total)	1200	30 UJ	12 UJ	I2 UJ	·	11 UJ	5600 U	28000 U	11 07
Total Volatile Organic Compounds		1			1 .2 -0,	1 0,	3000	20000	-07
(Total VOC's)		13	2	מא	DND	16	312400	274800	1 1
Total Tentatively Identified Compounds		1		 	1	 '	712.00	1.1000	<u> </u>
(Total TIC's)		108	6	DИ	ND	ND	DND DN	790	1336

NOTES:

- (1) Soil Cleanup Objectives utilize soil organic carbon content of 1%
- (NYSDEC TAGM, 04/95). "-----" indicates no criteria provided for this compound.
- (2) Bold values indicate exceedance of the Generic Soil Cleanup Value.
- (3) U indicates analyte was not detected at or below the Contract

Required Detection Limit (CRDL), or the compound is not detected

due to qualification through the method or field blank.

- (4) I is the associated numerical value that is an estimated quantity
- (5) B indicates that the compound was also detected in the laboratory blank.
- (6) E, reported value estimated due to quantitation above the calibration range
- (7) D represents values from diluted sample analysis.
- (8) ND indicates values were not detected.

Summary of Soil Volatile Organic Analysis Active Industriat Uniform Remedial Design Phase I and Phase II Investigations

				resugations.						
V nintites - (ug/kg)	Ceneric Soil Cleanup	(1484)	(1818)	(21.2(70-72)	(21-11)	70(11-11)DF	(17-74)	•	(77-05)6-15)	(57.10(10-12)
	Objectives (ug/kg)	07/13/98	07/14/78	07/14/98	07/14/98	86/11/10	07/14/98	86	07/14/98	7/14/98
		(Phase 1)	(Phase I)	(Phase 1)	(Phase 1)	(Phase I)	(Phase I)	ı.	(Phase I)	(Phase I)
Chloromethane		13 CI	17	12 UJ	30 UI	0092		3	12 UJ	
Bramaincthanc		13 UJ	12 UJ	12 UJ	30 CI	2600	-	3	12 UJ	1500 UJ
Vinyl chloride	120	:3 U	12 UJ	12 UJ	48 J	1600	ח	3	12 UJ	
Chloroethane	1900	5	12 UJ	12 UJ	30 UJ	7600	=	3	12 UJ	1500 UJ
Methylene chloride	801	13 U	12 U	12 U	30 UJ	0091	=	-	12 U	1500 UJ
Acetone	110	5	=	12 UJ	30 UJ	0092	=	5	12 UJ	1500 UJ
Carbon disulfide	2700	in 6) I	12 00	30 UI	0092	=	.5	12 UJ	1500 UJ
1,1-Dichloroethene		5	12 UI	12 UJ	=	7600		3	12 UJ	
1,1-Dichloroethane		13 UJ	12 UJ	12 UJ	30 UJ	0092	U 11	3	12 UJ	1500 UJ
1,2-Dichloroethene (Total)	300		12 W	12 UJ	1400 E	30000	11	3	12 UJ	1500 UJ
2-Bulanone	300	13 0	12 UJ	12 UJ	30 UJ	1600	n	5	12 U)	1500 UJ
Chloroform	300	13 U	12 UJ	12 UJ	30 UJ	0092	= - -	;5	12 UJ	1500 UJ
1,2-Dichloroethane	100	13 U	12 UJ	12 UJ	30 UJ	2009	n	5	12 UJ	1500 UJ
1.1.1-Trichloroethane	760	13 UJ	12 UJ	L2 UJ	30 UJ		 	5	12 UJ	1500 UJ
Carbon tetrachloride	009	U U	12 UJ	12 UJ	30 UJ	2009	=	, 5	12 UJ	1500 UJ
Bromodichloromethane		5	12 03	12 UJ	30 UJ		n	5	5 C	1500 UJ
1,2-Dichloropropane		n n	12 UJ	12 UJ	30 CI		_	; 5	12 UJ	1500 UJ
cis-1,3-Dichloropropene		13 U	12 UJ	12 UJ	30 UJ	7600	D	5	12 UJ	1500 UJ
Trichloroethene	700	3	n 21	12 UJ	30 UJ	7600	- n	Э	12 UJ	1500 UJ
	09	13 UJ	12 UJ	12 UJ	30 UJ	7600	n	5	12 UJ	ĺ
Dibromochloromethane	N/A	L3 U	12 UJ	I2 UJ	30 UJ	7600	= n	3	12 UJ	
trans-1,3-Dichloropropene		(1)	L2 UJ	12 UJ	30 UJ		ב	3	13 (1)	LS00 UJ
1,1,2-Tricbloroethane		U U	12 UJ	12 UJ	30 UJ		n n	3	12 UJ	1500 UJ
Вготобогт		()	12 UJ	12 UJ	30 UJ		n	3	12 UJ	1500 UJ
4-Methyl-2-pentanone	1000		12 CI	12 UJ	30 UJ		n.	3	12 UJ	1500 UJ
2-Hexanone		13 U	12 UJ	12 UJ	30 UJ		= 5	3	12 UJ	
Tetrachloroethene	1400	-	2 CD	12 CI	28 J		= n	3	12 UJ	
1,1,2,2-Tetrachforoethane	009	D EI	12 UJ	12 UJ	30 UJ	0092	n :1	3	12 UJ	1500 UJ
Toluenc	0051	E.	L2 UJ	12 UJ	1100 E	2500	E G	3	12 UJ	2100
Chlorobenzene	1700	3	5 2	12 UJ	30 UJ	2092	7 12	5	12 UJ	1500 UJ
Ethylhenzenc	5500	13	2	12 UJ	2100 E		TI Or	5	12 UJ	4800
Styrene		ľΩ ťI	12 UJ	12 UJ	30 UI	7600	=	3	12 UJ	- 99
Xylenes (total)	1200	13 UJ	12 UJ	12 UJ	10000 E	40000	11	5	12 UJ	25000 J
Total Volatile Organic Compounds		:								
(Total VOC's)		153	=	ON	14687	86500	QN		CN	32060
Total Tentatively Identified Compounds		5	í		Ş	;	;			;
(10(a) 11C's)		801	CIX	14340	NO	25	331	1	155600	\$65

NOTES:

- (1) Soil Cleanup Objectives utilize soil organic earbon content of 1%
- (NYSDEC TAGM, 04/95). "....." indicates no criteria provided for this compound.

 - (2) Bold values indicate exceedance of the Generic Soil Cleanup Value. (3) U indicates analyte was not detected at or below the Contract
 - Required Detection Limit (CRDL), or the compound is not detected
 - due to qualification through the method or field blank.
 (4) J is the associated numerical value that is an estimated quantity
- (5) B indicates that the compound was also detected in the laboratory blank.
- (6) E. reported value estimated due to quantitation above the calibration range (7) D represents values from diluted sample analysis.
 (8) ND indicates values were not detected.

Summary of Soil Volatile Organic Analysis Active Industrial Uniform Remedial Design Phase I and Phase II Investigations

	5 - 5 - 5		Constant of the constant of th					
Volatiies - (ug/kg)	General Soul Cleanup	CF10(20-22)	GF16(6-11)	CF16(8-11)Dup	GP17(8-11)	FIELDBLANK (ug/L)	I KI'BLK-® (ug/L)	(/L)
	Objectives (ug/kg)	07/14/98	07/15/98	07/1598	07/15/98	07/13/98	86/11/0	80
	,	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	1)
Chloromethane	***************************************	B =	12 UJ	12 UJ	12 UJ	10 U	10	n
Bromomethane		11 UJ	12 U	12 U	12 U	N 01	<u>e</u>	ם
Vinyl chloride	120	11 UZ	12 UJ	12 UJ	12 UJ	JO 01	01	n
Chloroethane	1900	11 UJ	12 U	12 U	12 U	D 01	01	n
Methylene chloride	001	n =	12 U	12 U	13 U		عر	n
Actione	110	II UI	12 U	12 U	12 U		02	n
Carbon disulfide	2700	m ::	12 U	12.0	12 U	10 U	10	
1,1-Dichloroethene		: m	12 U	12 U	12 U		01	n
1,1-Dichloroethane		33 ::	12 U	12 U	12 U	O 01	01	n
1,2-Dichloroethene (Total)		3=	12 U	12 U	12 U	10 U	2	n
2-Butanone	300		12.0	12.0	12 U	M 01	01	S
Chloroform	300	<u> </u>	12.0	12 U	12 U	n 01	01	0
1,2-Dichloroethane	100	3=	12 U	12 U	12 U	D 01	01	n
1,1,1-Trichlorocthane	760	: ::	12 U	12 U	12 U	10 U	02	n
Carbon tetrachloride	009	3	. n zı	12.0	12 U		01	n
Bromodichloromethane		11 W	12 U	12 U	12 U	O 01	0	n
1,2-Dichloropropane		:: W	12 U	12 U	12 U	10 U	0	_
cis-1,3-Dichloropropene		-1 UJ	12 U	12 U	12 U	10 OI	01	n
Trichloroethene	700	: G	12 U	12 U	12 U	O 01	01	n
Benzene	09	11 03	12 U	12 U	12 U	O 01	01	n
Dibromochloromethane	N/A	: n	12 U	12 U	12 U	10 U	0-	Ω
trans-1,3-Dichloropropene		11 UZ	12 U	12 U	12 U	10 OI	0	n
roethane		: 01	12 U	12 U	12 U	N 01	02	n
Вготобогт	••••••	: n	12 U	12 U	12 U	O 01	0.	n
4-Methyl-2-pentanone	1000	:: UI	12 U	12 U	12 U	O 01	01	n
2-Hexanone		n =	12 U	12 U	12 U	fn 01	02	5
Tetrachloroethene	1400	: Œ	12 U	12 U	12 U	D 01	01	n
1,1,2,2-Tetrachloroethane	009	: U	12 UJ	12 UJ	12 UJ	N 01	01	n _
Toluene	1500	II UI	12 U	12 U	12 U	-	01	n
Chlorobenzene	1700	3 =	12 U	12 U	12 U	U 01	01	ח
Ethylbenzene	5500	n ::	12 U	12 U	12 U		10	P
Styrene		: ::	12.0	12 U	12 U	U 01	10	n
Xylenes (total)	1200	11 UJ	12 U	12 U	12 U	10 OI	01	n
Total Volatile Organic Compounds								
(Total VOC's)	••••	ND	ND	QX QX	ND	-	QN	
Total Tentatively Identified Compounds		!						
(Total TICs)	•	ON	ND	ND	ND	CN	S	

NOTES:

(1) Soil Cleanup Objectives utilize soil organic carbon content of 1%

(NYSDEC TAGM, 04/95), "-----" indicates no criteria provided for this compound.
(2) Bold values indicate exceedance of the Generic Soil Cleanup Value.

(3) U indicates analyte was not detected at or below the Contract

Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.

(4) J is the associated numerical value that is an estimated quantity

(5) B indicates that the compound was also detected in the laboratory blank.
(6) E. reported value estimated due to quantitation above the calibration range
(7) D represents values from diluted sample analysis.
(8) ND indicates values were not detected.

CDM Camp Dresser & McKee

Summary of Soil Volatile Organic Analysis Active Industrial Uniforms Remedial Design Phase I and Phase II Investigations

Volatiles - (ug/kg)	Generic Soil Cleanup	CP18(5-8)	CP18(5-8)DL	GP19(0-2)	CP20(0-2)	GP21(10-11)	CP21(10-11)DL
	Objectives (ug/kg)	10/07/98	10/07/98	10/07/98	10/07/98	10/07/98	10/07/98
		(Phase II)	(Phase II)	(Phase II)	(Phase II)	(Phase II)	(Phase II)
Chloremathus		13 61	11 061	11 021	11 001	2	200
D					200		2 2 2
nromemen		2	0 071	0.07	0 071		0 0016
Vinyl chloride	120	13 U	120 U	120 U	120 U		9100 U
Chloroethane	1900	13 U	120 U	38 JB	120 U	14 U	0016
Methylene chloride	81	13 U	So JB	178	33 JB	-4 C	0 0016
Acetone	110	12 U	120 U	27 J	120 U	- 88	0 0016
Carbon disulfide	2700	5.1	120 U	120 U	120 U	1 9	U 0016
1.1-Dichloroethene		12.0	120 U	120 U	120 U	1 4	U 0016
1,1-Dichloroethane	100 mm m m m m m m m m m m m m m m m m m	U 21	120 U	17.1	120 U	52	0 00 I
1,2-Dichloroethene (Total)	300	6	120 U	120 U	120 U	540	0 0016
2-Butanone	300	12.0	120 U	120 U	120 U	U 41	0 0016
Chloroform	300	12.0	120 U	120 U	120 U	2	U 0016
1,2.Dichloroethane	81	U 21	120 U	3.1	120 U	14 U	0 0016
1,1,1-Trichloroethane	092	12 U	120 U	120 U	120 U	4	U 0016
Carbon tetrachloride	009		120 U	120 U	120 U	14 U	U 0016
Bromodichloromethane		12 U	120 U	120 U	120 U	14 U	0 0016
1,2-Dichloropropane		12.0	120 U	120 U	120 U	14 U	U 0016
cis-1,3-Dichloropropene		U 21	120 U	27.3	120 U	14 U	U 0016
Trichloroethene	700	12 U	2	120 U	120 U	61	0 00 IG
Benzene	09	0 ZI	120 U	120 U	120 U	12 1	U 0016
Dibromochloromethane		12.0	120 U	120 U	120 U	D 71	U 0016
trans-1,3-Dichloropropene		1 7 U	120 U	120 U	120 U	J 41	0 0016
1.1.2-Trichlorochane		U 21	120 U	120 U	120 U	14 U	0 0016
Вготобогт		12 U	120 U	120 U	120 U	D 41	0 0016
4-Methyl-2-pentanone	0001	12 U	120 U	120 U	U 021	14 U	0 0016
2-Hexanone	***************************************	12 U	120 U	120 U	120 U	בי	D 0016
Tetrachloroethene	0011	S	930 B	650 B	78 JB	150	Of 0051
1.1.2.2-Tetrachloroethane	009	12 U	120 U	120 U	120 U	n T	9100 U
Toluene	1500	170	210	[00 J	12.5	1100 E	CI 0055
Chlorobenzene	0071	12 U	120 U	120 U	120 U	14 U	U 0016
Ethylbenzene	5500	8	320	350	120 U	810 E	12000 D
Styrene		12.0	120 U	32.5	120 U	14 U	0 00 I
Xylenes (total)	1200	009	1900	1600	33.7	3100 E	62000 D
Total Volatile Organic Compounds							
(Total VOC's)		892	3423	3034	951	6281	81000
Total Tentatively Identified Compounds							
(Total TIC's)	*******	61548	404370	6116	15880	13830	2067000

NOTES

- (1) Soil Cleanup Objectives utilize soil organie carbon content of 1% (NYSDEC TAGM, 04/95) "-----" indicates no criteria provided for this compound
- (2) Bold values indicate exceedance of the Generic Soil Cleanup Value.
- (3) U indicates analyte was not detected at or below the Contract Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.
- (4) J is the associated numerical value that is an estimated quantity
- (5) B indicates that the compound was also detected in the laboratory blank.
- (6) E, reported value estimated due to quantitation above the calibration range (7) D represents values from diluted sample analysis (8) ND indicates values were not detected

Summary of Soil Volatile Organic Analysis

Active Industrial Uniforms Remedial Design Phase 1 and Phase II Investigations

Volatiles - (ug/kg)	Generic Soil Cleanup Objectives (ug/kg)	GP22(0-4) 10/07/98 (Phase II)	GP22(0-4)DL 10/07/98 (Phase II)	GP23(7-8) 10/07/98 (Phase II)	GP23(7-8)DL 10/07/97 (Phase II)	GP24(6-8) 10/07/98 (Phase II)	GP24(6-8)DL 10/07/98 (Phase II)
Chloromethane		12 U	77000 U	120 U	3700 U	12 U	1500 U
Bromomethane		12 U	77000 U	120 U	3700 U	12 Ü	1500 U
Vinyl chloride	120	8 J	77000 U	120 U	3700 U	12 U	1500 U
Chloroethane	1900	12 U	77000 U	120 U	3700 U	12 U	1500 U
Methylene chloride	100	12 U	77000 U	26 JB	3700 U	12 U	1500 U
Acetone	110	12 Ŭ	77000 U	120 U	3700 U	112 U	1500 U
Carbon disulfide	2700	12 U	77000 U	120 U	3700 U	5]	1500 U
1,1-Dichloroethene	***********	830 E	77000 U	120 U	3700 U	12 U	1500 U
1,1-Dichloroethane	************	720 E	77000 U	120 U	3700 U	32	1500 U
1,2-Dichloroethene (Total)	300	5700 E	77000 U	120 U	3700 U	26	1500 U
2-Butanone	300	12 U	77000 U	120 U	3700 U	12 U	1500 U
Chloroform	300	12 U	77000 U	120 U	3700 U	12 U	1500 U
1,2-Dichloroethane	100	12 U	77000 U	120 U	3700 U	12 U	1500 U
1.1.1-Trichloroethane	760	11000 E	77000 U	120 U	3700 U	12 U	1500 U
Carbon tetrachloride	600	12 U	77000 U	120 U	3700 U	12 U	1500 U
Bromodichloromethane	********	12 U	77000 U	120 U	3700 U	12 U	1500 U
1,2-Dichloropropane		12 U	77000 U	120 U	3700 U	12 U	1500 U
cis-1,3-Dichloropropene	***********	12 Ü	77000 U	120 U	3700 U	12 U	1500 U
Trichloroethene	700	11000 E	77000 U	120 U	3700 U	11 7	1500 U
Benzene	60	12 U	77000 U	120 U	3700 U	12 Ü	1500 U
Dibromochloromethane		12 U	77000 U	120 U	3700 U	12 U	1500 U
trans-1,3-Dichloropropene	**********	12 U	77000 U	120 U	3700 U	12 U	1500 U
1,1,2-Trichloroethane		12 U	77000 U	120 U	3700 U	12 U	1500 U
Bromoform		12 U	77000 U	120 U	3700 U	12 Ü	1500 U
4-Methyl-2-pentanone	1000	12 U	77000 U	120 Ü	3700 U	12 U	1500 U
2-Hexanone		12 U	77000 U	120 U	3700 U	12 U	1500 U
Tetrachloroethene	1400	32000 E	760000 D	250 B	420 JD	12 U	1500 U
1,1,2,2-Tetrachloroethane	600		77000 U	120 U	3700 U	12 U	1500 U
foluene	1500	3400 E	77000 U	1100	1600 JD	960 E	1800
Chlorobenzene	1700	- 12 U	77000 U	120 U	3700 U	12 U	1500 U
Ethylbenzene	5500	1000 E	77000 U	2800 E	5200 D	1000 E	4900
Styrene		12 U	77000 U	120 U	3700 U	12 U	1500 U
Xylenes (total)	1200	3800 E	77000 U	11000 E	22000 D	4200 E	22000
Total Volatile Organic Compounds	1200	1 2000		11000		7200 E	24000
(Total VOC's)		69458	760000	15176	29220	6234	28700
Total Tentatively Identified Compounds	-		750500	1,5170		0234	46700
(Total TIC's)		17240	ND	84020	1098000	6100	396000
(10181 LIC 2)		17240		84020	1078000		240000

NOTES

- (1) Soil Cleanup Objectives utilize soil organic carbon content of 1%
- (NYSDEC TAGM, 04/95). "-----" indicates no criteria provided for this compound.
- (2) Bold values indicate exceedance of the Generic Soil Cleanup Value
- (3) U indicates analyte was not detected at or below the Contract

Required Detection Limit (CRDL), or the compound is not detected

due to qualification through the method or field blank.

- (4) J is the associated numerical value that is an estimated quantity
- (5) B indicates that the compound was also detected in the laboratory blank.
- (6) E, reported value estimated due to quantitation above the calibration range
- (7) D represents values from diluted sample analysis
- (8) ND indicates values were not detected.

Table 3 Summary of TCLP Sample Results Active Industrial Uniform Predesign Study

GP22(2-6)DL

10/07/98

1000 U

1000 U

1000 U

1000 U

1000 U

1000 U

710 JD

1000 U

16000 D

1000 U

GP18(5-8)

10/07/98

10 U

	Sample ID:	ll '	
	Collection Date:	10/07	/98
Parameter	TCLP Standard		
Volatiles TCLP- (ug/L)			
_	200	,,	211
Vinyl chloride	700		0 U 5 J
1,1-Dichloroethene 2-Butanone	200000	J) <u>N</u>
Chloroform	6000) U
1,2-Dichloroethane	500		5 U –
Carbon tetrachloride	5000) U
Trichloroethene	500		E
Benzene	500	 	Ū
Tetrachloroethene	700	3700	
Chlorobenzene	100000	·	2]
	*	<u> </u>	
SemiVolatiles TCLP- (up		10	11
Pyridine	5000	10	U
1,4-Dichlorobenzene	7500	10	<u>U</u>
2-Methylphenol		10	U
3-Methylphenol/4-Methyl		10	U
Hexachloroethane	3000	10	U
Nitrobenzene	2000	10	U
Hexachlorobutadiene	500	10	U
2,4,6-Trichlorophenol	2000	10	U
2,4,5-Trichlorophenol	400000	25	U
2,4-Dinitrotoluene	130	10	U
Hexachlorobenzene	130	10	U
Pentachlorphenol	100000	25	U
PCB TCLP- (ug/L)			
Gamma-BHC (Lindane)	400.0	0.10	U
Heptachlor	8	0.10	U
Heptachlor epoxide	8	0.10	U
Endrin	20	0.20	Ū
Methoxychlor	10000	1.0	U
Alpha-Chlordane	30	0.10	U
Gamma-Chlordane	30	0.10	U
Toxapohene	500	10	U
Technical chlordane		2.0	υ
HERB TCLP- (ug/L)			
2,4-D	10000	5.0	U
2,4,5-TP	1000	2.50	U
METALS TCLP- (up/L)			-
Arsenic	5000	6.5	BN
Barium	100000	139	В
Cadmium	1000	5.2	BN
Chromium	5000	2.0	BN
Lead	5000	110	В
Mercury	200	0.10	U
Selenium	1000	6.5	BN
Silver	5000	10.0	U
Waste Characterization	-		-
Total Cyanide		<0.54 m	1g/kg
Flash Point		>60	
pH		8	•
Total Organic Halides		21100 n	ng/kg
Total Solids		93.40	
Reactive to Water		No	
Releases Cyanide		No <100	mg/kg
Releases Sulfide		No <100	mo/ko

Notes:

- U_{\parallel} indicates analyte was not detected at or below the Contract Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.
- J: associated numerical value is an estimated quantity
- E: value estimated due to quantitation above the calibration range
- D. represents values from diluted sample analysis.
- ND: values were not detected.
- B' entered if the reported value is less than the Contract Required

 Detection Limit but greater than the Instrument Detection Limit

Table 4 Soil Excavation Estimate Active Industrial Uniform Remedial Design

				UNSATURATED SOIL	III	
				Unsaturated	Unsaturated	Unsaturated Soil
Dry Well /	Void Space		Contaminated	Zone	Zone	Estimated
Geoprobe	Depth in	Unsaturated	Unsaturated Soil	Maximum TVOC	Maximum PID	Volume
Location	Dry Well	Depth	Thickness	Lab Result	reading	to be Excavated
	(ft. below grade)	(ft. below grade)	(ft.)	(mdd)	(mdd)	(cubic ft.)
GP-3	0-4	4-10	9	15.35	(8.12')=622 ppm	301
GP-9	8-0	NA	0	NA	NA	0
GP-18	0	8-0	∞	3.42	(5-8')=350 ppm	402
GP-19	0-7	7-10	3	3.03	(7-9')=182 ppm	151
GP-20	2-8	8-10	2	0.16	(8-10')=440 ppm	100
GP-21	0-2	2-10	∞	81.0	(12-14')=200 ppm	402
GP-22	0-3	3-10	7	760.0	(7-11')= 1866 ppm	352
GP-23	0-3	3-10.5	7.5	29.22	(7-11')=186 ppm	377
GP-24	0-3	9-10	1	28.7	(9-11')=192 ppm	50

			SATURATED SOIL	L	
	Estimated	Estimated		Saturated	Saturated
Dry Well/	Contaminated	Contaminated	Saturated Soil	Zone	Zone
Geoprobe	Saturated Soil	Saturated Soil	Estimated	Maximum TVOC	Maximum PID
Location	Depth	Depth	Volume	Sample Result	reading
	(ft. below grade)	(ft.)	(cubic ft.)	(mdd)	(mdd)
GP-3	10-20	01	502	33.23	(14-16')= 164 ppm
GP-9	8 - 18	10	502	86.50	(11-12')=331 ppm
GP-18	8 - 20	12	603	NA	(8-11')=420 ppm
GP-19	10-15	5	251	NA	(11-13')=82 pm
GP-20	10-16	9	301	NA	(14-16')=10 ppm
GP-21	10-20	10	502	NA	(14-18')=160 ppm
GP-22	10-26	16	804	NA	(14-15')=1100 ppm
GP-23	10.5-19	8.5	427	29.22	(11-13')=165 ppm
GP-24	10-19	6	452	28.70	(11-15')=140 ppm

Voladles - (ug/L)	GA Groundwater	GP1(10-14)	GP1(10-14)DL	GP3 (10-14)	GP3(10-14)DL	GP4(10-14)	GPS(10-14)	GP6(10-14)	GP8(12-16)
		(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)
	Standards(ug/L)	07/13/98	07/13/98	07/13/98	07/13/98	07/13/98	07/13/98	07/14/98	07/14/98
	ţ							:	
Chloromethane	20	0		9	2000 U	01	10 0	D 01	0.01
Bromomethane	\$	10 01		n 0	2000 U		10 U	10 U	10 O
Vinyl chloride	2	D 01		9 1	2000 U	10 OI	10 U	10 U	U 01
Chloroethane	\$	U 01	2000	D 01	2000 U		10 O	D 01	N 01
Methylene chiaride		10 O			2000 U	10 U	10 O	D 01	U 01
Acetone	50	D 01	2000	n e	2000 U	10 01	I 00 01	in e	IO OI
Carbon disulfide	- 30	D 01		n or n	2000 U	10 01	D 01	D 01	10 O
I, 1-Dichloroethene	\$	£0 €1		- e	2000 U	01	O 01	D 01	U 01
[1,1-Dichloroethane		⊃ 0	2000	11	2000 U	O 01	D 01	10 n	10 D
1,2-Dichloroethene (Total)		13	2000	U 1500 E	Of 0061	U 01	2 J		4.1
2-Butanone	50	ID 01	2000	0 m	2000 U	10	m er	m er	10 OI
Chloroform	7	D 01		D 01 D	2000 U	10 OI	U 01	D 01	U 01
1,2-Dichloroethane	5	D 01		-	2000 U	10	10 O	U 01	10 n
1,1,1-Trichloroethane	ş	4)		U 120	2000 U	10		D 01	10 U
Carbon tetrachloride	Ş	D 01		D 01	2000 U	N 01	D 01	D 01	0 oI
Bronodichloromethane	50	10 C		D 01	2000 U		D 01	D 01	D 01
1,2-Dichloropropane	5	10 D	2000	D 01	J 0002	O 01	U 01	U 01	O 01
cis-1,3-Dichloropropene		10 C			2000 U			D 01	U 01
Trichloroethene		110		U 1700 E	2100 D	U 01	7	D 01	6 9
Benzene		ם מ		2	2000 U	10 U		D 01	10 U
Dibromochloromethane	\$0	D 01		2	2000 U			U 01	U 01
trans-1,3-Dichloropropene	40	D 01			2000 U	10 U	10 U	U 01	10 U
1,1,2-Trichloroethane		10 O		O 01	2000 U	10 O	U 01	U 01	10 U
Вготобит	90	O 01		D 01	D 0002	10 U	U 01	D 01	U 01
4-Methyl-2-pentanone	0,5	D 01	2000	2	2000 U	D 01	U 01	10 01	U 01
2-Hevanone	20	10 01			2000 U	į	10 CI	10 OI	10 UJ
Tetrachloroethene	•	2000 E	_	7	9400 D	12 U	ţ	U 01	U 7.1
1,1,2,2-Tetrachloroethane	5	10 U		U 10	2000 U	10 OI	10 U	U 01	10 U
Toluene	\$	10 O		. s	2000 U	O 01	10 U	U 01	_O 01
Chlorobenzene	\$	O 01			2000 U	Ω 01	U 01	10 U	10 U
Ethylbenzene	\$	D 01	2000		2000 U		D 01	D 01	10 U
	\$	10 01		U 00 U	2000 U	Ω 01	U 01	D 01	U 01
Xylenes (total)	\$	2.5	2000	6 S D	2000 U	D 01	10 U	O 01	10 U
Total Volatile Organic Compounds									
(Total VOC's)		2129	26000	6147	13400	ND DV	54	-	27
Total Tentatively Identified Compounds		107	£	717	5	=	771	2	Ş
(1001)			?	2	as,	8-	041	2	,,

(1) Bold values indicate GA groundwater standard exceedances (2) \cup indicates analyte was not detected at or below the Contract

Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.

(3) I is the associated numerical value that is an estimated quantity

(4) B indicates that the compound was also detected in the laboratory blank.

(5) E, reported value estimated due to quantitation above the calibration range

(6) D represents values from diluted sample analysis

(7) ND indicates values were not detected

Volatiles - (ug/L)	GA Groundwater	GP9 (12-16)	GP10(12-16)	GP11(20-24)	GP11(20-24)DPL	GP11(12-16)	GP11(12-16)DL	GP12(16-20)	
	Standards(ug/L)	(Phase I) 07/14/98	(Phase I) 07/14/98	(Phase I) 07/14/98	(Phase I) 07/16/98	(Phase I) 07/16/98	(Phase I) 07/16/98	(Phase I) 07/16/98	
	:	;			:			:	:
Chloromethane	30	10 01	01	0.01	0 01	200	(O 000	01	Ω
Bromomethane	\$	10 U		D 02	10 O	20 02	I000 I	2	ם
Vinyl chloride	2	10 U		D 02	10 O	20 02	1000 N	0	n
Chloroethane	5	10 U	N 01	D 01	U 01	20 U	1000 UJ	2	n
Methylene chloride	5	N 01		D 01	10 U	30 U	IO 0001	0	⊃
Acetone	80	10 OJ	9	13 or	ID 01	10 0S	1000 UJ	0	3
Carbon disulfide	80	10 O	Ω 01	10 OI	10 U	20 U	1000 n	01	_
1.1-Dichloroethene		U 01		D 01	O 01	20.02	IO 0001	01	ם
1, 1-Dichloroethane	3	U 01	n e	D 00	U 01	N 08	1000 I	01	<u></u>
1,2-Dichloroethene (Total)		5.0	26	D 01	U 01	0880 D	(O 069	-	_
2-Butanone	80	f0 01	01	10 OI	10 OI	So UI	1000 DJ	01	Б
Chloroform		O 01		D 01	10 U	20 U	1000 UJ	0)
1,2-Dichloroethane		10 O	O 01	O OI	D 01	30 U	LU 0001	02	
1,1,1-Trichloroethane		D 01	O 01	D 01	D 01	20 U	ID 0001	2	<u></u>
Carbon tetrachloride	\$	10 U		D 01	10 01	20 U	1000 I	02	- !o
Bromodichloromethane	50	10 O		O 01	10 U	N 05	IO 0001	9	٦
1.2-Dichloropropane	5	10 O	O 01	10 U	10 O	20 U	1000 N	2	, D
cis-1,3-Dichloropropene	\$	D 01	O 01	D 01	10 U	N 08	1000 UJ	01	=
Trichloroethene	\$	2.1	=	D 01	10 U	2600 ED	2300 DJ	01	_
Benzene	1	10 U	O 01	D 01	10 U	N 08	1000 UJ	01	>
Dibromochloromethane	20	D 01		D 01	10 U	N 08	1000 UJ	01	>
trans-1,1-Dichloropropene		D 01		D 01	U 01	D 08	(U 0001	0	-
1,1.2-Trichloroethane	-	10 U		D 01	D 01	D 08	(U 000	01	2
Bromoform	50	10 U	O 01	D 01	10 U	30 U	1000 IN	01	-
4-Methyl-2-pentanone	80	D 01		D 01	10 U	20 C	1000 U	0	ב
2-flexanone	50	IO 01	O1		10 UJ	S0 UJ	ID000 ID	01	5
Tetrachloroethene	5	ם נו			D 01	12000 ED	20000 DJ	2	ח
1.1.2.2-Tetrachloroethane	\$	10 O	Ω 01	D 01	U 01	20 U	1000 N	2	ב
Toluene	5	O 01		D 01	U 01	\$0 U	1000 U)	2	_
Chlorobenzene	\$	10 U	JO 01	D 01	U 01	30 U	1000 UJ	01	<u>,</u>
Ethylbenzene	\$	10 U		D 01	U 01	20 U	ID 0001	2	2
Styrene	\$	D 01	D 01	D 01	10 U	20 U	IO 0001	2	_
Xylenes (total)		10 U	-	D 01	O 01	N 08	1000 DJ	01	n
Total Volatile Organic Compounds									
(Total VOC's)		23	QN	QN.	QN	15480	22990	-	
Total Tentatively Identified Compounds		ži	1	£	Ş	ž	9	Ş	
(101411103)		3	5	25	2		2	2	7

(1) Bold values indicate GA groundwater standard exceedances. (2) U indicates analyte was not detected at or below the Contact

Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.

(3) J is the associated numerical value that is an estimated quantity

(4) B indicates that the compound was also detected in the Jaboratory blank.

(5) E, reported value estimated due to quantitation above the calibration range (6) D represents values from diluted sample analysis.
(7) ND indicates values were not detected.

Volatiles - (ug/L.)	GA Groundwater	GP12(26-30)	GP13(16-20)	GP13(16-20)DL	GP13(26-30)	CP13(26-30) DL	GP14(12-16)	GP14(24-30)	CP14(14-30)DL	GP14(36-40)
	Standards(ug/L)	(Phase 1) 07/16/98	(Phase I) 07/16/98	(Phase I) 07/16/98	(Phase 1) 07/16/98	(Phase I) 07/16/98	(Phase I) 07/16/98	(Phase 1) 07/16/98	(Phase I) 07/16/98	(Phase I) 07/16/98
	5									
Chloromethane	50	D 01	S0 U	100 OO1	S0 U	250 UJ	10 OI	20 O	\$00 M	200 U
Bromomethane	\$	10 O	50 U	IO 001	20 U	250 UJ	10 CJ	20 U	\$00 UJ	200 C
Vinyl chloride	2	10 U	20 U	f3 80	36 DJ	250 UJ	10 OI	39 D	\$00 UJ	300 U
Chloroethane	\$	U 01	50 U	(1) 00I	20 U	250 UJ	10 UJ	20 C	500 UJ	00S
Methylene chloride	\$	U 01	50 U	IO 001	O OS	250 UJ	10 UJ	20 U	200 UJ	00S
Acetone	90	IO 01	S0 UJ	100 UJ	So UJ	250 UJ	55 02	20 UJ	S00 UJ	S00 UJ
Carbon disulfide	50	N_01	S0 U	100 DI	\$0 U	250 UJ	10 UJ	20 C	500 UJ	200 U
1,1-Dichloroethene	\$	U 01	20 U	100 DI	20 %	250 UJ	10 UJ	10 01	See UJ	00S
1,1-Dichloroethane	\$	U 01	20 U	100 UJ	20 U	250 UJ	10 UJ	17 DJ	S00 UJ	000 C
1,2-Dichloroethene (Total)	\$	2.1	810 D	VQ 014	720 D	560 DJ	10 CZ	1800 ED	3700 DJ	G 00%
2-Butanone	50	IO 01	So UI	IO 001	\$0 UJ	250 UJ	10 OJ	50 UJ	S00 UJ	S00 UJ
Chloroform	<u></u>	D 01	S0 U	100 DI	\$0 U	250 UJ	m or	20 U	\$00 UJ	200 U
1,2-Dichloroethane	\$	ם כ	N 08	F3 881	20 U	250 UJ	10 01	\$0 U	\$00 UJ	11 005
1,1,1-Trichloroethane	\$	D 01	fQ 6	IO 00I	N 08	250 UJ	ID 01	2 S	S00 UJ	(O 091
Carbon tetrachloride	, .	D 01	SO U	10 OZ	20 U	250 UJ	10 UJ	20 U	\$00 UJ	200 U
Bromodichloromethane	80	D 01	20 U	190 U	20 U	250 UJ	10 OI	20 U	\$00 UJ	OOS
4,2-Dichloropropane	\$	_5 °C	0 OS	100 01	D 00	250 UJ	ID 01	20 U	500 CJ	0 00S
cis-1,3-Dichloropropene	\$	10 U	N 08	100 UJ	20 U	250 UJ	10 UJ	O 0.	\$00 UJ	U 008
Trichloroethene	S	+	Q 0+8	820 DJ	1100 ED	920 DJ	10 UJ	10 11	\$00 UJ	O 000
Велхепе	-	D 01	30 U	100 UJ	20 U	250 UJ	10 CJ	S0 U	\$00 UJ	D 000
Dibromochloromethane	80	D 01	20 U	100 UJ	O 08	250 UJ	10 UJ	O 05	\$00 CJ	200 U
trans-1,3-Dichloropropene	0.4	D 01	30 U	100 UJ	20 C	250 UJ	10 UJ	20 U	\$00 UJ	D 008
1,1,2-Trichloroethane	_	D 01	N 08	I) 00I	20 U	250 UJ	10 UI	20 U	\$00 UJ	0 00s
Вготобогт	50	10 U	N 08	100 UJ	20 U	250 UJ	10 UJ	S0 U	\$00 UJ	D 000
4-Methyl-2-pentanone	20	D 02	D 05	ID 001	O 08	250 UJ	10 (1)	30 U	\$00 CM	000
2-Hrvanone	05	10 01	30 UJ	100 101	(1) 0\$	250 (1)	10 01	40 UJ	In oos	(1) 005
Lettachloroethene	v .	> =	1100 ED	130021	3300 ED	3300 [3]	10 01	50 U	\$00 CJ	00 S
1,1,2,2- Fetrachloroethane	•	D 01	N 08	100 UJ	20 O	250 UJ	10 UJ	20 U	500 UJ	200 U
Toluene	\$	10 U	30 U	100 UJ	O 08	250 UJ	10 UJ	20 U	500 UJ	0 00s
Chlorobenzene	\$	10 U	0 OS	100 UJ	20 U	250 UJ	10 UJ	S0 U	500 UJ	O 003
Ethylbenzene	\$	D 01	20 U	100 01	20 U	250 UJ	10 UJ	0 O	S00 UJ	D 008
Styrene	\$	10 U	SO U	100 OJ	20 U	250 UJ	IO 01	20 U	200 UJ	000 n
Xylenes (total)	\$	10 ft	20 U	100 UJ	20 U	250 UJ	10 UI	S0 U	500 UJ	200 U
Total Volatile Organic Compounds										
(Total VOC's)		9	3059	3030	5154	4780	ON	9008	3700	9760
Total Tentatively Identified Compounds (Total TIC's)		Ę	Ş	Ę	ź	£	Ę	Ę	£	£
(10101110)		31	2	25	3.	3	9	2	9	72

(1012) (1012) (1013) (1015)

NOTES

(1) Bold values indicate GA groundwater standard exceedances.
(2) U indicates analyte was not detected at or below the Contract Required Detection Limit (CRDLs), or the compound is not detected due to qualification through the method or field blank.

(3) J is the associated numerical value that is an estimated quantity

(4) B indicates that the compound was also detected in the laboratory blank.
(5) E, reported value estimated due to quantitation above the calibration range
(6) D represents values from diluted sample analysis.
(7) ND indicates values were not detected

Volatiles - (ug/L)	GA Groundwater	GP15(12-16)	GP15(14-30)	GP15(24-30)DL	GP15(36-40)	GP16(12-16)	GP17(12-16)	FIELDBLANK	TB-03
		(Phase I)	(Phase I)	(Phase 1)	(Phase I)	(Phase I)	(Phase I)	(Phase I)	(Phase I)
	Standards(ug/L.)	07/15/98	//1161998	07/16/98	07/16/98	0 //15/98	07/15/98	07/14/98	07/14/98
Chloromethane	05	ii 01	20 0	10 00s	20 U	10 01	7 01	D 01	17 01
Bromomethane	\$	D 01	S0 U	500 UJ	20 U	10 U	D 01	U 01	
Vinyl chloride	2	10 O	IQ 60	500 UJ	20 U	U 01	D 01	10 01	D 01
Chlorocthane	\$	D 01	S0 U	500 UJ	20 U	O 01	D 01	N 01	n 01
Methytene chloride	\$	D 01	S0 U	500 UJ	20 U	D 01	D 01	10 U	n 01
Acetone	50	ID 01	50 UJ	\$00 UJ	20 UJ	10 UJ	ID 01	IO 01	55 00
Carbon disulfide	50	D 01	D 08	70 OS	20 U	U 01	D 01	U 01	D 01
I, I-Dichloroethene		D 01	2 ::	\$00 UJ	S DJ	10 U	D 01	U 01	n 01
I, I-Dichloroethane	\$	D 01	to ct	\$00 UJ	10 DJ	U 01	D 01	U 01	D 01
1,2-Dichloroethene (Total)			6200 ED	7000S	320 D	N 01	D 01	N 01	D 01
2-Butanone	. 30	10 UJ	50 UJ	\$00 UJ	20 UJ	IO 01	50 e2	IO 01	n 01
Chloroform		U 01	20 U	\$00 UJ	20 U	10 U	D 01	10 U	D 01
1,2-Dichloroethane	\$	U 01	20 U	500 UJ	20 U	D 01	D 01	U 01	n 01
1,1,1-Trichloroethane	\$	U 01	83 D	500 UJ	10 11	U 01	D 01	10 U	D 01
Carbon tetrachloride	\$	U 01	20 U	S00 UJ	20 U	10 U	D 02	U 01	D 01
Bronodichloromethane	50	D 01	20 U	S00 UJ	20 U	U 01	D 01	U 01	10 O
1,2-Dichloropropane	\$	U 01	30 U	200 UJ	20 U	D 01	D 01	U 01	D 01
£	\$	10 U	20 U	800 UJ	20 U	U 01	D 01	U 01	O 01
Trichloroethene	\$	U 01	10 11	500 UJ	13 DJ	10 U	U 01	U 01	D 01
Benzene	_	Ω 01	N 08	500 UJ	20 U	U 01	10 U	10 U	0 01
Dibromochloromethane	\$0	U 01	N 08	\$00 UJ	20 U	10 OI	D 01	10 U	01
trans-1, 1-Dichloropropene	0.4	Ω 01	20 U	500 UJ	20 U	10 D	10 U	10 U	O 01
1,1,2-Trichloroethane	-	D 01	S0 U	200 UJ	20 U	10 U	D 01	U 01	D 01
Bromoform	50	N 01	S0 U	200 UJ	20 U	10 CI	10 U	10 U	n 01
4-Mcthy1-2-pentanone	50	LD 0.1	30 U	500 UJ	(U 02	10 OI	IO 01	U 01	O 01
2-Hexanone	\$0	10 O1	S0 UJ	500 UJ	Z0 UJ	10 UJ	10 111	ID 01	
Tetrachloroethene	•	U 01	0 0S	200 CJ	20 U	U 01	U 01	8)	O 01
1,1,2,2-Tetrachloroethane	\$	10 UJ	S0 U	\$00 CD	20 UJ	IO 01	FD 01	D 01	n 01
Toluene	\$	U 01	D 05	500 UJ	Z0 U	U 01	D 01	D 01	. O OI
Chlorobenzene	\$	U 01	30 U	\$00 U.	20 U	10 U	10 U	D 01	10 OI
Ethylbenzene	\$	U 01	0 OS	500 UJ	Z0 U	U 01	10 U	10 U	O 01
Styrene	5	D 01	20 U	500 UJ	20 U	D 01	10 U	U 01	
Xylenes (total)	5	U 01	S0 U	\$00 UJ	Z0 U	10 D	10 U	U 01	_O 01
Total Volatile Organic Compounds									
(Total VOC's)	***************************************	Đ.	6367	20095	361	ND	QX OX	\$	ND
Total Tentatively Identified Compounds		ţ	í	·	į	;	;	į	Ş
(10tal 11C S)		ON.	ΔN	ND.	ON.	17	48	ND	GN.

⁽¹⁾ Bold values indicate GA groundwater standard exceedances.
(2) U indicates analyte was not detected at or below the Contract Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.

⁽³⁾ I is the associated numerical value that is an estimated quantity

⁽⁴⁾ B indicates that the compound was also detected in the laboratory blank.

⁽⁵⁾ E. reported value estimated due to quantitation above the calibration range

⁽⁶⁾ D represents values from diluted sample analysis (7) ND indicates values were not detected

Volatiles - (ug/L)	GA Groundwater	GP29(26-30)	GP29	GP29(36-40)	GP29(46-50)	GP30(26-30)	GP30(36-40)	GP30(36-40)DL	GP30(46-50)
		(Phase II)	Ę.	(Phase II)	(Phase II)				
	Standards(ug/L)	86/50/01	10/	10/05/98	10/05/98	10/05/98	10/05/98	10/05/98	10/05/98
de monare de	Ş	9	2	÷	11 01	9	1	11 06	1
Bromomethans	*		<u> </u>	=	11 01		2 2	17 02	2 2
Vinylehloride	2		<u> </u>	=	10 17		2	20 11	2 01
Chlorochana	•		Ļ	-			2	11 00	2 2
Methylene chloride	\$ \$		1	=	0.01	2 2	2 2	11.00	
A Second Carolina	3		<u> </u>					2 2	
Acetone	06		<u> </u>	0 :	0 01		0 0	0 02	0 01
Carbon disulfide	50	01	e n	ם	D 01	D 01	D 01	20 U	10 U
1,1-Dichlornethene	\$	01	7 0	7	2.3	10 U	4]	4 JD	10 U
1,1-Dichloroethane	\$	2	n 2	-	3.1		=	Or 01	10 U
1,2-Dichloroethene (Total)	5	29	2	ח	7.1	180	100	95 D	2 J
2-Butanone	05			n	O 01	D 01	D 01	20 U	D 01
Chloroform	7	01	2 0	n	O 01	O 01	D 01	20 U	10 U
1,2-Dichloroethane	\$	01	ח	_	10 U	10 U	D 01	20 U	10 U
I, I, I-Trichloroethane	\$		01	ם	2.1	10 U	2 J	20 U	U 01
Carbon tetrachloride	8	01		ם	10 U		D 01	70 U	10 U
Bromodichloromethane	\$0		0 D	ח	JO 01	JO 01	D 01	70 U	U 01
1.2-Dichloropropane	\$	10	01 D	n	D 01	D 01	D 01	Z0 U	10 U
cis-1,1-Dichloropropene	\$	01	01 D	ב	D 01	⊃ 2	D 01	20 U	10 U
Trichloroethene	\$	7	2	n	U 01	5 J	190	170 D	2 J
Benzene	-	01	01 D	ח	U 01	D 01	O 01	70 C	10 U
Dibromochloromethane	90		U 10	U	U 01	10 U	10 U	70 N	10 U
trans-1,3-Dichloropropene	0.4	01		n	U 01	JO 01	D 01	20 U	10 U
1,1,2-Trichloroethane	_	1		-	10 O	10 U	O 01	20 U	U 01
Bromoforin	80			>	D 01		D 01	20 U	U 01
4-Methyl-2-pentanone	80	!	[ם	D 01	O 01	D 01	20 U	10 O
2-Hexanone	80	2	2	5	10 U	O 01	D 01	20 U	10 U
Tetrachloroethene	\$	01	01	n	1.1	3 1	220 E	200 D	4]
1,1,2,2-Tetrachloroethane	\$	10		n	U 01	O 01	N 01	70 OZ	10 U
Toluene	5	01	0 D	n	10 O	O 01	7-	D 02	10 U
Chlorobenzene	\$	01	0 0	ח	10 U	D 01	2.3	20 U	10 U
Ethylbenzene	\$	01	01 D	n	N 01	D 01	D 01	Z0 U	10 U
Styrene	\$	2	0 1	ח	O 01	O 01	10 O	20 U	10 U
Xylenes (total)	\$			ח	10 N		D 0€	20 U	D 01
Total Volatile Organic Compounds									
(Total VOC's)		36	~		6	201	311	479	8
Total Tentatively Identified Compounds		ţ			,	;			!
(Total TIC's)		QZ	s c		9	ND DX	ΩN	QN	ND

(1) Bold values indicates GA groundwater standard exceedances.

(2) U indicates analyte was not detected at or below the Contract

Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.

(3) J is the associated numerical value that is an estimated quantity

(4) B indicates that the compound was also detected in the laboratory blank.
(5) E, reported value estimated due to quantitation above the calibration range
(6) D represents values from diluted sample analysis.
(7) ND indicates values were not detected.

Volatiles - (ug/L)	GA Groundwater		GP31(26-30)D		GP31(36-40)	GP31(36-40)DL	GP31(46-50)	GP32(26-30)			GP32(36-40)
		(Phase II)	(Phase II)		(Phase II)	(Phase II)	(Phase II)	(Phase II)	(Phase		(Phase II)
	Standards(ug/L)	10/05/98	O7/13/98		10/05/98	10/05/98	10/05/98	10/08/98	10/08/	98	10/08/98
Chloromethane	50	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
Bromomethane	5	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
Vinyl chloride		12	200	U	67	500 U	10 U	10 U	5	JD	16
Cliloroethane	5	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
Methylene chloride	5	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
Acetone	50	10 U	200	U	10 U	500 U	10 U	10 U	25	<u>U</u>	10 U
Carbon disulfide	50	10 U	200	U_	10 U	500 U	10 U	10 U	25	U	10 U
1,1-Dichloroethene	5	2 J	200	υ	16	500 U	5 J	10 U	25	U	2 J
I,I-Dichloroethane	5	4 J	200	υ	38	500 U	10 J	10 U	25	U	260 E
1,2-Dichloroethene (Total)	5	1600 E	1600	D	5200 E	8500 D	5 J	220 E	210	D	10 U
2-Butanone	50	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
Chloroform	7	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
1,2-Dichloroethane	5	10	200	U	10 U	500 U	10 U	10 U	25	U	10 U
1,1,1-Trichloroethane	5	10 U	200	U	140	120 JD	9 J	10 U	25	U	10 U
Carbon tetrachloride	5	10 U	200	- Ū	10 0	500 U	10 U	10 U	25	υ	10 U
Bromodichloromethane	so	10 U	200	U	10 U	500 U	10 U	10 U	25	Ü	10 U
1,2-Dichloropropane	5	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
eis-1,3-Dichloropropene	5	13	200	U	10 U	500 U	10 U	10 U	25	U	10 U
Trichloroethene	5	10 U	200	U	18	500 U	ر و	5]	4	JD	6)
Benzene	1	10 U	200	_U	10 U	500 U	10 Ū	10 U	25	U	10 U
Dibromochloromethane	50	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
trans-1,3-Dichloropropene	0.4	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
I, 1, 2-Trichloroethane	i	10 U	200	U	10 U	500 U	10 U	10 U	25	Ū	10 U
Bromoform	50	10 U	200	Ū	10 U	500 U	10 U	10 U	25	U	
4-Methyl-2-pentanone	50	10 U	200	- î	10 U	500 U	10 U	10 U	25	Ū	10 U
2-Hexanone	50	10 U	200	U	10 U	500 U	10 U	10 U	25	U	10 U
Tetrachloroethene	5	2 J	200	υ	2 J	500 U	2 J	13	3	JD	5 J
1,1,2,2-Tetrachloroethane	5	10 U	200	U	10 U	500 LJ	10 U	10 U	25	U	10 U
Toluene	5	1 1	200	- <u>-</u> U	1 1	500 U	10 U	10 U	25	U	10 0
Chlorobenzene	5	10 U	200	Ū	10 U	500 U	10 U	10 U	25	U	io u
Ethylbenzene	5	10 U	200	Ū	10 U	500 U	10 U	10 U	25	U	iŏ ŭ
Styrene	5	10 U	200	U	10 U	500 U	10 0	10 U	25	U	10 0
Xylenes (total)	5	10 U	200	Ü	10 0	500 U	10 0	10 U	25	Ü	10 U
Total Volatile Organic Compounds	<u> </u>	1									100
(Total VOC's)	*********	1644	1600		5482	8620	. 40	238	222		289
Total Tentatively Identified Compounds		10			22	0,020	· · · · -	250			20)
(Total TIC's)	***********	ND	ND		ND	ND	14	7	ND		ND
NOTES:			1				'''	<u> </u>	1,0		1.10

NOTES:

- (1) Bold values indicates GA groundwater standard exceedances.
- (2) U indicates analyte was not detected at or below the Contract

Required Detection Limit (CRDL), or the compound is not detected

due to qualification through the method or field blank.

- (3) I is the associated numerical value that is an estimated quantity
- (4) B indicates that the compound was also detected in the laboratory blank.
- (5) E, reported value estimated due to quantitation above the calibration range
- (6) D represents values from diluted sample analysis.
- (7) ND indicates values were not detected.

Tabue 5

Volatiles - (ug/L)	GA Groundwater	GP32(36-40)DL	GP32(46-50)	GP33(26-30)	GP33(36-40)	GP33(46-50)	GP34(36-40)	TB10/8	FB10/8
		(Phase II)	(Phase II)	(Phase II)	(Phase II)	(Phase II)	(Phase II)	(Phase II)	(Phase II)
	Standards(ug/L)	10/08/98	10/08/98	10/08/98	10/08/98	10/08/98	10/08/98	10/08/98	10/08/98
					1			ĺ	
Chloromethane	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromoinethane	5	25 U	10 U	IO U	10 U				
Vinyl chloride	2	14 JD	10 U	<u>10 U</u>	10 U				
Chloroethane	<u></u> <u></u>	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	- 5	25 U	10 U	10 U	10 U	10 U	10 U	1 JB	10 U
Acetone	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	6 J
Carbon disulfide	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
I, I-Dichloroethene	5	25 U	5 J	10 U	2 J	10 U	2 J	10 U	10 U
1,1-Dichloroethane	5	25 U	35	6J	14	10 U	14	10 U	10 U
1,2-Dichloroethene (Total)	5	260 D	29	21	44	10 U	44	10 U	10 U
2-Butanone	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	7	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	5	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	5	25 U	6 J	IJ	2 J	10 U	3 J	10 U	10 U
Carbon tetrachloride	5	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane	5	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	5	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene	5	6 JD	82	10	45	10 U	43	10 U	10 U
Benzene	1	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	0.4	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	1	25 U	10 U	10 U	10 U	10 U	10 U	10 U	้างับ
Bromoform	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	50	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	5	2 JD	22	9 1	33	10 U	31	10 U	10 U
1,1,2,2-Tetrachloroethane	5	25 U	10 U	10 U	10 U	์ เดิบ ั	10 U	10 U	10 U
Toluene	5	25 U	10 U	10 U	3 J	1 1	2 J	io U	10 U
Chlorobenzene	5	25 U	1 J	10 Ü	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	5	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	5	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Xylenes (total)	5	25 U	10 U	10 U	U	10 U	l J	10 U	10 U
Total Volatile Organic Compounds									
(Total VOC's)		282	180	47	144	1.	140	1 1	6
Total Tentatively Identified Compounds									
(Total TIC's)		ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

- (1) Bold values indicates GA groundwater standard exceedances.
- (2) U indicates analyte was not detected at or below the Contract
- Required Detection Limit (CRDL), or the compound is not detected

due to qualification through the method or field blank.

- (3) J is the associated numerical value that is an estimated quantity
- (4) B indicates that the compound was also detected in the laboratory blank.
- (5) E, reported value estimated due to quantitation above the calibration range
- (6) D represents values from diluted sample analysis.
- (7) ND indicates values were not detected.

CDM Camp Dresser & McKee

Table 6

Existing Monitoring Wells-Groundwater Volatile Organic Analysis Active Industrial Uniform Remedial Design

Volatiles - (ug/L)	GA Groundwater	MW-2S	MW-20S	MW-2SDL	MW-20SDL	MW-4S	MW-4SDL	MW-4D	MW-4DDL	MW-5S
	Standards (ug/L)	07/14/98	07/14/98	07/14/98	07/14/98	07/14/98	07/14/98	07/14/98	07/14/98	07/14/98
						l		***************************************		
Chloromethane	5	8 .	50 U	100 U.	100 UJ	10 U	\$50 A1	10 U	250 UJ	10 UJ
Bromamethane	5	10 U	50 U	100 UJ		10 U	820 UJ	10 U	250 UJ	10 UJ
Vinyl chloride	2	10 U	50 U	100 UJ	1	4 J	620 UJ	1 J	250 UJ	10 UJ
Chloroethane	5	10 U	50 U	100 UJ		10 U	620 UJ	10 U	250 UJ	10 UJ
Methylene chloride	5	10 U	50 U	100 UJ	100 W	10 U	620 W	10 UJ	250 UJ	10 UJ
Acelone	50	10 UJ	50 U	100 U,		10 UJ	650 M 1	10 U	250 UJ	10 UJ
Carbon disulfide	50	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
1,1-Dichloroethene	5	10 U	50 U	100 ປຸງ		2 J	620 UJ	2 J	250 UJ	10 UJ
1,1-Dichloroethane	5	10 U	50 U	100 U.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 U	620 UJ	6 J	250 UJ	10 UJ
1.2-Dichloroethene (Total)	5	120	120 D	130 D.	**************************************	2200 E	2800 DJ	3.3	250 UJ	10 UJ
2-Butanone	50	10 UJ	50 U	, 100 UJ		10 UJ	620 UJ	10 UJ	250 UJ	10 UJ
Chloroform	7	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
1,2-Dichloroethane	5	10 U	50 U	100 U.	100 W	10 U	620 W	10 U	250 UJ	10 UJ
1,1,1-Trichloroethane	5	2 J	50 U	100 U,	100 UJ	7 .	620 UJ	2 J	250 UJ	10 UJ
Carbon tetrachloride	5	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
Bromodichloromethane	50	10 U	50 U	100 UJ		10 U	620 UJ	10 U	250 UJ	10 UJ
1,2-Dichloropropane	5	10 U	50 U	100 UJ	100 UJ	10 U	630 f/J	10 U	250 UJ	10 UJ
cis-1.3-Dichloropropene	5	10 U	50 U	100 U.	100 W	10 U	820 W	10 U	250 LJ	10 UJ
Trichloroethene	5	580 E	620 D	ୂ. 620 JD	· · ·	2700 E	5900 DJ	36	36 JD	10 UJ
Benzene	.7	17	18 JD	20 JD		10 U	620 UJ	10 U	250 UJ	10 UJ
Dibromochloromethane	50	to u	50 U	100 U.	100 W	10 U	620 UJ	10 U	250 UJ	10 UJ
trans-1,3-Dichloropropena	5	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
1,1,2-Trichloroethane	5	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
Bromoform	50	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
4-Methyl-2-pentanone	50	10 U	50 U	100 U.	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
2-Hexanone	50	10 UJ	50 U	100 UJ	100 W	10 UJ	820 W	10 UJ	250 W	10 UJ
Tetrachloroethene	5	1100 E	1300 ED	1500 JD	1500 DJ	2500 E	6800 DJ	1500 E	1900 DJ	5 J
1,1,2,2-Tetrachloroethane	5	10 U	∻50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
Toluene	5	10 U	50 U	100 U.	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
Chlorobenzene	5	10 U	50 U	. 100 UJ	100 UJ	10 U	\$20 UJ	10 U	250 UJ	10 UJ
Ethylbenzene	5	10 U	50 U	100 UJ		10 U	620 UJ	10 U	250 UJ	10 UJ
Styrene	5	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
Xylenes (total)	5	10 U	50 U	100 UJ	100 UJ	10 U	620 UJ	10 U	250 UJ	10 UJ
Total Volatile Organic Compounds										
(Total VOC's)		1827	2058	2270	2311	7413	15500	1550	1936	6
Total Tentatively Identified Compounds										
(Total TIC's)		690	800	ND	900	17	ND	ND	ND	8
NOTE:		-							•	

NOTE:

- (1) Bold values indicates GA groundwater standard exceedances.
- (2) U indicates analyte was not detected at or below the Contract Required Detection Limit(CRDL), the compound is not detected

due to qualification through the method or field blank.

- (3) J is the associated numerical value that is an estimated quantity
- (4) B indicates that the compound was also detected in the laboratory blank.
- (5) E, reported value estimated due to quantitation above the calibration range
- (6) D represents values from diluted sample analysis.
- (7) ND indicates values were not detected.

Active Industrial Uniform Remedial Design Existing Monitoring Wells-Groundwater Volatile Organic Analysis

Volatiles - (ug/L)	GA Groundwater	O8 -W W	S6-MM	FIELDBLANK	TRIPBLANK	
	Standards (ug/L)	07/14/98	07/14/98	07/14/98	07/14/98	
Chloromethane	*	300	2	7 0	9	3
Brompmethane	¥O.	3		fO Ot	40	3
Vinyl chloride	2	to UJ	₽	- - - -	-1	3
Chloroethane	•	10 UJ		10 U	2	3
Methylene chloride	¥6.	3 0	70 04	FO OL	10	3
Acelone	8	3.6	3	5 00	Q	3
Carbon disulfide	95	10 UJ		10 UJ	10	3
1,1-Dichloroethene	·vo	7-	.D	10 U	5	3
1,1-Dichloroethane	· c	76	n O	3 0	10	3
1,2-Dichloroethene (Total)	#0	7 80	2	3	10	3
2-Butanone	26	10 UJ	÷	10 UJ	10	3
Chloroform	1	10 UJ		-	2	3
1.2-Dichloroethans	¥		10 0	FD 01	10	3
1,1,1-Trichtoroethane	••	7.1			9	3
Carbon tetrachlonde	ç	10 UJ	O	10 UJ	5	3
Bromodichloromethane	28	10 UJ		10 U	5	3
1,2-Dichloropropane	G	70 Ot	n 01	10 O.	10	ñ
cs:1,3-Dichloropropene	w.	30 €	о 0,	300	10	3
Trichloroethene	S	5.5	2 J	10 U	10	3
Benzene	7.	10 UJ	01	10 UJ	9	3
Dibromochloromethane	S	30	10 U	10 01	10	3
trans-1,3-Dichtoropropene	••	10 CL	10 U	7 02	0‡	3
1,1,2-Trichloroethane	9	10 ∪	. ∪	± €	9	3
Bromoform	25	10 UJ	ō D	10 50	5	3
4-Methyl-2-pentahane	8	10 CJ		10 OJ	- 10	3
2-Haxanone	æ	33 Q	3	3700	10	3
Tetrachloroethene	v	- 0t		10 UJ	9	3
1,1,2,2-Tetrachloroethane	2	10 UJ	5 U	10 U	5	3
Taluene	un.	3		f) of	10	3
Chlorobenzane	\$		0 0	f 0 01	40	3
Ethylbenzene	S	10 CE		10 UJ	5	3
Styrene	Б	10 UJ		10 UJ	5	3
Xylenes (total)	9	10 UJ	0 U	. 10 UJ	9	3
Total Volatife Ciganic Compounds (Total VOCs)	-	3	18	0	0	
Total Tentatively Identified Compounds						
(Total TIC's)]	Q	. 81			
						1

NOTE:

(1) Bold values indicates GA groundwater standard exceedances.

(2) U indicates analyte was not detected at or below the Contract

Required Detection Limit(CRDL), the compound is not detected

due to qualification through the method or field blank.

(3) J is the associated numerical value that is an estimated quantity

(4) B indicates that the compound was also detected in the laboratory blank.

(5) E, reported value estimated due to quantitation above the calibration range(6) D represents values from diluted sample analysis.(7) ND indicates values were not detected.

Table 7 Summary of Groundwater Samples Inorganic Analysis

Active Industrial Uniform Remedial Design Study

			Bowling Alley		
	GP32(36-40)	GP33(36-40)	Air Stripper Influent	MW-2S	MW-4S
Total Metals(ug/l)	10/08/98	10/08/98	10/8/98	(Existing Well)	(Existing Well)
Aluminum	10.7 B	18.4 B	34.1 B	66.5 B	1810
Antimony	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
Arsenic	1.4 U	1.4 U	3.0 B	1.5 B	28.5
Barium	38.0 B	75.1 B	21.0 B	20.4 B	65.1 B
Beryllium	0.21 U	0.21 U	0.89 B	0.2 U	0.35 B
Cadmium	0.31 U	0.31 U	0.64 B	0.3 U	9.5
Calcium	19900	134000	18200	26800	28600
Chromium	1.2 B	1.1 B	0.83 B	0.6 U	5.2 B
Cobalt	6.6 B	5.7 B	2.0 U	2 U	16.7 B
Copper	1.5 U	2.3 B	2.7 B	1.8 B	13.3 B
Iron	2370	4030	1370	301	25000
Lead	1.4 B	0.9 U	1.2 B	0.9 U	8.3
Magnesium	3170 B	74900	3180 B	4100 B	4220 B
Manganese	10100	6670	2830	853	1650
Mercury	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Nickel	7.9 B	12.1 B	2.8 U	2.8 U	12.4 B
Potassium	3510 B	39100	2740 B	3010 B	3390 B
Selenium	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Silver	2.2 B	1.5 B	0.61 U	0.6	1.2 B
Sodium	21800	675,000	22,000	25,800	8,270
Thallium	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U
Vanadium	1.8 U	1.8 U	1.8 U	1.8 U	13.3 B
Zinc	37.8	85.6	15.2 B	20.4	163
Wet Chemistry (mg/L)					
CHLORIDE	37.1	1710	32.4	42.1	39.8
SUSPENDED SOLIDS	<10	<10	<10	<10	29
TOTAL ALKALINITY	80.8	64.6	39.2	55.8	65.3
TOTAL DISSOLVED S	167	2960	130	182	294
Field Parameters					
Temperature (C)	16.2	16.1	NA	16	16.6
Salinity (%)	0.01	0.3	NA	0.01	0
pН	6.28	6.347	NA	6.17	6.07
Turbidity (NTU)	4	425	NA NA	4	67
Dissolved Oxygen (mg/l)	2.91	0.37	NA	1.03	1.41
Conductivity (mS/cm)	0.342	5.14	NA	0.340	0.277

^{*:} Standard for sum of iron and manganese.

B: This qualifier is used when the analyte is found in the associated blank.

U: Indicates that the compound was analyzed for but not detected.

Attachment A Boring Logs

environmental engineers, scientists, planners & management consultants

planning a manage mem		BORING # GP-1
LOG OF BORING		Page 1 of 2
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/13/98	Drilling Co.:	Job#:
Total Depth 26'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec		Sample Description		Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)			Change	(time)
	1130		0-4	4'	0.0-8.0	Brown SILTY SAND, hard, moist			
	4	i					_		ļ
	-			}	ł				ì
2	-		1						ļ
_									
	_		l	{	ĺ		\dashv		{
	_						\dashv		
4	-]
' -	1135		4-8'	4'	0.0-8.0	Tan medcoarse SAND, loose, moist	\exists		
•	_ ''55		' "				_		
	J)			\dashv]
٠.	_		ĺ						
6 _						· · · · · · · · · · · · · · · · · · ·	\exists		
•	┦			}					ł
•							4		1
							4		
8 _	1110		8-12	4'	8-11':	Same as above except water	_		Soil sample
•	1140		0-12	*	0.0-13.0	encountered at 10 ft.			collected 9-1
	-				11'-12':	encountered at 10 h.			1
			ľ	İ	0.0-4.0		4		1310:
10 _					0.0-4.0		\dashv		Collect wate
	-						٦		sample from
-	-		•	\					10-14'
•	7								pH=6.47
12			<u></u>				\neg		Temp=20 C
	-					•	٦		Cond= 440 umh
	_						J		slight sheen not
	┥ !						\exists		Slight sheet not
14			_				\dashv		
	1145		14-16	2'	0.0	Same as above	┪		
	-		}	Ì			J		1
	-			l					
16 _			ļ			{	-		1
							7		
	-						J		
	-			1	}		\exists		
18 _			<u> </u>	<u> </u>	ļ. -		-		
	\dashv						7		l
			l						1
	-						\Box		{
20							\dashv		J
	1155		20-22	0,		(No recovery after two attempts)	┪		
	_								1
	-						\exists		1
22			<u> </u>	ļ_ <u> </u>]
	_						\dashv		
							\dashv		1
	-		1						
			1	1	1				1

environmental engineers, scientists, planners & management consultants

ı	G	OF	BC	R	ING

Project Active Industrial

Location Village of Lindenhurst

BORING # GP-1

Page 2 of 2
Permit #:

Sample Description Strata Adv/Rec Org. Vap Remarks Blows/6" Sample Depth Sample Change (time) (ppm) No. 140 lbs. Inter. (feet) (feet) 24 medium to fine SAND, wet, loose 24-26' 2, 26 Geoprobe completed at 26 ft.

environmental engineers, scientists, planners & management consultants

J		BORING # GP-2
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/13/98	Drilling Co.:	Job #:
Total Depth 22'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap (ppm)	Sample Description	Strata Change	Remarks (time)
(feet)	No.	140 lbs.	Inter. 0-4	(feet)	(ppiii)	Brown SILTY SAND, moist, hard		(
-	1332		0					
-	1					'	\dashv	
2 -	-			ļ				
_							\dashv	
-	-						3	
4						Brown-tan medcoarse SAND, moist		
-	1335		4-8'	4'	0.0-2.1		7	
-	-					loose	7	
	1						-	
6 _	 					·	コ	
_							-	
_]						-	
8 -	-							LABOE -4
_	1340		8-12	4'	8-10':0.0	Same as above except wet		slight PCE od Soil sample
_	- ;				10-12':	`	\exists	collected from
-	- '				440.0	·	4	10-12'
10 _	1						<u>-</u>	' ' ' '
-	i i							
_]						_	
12 -	-							
'							7	
_							-	
-	-						_	
14 _						Tan coarse SAND with gravel, loose		
-	1350		14-16	6"		wet		
-						wet	4	
16]						\dashv	
10	-						\neg	
							-	
-	-							
18							\dashv	
-	-							
-	-							
20 ~							-	}
20	1400		20-22	6"		Same as above	7	Soil sample
_							4	collected from
-	-{							20-22'
2 2 _		_				20.5		
	-					Geoprobe completed at 22 ft.	-	
-	-					No groundwater samples taken.	\exists	
-	7					140 groundwater samples token.	-	

environmental engineers, scientists, planners & management consultants

•		BORING # GP-3
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/13/98	Drilling Co.:	Job #:
Total Depth 20'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)	Campie Boosiipiidii	Change	(time)
2 -				, , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0-4': Void space		
4			14			through septic manhole geoprobe starts at 4 ft. below grade		
6	0932		4-8'	3'	5-7': 20	Tan brown SILTY SAND, with black staining at 8 ft., moist		PCE odor
- - 8 -					7-8': 120.0			Soil sample taken 7-8'
	0940		8-12	2'	622.0	Black stained coarse SAND and GRAVEL, moist		Heavy PCE odor
10	· ·							1000: Collect water sample from 10-14'
12								pH=6.5 Temp=20.1 C Cond= 170 umhos Soil sample taken from
14	0945	ľ	14-16	1'	164.0	coarse SAND and GRAVEL, wet, loose, PCE odor noted		12-14'
18								
20	0950		18-20	2'	2.0-20.0	Same as above		PCE odor
22 -						Geoprobe completed at 20'.		

planting a memogram		BORING # GP-4
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/13/98	Drilling Co.:	Job #:
Total Depth 20'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample Inter.	Adv/Rec (feet)	Org. Vap (ppm)	Sample Description	Strata Change	Remarks (time)
(feet)	No.	140 lbs.	0-4	3'	0.0	1-2': Brown silty SAND/FILL	- Cinarigo	(,
-	0830		U-4	3	0.0	2-4': Brown tan SILTY SAND		
-	┥					2-4. Brown tan dien i dring	\supset	
-	1				ļ		4	
2 _						-	4	
-	4		İ				7	
-	4			1	Į.		7	ļ
-	-						3	
4 -	1 /			l		_		l
	0835		4-8	3,	0.0	5-7': Brown tan SILTY SAND with	-	Soil sample
_	<u> </u>					layers of hard silty clay	\dashv	7'-8'.
_	-			ĺ		7-8': Black organic rich SILTY SAND	-	
6 -	-				2.8	wet at 8', strong PCE odor.		
· –	 -			<u></u>		1	7	ļ
-	1					Ì		
-]]	}		\dashv	
]						-	
8 _	0007		8-12	3'	150-175	SAA		Soil sample
-	0837		0-12		130-173	0,77]	taken 10-12
-	1 :			l		· ·	4	
_	1 .					•	4	0910:
10 _]			ļ. <u> </u>		_		Collect wat
-	-						7	sample from
-	-							10-14'
-	- ``]			\supset	
12						_		pH=6.48
			[1			Temp=19.6 C
_	4			\			-	Cond=240 umh
-	-						7	slight PCE odo
14	-			1				
	0845		14-16	1'	0.0	Tan coarse SAND, little gravel, loose	-	Į.
_				!	Ì	no PCE odor	_	
_]						-	ĺ
16	4				1		7	
. –	 		_			1	7	
-	7							
-]						-	
18	↓					}	\dashv	
10 —	0900		18-20	 	16-17'- 7.0	SAA except more gravel, wet	=	
-	0900		10-20		17-18: 0.0		_	
-	1						_	
-]						\dashv	1
20	<u> </u>				ļ	Consens completed at 20'	\dashv	
-	-					Geoprobe completed at 20'.	7	
-	-				J		コ	
-							_	
-								
							-	
_	-			[-	
_	-						_	
_	- I			1	1		7	

		BORING # GF-3
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/13/98	Drilling Co.:	Job #:
Total Depth 22'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	inter.	(feet)	(ppm)		Change	(time)
	1030		0-4	3'	0	Brown-tan SILTY SAND, moist, loose · _	1	
_							1	
-	-					` _]	
2 -	-				_			ĺ
						-	1	
-	-					-	1	1
_	-]	
4	-						1	1
	1032		4-8'	4'	0	Same as above -	1	
_	-					-	1	
-	-]	
6 -	-		_]	
	_					· -		ĺ
_	4					-	1	
-	-]]	
8 -	-							
	1036		8-12	2'	0	Brown medcoarse SAND, little	-	Soil sample
_	-		!			gravel, loose, wet at 10 ft	1	collected 9-11'
-	:							
10 -	┪ ・ ╽]	1100:
_		· ·				-	-	Collect water
_			ļ			}	1	sample from
-	-							10-14'
12	1						_	pH=6.48
						-	-	Temp=20 C
_	_		1				1	Cond= 370 umhos
-	-]	
14	- 1		l _]	
_	1042		14-16	2.	0	Gray coarse SAND and GRAVEL,	1	ļ
-	4					loose, wel, appears discolored	1	
-	-]	ì
16	1					_	Ⅎ	
]]					_	1	
_	-						1	1
-	⊣						1	1
18 _						_	-	
	-					_	1]
-	-]	1
-	-							
20	1						1	1
-	1050		20-22	6"	0	Tan coarse SAND and GRAVEL, loose	1	
-	-					wet, iron staining on quartz gravel	1	{
-	┥					_	4	1
22	1					[0]	-	ļ
	4 7					Geoprobe completed at 22'.	1	
-	-]	
-	⊣ ∣						1	
	_		I .	I .	1	T. Control of the Con	1	1

	BURING # UT -U
	Page 1 of 1
Location Village of Lindenhurst	Permit #:
Drilling Co.:	Job #:
Method Used: Geoprobe	
Organic Vapor Inst: PID	Water elv:
	Drilling Co.: Method Used: Geoprobe

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata Change	Remarks (time)
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)	Brown SILTY SAND, hard, moist _	Change	(une)
-	0805		0-4	١		Brown Siet i SAND, hard, moist]	
-	1					· _]	
2 -]	•	1	}		_	1	ļ
۷	 							l
	1					_		
_]					-	1	ĺ
4 -	-					-	1	
· -	0810		4-8'	4'		Brown medcoarse SAND little gravel _]	
_]					loose, maist -		1
-				· ·		_		1
6 -	-							}
_								
-	-					_		
_	j l					· -		ĺ
8			0.12	4'		Brown-tan medcoarse SAND, loose	1	Soil sample
_	0818		8-12	4		wet at 10 ft.]	collected 8-10
_] .: [and duplicate
10 -						_	İ	
· · ·	-					1 -	1	Collect water
_]					_	ł	sample from
_	-							10-14'
12 -	-						1	pH=6.48
						_		Temp≃18 C
_	.					-	†	Cond= 450 umhes
-	1							
14	j					SAND and CRAVEL force		
_	0830		14-16	6*		Tan coarse SAND and GRAVEL, loose	1	
-	1		'			wet]	
16]					_	1	
10	 				-			
]					_	ł	
_						_	1	
18	-						1	
_	1					_	┪	
_	√ ′						1	
_	1]	
20	1		00.00	<u></u>		Samo as above	-	Collected soil
_	0840		20-22	6"		Same as above —]	sample from
-	j					_	1	20-22
22 -]					_	{	
	 					Geoprobe completed at 22'.	1	
]					_	-	
_	1 1						1	
	4					_	1	

,	<i>'</i>	BORING # GP-7
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/13/98	Drilling Co.:	Job #:
Total Depth 47 ft.	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Samp			Adv/Rec		Sample Description	Strata	Remarks
(feet)	No.		Inter.	(feet)	(ppm)	Cu TV CAND hard maint	Change	(time)
	141	5	0-4	3,	0.0-2.4	Brown SILTY SAND, hard, moist	1]
						,]]	
•	┥	ľ				-	1	
2 _	<u> </u>		<u> </u>	<u> </u>		-	-	}
	-}		1				1	1
	┥]	
	コ					-	-	1
4 _	142	1	4-8	3'	0.0-1.6	Brown med. SAND, loose, maist	1	
	142	,			•.•	-	4	
•						-	1	
6	-						1	
						-	4	1
	_					-	1	
	-		ļ			1	1	
8 _							4	Soil sample
	142	5	8-12	3,	8-9':1.6	Brown-tan medium SAND, little gravel	1	taken 9'-12'
	- :					loose, wet, PCE odor at 10'-12'	1	and MS/MSD
	╛					-	-	Brig memer
10 _]				9-12':240.0		_	}
	1				9-12,240.0	- - -		
•	-					-	4	·
12	7					-	1	ļ
12	+				 	<u> </u>]	1
	_	ļ				_	-	
	\Box					-	-	
14	-						1]
_	143	5	14-16	2'	>1200.0	Brown-tan medcoarse SAND and	1	Soil sample
	4					GRAVEL, loose, wet, strong PCE -	-	taken 14-16'
						odor]	ļ
16 _	1		ļ				-	1
	4					-	1	
	\dashv]	
40						-	-	
18 _			 			-		ĺ
	┪	l				-	_	ļ
	コ					-	+	
20	-					_		Į.
	144	5	20-22	2'	12.4	Same as above except no PCE odor	-	
	_					-	1	
	\dashv]	\
22 _							4	į
	\dashv						1	
	-]	
	ゴ					-	4	1
24	1	1	1	1	1	T. Control of the Con	1	1

environmental engineers, scientists, planners & management consultants

LOG OF BORING

Project Active Industrial

Location Village of Lindenhurst

BORING #	GP-7
Page 2 of	2
Dormit #	

Depth		Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks
(feet)		No.	140 lbs.	Inter.	(feet)	(ppm)	Brown-tan medcoarse SAND and		Change	(time) Soil sample
	\dashv			24-26'	2'	187.0	GRAVEL, loose, wet, strong PCE	I		taken 24-26'
						٠	odor, heavy brown black oil(?)	\neg		
26	\exists						substance 25'-26'	⊢		
-	Ⅎ						1			
								\dashv		
	\dashv							⊣		
28			_							
	\dashv							٠٦		
								႕		
30	4							-		
-				30-32'	2,	56.0	Same as above except DNAPL			
		1					ganglia???	-		
	\dashv							7		
32	コ							\dashv		
	\dashv	1			1		·			
								-		
34	\dashv	.								
-	급						,	-		
	-							-		
	\dashv							\exists		
36				00.00	2.	32.0	 Same as above except less DNAPL			
	-			36-38'	2	32.0	Same as above except less bin in a			
								\dashv		
38	4									
-								\dashv		
	_									
							·	\exists		
40 _	\exists		_					크		
	٦							_		
								-		
42	-							コ		
-	\exists							-		
	_							コ		
4.4								4		
44 _	_							⊐		Soil sample
				45-47'	2'	36.0	Tan medfine SANDS with heavy	\dashv		taken 45-47'
	-						DNAPL ganglia staining			
46								\dashv		
-	\exists							_		
	\exists						Geoprobe completed at 47'			
48							Geophobe completed at 47	\dashv		

		BORING # GP-8
LOG OF BORING		Page 1 of 2
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/14/98	Drilling Co.:	Job #:
Total Depth 28 ft.	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth (feet)	Sample No.	Blows/6" 140 lbs.	Sample Inter.	Adv/Rec (feet)	Org. Vap (ppm)	Sample Description	Strata Change	Remarks (time)
- - - 2	0915	110.00	0-4	4'	0.0	Brown SILTY SAND, hard, moist	Sherige	(uine)
4	0920		4-8	4'	0.0	Brown medcoarse SAND, hard,		
6	0320		70	•		moist		
8	0930		8-12	3'	0.0-0.1	Tan-brown medcoarse SANND, loose _		
10						wet :		
12			·					1052: Collect wate sample from
4	0938		14-16	6"		Black stained soil, heavy petroleum odor, medcoarse SAND and GRAVEL loose		12-16' pH=6.42 Temp=19 C Cond= 320 umh
e	0950		16-18	2'	2.4	Black very coarse SAND and GRAVEL loose, wet, very strong petroleum odor		Soil sample collected froi 16-18' with
8 -								TPH analysis
2	1010		20-22	4"		Tan-brown veryt coarse SAND and GRAVEL, loose, wet, slight petroleum odor		
4								

environmental engineers, scientists, planners & management consultants

LOG OF BORING

Project Active Industrial

Location Village of Lindenhurst

BORING # GP-8
Page 2 of 2
Permit #:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata Change	Remarks (time)
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(dire)
_	!							
	1					-	-{	l e
26 -	{ ·						1	
	1040		26'-28'	2.	0	Tan medcoarse SAND little	-	Soil sample
						gravel, loose, wet -	1	taken from
_	ł					-]	26-28'.
28	└ ──					Geoprobe completed at 28'	1	
	1					Geoprobe completed at 20		1
	1			,	•	-	4	
						-	1	
	-]	
_] [-	1	}
	}]	1	
_						·	4	ĺ .
						-	1	
_	1]]	
_						-	+	Ì
_			<u> </u>		<u> </u>		1	}
_	1					` -	4	
_]	-				-	1	ì
_	1						1	1
						-	1	
_						-	1	}
_	1]	
						_	-	
_	{	•]	Ì
_	1					<u> </u>		
_							1	ĺ
	t ——I		-				1	{
_	.					<u>-</u>	1	Į.
_]					-	4	Į.
							_	
-	1 }				•	_	1]
_]] 	-	1	{
-							1	l
						-	-	
	4					_	_	1
_	<u> </u>					_	4	
]			<u> </u>		-	_	
_	1	Į.					1	İ
	1					- -	-	
_	4					-	1	

pidimero di menegemente estrette		BORING # GP-9
LOG OF BORING		Page 1 of 2
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/14/98	Drilling Co.:	Job #:
Total Depth 32 ft.	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth		Sample	Biows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks
(feet)		No.	140 lbs.	inter.	(feet)	(ppm)			Change	(time)
	_	1300		0-4		0.0	Void space	-		
	\dashv						;			
	7							4		
2 _	4	·						\dashv	•	
	\dashv							٦		
	\dashv							⊒		
,	コ							-		
4 -		1330		4-8		0.0	Void space			
	٦	1330		7-0		0.5	,	_		
								_		
6	4							-		
	\dashv					_				
								-		
	\exists							-		
8	\dashv							ヿ		
-	┱	1338		8-12	2,	10-11': 140	Black stained coarse SAND and	\dashv		Soil sample
			1			11-12': 331	GRAVEL, loose, wet	ᅥ		collected from
	4						Heavy PCE/ Petroleum odor	∃		11'-12'
10	\dashv		,					\Box		
-								႕		
	긕							⊣		
	4									1440:
12										Collect water
	4							\dashv		sample from
}	\dashv									12-16'
	\dashv					•		_		pH=6.48
14 _	ユ			4446			Same as above			Temp=19.4 C
	\dashv	1340		14-16	2'	68	Same as above			Cond= 270 umhos
	\dashv			·				\exists		
1								-4		
16 _	-+									
	7	ļ								
								-		
18	-									
'5 -	_		-					\exists		
								-		
	4							⊣		
20	\dashv				L			\dashv		
-	ゴ	1355		20-22	0,	0.0	No rec ove ry	ᅥ		
	_							⊣		
	\dashv							\Box		
22						<u> </u>	or have a mind SAND have			Collected soil
	\dashv			22-24	0.5'	0.8	Black coarse grained SAND, loose,	-		sample from
	\dashv						wet	コ		22'-24'
_								_		
24							<u> </u>			<u> </u>

environmental engineers, scientists, planners & management consultants

LOG OF BORING

Project Active Industrial

Location Village of Lindenhurst

BORING # GP-9
Page 2 of 2
Permit #:

Depth (feet)	Sample No.	Blows/6" 140 lbs.	Sample Inter.	Adv/Rec (feet)	Org. Vap (ppm)	Sample Description	Strata Change	Remarks (time)
26						:		
28			-,			- - - -		
30	1420		30-32	2'	0.0	Tan medium to coarse SAND, little		Soil sample
32				_	_	gravel, loose, wet		taken from 30-32'
- -						- - - -		
- - -						- - - -		
- - -						- - - -		
- - -	-							
						- - - -		
- - - -						 		
- - -								
- -								

				BUNING # U	F-10
LOG OF BOR	RING			Page 1 of 1	
Project Ad	ctive Industrial	Location	Village of Lindenhurst	Permit #:	
Date Drilled 7/	14/98	Drilling Co.:		Job #:	
Total Depth 22	! ft.	Method Used:	Geoprobe		
Inspector To	m Fox	Organic Organic	Vapor Inst: PID	Water elv:	

Depth	Sample	Blows/6"	Sample	Adv/Rec		Sample Description	Strata	Remarks
(feet)	No. 1455	140 lbs.	Inter. 0-4	(feet)	(ppm) ⁻	Brown SILTY SAND, dry, loose	Change	(time)
2 -	1433		0-4	4	0.0	SIOWII SIETT SAINU, dry, loose		
4	1500		4-8	4' '	0.0	Same as above		
6						_	- - - - -	
8	1505		8-12	4'		8-10': Brown SILTY SAND 10-12': Black very smelly PCE/Petro odor, sludge like mixed with sand,		Took soil sample from 10-12' and
10						wet at 10 ft.		MS/MSD 1530: Collect water
12						-		sample from 12-16* pH=6.42 Temp=21.8 C
14	1510		14-16	1'	100.0	SAA		Cond= 180 umhos sheen noted
18						_		
20	1520		20.22	2,	5.0	Top goarra SAND and CRAVE		Took soil
22	1520		20-22	2'		Tan coarse SAND and GRAVEL, slight petroleum odor		sample from 20-22'
						Geoprobe completed at 22 ft.		

planners a management conservation	·	BORING # GP-11
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/15/98	Drilling Co.:	Job #:
Total Depth 24'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Samp	le Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks (time)
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)			Change	(time)
0						No samples taken 0' - 12'.			
	_								
	_						• -		
12	-	l					7		
'	1045	;	12-16			No soil samples collected.	\neg		Collect water
	7 1075	'	'- '0			·			sample from
	7						긕		12-16'
١]						-		pH=6.43
14 _				_		· ·			Temp=17 C
	\dashv						٦		Cand±390 umhas
	┥								C011C-330 01111-03
	-								
16	7								
_							-		
	_						-		
	4						-		
18	4	Į.							
'' -	-		-					•	
	┫						_		
	┦ ∴					•	_		
] :		J				-		
20 _							-		Collect water
	1115	i	20-24						sample from
	-								20-24'
	\dashv								pH=6.21
22	7								
									Temp≃17 C
	╛								Cond=280 umhos
	4						⊣		Blind duplicate
24							_		collected
	-	<u> </u>				Geoprobe completed at 24 ft.			
						-	· –		
]						\dashv		
26	_				l				
20 -		+	-			1			
	7]				
	\neg						4		
	コ						ᅴ		
_				L		-	-		
							٦		
	\dashv						Ī		
	⊣								
_				ļ		1	-		
							-		
	\dashv						-		
	\dashv								
	\dashv]	\Box		
_	\exists						ᆛ		
	_	1					-		
	4						-		
	\dashv	1			1		\neg		1

planners a management serverne		BORING # GP-12
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/15/98	Drilling Co.:	Job #:
Total Depth 30'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample		Sample	Adv/Rec		Sample Description .	Strata	Remarks
(feet)	No.	140 lbs.	inter.	(feet)	(ppm)		Change	(time)_
0 _				·	3	No sample collected 0' - 16'.	4	
-	-			}				
-	1			,]	
16 _						 Water sample collected. No soil	4	Collect water
-	1305		16-20	i . 1		samples collected.	7	sample from
-	-{			{		samples collected.]	16-20'
	1					· -	-{	pH=5.88
18 _	ļ				 -	-	1	Temp=17 C
-	-]	Cond=190 umhos
_	j			}		-	4	MS/MSD
20 -	-)		-	-	1
	 					1	3	ł
_]			[-	j
_	4			}		-	-	
22 ~	4]	Ì
	1:					-	-	l
_	4 !					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1
-	1 1			}]	
24	<u> </u>					<u> </u>	-{	(
-	1					-		
, -	-					<u> </u>]]
-	<u> </u>			1		}	4	ļ
26			26-30				1	Collect water
-	1 .		20-30			<u> </u>		sample from
_	<u> </u>			[· -	-	26-30'
28 -	4			}		-	-	pH=6.24
	 					· -]	Temp=18 C
_]			<u> </u>		-	-	Cond=300 umbos
-	- '					_		}
30 -	1 _ [_	J
	1340					Geoprobe completed at 30 ft.	1	
-	-					<u>-</u>	1	
]]		-	4	}
32 _	 - -			<u> </u>		_	_]
-	-(]	1	
_]					-	4	[
-	-					-		}
		<u> </u>				-	1)
-	4		 			-	-	
-	-			}]	[
							4	
				[-	1	
-	-{ i					-	1	
-	1			J		_	4	ĺ

planners a menagement concern		BORING # GP-12
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/15/98	Drilling Co.:	Job #:
Total Depth 30'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
						No sample collected 0' - 16'.	-	
	_						-	
	4					'	7	
16	-							
-	1305		16-20			No soil samples collected.	4	Collect water
		ļ						sample from
	_					•	-	16-20'
18	4						1	pH≖5.88
'` -							_	Temp=17 C
	7						4	Cond=190 umhas
]						4	MS/MSD
20	4						╡	
20 -	-				<u> </u>	-		
	7						_	
	コ						-	1
							-	
22 _						-		
	,	1]	
						`.	_	
						, ·	_	
24 _						ļ	╡	i
	4						7	
	-]	
	7						4	
26 _						-	-	Collect water
	4		26-30				7	sample from
	4							26-30'
	\dashv							pH=6.24
28 _	<u></u>					-		Temp=18 C
_	4						┥	Cond=300 umhos
	4						_	Cana-300 drings
	4							
30	7						4	
_	1340					Geoprobe completed at 30 ft.	-	
	4							
	-]	
32	-					_	4	
_							-	
	4						1	
	-							
	7					_	4	
_							-	
	_							
	4							
	-					_	4	
-			_				-	
	_						1	
	-							
	_							

planners a management consone		BORING # GP-13
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/15/98	Drilling Co.:	Job #:
Total Depth 30'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sampl	e Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata Change	Remarks (time)
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)	No samples collected 0' -16'.	Change	(time)
0	-	1.	}		ł	No samples collected o -10.	1	ĺ
	-	1		ļ		:]]	ì
	7					-	4)
16 _	ユ				 	No soil samples collected.	-	Collect water
	1415		16-20			INO SOIL Samples Conected.	7	sample from
	4	1			(}]	16-20'
	7					· -	4	pH=6.48
18 _						-	1	Temp=18 C
	-		[İ	-	1	Cond=250 umho
	-	1	<u> </u>		ļ			Cano-230 unino
	-					_	1	ł
20	-	Ĺ			<u></u>	{ 	-}	l
	7	}	ļ	,	ļ	-	1	ĺ
	4	1				-	1	Į.
	-1	Ì		}]]	
22	7	1	L				-{	i
_						-	1)
	-	i) 	}	-	·	4	\
	-} ·	1]			\]	ł
24	-				L		1	1
_						-	4	
	_	}				-	1	1
	4				1	}	1	
26	-{	1]	.
	1450	 	26-30			-	4	Collect water
]	1		1	ì	-	-{	sample from
	4	1	}			-	1	26-30'
28							1	pH=6.21
		 				-	4	Temp=18 C
]	1	}]	` -	-{	Cond=350 umho
	4	1			ļ	[1	}
30	\dashv	1	ľ		1]	!
_						Geoprobe completed ate 30' b.g.	-	[
		1				-	1	1
	4	(1		1	-	1	1
32		1	1				1	ſ
_		 				-	4	}
	4	Ĭ	1	}	}	-	1	1
	-	}]]			1	(
	H						1	1
_						-	4	1
	4]			-	1	l
	4		1			-]	J
	-	}	1					1
_	1					-	-	}
	_				ľ	-	†	}
	-	})	-]	
	\dashv		1				1	

planners a menegement consens		BORING # GP-14
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/16/98	Drilling Co.:	Job #:
Total Depth 40'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample		Sample	Adv/Rec	Org. Vap	Sample Description		Strata Change	Remarks (time)
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)	No samples collected 0' -12'.		Change	(une)
0 .	┥ .				Ì	ING Samples Collected 0 -12.	. 7		t
•	-				,				
	J '						_]
12 _			40.46			No soil samples collected.	\dashv		Collect water
-	1015		12-16			140 Sull Samples collected.	٦		sample from
-	┥ '								12-16'
	<u> </u>						4	•	pH=6.45
16 _						1			Temp=18 C
	-			l					Cond=150 umho
-	-								00110=750 011111
							-		\
20 _									1
-									
-	┥ !						\Box]
	_								1
24 _	1011			ļ					Collect water
-	1041								sample from
-	┥ .;					` `	4		24'-30'
]			<u> </u>	1	,	\dashv		pH=6.85
28 _		_							Temp=15 C
•				ļ					Cond=300 umh
•	_						\dashv		
]						\dashv		İ
32 _									
•	-								ļ
-	1						4		
						•	\dashv		ļ
36 _	1138					·			Collect water
	1 1130								sample from
							႕		36'-40'
40	_				ĺ		⊢	İ	рH=6.85
- -	+			- 		Completed geoprobe at 40 ft.			Temp=16 C
•	7					, , ,			Cond=340 umh
				Ì			-		ĺ
-	_								l
_	+			 		1	\neg		
•				1			-4		
	4	'					-		
	-]
-							\dashv		
	_						\dashv		
] ,					\dashv		
•	-		_	_			\Box		
							ᅴ		
	٠ ا			(-		1
							_		
	4				1		\neg		I

planners a management consuman		BORING # GP-15
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/16/98	Drilling Co.:	Job #:
Total Depth 40'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec		Sample Description		Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)			Change	(time)
0				[ĺ	No samples collected 0' -12'.	. +		j
	4				ļ		• -		Ì
_	-						` ¬		ł
12	-			}	ł	}	二		
	1305		12-16			No soil samples collected.			Collect water
_	ا ```` ا			ĺ			-		sample from
_]]		ᅱ		12-16'
16	.			ì	1		긕		pH=5.87
10	 					,	-		Temp=16 C
-	1 1				}		7		Cond=150 umbos
-	-			{	ĺ		J		
-	1				ļ		_		
20 _				<u></u>)
_	1 1		l	}	}		⊣		
_	. J						ᅥ		ł
-	-					}	ᅥ		
24 -	-								
	1330		24-30'				\neg		Collect water
_				}	}		႕		sample from
_] . [·			\dashv		24'-30'
20 -] '		'	·			-		pH=6.80
28	 -								Temp=14 C
-	-		ı				7		Cond=320 umhes
-	-} ∣	·		}					00172-020 011110
-	- 1			'			4		}
32	<u>_</u>								
_							ᅱ		ĺ
_	. 1					1	-		}
_	-		l ,				⊣		
36	-	ľ							}
	1410		36-40'				. 4		Collect water
_]						·		sample from
_]						\dashv		36'-40'
40	- ∤	· .		,			ᅥ		pH=6.88
	 					Completed geoprobe at 40 ft.			Temp=15 C
-	┪ ┆		1]			_		Cond=340 umhos
-]						_		ĺ
_]								}
		-					\dashv		l
-	-						⊣		}
-	-{ i)
-	1 1						\exists		{
_	1	,							J
					}		-		ì
_	4						ᅱ		{
-	-	<u>'</u>	l		}				
-	-								(
_							-		}
_]								1
_	<u> </u>						\dashv		1
_					1		-]

planifiers a management consolur		BORING # GP-16
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/15/98	Drilling Co.:	Job #:
Total Depth 22'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth (feet)	Sample No.	Blows/6* 140 lbs.	Sample Inter.	Adv/Rec (feet)	Org. Vap (ppm)	Sample Description	Strata Change	Remarks (time)
(IEEL)	0808	140 103.	0-4	(1.55.)	0.0	Brown silty SAND, hard, dry		_
_]					· -	-	İ
_	4					· -	1	
2 -	-]	
						-	┪	
_						-	1	1
-	1					_]	
4	1						-	İ
_	0812		4-8		0.0	Brown-tan med, SAND, loose, moist	1	
_	-					_	1	
	1					~	4	
6 _	<u> </u>	_				-	1	
-	1			•]	
-	1					-	-	İ
8 -]					-	1	
° –	0815		8-12		0.0	Brown-tan med. SAND -	1	Soil sample
-] 00,3		0				4	taken 8'-11'
_]				J	<u> </u>	-	Blind duplicate
10 -	4 .						1	taken.
						-	-	İ
_						-	1	
-	-							
12 -	1						-	Collect water
_					,	-	1	sample from
-	-					_	1	12-16'
_	1 .					_]	pH=6.43
14 _					0.0	Tan coarse grained SAND w/	╡	Temp=19.8 C
-	0820		14-16		0.0	gravel, loose, wet]	Cond=350 umhas
_	1					- -	4	
46 -]					-	-	
16	-						1	
_	1 !					-	4	
_]					-	1	
18 -	-							
_						-	1	
_	4						_	
-	-					_]	
20				ļ		_	4	i
_	0830		20-22		0.0	-]	{
_	-]]	
-]					-	4	
22 _	_			<u> </u>		Geoprobe completed at 22'.		1
-	┥ !					Geograpie dompieios de 22.	_	
_] !					-	-	1
_	_					-	†	

planners a monegement assess		BORING # GP-17
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 7/15/98	Drilling Co.:	Job #:
Total Depth 22'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth (feet)	Sample No.	Blows/6" 140 lbs.	Sample Inter.	Adv/Rec (feet)	Org. Vap (ppm)			Strata Change	Remarks (time)
(,,,,	0905		0-4	2'	0.0	Brown silty SAND, hard, slightly mois	t —		
-	┨					,			
2 -]						ᅴ		
\							\exists		
. –	-						\exists		
	<u> </u>						⊣.		
-	0910		4-8	2'	0.0	Brown medcr. SAND, loose, moist	コ		
_]					wet at approx. 10' b.g.	-		
]						7		
6	-				 _		크		
_							\dashv		
-	-						7		
8	0915		8-12	2.	0.0	Tan med-cr. SAND w/ gravel, loose	크		Soil sample
-	1		0-12	_	0.0	wet	4		taken 8'-11'
_							⇉		
10 _							\dashv		
-	1						\exists		
-		·			ı		\exists		
12							\dashv		Collect water
]						コ		sample from
_]						-		12-16'
14 _									pH=6,43 Temp=19 C
-	0924		14-16	6"	0.0	Tan medcr. grained SAND w/ gravel, loose, wet	コ		Cond=340 umhos
-	1 1	I				graver, 10050, West	4		
16 -	- [_				}			i.
	-								
_	1						7		
18 -	-						\exists		
_							\dashv		
-	<u> </u>						\exists		ı
20					_				
	0932		20-22	-	0.0		4		
-	- I								
22 -]								
	1					Geoprobe completed at 22'.			
-							\exists		
	1						-		

p.d.moio di management accidente	•	BORING # GP-18
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/7/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 20' below 4' void	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

inspecto	r Tom Fox	· <u> </u>		- Organio	: Vapor Inst:	PID	_ vvater eiv:	
Depth	Sample		Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
-	1428		0-4	4	10.0	moist brown SILTY SAND w/ asphalt derived FILL, loose		4' void space in dry well so 0-4' interv
2 -		·			 		_	is actually 4-6 below grade
-	<u> </u>						=	
4 _	1							
-	1430		4-8	3	4-5': 10.0		. 🕂	VOA ===d
-	1				5-8': 350.0	5-8':moist to wet black heavily stained soils, very strong PCE/petro odor,		VOA and VOA-TCLP
6				ļ <u> </u>		wet at 7'		taken from th
-	-							5-8' interval
-] [1			7	
8 -	-							
-	1435		8-12	3	8-11':	8-11': SAA, wet	4	
-	-			ĺ	420.0	11-12': wet gray stained VERY CR. SAND and GRAVEL, loose		
10]				11-12': 145	SAND and GRAVEL, 1005e	4	
'' -				 	1		7	
-	4						4	
-	1]							
12							\rightarrow	
-	1]	
_	-)			4	
14 _					<u>_</u>			
-	-						\dashv	
-	1 1						3	
16	-						-	
_							7	
-	4						-	
18]						\exists	
'' _	1445		18-20	18"	18.0	SAA	コ	
_	4						4	
-	-							
20 _						End of goodsho horing		
-						End of geoprobe boring.		
-	7						-	
_	<u>-</u>							
	\exists						\dashv	
-	<u> </u>		1		}			ļ
_]							
	1 1		1	1	1		1	

		BORING # GP-19
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 12'	Method Used: Geoprobe	
Inspector T. Fox	Organic Vapor Inst: PID	Water elv:

<u> </u>	10		Dia ICII I	Comple	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks
Depth (feet)		mple No.	Blows/6" 140 lbs.	Sample Inter.	(feet)	(ppm)	затре респрион		Change	(time)
(leet)	1:	330	140 105.	0-4	3	0-2': 182.0	0-2': Moist black heavy stained soil	寸	onange	TCL VOA (0-2)
] ``			•	-		strong PCE/petroleum odor, loose	4		7ft. void
	7					2-4': 78.0	2-4': Tan-gray medium-coarse SAND	4		so 0-4' interval
2	\dashv	ĺ					loose, wet @ 3-4 ft.	\dashv		is actually
								\Box		7-11 ft. below
	4							-		grade
	\dashv							\dashv		
4	┥	J						コ		ı
_	1;	340		4-8	4		Wet tan-white medium coarse SAND,	-		
	4	l				6-8':42.0	loose, increase in gravel at 6-8 ft.	\dashv		
	\dashv							J		
6 _	1_							_		
	4							\dashv		
	\dashv					1				
	_							\Box		
8 _								\dashv		
	7							٦		
	ゴ							\exists		
10	7					1		\dashv		
'' -	1/	400		10-12	18 inches	1.6	wet very coarse SAND and GRAVEL,	\exists		
	٦ '	100		10 12	10		loose			
	7							4		
12	ᅱ							\dashv		
-	╅	$\neg +$					End of geoprobe boring			
	_							4		
	\dashv							\dashv		
	-									•
_	7							4		
	4							\dashv		•
	٦							\exists		
_										
	\dashv	1						7		
	_									
	7							-		
-	_							\exists		
								4		
ĺ	-					}		4		
	\exists			<u> </u>						
_								4		
	\dashv							\dashv		
	\dashv									
_	1							\dashv		
	-							-		
	\exists	l						1		
	4							4		
	- 1				1	I		- 1		

, , , , , , , , , , , , , , , , , , ,		BORING # GP-20
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 12'	Method Used: Geoprobe	
Inspector T. Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
_	1115		0-4	3	0-2': 440.0	Moist gray stained medium SAND, little		Top of drywell
_						gravel, loose		is 2' below gr.
_	_				2-4': 180.0	· -		then 6 ft. void
2 -								from drywell,
						_		so 0-4' interval
	4							is actually
	-					_		8-12 ft. b.g.
4 -	1							_
_	1130		4-8	3	4-6': 120.0	4-6':SAA		VOA soil
-	4			,	6-8':10.0	-		sample taken
_	1					_		of 0-2' interval
6 -	1							
						6-8'; Wet tan very cr. SAND and		
_						6-8": Wet tan very cr. SAND and GRAVEL, loose 		
_	1					-		
8 -	1							
_								
						_		
_						-		
10 -	-					_		
	1140		10-12	0		No recovery		
_]			-		· -		
_]							
12 -	4							
'` —	 		_			End of geoprobe boring		
_	1							
_]					_		
_	1 1					- -		
	-							
_	1							
-]					_		
-	4					_		
_								
_	1							
]					_		
_	1					_		
	-							
_	1							
_]					_		
_	-							
_	 							
_	1 !							
_]							
_	4							
_								
_	1 .							
_								
_						-		
	1	1	I	İ	1		1	1

planting a management remains		BORING # GP-21
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 22'	Method Used: Geoprobe	
Inspector T. Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)			Change	(time)
	0815		0-4	1.5	7.0	dry brown SILTY SAND, with gravel	\exists		Drill through the
_	4					loose	-		top of the dry-
-	-						` ⊢		well then a 2'
2 _							\Box		void, so 0-4'
							-		interval is really
-	-						ㅓ		2-6' below gr.
-	1								
4 _							_		
-	0820		4-8	2 .	8.0	SAA			
-	┤								
]						\exists		1
6 _						-			l l
-	┥					@ 7-8' moist black stained SAND,			
-]					heavy PCE/petroleum odor	コ		1
8 -]					Compension	\dashv		
° -	0825	_	8-12	3.5	10-12':	Black stained SAND and GRAVEL,	크		VOA soil
_] ****			1.0	200.0	loose, heavy PCE/petro odor,			sample taken
_] .					, , , , , , , , , , , , , , , , , , , ,	-		10-11' interval
10 -	4 .						-		
						1	\neg		
_]								
-	4						_		
12 -	-					wet @ 12 ft.			
	0830		12-16	4	160.0	Same as above]
_	_						_		
-	-								
14 -	-								*
-							\dashv		
-	-					·	-		
-	-								
16 _							_		
-	-			 			-		
-	┥								
1]								
18 _						-			
-	┥								
-]						\exists		
20 -	-						\dashv		
" -	0850		20-22	1	1.8	Wet tan coarse SAND and GRAVEL,	\exists		
]					loose	ᆛ		
-	-						႕		
22 -	-								
_						End of geoprobe boring			
_	4						-		
-	-						-		
_	⊣		I	1					

		BORING # GP-22
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 25'	Method Used: Geoprobe	
Inspector T. Fox	Organic Vapor Inst: PID	Water elv:

Depth (feet)	Sample No.	Blows/6" 140 lbs.	Sample Inter.	Adv/Rec (feet)	Org. Vap (ppm)	Sample Description	Strata Change	Remarks (time)
2 -	0920	140 103.	0-4	2	1,800.0	Moist black heavy stained soil, lint particles, heavy PCE odor Coarse SAND and GRAVEL		3 ft. void space after drilling through the pool concrete
4				-		- - -		cover, so 0-4' interval is 3-7' below grade
- - - 6	0925		4-8	3 .	1,866.0	Moist black stained coarse SAND and GRAVEL, loose, heavy PCE odor 		VOA soil sample taken from 0-4 ft. and full TCLP
8 — 8						- - - -		from 2-6 ft.
10	0935		8-12	4	1,100.0	SAA except wet @ 11 ft		
12						wet @ 11 ft		
14						- - - -		
16					,			
18						- - - -		
20						- - - -		
22 -						- - -		
¥ 25	0945		23-25	2 inches	28	Wet coarse SAND and GRAVEL, slight gray staining — Geoprobe boring ends at 25 ft.		

,		BORING # GP-23
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/7/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 20'	Method Used: Geoprobe	
Inspector Brian Murtagh	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
2	1100 		0-4	2	1.6	dry brown SILTY SAND, trace to little quartz gravel, loose, mod-poor sorting, no odor.		3 ft. void in dry well, therefore 0-4' interval is actually 3-7'
4								below grade
6	1105 		4-8	3	186.0	4-5': moist-wet gray brown black SILTY SAND, little-with very cr sand 5-8': wet black stained fine-v coarse SAND, poor sort, loose, strong PCE		Took VOA soil sample from 7'-8' interval
						odor, wet @ 7.5', slight sheen on soil		
-	1115		8-12	3	10-12': 80.0	8-10':SAA, 10-12': brown-gray fine coarse SAND, little very coarse sand, trace silt, loose, slight black staining noted on soil sample		Sheen noted on water in the sample tube
10 _						noted on son sample		1006
12 _								
14 _	-							
16 _	<u>-</u>							
18 _	1120 		18-20	0.25		wet medium to very coarse SAND and fine GRAVEL, trace fine sand and silt no staining noted, slight odor noted		
20 _						End of geoprobe boring.		
_	<u>-</u>					-	1	

		BORING # GP-24
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/7/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 20'	Method Used: Geoprobe	
Inspector Brian Murtagh	Organic Vapor Inst: PID	Water elv:

Depth	Sample		Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
	0955	J	0-4	3	0.0	dry brown SILTY SAND, trace to little _quartz gravel, loose, poor sorting,	1	Drill through top of dry well
						Ino odor.	1	then 3 ft. void
2						_	-	space, 0-4 ft.
				<u> </u>			1	interval is
				ļ		_		actually 3-7'
	_					-	-	below grade.
4			_				1	
-	1000		4-8	2.5		4-6': SAA, 6-6.5': black gray stained	†	Took VOA soil
•	_				6-8:192.0	SILTY CLAY, 6.5-8': black stained — fine-coarse SAND, trace gravel, strong —		sample from 6'-8' interval
6	4					PCE/petro odor		0-6 iineivai
								}
						sheen on water @ 7'		
-	-					-	1	
В _						<u> </u>	1	_
-	1010		8-12	3.5	100.0 to	8-11':wet black stained fine-coarse	{	Sheen noted
-	1 .				140.0	SAND, strong PCE/petro odor, loose 11-12':wet black stained med-very cr	1	on water in the sample
10] !					SAND, little-trace gravel, strong odors		tube
10	+							lase
_]]	
-	-					_	-	
12	-						1	
_	-					_		
-	-					<u> </u>	1	
14]							
14	+				_			
-]					_		
_	4]							
16	-							
-	-					-		
10 -]					_		
18 _	1015		18-20	0.75	0.0	wet tan-brown fine to very		
-] '''		10-40	0.75		coarse SAND, little fine gravel, no		
-	-					staining, no odor		
20	┤ 							
_	\Box			_		End of geoprobe boring		
-	┥ , │]		-		
-] [
_	++			_				
_]							
_	-					-	ļ	
-		(J					

		BORING # GP-25
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/7/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 20' bg	Method Used: Geoprobe	
Inspector Brian Murtagh	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
2	0851		0-4	3	0-2': 2.5 2-4': 4.5	0-0.5': Asphalt, 0.5-4': brown-tan-brwnmedium SAND, trace silt, trace gravel,loose, moist, moderate poor sorting		
-	-							
4	0855		4-8	3.5	2.0	orange-brown fine-med SAND, trace silt, moderate sorting, loose.		
6 <u>-</u> - -	-					@ 7.8' soil is moist-wet		
8	0900		8-12	4	8-9': 2.5 9-12': 11.0	8-9': SAA, 9-9.5': gray fine-cr SAND, moist to wet,		
10	<u> </u>	-			11.0	9.5-16":wet, black heavy — stained fine-med SAND, tr. gravel — PCE/petro odor, loose		
- - -	0905		12-16	2.5	12-14': 5.5 14-16':12.0			
14								
16		-						
18	0915		18-20	0.5	0.0	wet tan-light brown medium to very coarse SAND, trace fine gravel, trace silt.		ll.
20		-				End of geoprobe boring		

·		BORING # GP-26
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 16'	Method Used: Geoprobe	
Inspector T, Fox	Organic Vapor Inst: PID	Water elv:

Depth		Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)		No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
		1300		0-4	3	1.3	Moist brown SILTY SAND, little to no		
	_			ĺ			gravel, loose		
	-						· -		}
2	\Box								
	4						-		
	\dashv						_		
4 .	\dashv	1305		4-8	4	1.6	Moist tan-red medium SAND, little to		
	⊣	1303		4-0	7		no gravel, loose —		
ĺ	\exists								
6	\dashv						-		l
'									1
	_						· _]
	긕						-		
8	크								
	_	1310	_	8-12	3		8-10':moist tan medium SANDS, little		,
}	ᅱ		'				gravel, loose		
	J					11-12': 2.2	10-11': wet black stained SAND, slight		
10							PCE/petro odor, loose		
	٦						11-16': wet tan-white coarse SAND		
}							and GRAVEL, loose		
12	\exists					·	and Graves, 100se		
'^ ·	\dashv	1315		12-16	4	2 /			
i						i	SAA)		
	4						(3nn)		i
14	\dashv								
Ì	_								
Į.	\dashv	İ					-		
16	\Box		_						
ì	-						End of geoprobe boring.		
ļ	\dashv						Ξ		
	\exists						_		J
-	\dashv							ļ	
}							<u> </u>	ľ	
		ì					4		
	-						-		
-	\exists						コ		
	닉		.		1				1
	ᅱ						+		
.	コ								
	\dashv	7		ĺ			\dashv		
	\dashv	ļ					7		
	\exists								
1	- 1	- 1	- 1	- 1	1				

		BORING # GP-27
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 20'	Method Used: Geoprobe	
Inspector T. Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample		Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
_	1035		0-4	2	10.0	Dry brown SILTY SAND and GRAVEL, _		
-	-					loose		
	1					· <u>-</u>		
2 _								
_	-					-		
-	-					-		
	1							
4					. 71 00 0	A 70 A distant and a distant and a CAND		
-	1038		4-8	4	4-7: 80.0	4-7':Moist brown medium-coarse SAND, loose, PCE odor		
-	- ·				7-8:180.0	7-8':Moist black stained coarse SANDS		
	1					with gravel, loose, heavy PCE odor		
6 _	├ ──					with graver, loose, heavy FCL oddi		
-	1							
-	<u> </u>					_		
8 -]				<i>'</i>			
° –	1040		8-12	3	120.0	SAA, except wet @ 10 ft.		
-	1 1040		0-12		/20.0			
_	1 .							
10 -	∤ .					_		
	+							
_]							
_]							
12 -	-							
· -	1045		12-16	4	110	SAA		
_								
_	-					-		
14 -	1							
			-					
-						_		
-	1 1					_		
16	<u> </u>							
_	\vdash							
_	-							
	1							
18				2.5				
-	1130		18-20	0.5	2	Wet coarse SAND and GRAVEL,		
-	┪					loose, slight gray staining		
]							
20 _				· -		End of geoprobe boring.		
-	-					Little of geoprobe boiling.]]	
_]							
_]					-		
		_				<u> </u>		
_	1							
_]	1		[_		
_	4					_	1	

,		BORING # GP-28
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/7/98	Drilling Co.: Zebra Env.	Job #:
Total Depth 20' below grade	Method Used: Geoprobe	
Inspector Brian Murtagh	Organic Vapor Inst: PID	Water elv:

Depth	1	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Strata	Remarks
(feet)		No.	140 lbs.	Inter.	(feet)	(ppm)		Change	(time)
	ゴ	1205		0-4	3.5	3.0	1-3':Dry brown-gray SILTY SAND FILL _	-	
	4						poorly sort., loose -	4	
	\dashv					6.0	3-4': dry orange-brown SILT, little fine]	
2 _	二						sand, trace qtz gravel	1	
	-						-	1	
	\dashv						_		
4	\exists						· -	-	
4 -	-+	1210		4-8	3	4-6': 6.0	dry tan-orange-brown medv.cr. SAND _	_	
		1210		4-0	•		little qtz gravel, trace fn. Sand, poor _		
	7						sorting, loose	-	
6	\dashv						moist at 8' b.g.		
_					_			1	
	_						_	-	
	\dashv							1	
8 _	╛]	
	\exists	1215		8-12	4	8-9.5':	8-9.5: SAA, 9.5-12: black stained	-	
	\dashv	*				53.0	medcr. SAND, little v. cr. sand,	1	
	I					9.5-12':	wet @ approx. 10']	
10 _	_					118.0	Strong PCE / petroleum odor	1	
	\dashv						_]	
							_		
12	4						_	1	
'-	\dashv	1225		12-16	4	36.0-55.0	wet black stained medcr. SAND, little		
							fn. gravel, sheen visible on water	1	
	4						-	1	
14	-						strong PCE / petroleum odor	1	
_	4							-	
	-						-	-	
	\dashv							1	
·16 _								ļ	
	\dashv						_	1	
	\exists]	
18	\exists							1	
'° -	+	1240		18-20	2'	2.0-3.0	wet slight black stained to gray	1	
							crv.cr. SAND, little fnmed. sand,	4	
	-						little gravel, slight black staining but -	1	
20	-						no strong PCE/petro odor	1	
_	4						End of geoprobe boring.	1	
	4						-	-	
	\dashv						-	1	
_	4							4	
	\dashv						_]	
l	\exists]	
	_						_	-	

planners & management cons	one in the second	BORING # GP-29
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra	Job #:
Total Depth 50'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description	Ì	Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)	<u> </u>	-	Change	(time)
0 -	-						ᅥ		
Ι -	┥ !								
V]						\dashv		
26	1020		26-30	r		Collect water sample	-		
-	1020		20-30			from 26'-30'			
-						pH=6.38 Cond,=0.319 mS/cm DO=0.21 mg/l	\exists		
30	_					Temp=17 C Salinity= 0.01 Turb=>999 ntu	ᅥ		
_									
							4		
-]]						\dashv		
34	-						٦		
					_				
_	1000		36-40			Collect water sample	\dashv		
-	-					from 36'-40'	\dashv		
38	-					pH=6,13 Cond.=0.320 mS/cm DO=1 40 mg/l	\Box		
_						Temp=14.5 C Salinity= 0.01 Turb=>999 ntu	ᅥ		
-	-						ᅥ		
-	-					,	コ		
42 _		_							
-	-						ᅥ		
-	┥ ┃						ゴ		
	1								
46 _	10040		46.50			Collect water sample	ᅫ		
-	0940		46-50			from 46'-50'			
-	-					pH=6,47 Cond.=0,383 mS/cm DO=0,68mg/l	\exists		
50	_					Temp=14.1 C Salinity= 0.01 Turb=220 ntu	\dashv		
JU _						Geoprobe completed at 50 ft.	\exists		
-	۱ ۱								
]						닉		
	-								
_							4		
	4						\dashv		
-	-						\exists		
_									
-	-						\dashv		
-	┥						ゴ		
]						4		
_	-					•	ᅴ		
-	┥ !								
]						4		
	-						\dashv	ł	
_						•	コ		
							4		
-	-	1					-		
	⊣						-		

planners a management cone		BORING # GP-30
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra	Job #:
Total Depth 50'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		+	Change	(lime)
↓ :	- - -						=		
26	1245		26-30			Collect water sample	Ⅎ		
-	-					from 26'-30'	_	ĺ	
30						pH=6.45 Cond.=0.310 mS/cm DO=0.65 mg/l Temp=15.5 C Salinity= 0.01 Turb=>999 ntu]		
-							\exists	l	
34	_								
3 4 _	_				_	-	ゴ		
_	1215		36-40			Collect water sample	\dashv		
38]					from 36'-40' pH=6.41 Cond =0.300 mS/cm DO=0.00 mg/l	7		
³⁶						Temp=14.8 C Salinity= 0.01 Turb=685 ntu	コ		
-	-	'					+		
42]						\exists		
~~ <u> </u>						-	コ		
-	- [\exists	ļ	
46]						7		
~~ <u> </u>	1140		46-50			Collect water sample	7		
-	-					from 46'-50'	\exists		
50]					pH=6.27 Cond.=0.332 mS/cm DO=1.15 mg/l Temp=15.3 C Salinity= 0.01 Turb=75 ntu	4		
_						Geoprobe completed at 50 ft.	コ		
-	- !				ļ		\exists		
-							-		
-						_	7		
-	-						1		
-	7						\dashv		
_						-	7		
-	_						\exists		
-	-						\exists		
	1 1					_	\exists		
-	<u> </u>						7		
	-					_	\exists		
_	1						\dashv		
-	_						\exists	ļ	
_	4						4		

planners a management content.		BORING # GP-31
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/6/98	Drilling Co.: Zebra	Job #:
Total Depth 50'	Method Used: Geoprobe	
Inspector Tom Fox	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)			Change	(time)
0 -	┧						_		
<u> </u>	<u> </u>								
26]						-		
²⁰ –	1510		26-30			Collect water sample			
-] '3'0		20 00			from 26'-30'			
-]					pH=6.78 Cond.=1.22 mS/cm DO=0.42 mg/l	_		
30	-					Temp=15.9 C Salinity= 0.05 Turb= 714 ntu	-		
							П		
_	_						-		
_	-						_		
34 _	-						\Box		
-	-						-		
-	1450		36-40			Collect water sample	\dashv		
-]					from 36'-40'			
38 _						pH=6.81 Cond.=4.76 mS/cm DO=0.67 mg/l Temp=15.6 C Salinity= 0.24 Turb=816 ntu			
-	┪					Temp=15.6			
-	1 .								
42	_					`	_		
42 <u> </u>	+ -								
_							Ц		
_							_		
46 -	-						-		
_	1430		46-50			Collect water sample	\neg		
-	4					from 46'-50'	-		
-	-					pH=6.32 Cond.=38,7 mS/cm DO=0 64 mg/l	-		
50						Temp=16.2 C Salinity=2.46 Turb=250 ntu			
-						Geoprobe completed at 50 ft.	-		
-	-						-		
_]						П		
-	1			ĺ .					
_							_		
-	4								
_							\exists		
-	-						-		
-	- I						\neg		
-							\Box		
-	4						-		
-	-						-		
	_						\Box		
_									
-	┥						\neg		
-]								
_	⊣						႕		

F-6		BORING # GP-32
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/8/98	Drilling Co.: Zebra	Job #:
Total Depth 50'	Method Used: Geoprobe	
Inspector B. Murtagh	Organic Vapor Inst: PID	Water elv:

				<u> </u>				<u> </u>	
Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks (time)
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)			Change	(time)
0 -	1								
👃 🗓]								
26]								
20 —	1055		26-30			Collect water sample			
· -	7 1055		20-50			from 26'-30'			
]					pH=6.78 Cond.=.274 mS/cm DO=1.65 mg/l	4		
30 -	-					Temp=16.4 C Salinity= 0.01 Turb= 999 ntu	-		
" -			_			-			
_]						\perp		
-	-						\dashv		
34 -	-						\dashv		
_			_			·	\Box		
_	1020		36-40			Collect water sample	4		
-	-					from 36'-40'	\dashv		
38 -	1 l					pH=6.28 Cond.=.342 m\$/cm DO=2.91 mg/l	\exists		
-						Temp=16.2.C Salinity= 0.01 Turb=4 ntu	\neg		
-	4						-		
-	-						\neg		
42 _						· .	コ		
-	-						\dashv		
-	-						\dashv		
-	1								
46 _	1					-	_		
-	0950		46-50			Collect water sample	4		
-	1					from 46'-50'			
₋₀ -]					pH=5.99 Cond.=.441 mS/cm DO=1.38 mg/t Temp=16 C Salinity=0.01 Turb=35 ntu	4		
50 _						Geoprobe completed at 50 ft.	\dashv		
-	1					Geoprobe completed at 50 ft.	7	1	
_							\exists		
	4						\dashv		
_	-					-	\exists		
]						4		
_	4						\dashv		
-	-								
-						_			
-	↓						\dashv		
-	-						\dashv		
	1				ļ	_	_		
-							\dashv		
-	-						\dashv		
-									
_	-					-	\dashv		
-	┥						_		
-	<u> </u>						\exists	ļ	
_	4						+		

, - · · · · · · · · · · · · · · · · · ·		BORING # GP-33
LOG OF BORING		Page 1 of 1
Project Active Industrial	Location Village of Lindenhurst	Permit #:
Date Drilled 10/8/98	Drilling Co.: Zebra	Job #:
Total Depth 50'	Method Used: Geoprobe	
Inspector B. Murtagh	Organic Vapor Inst: PID	Water elv:

Depth	Sample	Blows/6"	Sample	Adv/Rec	Org. Vap	Sample Description		Strata	Remarks
(feet)	No.	140 lbs.	Inter.	(feet)	(ppm)		_	Change	(time)
i .	1								
. ↓ .]						. 🏻		
26	4								
_	1230		26-30			Collect water sample	\Box		
-	-					from 26'-30'	4		
-	-					pH≃6.49 Cond.≈1.28 mS/cm DO=0.96 mg/t	-		
30 _						Temp=15.1 C Salinity= 0.06 Turb= 429 ntu	_		
-	-						ᅱ		
-	-						╛		
34							7		
³⁴ –			_				\dashv		
-	1205		36-40			Collect water sample			
-] "-""					from 36'-40'	4		
38 -	┥ ┃					pH=6.37 Cond =5.14 mS/cm DO=0.37 mg/l	\dashv		
_						Temp=16.1 C Salinity= 0.30 Turb=425 ntu	ᄀ		
_	4 i						4		
-	1 .								
42	1				_		\exists		
-	1						⊢		
-						•			
46]						\dashv		
⁷⁰ –	1145		46-50			Collect water sample	ᆸ		
_] '''' [40 00			from 46'-50'			
_	-					pH=6.15 Cond.=40.9 mS/cm DO=0.80 mg/l	\dashv		
50 ~	1					Temp=16 C Salinity=2.61 Turb=95 ntu	ᅥ		
_						Geoprobe completed at 50 ft.			
_	-						-		
-	j						Ξ		
_	1						-		
-	1								
_]						\exists		
-	-						\dashv		
							\exists		
-	4						-		
-	-								
_	1						_		
-	1						\dashv		
-	1						コ		
_	4						4		
	 		_	_			\exists		
_	1						4		
-	-						4		
-	-						\dashv		

Attachment B
Leaching Pool Schematics

CAMP DRESSER & McKEE	CLIENT		JOB NO	COMPUTED BY _	<u>rm</u>
	PROJECT Acti	ve	DATE CHECKED	DATE _	
	DETAIL		CHECKED BY	PAGE NO	
		GP-	3		
e Tag					
•		8 A. Dig	Poolen ofm		
	1	1	^	GRADE	
		Void 5	PACE +		
		PID readings	-	Unsaturated	lis2
		} 120ppm	_	Unsaturated Thickness = Volume =	6 A. 30.2 A ³
Meter	₩			•	
Table	•	622 pm	10'	Max TVOC = Sample	£ 7.
		} 164 ppm	<u></u>		<u>,</u>
· ·		, , , , , ,	1 . ,		`.

Saturated Soil
Thickness = 10 ft
Volume = 503, ft³
Max TVOC = 33.23 ppr
Sample

	PROJECT	- Metive		DATE CHEC		DATE PAGE NO	
	DETAIL		GP-		J 81	PAGE NO	•
		1		Har Pauls			
_		\	17	COVER			GRADE
			VOID	SPACE	2' '4'	Lussturgt None	red Boil
	V WATER TABLE			A			<u> </u>
	TABLE		P10 readings 3 140 ppm	-	10	Saturate d	5.11
) 68 llm		114	Thickness = Volume = Max. TVOC = Sample	10 ft.
	,		} 0.0 FFm		- 20 - 22		
					-		
1		_	} 0.0 ppm		- END (OF BOREHOLE	

CAMP DRESSER & McKEE

CLIENT ____

JOB NO. _____ COMPUTED BY ______

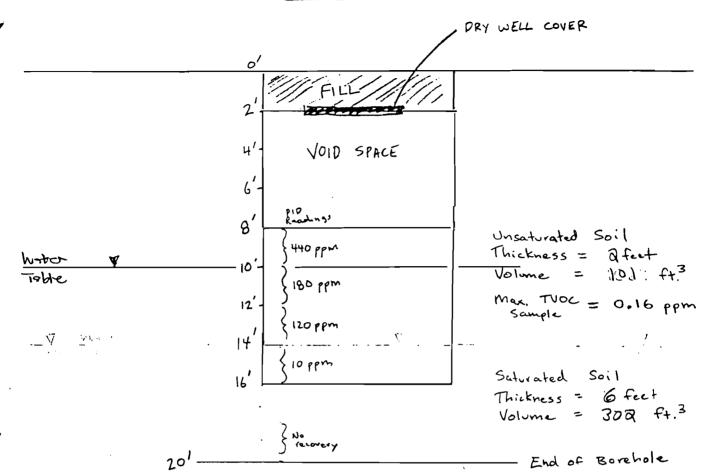
CLIENT		
PROJECT	Active	

DETAIL _

JOB NO. ______ DATE CHECKED _____

CHECKED BY _____

COMPUTED BY ____

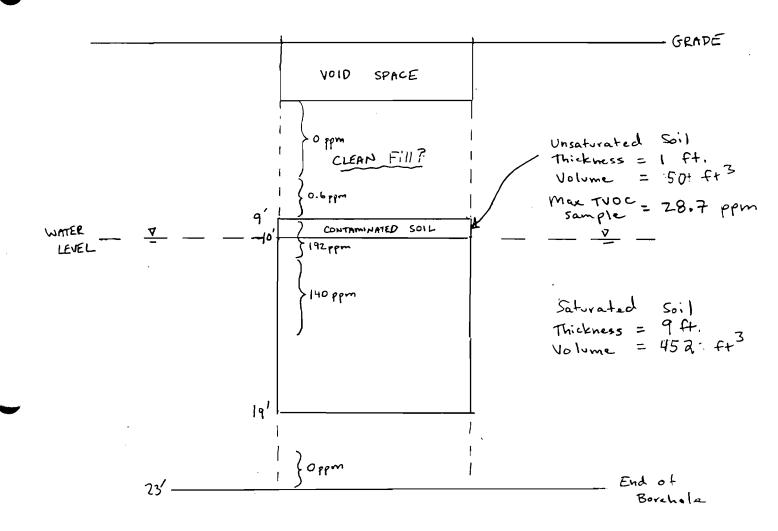

DATE ____ PAGE NO. _____

GP-18

	PID reading	
/	PID reaching	
V WATER 8')	350ppm 420ppm 145ppm	Unsaturated Soil Thickness = 8 feet. Volume = :402 ft ³ Max TVOC = 3.42 ppm Sample Saturated Soil Thickness = 12 feet Volume = :603:17 ³ Max TVOC = NA Sample
END OF BOREHOLE 20'	18 ppm	

CAMP DRESSER & McKEE	PROJECT	GP-19	JOB NO DATE CHECKED CHECKED BY	
<u>.</u> .		O' Wide	ORY WELL COVER	
7	WATER TABLE	2'- 4'- 6'- PID rendings 182 ppm 382 ppm 32 ppm 42 ppm 15' 1.6 ppm		Unsaturated Soil Thickness = 3 Ft Volume = 75 L Ft ³ Nax TVOC = 3.03 ppm - 7 Saturated Soil Thickness = 5 ft. Volume = 25/ ft ³ End of Borehole
	;		•	

CAMP DRESSER & McKEE	PROJECT	Active	DATE CHECKED	COMPUTED BY	Bm
	DETAIL	GP-20	CHECKED BY	PAGE NO	



CAMP DRESSER & McKEE	CLIENT		JOB NO	COMPUTED BY BM
	PROJECT	Active	DATE CHECKED	DATE
	DETAIL		CHECKED BY	PAGE NO
		^0	n 1	
		GP-	Dig. 1201	
£ ^{,4€8} :		11		
		8 Pt.	Did' Isul	
			DRY WELL COV	€R.
		o'		GRADE
		VOL	D SPACE	-
		2' PID Reading	3	
		4, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		')		
		4' 8 ppm		Unsaturated Soil
•				Thickness = 18 feet
		8')		Thickness = 18 feet Volume = 402 ft.3
		o .		Max. TVOC = 81 ppm
¥ W	zto			sample = 81 ppm
77	ble	•		
		121		
		7 200 ppv	~	•
, v.		- 141) ''		
•		121 } 200 ppv		
		\ 160 ppm	^	Saturated Soil
])		
		/		Thickness = 10 feet Volume = 15031 ft ³
				Volume = 15031 ft3
		20'		
		1	1 •	
			1	
		} 1.8 pp	l ,	
	241-	, S. 1. 10 Ph.	<u> </u>	- End of Borehole
	<i>L</i> 1			

CAMP DRESSER & McKEE	PROJECT DETAIL	Active	JOB NO DATE CHECKED CHECKED BY	DATE
		0' 8 H	+ wide pholicover	GRADE
WATER TABLE	<u>, ▼</u>	3	PPM PPM SPACE OID SPACE OFF OFF OFF OFF OFF OFF OFF O	Unsaturated Soil Thickness = 7.5 feet Volume = 377. ft ³ Max. TVOC Sample = 29.22 ppm Saturated Soil Thickness = 8.5 feet Volume = 427: ft. ³ Max. TVOC Sample = 29.22 ppm End of Borehole

CAMP DRESSER & McKEE	CLIENT		JOB NO	_ COMPUTED BY	BM
OAM DIEGOLITA MOREL	PROJECT	Active _	DATE CHECKED	DATE	
	DETAIL		CHECKED BY	_ PAGE NO	

GP-24

				DATE
	DETAIL		CHECKED BY	PAGE NO
			C-0-27	
			GP-22	
			·8 foot wide . pool	
		 -		well cover
		,	747	
		· '		Grade
			VOID SPACE	
		2'		
		3′-	PIDreading	
		4'	\ 1800 ppm	Unsaturated Soil
		.	(iooo ff.	Unsaturated Soil
		6')	Thickness = T7 feet Volume = 352+ ft.3
			< 1	4010me - 300; ++.
		୫′		Max. TVOC = 760 ppm Sample = 760 ppm
l ata	_		> 1860 bbm	, ,,,,
Ustar Tible	<u></u>	10') —	
(10)			\	•
		12'		
		,	>1100 Lbm	*/
		,μ'	· ` · · - ·	
			•	
				Saturated Soil
		ļ		Thickness = 16 feet
		ļ		Volume = :804 ft3
	•			value 100 /
		/	•	
		26'	}	
			{ 28 ppm	-1
	-		<i></i>	End of sorehole
)	End of Boreho

CLIENT

CAMP DRESSER & MCKEE

JOB NO. ___

BM