

ARCADIS U.S., Inc 17-17 Route 208 North Fair Lawn New Jersey 07410 Tel 201 797 7400 Fax 201 797 4399 www arcadis-us.com

ENVIRONMENT

Date: March 12, 2014

Contact: Daniel St. Germain

Phone: (201) 797-7400

Email: Dan.St.Germain@arcadisus.com

Our ref: 04724010.0000

March 12, 2014

Robert Corcoran, P.E. New York State Department of Environmental Conservation Div. of Environmental Remediation Remedial Bureau A, Section C 625 Broadway, 12th Floor Albany, NY 12233-7015

Re: Fairchild Republic Main Plant Site

Dear Mr. Corcoran,

Attached is the 2013 Annual Monitoring Report for the above referenced site. It contains the results from the November 2013 groundwater sampling event. 1,4-dioxane was detected in all 11 groundwater samples collected from the site. 1,4-Dioxane was detected at very low (<2 ug/L) concentrations in eight groundwater samples. 1,4-Dioxane was detected at concentrations that range from 6.8 to 30 ug/L in three groundwater samples. The Fairchild Liquidating Trust would like to resample the groundwater in the three wells that contain 1,4-dioxane at concentrations that range from 6.8 to 30 ug/L to confirm the concentration of 1,4-dioxane. If you have any questions please contact me (201) 398-4381.

Sincerely,

ARCADIS U.S., Inc

il St. Jamain

Daniel J. St. Germain, PG Principal Hydrogeologist

Copies: Donald Miller - The Fairchild Liquidating Trust

Imagine the result

2013 ANNUAL MONITORING REPORT

FAIRCHILD REPUBLIC MAIN PLANT SITE EAST FARMINGDALE, NEW YORK SITE NO. 1-52-130 MARCH 2014

Prepared for

The Fairchild Liquidating Trust

McLean, VA

Prepared by

Arcadis

17-17 Route 208 North

Fair Lawn, NJ 07410

Table of Contents Quarterly Monitoring Report Fairchild Republic Main Plant Site Mairoll, Inc. East Farmingdale, New York

Sect No.	ion No.	Section	Page
1.0	INTR(1.1 1.2	DDUCTION Site History Geology and Hydrogeology	1-1
2.0	GROI 2.1 2.2	JNDWATER SAMPLING Water Level Measurements Groundwater Sampling Procedures	2-1
3.0	RESU 3.1 3.2	ILTS Groundwater Flow Groundwater Quality 3.2.2 Intermediate Aquifer	3-1 3-1
4.0		JNDWATER TREATMENT SYSTEM OPERATION MA MONITORING History of Groundwater Remedy Remediation System Operation and Maintenance Groundwater Treatment System Monitoring Evaluation of the Effectiveness of Groundwater Reme 4.4.1 Influent Concentrations of VOCs 4.4.2 Cumulative Mass Removed 4.4.3 Average Concentration of VOCs in the Plum	4-1 4-1 4-2 diation4-2 4-2 4-2 4-3
5.0	CON	CLUSIONS	5-1

Table of Contents (continued) Quarterly Monitoring Report Fairchild Republic Main Plant Site Mairoll, Inc. East Farmingdale, New York

TABLES

Table	No. Description
1-1	Monitoring Well Installation Information
2-1	Water Level Information July 2009
3-1	Laboratory Results July 2009
4-1	Groundwater Remediation System Operation Data
4-2	Groundwater Remediation System Shut Down Log
4-3	Groundwater Remediation System Laboratory Results
4-4	NYSDEC groundwater Discharge Criteria and Results
4-5	Groundwater Remediation System Performance

- 4-6 Groundwater Sampling Results Calculations
- 4-7 Average Total VOC Concentrations
- 4-8 Operation and Maintenance Cost Summary

FIGURES

Figure No. Description

- 1-1 Well Locations
- 1-2 Conceptual Geologic/Hydrogeologic Conditions
- 3-1 Potentiometric Surface Map, Intermediate Zone– November 2013
- 3-2 Distribution of VOCs in Groundwater– November 2013
- 3-3 Site-Related Total VOC Concentrations in Groundwater, Intermediate Zone– November 2013
- 4-1 Groundwater Remediation System Performance
- 4-2 Average Concentration of VOCs in Monitoring Wells Trend Chart

APPENDICES

Appendix No.	Description
Appendix A	Correspondence
Appendix B	Groundwater Monitoring Well Sample Collection Logs
Appendix C	Data Validation Report
Appendix D	Influent and Effluent Water Sample Results

1.0 INTRODUCTION

Arcadis (formerly Malcolm Pirnie, Inc.) was retained by The Fairchild Liquidating Trust to collect groundwater samples at the Fairchild Republic Main Plant Site (MPS) in East Farmingdale, New York (Figure 1-1) in accordance with the Revised Draft OM&M Plan (Malcolm Pirnie, 2006). According to the Revised Draft OM&M Plan, groundwater samples will be collected quarterly from the Outpost Monitoring Wells and semi-annually from the Remediation Phase Monitoring Wells during the first year (2006) of operating the groundwater pump and treat remediation system. Groundwater samples will then be collected quarterly from the Outpost Monitoring Wells and annually from the Remediation Phase Monitoring Wells.

In the spring of 2011, Arcadis stopped working on this project. In October 2013, Arcadis resumed working on this project. Arcadis requested that the current sampling frequency articulated above and in the OM&M Plan be revised to include sampling 11 Remediation Phase Monitoring Wells annually in an October 15, 2013 letter to Mr. Robert Corcoran (Appendix A). This request was approved by the NYSDEC with the stipulation that groundwater collected from all 11 wells will be analyzed for 1,4-Dioxane (Appendix A) during the Fall 2013 sampling event.

Groundwater samples were collected from 11 Remediation Phase Monitoring wells in November 2013 according to the sampling procedures outlined in the OM&M Plan (Malcolm Pirnie, 2006). The objectives of the groundwater sampling event are: to determine the extent of Volatile Organic Compounds (VOCs) in groundwater at the MPS, to monitor the overall effectiveness of the groundwater remedy, and to determine if the MPS is a source of 1,4-dioxane.

1.1 Site History

VOCs were initially detected in subsurface soils adjacent to Building 17 during a Remedial Investigation in 1991. Soil, soil vapor, and groundwater were further investigated in order to define the horizontal and vertical extent of VOCs in soil, soil gas, and groundwater. The results of the investigation showed that unsaturated soil contained

Tetrachloroethene (PCE) at a former PCE storage tank and unsaturated soil contained Trichloroethene (TCE) at a former degreasing pit in Building 17. Mairoll, Inc. installed Soil Vapor Extraction (SVE) systems as an Interim Remedial Measure (IRM) to remediate the unsaturated soil containing PCE and TCE. The SVE systems operated for more than one year when the influent concentration of PCE and TCE approached non-detectable concentrations. Soil samples were collected in the source area at the direction of the NYSDEC. The results showed that the concentration of VOCs in the source area was less than the NYSDEC TAGM 4046 guidance values. The SVE system was decommissioned in March 1997 (ROD, 1998). Given the above described source area remediation, the contaminants of concern for groundwater at this site are PCE, TCE, and their degradation compounds.

The NYSDEC prepared a Record of Decision (ROD) for the MPS in 1998 that required Mairoll, Inc. to install a remedy that removed the VOCs detected in the groundwater. The groundwater remedy described in the ROD includes the installation of a groundwater extraction, treatment, and recharge system capable of capturing groundwater that contains total VOCs at 1,000 parts per billion (ppb) or greater, or to the extent practicable. After further defining the nature and extent of the groundwater containing VOCs, conducting an aquifer test to refine the characterization of the physical properties of the aquifer, and conducting further groundwater modeling, it became clear that a larger portion of the VOCs could be captured practicably. Groundwater flow modeling showed that a groundwater extraction system could capture groundwater containing total VOCs at 200 ppb or greater. After lengthy discussions with the NYSDEC, the Remedial Design (RD) of the groundwater extraction, treatment, and recharge system was changed to capture groundwater containing total VOCs at 200 ppb. The RD of the groundwater remedy was conditionally approved by the NYSDEC in November, 2003. Construction of the groundwater remediation system began in January 2004 and construction was completed in February 2005. The groundwater remediation system was started on February 24, 2005.

1-2

1.2 Geology and Hydrogeology

The subsurface lithology beneath the MPS consists of more than 1,000 feet of unconsolidated coastal plain sediments. These sediments can be divided into three aguifers; including the Upper Glacial aguifer, the Magothy Aguifer, and the Lloyd Aguifer. The Upper Glacial aguifer extends from ground surface to approximately 50 feet below mean sea level (MSL) and was deposited as an outwash plain from the Ronkonkoma terminal moraine to the north. This aquifer contains fine to coarse-grained sand with minor amounts of silt and clay. The bottom of the Upper Glacial aquifer is defined by the presence of the Gardiners Clay. The Gardiners Clay consists of greenish-gray silt and clay with some interbedded sand that was probably deposited in a lagoon or marine environment during an interglacial interval. Beneath the Gardiners Clay is the Magothy aguifer that extends from the bottom of the Gardiners Clay to the top of the Raritan Clay that is over 800 feet beneath land surface. The Magothy aquifer is divided into two hydrogeologic units beneath the site by a fairly extensive clay layer. A conceptual diagram showing the geologic formations and the corresponding aquifers is shown on Figure 1-2. Groundwater containing VOCs from the MPS is in the Upper Glacial aquifer and the upper portions of the Magothy aguifer.

For the purposes of this report, the Upper Glacial aquifer is the shallow aquifer, the initial 175 feet of the Magothy aquifer that contains VOCs from the MPS is the intermediate aquifer, and the deeper portions of the Magothy aquifer is the deep aquifer (Figure 1-2). Because the monitoring well network was installed over a 20-year period before the full nature and extent of VOCs were defined, not all of the monitoring well designations consistently identify the correct aquifer where the monitoring wells are screened. For example, monitoring well MW-49D is screened in the intermediate aquifer. Table 1-1 lists each monitoring well, its total depth, and the screened aquifer.

2.0 GROUNDWATER SAMPLING

Groundwater samples were collected in 11 wells on November 20, 2013. Groundwater sample collection logs are included in Appendix B. Groundwater samples were sent to H2M Laboratory, in Melville, New York, which is a New York State certified laboratory, for VOCs analyses by United States Environmental Protection Agency (USEPA) Method 8260B and GCMS/SI E522. The results were submitted as NYSDEC Type 2 deliverables.

Laboratory data were validated by a USEPA Certified Data Validator according to the USEPAs National Functional Guidelines for Organic Data Review (October 1999). Based on the validation, all of the data collected during the November 2013 sampling event were determined to be usable for qualitative and quantitative purposes. The Data Validation Usability Report is presented in Appendix C.

2.1 Water Level Measurements

A synoptic round of water level measurements was collected from 32 wells on November 19, 2013 (Table 2-1).

2.2 Groundwater Sampling Procedures

Groundwater samples were collected from 11 wells according to the USEPA Region II low flow sampling protocol (USEPA, March 1998). The USEPA protocol is summarized below:

- 1. Upon arrival at each well, well identification was entered into a field log notebook, noting any damage to the well in the log.
- New plastic sheeting was placed over and around the monitoring well so that a 5 x 5 foot clean surface was created for the sampling equipment. All materials, tools and equipment were decontaminated prior to the placement on the plastic sheeting.

- 3. Depth to water below the reference point (top of casing) was measured to the nearest hundredth of a foot (0.01 ft) using an electronic water level meter. The measuring device was cleaned with phosphate-free detergent and rinsed with distilled water prior to placement in the well.
- 4. The well was purged at a rate between 200 and 500 milliliters per minute (ml/min). Water levels and indicator parameters were monitored at five minute intervals during purging of the well, and recorded on Malcolm Pirnie groundwater purging/sampling logs (Appendix B). All purged water was contained in 55-gallon drums.
- 5. Once the well was considered stabilized, each laboratory-provided sample bottle (40ml VOC bottles) was labeled and prepared to receive the groundwater sample.
- Samples were collected from the pump discharge at a flow rate between 100 and 250 ml/min.
- 7. Upon completion of the sample collection, the well cap was replaced and the well housing secured.
- 8. The plastic sheeting and all used expendable materials were properly discarded.
- Prior to overnight shipment to the laboratory, samples were packed in ice and placed inside a cooler along with the chain-of-custody (COC) forms. The cooler was sealed and secured in preparation for overnight delivery.

3.0 RESULTS

3.1 Groundwater Flow

A synoptic round of water level measurements was collected from 32 wells on November 19, 2013. The depth-to-water measurement was subtracted from the survey elevation of the measuring point on top of each well to calculate the water level elevation in each well (Table 2-1). The water level measurements were used to draw potentiometric maps for the intermediate aquifer (Figure 3-1). This figure show that groundwater flow in intermediate aquifer is to the southeast and the horizontal hydraulic gradient is approximately 0.002.

3.2 Groundwater Quality

A description of the groundwater quality in the intermediate aquifer is presented below. A summary of the data is presented in Table 3-1. Figure 3-2 shows the distribution of VOCs in the intermediate aquifer.

3.2.1 Intermediate Aquifer

Groundwater samples were collected from 11 wells in the intermediate aquifer. The results show that all 11 wells (MW-37I, MW-41, MW-42I, MW-42D, MW-43I, MW-46I, MW-49I, MW-49D, MW-50, S-66133, and S-66134) contained detectable concentrations of VOCs. The concentration of total VOCs in each well is shown on Figure 3-3. Figure 3-3 also shows the VOC plume and changes in total VOC concentrations with time in the intermediate aquifer. The groundwater data shows that the concentration of total VOCs has decreased in groundwater collected from most of the monitoring wells showing the positive effect of active groundwater remediation. Those wells with the highest historical concentrations, MW-49I, MW-49D, MW-37I, MW-43I, MW-41, S-66133, and MW-50, all have significantly decreased since the start of remediation and show the mass of chlorinated VOCs is being actively removed by the groundwater pump and treat system.

Groundwater samples collected from 11 monitoring wells were also analyzed for the presence of 1,4-Dioxane. The results show that 1,4-Dioxane was detected at low concentrations (ND – 2 ug/L) in eight of the 11 groundwater samples collected from monitoring wells (Figure 3-4). This range of low concentration detections could be indicative background concentrations of 1,4-Dioxane. 1,4-Dioxane was detected in three groundwater samples (MW-49I, MW-37I, and MW-50) at concentrations that range from 6.8 to 30 ug/L.

4.0 GROUNDWATER TREATMENT SYSTEM OPERATION, MAINTENANCE AND MONITORING

4.1 History of Groundwater Remedy

Construction of the groundwater pump and treat system was completed in February 21, 2005 and system testing started on February 24, 2005. Test well PW-1 was started on March 21, 2005, and PW-2 was started on March 28, 2005. Routine OM&M of the pump and treat system has been conducted since start-up. The routine OM&M includes: responding to alarm conditions, recording and adjusting system operating parameters, collecting influent and effluent samples, and any maintenance activities necessary to keep the system operational. The groundwater remediation system has extracted and remediated more than 650 million gallons of contaminated groundwater and removed over 10,500 pounds (880 gallons) of total VOCs. Currently, the extraction system operates by pumping PW-1 at 200 gpm while PW-2 is maintained as a back-up extraction well.

4.2 Remediation System Operation and Maintenance

Routine operation and maintenance has been conducted on the treatment system since start-up. Routine tasks included recording system operational data, measuring water levels in the recharge system, responding to system alarms, and basic cleaning of system components. From Spring 2011 to the January 2013, roughly 200 million gallons of water were extracted, treated, and discharged at the MPS. During this period, the plant has experienced significant operational and mechanical challenges including a lengthy shutdown period in 2012 where extensive maintenance was completed to remove a significant volume of encrusted iron from the stripping towers. The plant was also shut down in 2013 to repair air stripper internal piping. Currently, the extraction and treatment system operates in an efficient manner.

The extraction system is currently down. PW-1 is sucking sand into the filters and needs video scoping and repair. PW-1 shut down since February 2014. PW-2 is off the plume axis and has been shut down since Jan. 2010. ETA on PW-1 scoping is May 2014.

4.3 Groundwater Treatment System Monitoring

Groundwater samples were collected from the treatment system monthly while the extraction and treatment system were operational during this reporting period to monitor the influent and effluent concentrations of VOCs. The groundwater samples are analyzed for:

- VOCs (8260) (including Freon 113)
- Total Dissolved Solids (TDS)
- pH
- Total Iron
- Total Manganese
- Total Zinc

The results of the groundwater analyses are shown on Table 4-1. The results show that the groundwater discharge to the infiltration basins, from February 2005 to January 2014, met discharge standards and was in compliance with the NYSDEC discharge requirements. Table 4-2 summarizes the groundwater effluent results in comparison to the NYSDEC Groundwater Discharge Criteria. The Results are included in Appendix D.

4.4 Evaluation of the Effectiveness of Groundwater Remediation

4.4.2 Influent Concentration of VOCs

The influent concentration of total VOCs was also used to monitor the progress of the groundwater remedy. The concentration of total VOCs was plotted against time to track the reduction, if any, of the influent groundwater quality (Figure 4-1). Between May 2005 and December 2011 the influent concentration of total VOCs remained consistent at a concentration of approximately 2,000 μ g/L, suggesting that the groundwater extraction system is successfully removing significant VOCs. The influent concentration has been considerably more variable over the last two years likely the result of system maintenance.

4.4.3 Cumulative Mass Removed

The cumulative mass removed was used to monitor the progress of the groundwater remedy (Table 4-3). The concentration of total VOCs for each sampling event was multiplied by the volume of water extracted during the reporting period to calculate the total mass removed during the reporting period. This number was added to the previous reporting period's total mass removed to calculate the cumulative total mass removed. The cumulative total mass removed was plotted against time to track the progress of the groundwater remedy (Figure 4-1). As of December 2013 a total of 10,500 pounds or 880 gallons of VOCs have been removed and treated by the groundwater remediation system. The results show that a large amount of mass has been removed each year.

4.4.4 Average Concentration of VOCs in the Plume

The concept of average concentration of the plume was also used to evaluate and monitor the effectiveness of the groundwater remedy. The concentration of total VOCs was evaluated by calculating the average concentration, standard deviation, standard error, Student's "t" at 95 percent, and the average concentration of the plume with a 95 percent confidence interval. The results from the baseline groundwater sampling and the 2013 groundwater sampling are shown on Table 4-4. The results show that the baseline average concentration of the plume using wells in the intermediate aquifer was 1,030 μ g/L (June 2004) and the average concentration is 327 μ g/L in 2013. This data shows significant mass reduction in the intermediate aquifer. The average concentration of total VOCs with a 95 percent confidence interval is 1,719 μ g/L for the baseline groundwater sampling (June 2004) and 545 μ g/L for the 2013 sampling. These data show that the average concentration of the plume is decreasing and a significant amount of mass is being removed (Figure 4-2).

5.0 CONCLUSIONS

- Groundwater samples collected from wells screened in the intermediate aquifer show the concentration of total VOCs has decreased in most of the monitoring wells: MW-37I, MW-37D, MW-41, MW-43I, MW-44, MW-45, MW-49I, MW-49D, MW-50, MW-51, MW-52, S-66133, and S-66134.
- The groundwater sampling results show the mass of the VOCs in the intermediate aquifer are moving in a southeasterly direction towards the MPS treatment system.
- The groundwater remediation system removed approximately 10,500 pounds or 880 gallons of VOCs by December 2013.
- The influent concentration of total VOCs to the treatment system has remained relatively stabilize from 2005 to 2010 and is showing variability over the last two years likely due to system maintenance shut downs.
- All of the water discharged to the infiltration basins met the NYSDEC groundwater effluent limitations.
- The cumulative mass removed has shown that the groundwater remedy is effective at removing mass and remediating the aquifer.
- 1,4-Dioxane was detected in groundwater samples collected from MW-49I, MW-37I, and MW-50.

TABLE 1-1 MONITORING WELL INSTALLATION INFORMATION FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC. EAST FARMINGDALE, NEW YORK

Well ID Total Depth (feet) MW-19S 35.60 MW-19D 69.73 MW-4D 59.36 MW-4D 59.36 MW-10S 33.31 MW-10I 59.15 MW-10D 91.93 MW-46S 79.00 S-66157 53.60 MW-21S 30.33	Hydrogeologic Zone Designation Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Aquifer Designation Upper Glacial Upper Glacial
MW-19S 35.60 MW-19D 69.73 MW-4S 38.69 MW-4D 59.36 MW-10S 33.31 MW-10I 59.15 MW-10D 91.93 MW-46S 79.00 S-66157 53.60	Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial
MW-19D 69.73 MW-4S 38.69 MW-4D 59.36 MW-10S 33.31 MW-10I 59.15 MW-10D 91.93 MW-46S 79.00 S-66157 53.60	Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial
MW-4S 38.69 MW-4D 59.36 MW-10S 33.31 MW-10I 59.15 MW-10D 91.93 MW-46S 79.00 S-66157 53.60	Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial
MW-4D 59.36 MW-10S 33.31 MW-10I 59.15 MW-10D 91.93 MW-46S 79.00 S-66157 53.60	Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial
MW-10S 33.31 MW-10I 59.15 MW-10D 91.93 MW-46S 79.00 S-66157 53.60	Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial
MW-10I 59.15 MW-10D 91.93 MW-46S 79.00 S-66157 53.60	Shallow Shallow Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial Upper Glacial Upper Glacial
MW-10D91.93MW-46S79.00S-6615753.60	Shallow Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial Upper Glacial
MW-46S 79.00 S-66157 53.60	Shallow Shallow Shallow Shallow	Upper Glacial Upper Glacial Upper Glacial
S-66157 53.60	Shallow Shallow Shallow	Upper Glacial Upper Glacial
	Shallow Shallow	Upper Glacial
MW/215 30.33	Shallow	
10100-210 00.00		Upper Glacial
MW-43S 80.00	Shallow	
MW-49S 30.00	Shallow	Upper Glacial
S-1805 31.70	Shallow	Upper Glacial
S-67535 71.24	Shallow	Upper Glacial
S-16479 45.00	Shallow	Upper Glacial
S-10314 45.00	Shallow	Upper Glacial
MW-37D 267.00	Intermediate	Upper Magothy
MW-37I 193.00	Intermediate	Upper Magothy
MW-41 140.00	Intermediate	Upper Magothy
MW-42D 240.00	Intermediate	Upper Magothy
MW-42I 179.00	Intermediate	Upper Magothy
MW-43I 200.00	Intermediate	Upper Magothy
MW-44 129.00	Intermediate	Upper Magothy
MW-45 179.00	Intermediate	Upper Magothy
MW-46I 149.00	Intermediate	Upper Magothy
MW-48 200.00	Intermediate	Upper Magothy
MW-49D 170.00	Intermediate	Upper Magothy
MW-49I 110.00	Intermediate	Upper Magothy
MW-50 165.00	Intermediate	Upper Magothy
MW-51 190.00	Intermediate	Upper Magothy
MW-52 170.00	Intermediate	Upper Magothy
S-66133 142.00	Intermediate	Upper Magothy
S-66134 144.00	Intermediate	Upper Magothy
MW-23D 310.00	Deep	Middle Magothy
MW-32D 325.00	Deep	Middle Magothy
MW-33D 310.00	Deep	Middle Magothy
MW-43D 350.00	Deep	Middle Magothy

Note:

1) Wells with an "S" prefix are Suffolk County wells

TABLE 2-1 WATER LEVEL INFORMATION - NOVEMBER 2013 FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC.

EAST FARMINGDALE, NEW YORK

Well ID	Total Depth (feet)	Measuring Point Elevation (feet MSL)	Bottom Elevation (MSL)	Hydrogeologic Zone Designation	Depth to Water (feet)	Groundwater Elevation (feet MSL)
MW-10D	91.93	74.26	17.67 BMSL	Shallow	27.03	47.23
MW-10I	59.09	74.54	15.45 AMSL	Shallow	27.36	47.18
MW-10S	33.31	74.10	40.79 AMSL	Shallow	27.43	46.67
MW-19D	69.73	78.84	9.11 AMSL	Shallow	NM	
MW-19S	35.60	78.95	43.35 AMSL	Shallow	NM	
MW-21S	30.33	62.21	31.88 AMSL	Shallow	21.04	41.17
MW-23D	310.00	69.64	240.36 BMSLE	Deep	NM	
MW-32D	325.00	65.51	259.49 BMSL	Deep	23.60	41.91
MW-33D	310.00	85.88	224.12 BMSL	Deep	NM	
MW-37D	267.00	56.19	210.81 BMSL	Intermediate	19.75	36.44
MW-37I	193.00	55.88	137.12 BMSL	Intermediate	19.61	36.27
MW-41	140.00	74.42	65.58 BMSL	Intermediate	27.97	46.45
MW-42D	240.00	64.03	175.97 BMSL	Intermediate	22.57	41.46
MW-42I	179.00	63.42	115.58 BMSL	Intermediate	23.17	40.25
MW-43D	350.00	60.46	289.54 BMSL	Deep	23.04	37.42
MW-43I	200.00	60.45	139.55 BMSL	Intermediate	22.48	37.97
MW-43S	80.00	60.60	19.4 BMSL	Shallow	19.67	40.93
MW-44	129.00	52.12	76.88 BMSL	Intermediate	19.54	32.58
MW-45	179.00	51.38	127.62 BMSL	Intermediate	21.72	29.66
MW-46I	149.00	66.06	82.94 BMSL	Intermediate	22.51	43.55
MW-46S	79.00	65.86	13.14 BMSL	Shallow	21.60	44.26
MW-48	200.00	47.57	152.43 BMSL	Intermediate	19.37	28.20
MW-49D	170.00	61.77	108.23 BMSL	Intermediate	23.99	37.78
MW-49I	110.00	61.35	48.65 BMSL	Intermediate	24.52	36.83
MW-49S	30.00	61.32	31.32 AMSL	Shallow	20.89	40.43
MW-4D	59.36	81.92	22.56 AMSL	Shallow	27.88	54.04
MW-4S	38.69	81.97	43.28 AMSL	Shallow	28.25	53.72
MW-50	165.00	54.10	110.90 BMSL	Intermediate	21.20	32.90
MW-51	190.00	54.83	135.17 BMSL	Intermediate	NM	
MW-52	170.00	55.22	114.78 BMSL	Intermediate	18.95	36.27
S-10314	45.00	52.12	7.12 AMSL	Shallow	22.15	29.97
S-16479	45.00	46.15	1.15 AMSL	Shallow	14.05	32.10
S-1805	31.70	57.40	25.7 AMSL	Shallow	19.48	37.92
S-66133	142.00	66.10	75.9 BMSL	Intermediate	25.25	40.85
S-66134	144.00	50.45	93.55 BMSL	Intermediate	21.18	29.27
S-66157	53.60	64.66	11.06 AMSL	Shallow	22.26	42.40
S-67535	71.24	50.35	20.89 BMSL	Shallow	18.51	31.84

N/S = Not Surveyed

BMSL = below mean sea level

AMSL = above mean sea level

Zone 1 elevation range: 50 ft. AMSL to 45 ft. BMSL

Zone 2 elevation range: 45 ft. BMSL to 210 ft. BMSL (north side of site) and 45 ft. BMSL to 250 ft Zone 3 elevation range: greater than 210 ft. BMSL (north side of site) and greater than 250 ft. BMSL

Table 3-1 Volatile Organic Compounds in Groundwater Fairchild Republic Main Plant Site Mairoll, Inc. East Farmingdale, NY

	1	MW-371	MW-41	MW-42D	MW-421	MW-42I DUP	MW-43I	MW-46I	MW-49D	MW-491	MW-50	S-66133	S-66134	FB 111913	Trip Blank
Compound	Unit	11/20/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/19/2013	11/20/2013	11/19/2013	11/19/2013
Dichlorodifluoromethane		11/20/2013 10 UJ	10 UJ	11/20/2013 10 UJ	11/20/2013 10 UJ	11/20/2013 10 UJ	11/20/2013 10 UJ	10 UJ	10 UJ	11/13/2013 10 UJ	11/20/2013 10 UJ	10 UJ	11/20/2013 10 UJ	11/13/2013 10 UJ	10 UJ
Chloromethane	ug/L ug/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Vinyl chloride	ug/L	9 J	2 J	10 UJ	10 UJ	10 UJ	3 J	10 UJ	10 0J	10 0J	10 0J	4 J	10 UJ	10 UJ	10 UJ
Bromomethane	ug/L ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	14 J 10 U	10 U	10 J	10 U	10 U	10 UJ	10 U
Chloroethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tridhlorofluoromethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	2 J	10 U	10 U	10 U	10 U
	<u>.</u>										-				
1,1-Dichloroethene	ug/L	28	10 U	2 J	10 U	10 U	2 J	10 U	3 J	4 J	25	2 J	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	37	10 U	10 U	10 U	10 U	3 J	10 U	2 J	10 U	5 J	10 U	10 U	10 U	10 U
Acetone	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon disulfide	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl acetate	ug/L	10 UJ	10 UJ	10 UJ 10 U	10 UJ	10 UJ 10 U	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ 10 U	10 UJ 10 U	10 UJ	10 UJ
Methylene chloride	ug/L	10 U	10 U		10 U		10 U	10 U	10 U	10 U	10 U			10 U	10 U
trans-1,2-Dichloroethene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1 J	6 J	10 U	1 J	10 U	10 U	10 U
Methyl tert-butyl ether	ug/L	2 J	15	10 U	10 U	10 U	130	10 U	15	5 J	10 U	8 J	10 U	10 U	10 U
1,1-Dichloroethane	ug/L	41	2 J	2 J	10 U	10 U	5 J	2 J	6 J	13	21	2 J	10 U	10 U	10 U
cis-1,2-Dichloroethene	ug/L	320	19	10 U	10 U	10 U	88	3 J	200	110	180	190	10 U	10 U	10 U
2-Butanone (Methyl ethyl ketone)	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	ug/L	1 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	6 J	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	ug/L	13	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	9 J	10 U	10 U	10 U	10 U
Cyclohexane	ug/L	4 J	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Carbon tetrachloride	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	4 J	10 U	10 U	10 U	10 U
Benzene	ug/L	10 C	10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 U	4 J	10 U	10 U	10 U	10 U
1.2-Dichloroethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene (TCE)	ug/L	240	91	56	2 J	2 J	240	62	140	35	790	54	10 U	10 U	10 U
Methylcyclohexane	ug/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U	10 U	10 UJ
1,2-Dichloropropane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-Pentanone	ug/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Toluene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene (PCE)	ug/L	130	77	10 U	10 U	10 U	12	4 J	650	41	110	2 J	10 U	10 U	10 U
2-Hexanone	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromoethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	ug/L	10 U	3 J	10 U	10 U	10 U	10 U	10 U	2 J	10 U	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Xylenes (total)	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	ug/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Isopropylbenzene (Cumene)	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	ug/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
1,2,4-Trichlorobenzene	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dioxane	ug/L	16	0.84	1.1	0.065	0.065	0.89	1.3	1.7	6.8	30	0.70	0.16	0.05 U	NA

J = The compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample.

JN = The analysis indicated the presence of a compound that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

NA = Not analyzed or not applicable

U = The compound was analyzed for, but was not detected above the reported sample reporting limit.

UJ = The compound was not detected above the sample reporting limit. However, the reporting limit is approximate and may or may not represent the actual limit of reporting necessary to accurately and precisely measure the compound in the sample.

Highlighted cell with bolded value indicates a positive detection

TABLE 4-1 GROUNDWATER REMEDIATION SYSTEM LABORATORY RESULTS FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL., INC. EAST FARMINGDALE, NY

	P٧		PW-1	PW-1	PW-1	PW		PW-2	PW-2	PW-2	PW-2	IN-1	IN-1	IN-1	IN-1									
Compound		/2009	9/09/2009	10/12/2009	11/25/2009	12/15/2009	1/22/2010	3/2/2010 3	/18/2010		5/26/2010	6/17/2010	7/21/2010	8/12/2010	8/07/2	2009 9/09/2009	10/12/2009	11/25/2009	12/15/2009	1/22/2010	8/07/2009	9/09/2009	10/12/2009	11/25/2009
1,1 Dichloroethane		16	17	17	15	19	14	19	16	14	17	18	14	16	29		31	29	36	24	21	24	21	20
1,1 Dichloroethene		13	18	13	11	14	10	13	11	10	14	12	10	11	14		18	16	19	14	13	17	15	12
1,1-Dichloropropene 1,2 Dibromoethane		5 5	< 5 < 5	< 5 < 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5
1,2 Dichlorobenzene (v)		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2 Dichloroethane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2 Dichloropropane	<	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,3 Dichlorobenzene (v)	^		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,3-Dichloropropane	<		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,4 Dichlorobenzene (v)	<	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5
111 Trichloroethane 1112Tetrachloroethane		ь 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
112 Trichloroethane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1122Tetrachloroethane	<		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
123-Trichlorobenzene	<	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
123-Trichloropropane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
124-Trichlorobenzene (v)		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
124-Trimethylbenzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1245 Tetramethylbenz		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5
135-Trimethylbenzene 2,2-Dichloropropane	< <	5	< 5	< 5	< 5	< 5	< 5 < 5	< 5	< 5 < 5	< 5	< 5 < 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Chlorotoluene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
4-Chlorotoluene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Acetone		50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50		< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Benzene		7	7	6	6	7	< 5	7	5	6	7	7	5	6	6	5	6	< 5	< 5	< 5	6	5	6	6
Bromobenzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Bromochloromethane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Bromodichloromethane		5 5	< 5	< 5	< 5	< 5 < 5	< 5	< 5	< 5 < 5	< 5 < 5	< 5	< 5	< 5	< 5 < 5	< 5	< 5	< 5 < 5	< 5	< 5	< 5 < 5	< 5	< 5	< 5	< 5 < 5
Bromoform Bromomethane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
c-1,2-Dichloroethene		450	420	420	450	540	390	510	400	410	560	510	380	470	35	50 320	350	370	450	320	420	400	390	430
c-1,3Dichloropropene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Carbon Tetrachloride		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chlorobenzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chlorodibromomethane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chlorodifluoromethane Chloroethane	<	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5 < 5	< 5	< 5 < 5	< 5	< 5 < 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5	< 5 < 5	< 5	< 5 < 5
Chloroform	<		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chloromethane	<		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Dibromochloropropane	<	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Dibromomethane	٨		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Dichlordifluoromethane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Ethyl Benzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Freon 113 Hexachlorobutadiene	<	15	17 < 5	17	16	< 5	< 5	< 5	14 < 5	14 < 5	17 < 5	16	15	18 < 5	< 5		33 < 5	33	38	< 5	18	< 5	< 5	< 5
Isopropylbenzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
m + p Xylene		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Methyl Ethyl Ketone		50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50		< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Methylene Chloride	<	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Methylisobutylketone		50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50		< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
n-Butylbenzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
n-Propylbenzene Naphthalene(v)	<		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5
o Xvlene		5 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5 < 5	< 5	< 5 < 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
p Diethylbenzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
p-Ethyltoluene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
p-Isopropyltoluene	<	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
sec-Butylbenzene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Styrene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
t-1,2-Dichloroethene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
t-1,3Dichloropropene		5 19	< 5	< 5	< 5	< 5 24	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 14
ter.ButylMethylEther tert-Butylbenzene		19 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tetrachloroethene	'	5 680	< 5	760	840	780	800	810	660	770	920	820	880	820	~ 5	300 1300	< 5	1700	1500	1400		< 5 920	< 5	1000
Toluene		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Trichloroethene		550	530	550	570	630	520	590	470	510	610	530	450	570	22	20 230	230	250	270	210	460	490	460	490
Trichlorofluoromethane		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Vinyl Chloride		40	38	34	31	39	28	34	33	27	35	35	22	33	35	÷	28	31	39	28	42	38	35	34
Total VOCs (µg/L)		749	1723	1794	1917	2022	1762	1976	1590	1741	2156	1925	1756	1920	194		1957	2396	2314	1996	1836	1889	1911	1986

TABLE 4-1 GROUNDWATER REMEDIATION SYSTEM LABORATORY RESULTS FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC EAST FARMINGDALE, NY

	IN-1	IN-1	IN-1		N-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1	IN-1
Compound	12/15/2009	1/22/2010	3/2/2010		/2010	4/16/2010	5/26/2010	6/17/2010	7/21/2010	8/12/201		2/6/2011	3/16/2011	4/8/2011	2/17/2012	3/30/2012	4/30/2012	7/5/2012	8/6/2012	10/19/2012	1/17/2013	2/26/2013	4/4/2013
1,1 Dichloroethane	25	17	20	-	17	15	17	17	18	16	16	16	21	18	15	17	18	18	31	22	28	21	21
1,1 Dichloroethene	17	11	14		12	10	13	13	13	12	10	11	12	12	11	9	9	12	21	14	17	11	13
1,1-Dichloropropene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1,2 Dibromoethane 1,2 Dichlorobenzene (v)	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10 < 10
1,2 Dichloroethane	< 5	< 5	< 5	<		< 5 < 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1,2 Dichloropropane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1,3 Dichlorobenzene (v)	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1,3-Dichloropropane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1,4 Dichlorobenzene (v)	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
111 Trichloroethane	6	< 5	5	<	5	< 5	5	< 5	5	6	< 5	< 5	5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1112Tetrachloroethane	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
112 Trichloroethane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1122Tetrachloroethane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
123-Trichlorobenzene	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
123-Trichloropropane	< 5	< 5	< 5	<	~	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
124-Trichlorobenzene (v)	< 5	< 5	< 5	<	~	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
124-Trimethylbenzene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
1245 Tetramethylbenz	< 5	< 5	< 5	<	-	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
135-Trimethylbenzene 2,2-Dichloropropane	< 5	< 5 < 5	< 5	<		< 5	< 5	< 5 < 5	< 1	< 5 < 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10 < 10	< 10 < 10	< 10	< 10 < 10
2,2-Dichloropropane 2-Chlorotoluene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
4-Chlorotoluene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Acetone	< 50	< 50	< 50		50	< 50	< 50	< 50	< 10	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Benzene	6	< 5	7		6	6	6	6	6	6	6	6	8	8	6	5	6	8	< 10	< 10	< 10	< 10	< 10
Bromobenzene	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Bromochloromethane	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Bromodichloromethane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Bromoform	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Bromomethane	< 5	< 5	< 5	<	-	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
c-1,2-Dichloroethene	520	380	520		420	410	540	500	390	480	420	440	580	490	440	440	440	490	610	590	720	540	680
c-1,3Dichloropropene	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Carbon Tetrachloride	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Chlorobenzene Chlorodibromomethane	< 5	< 5	< 5	<	~	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Chlorodifluoromethane	< 5 < 5	< 5	< 5	<	-	< 5	< 5	< 5 < 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5	< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10 < 10
Chloroethane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Chloroform	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Chloromethane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Dibromochloropropane	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Dibromomethane	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Dichlordifluoromethane	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Ethyl Benzene	< 5	< 5	< 5	<	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Freon 113	27	14	16		14	15	17	15	20	18	18	23	21	19	20	20	20	19	41	31	41	29	27
Hexachlorobutadiene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Isopropylbenzene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
m + p Xylene	< 10	< 10	< 10		10	< 10	< 10	< 10	< 2	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Methyl Ethyl Ketone	< 50 < 5	< 50	< 50	<	50	< 50 < 5	< 50	< 50 < 5	< 10	< 50	< 50	< 50	< 50 < 5	< 50 < 5	< 50	< 50	< 50 < 5	< 50 < 5	< 10 < 10	< 10	< 10 < 10	< 10	< 10
Methylene Chloride Methylisobutylketone	< 50	< 50	< 50	<	5 50	< 50	< 50	< 50	< 1	< 50	< 50	< 50	< 50	< 50	< 5	< 50	< 50	< 50	< 10	< 10	< 10	< 10	< 10
n-Butylbenzene	< 5	< 5	< 50	<	-	< 5	< 5	< 5	< 1	< 50	< 5	< 5	< 5	< 5	< 5	< 5	< 50	< 5	< 10	< 10	< 10	< 10	< 10
n-Propylbenzene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Naphthalene(v)	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
o Xylene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
p Diethylbenzene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
p-Ethyltoluene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
p-Isopropyltoluene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
sec-Butylbenzene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Styrene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
t-1,2-Dichloroethene	< 5	< 5	< 5	<		< 5	< 5	< 5	2	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
t-1,3Dichloropropene	< 5	< 5	< 5	<		< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
ter.ButylMethylEther	18	15	25		21	22	19	25	29	27	30	34	43	39	34	42	42	39	NA	NA	NA	NA	NA
tert-Butylbenzene		< 5	< 5	`	5	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tetrachloroethene	1000	1000	860 < 5		700	790	930	810	870	840	< 5	670	680	760 < 5	790	740	800	760	1000	930	1100	930	1300
Toluene Trichloroethene	< 5 530	< 5 450	< 5 610	<	5 500	< 5	< 5	< 5 520	< 1 490	< 5	< 5	< 5	< 5 520	< 5	< 5	< 5	< 5	< 5 490	< 10 540	< 10 480	< 10 630	< 10 460	< 10 560
Trichlorofluoromethane	< 5	< 5	< 5	-	500	< 5	< 5	< 5	< 1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Vinyl Chloride	43	28	37	L Ì	37	28	35	33	29	32	30	35	38	34	30	31	35	34	64	46	75	54	61
Total VOCs (µg/L)	2135	1886	2061		586	1763	2145	1893	1810	1930	1716	1622	1851	1804	1726	1687	1732	1804	2266	2082	2570	2016	2635
	2133	1000	2001	10		1/03	2143	1033	1010	1,20	1/10	1022	1031	1004	1/20	1007	1/32	1004	2200	2002	2370	2010	2033

TABLE 4-1 GROUNDWATER REMEDIATION SYSTEM LABORATORY RESULTS FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC EAST FARMINGDALE, NY

Shore Shore <th< th=""><th>Compound</th><th>IN-1 8/6/201</th><th>IN-1 3 10/16/2013</th><th>IN-1 11/6/2013</th><th>IN-1 1/20/2014</th><th>IN-2 8/07/2009</th><th>IN- 9/09/2</th><th></th><th>IN-2 11/25/2009</th><th>IN-2 12/15/2009</th><th></th><th>↓-2 /2010</th><th>IN-2 3/2/2010</th><th>IN-2 3/18/2010</th><th>IN-2 4/16/2010</th><th>IN-2 5/26/2010</th><th></th><th>↓-2 /2010</th><th>IN-2 7/21/2010</th><th>IN-2 1/6/2011</th><th>IN- 2/6/2</th><th></th><th>IN-2 3/16/2011</th><th>IN-2 4/8/2011</th><th>IN-2 2/17/2012</th><th>IN-2 3/30/2012</th></th<>	Compound	IN-1 8/6/201	IN-1 3 10/16/2013	IN-1 11/6/2013	IN-1 1/20/2014	IN-2 8/07/2009	IN- 9/09/2		IN-2 11/25/2009	IN-2 12/15/2009		↓-2 /2010	IN-2 3/2/2010	IN-2 3/18/2010	IN-2 4/16/2010	IN-2 5/26/2010		↓-2 /2010	IN-2 7/21/2010	IN-2 1/6/2011	IN- 2/6/2		IN-2 3/16/2011	IN-2 4/8/2011	IN-2 2/17/2012	IN-2 3/30/2012					
Schedure	1,1 Dichloroethane				22		< 1		< 1		<	< 1				< 1	-														
GRADE GRADE GRADE <thg< th=""><th></th><th>< 10</th><th>< 10</th><th></th><th>14</th><th>< 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th></th><th><</th><th>: 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th><</th><th>< 1</th><th>< 1</th><th>< 1</th><th></th><th></th><th>< 1</th><th></th><th>< 10</th><th></th></thg<>		< 10	< 10		14	< 1	< 1	< 1	< 1		<	: 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1			< 1		< 10						
Share Share <th< th=""><th>1,1-Dichloropropene</th><th>< 10</th><th>< 10</th><th>< 10</th><th>< 10</th><th>< 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th><</th><th>< 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th><</th><th>< 1</th><th>< 1</th><th>< 1</th><th>< '</th><th>1</th><th>< 1</th><th>< 1</th><th>< 10</th><th>< 10</th></th<>	1,1-Dichloropropene	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1	< '	1	< 1	< 1	< 10	< 10					
Showes Showes Showes Showes <th></th> <th></th> <th></th> <th></th> <th></th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th></th> <th><</th> <th>< 1</th> <th>< 1</th> <th></th> <th>< 1</th> <th>< 1</th> <th></th> <th></th> <th></th> <th></th> <th>< '</th> <th>1</th> <th></th> <th></th> <th></th> <th></th>						< 1	< 1	< 1	< 1		<	< 1	< 1		< 1	< 1					< '	1									
Science Science <t< th=""><th></th><th></th><th></th><th></th><th></th><th>< 1</th><th>< 1</th><th>< 1</th><th>< 1</th><th></th><th><</th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th>< 1</th><th></th><th></th><th></th><th></th><th>< '</th><th>1</th><th></th><th></th><th></th><th></th></t<>						< 1	< 1	< 1	< 1		<	< 1	< 1		< 1	< 1					< '	1									
30.00000000000000000000000000000000000						< 1	< 1		< 1		<	< 1				< 1	-	-													
Shale Shale <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>< 1</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>< 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									< 1			-				< 1															
Heak Heak Heak Heak H											-	-				< 1															
111 bringeland 6 6 6 6 6 6 6 6 6 6 6 6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>_</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th>< 1</th> <th></th>							-		_			-				< 1															
Circle Circle Circle Circle <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>_</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							-		_			-					-	-													
Displace												-						-													
NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR NUMBOR						<u> </u>	<u> </u>	,										· •													
Dyb Dyb D D D D											-	· -						-													
Displications Displica						<u>,</u> ,	· ·						. –				-	-													
Description																															
BALTONEMENTE BALTONE						< 1						-				< 1															
Dependence Description						< 1			< 1		2	1				< 1															
Displicit with with with with with with with wi						< 1			<1		-	1				< 1		-													
2 2 3 5 6 6 6 6 6 <									1-		<	1				< 1															
Schule Schule<							-		< 1		<	< 1				< 1															
Calboname Colo Colo Colo Colo <	2-Chlorotoluene	< 10	< 10	< 10	< 10	< 1	< 1		< 1		<	< 1		< 1	< 1	< 1	-	-					< 1		< 10						
Ache Ache Ache Ache Ache Ache B B					< 10	1 1	-		< 1		<	< 1				< 1	-	-													
Biomediane I I I I </th <th>Acetone</th> <th>< 50</th> <th>< 50</th> <th></th> <th>< 50</th> <th>< 10</th> <th>< 1</th> <th></th> <th>< 10</th> <th></th> <th><</th> <th>< 10</th> <th></th> <th></th> <th></th> <th>< 10</th> <th></th>	Acetone	< 50	< 50		< 50	< 10	< 1		< 10		<	< 10				< 10															
bit bit <th>Benzene</th> <th></th> <th></th> <th></th> <th>< 10</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th><</th> <th>< 1</th> <th>< 1</th> <th></th> <th>< 1</th> <th>< 1</th> <th><</th> <th>: 1</th> <th>< 1</th> <th>< 1</th> <th><</th> <th>1</th> <th>< 1</th> <th></th> <th>< 10</th> <th>< 10</th>	Benzene				< 10	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1		< 1	< 1	<	: 1	< 1	< 1	<	1	< 1		< 10	< 10					
Biole Biole C C C C C C	Bromobenzene	< 10	< 10		< 10	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1			< 1	<	< 1	< 1	< 1			< 1		< 10	< 10					
bit bit <th>Bromochloromethane</th> <th>< 10</th> <th>< 10</th> <th>< 10</th> <th>< 10</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th><</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th><</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>1</th> <th>< 1</th> <th>< 1</th> <th>< 10</th> <th>< 10</th>	Bromochloromethane	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1	< 1	1	< 1	< 1	< 10	< 10					
Some Some Some Some So	Bromodichloromethane					< 1		< 1								< 1															
>1-3 Determinante 40 40 40 40	Bromoform					< 1	< 1	< 1	< 1		<	< 1				< 1	<	< 1													
>1>Destone < <th><<th><<th><<th><<th><<t< th=""><th>Bromomethane</th><th></th><th></th><th></th><th></th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th></th><th><</th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th>< 1</th><th>_</th><th></th><th>< 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th></th></th></th>	< <th><<th><<th><<th><<t< th=""><th>Bromomethane</th><th></th><th></th><th></th><th></th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th></th><th><</th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th>< 1</th><th>_</th><th></th><th>< 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th></th></th>	< <th><<th><<th><<t< th=""><th>Bromomethane</th><th></th><th></th><th></th><th></th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th></th><th><</th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th>< 1</th><th>_</th><th></th><th>< 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th></th>	< <th><<th><<t< th=""><th>Bromomethane</th><th></th><th></th><th></th><th></th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th></th><th><</th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th>< 1</th><th>_</th><th></th><th>< 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th>	< <th><<t< th=""><th>Bromomethane</th><th></th><th></th><th></th><th></th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th></th><th><</th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th>< 1</th><th>_</th><th></th><th>< 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th>	< <t< th=""><th>Bromomethane</th><th></th><th></th><th></th><th></th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th></th><th><</th><th>< 1</th><th>< 1</th><th></th><th>< 1</th><th>< 1</th><th>_</th><th></th><th>< 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Bromomethane					< 1	< 1		< 1		<	< 1	< 1		< 1	< 1	_		< 1							
Calob Calob <th< th=""><th></th><th></th><th></th><th></th><th></th><th>1</th><th>1</th><th></th><th>1</th><th></th><th></th><th>2</th><th>3</th><th>5</th><th>3</th><th>4</th><th></th><th>-</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>						1	1		1			2	3	5	3	4		-	1												
Chologeneme Cal Cal Cal Cal						< 1	< 1				<	< 1				< 1															
Characterizationamenta in all in al						< 1	< 1		< 1		<	< 1	. –			< 1		-													
Characterization C D D									< 1		<	< 1				< 1															
Choloreshame C C C <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>< 1</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>< 1</th><th>_</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									< 1			-				< 1	_	-													
Chordondom K K K K					0		_		< 1			-				< 1															
Choomeshame C <thc< th=""> C C C C</thc<>												-				< 1															
Dibunomethiorporpone < <th><<th><<th><<th><<th><<t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th></th></th></th>	< <th><<th><<th><<th><<t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th></th></th>	< <th><<th><<th><<t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th></th>	< <th><<th><<t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></th>	< <th><<t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th>	< <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							-		_																	
Dibutomethane <						1 1	_		_			1				< 1	-	-													
Delebedingeometrane <												- 1	. –			< 1		-													
EntylBargene <						<u>,</u> ,	· ·				2	1				< 1															
Friend 13 21 20 23 33 c1 c1 <												-																			
Howachyonobundene <					33	< 1	< 1	< 1	< 1		<	1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1	< '	1	< 1	< 1	< 10						
m + p Sydene < 10	<th></th> <th>< 10</th> <th>< 10</th> <th>< 10</th> <th>< 10</th> <th>< 1</th> <th>< 1</th> <th></th> <th>< 1</th> <th></th> <th><</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th><</th> <th>< 1</th> <th>< 1</th> <th>< 1</th> <th></th> <th></th> <th></th> <th></th> <th>< 10</th> <th></th>		< 10	< 10	< 10	< 10	< 1	< 1		< 1		<	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1					< 10					
Methy fer by Kenone <10	Isopropylbenzene	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1	< 1	< 1	<	< 1	< 1	< 1	< '	1	< 1	< 1	< 10	< 10					
Methyline Chloride <10	m + p Xylene	< 10	< 10	< 10	< 10	< 2	< 2	< 2	< 2	< 2	<	< 2	< 2		< 2	< 2	<	< 2	< 2	< 1	< 1	1	< 1	< 1	< 10	< 10					
Methylisbautylketone <	Methyl Ethyl Ketone	< 10	< 10	< 10	< 10	< 10	< 1	0 < 10	< 10	< 10	<	< 10	< 10	< 10	< 10	< 10	<	< 10	< 10	< 10	< :	10	< 10	< 10	< 10	< 10					
n-Buy/blenzene <10						< 1			< 1		<	< 1				< 1															
n-Propyberzene <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10						< 10	-		< 10	-						< 10	_	-													
Naphthalene(v) < 10						< 1	< 1	< 1	< 1		<	< 1			< 1	< 1	-	-													
o Xydne < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 10 10 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 10 <					-		-		< 1		<	< 1				< 1	_														
pictrybergene <10							-					-				< 1															
p-Entylioluene <											<	< 1				< 1	_														
p-isparopyloluene <											<	1				< 1		-													
ase-Butylienzene <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <th></th> <th><</th> <th>1</th> <th></th>											<	1																			
Styren <																															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												-																			
10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1											-	· -																			
ter.Buy/Methy/Ether NA NA NA NA NA S </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>1</th> <th></th> <th>-</th> <th>· -</th> <th></th>							-		1		-	· -																			
tert-Butybenzene <5						5	5	6	6			7						8													
Tetrachorotehene 690 740 850 990 <1					< 5	< 1	< 1	< 1	<1		<	1			< 1	< 1	<	1													
Toluce 10 <10					990	< 1	< 1		< 1		<	1			< 1	< 1	-	-													
Trichoroethene 370 320 370 440 <1									< 1			-				< 1	-														
Trichorofluoromethane <		-				< 1			< 1			1-				< 1	_	-													
Vinyl Chloride 37 36 45 71 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1						< 1			< 1		<	1				< 1															
						< 1	< 1	< 1	< 1		<	< 1	< 1			< 1	<	1													
	Total VOCs (µg/L)	1554		1651	2117		T .				I					I '	İ														

TABLE 4-1 GROUNDWATER REMEDIATION SYSTEM LABORATORY RESULTS FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC EAST FARMINGDALE, NY

Compound	IN-2 4/30/2		IN-2 7/5/2012	IN- 8/6/2		IN-2 10/19/2012	IN-2 1/17/2013	IN-2 2/26/2013	IN-2 4/4/2013	IN-2 8/6/2013	IN-2 10/16/2013	IN-2 11/6/2013	IN-2 1/20/2014	EFFLUENT 8/07/2009	EFFLUENT 9/09/2009	EFFLUENT 10/12/2009	EFFLUENT 11/25/2009	EFFLUENT 12/15/2009	EFFLUENT 1/22/2010	EFFLUENT 3/2/2010	EFFLUENT 3/18/2010	EFFLUENT 4/16/2010	
1,1 Dichloroethane	4/30/20		< 10	-	012 10	< 10	< 10	< 10	4/4/2013	< 10	10/16/2013	11/6/2013	1/20/2014	< 1	9/09/2009	< 1	< 1	12/15/2009	1/22/2010	3/2/2010	3/18/2010	4/16/2010	5/26/2010 6/17/ < 1 <
1,1 Dichloroethene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1 <
1,1-Dichloropropene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
1,2 Dibromoethane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
1,2 Dichlorobenzene (v)	< 1		< 10	< 1		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1,2 Dichloroethane	< 1	.0	< 10	< 2	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1,2 Dichloropropane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1,3 Dichlorobenzene (v)	< 1		< 10	< 1		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1,3-Dichloropropane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1,4 Dichlorobenzene (v)	< 1		< 10	< 1		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
111 Trichloroethane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1112Tetrachloroethane 112 Trichloroethane	< 1		< 10 < 10		10 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10 < 10	< 10 < 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1122Tetrachloroethane	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1 <
123-Trichlorobenzene	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
123-Trichloropropane	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
124-Trichlorobenzene (v)	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
124-Trimethylbenzene	< 1		< 10	< 2		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
1245 Tetramethylbenz	< 1	0	< 10	< :	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
135-Trimethylbenzene	< 1		< 10	< 1		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
2,2-Dichloropropane	< 1		< 10	< 3		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
2-Chlorotoluene	< 1		< 10	< 1		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
4-Chlorotoluene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Acetone	< 1		< 10 < 10	<		< 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10	< 10 < 10	< 10	< 10 < 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 <
Benzene Bromobenzene	< 1		< 10	< .		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Bromochloromethane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1 <
Bromodichloromethane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
Bromoform	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Bromomethane	< 1	0	< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
c-1,2-Dichloroethene	< 1		< 10	<	10	< 10	< 10	< 10	< 10	250	350	360	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
c-1,3Dichloropropene	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Carbon Tetrachloride	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Chlorobenzene	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Chlorodibromomethane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Chlorodifluoromethane Chloroethane	< 1		< 10 < 10		10 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10	< 10	< 10 < 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Chloroform	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
Chloromethane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
Dibromochloropropane	< 1		< 10	< :		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Dibromomethane	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Dichlordifluoromethane	< 1		< 10	< 2		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Ethyl Benzene	< 1		< 10	< 2		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Freon 113	< 1		< 10	< 1		< 10	< 10	< 10	< 10	< 10	< 10	12	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Hexachlorobutadiene	< 1		< 10 < 10	<	10 10	< 10 < 10	< 10 < 10	< 10	< 10 < 10	< 10	< 10	< 10 < 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Isopropylbenzene m + p Xylene	< 1		< 10		10	< 10	< 10	< 10 < 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	20	< 1	< 2	20	< 1 < 7	< 1	< 2	< 2 <
Methyl Ethyl Ketone	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 <
Methylene Chloride	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
Methylisobutylketone	< 1	0	< 10	< 1	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 <
n-Butylbenzene	< 1	0	< 10	<	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
n-Propylbenzene	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Naphthalene(v)	< 1		< 10	< 3		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
o Xylene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
p Diethylbenzene p-Ethyltoluene	< 1		< 10 < 10	< 1		< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10	< 10	< 10 < 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
p-Ethyltoluene p-Isopropyltoluene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
sec-Butylbenzene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
Styrene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1 <
t-1,2-Dichloroethene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <
t-1,3Dichloropropene	< 1		< 10	<		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
ter.ButylMethylEther		A	NA		NA	NA	NA	NA	NA	NA	NA	NA	< 10	2	1	2	2	2	2	4	3	4	3 <
tert-Butylbenzene	< 1		< 10	< :	10	< 10	< 10	< 10	< 10	< 5	< 5	< 5	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Tetrachloroethene	< 1		< 10		10	< 10	< 10	< 10	< 10	170	560	750	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Toluene	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Trichloroethene	< 1		< 10		10	< 10	< 10	< 10	< 10	140	290	350	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Trichlorofluoromethane Vinyl Chloride	< 1		< 10		10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Vinyl Chloride Total VOCs (µg/L)	< 1	U	< 10	< :	10	< 10	< 10	< 10	< 10	< 11	30	34	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 <
Total YOUS (µg/L)	l			1																1		1	

TABLE 4-1 GROUNDWATER REMEDIATION SYSTEM LABORATORY RESULTS FAIRCHILD REPUBLIC MAIN PLANT SITE MAIRCLL, INC. EAST FARMINGDALE, NY

	UENT	FFFI	LIENT	EFFLUEN	т	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF
Compound	2010		2010	8/12/2010		/6/2011	2/6/2011	3/16/2011	4/8/2011	2/17/2012	3/30/2012	4/30/2012	7/5/2012	8/6/2012	10/19/2012	1/17/2013	2/26/2013	4/4/2013	8/6/2013	10/16/2013	11/6/20	
1,1 Dichloroethane	1	<	: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,1 Dichloroethene	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,1-Dichloropropene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,2 Dibromoethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,2 Dichlorobenzene (v)	1		1	< 1	_	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,2 Dichloroethane 1,2 Dichloropropane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10 < 10	< 10 < 10	< 10	< 10 < 10	< 10	< 10	< 10	
1,3 Dichlorobenzene (v)	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,3-Dichloropropane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,4 Dichlorobenzene (v)	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
111 Trichloroethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1112Tetrachloroethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
112 Trichloroethane	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1122Tetrachloroethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
123-Trichlorobenzene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
123-Trichloropropane	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
124-Trichlorobenzene (v)	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
124-Trimethylbenzene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1245 Tetramethylbenz	1		1	< 1	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
135-Trimethylbenzene 2,2-Dichloropropane	1		1	< 1	_	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10 < 10	< 10 < 10	< 10	< 10	< 10	< 10	< 10 < 10	< 10	
2,2-Dichloropropane 2-Chlorotoluene	1		1	< 1	_	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10 < 10	< 10	< 10	< 10	
4-Chlorotoluene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Acetone	10		10	< 10	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Benzene	1		10	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Bromobenzene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Bromochloromethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Bromodichloromethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Bromoform	1	~	1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Bromomethane	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
c-1,2-Dichloroethene	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	190	< 10	
c-1,3Dichloropropene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Chlorobenzene	1		1	< 1	_	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Chlorodibromomethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Chlorodifluoromethane Chloroethane	1		1	< 1	_	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10 < 10	< 10	< 10 < 10	< 10	
Chloroform	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Chloromethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Dibromochloropropane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Dibromomethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Dichlordifluoromethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Ethyl Benzene	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Freon 113	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Hexachlorobutadiene	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Isopropylbenzene	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
m + p Xylene	2		2	< 2		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Methyl Ethyl Ketone	10		10	< 10		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Methylene Chloride	1		1 10	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Methylisobutylketone	10		10	< 10		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10 < 10	< 10 < 10	< 10	< 10	< 10 < 10	< 10	< 10 < 10	< 10	
n-Butylbenzene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
n-Propylbenzene Naphthalene(v)	2		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
o Xylene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
p Diethylbenzene	1		1	< 1		< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
p-Ethyltoluene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
p-Isopropyltoluene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
sec-Butylbenzene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Styrene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
t-1,2-Dichloroethene	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
t-1,3Dichloropropene	1	<	: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
ter.ButylMethylEther	1		3	3		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
tert-Butylbenzene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Tetrachloroethene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	120	< 10	
Toluene	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Trichloroethene	1		: 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	90	< 10	
Trichlorofluoromethane	1		1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Vinyl Chloride Total VOCs (µg/L)	1	<	1	< 1	_	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		3/2	3/2005	3/2	4/2005	3/2	5/2005	3/2	8/2005	3/2	29/2005
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading								
Outfall 001 - Treated Groundwat	ter Remediatio	n Discharge:			(lbs/gal)								
Flow	Monitor	360,000	gpd	450,000		311,175		307,510		276,343		626,252	
pH (range)	6.5 t	to 8.5	SU	7.0		7.1		6.5		7.0		7.2	
Total Dissolved Solids	Monitor	1,000	mg/L	130	154	150	123	120	97	110	80	81	134
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL								
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL								
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL								
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL								
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL								
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL								
Benzene	Monitor	1.0	ug/L	BMDL	BMDL								
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL								
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL								
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL								
Iron, Total	Monitor	Monitor	ug/L	130	0.5	110	90	150	121	200.0	145	480	791
Manganese, Total	Monitor	Monitor	ug/L	60	0.2	60	49	50	40	70	51	60	99
Zinc, Total	Monitor	Monitor	ug/L	10	0.0	20	16	20	16	BMDL	BMDL	30	49

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		3/30	0/2005	3,	/31/2005	4	/1/2005	4	/4/2005	4/ 1	1/2005
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.	Mass Loading						
Outfall 001 - Treated Groundwa	ter Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)
Flow	Monitor	360,000	gpd	440,597		498,878		504,460		467,857		502,279	
pH (range)	6.5 t	o 8.5	SU	6.8		6.8		6.8		6.8		6.9	
Total Dissolved Solids	Monitor	1,000	mg/L	110	128	110	144	120	159	110	135	110	145
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	470	545	470	617	350	465	330	406	300	397
Manganese, Total	Monitor	Monitor	ug/L	60	70	60	79	60	80	60	74	60	79
Zinc, Total	Monitor	Monitor	ug/L	20	23	20	26	50	66	20	25	20	26

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		4	/13/2005	4	/18/2005	5	/4/2005	6	6/1/2005	7	/7/2005	1	8/3/2005	9	9/9/2005
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading												
Outfall 001 - Treated Groundwat	ter Remediatio	n Discharge:			(lbs/gal)												
Flow	Monitor	360,000	gpd	502,279		502,279		502,279		502,279		502,279		603,360)	551,520	
pH (range)	6.5 t	to 8.5	SU	6.6		6.9		7.1		7.3		7.1		7.2		7.1	
Total Dissolved Solids	Monitor	1,000	mg/L	110	145	120	159	110	145	110	145	95	126	130	206	130	189
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL												
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL												
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL												
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL												
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL												
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL												
Benzene	Monitor	1.0	ug/L	BMDL	BMDL												
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL												
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL												
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL												
Iron, Total	Monitor	Monitor	ug/L	360	476	320	423	310	410	280	370	320	423	330	524	270	392
Manganese, Total	Monitor	Monitor	ug/L	70	93	60	79	60	79	60	79	70	93	60	95	70	102
Zinc, Total	Monitor	Monitor	ug/L	20	26	20	26	20	26	60	79	20	26	20	32	10	15

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		1	0/7/2005	1	1/5/2006	2	2/3/2006	3	3/2/2006	4/	5/2006	5	5/3/2006
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading										
Outfall 001 - Treated Groundwa	ter Remediatio	n Discharge:			(lbs/gal)										
Flow	Monitor	360,000	gpd	432,000		446,400		450,720		419,040		361,440		361,440	
pH (range)	6.5 t	o 8.5	SU	7.1		7.1		7.1		7.1		6.8		7	
Total Dissolved Solids	Monitor	1,000	mg/L	110	125	100	117	110	130	130	143	230	219	140	133
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL										
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL										
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
Benzene	Monitor	1.0	ug/L	BMDL	BMDL										
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL										
Iron, Total	Monitor	Monitor	ug/L	260	296	280	329	320	380	290	320	290	276	170	162
Manganese, Total	Monitor	Monitor	ug/L	70	80	70	82	70	83	70	77	60	57	70	67
Zinc, Total	Monitor	Monitor	ug/L	20	23	20	23	30	36	10	11	20	19	30	29

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		(6/7/2006	7	7/6/2006		B/1/2006		9/6/2006	1	0/4/2006	1	0/4/2006
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading										
Outfall 001 - Treated Groundwat	er Remediation	n Discharge:			(lbs/gal)										
Flow	Monitor	360,000	gpd	349,920		368,640		315,360		370,080		270,720		270,720	
pH (range)	6.5 t	o 8.5	SU	7.2		7.1		7.2		7.1		6.8		6.8	
Total Dissolved Solids	Monitor	1,000	mg/L	150	138	180	175	110	91	180	175	110	78	110	78
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL										
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL										
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
Benzene	Monitor	1.0	ug/L	BMDL	BMDL										
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL										
Iron, Total	Monitor	Monitor	ug/L	220	203	250	243	190	158	220	214	240	171	240	171
Manganese, Total	Monitor	Monitor	ug/L	80	74	80	78	70	58	70	68	80	57	80	57
Zinc, Total	Monitor	Monitor	ug/L	20	18	20	19	20	17	30	29	20	14	20	14

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		12	2/4/2006	1	0/4/2006	2/	27/2007	3	/20/2007	4	4/4/2007	5/	/11/2007
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.	Mass Loading								
Outfall 001 - Treated Groundwat	er Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)								
Flow	Monitor	360,000	gpd	286,900		270,720		268,230		135,735		108,710		61,155	
pH (range)	6.5 t	to 8.5	SU	7.0		6.8		7.2		7.0		6.9		7.2	
Total Dissolved Solids	Monitor	1,000	mg/L	120	91	110	78	170	120	140	50	110	31	140	23
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL								
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL								
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL								
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL								
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL								
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL								
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL								
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL								
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL								
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL								
Iron, Total	Monitor	Monitor	ug/L	300	227	240	171	850	600	270	96	250	72	50	8
Manganese, Total	Monitor	Monitor	ug/L	79	60	80	57	80	56	80	29	80	23	100	16
Zinc, Total	Monitor	Monitor	ug/L	20	15	20	14	20	14	20	7	20	6	20	3

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		6	/6/2007	7/	12/2007	8/	14/2007	9/	14/2007	10	/4/2007	11	/15/2007
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading										
Outfall 001 - Treated Groundwat	er Remediatio	n Discharge:			(lbs/gal)										
Flow	Monitor	360,000	gpd	110,705		184,174		270,720		183,091		274,435		346,871	
pH (range)	6.5 t	o 8.5	SU	6.9		6.5		6.7		6.1		6.1		6.4	
Total Dissolved Solids	Monitor	1,000	mg/L	130	38	120	58	130	93	160	77	180	130	130	119
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL										
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL										
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
Benzene	Monitor	1.0	ug/L	BMDL	BMDL										
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL										
Iron, Total	Monitor	Monitor	ug/L	350	102	270	131	290	207	260	125	260	188	300	274
Manganese, Total	Monitor	Monitor	ug/L	80	23	80	39	70	50	80	39	80	58	80	73
Zinc, Total	Monitor	Monitor	ug/L	30	9	30	15	10	7	20	10	20	14	10	9

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		12/	11/2007	1/9	9/2008	2	/15/2008	4/2/	2008	5/1
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.						
Outfall 001 - Treated Groundwat	ter Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)	
Flow	Monitor	360,000	gpd	358,253		243,027		203,441		148,876		245,678
pH (range)	6.5 t	to 8.5	SU	6.3		6.5		6.1		6.2		6.2
Total Dissolved Solids	Monitor	1,000	mg/L	150	141	150	96	98	52	130	51	140
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	260	245	260	166	300	161	340	133	240
Manganese, Total	Monitor	Monitor	ug/L	80	75	80	51	80	43	80	31	80
Zinc, Total	Monitor	Monitor	ug/L	20	19	20	13	10	5	20	8	20

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		6/2008	6/	5/2008	7/15/	2008	8/7/	2008	9/15	/2008
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading
Outfall 001 - Treated Groundwat	er Remediatio	n Discharge:		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)
Flow	Monitor	360,000	gpd		77,152		161,955		120,737		227,032	
pH (range)	6.5 t	to 8.5	SU		7.3		7.2		7.2		7.2	
Total Dissolved Solids	Monitor	1,000	mg/L	91	130	26	170	72	130	41	140	84
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	155	470	95	300	128	330	105	410	245
Manganese, Total	Monitor	Monitor	ug/L	52	80	16	80	34	90	29	80	48
Zinc, Total	Monitor	Monitor	ug/L	13	10	2	20	9	20	6	20	12

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		10/17/	/2008
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading
Outfall 001 - Treated Groundwa	ter Remediatio	n Discharge:			(lbs/gal)
Flow	Monitor	360,000	gpd	132,600	
pH (range)	6.5	to 8.5	SU	6.9	
Total Dissolved Solids	Monitor	1,000	mg/L	120	42
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	900	314
Manganese, Total	Monitor	Monitor	ug/L	80	28
Zinc, Total	Monitor	Monitor	ug/L	20	7

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		11/14	/2008	12/10	/2008	1/13/	2009	2/11	/2009
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading
Outfall 001 - Treated Groundwat	ter Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)
Flow	Monitor	360,000	gpd	133,178		123,530		73,003		100,219	
pH (range)	6.5 t	o 8.5	SU	7.1		6.9		6.4		6.9	
Total Dissolved Solids	Monitor	1,000	mg/L	120	42	190	62	170	33	110	29
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	360	126	190	62	380	73	420	111
Manganese, Total	Monitor	Monitor	ug/L	110	39	90	29	80	15	90	24
Zinc, Total	Monitor	Monitor	ug/L	30	11	20	7	20	4	20	5

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		3/13	3/2009	4/24	4/2009	5/12	/2009	6/9	/2009
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading
Outfall 001 - Treated Groundwa	ter Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)
Flow	Monitor	360,000	gpd	101,438		52,045		116,838		261,685	
pH (range)	6.5 t	o 8.5	SU	6.9		5.6		5.8		5.6	
Total Dissolved Solids	Monitor	1,000	mg/L	150	40	140	19	130	40	140	96
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	380	101	610	84	490	151	430	296
Manganese, Total	Monitor	Monitor	ug/L	80	21	80	11	90	28	80	55
Zinc, Total	Monitor	Monitor	ug/L	20	5	30	4	30	9	30	21

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		7/1	6/2009	8/7	/2009	9/9	/2009	10/1	2/2009	11/2
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.						
Outfall 001 - Treated Groundwat	ter Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)	
Flow	Monitor	360,000	gpd	178,483		286,247		229,039		278,712		239,292
pH (range)	6.5 t	o 8.5	SU	6.7		5.4		5.6		5.4		6.8
Total Dissolved Solids	Monitor	1,000	mg/L	130	61	230	173	120	72	130	95	170
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	390	183	910	686	480	289	490	359	430
Manganese, Total	Monitor	Monitor	ug/L	80	38	70	53	90	54	80	59	90
Zinc, Total	Monitor	Monitor	ug/L	20	9	60	45	30	18	20	15	20

BMDL=Below Method Detection Limit

288000

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		/2009	12/	15/2009	1/2	2/2010	3/	2/2010	3/18/2	2010
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Mass Loading	Conc.	Mass Loading						
Outfall 001 - Treated Groundwat	er Remediatio	n Discharge:		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)
Flow	Monitor	360,000	gpd		231,963		286,124		289,581		257,176	
pH (range)	6.5 t	o 8.5	SU		7.0		7.0		7.2		7.3	
Total Dissolved Solids	Monitor	1,000	mg/L	107	110	67	100	75	110	84	120	81
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	271	380	232	400	301	350	267	150	102
Manganese, Total	Monitor	Monitor	ug/L	57	90	55	90	68	90	69	90	61
Zinc, Total	Monitor	Monitor	ug/L	13	10	6	20	15	20	15	20	14

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		4/1	6/2010	5/2	6/2010	6/1	7/2010	7/2	21/2010	8/1:	2/2010
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading
Outfall 001 - Treated Groundwat	ter Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)
Flow	Monitor	360,000	gpd	248,474		89,709		185,777		257,475		309,972	
pH (range)	6.5 t	to 8.5	SU	7.3		7.3		7.3		7.2		7.4	
Total Dissolved Solids	Monitor	1,000	mg/L	130	85	110	26	120	59	140	95	130	106
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	120	78	150	35	120	59	140	95	140	114
Manganese, Total	Monitor	Monitor	ug/L	90	59	90	21	90	44	90	61	90	73
Zinc, Total	Monitor	Monitor	ug/L	10	7	0	0	20	10	10	7	20	16

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		9/	14/2010	10/*	3/2010	11/	19/2010	12/	21/2010	1/	6/2011	2/1
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.
Outfall 001 - Treated Groundwa	ter Remediatio	n Discharge:			(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)	
Flow	Monitor	360,000	gpd	236,656		607,890		116,923		74,406		242,024		273,109
pH (range)	6.5 t	o 8.5	SU	7.1		7.4		7.2		7.2		7.2		7.7
Total Dissolved Solids	Monitor	1,000	mg/L	120	75	180	288	280	86	110	22	100	64	100
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	160	100	150	240	140	43	150	29	130	83	120
Manganese, Total	Monitor	Monitor	ug/L	90	56	90	144	90	28	90	18	90	57	90
Zinc, Total	Monitor	Monitor	ug/L	20	12	20	32	30	9	30	6	20	13	30

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		0/2011	3/	16/2011	4/8/	2011	2/17	/2012	3/30)/2012	4/
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Mass Loading	Conc.								
Outfall 001 - Treated Groundwa	ter Remediatio	n Discharge:		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)	
Flow	Monitor	360,000	gpd		268,682		288,000		288,000		288,000		288,000
pH (range)	6.5 t	o 8.5	SU		7.4		7.4		7.2		7.3		7.5
Total Dissolved Solids	Monitor	1,000	mg/L	72	120	85	120	91	98	74	110	83	130
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL								
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL								
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL								
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL								
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL								
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL								
Benzene	Monitor	1.0	ug/L	BMDL	BMDL								
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL								
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL								
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL								
Iron, Total	Monitor	Monitor	ug/L	86	120	85	120	91	160	121	150	114	140
Manganese, Total	Monitor	Monitor	ug/L	65	90	64	90	68	100	76	100	76	90
Zinc, Total	Monitor	Monitor	ug/L	22	40	28	40	30	40	30	30	23	30

Site No 1-52-130

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

	Discharge	Limitations		30/2012	7	/5/2012	8	/6/2012	10/	19/2012	1/	/17/2013	2	/26/2013	4/
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Mass Loading	Conc.										
Outfall 001 - Treated Groundwat	ter Remediatio	n Discharge:		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)	
Flow	Monitor	360,000	gpd		288,000		288,000		288,000		288,000		288,000		288,000
pH (range)	6.5 t	o 8.5	SU		6.9		7.0		7.2		7.4		7.3		6.9
Total Dissolved Solids	Monitor	1,000	mg/L	99	106	80	126	96	117	89	119	90	115	87	98
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL										
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL										
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL										
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL										
Benzene	Monitor	1.0	ug/L	BMDL	BMDL										
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL										
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL										
Iron, Total	Monitor	Monitor	ug/L	106	150	114	160	121	170	129	170	129	150	114	3300
Manganese, Total	Monitor	Monitor	ug/L	68	90	68	100	76	90	68	100	76	100	76	120
Zinc, Total	Monitor	Monitor	ug/L	23	40	30	40	30	30	23	40	30	40	30	30

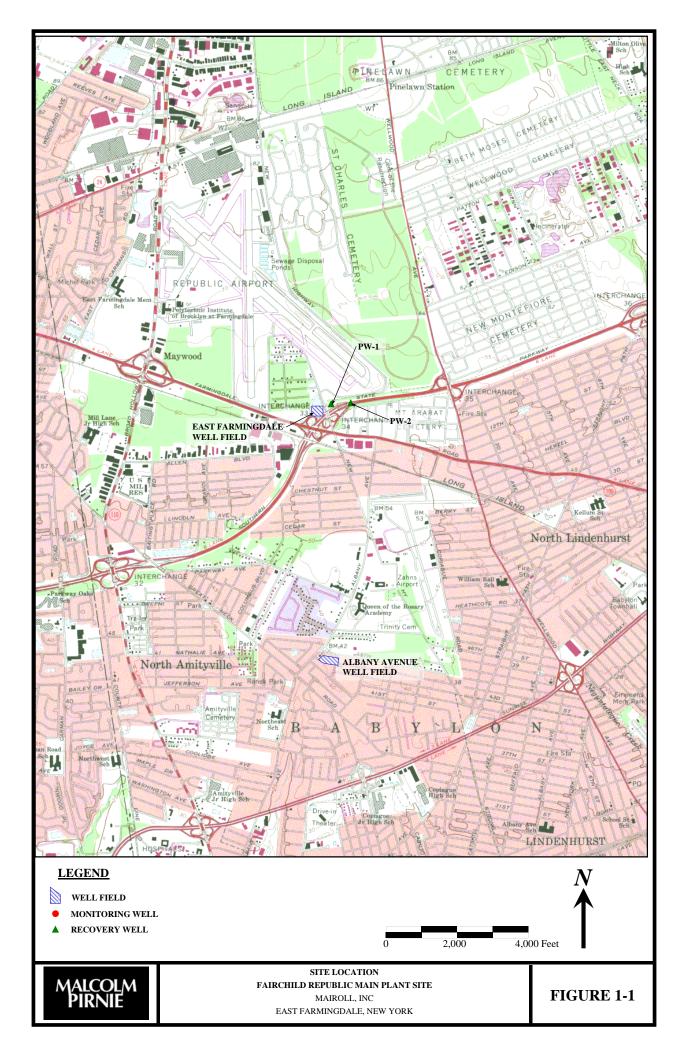
Site No 1-52-130

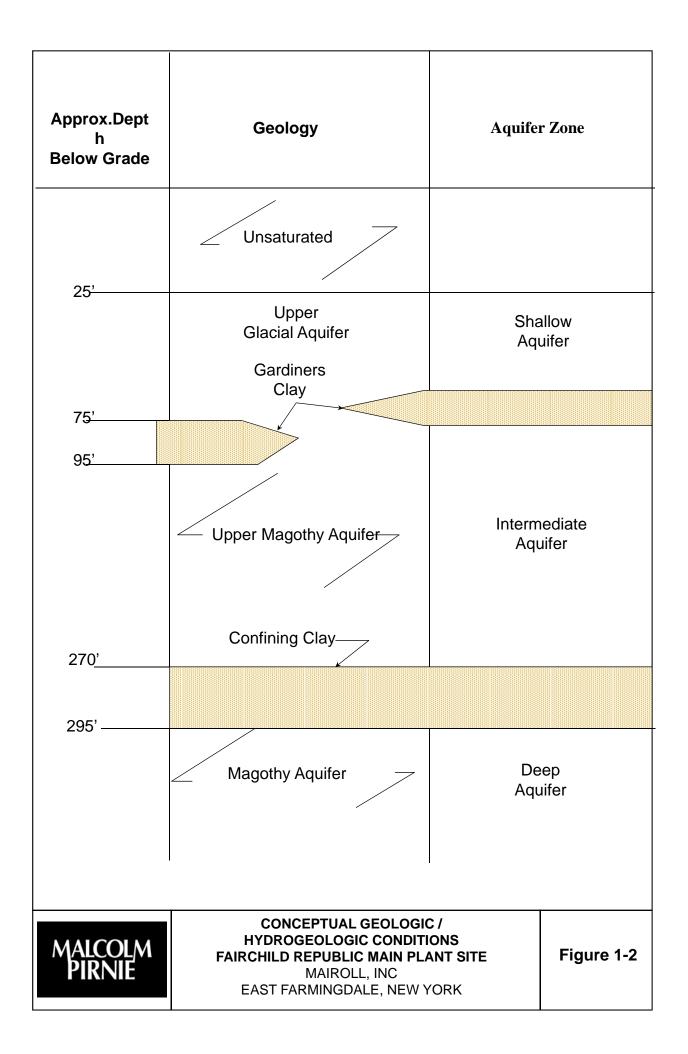
EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

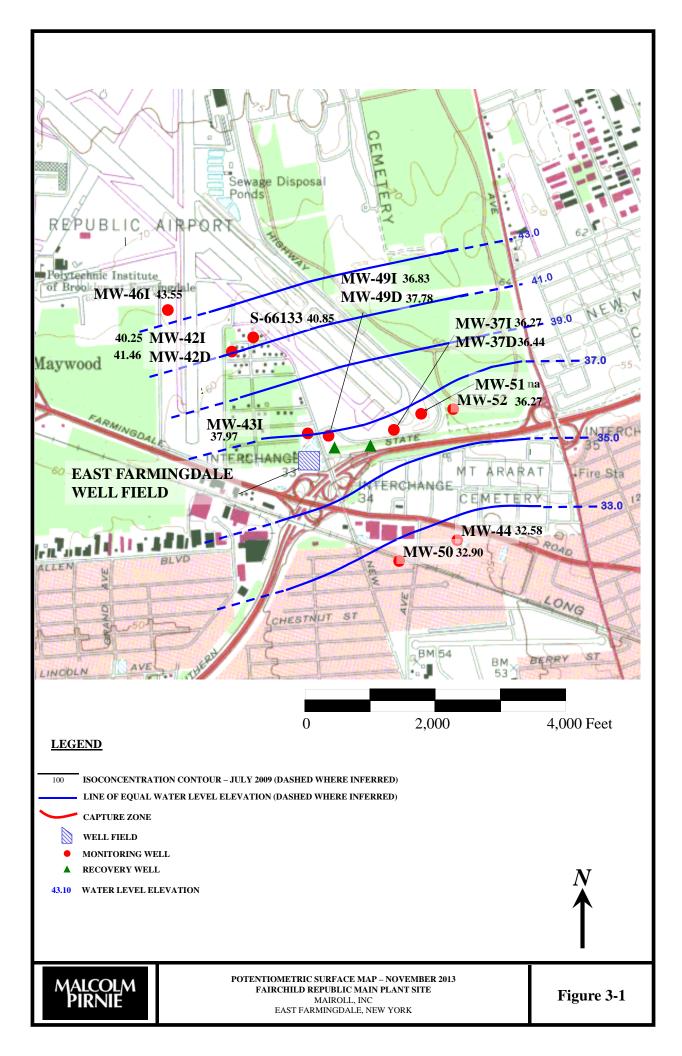
the discharges from the treatment facility to infiltration basins, shall be limited and monitored by the operator as specified below:

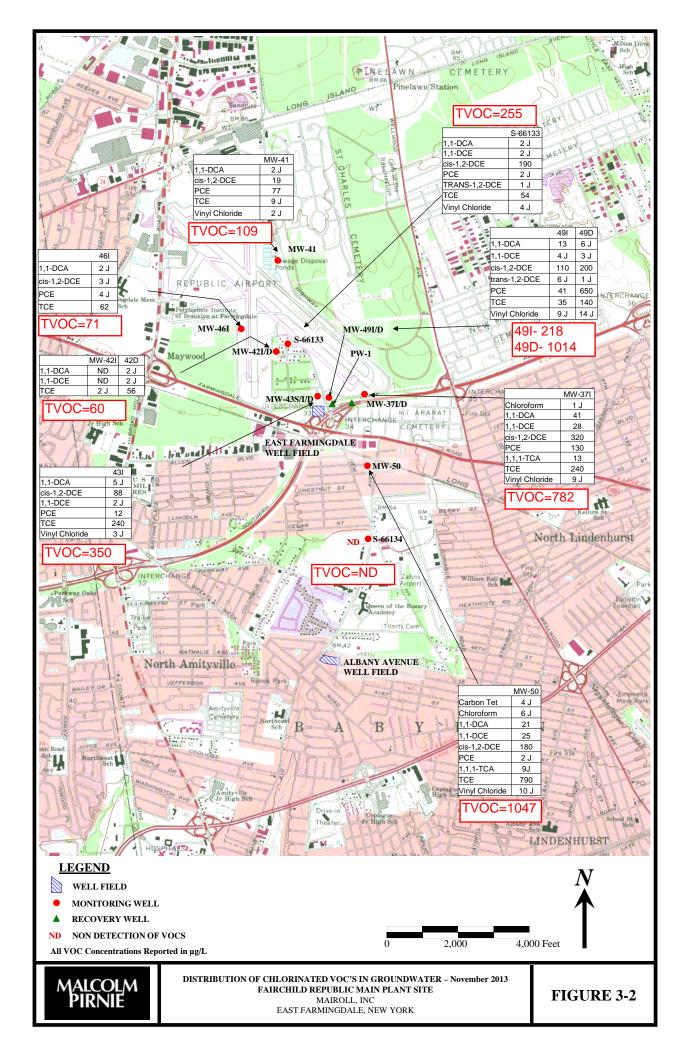
	Discharge	Limitations		4/2013	8	/6/2013	10	/16/2013	10	0/16/2013
Outfall Number and Parameter	Daily Ave.	Daily Max	Units	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading	Conc.	Mass Loading
Outfall 001 - Treated Groundwa	ter Remediatio	n Discharge:		(lbs/gal)		(lbs/gal)		(lbs/gal)		(lbs/gal)
Flow	Monitor	360,000	gpd		288,000		288,000		288,000	
pH (range)	6.5 t	to 8.5	SU		7.1		6.8		6.8	
Total Dissolved Solids	Monitor	1,000	mg/L	74	113	86	120	91	113	86
Vinyl Chloride	Monitor	2.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1 Dichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
cis 1,2 Dichloroethene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	Monitor	7.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1 Trichloroethane	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	Monitor	1.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethylene	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Freon 113	Monitor	5.0	ug/L	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Iron, Total	Monitor	Monitor	ug/L	2501	240	182	200	152	190	144
Manganese, Total	Monitor	Monitor	ug/L	91	100	76	110	83	100	76
Zinc, Total	Monitor	Monitor	ug/L	23	20	15	50	38	50	38

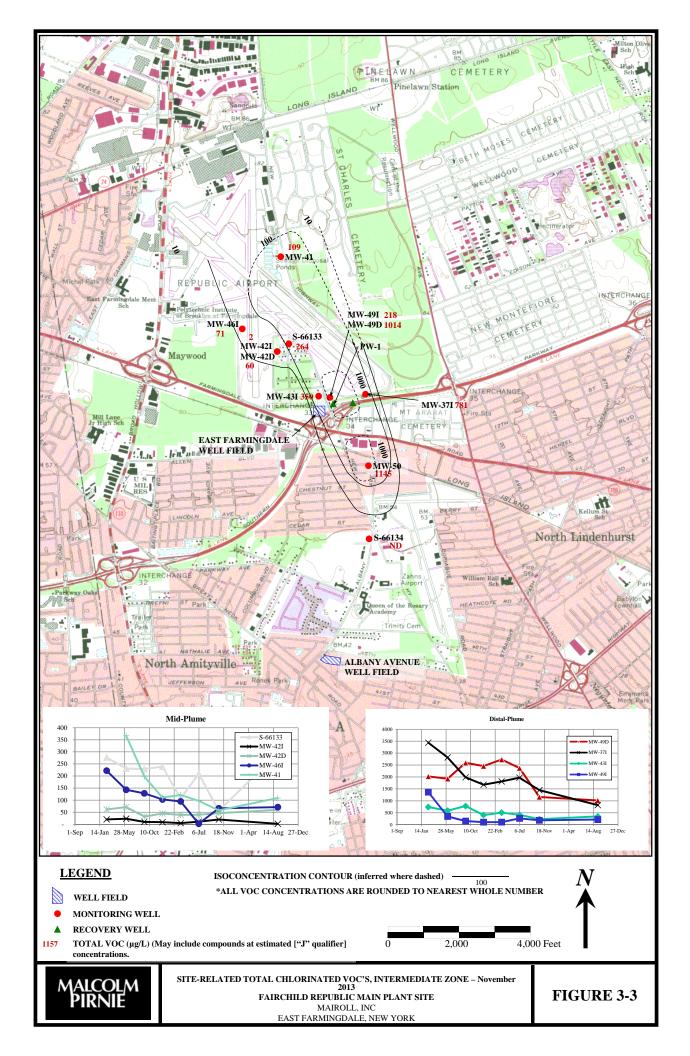
TABLE 4-3 GROUNDWATER REMEDIATION SYSTEM PERFORMANCE FAIRCHILD PLANT SITE MAIROLL, INC. EAST FARMINGDALE, NEW YORK

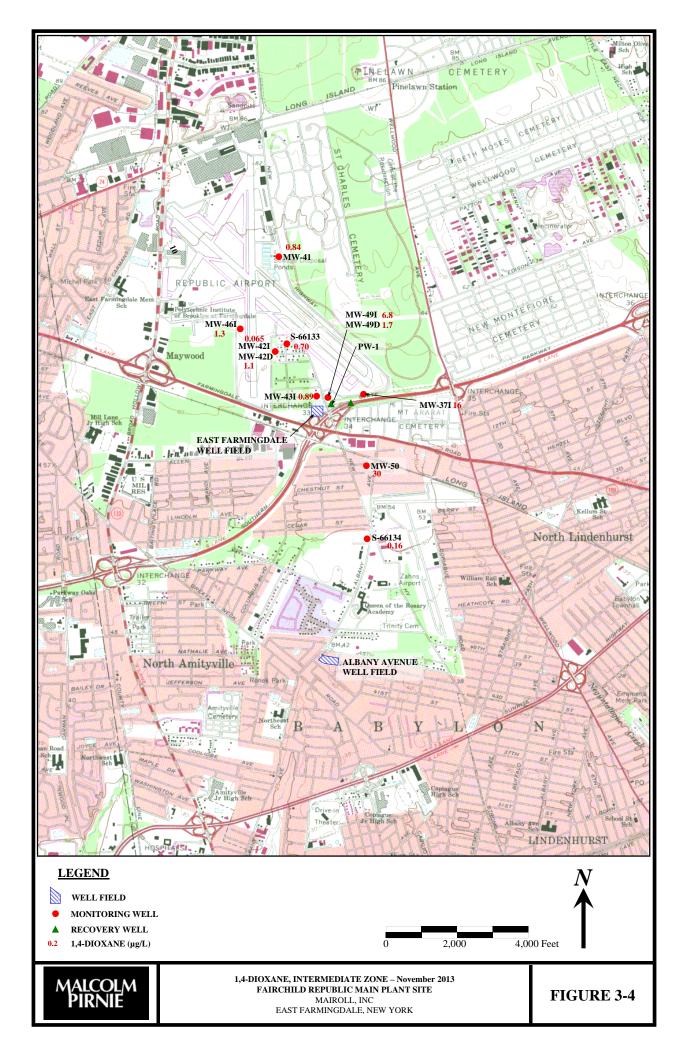

	Input Parameters	Total Influent	Water	Mass	Cumulat	ive
Date	Meter	VOC Concentration	Extracted	Removed ⁽¹⁾	Mass Rem	
	(gallons)	(ug/L)	(gallons)	(pounds)	(pounds)	(gallons) ⁽¹⁾
ebruary 21, 2005	50,000	2733	50,000	1.14	1	0.1
/larch 22, 2005	50,000		0	0.00	1	0.1
March 23, 2005	500,000	1704	450,000	6.40	8	0.6
/larch 24, 2005	811,175	1861	311,175	4.83	12	1.0
March 25, 2005	1,118,685	1761	307,510	4.52	17	1.4
March 28, 2005	1,947,713	4388	829,028	30.37	47	3.9
March 29, 2005	2,573,965	2908	626,252	15.20	62	5.2
March 30, 2005	3,014,562	1815	440,597	6.68	69	5.7
March 31, 2005	3,513,440	1937	498,878	8.07	77	6.4
April 1, 2005	4,017,900	1876	504,460	7.90	85	7.0
April 4, 2005	5,421,470	1976	1,403,570	23.15	108	8.9
April 11, 2005 April 13, 2005	8,937,425 9,924,993	2016 1937	3,515,955 987,568	59.17 15.97	167 183	13.8
April 18, 2005	12.313.446	2030	2.388.453	40.48	224	18.5
May 4, 2005	20,567,655	1864	8,254,209	128.44	352	29.1
June 1, 2005	35,075,455	1822	14,507,800	220.66	573	47.3
July 7, 2005	53,098,507	1832	18,023,052	275.64	849	70.1
August 1, 2005	68,166,757	2108	15,068,250	265.17	1,114	92.0
September 9, 2005	89,174,306	1748	21.007.549	306.55	1,420	117.3
October 7, 2005	99,842,906	1820	10,668,600	162.09	1,582	130.7
January 5, 2006	122,738,349	1904	22,895,443	363.91	1,946	160.7
ebruary 10, 2006	139,016,185	1958	16,277,836	266.07	2,212	182.7
March 2, 2006	146,528,586	1983	7,512,401	124.36	2,337	193.0
April 5, 2006	157,793,670	1877	11,265,084	176.49	2,513	207.5
May 3, 2006	165,619,765	1961	7,826,095	128.12	2,641	218.1
June 9, 2006	175,552,550	2026	9,932,785	167.99	2,809	232.0
July 6, 2006	178,348,119	2917	2,795,569	68.08	2,877	237.6
August 4, 2006	184,265,939	2140	5,917,820	105.72	2,983	246.3
September 6, 2006	190,132,440	2130	5,866,501	104.31	3,087	255.0
October 6, 2006	197,101,368	2103	6,968,928	122.35	3,210	265.1
December 8, 2006	205,711,143	2393	8,609,775	172.00	3,382	279.3
February 27, 2007	213,758,086	3448	8,046,943	231.62	3,613	298.4
March 20, 2007	217,830,141	2295	4,072,055	78.02	3,691	304.8
April 4, 2007	221,091,447 222,926,107	2125	3,261,306	57.85	3,749	309.6
May 11, 2007 June 13, 2007	222,926,107	2776	1,834,660	42.52	3,792	313.1
	231,772,495	2429	3,321,160	67.34	3,859	318.7
July 12, 2007 August 10, 2007	236,491,693	2064 1975	5,525,228 4,719,198	95.20 77.81	3,954 4,032	326.5 333.0
September 14, 2007	241,984,437	2096	5.492.744	96.11	4,032	340.9
October 4, 2007	244,891,682	2188	2,907,245	53.10	4,120	345.3
November 15, 2007	259,460,267	2336	14,568,585	284.10	4,465	368.7
December 11, 2007	268,774,842	1934	9,314,575	150.38	4,616	381.2
January 9, 2008	275,822,619	2034	7,047,777	119.67	4,736	391.0
February 15, 2008	283,349,950	2125	7,527,331	133.53	4,869	402.1
April 2, 2008	290,347,144	2189	6,997,194	127.87	4,997	412.6
May 16, 2008	301,156,974	2172	10,809,830	196.00	5,193	428.8
June 6, 2008	302,777,174	2536	1,620,200	34.30	5,227	431.6
July 18, 2008	309,586,726	1986	6,809,552	112.90	5,340	441.0
August 7, 2008	310,676,375	2119	1,089,649	19.28	5,359	442.6
September 5, 2008	316,940,404	2180	6,264,029	114.00	5,473	452.0
October 17, 2008	320,987,284	2832	4,046,880	95.67	5,569	459.9
November 14, 2008	324,716,281	2329	3,728,997	72.50	5,642	465.9
December 10, 2008	327,928,061 330,422,573	2266	3,211,780	60.76	5,702	470.9
January 13, 2009	333,329,981	2240	2,494,512	46.65	5,749	474.7
ebruary 11, 2009 March 13, 2009	336,371,713	2086 2192	2,907,408 3,041,732	50.63 55.66	5,800 5,855	478.9
	338,557,617			44.27		483.5
April 24, 2009 May 12, 2009	340,660,702	2426 2206	2,185,904 2,103,085	38.73	5,900 5,938	487.2
June 9, 2009	347,987,887	2173	7,327,185	132.92	6.071	501.3
July 16, 2009	354,591,767	2040	6,603,880	112.46	6,184	510.6
August 7, 2009	360,889,210	1880	6,297,443	98.83	6,283	518.8
September 9, 2009	368,447,513	1937	7,558,303	122.22	6,405	528.9
October 12, 2009	377,645,040	1961	9,197,527	150.57	6,555	541.3
November 25, 2009	386,977,436	2028	9,332,396	158.00	6,713	554.4
December 15, 2009	391,634,734	2192	4,657,298	85.22	6,799	561.4
January 22, 2010	402,467,724	1915	10,832,990	173.18	6,972	575.7
March 2, 2010	413,758,161	2114	11,290,437	199.25	7,171	592.2
March 18, 2010	417,911,735	1727	4,153,574	59.88	7,231	597.1
April 16, 2010	424,942,756	1806	7,031,021	106.00	7,337	605.8
May 26, 2010	427,431,260	2192	2,488,504	45.54	7,382	609.6
June 17, 2010	431,459,514	1939	4,028,254	65.20	7,448	615.0
July 21, 2010	439,414,411	1872	7,954,897	124.32	7,572	625.3
August 12, 2010	441,697,439	1987	2,283,028	37.87	7,610	628.4
September 14, 2010	449,499,207 455,903,160	1787	7,801,768	116.39	7,726	638.0
October 13, 2010		1901	6,403,953	101.63	7,828	646.4
November 19, 2010	460,206,156 462,590,264	1845	4,302,996	66.28	7,894	651.9
December 21, 2010	466,487,851	2118 1716	2,384,108 3,897,587	42.15 55.83	7,936	655.3 660.0
January 6, 2011 February 10, 2011	476,029,609	1/16	3,897,587 9,541,758	129.20	7,992	660.0
February 10, 2011 March 16, 2011	476,029,609 481,162,553	1622	9,541,758 5,132,944	79.32	8,121	670.6
Aarch 16, 2011 April 8, 2011	481,162,553 486,890,527	1851 1825	5,132,944 5,727,974	79.32 87.27	8,201 8,288	677.2
ebruary 17, 2012	507,818,339	1726	2,915,787	42.01	8,330	687.8
Aarch 30, 2012	516,155,517	1687	8,337,178	117.41	8,447	697.5
April 30, 2012	525,421,287	1732	2,915,260	42.15	8,585	708.9
Aay 22, 2012	532,037,897	2000	6,616,610	110.47	8,695	708.9
lune 11, 2012	538,067,258	2000	6,029,361	100.67	8,796	718.0
July 26, 2012	548,444,577	2000	10,377,319	191.11	8,987	720.4
August 15, 2012	554,406,527	2000	2.641.100	44.10	9.094	751.0
	561,475,957	2000	7,069,430	118.03	9,212	760.7

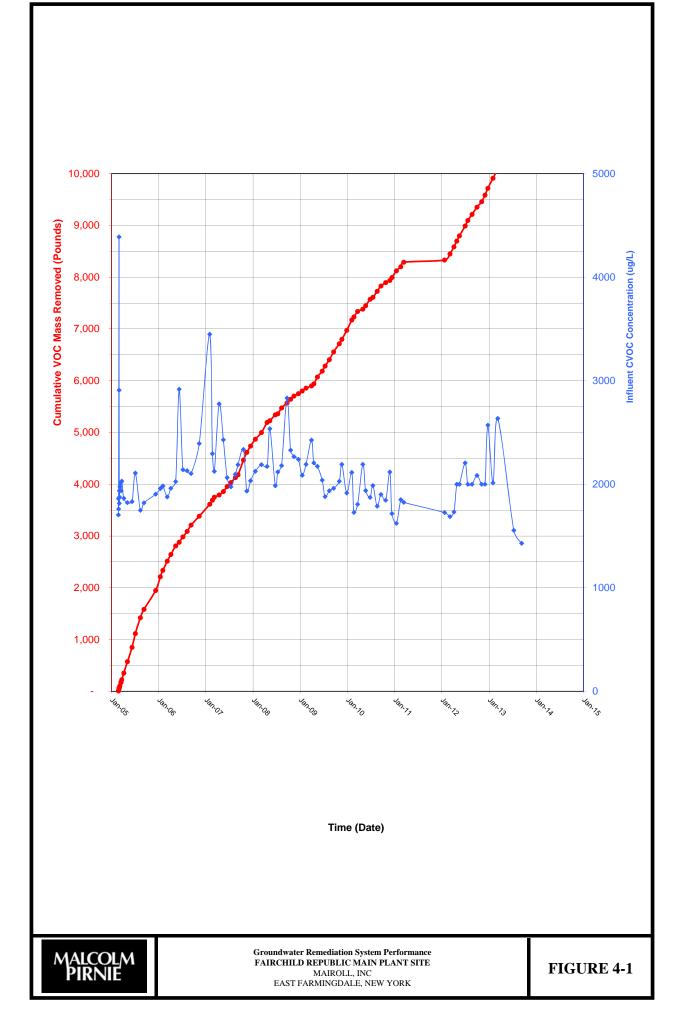

TABLE 4-4 AVERAGE TOTAL CHLORINATED VOC CONCENTRATION FAIRCHILD MAIN PLANT SITE MAIROLL, INC. EAST FARMINGDALE, NEW YORK

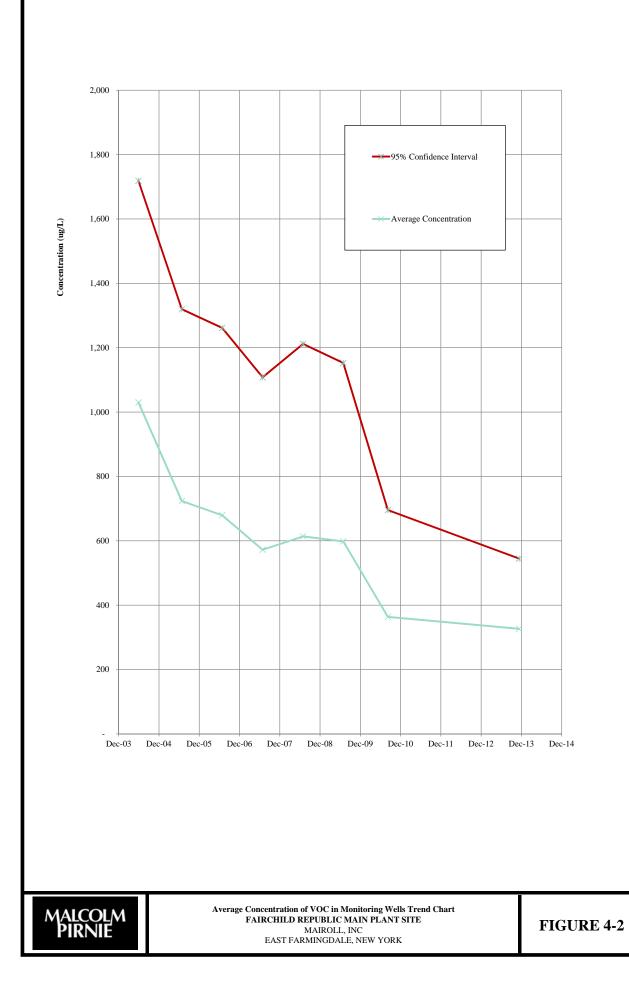

Well No.	Baseline Total CVOC Concentration (μg/L) June-04	Total VOC Concentration (μg/L) June-05	Total VOC Concentration (μg/L) June-06	Total VOC Concentration (μg/L) July-07	Total VOC Concentration (μg/L) July-08	Total VOC Concentration (μg/L) July-09	Total VOC Concentration (μg/L) August-10	Total VOC Concentration (μg/L) November-13
MW-42I	20	23	10	9	5	11	20	2
MW-42D	62	71	32	45	39	40	46	60
MW-43I	740	589	782	406	506	416	232	350
MW-46I	222	143	128	103	95	2	66	71
S-66133	277	231	229	239	106	210	56	264
MW-41	1,123	367	198	110	122	97	57	109
MW-49I	1,365	346	155	107	165	264	184	218
MW-49D	2,024	1,926	2,594	2,456	2732	2,373	1,164	1014
MW-37I	3,437	2,817	1,986	1,676	1813	1,971	1,448	781
Average	1,030	724	679	572	620	598	364	319
STD Deviation	1,127	975	953	877	975	908	543	351
STD Error	376	325	318	292	325	303	181	117
t (95%)	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83
Confidence Interval 95%	1,719	1,320	1,262	1,108	1,216	1,153	696	533


Note: Samples that contained CVOCs below the MDL were given a value of 1.


* MW-50 has been removed from this evaluation as the well is not within the capture zone of the extraction wells.







APPENDIX A

ARCADIS U.S., Inc 17-17 Route 208 North Fair Lawn New Jersey 07410 Tel 201 797 7400 Fax 201 797 4399 www arcadis-us.com

ENVIRONMENT

Date: October 15, 2013

Contact: Daniel St. Germain

Phone: (201) 797-7400

Email: Dan.St.Germain@arcadisus.com

Our ref: 04724010.0000

October 15, 2013

Robert Corcoran, P.E. New York State Department of Environmental Conservation Div. of Environmental Remediation Remedial Bureau A, Section C 625 Broadway, 12th Floor Albany, NY 12233-7015

Re: Fairchild Republic Main Plant Site

Dear Mr. Corcoran,

We are receipt of your letter (on October 10, 2013) dated September 30, 2013. The Fairchild Liquidating Trust is willing to resume periodic groundwater sampling at the above referenced site. We ask for approval to reduce the number of wells sampled from 33 to 11. Groundwater was sampled from 33 monitoring wells at the site according to the NYSDEC approved Operations, Maintenance, and Monitoring Plan. Groundwater samples were collected annually from 2003 to 2010 with one exception. Groundwater samples were collected semi-annually in 2006 because the treatment plant was started in 2005.

Total (site-related) Volatile Organic Compound (TVOCs) concentrations have been plotted as histograms attached to this document. These data show that the concentration of TVOCs in these wells has remained relatively stable. These data also show that the concentration of TVOCs is relatively low in most of the wells and only 11 wells show TVOCs above >25 ug/L in the last groundwater sampling event in 2010. The Fairchild Liquidating Trust respectfully requests that the number of wells to be sampled are reduced from 33 to 11 (MW-37I, MW-41, MW-42I, MW-42D, MW-43I, MW-46I, MW-49I, MW-49D, MW-50, S-66134, S-66133) that are located in the plume and can be used to show the effectiveness of the groundwater remediation. The 11 monitoring wells are shown on the attached figure.

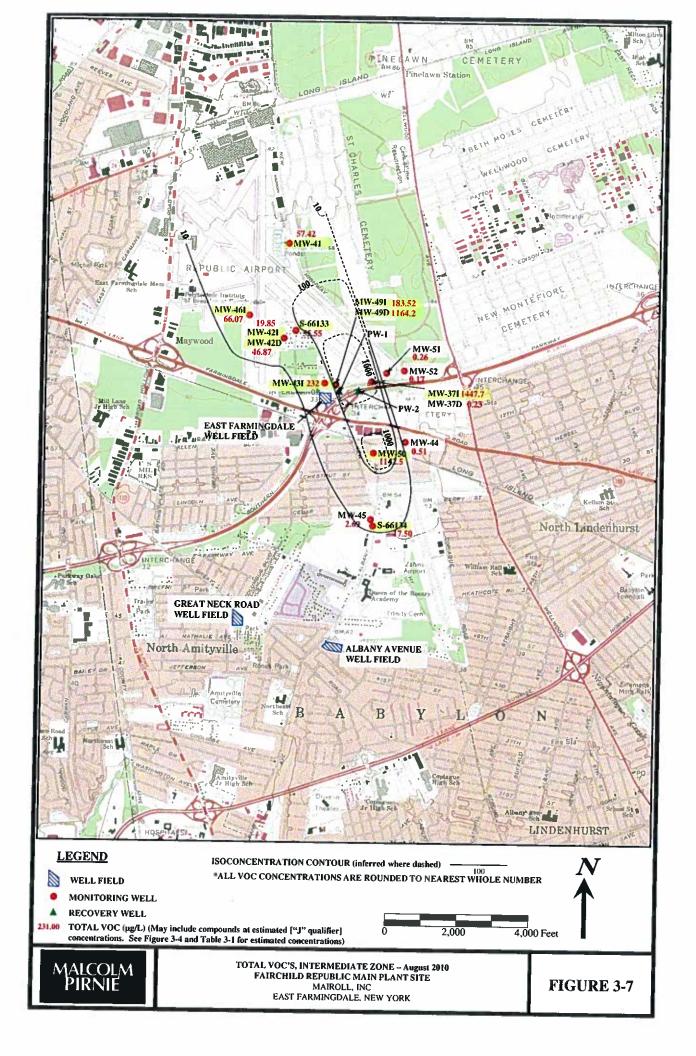
Imagine the result

ARCADIS

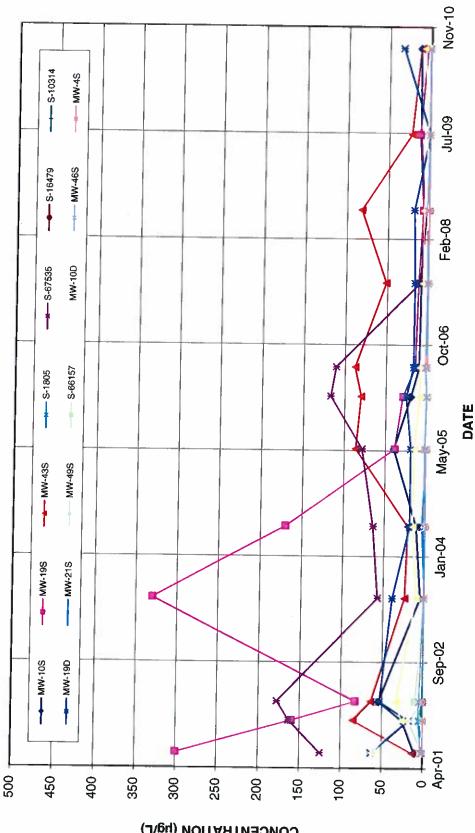
Robert Corcoran October 15, 2013

The Fairchild Liquidating Trust will re-start groundwater sampling in October/November and is also willing to add 1,4-Dioxane to the analyte list for the following wells (MW-43I, MW-49I, MW-49D, MW-37I, MW-50, and S-66134). We propose to analyze the groundwater samples for 1,4-Dioxane using USEPA Method 8270 SIMs that is an isotopic analysis that allows the laboratory to obtain a lower than normal detection limit.

If you have any questions please contact me (201) 398-4381.

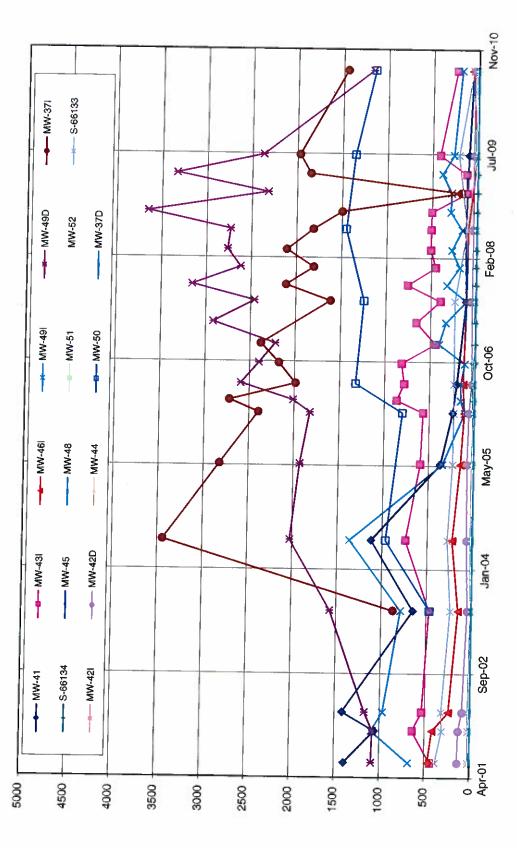

Sincerely,

ARCADIS U.S., Inc


ind St. Jamain

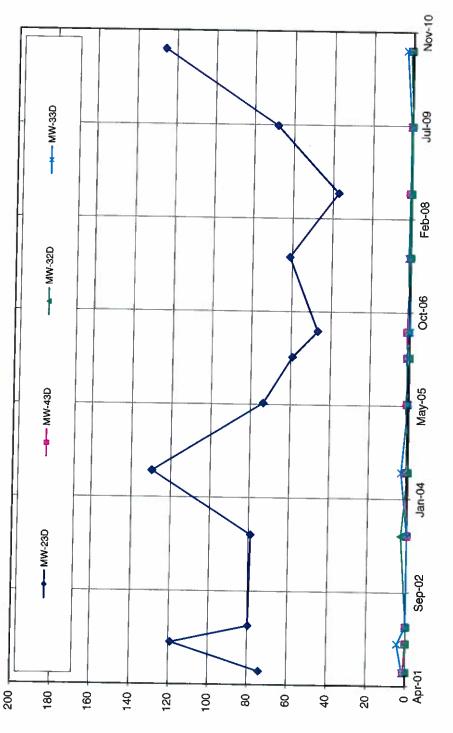
Daniel J. St. Germain, PG Principal Hydrogeologist

Copies: Donald Miller - The Fairchild Liquidating Trust



TOTAL VOCS SHALLOW ZONE FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC. EAST FARMINGDALE, NEW YORK

CONCENTRATION (µg/L)


TOTAL VOCS INTERMEDIATE ZONE FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC. EAST FARMINGDALE, NEW YORK

CONCENTRATION (µg/L)

DATE

TOTAL VOCS DEEP ZONE FAIRCHILD REPUBLIC MAIN PLANT SITE MAIROLL, INC. EAST FARMINGDALE, NEW YORK

CONCENTRATION (µg/L)

DATE

New York State Department of Environmental Conservation

Division of Environmental Remediation Remedial Bureau A, 12th Floor 625 Broadway, Albany, New York 12233-7015 **Phone:** (518) 402-9625 • Fax: (518) 402-9627 Website: www.dec.ny.gov

OCT 2 4 2013

Mr Daniel J. St. Germain, PG ARCADIS U.S., Inc 17-17 Route 208 North Fair Lawn, New Jersey 07410

> Re: Request for Modification to Groundwater Monitoring Former Fairchild Republic Main Plant Site (Site No. 152130) East Farmingdale, New York

Dear Mr. St. Germain:

The New York State Department of Environmental Conservation (Department) has received your letter dated October 15, 2013 requesting a modification to the groundwater monitoring regime for the Fairchild Main Plant site. The request is to reduce the number of sampled monitoring wells for total volatile organic compounds (TVOC) from 33 to 11, justified by historical data trends showing reduced levels in many of the wells.

The Department approves the requested modification but requests that all eleven wells be additionally analyzed for 1,4-dioxane, rather than the proposed six wells.

At some future point, all thirty three wells must be re-sampled before the Department will agree to terminate the monitoring program.

Should you have any questions, or wish to discuss this matter further, please feel free to contact me at (518) 402-9658.

Sincerely,

Robert Corcoran, P.E. Project Manager Remedial Bureau A Division of Environmental Remediation

ec: John Swartwout Steve Scharf Walter Parish Rosalie Rusinko TBS PS TOM Janice Dean (OAG) Kevin Olson (OAG) Jacqueline Nealon, (NYSDOH) Charlotte Bethany (NYSDOH) Geralynn Rosser (Suffolk County Health) Donald Miller (Fairchild Liquidating Trust)

x

APPENDIX B

ARCADIS

Groundwa	ater Sa	mpling i	-orm					10-			Page	of
Project No.			47244001		μ,	Well ID	MW	-491		Date	11/19/	2013
Project Name	/Location		Fairchild							Weather	SUN, WA	visy 400
Measuring Pt. Description	_τι)C	Screen Setting (tt-bmp)			Casing Diameter (in.)	2	_		Well Mate	erial	PVC SS Other
Total Depth (ft	-b <u>mp)</u>	10-	Static Water Level (ft-bmp)	日	= 24.74	Water Colum	n in Well	85	.26	Gallons in W	/ell 13	.64
Calc.Gallons		8	Pump Intake (it-		5-	Purge Metho	d:			Sample		-
Purged Gailons Purged	<u> </u>	8	bmp) MP Elevation				Centrifugal Submersible)		Method	Low	
Sample Time:		0940	Replicate/				Disp. Bailer Other	BLADDED	Primp	Pump On/C	~	
			Code No.			-				Sampled by	JDE	HOSKU
Time	Minutes	Poto	Depth to	GALLOTIS		0	1	1.51	F <i>≠</i>			
10110	Elapsed	Rate (gpm) (mL/min)	Depth to Water (ft) TOC	Purged	рН	Cond. (µmhos) (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp. (°C) (°F)	Redox (mV)	Appea Color	
0910	10	200	24.76	2	7.42	.309	13.2	10.29	13.35	52	Color	Odor
0915	15	200	24.75	3	1.52	,306	43.9	2.14	13,49	2		
0920	20	200	24.75	4	7.51	.306	71.9	0.94		-17		
6925	25	200	1A.75	5	7.5+	.306	66.6	0.89	13.77	-9		
0430	30	200	24.75	6	1.53	.306	57.5	0.87	13.78	-10		
0935	75	200	24.75	7	7,52	1305	592	0.85	13.80	-11		
									· · · · · ·			
						·						
<u></u>		<u></u> _					<u> </u>					
		····	· · · ·		I						·	
Constituents §	<u> </u>	10 C	VOA	I	Container	ml Via	0		Number		Preservati	
				-	40	0.1	also			• .	$-\frac{H(}{H)}$	
	ाष	Diox	RNE	-	Ant	es glas			2		<u>+++++</u>	<u> </u>
			5.	-		A ACTOR	1 u v					
				-		•••						
			-	-				• •		•		
				_				-		•		
				-								
Vell Informatio	on	1102										
Well Locat		Tren	timent !	lan	A.		We	II Locked at	t Arrival:	Yes		
Condition of	Well:	000		5	•			ocked at De		(Yes)	/ No	
Well Comple	etion:	O Fiu	sh Mount /	Stick Up	$\overline{)}$		Ke	y Number	To Well:			
OTES:				\checkmark								
<u>_</u>			<u></u>									
Vell Casing Vo										·		,
	1" = 0.04 1.25" = 0.06			2.5° = 0.26 3° = 0.37		" = 0.50 (= 0.65	6" = 1.47					
GWSAMPLO GW Samp Fo												

Project No.			47244001 L			Well ID	M	w-49	D_	Date	Page	of [] 13
Project Name/L	ocation	<u>`</u>	Fairchild							Weather	SUN, W	NDY ~S
Measuring Pt. Description	_To	<u>.</u>	Screen Setting (ft-bmp)			Casing Diameter (in.)	2	_		Well Mat	,	_PVC _SS
otal Depth (ft-b			Static Water Level (ft-bmp)		:14	Water Colum		145	186	Gallons in W	/ell <u>·2</u>	Other
Calc.Gallons Purged Gallons Purged	<u> </u>	6	Pump Intake (it- bmp) MP Elevation	_ <u>\</u>	<u>5-</u>	Purge Method	d: Centrifugal Submersible	, <u> </u>		Sample Method	LowF	Low_
ample Time:		1130	Replicate/ Code No.			_	Disp. Bailer Other	Badder	from	Pump On/C Sampled by	_	0/1055 Korli
ime	Minutes	Rate	Depth to	Gallens	рН	Cond.	Turbidity	Dissolved	Temp.	Redox		
	Elapsed	(gpm) (mL/min)	Water (ft) TOC	Purged		(µmhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Appea Color	Odor
100	5	100	24.14	1.0	6.75	,177	2.1	8.52	14.93	181		
1105	10	200 200	24.14	20	6.67	.178	4.5	8.24		185	_	
1115	10	200	24.14	3,0 4,0	6.63	. 180	9.9	6.91	14.83	182		
1120	25	200	24.14	5.0	6.59	,184	13.2	5,85		181		
1175	30	200	24.14	(a)	6.57		13.0	5,70		174		
										· · · · · · · · · · · · · · · · · · ·		
			[l]
nstituents Sa	ampled	V	14	(Container	me Vial	2.		Number		Preservati	ive
		XANE		An		NOC VIA			<u> </u>		-HQ)
						25 250		-	2		YAKK	
····				-				-				
				-				-				
				-				-				
			······································	_	•			-		•		
II Information	-											
Well Locatio			thent pl	ANT			Wel	I Locked at	Arrival:	Yes	/ No	
Condition of W Well Completi		GOO D Flue	sh Mount / (s	Stick Up	>			cked at De		es	/ No	
		n				INEN		y Number 1	o Well:		<u> </u>	
- N		op fun	tiNG: 59		<u> </u>	1055						
	TIM			rec yv		Sec Refell	0,210	YS1_				
	imes = 0.04 25" = 0.06			.5" = 0.26 " = 0.37		= 0.50 6 = 0.65	" = 1.47					

ARCADIS

Groundwater Sampling Form Project No. 472440%, 1000					Well ID	MW-	465		_	Page	of	
Project Name/		<u></u>		<u> </u>					,	Date		241
Measuring Pt. Description		BC	Fairchild Screen Setting (ft-bmp)			Casing Diameter (in.)	41~			Weather Well Mate	erial	PVC SS
Total Depth (ft- Calc Purged Gallons Purged Sample Time:) 	48.81 3.4 70 3.4 _1355	Static Water Level ((t-bmp) Pump Intake ((t- bmp) MP Elevation Replicate/ Code No.		2.76	Water Colum Purge Method		126		Gallons in W Sample Method Pump On/C Sampled by	iorus .	Other ,94- FLOUD S
Time 1325 1325 1330 1335 1340 (345 (350 Constituents S VoA	Minutes Elapsed 10 20 25 30 35 40 35 40 35 40 5 ampled 5 ampled	(gpm) (mL/min) 320 320 320 320 320 320	Depth to Water (II) TOC 22, §0 22, §1 22, §2 22, §3 22, §3 22, §3 22, §3	1.0 1.6 2.4 2.8 3.4	рн 5, <i>g</i> / 5, 77 5, 79 5, 78 5, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78	Cond. (µmhos) (mS/cm) 0.141 0.142 0.141 0.141 0.141 0.141 0.141	Turbidity (NTU) 19.4 20.3 13.6 16.4 13.5 10.9 (0:1	Dissolved Oxygen (mg/L) Q. 91 Q. 91 Q. 64 Q. 55 Q. 49 Q. 49 Q. 45 Q. 49 Q. 49 Q. 45 Q. 49 Q. 49 Q. 45 Q. 49 Q. 40 Q. 45 Q. 40 Q. 40	Temp. (°C) (°F) 5.5} 5.44 5.42 5.34 5.31 (5.38 5.38 Number 3	Redox (mV) 229 237 240 238 290 238 290 238 290 238 290 238 290 238 290 238 238 238 238	Appea Color Color	Odor No. e
Vell Informatio Well Locati Condition of Well Comple	ion: Well:	Flu	sh Mount) /	Stick Up	· · · · · ·	······································	Well Lo	II Locked at ocked at De y Number ⊺	parture:	(Yes) (Yês)	/ No / No	
	1" = 0.04 1,25" = 0.06			2.5* = 0.26 3* = 0.37		" = 0.50 6 = 0.65	i* = 1.47					

GW Samp Form

62	ARCA	DIS										
Groundwat	ter Sar	npling F	Form				1.	<i>A</i> ,			Page_ (of
Project No.		412	4012,000	0		Well ID	MW	- 41		Date	11/19	13
Project Name/L	ocation									Weather	SUN, NI	NO, 40%
Measuring Pt. Description	<u>5</u> 7_		Screen Setting (ft-bmp)			Casing Diameter (in.)	4	-		Well Mate	erial	PVC SS Other
Total Depth (ft-t			Static Water Level (ft-bmp)	28	06	Water Colum	n in Well	108;	13	Gallons in W	ell 70	167
Calc. Gallons Purged		0	Pump Intake (tt- bmp)	_13	<u>) —</u>	Purge Method	i: Centrifugal			Sample Method	LowFi	aw
Gallons Purged	21	64	MP Elevation	<u> </u>			Submersible Disp. Bailer			Pump On/C		5 1550
Sample Time:	Label	1540	Replicate/ Code No.			-	Other	BLADDE	e pump	Sampled by		1
				LITERS)							
Time	Minutes Elapsed	Rate (gpm)	Depth to Water (ft)	Sallons Purged	ρН	Cond. (µmhos)	Turbidity	Dissolved Oxygen	Temp. (°C)	Redox	Арреа	arance
		(mL/min)	TOC	, ,		(mS/cm)	(NTU)	(mg/L)	(°F)	(mV)	Color	Odor
1455	10	200	28.22	2	6.30	,274	42,1	2.17	14.92	29	Clean	None
1500	15		78.23	3	6.31	.272	40.1	2.30	14.39	25		
1505	20		28.32	4	<u>6.25</u> 6.27	173	21.4	1.35	<u>15.52</u> 15.55	27_	┼╌┼──	
1510	.25		18.33	5		1299	19.3	1.10	15,55	26		
1515	20 35		18.33	6	633	-313	19.0	1.01	15.63	24	++-	
1525	40		18.35	8		428 •428	18.2 11.D	1.21	15.63	25		
1530/	AS		28.35	A A	6.37	,445	9.4	0.80	15.20	26		
1535	50	Ŵ	18:35	10	6.49	.454	81	0.73	15.62	26		
Constituents S		leOc			Container 8 NO K				Number	-	Preserva 	
				- · ·				-	······	-		
Well Informatio	20								÷			
Well Locat Condition of Well Compl	ion: Well:	600	PARHING P N ush Mount /	Stick Up			Well L	ell Locked a .ocked at Do .ey Number	eparture:	Yes Yes		lo
			wart transmith f	and ob						-		
NOTES:												
						· · · · · · · · · · · · · · · · · · ·						
Well Casing Vo Gallons/Foot Field Forms-E	1" = 0.04 1.25" = 0.0	6 2	.5" = 0.09 " = 0.16	2.5° = 0.26 3° = 0.37		.5" = 0.50 " = 0.65	6° = 1.47					

Groundwa	iter Sai	mpling I									Page	of
Project No. 🔔	067390	19.0000.00	1540 047Z	4-012	,0000	Well ID	<u> </u>	6613	<u>ss</u>	Date	11-19	- 13
Project Name/	Location	Dover Mu	niciple Well-#-4-	FAI	RCHIL	P	. <u> </u>	33		Weather		
Measuring Pt. Description	To	c	Screen Setting (ft-bmp)			Casing Diameter (in.)	(-		Well Mate	erial <u>K</u>	_ PVC _SS
Total Depth (tt-		-1.69	Static Water Level (II-bmp)	-	5.22	Water Colum	n in Well	116.	47	Gallons in W	/ell <u>17</u>	_Other
Calc.Gallens Purged Gallons Purged	1 /	<u>8 L</u> 2790l	Pump Intake (ft- bmp) MP Elevation		5ft	Purge Metho	d: Centrifugal Submersible			Sample Method	Low Flow	
Sample Time:		1710	Replicate/ Code No.				Disp. Bailer Other	Teflon Bla		Pump On/C		35/17
			oode no.	LITENS		-	BLAD	DER F	UMP	Sampled by		OSKIE
Time	Minutes Elapsed	Rate (gpm) (mL/min)	Depth to Water (ft) TOC	Sallons Purged	Hq	Cond. (µmhos) (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp. (°C) `(°F)	Redox (mV)	Appea	arance Odor
1645	10	160	25.23	1.6	6.4	5.221	5.3	494	12.36	-2	Clea	
1450	15	160	25.25	2.4	10.40		3.9	4.39	42,50	-13	<u> </u>	
1655	20	160	25.25	3.2	6.37	,218	3,6	4.40	12,61	-12	┨	1
1705	30	160	25.28	4.8	0.37	118 1218	3,5	4.21	12.88	-15	U	V
		<u></u>										
Constituents S VØA	iampled 8U	e.D			Container 40 Wl	- VIAL		. .	Number		Preservat HQ	
				-			<u></u>	• .				
			-	-				· ·				
				-								
				-				· · ·				
Well Informatio	n			-								
Well Locati		BLESI	ow AREA					II Locked a		(Yes)	/ N	lo
Condition of V Well Comple	-	Flu	sh Mount /	Stick Up	\geq			ocked at De ay Number	-	Tes	<u>/ N</u>	0
NOTES:										··		
			····				2					
	lumes " = 0.04 .25" = 0.06			2.5° = 0.26 3° = 0.37		i" = 0.50 = 0.65	6" = 1.47					
Arcadis Purge I GW Samp Forr												

2	ARC	ADIŞ										
Groundwa								. ~			Page	of
Project No.			47244001			Well ID	S-6	634	+	Date	+	20-13
Project Name/	Location		Fairchild							Weather	SUN,W	IND, GLD
Measuring Pt. Description		00	Screen Setting (ft-bmp)			Casing Diameter (in.)	6	_		Well Mat	•	- ₽VC _SS
Total Depth (it-	b <u>mp) </u>	3.10	Static Water Level (tt-bmp)	21.		Water Colum		122.	35	Gallons in W	/ell	_Other
Calc.Gallons Purged	0.2	2 Z	Pump Intake (tt- bmp) MP Elevation	_13	58.0	Purge Metho	Centrifugal			Sample Method	180	2 ~
Gallons Purged Sample Time:		0750	Replicate/ Code No.			-	Submersible Disp. Bailer Other	•		Pump On/C Sampled by		25/0800 05/16
Time	Minutes Elapsed	Rate (gpm) (mL/min)	Depth to Water (ft) TOC	Gallons Purged	рН	Cond. (µmhos) (mS/cm)	Turbidity	Dissolved Oxygen	Temp. (°C)	Redox		arance
0730	Time	170	21.30	0.1	7.00	166	(NTU) 13.4	(mg/L) 4.01	(°F) 12.41	(mV) 96	Color	Odor Nump
0735	10	170	R1.38	0.7	7.03	0166	13.1	3.03	12.86	73		
0740	:2	170	21.41	0.3	7.03	.165	12.6	2,44	12.16	74		
0745	20	170	21.46	0.3	7.02	164	12.7	2.02	13.15	75		<u> </u>
	826	OC	E			A VIAIS			Number		Preservati H(
				-	250		ses glas	4	2			K

Well Locked at Departure: _	
Key Number To Well:	

Well Locked at Arrival:

Yes

Yes

1

1

NOTES:

Well Casing Volumes

Well Information

Well Location:

Condition of Well:

Well Completion:

Gallons/Foot 1" = 0.04 1.25" = 0.06 1.5" = 0.09 2" = 0.16

Flush Mount /

PARK.

OK

2.5" = 0.26 3" = 0.37

Stick Up

3.5" = 0.50 6° = 1.47 4" = 0.65

No

No

Groundwa Project No.	ter Sa	mpling F		11401	2,0000	Well ID	Ми	1-50		Data		of
Project Name/			Fairchild	10100		Weil ID				Date Weather		20-1
Measuring Pt.			Screen			Casing	A			Well Mat	erial	PVC
Description			Setting (It-bmp)			Diameter (in.)	41	Δ			_	SS Other
Total Depth (n-t		165-	Static Water Level (ft-bmp)	21.5	<u>v</u>	Water Colun	n in Well	143	3.5	Gallons in W	fell	93.3
Calc.Gallons Purged		4	Pump Intake (ft- bmp)			Purge Metho	d: Centrifugal			Sample Method	Low	Frow
Gallons Purged		4	MP Elevation				Submersible Disp. Bailer			Pump On/C		820/0
Sample Time:	Label	<u>0855</u>	Replicate/ Code No.			_	Other	bladder	pung	Sampled by		,
Time	Minutes	Rate	Depth to	Gallons	рН	Cond.	Turbidity	Dissolved	Temp.	Redox		
	Elapsed		Water (ft) TOC	Purged	1 · · ·	(µmhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	App Color	Odor
830	(D	160	21.58	2.4	6.44	-(43	36.5	500	12.80	184	(ent	None
2835	15	160	21.60		6.18	,214	17.8	1.46	17.34	216		
0840	20	170	21.59		6.13	, 211	9,6	130	13.47	728	$\downarrow \downarrow$	
0845 D850	<u>کک</u>	170	21.61	1.0.5	6.12	015 .	9.8	0.96	13.53	236	┝╌┟	
0855	30 35	170	21.62	Ø.4	6.11	, 210	9,3	0.81	13.55			+ + +
·										`		
							<u>.</u>					
												+i
				-						<u>-</u>		
onstituents S	ampled				Container				Number	-	Preserv	ative
Vol	+ 82	60 C		_ <	Karsto	me VI	ALS	_	2	_		ll
1-4	- Du	OKANE	SIL		Amb	of glass	250 ml	2	2	-		-
				- ·		0				-		
<u> </u>										-		
										-		
										-		
								-				
Vell Informatio		lade				110 00 0			····-			
Well Locati Condition of V		EDGEOF	GLASS, DE	to end	72	HICKS S		ell Locked a	_	Yes		No
Well Comple		Elu:	sh Mount /	Stick Up				ocked at De ey Number	-	Yes		No
OTES:								Cy Hombol				
/ell Casing Vo			<u>_</u>									
	" = 0.04 .25" = 0.06			2.5" = 0.26 3" = 0.37		5" = 0.50 = 0.65	6° = 1.47					
GWSAMPLOG												

Groundwa	ater Sa										Page (_ of
Project No.			47244001-47	2401	1,0000	Well ID	MW-	-42T		Date	11-20	> -13
Project Name/	Location		Fairchild							Weather	SUN, L	JMDY
Measuring Pt. Description			Screen Setting (ft-bmp)			Casing Diameter (in.)	4	_		Well Mat	erial <u>×</u>	_PVC _SS Other
Total Depth (it-	b <u>mp)</u> [*	79	Static Water Level (ff-bmp)	2	3.43	Water Colun	nn in Well	159	5.6	Gallons in W	/ell [/	-011er 01. (
Calc.Gallons	2.	25	Pump Intake (ft-	17	4 -	Purge Metho				Sample		
Purged Gallons Purged	_ 2	.25_	bmp) MP Elevation	<u>.</u>			Centrifugal Submersible	·		Method	Low	
Sample Time:		050	Replicate/ Code No.				Disp. Bailer Other	BLADDE	e pump		off OFF	7
				1		-				Sampled by	<u></u>	L05 F1E
Time	Minutes	Rate	Depth to	Gallons	рН	Cond.	Turbidity	Dissolved	Temp.	Redox		
	Elapsed	(gpm) (mL/min)	Water (ft) TOC	Purged		(µmhos) (mS/cm)	(NTU)	Oxygen _(mg/L)	(°C) (°F)	(mV)	Appea Color	Odor
1000	10	240	23.50	2.4	10.44	.263	3.6	7.47	14.17	145	CIEAR	
1015	25	240	2348	3.6	6.40	,311	2.1	3.96		155		1
1020	20	240	23.45	4.8	6.36	323	0.5	3.05	13.79	169		Ţ.
1030	40	240	23,45	(0.D	6.32	.424	0.3	1.61	13,79	188		4
1040	50	240	23,45	7.2	6.32		0.0	1.59	13.81	186	╂──┤──┤	14
	<u> </u>			0,97	6.32	.426	0.0	1.52	<u>דר_י צו</u>	187		
		· · · · · · · · · · · · · · · · · · ·										
							L	i				
Constituents S		<u> </u>			Container		Quiv(0		Number	16.0	Preservati	
VoA	826			-	3 40	me Vial	s w/HU		6-7	2(oup)	+14	
				•	·	<u>_</u>						
				-	<u> </u>							
				-	.		÷.	· .				
				-	.							
				-								<u> </u>
Well Informatio	20			~	-							
Well Locati		BRESLOW	ANDER		<u></u>		We	II Locked a	t Arrival:	Yes	/ No	
Condition of		Goon					•	cked at De		(Yes)	/ No	
Well Comple	etion:	Flu	sh Mount /	Stick Up	>			y Number		\bigcirc		
	W-D.	39" (ol	LECTED -	TIME	1070	0″						
									1			
Well Casing Vo	lumes									=		
Gallons/Foot	1" = 0.04 1.25" = 0.06			2.5" = 0.26 3" = 0.37			6" = 1.47					
		~ ~ ~	- 0.10) = 0.3/	4 -	= 0.65						
GWSAMPLOG GW Samp For												

ARCADIS

Project Name/Location Fairchild Weather Setting Measuring Pt. Description	Page t of
Measuring Pr. Doc Setting (th-the) Casing Diameter (n) 4 Well Materia Total Depth (n-sing) 240.0 Level (th-the) 722.62 Water Column in Well 217.4 Galons in Well Calc. Galons 2.4 Purpe Intake (th- Purged 722.62 Water Column in Well 217.4 Galons in Well Sample Time: Label 1215 Replicate/ Coeffitugal Sample diverse Sample diverse Purge Method: Sample diverse Sample di	11-20-17
Total Depth (Ir.bog) 121, 65 Water Column in Well 217, 4 Galions in Well Cate Califora 2.4 Pump Intake (Ir. 232 - Purge Method: Summersible Purge Method: Summersible Method Method Galions Purged 2.4 MP Elevation Summersible Disp. Baller Pump On/Off Sample Time: Label 1215 Replicate/ Code No. Summersible Pump On/Off Time Minutes Rate Depth to Gentemp PH One of the Code No. If the Elapsed Galions in Well Summersible Disp. Baller Pump On/Off If the Minutes Rate Depth to Gentemp PH (cmdoc) One of the Code No. If the Elapsed Galions in Well Starpled by Starpled by	<u>5, у N, Собс</u> rial <u>×</u> PVC SS
Purged Gallons Purged 1.4 (Lallons Purged MP Elevation Summersible (mode) Method Sample Time: Label 12.15 (Code No. Replicate/ Code No. Summersible (missim) Purged (missim)	Other
Sample Time: Label 1215 Replicate/ Code No. Disp. Bailer (Differ Disp. Bailer (BLADDED_ADAP Pump On/Off Sampled by Time Minutes (appn) Ratio Depth to (minin) Total Turbidity Disp. Bailer (appl.) Pump On/Off 11 45 15 2.00 7479 3 5.82 .132 On/Off Organ Cond. Cond. Soc. Soc. <td>Low FLOW</td>	Low FLOW
INTER Time Ninutes Rate Depth to Genetime PH Cond. Turbidity Dissolved Tamp. Redox 11 4.5 1.5 2.60 2.474 3 5.82 1.32 11.1 4.21 13.57 2.5.1 (mV) 11 1.5 2.60 2.474 3 5.82 1.32 11.1 4.21 13.57 2.5.1 (J 11.15 2.5 2.50 2.185 4 5.82 1.32 1.1 0.70 1364 24.06 12.05 2.5 2.85 7 5.83 .131 0 0 6.61 1363 2467 12.15 4.5 1200 22 85 5.83 .131 0 0 0 5.62 13.60 26.9 12.15 4.5 1200 22.85 9 5.83 .131 0 0 0 5.6 26.9 12.15 4.5 1200 22.85 9 5.83 .131 0	1
Time Mitudes Rate Depth to Water (ft) Gentone PH Cond. (umbox) Turbidity Dissolved Dogen Temp. (°C) Redox 11 45 15 2.60 7479 3 5.82 1.32 11.1 4.21 13.57 2.51 (11 45 15 2.60 7479 3 5.82 .132 11.1 4.21 13.57 2.51 (11 45 15 2.60 7479 3 5.82 .152 3.0 1.14 4.21 13.57 2.51 (12 10 2.0 1.20 2.20 2.27 5 5.87 .151 0 10.1 3.62 2.66 12 10 4.0 120 1285 8 5.83 .131 00 0.57 13.62 2.67 12 15 4.5 100 2285 9 5.83 .131 0.0 0.57 13.60 26.9 12 1.5 4.5 10<	
II 45 IS 200 21.74 3 5.82 , 132 11.1 4.21 13.59 25.1 (1155 25 250 21.85 5 5.92 .132 3,0 1.14 13.64 260 12 0 0 20 120 22.85 5 5.92 .132 3,0 1.14 13.64 260 12 0 0 20 12.85 6 5.82 .131 0.8 0.61 13.63 267 12 10 40 200 12.85 8 5.83 .131 0.2 0.59 13.63 267 12 15 45 200 22.85 9 5.83 .131 0.2 0.59 13.60 269 12 15 45 200 22.85 9 5.83 .131 0.0 0.57 13.60 269 12 15 45 200 22.85 9 5.83 .131 0.0 0.57 13.60 269 12 15 45 20 2 2 2 2 2 <td< td=""><td>Appearance</td></td<>	Appearance
1155 25 200 22.85 5 5.82 .132 3.0 1.14 13.64 260 1200 20 20 22.85 7 5.83 .131 0.8 0.61 13.63 247 1210 40 20 22.85 7 5.83 .131 0.8 0.61 13.63 247 1210 40 20 22.85 9 5.83 .131 0.7 0.57 13.63 267 1215 45 200 22.85 9 5.83 .131 0.0 0.57 13.60 269 1215 45 200 22.85 9 5.83 .131 0.0 0.57 13.60 269 1215 45 200 22.85 9 5.83 .131 0.0 0.57 13.60 269 1215 45 200 2 2 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32	Color Odo
Image: Top intermediation of Well: Image: Top intermediation of Well: <thimage: intermediation="" of="" th="" top="" well:<=""> Image: Top inter</thimage:>	
12.10 40 120 12.85 8 5.83 .131 0.7 0.59 13.63 267 12.15 45 120 22.85 9 5.83 .131 0.0 0.57 13.60 269 12.15 45 120 22.85 9 5.83 .131 0.0 0.57 13.60 269 12.15 45 120 22.85 9 5.83 .131 0.0 0.57 13.60 269 12.15 45 120 13.60 269 14.60	
1215 45 20 22.85 9 5.83 .131 0.0 0.57 13,60 269	
Constituents Sampled Container Number VoA 8160 C \$ 40 mQ Number	
Constituents Sampled Container Number Pr VDA BUDC BUDC BUD	
Constituents Sampled Container Number Pr VDA BUOC BUOC BUO	
Vork 8260 c 8 40 mQ Virkis 92	
Well Information Well Location: Blcstow AlleA Condition of Well: Good Well Completion: Flush Mount / Stick Up	Preservative
Well Location: Blestow AUEA Well Locked at Arrival: Yes / Condition of Well: (2007) Well Locked at Departure: Yes / Well Completion: Flush Mount / Stick Up > Key Number To Well:	
Well Location: Blestow AUEA Well Locked at Arrival: Yes / Condition of Well: (2007) Well Locked at Departure: Yes / Well Completion: Flush Mount / Stick Up > Key Number To Well:	
Well Location: Blestow AlteA Well Locked at Arrival: Yes / Condition of Well: (2007) Well Locked at Departure: Yes / Well Completion: Flush Mount / Stick Up > Key Number To Well: /	
Well Location: Blestow AlteA Well Locked at Arrival: Yes / Condition of Well: (2007) Well Locked at Departure: Yes / Well Completion: Flush Mount / Stick Up > Key Number To Well: /	
Condition of Well: (1001) Well Completion: Flush Mount / Stick Up > Key Number To Well:	/ No
	/No
Well Casing Volumes	

Groundwa	ARC		Form									. 1
Project No.			رك 4724400 <u>1</u>			Well ID	MW	- 43	I	Date	Page /	$\frac{1}{20-13}$
Project Name/	Location		Fairchild							Weather		
Measuring Pt. Description	Te	0	Screen Setting (ff-bmp)			Casing Diameter (in.)	2	_		Well Mate	ərial	PVC _SS Other
Total Depth (ft-	bmp)	200	Static Water Level (ff-bmp)	22	175	Water Colum	n in Well	177.	25	Gallons in W	/ell ·7	8.4
Calc.Gallons	1.5		Pump Intake (#-	19	3 -	Purge Metho	d:			Sample		
Purged Gallons Purged	<u> </u>	5	bmp) MP Elevation				Centrifugal Submersible			Method	1002	Frow
Sample Time:	Label	1235	Replicate/				Disp. Bailer Other	BLADDE	2 PUMP	Pump On/C	iff <u>1</u> 20	
		-	Code No.		·	-		0	1 1	Sampled by	JDE	K.
Time 1710 1720 1725	Minutes Elapsed		Depth to Water (ft) TOC 22.81 22.56 22.53	Gallons Purged 0, 2 0, 5 0, 6	рн 16.15 6.10 6.08	Cond. (µmhos) (mS/cm) .7_11 0.212 0.212	Turbidity (NTU) 128 7.1 4.5	Dissolved Oxygen (mg/L) Z.49 0.86 0.65	Temp. (°C) (°F) [2.39] /2.86 [2.37]	Redox (mV) 35 78 90	Appe: Color (/ ۲% /	arance Odor Mina
1330	30	240	22,85	1.2	6.07	0.2/2	4.2	0.60	12.87	47		
1335	35	240	22.81	1.5	6.09	61510	4.1	0.54	12.96	104	V	
							· · · · · · · · · · · · · · · · · · ·		 			
						[5		
$\frac{\text{Constituents S}}{VOA}$	•	NE			_ 40-	He ViA He ViA Ambin	L	 	Number 3 3		Preservat HU HU)
			- <u></u> 	-				· -		· · ·		

Well Lo Well Lo Condition	cation:	GEGLOW MUEA	NEAR M	ONUMENT SHO		Well Locked at Arrival:	(Yes) /	No
Well Con	npletion:	Flush Mount /	Stick Up			Key Number To Well:		
DTES:								
					<u>-</u> .	······································		
ell Casing	Volumes							P
allons/Foot	1" = 0.04	1.5" = 0.09	$2.5^* = 0.26$	3.5" = 0.50	6" = 1.47			

roject No.			4724400			Well ID	MW	1- 37	1	Date	11-2	0-13
roject Name/L	ocation		Fairchild							Weather	SUN, W	IND, 9
leasuring Pt. Sescription	Ťť		Screen Setting (ft-bmp)	<u></u>		Casing Diameter (in.)		_		Well Mat	erial <u>×</u>	_PVC _SS Other
otal Depth (ff-b Calc.Gallons Purged Gallons Purged Sample Time:	<u> </u>	13 - 2 2 1450	Static Water Level (ft-bmp) Pump Intake (ft- bmp) MP Elevation Replicate/ Code No.		<u>94</u> 9-	Water Colun Purge Metho			06	Gallons in W Sample Method Pump On/O Sampled by	Low Diff 14-1	2.5 Fion
ïme	Minutes Elapsed	Rate (gpm)	Depth to Water (ft)	Gallons Purged	рН	Cond. (µmhos)	Turbidity	Dissolved Oxygen	(°C)	Redox	Арре	arance
1420	\sim	(mL/min)	тос 1990	.2	1.20	(mS/cm) ,277	(NTU) 8.1	(mg/L)	(°F)	(mV)	Color	Odor
1425	5	<u>190</u> 200	20,20	.4	6.38	. 294	10.9	1.95	13.56		Tes r	Non
1430	15	200	20,20	.6	6.07	. 296	6.8	1.75	14.12	178	\square	
1435	20	200	20.42	.8	10,06	. 296	4.9	1.02	14.23		+	
1440	25	200	20.43	1.0	6.06	. 245	3,7	(.03	14.20	202		
<u>[445 A</u>	70 7 30	<u>200</u>	20,41	1:2	6.07	, 246	3.5	0.88	14.16	202		
			· · · · · · · · · · · · · · · · · · ·									
Donstituents S VD A 1/4 - Di	•	É			Actu	We AMB	ER GURSS		Number 2 X 2		Preservat H((
				-	·····				·			
ell Information Well Location		N. GRAS	5, DFF RUN	- Vini 1-TA	wi wh			I Locked a	t Arrival:	Tes		
Condition of V Well Complet	Vell: _	Good		Stick Up			Well Lo	cked at De	eparture:	Yes	/ N	
DTES:												

APPENDIX C

ARCADIS U.S., Inc. 17-17 Route 208 North 2nd Floor Fair Lawn, NJ 07410 T: (201) 797-7400 F: (201) 797-4399 www.arcadis-us.com

ARCADIS U.S., Inc. Data Validation Report

To:Dan St. GermainFrom:Shi NgDate:February 5, 2014

Project:Fairchild Corp.Laboratory:H2M Labs, Inc.SDGs:FAIR001

1. SCOPE

ARCADIS U.S., Inc. (ARCADIS) collected a total of fourteen (14) water samples for the Fairchild Corporation Project on **November 19 and 20, 2013**. The samples were analyzed for volatile organic compounds (VOCs) by H2M Labs, Inc., located in Melville, New York. One of the VOCs (1,4-dioxane) was analyzed as a semivolatile organic compound (SVOC) due to its low sensivity via the volatile organic analysis (VOA) analytical method. This report summarizes the data validation findings and their effects on the laboratory results¹, based on quality indicators and raw data of the report deliverable submitted by the laboratory. And based on the findings, the laboratory results were subsequently qualified², where applicable.

2. ANALYTICAL DATA

Included in the 14 samples submitted for laboratory analysis were one field blank, one trip blank, and one blind field duplicate. In addition to the 14 samples, one matrix spike / matrix spike duplicate (MS/MSD) aliquot set was also submitted. The samples were collected from the areas of the Fairchild Main Plant in East Farmingdale, New York. The samples were delivered to and received by the laboratory on December 20, 2013. H2M Labs is a New York State Department of Health accredited laboratory with laboratory ID number 10478.

All samples were analyzed by the analytical procedures of the U.S. Environmental Protection Agency's (USEPA) SW-846³ Method 8260C and USEPA Method⁴ 522. Method 8260C was

¹ Laboratory results are found in the "Analysis Data Sheet" (Form 1) of Section 4 "Sample Reports" of the laboratory report.

² Validation qualifiers are added onto the "Analysis Data Sheet" only, within the laboratory report.

³ EPA, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, Third Edition. November 1986 and updates.

⁴ EPA 500 Series Method, titled: *Determination of 1,4-Dioxane in Drinking Water by Solid Phase Extraction (SPE) and Gas Chromatography/Mass Spectrometry (GC/MS) with Selected Ion Monitoring (SIM)*, September, 2008.

used for the analysis of VOCs and Method 522 was used for the analysis of 1,4-dioxane, which is a VOC that is not very sensitive (elevated detection limit) via Method 8260C. The laboratory report deliverable was submitted in the form equivalent to New York State's Analytical Services Protocol (ASP) Category B (full data package deliverable). The SW-846 Method 8260C is a VOA analytical method used uses a purge-and-trap sample introduction instrument in series with a gas chromatograph coupled to a mass spectrometer detector (GC/MS) and the USEPA Method 522 is a semivolatile-like method that uses solid phase extraction (SPE) followed by introduction into a GC/MS (this is a semivolatile organic analysis, SVOA) configured on selected ion monitoring (SIM) detection mode. The analytical methods employed provide definitive compound identification with high quantitative sensitivity.

3. VALIDATION GUIDELINES

This report is prepared by a trained and experienced data validator, applying criteria contained within applicable sections of the USEPA Region 2 Standard Operating Procedures *"Low/Medium Volatile Data Validation"* SOP # HW-33 Revision 3 (March 2013), *"Semivolatile Data Validation"* SOP # HW-35 Revision 2 (March 2013), Methods 8260C and 522, and by best professional judgment.

This data validation consisted of checking and verifying that the data quality indicators listed below are within acceptable (technical) quality control (QC) criteria.

- Sample Receipt Conditions/Problems
- Holding Times
- Surrogate Recovery
- Matrix Spike/Matrix Spike Duplicate Recovery and Precision
- Laboratory Control Sample Recovery
- Blanks Contaminations
- GC/MS Instrument Performance Check
- Target Compound List Compounds
- Tentatively Identified Compounds (not reviewed)
- Initial Calibration
- Continuing Calibration
- Internal Standard
- Field Duplicate Precision
- Dilutions

4. DATA QUALIFIERS

The following are validation codes (qualifiers) used to qualify data during the data validation process. Should it be determined that the laboratory's reported value need qualification, these qualifiers were used to append to the reported value. The reported value may be a "detect" or a "non-detect." These validation qualifiers may, under specific circumstances, replace laboratory qualifiers. If they are the same as the laboratory qualifiers, no correction will be made. If not altered, all laboratory qualifiers will be considered validation qualifiers.

- U The compound was analyzed for, but was not detected above the reported sample quantitation limit.
- J The compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample.
- N The analysis indicated the presence of a compound for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of a compound that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the compound in the sample.
- R The sample result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the compound cannot be verified.

5. SAMPLES

The following samples were submitted to and analyzed by the laboratory. The laboratory organized the samples into one sample delivery group (SDG) that batched field QC samples and incorporated laboratory in-house QC samples. The SDG resulted in a self-contained laboratory report. The laboratory submitted the laboratory report labeled as *Fairchild Groundwater Sampling, SDG No. FAIR001*. This data validation report is a result of the reviewed of the laboratory report, which included raw data and supporting documents.

The following samples were submitted to and analyzed by the laboratory.

SDG FAIR001				
ARCADIS ID	Laboratory ID			
MW-37I	1311B27-001			
MW-41	1311B27-002			
MW-42D	1311B27-003			
MW-42I	1311B27-004			
MW-43I	1311B27-005			
MW-46I	1311B27-006			
MW-49D	1311B27-007			
MW-49I	1311B27-008			
MW-50	1311B27-009			
S-66133	1311B27-010			
S-66134	1311B27-011			
MW-DUP	1311B27-012			
FB111913	1311B27-013			
TRIP BLANK	1311B27-014			

Sample MW-DUP is a blind duplicate of sample MW-42I MS/MSD aliquots were also collected for sample MW-49D

6. DATA VALIDATION FINDINGS

The following are data quality indicators reviewed and summaries of their findings. These findings are presented in two subsections, 6a and 6b. Subsection 6a pertains to compounds analyzed via Method 8260C and subsection 6b pertains to 1,4-dioxane that was analyzed via Method 522.

Sample Receipt Conditions/Problems

All samples were received at the laboratory undamaged and in good condition. However, the laboratory broke one of the two trip blank bottles – no effect on results. The Field Blank sample was not included on the chain of custody (COC) form, so the laboratory entered it on the form upon receipt at the laboratory. The internal temperature of the sample coolers were received at 2.1 $^{\circ}$ C, 1.9 $^{\circ}$ C, and 3.2 $^{\circ}$ C which were within the criterion of 4 $^{\circ}$ C ± 2 $^{\circ}$ C. There were sufficient volumes to perform the requested analyses. No qualification actions are necessary.

6a. DATA VALIDATION FINDINGS FOR VOLATILE ORGANIC ANALYSIS

VOA Holding Times

All samples were analyzed within the VOA technical holding time of 14 days, from date of collection to date of analysis. The holding time criterion assumes that all samples were properly acid-preserved to pH 2 or below, in addition to storage in the dark at 4 $^{\circ}C \pm 2 {}^{\circ}C$. No qualification actions are necessary.

VOA Surrogate Recovery

The surrogate (a.k.a., system monitoring compound or deuterated monitoring compound) recoveries for all samples and blanks were within the laboratory's acceptance ranges. The lowest recovery for all surrogates, for all samples, was 86% and the highest was 120%. No qualification actions are necessary.

VOA Matrix Spike/Matrix Spike Duplicate Recovery and Precision

An MS/MSD set was performed on sample MW-49D. All MS percent recoveries (%Rs) were within the laboratory's acceptance criteria with the exception of tetrachloroethene. No qualification actions were necessary because the sample concentration was much higher than the spiking concentration. All MSD %Rs were within the laboratory's acceptance criteria with the exception of cis-1,2-dichloroethend and tetrachloroethene. No qualification actions were necessary because these sample concentrations were much higher than the spiking concentrations. All relative percent differences (RPDs) between the MS and MSD results were within the laboratory's acceptable accuracy and precision. No qualification actions are necessary. It should be noted that the laboratory erroneously calculated RPDs based on %Rs instead of the concentrations detected in the spiked samples.

VOA Laboratory Control Sample Recovery

Laboratory control samples (LCSs) were analyzed along with each daily batch of samples at concentrations of 50 ug/L. There were two LCSs, analyzed on November 23 and 25, 2013. All LCS recoveries were within the laboratory's acceptance ranges with the exception of vinyl chloride analyzed on November 25, 2013. Therefore, all sample results for vinyl chloride that were analyzed on November 25, 2013 are qualified as estimated values, either "J" or "UJ," biased low.

VOA Blanks - Contaminations

Analytical blanks are QA/QC samples. The blanks analyzed included one field blank, one trip blank, two method blanks, and one storage blank. There were no targeted compounds detected in any of the blanks. One unknown tentatively identified compound (TIC) was detected in the storage blank at retention time (RT) of 14.35 minutes with a concentration of 5 JN ug/L. Therefore, TICs detected in field samples at or near this RT are considered contaminations and are deleted from reporting (sample MW-42D).

VOA GC/MS Instrument Performance Check

Prior to instrument calibration and subsequent sample analysis, the first run of any twelve-hour GC/MS shift must be an acceptable instrument performance check (a.k.a., instrument tune). There were three instrument tunes performed – one for the initial calibration and one for each of the two days of sample analysis. All instrument tunes for all twelve-hour shifts were acceptable. All samples reported were analyzed within an acceptable instrument tune shift. No qualification actions are necessary.

VOA Target Compound List Compounds

Target compound list (TCL) compounds for all samples were reviewed for proper identification and quantitation. This consisted of reviewing reconstructed ion chromatograms, data system printouts (quantitation reports), mass spectra of detected compounds, relative retention time (RRT) for identified compounds, concentration calculations, dilutions (for calibration range compliance), laboratory qualifiers, and transcription to reporting forms.

There were no calculation or transcription errors found. All reporting limits were properly adjusted to reflect sample dilutions. The laboratory had rounded off detected concentrations that were greater than or equal to 10 ug/L to 2 significant digits and to 1 significant digit for concentrations that were less than 10 ug/L.

VOA Tentatively Identified Compounds

The search for and identification of tentatively identified compounds (TICs) were evaluated and reported in the data sheets. There were not many TICs detected. TIC identifications are "tentative" and the reported concentrations are estimates.

VOA Initial Calibration

The instrument was calibrated, with most compounds at 6 concentration levels, from 5 ug/L to 200 ug/L. The initial calibration (IC) was conducted on May 3, 2013. All relative response factors (RRFs) were within the acceptance criterion of ≥ 0.050 (or ≥ 0.010 for compounds exhibiting poor response) indicating acceptable detection sensitivity. All compound response factors were evaluated for linearity over the calibration range. If the percent relative standard deviation (%RSD) was not $\leq 20.0\%$ ($\leq 20.0\%$ = linear through the origin and so an average RF would be used), the laboratory indicated that a linear regression function was used. The %RSD for 2-hexanone and 1,2-dibromo-3-chloropropane was greater than 20%. No qualification actions were necessary.

VOA Continuing Calibration Verification

Continuing calibration verifications (CCVs) were analyzed for instrument at the mid-point concentration level of 50 ug/L. The CCVs were performed on November 23 and 25, 2013. All RRFs were within acceptance criterion of ≥ 0.05 (or ≥ 0.010 for compounds exhibiting poor response) indicating continued acceptable detection sensitivity. There were 9 compounds that did not meet the percent difference criterion (%D $\leq 20\%$) on the CCV analyzed on November 23rd. These compound concentrations, whether detected or non-detected, are qualified as estimated values, "J" or "UJ, respectively. The compounds qualified are:

Dichlorodifluoromethane Chloromethane Vinyl chloride Methyl acetate Cyclohexane Methylcyclohexane 4-methyl-2-pentanone Bromoform 1,2-Dibromo-3-chloropropane

The CCV analyzed on November 25th was acceptable, which was used only for secondary dilution analyses, targeting compounds that had concentrations greater than the calibration range in the initial analyses.

VOA Internal Standard

All internal standard (IS) area counts for all samples and blanks were within the upper and lower limits (+ 100%, - 50%, respectively) defined by their associated CCV IS area counts. All IS retention times (RT) of every sample and blank were within the limits (\pm 30 seconds or \pm 0.5 minutes) relative to their associated CCV IS RT. No qualification actions are necessary.

VOA Field Duplicate Precision

A field duplicate was submitted to the laboratory. The duplicate sample was MW-DUP (Lab ID 1311B27-012) and is associated with sample MW-42I. The laboratory was not made aware of

which sample the duplicate was associated with (therefore, it was a "blind" field duplicate). For chemical detections that were greater than the reporting limit, the RPD acceptance limit used in this data validation was $\leq 30\%$. All compounds that were detected in both the duplicate sample and sample MW-42I have RPDs $\leq 30\%$. No qualification actions are necessary.

VOA Dilutions

Dilutions were performed on five samples submitted. Dilutions were based on initial analyses that were not diluted and had detections that exceeded the initial calibration ranges. The laboratory reported both undiluted and diluted sample results. In this data validation, the elevated results from the diluted analyses have been transferred to, and replaced the, undiluted results that exceeded the calibration ranges. The following is a table presenting samples that were diluted, and the level of dilution performed.

Sample ID	Dilution
MW-37I	3x
MW-431	3x
MW-49D	5x
MW-50	5x
S-66133	2x

All dilutions were necessary and justifiable.

6b. DATA VALIDATION FINDINGS FOR SEMIVOLATILE ORGANIC ANALYSIS (1,4-DIOXANE)

SVOA Holding Times

All samples were analyzed within the Method 522 technical holding time of 28 days from date of collection to date of analysis. The holding time criterion assumes that all samples were properly acid-preserved to pH 2 or below, in addition to storage in the dark at below 6 ⁰C prior to extraction. No qualification actions are necessary.

SVOA Surrogate Recovery

The surrogate recoveries for all samples and blanks were within the laboratory's acceptance ranges. The lowest recovery for all surrogates, for all samples, was 82% and the highest was 104%. No qualification actions are necessary.

SVOA Matrix Spike/Matrix Spike Duplicate Recovery and Precision

An MS/MSD set was performed on sample MW-49D. The MS and/or MSD %Rs were within the laboratory's acceptance criteria and the RPDs between the MS and MSD results was within the laboratory's acceptance criterion, indicating acceptable accuracy and precision. No qualification actions are necessary. It should be noted that the laboratory erroneously calculated RPDs based on %Rs instead of concentrations detected in the spiked samples.

SVOA Laboratory Control Sample Recovery

An LCS was analyzed along with the daily batch of samples at concentrations of 2.0 ug/L. The LCS was analyzed on November 27, 2013. The LCS recovery was within the laboratory's acceptance range. No qualification actions are necessary.

SVOA Blanks - Contaminations

The blanks analyzed included one field blank and one method blank. There were no contaminants detected in the blanks. No qualification actions are necessary.

SVOA GC/MS Instrument Performance Check

Prior to the initial calibration of the instrument and subsequent sample analysis, the first run on the instrument must be an acceptable instrument performance check. The initial calibration was analyzed on November 17th. The samples were analyzed on November 17 and December 3, 2013. The instrument performance check was analyzed on November 17th and the results were acceptable. For Method 522, the instrument performance check only needs to be conducted whenever an initial calibration is conducted; therefore, an instrument performance check was not conducted on December 3rd. No qualification actions are necessary.

SVOA Target Compound List Compounds

TCL compounds for all samples were reviewed for proper identification and quantitation. This consisted of reviewing reconstructed ion chromatograms, data system printouts, mass spectra of detected compounds, RRT for identified compounds, concentration calculations, dilutions (for calibration range compliance), laboratory qualifiers, and transcription to reporting forms.

There were no calculation or transcription errors found. In this data validation review, the reporting limit has been adjusted to be 0.05 ug/L, equivalent to the lowest initial and continuing calibration levels, from 0.07 ug/L on the Analysis Data Sheets (Form 1). The laboratory had rounded off detected concentrations that were greater than or equal to 10 ug/L to 2 significant digits and to 1 significant digits for concentrations that were less than 10 ug/L. In this data validation review of 1,4-dioxane, concentrations that were less than 10 ug/L were modified to 2 significant digits.

SVOA Tentatively Identified Compounds

The search for and identification of TICs were not applicable to this analysis because only the analysis for the targeted compound 1,4-dioxane was applicable.

SVOA Initial Calibration

The instrument was calibrated, with most compounds at 9 concentration levels, from 2.5 ng/mL to 1000 ng/mL. The IC was conducted on November 27, 2013. The calibration curve was linear with a correlation coefficient of 0.998. No qualification actions are necessary.

SVOA Continuing Calibration Verification

Continuing calibration verification (CCV) brackets were analyzed for instrument at the 2.5 ng/mL and 1000 ng/mL (equivalent to sample concentrations of 0.05 ug/L and 20 ug/L, respectively). The CCVs were performed on November 27 through 28 and on December 3, 2013. All 1,4-dioxane percent recoveries were within the laboratory's acceptance ranges (\pm 50% for the 2.5 ng/mL CCVs and \pm 30% for the 1000 ng/mL CCVs). No qualification actions are necessary.

SVOA Internal Standard

All internal standard (IS) area counts for all samples and blanks were within the upper and lower limits (+ 50%, - 50%, respectively) defined by their associated CCV IS area counts. All IS retention times (RT) of every sample and blank were within the limits (\pm 30 seconds or \pm 0.5 minutes) relative to their associated CCV IS RT. No qualification actions are necessary.

SVOA Field Duplicate Precision

A field duplicate was submitted to the laboratory. The duplicate sample was MW-DUP (Lab ID 1311B27-012) and is associated with sample MW-42I. The laboratory was not made aware of which sample the duplicate was associated with (therefore, it was a "blind" field duplicate). For chemical detections that were greater than the reporting limit, the RPD acceptance limit used in this data validation was \leq 30%. All compounds that were detected in both the duplicate sample and sample MW-42I have RPDs \leq 30%. No qualification actions are necessary.

SVOA Dilutions

A dilution was performed on one of the samples submitted. The dilution was based on an initial analysis that was not diluted and had a detection that exceeded the initial calibration range. In this data validation, the elevated result from the diluted analysis has been transferred to, and replaced the, undiluted result that exceeded the calibration range. The following is a table presenting the sample that was diluted, and the level of dilution performed.

Sample ID	Dilution
MW-50	4x

The dilution was necessary and justifiable.

7. OVERALL SUMMARY OF DATA

Deficiencies in the data generation process have resulted in some data being qualified as estimated values. There were no major deficiencies found in the VOCs analyses, which would have resulted in data being qualified as unusable (rejected). Data qualified as estimated results are considered conditionally usable. The following are notable deficiency found:

- There were some continuing calibration verification response drift deficiencies in the VOA that resulted in some compound concentrations values (detects and non-detects) qualified as estimated values.
- Although, not a deficiency of the data, the laboratory failed to properly calculate precision (RPD) on MS/MSD samples.
- There was one minor contamination compound detected, which was an unknown TIC compound.
- One VOA compound failed to meet the laboratory's in-house acceptance criteria in one of the LCS samples.

1A

EPA SAMPLE NO.

MW-371

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 1311B27-001A
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79632.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (µg	/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	9	JZ
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	υ
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	28	1
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	37	<u> </u>
67-64-1		10	υ
75-15-0	Carbon disulfide	10	U
79-20-9	Methyl Acetate	10	- U 🕽
75-09-2	Methylene chloride	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4	Methyl tert-butyl ether	2	Ĵ
75-34-3		41	
156-59-2		360 320	R
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	1	J
71-55-6	1,1,1-Trichloroethane	13	
110-82-7	Cyclohexane	4	- JL
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	1	J
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	260-240	E
108-87-2	Methylcyclohexane	10	- 03
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	υ
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	- U J
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	σ
127-18-4	Tetrachloroethene -	130	
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U

OLM04.2

FAIR001 S21

1B

EPA SAMPLE NO.

MW-37I

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-001A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79632.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Factor: <u>1.00</u>
Soil Extract Volume: (µL)) Soil Aliquot Volu (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	υ
1330-20-7	Xylene (total)	10	υ
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	υ 3
98-82-8	Isopropylbenzene	10	υ
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	U J
120-82-1	1,2,4-Trichlorobenzene	10	U

	1F		EPA SAMPLE NO.
	VOLATILE ORGANICS ANALY TENTATIVELY IDENTIFIE		MW-37I
Lab Name: H2M LABS	INC	Contract:	e.
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.: SDG N	No.: FAIR001
Matrix: (soil/water)	WATER	Lab Sample ID:	1311B27-001A
Sample wt/vol: 5	(g/mL) <u>ML</u>	Lab File ID:	3\A79632.D
Level: (low/med)	LOW	Date Received:	11/20/13
<pre>% Moisture: not dec.</pre>		Date Analyzed:	11/23/13
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µl)	Soil Aliquot Volum	ue: <u>0</u> (µL)
		CONCENTRATION UNITS:	
Number TICs found:	1	(µg/L or µg/Kg)	UG/L

	(-3) -	- F3,	0071	
CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1. 000354-23-4	Ethane, 1,2-dichloro-1,1,2-trifluor	3.10	75	JN
2	(DEL) Alkane: Cyclic	5.59	8	JN

FAIR001 S23

FORM I VOA-TIC

OLM04.2

а	Form 1		CLIENT SAMPLE NO.
			MW-37I
Lab Name: <u>H2M LA</u>	BS INC Cont	ract:	
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.: SDG 1	No.: FAIR001
Matrix: (soil/water)	Potable Water	Lab Sample ID:	<u>1311B27-001B</u>
Sample wt/vol:	500 (g/mL) <u>ML</u>	Lab File ID:	<u>C67389.D</u>
Level: (low/med)	LOW	Date Received:	11/20/2013
% Moisture: not dec.		Date Extracted:	<u>11/21/2013</u>
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Date Analyzed:	11/27/2013
Extract Volume:	10000 (µl)	Dilution Factor:	1.00
Injection Volume:	1 (µl)		
~		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>µg/L</u> Q
123	-91-1 1,4-Dioxane	16	

E522

EPA SAMPLE NO.

MW-41

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M_LABS_INC</u>	Contrac	t:	
Lab Code: 10478 Case No.: FAIR	SAS N	0	SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	L	ab Sample ID:	1311B27-002A
Sample wt/vol: 5 (g/mL ML	L	ab File ID:	3\A79633.D
Level: (low/med) LOW	Da	ate Received:	11/20/13
% Moisture: not dec.	Da	ate Analyzed:	11/23/13
GC Column: <u>Rtx-624</u> ID: <u>18</u>	(mm) D:	ilution Factor	: 1.00
Soil Extract Volume: (µI	L) So	oil Aliquot Vo	lu (nL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	µg/L or µg/Kg <u>UG/L</u>	Q
75-71	-8 Dichlorodifluoromethane	10	υσ
74-87	-3 Chloromethane	10	ע 式
75-01	-4 Vinyl chloride	2	37
74-83	-9 Bromomethane	10	Ū
75-00	-3 Chloroethane	10	U
75-69	-4 Trichlorofluoromethane	10	υ
75-35	-4 1,1-Dichloroethene	10	U
76-13	-1 1,1,2-Trichloro-1,2,2-trifluoroethane	10	U
67-64		10	υ
75-15	-0 Carbon disulfide	10	U
79-20	-9 Methyl Acetate	10	υŢ
75-09	-2 Methylene chloride	10	υ
156-60		10	U
1634-04		15	
75-34		2	J
156-59	-2 cis-1,2-Dichloroethene	19	· · · · ·
78-93		10	Ŭ
67-66	-3 Chloroform	10	U
71-55	-6 1,1,1-Trichloroethane	10	U
110-82-		10	<u> </u>
56-23	-5 Carbon tetrachloride	10	<u> </u>
71-43-	-2 Benzene	10	U
107-06-	2 1,2-Dichloroethane	10	 U
79-01-		9	J
108-87-	2 Methylcyclohexane	10	UT
78-87-	5 1,2-Dichloropropane	10	<u> </u>
75-27-	4 Bromodichloromethane	10	υ
10061-01-	5 cis-1,3-Dichloropropene	10	U
108-10-	1 4-Methyl-2-pentanone	10	U.T
108-88-		10	<u> </u>
10061-02-	6 trans-1,3-Dichloropropene	10	U
79-00-		10	<u>v</u>
127-18-		77	
591-78-		10	U
124-48-	1 Dibromochloromethane	10	

FAIR001 S27

- 13 Mator

1B

EPA SAMPLE NO.

MW-41

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-002A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79633.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: 18	(mm) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	3	J
100-41-4	Ethylbenzene	10	υ
1330-20-7	Xylene (total)	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	UJ
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	υ
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	U J
120-82-1	1,2,4-Trichlorobenzene	10	<u> </u>

OLM04.2

1F	EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS	MW-41
Lab Name: H2M LABS INC Contract:	
Lab Code: 10478 Case No.: FAIR SAS No.: SDG N	No.: FAIR001
Matrix: (soil/water) WATER Lab Sample ID:	1311B27-002A
Sample wt/vol: <u>5</u> (g/mL) <u>ML</u> Lab File ID:	3\A79633.D
Level: (low/med) LOW Date Received:	11/20/13
<pre>% Moisture: not dec.</pre> Date Analyzed:	11/23/13
GC Column: <u>Rtx-624</u> ID: <u>.18</u> (mm) Dilution Factor:	1.00
Soil Extract Volume: (µl) Soil Aliquot Volum	ne: <u>0</u> (μL)
CONCENTRATION UNITS:	
Number TICs found: 0 (µg/L or µg/Kg)	<u>UG/L</u>
CAS NUMBER COMPOUND NAME RT EST.C	CONC. Q

		For	m 1			CLIENT	SAMPLE NO.
						MW-41	
Lab Name:	H2M LABS INC		Contra	act:			
Lab Code:	10478	Case No.: FA	IR	SAS No.:	SDG N	O.: FAI	2001
Matrix: (soil	/water)	Potable Water			Lab Sample ID:	1311B27	-002B
Sample wt/vol	.:	<u>500</u> (g/mL)	ML		Lab File ID:	<u>C67390.1</u>	2
Level: (lo	ow/med)	LOW			Date Received:	11/20/20)13
% Moisture: n	ot dec.				Date Extracted:	<u>11/21/2013</u>	
GC Column: R	t <u>x-624</u>]	ID: <u>.18</u> (mm)			Date Analyzed:	11/27/20	013
Extract Volu	ime: 100	00 (µ1)			Dilution Factor:	1.00	
Injection Vo	lume: 1	(µl)					
				CONCENT	RATION UNITS:		
CAS	NO.	COMPOUND		(ug/L o:	r ug/Kg)	<u>µg/L</u>	Q
	123-91-1	1,4-Dioxane			9.8	0.84	

FORM I VOA

E522

EPA SAMPLE NO.

MW-42D

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: <u>10478</u> Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-003A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79634.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Factor: <u>1.00</u>
Soil Extract Volume: (µL)	Soil Aliquot Volu (µL)

CONCENTRATION UNITS:

CAS NO.		g/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	UJ
74-87-3	Chloromethane	10	Ω 2
75-01-4	Vinyl chloride	10	υŢ
74-83-9	Bromomethane	10	υ
75-00-3	Chloroethane	10	υ
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	2	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	υ
79-20-9	Methyl Acetate	10	ד ז
75-09-2		10	U
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4	Methyl tert-butyl ether	10	Ū
75-34-3		2	J
156-59-2		10	U
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	υ
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7		10	υσ
56-23-5	Carbon tetrachloride	10	υ
71-43-2	Benzene	10	υ
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	56	
108-87-2		10	U 🔽
78-87-5		10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5		10	υ
108-10-1		10	υŢ
108-88-3		10	U
10061-02-6	trans-1,3-Dichloropropene	10	<u>u</u>
79-00-5		10	
127-18-4		10	U
591-78-6	2-Hexanone	10	
124-48-1		10	<u> </u>
		± V	

OLM04.2

-

FAIR001 S30

1B

EPA SAMPLE NO.

MW-42D

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC	Contract:
Lab Code: <u>10478</u> Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-003A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79634.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>18</u>	(mm) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	υ
1330-20-7	Xylene (total)	10	U
100-42-5	Styrene	10	υ
75-25-2	Bromoform	10	U 🕽
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	U 🏹
120-82-1	1,2,4-Trichlorobenzene	10	U

FAIR001 S31

		1F			EPA	A SAMPLE NO.
			LYSIS DATA S		MW-	-42D
	TENTATI	VELY IDENTIE	FIED COMPOUND	S		
Lab Name: <u>H2M L</u>	ABS INC		Contract	::		
Lab Code: <u>10478</u>	Case No	.: FAIR	SAS No.: _		SDG No.:	FAIR001
Matrix: (soil/wate	r) <u>WATER</u>			Lab Sampl	e ID: <u>131</u>	11B27-003A
Sample wt/vol:	5	(g/mL) <u>N</u>	ML	Lab File	ID: <u>3\A</u>	A79634.D
Level: (low/med)	LOW			Date Rece	ived: <u>11/</u>	/20/13
Moisture: not de	2.			Date Anal	yzed: <u>11/</u>	23/13
GC Column: Rtx-624	ID: <u>.18</u>	(mm)		Dilution	Factor: <u>1.0</u>	10
Soil Extract Volume		(µl)		Soil Aliq	uot Volume:	<u>0</u> (µL)
			CONCENTR	ATION UNI	TS:	
Number TICs found:	1		(µg/L or	µg/Kg)	UG/I	<u>.</u>
CAS NUM	ER	COMPOUND NA	ME	PΨ	EST CONC	0

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1,	unknown	5.04	5	JN
2	-(DEL)-Alkane: Cyclic	14.35	6	J

FORM I VOA-TIC

at a state

OLM04.2

MW-42D Lab Name: H2M LABS INC Contract: Lab Code: 10478 Case No.: FAIR SAS No.: SDG No.: FAIR001 Matrix: (soil/water) Potable Water Lab Sample ID: 1311E27-003B Sample wt/vol: 500 (g/mL) ML Lab File ID: C67391.D Level: (low/med) LOW Date Received: 11/20/2013 % Moisture: not dec. Date Extracted: 11/21/2013 GC Column: Rtx-624 ID: .18 (mm) Date Analyzed: 11/27/2013 Extract Volume: 10000 (μ 1) Dilution Factor: 1.00 Injection Volume: 1 (μ 1) CONCENTRATION UNITS:		Form 1		CLIENT SAMPLE NO.
ILEM DIDOTING Case No.: FAIR SAS No.: SDG No.: FAIR001 Matrix: (soil/water) Potable Water Lab Sample ID: 1311B27-003B Sample wt/vol: 500 (g/mL) ML Lab File ID: C67391.D Level: (low/med) LOW Date Received: 11/20/2013 % Moisture: not dec. Date Extracted: 11/21/2013 GC Column: Rtx-624 ID: 18 (mm) Date Analyzed: 11/27/2013 Extract Volume: 10000 (µl) Dilution Factor: 1.00 Injection Volume: 1 (µl) CONCENTRATION UNITS:				MW-42D
Matrix: (soil/water) Potable Water Lab Sample ID: 1311B27-003B Sample wt/vol: 500 (g/mL) ML Lab File ID: C67391.D Level: (low/med) LOW Date Received: 11/20/2013 % Moisture: not dec. Date Extracted: 11/21/2013 GC Column: Rtx-624 ID: .18 (mm) Extract Volume: 10000 (µl) Dilution Factor: 1.00 Injection Volume: 1 (µl) CONCENTRATION UNITS:	Lab Name: <u>H2M LAB</u>	<u>S INC</u> Con	tract:	
Sample wt/vol: 500 (g/mL) ML Lab File ID: C67391.D Level: (low/med) LOW Date Received: 11/20/2013 % Moisture: not dec. Date Extracted: 11/21/2013 GC Column: Rtx-624 ID: .18 (mm) Date Analyzed: 11/27/2013 Extract Volume: 10000 (µl) Dilution Factor: 1.00 Injection Volume: 1 (µl) CONCENTRATION UNITS:	Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.: SDG	No.: FAIR001
Level: (low/med) LOW Date Received: 11/20/2013 % Moisture: not dec. Date Extracted: 11/21/2013 GC Column: Rtx-624 ID: .18 (mm) Date Analyzed: 11/27/2013 Extract Volume: 10000 (µl) Dilution Factor: 1.00 Injection Volume: 1 (µl) CONCENTRATION UNITS:	Matrix: (soil/water)	Potable Water	Lab Sample ID:	1311B27-003B
% Moisture: not dec. Date Extracted: $11/21/2013$ GC Column: Rtx-624 ID: .18 (mm) Date Analyzed: $11/27/2013$ Extract Volume: 10000 (μ 1) Dilution Factor: 1.00 Injection Volume: 1 (μ 1) CONCENTRATION UNITS:	Sample wt/vol:	<u>500</u> (g/mL) <u>ML</u>	Lab File ID:	<u>C67391.D</u>
GC Column: Rtx-624 ID: .18 (mm) Date Analyzed: $11/27/2013$ Extract Volume: 10000 (μ l) Dilution Factor: 1.00 Injection Volume: 1 (μ l) CONCENTRATION UNITS:	Level: (low/med)	LOW	Date Received:	11/20/2013
Extract Volume: 10000 (µl) Dilution Factor: 1.00 Injection Volume: 1 (µl) CONCENTRATION UNITS:	% Moisture; not dec.	2	Date Extracted:	<u>11/21/2013</u>
Injection Volume: 1 (µl) CONCENTRATION UNITS:	GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Date Analyzed:	11/27/2013
CONCENTRATION UNITS:	Extract Volume:	10000 (µl)	Dilution Factor:	1.00
	Injection Volume:	1 (µl)		
CAS NO. COMPOUND $(\mu \alpha/I, \alpha, \mu \alpha/I, 0)$			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>hā∖r</u> ð
123-91-1 1,4-Dioxane 2 1.\	123-9	91-1 1,4-Dioxane	¥	1 - 1

1

E522

EPA SAMPLE NO.

MW-421

1**A**

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS I</u>	NC	Contract:		
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.		SDG No.: FAIR001
Matrix: (soil/water)	WATER	Lab	Sample ID:	1311B27-004A
Sample wt/vol: 5	(g/mL ML	Lab	File ID:	3\A79635.D
Level: (low/med)	LOW	Date	Received:	11/20/13
% Moisture: not dec.		Date	Analyzed:	11/23/13
GC Column: <u>Rtx-624</u>	ID: <u>.18</u>	(mm) Dilu	tion Factor	: 1.00
Soil Extract Volume:	(pL)	Soil	Aliquot Vo	lu (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (µg	J/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	U 7
74-87-3	Chloromethane	10	U 🔾
75-01-4	Vinyl chloride	10	ע ג
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	U
79-20-9	Methyl Acetate	10	υJ
75-09-2	Methylene chloride	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4	Methyl tert-butyl ether	10	U
75-34-3	1,1-Dichloroethane	10	U
156-59-2	cis-1,2-Dichloroethene	10	Ŭ
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7	Cyclohexane	10	υ 🔽
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	2	J
108-87-2	Methylcyclohexane	10	U 🗂
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	U 🗾
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U

FAIR001 S33

FORM I VOA - 1

In the second
EPA SAMPLE NO.

MW-42I

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) WATER	Lab Sample ID: <u>1311B27-004A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79635.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Factor: 1.00
Soil Extract Volume: (pL) Soil Aliquot Volu (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q	
106-93-4	1,2-Dibromoethane	10	U	
108-90-7	Chlorobenzene	10	U	
100-41-4	Ethylbenzene	10	U	
1330-20-7	Xylene (total)	10	Ŭ	
100-42-5	Styrene	10	U	
75-25-2	Bromoform	10	τ 7	
98-82-8	Isopropylbenzene	10	U	
79-34-5	1,1,2,2-Tetrachloroethane	10	U	
541-73-1	1,3-Dichlorobenzene	10	U	
106-46-7	1,4-Dichlorobenzene	10	U	
95-50-1	1,2-Dichlorobenzene	10	U	
96-12-8	1,2-Dibromo-3-chloropropane	10	U	
120-82-1	1,2,4-Trichlorobenzene	10	υ	

FAIR001 S34

i

1

	1F		EPA SAMPLE NO.
v	OLATILE ORGANICS ANALYSIS DATA S TENTATIVELY IDENTIFIED COMPOUNI		MW-42I
Lab Name: <u>H2M LABS INC</u>	Contrac	t:	
Lab Code: <u>10478</u>	Case No.: FAIR SAS No.:	SDG N	o.: <u>FAIR001</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	1311B27-004A
Sample wt/vol: 5	(g/mL) <u>ML</u>	Lab File ID:	3\A79635.D
Level: (low/med) LOW		Date Received:	11/20/13
% Moisture: not dec.		Date Analyzed:	11/23/13
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µl)	Soil Aliquot Volume	e: <u>0</u> (µL)
	CONCENT	RATION UNITS:	
Number TICs found:	0 (μg/L ο	r µg∕Kg)	UG/L
CAS NUMBER	COMPOUND NAME	RT EST.CO	DNC. Q

FAIR001 S35

		Form 1		CLIENT SAMPLE NO.
				MW-42I
Lab Name: <u>H2M</u>	LABS INC	Contract:		
Lab Code: <u>1047</u>	Case No.:	FAIR SAS	No.: S	DG No.: FAIR001
Matrix: (soil/wat	er) <u>Potable W</u>	ater	Lab Sample ID:	1311B27-004B
Sample wt/vol:	500	(g/mL) <u>ML</u>	Lab File ID:	<u>C67392.D</u>
Level: (low/me	d) LOW		Date Received:	11/20/2013
% Moisture: not d	ec.		Date Extracte	d: <u>11/21/2013</u>
GC Column: <u>Rtx-6</u>	<u>24</u> ID: <u>.18</u> (r	m)	Date Analyzed:	11/27/2013
Extract Volume:	10000 (µl)		Dilution Facto:	r: <u>1.00</u>
Injection Volume	e: 1 (µl)			
		CON	ICENTRATION UNITS:	
CAS NO.	COMPOUND	(ug	J/L or ug/Kg)	<u>µg/L</u> Q
	123-91-1 1,4-Dioxa	1e	_0	0.065

E522

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC

F	ORM	Ι	VOA	_	1
٠.	A1000	-		-	

...

OLMO-	4.	2
-------	----	---

0% V

FAIR001 S69

Matrix: (soil/wate	er) <u>WATER</u>	Lab Sample 1	D: 1311B27-012A		
Sample wt/vol: 5	(g/mL ML	Lab File ID:	<u>3\A79645.D</u>		
Level: (low/med)	LOW	Date Receive	d: <u>11/20/13</u>		
% Moisture: not de	ec.	Date Analyze	d: <u>11/23/13</u>		
GC Column: <u>Rtx-62</u>	4 ID: <u>18</u> (mm)	Dilution Fac	tor: <u>1.00</u>		
Soil Extract Volum	ne: (µL)	Soil Aliquot	: Volu (µL))	
		COL	NCENTRATION UNITS:		
CAS NO.	COMON		g/L or µg/Kg UG/L	•	RPD
		<u>بط</u> ز		Q	1-1
74-87-3	Dichlorodifluoromethane		10	υJ	
			10	U J	
74-83-9	Vinyl chloride		10	ע גע	
74-83-9	Bromomethane		10	U	
	Chloroethane Trichlorofluoromethane		10	U U	
	1,1-Dichloroethene		10 10		
76-13-1	1,1,2-Trichloro-1,2,2-tr	iflugraathana		U 	
67-64-1	Acetone	liluoroetnane	10	บ บ	
75-15-0	Carbon disulfide				
			10 10	U	
	Methyl Acetate Methylene chloride		10	U 🔽	
	trans-1,2-Dichloroethene		10	U U	
			10	<u> </u>	
			10	UUU	
	cis-1,2-Dichloroethene		10	U U	
	2-Butanone		10	U	
	Chloroform		10	<u></u>	
	1,1,1-Trichloroethane		10	<u> </u>	
	Cyclohexane		10	υ	
56-23-5	Carbon tetrachloride		10	U U	
			10		
	1,2-Dichloroethane		10	u	
	Trichloroethene		2	J	0% V
108-87-2	Methylcyclohexane		10	υ	U 10
78-87-5	1,2-Dichloropropane		10		
75-27-4	Bromodichloromethane		10	U	
10061-01-5	cis-1,3-Dichloropropene		10	U	
108-10-1	4-Methyl-2-pentanone		10	υ 了	
108-88-3	Toluene		10	υ	
10061-02-6	trans-1,3-Dichloropropen	e	10	U	
79-00-5	1,1,2-Trichloroethane		10	U	
127-18-4	Tetrachloroethene		10	U	
591-78-6	2-Hexanone		10	υ	
124-48-1	Dibromochloromethane		10	U	
1					

Contract: _____

Lab Code: 10478 Case No.: FAIR SAS No. _____ SDG No.: FAIR001

EPA SAMPLE NO.

MW-DOP MW-42I DUP

EPA SAMPLE NO.

MW-DUP MW-42I DUP

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS NO SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-012A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79645.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>18</u>	(mm) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu(µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q	
106-93-4	1,2-Dibromoethane	10	U	
108-90-7	Chlorobenzene	10	υ	
100-41-4	Ethylbenzene	10	U	
1330-20-7	Xylene (total)	10	U	
100-42-5	Styrene	10	υ	
75-25-2	Bromoform	10	Tu	
98-82-8	Isopropylbenzene	10	υ	
79-34-5	1,1,2,2-Tetrachloroethane	10	υ	
541-73-1	1,3-Dichlorobenzene	1.0	U	
106-46-7	1,4-Dichlorobenzene	10	U	
95-50-1	1,2-Dichlorobenzene	10	U	
96-12-8	1,2-Dibromo-3-chloropropane	10	UJ	
120-82-1	1,2,4-Trichlorobenzene	10	υ	

Î

THE REAL

6

						_	EPA SAMI	PLE NO	
	VOLATILE O TENTATIV	RGANICS A /ELY IDEN1					MW-DUP 🙌	IW-42	IDup
Lab Name: <u>H2M LABS</u>	INC			Contrac	:t:				
Lab Code: <u>10478</u>	Case No.	: FAIR	SA	S No.:		SDG No	.: <u>FAIF</u>	001	
Matrix: (soil/water)	WATER				Lab Sampl	e ID:	<u>1311B27-</u>	012A	
Sample wt/vol: 5		(g/mL)	ML		Lab File	ID:	3\A79645	.D	
Level: (low/med)	LOW				Date Rece	ived:	11/20/13	-	
<pre>% Moisture: not dec.</pre>					Date Anal	yzed:	11/23/13	_	
GC Column: <u>Rtx-624</u>	ID: <u>.18</u>	(mm)			Dilution	Factor:	1.00		
Soil Extract Volume:		(µl)			Soil Alig	uot Volume:	:	<u>0</u>	(µL)
				CONCENT	RATION UNI	TS:			
Number TICs found:	0			(µg/L o	r µg∕Kg)	<u>u</u>	IG/L		
CAS NUMBER		COMPOUND	NAME		RT	EST.COM	۱C.	Q	

FORM I VOA-TIC

OLM04.2

TUSTER

	Form 1		CLIENT SAMPLE NO.
			MW-DUP MN-421 DUP
Lab Name: <u>H2M LABS</u>	<u>S INC</u> Cont	.ract:	
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.: SDG	NO.: FAIR001
Matrix: (soil/water)	Potable Water	Lab Sample ID:	<u>1311B27-012B</u>
Sample wt/vol:	<u>500</u> · (g/mL) <u>ML</u>	Lab File ID:	C67436.D
Level: (low/med)	LOW	Date Received:	11/20/2013
% Moisture: not dec.		Date Extracted:	11/21/2013
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Date Analyzed:	12/3/2013
Extract Volume:	10000 (µ1)	Dilution Factor:	1.00
Injection Volume:	1 (µl)		
		CONCENTRATION UNITS:	- 01
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>µg/L</u> Q <u>RFD</u>
123-9	1-1 1,4-Dioxane	0.00	50.065 2 0%

E522

1**A**

EPA SAMPLE NO.

MW-431

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC	Contract:	
Lab Code: 10478 Case No.: FAIR	SAS NO S	SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 1	1311B27-005A
Sample wt/vol: 5 (g/mL ML	Lab File ID:	3\A79636.D
Level: (low/med) LOW	Date Received:]	L1/20/13
% Moisture: not dec.	Date Analyzed:	11/23/13
GC Column: Rtx-624 ID: .18	(mm) Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Alignot Volu	u (11T.)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	g/L or µg/Kg <u>UG/L</u>	Q
75-71-B	Dichlorodifluoromethane	10	υ 🌫
74-87-3	Chloromethane	10	υΖ
75-01-4	Vinyl chloride	3	JZ -
74-83-9	Bromomethane	10	Ū
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	υ
75-35-4	1,1-Dichloroethene	2	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	3	J
67-64-1	Acetone	10	υ
75-15-0	Carbon disulfide	10	U
79-20-9	Methyl Acetate	10	υσ
75-09-2 Methylene chloride	10	υ	
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4	Methyl tert-butyl ether	130	
75-34-3	1,1-Dichloroethane	5	J
156-59-2	cis-1,2-Dichloroethene	88	
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7	Cyclohexane	10	U T
56-23-5	Carbon tetrachloride	10	υ
71-43-2 Benzene		1	 J
107-06-2	107-06-2 1,2-Dichloroethane		U
79-01-6	Trichloroethene	260 240	Z
108-87-2	Methylcyclohexane	10	UT
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	υ
10061-01-5	cis-1,3-Dichloropropene	10	Ū
108-10-1	4-Methyl-2-pentanone	10	ד ע
108-88-3			U
10061-02-6	trans-1,3-Dichloropropene	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
127-18-4	Tetrachloroethene	12	
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U

FAIR001 S36

OLM04.2

1B

EPA SAMPLE NO.

MW-431

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M_LABS_INCContract: ______Lab Code: 10478Case No.: FAIRSAS No. ______ SDG No.: FAIR001Matrix: (soil/water)WATERLab Sample ID: 1311B27-005ASample wt/vol: 5(g/mL MLLab File ID: 3\A79636.DLevel: (low/med)LOWDate Received: 11/20/13% Moisture: not dec.Date Analyzed: 11/23/13GC Column: Rtx=624ID: .18 (mm)Dilution Factor: 1.00Soil Extract Volume:(µL)Soil Aliquot Volu ____(µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (total)	10	U
100-42-5	Styrene	10	υ
75-25-2	Bromoform	10	U 🍼
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	υ
96-12-8	1,2-Dibromo-3-chloropropane	10	UJ
120-82-1	1,2,4-Trichlorobenzene	10	U

FAIR001 S37

			1F			EPA SAMPLE NO.
				LYSIS DATA FIED COMPOUN		MW-43I
Lab Name:	H2M LABS INC			Contrac	ct:	
Lab Code:	10478	Case No.	: FAIR	SAS No.:	SDG 1	No.: FAIR001
Matrix: (soi)	l/water)	WATER			Lab Sample ID:	1311B27-005A
Sample wt/vol	L: <u>5</u>		(g/mL) 1	ML .	Lab File ID:	3\A79636.D
Level: (low	v/med) LOW	Ţ			Date Received:	11/20/13
<pre>% Moisture: r</pre>	not dec.				Date Analyzed:	11/23/13
GC Column: R	tx-624	ID: <u>.18</u>	(mm)		Dilution Factor:	1.00
Soil Extract	Volume:		(µl)		Soil Aliquot Volum	ne: <u>0</u> (µL)
				CONCENT	RATION UNITS:	2
Number TICs f	found:	2		(µg/L c	or µg/Kg)	UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
¹ . 000079-38-9	Ethene, chlorotrifluoro-	1.58	38	JN
2.000354-23-4	Ethane, 1,2-dichloro-1,1,2-trifluor	3.10	46	JN

FAIR001 S38

9

OLM04.2

			Form 1		l.	CLIENT SAMPLE NO.
		2				MW-43I
Lab Name:	H2M LABS INC		Cont	ract:		
Lab Code:	10478	Case No.:	FAIR	SAS No.:		SDG No.: FAIR001
Matrix: (soil	l/water)	Potable Wat	er		Lab Sample II	D: <u>1311B27-005B</u>
Sample wt/vol	l:	<u>500</u> (<u>c</u>	g/mL) <u>ML</u>		Lab File ID:	C67393.D
Level: (lo	ow/med)	LOW			Date Received	a: <u>11/20/2013</u>
<pre>% Moisture: r</pre>	not dec.	<i>x</i>			Date Extract	ed: <u>11/21/2013</u>
GC Column: R	tx-624	ID: <u>.18</u> (mm)		Date Analyzed	l: <u>11/27/2013</u>
Extract Volu	100 ime:	00 (µl)			Dilution Fact	or: <u>1.00</u>
Injection Vo	olume: 1	(µl)				
				CONCENT	RATION UNITS:	
CAS	NO.	COMPOUND		(ug/L o	r ug/Kg)	<u>⊭g/L</u> Q
	123-91-1	1,4-Dioxane)			P.8. 6. 89

E522

1A

EPA SAMPLE NO.

MW-46I

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: <u>10478</u> Case No.: FAIR	SAS NO SDG NO.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-006A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79637.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Factor: <u>1.00</u>
Soil Extract Volume: (µL)	Soil Aliquot Volu(pL)

CONCENTRATION UNITS:

CAS NO.		g/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	υ 🖵
74-87-3	Chloromethane	10	υ 🖵
75-01-4	Vinyl chloride	10	υσ
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	Ū
75-35-4	1,1-Dichloroethene	10	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	U
79-20-9	Methyl Acetate	10	U T
75-09-2	Methylene chloride	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4	Methyl tert-butyl ether	10	U
75-34-3	1,1-Dichloroethane	2	J
156-59-2	cis-1,2-Dichloroethene	3	J
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	υ
110-82-7	Cyclohexane	10	ע 🗲 ד
56-23-5	Carbon tetrachloride	10	υ
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	62	
108-87-2	Methylcyclohexane	10	U 🗂
78-87-5	1,2-Dichloropropane	10	υ
75-27-4	Bromodichloromethane	10	υ
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	υσ
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	4	J
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	<u>U</u>

EPA SAMPLE NO.

MW-46I

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: <u>10478</u> Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-006A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79637.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Factor: <u>1.00</u>
Soil Extract Volume:(µL)	Soil Aliquot Volu (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	υ
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (total)	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	UJ
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	Ln
120-82-1	1,2,4-Trichlorobenzene	10	<u> </u>

1F						EPA SA	MPLE NO)
	VOLATILE ORGANICS ANALYSIS DATA SHEET							
		TENTATIVELY IDENI	IFIED COMPOUND	DS .	ļ	MW-461		
Lab Name:	H2M LABS INC		Contrac	t:				
Lab Code:	10478	Case No.: FAIR	SAS No.:		SDG No	D.: <u>FA</u>	IR001	
Matrix: (soi	l/water)	WATER		Lab Sampl	e ID:	<u>1311B2</u>	<u>7-006A</u>	
Sample wt/vo	1: <u>5</u>	(g/mL)	ML	Lab File	ID:	3\A796	37.D	
Level: (low	w/med) <u>LOW</u>			Date Rece	ived:	11/20/	13	
% Moisture: 1	not dec.			Date Anal	yzed:	11/23/	13	
GC Column: <u>F</u>	Rtx-624	ID: <u>.18</u> (mm)		Dilution	Factor:	1.00		
Soil Extract	Volume;	(בן)		Soil Aliq	uot Volume	•:	<u>o</u>	(µL)
CONCENTRATION UNITS:								
Number TICs i	found:	0	(µg/L o	c µg/Kg)		UG/L		
CZ	AS NUMBER	COMPOUND	NAME	RT	ËST.CC	DNC.	Q	

OLM04.2

	CLIENT SAMPLE NO.		
			MW-46I
Lab Name: <u>H2M LABS N</u>	IC Cor	ntract:	
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.: SDG	NO.: FAIR001
Matrix: (soil/water)	Potable Water	Lab Sample ID:	<u>1311B27-006B</u>
Sample wt/vol:	500 (g/mL) <u>M</u>	L Lab File ID:	<u>C67394.D</u>
Level: (low/med)	LOW	Date Received:	11/20/2013
% Moisture: not dec.		Date Extracted:	<u>11/21/2013</u>
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Date Analyzed:	11/27/2013
Extract Volume: 1	.0000 (µl)	Dilution Factor:	1.00
Injection Volume:	1 (µl)		
		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>µg/L</u> Q
123-91-1	l 1,4-Dioxane	بر	1-3
			······································

FAIR001 S87

E522

1

1

•

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-49D

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) WATER	Lab Sample ID: <u>1311B27-007A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79638.D</u>
Level: (low/med) LOW	Date Received: 11/20/13
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: .18	(mm) Dilution Factor: 1.00
Soil Extract Volume: (pL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.		g/L or µg/Kg <u>UG/L</u>	Q
75-71-B	Dichlorodifluoromethane	10	υσ
74-87-3	Chloromethane	10	υ 🗂
75-01-4	Vinyl chloride	14	11
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	3	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	2	J
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	U
79-20-9	Methyl Acetate	10	U 🥂
75-09-2	Methylene chloride	10	U
156-60-5	trans-1,2-Dichloroethene	1	J
1634-04-4	Methyl tert-butyl ether	15	
75-34-3	1,1-Dichloroethane	б	J
156-59-2	cis-1,2-Dichloroethene	220 200	2
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7	Cyclohexane	10	ΣU
56-23-5	Carbon tetrachloride	10	 U
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	140	
108-87-2	Methylcyclohexane	10	U J
78-87-5	1,2-Dichloropropane	10	υ
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	U 🗂
108-88-3	Toluene	10	<u> </u>
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	650 650	R
591-78-6	2-Hexanone	10	U
			-

FAIR001 S45

FORM I VOA - 1

te

1B

EPA SAMPLE NO.

MW-49D

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M_LABS_IN</u>	IC.	Contract:		
Lab Code: <u>10478</u> C	ase No.: FAIR	SAS No.		SDG No.: FAIR001
Matrix: (soil/water)	WATER	Lab	Sample ID:	<u>1311B27-007A</u>
Sample wt/vol: 5	(g/mL ML	Lab	File ID:	3\A79638.D
Level: (low/med) L	MON	Date	Received:	11/20/13
% Moisture: not dec.		Date	Analyzed:	11/23/13
GC Column: Rtx-624	ID: <u>.18</u>	(mm) Dilu	tion Factor	: <u>1.00</u>
Soil Extract Volume:	(uL)	Soil	Aliquot Vo	lu (11T.)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	υ
108-90-7	Chlorobenzene	2	J
100-41-4	Ethylbenzene	10	υ
1330-20-7	Xylene (total)	10	υ
100-42-5	Styrene	10	υ
75-25-2	Bromoform	10	U 🍼
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	υ
96-12-8	1,2-Dibromo-3-chloropropane	10	υΣ
120-82-1	1,2,4-Trichlorobenzene	10	υ

FAIR001 S46

FORM I VOA - 2

OLM04.2

and the second second

EPA SAMPLE NO.

MW-49D

VOLATILE	ORGANIC	S ANALYSI	S DATA	SHEET
TENTAT	IVELY II	ENTIFIED	COMPOU	NDS

Lab Name: H2M LABS INC Contract: Lab Code: 10478 Case No.: FAIR SAS No.: _____ SDG No.: FAIR001 Matrix: (soil/water) WATER Lab Sample ID: 1311B27-007A Sample wt/vol: 5 (g/mL) Lab File ID: 3\A79638.D ML Level: (low/med) LOW Date Received: 11/20/13 % Moisture: not dec. Date Analyzed: 11/23/13 GC Column: Rtx-624 ID: <u>.18</u> (mm) Dilution Factor: 1.00 Soil Extract Volume: (µl) Soil Aliquot Volume: 0 (µL)

CONCENTRATION UNITS:

Number	TICs found:	2	(µg/L or µg/Kg)	<u>UG/L</u>	
	CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
	1.000079-38-9	Ethene, chlorotrifluoro-	1.58	29	JN
	² . 000354-23-4	Ethane, 1,2-dichloro-1,1,2-trifluo	r 3.10	28	JN
	3.	(DEL) Alkane: Branched	4.32	6	JN

FAIR001 S47

OLM04.2

	Form	1	-	CLIENT SAMPLE NO.
			3	MW-49D
Lab Name: <u>H2M LA</u>	ABS INC	Contract:		
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.:	SDG NO	.: <u>FAIR001</u>
Matrix: (soil/water) Potable Water	Lab	Sample ID:	<u>1311B27-007B</u>
Sample wt/vol:	<u>500</u> (g/mL)	ML Lab	File ID:	<u>C67395.D</u>
Level: (low/med)	LOW	Date	e Received:	11/20/2013
% Moisture: not dec		Data	e Extracted:	<u>11/21/2013</u>
GC Column: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Date	e Analyzed:	11/28/2013
Extract Volume:	10000 (µl)	Dilı	ution Factor:	1.00
Injection Volume:	1 (µl)			
		CONCENTRATIO	ON UNITS:	
CAS NO.	COMPOUND	(ug/L or ug,	/Kg) Į	ug/L Q
123	-91-1 1,4-Dioxane		2 1.	

FORM I VOA

E522

1**A**

EPA SAMPLE NO.

MW-49I

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: <u>10478</u> Case No.: <u>FAIR</u>	SAS No SDG No.: FAIR001
Matrix: (soil/water) WATER	Lab Sample ID: <u>1311B27-008A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79641.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: 18	(mm) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	g/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	U 7
74-87-3	Chloromethane	10	U 🕇
75-01-4	Vinyl chloride	9	JZ
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	4	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	U
79-20-9	Methyl Acetate	10	U 🕽
75-09-2	Methylene chloride	10	U
156-60-5	trans-1,2-Dichloroethene	6	ਹ
1634-04-4	Methyl tert-butyl ether	5	J
75-34-3	1,1-Dichloroethane	13	
156-59-2	cis-1,2-Dichloroethene	110	
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7	Cyclohexane	10	U 🗂
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	ΰ
79-01-6	Trichloroethene	35	
108-87-2	Methylcyclohexane	10	ប 🍸
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	υ 🗾
108-88-3	Toluene	10	
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	41	·····
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U

FAIR001 S51

÷

1

EPA SAMPLE NO.

MW-491

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

 Lab Name: H2M_LABS_INC
 Contract: _______

 Lab Code: 10478
 Case No.: FAIR
 SAS No. ______ SDG No.: FAIR001

 Matrix: (soil/water)
 WATER
 Lab Sample ID: 1311B27-008A

 Sample wt/vol: 5
 (g/mL ML
 Lab File ID: 3\A79641.D

 Level: (low/med)
 LOW
 Date Received: 11/20/13

 % Moisture: not dec.
 Date Analyzed: 11/23/13

 GC Column: Rtx-624
 ID: .18 (mm)
 Dilution Factor: 1.00

 Soil Extract Volume:
 (µL)
 Soil Aliquot Volu ____ (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	Ū
1330-20-7	Xylene (total)	10	υ
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	U 🗂
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	Ŭ
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	UJ
120-82-1	1,2,4-Trichlorobenzene	10	U

.

	1 F		EPA SAMPLE NO.		
	VOLATILE ORGANICS ANALYSIS DATA SHEET				
	TENTATIVELY IDENTIFIED COMPOUN	IDS			
Lab Name: H2M LABS INC	Contrac	ct:	28 		
Lab Code: <u>10478</u>	Case No.: FAIR SAS No.:	SDG	No.: FAIR001		
Matrix: (soil/water)	WATER	Lab Sample ID:	1311B27-008A		
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	<u>3\A79641.D</u>		
Level: (low/med) LOW	I	Date Received:	11/20/13		
% Moisture: not dec.		Date Analyzed:	<u>11/23/13</u>		
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00		
Soil Extract Volume:	(µl)	Soil Aliquot Volu	me: <u>0</u> (µL)		
	CONCENT	RATION UNITS:			
Number TICs found:	1 (µg/L c	or µg/Kg)	UG/L		
CAS NUMBER	COMPOUND NAME	RT EST.	CONC. Q		
1. 000354-23-4	Ethane, 1,2-dichloro-1,1,2-trifluor	3.10	12 JN		

FAIR001 S53

1

1 1 1

ŧ

.

Der Thirtie

		Form 1		CLIENT SAMPLE NO.
				MW-491
Lab Na	me: <u>H2M LAB</u>	<u>S INC</u> Cont		
Lab Co	de: <u>10478</u>	Case No.: FAIR	SAS No.: SI	DG No.: <u>FAIR001</u>
Matrix	: (soil/water)	Potable Water	Lab Sample ID:	<u>1311B27-008B</u>
Sample	wt/vol:	<u>500</u> (g/mL) <u>ML</u>	Lab File ID:	<u>C67398.D</u>
Level:	(low/med)	LOW	Date Received:	11/20/2013
¥ Mois	ture: not dec.		Date Extracte	d: <u>11/21/2013</u>
GC Col	umn: <u>Rtx-624</u>	ID: <u>.18</u> (mm)	Date Analyzed:	11/28/2013
Extrac	t Volume:	10000 (µl)	Dilution Factor	r: <u>1.00</u>
Inject	ion Volume:	1 (μl)		
			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/Kg)	μg/L Q
	123-9	1-1 1,4-Dioxane		76.8

FORM I VOA

E522

1A

EPA SAMPLE NO.

MW-50

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) WATER	Lab Sample ID: <u>1311B27-009A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79642.D</u>
Level: (low/med) LOW	Date Received: 11/20/13
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: 18	(mm) Dilution Factor: 1.00
Soil Extract Volume: (pL)) Soil Aliquot Volu (µL)

CONCENTRATION UNITS:

75-71-8Dichlorodifluoromethane10U74-87-3Chloromethane10U	CAS NO.	COMPOUND	ug/L or ug/Kg UG/L	Q
75-01-4 Vinyl chloride 10 10 74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-00-3 Chloroethane 10 U 75-00-3 Trichlorofluoromethane 2 J 75-35-4 1,1-Dichloroethene 25 J 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-69-4 Methyl text-butyl ether 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 156-50-2 cis-1,2-Dichloroethene 180 J 78-93-3 2-Butanone 10 U J 66-3 Chloroform 6 J J 71-55-6 1,1,1-Trichloroethane 9 J J 100-82-7 Cyclohexane 10 U J	75-71-8	Dichlorodifluoromethane	10	υ 🖵
74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-69-4 Trichlorofluoromethane 2 J 75-35-4 1,1-Dichloroethene 25 J 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 5 J 67-64-1 Acctone 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methyl Acetate 10 U 75-34-3 1,1-Dichloroethene 10 U 1634-04-4 Methyl text-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 10 156-59-2 cis-1,2-Dichloroethene 180 10 78-93-3 2-Butanone 10 U 10 67-66-5 Carbon tetrachloride 4 J 10 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroeth		Chloromethane	10	U 丁
74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-69-4 Trichlorofluoromethane 2 J 75-35-4 1,1-Dichloroethene 25 J 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 5 J 67-64-1 Acctone 10 U 75-15-0 Carbon disulfide 10 U 75-69-2 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 1634-04-4 Methyl tert-butyl ether 10 U 156-60-5 trans-1, 2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 156-60-5 trans-1, 2-Dichloroethene 10 U 165-73-2 cis-1, 2-Dichloroethene 10 U 75-34-3 1,1-Dichloroethene 10 U 75-65-2 cis-1,2-Dichloroethene 10 U 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U		Vinyl chloride	10	13
75-69-4 Trichlorofluoromethane 2 J 75-35-4 1,1-Dichloroethene 25 J 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 5 J 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methyl hee chloride 10 U 163-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 10 156-59-2 cis-1,2-Dichloroethane 100 U 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U J 71-06-2 1,2-Dichloroethane 10 U J 79-01-6 Trichloroethane <t< td=""><td>74-83-9</td><td>Bromomethane</td><td>10</td><td></td></t<>	74-83-9	Bromomethane	10	
75-35-4 1,1-Dichloroethene 25 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 5 J 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 07-09-2 Methyl Acetate 10 U 105-09-2 Methylene chloride 10 U 110-09-2 Methyl Acetate 10 U 110-09-2 Methylene chloride 10 U 110-15-0 trans-1,2-Dichloroethene 10 U 110-34-04-4 Methyl tert-butyl ether 10 U 110-42-7 cis-1,2-Dichloroethene 21 11 110-55-9-2 cis-1,2-Dichloroethene 180 10 110-82-7 Cyclohexane 10 U 10 110-82-7 Cyclohexane 10 U 10 110-82-7 Cyclohexane 10 U 10 107-06-2 1,2-Dichloroethene 10 U 10 107-06-2 1,2-Dichloroethene 10 U 10 108-87-2 Methylcyclohexan	75-00-3	Chloroethane	10	U
76-13-1 $1, 1, 2-Trichloro-1, 2, 2-trifluoroethane$ 5J $67-64-1$ Acetone10U $75-15-0$ Carbon disulfide10U $79-20-9$ Methyl Acetate10U $75-09-2$ Methylene chloride10U $75-09-2$ Methylene chloride10U $156-60-5$ trans-1, 2-Dichloroethene10U $1634-04-4$ Methyl tert-butyl ether10U $1634-04-4$ Methyl tert-butyl ether10U $75-34-3$ $1, 1-Dichloroethane21U78-93-32-Butanone10U78-93-32-Butanone10U71-55-61, 1, 1-Trichloroethane9J110-82-7Cyclohexane10U56-23-5Carbon tetrachloride4J71-43-2Benzene10U79-01-6Trichloroethane10U78-87-51, 2-Dichloroethane10U78-87-51, 2-Dichloroethane10U78-87-4Benzene10U108-87-2Methylcyclohexane10U108-87-4Tolucomethane10U108-88-3Toluene10U108-88-3Toluene10U10061-02-51, 1, 2-Trichloroethane10U10061-02-51, 1, 2-Trichloroethane10U10061-02-51, 1, 2-Trichloroethane10U10$	75-69-4	Trichlorofluoromethane	2	J
67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 79-20-9 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 10 156-59-2 cis-1,2-Dichloroethene 180 0 78-93-3 2-Butanone 10 U 67-66-3 Chloroform 6 J 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 107-06-2 1,2-Dichloroethane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 108-87-2 Methylycyclohexane 10 U 108-87-5 <t< td=""><td>75-35-4</td><td>1,1-Dichloroethene</td><td>25</td><td></td></t<>	75-35-4	1,1-Dichloroethene	25	
75-15-0 Carbon disulfide 10 U 79-20-9 Methyl Acetate 10 U 75-09-2 Methyl en chloride 10 U 156-60-5 trans-1, 2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 1 156-59-2 cis-1,2-Dichloroethene 180 U 78-93-3 2-Butanone 10 U 6 J 71-55-6 1,1,1-Trichloroethane 9 J 10-82-7 Cyclohexane 10 U U 0 56-23-5 Carbon tetrachloride 4 J J 0 U 71-43-2 Benzene 10 U U 79-0 J 108-87-2 Methylcyclohexane 10 U U 79-01-6 U U 78-87-5 1,2-Dichloropropane 10 U U 10061-01-5 cis-1,3-Dichloropropane 10 U <	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	5 5	J
79-20-9 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 1 156-59-2 cis-1,2-Dichloroethene 180 0 78-93-3 2-Butanone 10 U 66 J 10 U 67-66-3 Chloroform 6 J 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 78-87-5 1,2-Dichloropropane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropane 10 U 108-87-5 1,2-Dichloropropene<	67-64-1	Acetone	10	U
75-09-2 Methylene chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 U 156-59-2 cis-1,2-Dichloroethene 180 U 78-93-3 2-Butanone 10 U 6 J J J U 67-66-3 Chloroform 6 J 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene B10 70 J 108-87-2 Methylcyclohexane 10 U J 108-87-5 1,2-Dichloropropane 10 U J 108-87-4 Bromodichloromethane 10 U J 10061-01-5 cis-1,3-Dichloropropene 10	75-15-0	Carbon disulfide	10	U
156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 U 156-59-2 cis-1,2-Dichloroethene 180 U 78-93-3 2-Butanone 10 U 66 J J U 0 67-66-3 Chloroform 6 J J 110-82-7 Cyclohexane 10 U J 56-23-5 Carbon tetrachloride 4 J J 107-06-2 1,2-Dichloroethane 10 U J 108-87-2 Methylcyclohexane 10 U J 108-87-2 Methylcyclohexane 10 U J 108-87-5 1,2-Dichloropropane 10 U J 108-87-5 1,2-Dichloropropane 10 U J 108-87-5 1,2-Dichloropropane 10 U J 108-87-5 1,2-Dichloropropene 10<	79-20-9	Methyl Acetate	10	U 🍸
1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 156-59-2 cis-1,2-Dichloroethene 180 78-93-3 2-Butanone 10 U 66-3 Chloroform 6 J 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-65-2 1,2-Dichloroethane 10 U 70-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethane 10 U 79-01-6 Trichloroethane 10 U 78-87-5 1,2-Dichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene	75-09-2	Methylene chloride	10	U
1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 21 156-59-2 cis-1,2-Dichloroethene 180 78-93-3 2-Butanone 10 U 66 J 10 U 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 78-87-5 1,2-Dichloroethane 10 U 79-01-6 Trichloroethane 10 U 79-01-6 Trichloroethane 10 U 78-87-5 1,2-Dichloropropane 10 U 108-87-2 Methylcyclohexane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene	156-60-5	trans-1,2-Dichloroethene	10	U
75-34-3 1,1-Dichloroethane 21 156-59-2 cis-1,2-Dichloroethene 180 78-93-3 2-Butanone 10 U 67-66-3 Chloroform 6 J 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethane 10 U 78-87-5 1,2-Dichloroethane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10	1634-04-4		10	U
78-93-3 2-Butanone 10 U 67-66-3 Chloroform 6 J 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethane 10 U 79-01-6 Trichloroethane 10 U 78-87-2 Methylcyclohexane 10 U 108-87-2 Methylcyclohexane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3	75-34-3		21	
67-66-3 Chloroform 6 J 71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 810 790 2 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 127-18	156-59-2	cis-1,2-Dichloroethene	180	
71-55-6 1,1,1-Trichloroethane 9 J 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 810 700 V 108-87-2 Methylcyclohexane 10 U 75-27-4 Bromodichloromethane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-80-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 101001-02-6 trans-1,3-Dichloropropene 10 U 1027-18-4 Tetrachloroethane 10 U 1027-18-6 2-Hexanone 10 U	78-93-3	2-Butanone	10	U
110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 810 700 V 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-80-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 127-18-4 Tetrachloroethane 10 U 127-18-4 Tetrachloroethene 110 U	67-66-3	Chloroform	6	J
110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene B10 70 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-80-3 Toluene 10 U U 108-88-3 Toluene 10 U U 10061-02-6 trans-1,3-Dichloropropene 10 U U 127-18-4 Tetrachloroethane 10 U U	71-55-6	1,1,1-Trichloroethane	9	J
56-23-5 Carbon tetrachloride 4 J 71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene B10 790 J 108-87-2 Methylcyclohexane 10 U J 78-87-5 1,2-Dichloropropane 10 U J 75-27-4 Bromodichloromethane 10 U J 10661-01-5 cis-1,3-Dichloropropene 10 U J 108-80-3 Toluene 10 U J 108-88-3 Toluene 10 U J 10061-02-6 trans-1,3-Dichloropropene 10 U J 127-18-4 Tetrachloroethane 10 U J 127-18-4 Tetrachloroethene 110 U J	110-82-7		10	ע 🖵
71-43-2 Benzene 4 J 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10661-01-5 cis-1,3-Dichloropropene 10 U 108-80-3 Toluene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 101001 U U 10 10 10101 U 10 U 10 10101 U 10 U 10 10101 U 10 10 10 10101 U 10 10 10 10	56-23-5			
107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 810 790 10 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-80-3 Toluene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 127-18-4 Tetrachloroethane 10 U 127-18-4 Tetrachloroethene 110 U	71-43-2	Benzene		
79-01-6 Trichloroethene 810 790 1 108-87-2 Methylcyclohexane 10 U 10 U 78-87-5 1,2-Dichloropropane 10 U 10 U 75-27-4 Bromodichloromethane 10 U 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 10 U 108-10-1 4-Methyl-2-pentanone 10 U 10 U 10 108-88-3 Toluene 10 U U 10 U 10 U 10 U 10 10 U 10 10 U 10 10 10 10 10 10 10 10 10 10 10 10 10 12 127-18-4 Tetrachloroethene 110 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	107-06-2	1,2-Dichloroethane	10	
108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 127-18-4 Tetrachloroethane 10 U 591-78-6 2-Hexanone 10 U	79-01-6		810 790	-
78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 1027-18-4 Tetrachloroethane 10 U 1027-18-4 Tetrachloroethene 110 U 10391-78-6 2-Hexanone 10 U	108-87-2	Methylcyclohexane		
75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 110 U 591-78-6 2-Hexanone 10 U	78-87-5		10	
10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 110 U 591-78-6 2-Hexanone 10 U	75-27-4		10	U
108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 110 U 591-78-6 2-Hexanone 10 U		cis-1,3-Dichloropropene	10	U
108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 110 U 591-78-6 2-Hexanone 10 U	108-10-1		10	
79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 110 U 591-78-6 2-Hexanone 10 U	108-88-3		10	
79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 110 U 591-78-6 2-Hexanone 10 U	10061-02-6	trans-1,3-Dichloropropene		U
127-18-4 Tetrachloroethene 110 591-78-6 2-Hexanone 10 U	79-00-5			
591-78-6 2-Hexanone 10 U	127-18-4			
	591-78-6	2-Hexanone		U
	124-48-1	Dibromochloromethane		-

FAIR001 S54

TOTAL CONTRACTOR OF MARCHINE

States and States

1B

EPA SAMPLE NO.

MW-50

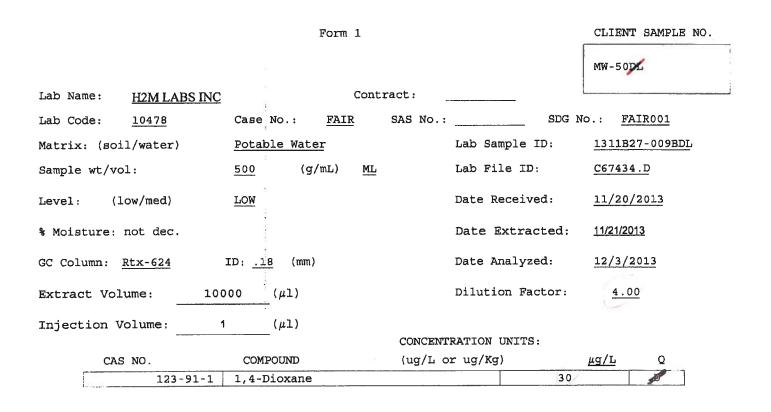
VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:	-
Lab Code: 10478 Case No.: FAIR	SAS NO.	SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	1311B27-009A
Sample wt/vol: 5 (g/mL ML	Lab File ID:	3\A79642.D
Level: (low/med) LOW	Date Received:	11/20/13
% Moisture: not dec.	Date Analyzed:	11/23/13
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Facto:	r: <u>1.00</u>
Soil Extract Volume: (µL) Soil Aliquot V	olu (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	
106-93-4	1,2-Dibromoethane	10	υ
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	υ
1330-20-7	Xylene (total)	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	υ 3
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	ΰ
541-73-1	1,3-Dichlorobenzene	10	υ
106-46-7	1,4-Dichlorobenzene	10	υ
95-50-1	1,2-Dichlorobenzene	10	υ
96-12-8	1,2-Dibromo-3-chloropropane	10	U T
120-82-1	1,2,4-Trichlorobenzene	10	U

OLM04.2


.....

224

			1F			EPA SA	MPLE NO	•
				ALYSIS DATA S IFIED COMPOUNI		MW-50		
Lab Na	me: <u>H2M LABS</u>	INC		Contrac	t:			
Lab Co	de: <u>10478</u>	Case No.:	FAIR	SAS No.: _		SDG No.: FA	TR001	
Matrix	: (soil/water)	WATER			Lab Sample	D: <u>1311B2</u>	7-009A	Sec. (+) + 4
Sample	wt/vol: <u>5</u>		(g/mL)	ML	Lab File 1	ID: <u>3\A796</u>	42.D	
Level:	(low/med)	LOW			Date Recei	ived: <u>11/20/</u>	13	
% Mois	ture: not dec.				Date Analy	zed: <u>11/23/</u> 2	13	
GC Col	umn: <u>Rtx-624</u>	ID: <u>.18</u> (mm)		Dilution H	factor: <u>1.00</u>		
Soil E:	xtract Volume:		(µl)		Soil Aliqu	ot Volume:	<u>0</u>	(µL)
				CONCENTI	RATION UNI	rs :		
Number	TICs found:	1		(µg/L o	r μg/Kg)	UG/L		
	CAS NUMBER	C	COMPOUND 1	IAME	RT	EST.CONC.	Q	
	1. 000354-23-4	Ethane, 1,2-c	ichloro-1,1,2	2-trifluor	3.10	21	JN	

FORM I VOA-TIC

OLM04.2

FORM I VOA

E522

1A

EPA SAMPLE NO.

8-66133

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M_LABS_INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-010A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79643.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Factor: <u>1.00</u>
Soil Extract Volume: (µL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (µg	g/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	υΣ
74-87-3	Chloromethane	10	ע ד
75-01-4	Vinyl chloride	4	J
74-83-9	Bromomethane	10	Ū
75-00-3	Chloroethane	10	υ
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	2	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	Ū
79-20-9	Methyl Acetate	10	U 了
75-09-2	Methylene chloride	10	U
156-60-5	trans-1,2-Dichloroethene	1	J
1634-04-4	Methyl tert-butyl ether	8	J
75-34-3	1,1-Dichloroethane	2	J
156-59-2	cis-1,2-Dichloroethene	220 190	2
78-93-3	2-Butanone	10	υ
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	υ
110-82-7	Cyclohexane	10	τ υ
56-23-5	Carbon tetrachloride	10	υ
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	54	
108-87-2	Methylcyclohexane	10	ד ט
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	U 💎
108-88-3	Toluene	10	
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	<u>u</u>
127-18-4	Tetrachloroethene	2	J
591-78-6	2-Hexanone	10	U
	Dibromochloromethane	2 V	Y

EPA SAMPLE NO.

5-66133

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M_LABS_INCContract: ______Lab Code: 10478Case No.: FAIRSAS No. ______ SDG No.: FAIR001Matrix: (soil/water)WATERLab Sample ID: 1311B27-010ASample wt/vol: 5(g/mL MLLab File ID: 3\A79643.DLevel: (low/med)LOWDate Received: 11/20/13% Moisture: not dec.Date Analyzed: 11/23/13GC Column: Rtx=624ID: .18 (mm)Dilution Factor: 1.00Soil Extract Volume:(µL)Soil Aliquot Volu ____ (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (total)	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	บ 🍮
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	υ
95-50-1	1,2-Dichlorobenzene	10	U 🔽
96-12-8	1,2-Dibromo-3-chloropropane	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U

	1F Volatile organics a Tentatively ident		EPA SAMP S-66133	LE NO.
Lab Name: <u>H2M LABS IN</u>	2	Contract:	·····	81
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.:	SDG No.: FAIR	001
Matrix: (soil/water)	WATER	Lab Samp	le ID: <u>1311B27-</u>	010A
Sample wt/vol: 5	(g/mL)	ML Lab File	ID: <u>3\A79643</u>	<u>. D</u>
Level: (low/med) LOV	N. Contraction	Date Rec	eived: <u>11/20/13</u>	
% Moisture: not dec.		Date Ana	lyzed: <u>11/23/13</u>	
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution	Factor: <u>1.00</u>	
Soil Extract Volume:	(µl)	Soil Alio	quot Volume:	<u>0</u> (µL)
		CONCENTRATION UN	ITS:	
Number TICs found:	0	(µg/L or µg/Kg)	UG/L	
CAS NUMBER	COMPOUND	NAME RT	EST.CONC.	Q

FAIR001 S62

OLM04.2

	9-66133
contract:	·
SAS No.: SDG N	Io.: FAIR001
Lab Sample ID:	<u>1311B27-010B</u>
ML Lab File ID:	C67400.D
Date Received:	11/20/2013
Date Extracted:	<u>11/21/2013</u>
Date Analyzed:	11/28/2013
Dilution Factor:	1.00
CONCENTRATION UNITS:	
(ug/L or ug/Kg)	µg/L Q
2.7	0.70
	SAS No.: SDG N Lab Sample ID: ML Lab File ID: Date Received: Date Extracted: Date Analyzed: Dilution Factor: CONCENTRATION UNITS: (ug/L or ug/Kg)

FORM I VOA

ŧ

E522

EPA SAMPLE NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

8-66134

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-011A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79644.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: 18	(mm) Dilution Factor: 1.00
Soil Extract Volume: (µI) Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	g/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	U 🖵
74-87-3	Chloromethane	10	U J
75-01-4	Vinyl chloride	10	U T
74-83-9	Bromomethane	10	υ
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	U
79-20-9	Methyl Acetate	10	ד ט 🔁
75-09-2	Methylene chloride	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4		10	U
75-34-3	1,1-Dichloroethane	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
78-93-3	2-Butanone	1.0	Ū
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7	Cyclohexane	10	U 🗂
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	υ
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	10	U
108-87-2	Methylcyclohexane	10	TU
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1		10	U 🕇
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	υ
124-48-1	Dibromochloromethane	10	υ
· · · · · · · · · · · · · · · · · · ·	And the second s		

1B

EPA SAMPLE NO.

8-66134

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS NO SDG NO.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-011A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79644.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: .18	(mm) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q	
106-93-4	1,2-Dibromoethane	10	υ	
108-90-7	Chlorobenzene	10	U	
100-41-4	Ethylbenzene	10	υ	
1330-20-7	Xylene (total)	10	U	
100-42-5	Styrene	10	υ	
75-25-2	Bromoform	10	U 🕇	
98-82-8	Isopropylbenzene	10	U	
79-34-5	1,1,2,2-Tetrachloroethane	10	υ	
541-73-1	1,3-Dichlorobenzene	10	υ	
106-46-7	1,4-Dichlorobenzene	10	υ	
95-50-1	1,2-Dichlorobenzene	10	U	
96-12-8	1,2-Dibromo-3-chloropropane	10	ע 🗸	
120-82-1	1,2,4-Trichlorobenzene	10	υ	

Same singer

-

			1F				EPA SAN	IPLE NO).
		VOLATILE O	RGANICS AN	ALYSIS DATA S	HEET		5-66134		
		TENTATIV	ELY IDENTI	IFIED COMPOUND	S	l			
Lab Name: H	M LABS INC			Contract	t:				
Lab Code: 1	0478	Case No.	: FAIR	SAS No.: _		SDG No	.: <u>FAI</u>	R001	
Matrix: (soil/w	vater)	WATER			Lab Sampl	e ID:	1311B27	-011A	
Sample wt/vol:	<u>5</u>		(g/mL)	ML	Lab File	ID:	<u>3\A7964</u>	4.D	
Level: (low/n	ned) LOW				Date Rece	ived:	11/20/1	.3	
% Moisture: not	dec.				Date Anal	yzed:	11/23/1	.3	
GC Column: Rtx	-624	ID: <u>.18</u>	(mm)		Dilution	Factor:	1.00		
Soil Extract Vo	lume:		(µl)		Soil Aliq	uot Volume	:	<u>0</u>	(µL)
				CONCENT	NATION UNI	TS:			
Number TICs for	ind:	0		(µg/L or	: µg/Kg)		UG/L		
CAS	NUMBER]	COMPOUND N	IAME	RT	EST.CC	NC.	Q	

FORM I VOA-TIC

OLM04.2

A Street and

STATES AND A STATES

	Form 1		CLIENT SAMPLE NO.
			S-66134
Lab Name: <u>H2M LA</u>	BS INC Cont	ract:	
Lab Code: <u>10478</u>	Case No.: FAIR	SAS No.: SDG	No.: <u>FAIR001</u>
Matrix: (soil/water)	Potable Water	Lab Sample ID:	<u>1311B27-011B</u>
Sample wt/vol:	500 (g/mL) <u>ML</u>	Lab File ID:	C67435.D
Level: (low/med)	LOW	Date Received:	11/20/2013
% Moisture: not dec.		Date Extracted:	11/21/2013
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Date Analyzed:	12/3/2013
Extract Volume:	10000 (µl)	Dilution Factor:	1.00
Injection Volume:	1 '(µl)		
-		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>µg/L</u> Q
123-	91-1 1,4-Dioxane	بو	2 0.16

E522

1**A**

EPA SAMPLE NO.

FB 111913

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC	Contract:
Lab Code: 10478 Case No.: FAIR	SAS NO SDG No.: FAIR001
Matrix: (soil/water) WATER	Lab Sample ID: <u>1311B27-013A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79631.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: .18	(mm) Dilution Factor: <u>1.00</u>
Soil Extract Volume: (µL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

75-71-8 Dichlorodifluoromethane 10 U J 74-87-3 Chloromethane 10 U J 77-87-3 Chloromethane 10 U J 77-87-4 Vinyl chloride 10 U J 77-87-4 Bromomethane 10 U J 75-01-4 Trichlorofluoromethane 10 U 75-69-4 Trichlorofluoromethane 10 U 75-75-4 1,1-Dichloroethene 10 U 75-75-5 1,1-2-Trichloro-1,2,2-trifluoroethane 10 U 75-75-0 Carbon disulfide 10 U U 75-75-0 Carbon disulfide 10 U U 75-69-2 Methyl Acetate 10 U U 156-60-5 trans-1,2-Dichloroethene 10 U U 75-34-3 1,1-Dichloroethane 10 U U 71-55-6 1,1,1-Trichloroethane 10 U U 71-62-7 Cyclohexane 10 U U	CAS NO.	COMPOUND (H	g/L or µg/Kg <u>UG/L</u>	Q
75-01-4 Vinyl chloride 10 U 74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-09-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichloroethene 10 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methyl text-butyl ether 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1534-04-4 Methyl text-butyl ether 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 07-66-3 Chloroform 10 U 10-82-7 Cyclohexane 10 U 110-82-7 Cyclohexane 10 U 107-66-2 1,1-1-Trichloroethane 10 U 107-06-2 1,	75-71-8	Dichlorodifluoromethane	10	υ 🌫
74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-69-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichloroethene 10 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 75-15-0 Carbon disulfide 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methyl Incerbane 10 U 1634-04-4 Methyl Acetate 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl cert-butyl ether 10 U 1656-59-2 cis-1,2-Dichloroethane 10 U 175-56 1,1-1-Trichloroethane 10 U 10-76-2 1,2-Dichloroethane 10 <td< td=""><td>74-87-3</td><td>Chloromethane</td><td>10</td><td>υ 🍼</td></td<>	74-87-3	Chloromethane	10	υ 🍼
75-00-3 Chlorethane 10 U 75-69-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichlorothene 10 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methyl herchloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-39-3 2-Butanone 10 U 76-66-3 Chloroform 10 U 78-93-3 2-Butanone 10 U 10-82-7 Cyclohexane 10 U 71-43-2 Benzene 10 U 107-66-2 1,2-Dichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 78-01-6 Tric	75-01-4	Vinyl chloride	10	U 🔽
75-69-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichloroethene 10 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 1634-04-4 Methyl tert-butyl ether 10 U 165-59-2 cis-1,2-Dichloroethane 10 U 175-54 1,1-Trichloroethane 10 U 10-82-7 Cyclohexane 10 U 110-82-7 Cyclohexane 10 U 107-06-2 1,2-Dichloroethane 10 U <td>74-83-9</td> <td>Bromomethane</td> <td>10</td> <td>υ</td>	74-83-9	Bromomethane	10	υ
75-35-4 1,1-Dichloroethene 10 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 75-09-2 Methylene chloride 10 U 1634-04-4 Methyl ter-butyl ether 10 U 75-34-3 1,1-Dichloroethane 10 U 75-34-3 1,1-Dichloroethane 10 U 75-34-3 1,1-Dichloroethane 10 U 76-63 chloroform 10 U 71-55-6 1,1.1-Trichloroethane 10 U 10-82-7 Cyclohexane 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2	75-00-3	Chloroethane	10	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 79-20-9 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 0 U 76-6-5 cis-1,2-Dichloroethane 10 U 76-75-2 cis-1,2-Dichloroethane 10 U 76-6-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 10-82-7 Cyclohexane 10 U 10-82-7 Cyclohexane 10 U 10-70-62 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U	75-69-4	Trichlorofluoromethane	10	U
67-64-1 Acetone 10 U 75-15-0 Carbon disulfide 10 U 79-20-9 Methyl Acetate 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methyl Acetate 10 U 75-09-2 Methyl here chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 10 U 166-60-5 cis-1,2-Dichloroethane 10 U 78-93-3 2-Butanone 10 U 716-55-6 1,1,1-Trichloroethane 10 U 10-82-7 Cyclohexane 10 U 10-82-7 Cyclohexane 10 U 10-70-62 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloropropane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-4	75-35-4	1,1-Dichloroethene	10	υ
75-15-0 Carbon disulfide 10 U 79-20-9 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 0 78-93-3 2-Butanone 10 U 10-82-7 Cyclohexane 10 U U 10-706-2 1,2-Dichloroethane 10 U U 107-06-2 1,2-Dichloropropane 10 U U 78-87-5 <	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U
79-20-9 Methyl Acetate 10 U 75-09-2 Methylene chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 67-66-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 110-82-7 Cyclohexane 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloropropane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropane 10 U	67-64-1	Acetone	10	υ
75-09-2 Methylene chloride 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 10 U 75-34-3 1,1-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 67-66-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropane 10 U 108-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U <	75-15-0	Carbon disulfide	10	U
156-60-5 trans-1,2-Dichloroethene 10 U 1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 076-66-3 Chloroform 10 U 071-55-6 1,1,1-Trichloroethane 10 U 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 110-82-7 Cyclohexane 10 U 110-82-7 Cyclohexane 10 U 110-82-7 Cyclohexane 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloropropane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropene 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 1	79-20-9	Methyl Acetate	10	U J
1634-04-4 Methyl tert-butyl ether 10 U 75-34-3 1,1-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 67-66-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 10-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 1010-02-6 trans-1,3-Dichloropropene 10 U	75-09-2	Methylene chloride	10	υ
75-34-3 1,1-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 67-66-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 10-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 70-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethane 10 U 78-87-5 1,2-Dichloroptopane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10 10061-02-6 trans-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10 101061	156-60-5	trans-1,2-Dichloroethene	10	U
156-59-2 cis-1,2-Dichloroethene 10 U 78-93-3 2-Butanone 10 U 67-66-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 10-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 101061-02-6 trans-1,3-Dichloropropene 10 U	1634-04-4	Methyl tert-butyl ether	10	U
78-93-3 2-Butanone 10 U 67-66-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropane 10 U 1061-01-5 cis-1,3-Dichloropropene 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U U 1065-02-6 trans-1,3-Dichloropropene 10 U 1079-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	75-34-3	1,1-Dichloroethane	10	υ
67-66-3 Chloroform 10 U 71-55-6 1,1,1-Trichloroethane 10 U 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-2 Methylcyclohexane 10 U 108-87-5 1,2-Dichloropropane 10 U 108-87-5 1,2-Dichloropropane 10 U 108-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U U 10061-02-6 trans-1,3-Dichloropropene 10 U U 10061-02-6 trans-1,3-Dichloropropene 10 U U 1010061-02-6 trans-1,3-Dichloropropene </td <td>156-59-2</td> <td>cis-1,2-Dichloroethene</td> <td>10</td> <td>υ</td>	156-59-2	cis-1,2-Dichloroethene	10	υ
71-55-6 1,1,1-Trichloroethane 10 U 110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 10 U 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 10661-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 127-18-4 Tetrachloroethane 10 U 127-18-4 Tetrachloroethane 10 U 591-78-6 2-Hexanone 10 U	78-93-3	2-Butanone	10	U
110-82-7 Cyclohexane 10 U 56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 10 U 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U U 108-88-3 Toluene 10 U U 10061-02-6 trans-1,3-Dichloropropene 10 U U 10061-02-6 trans-1,3-Dichloropropene 10 U U 127-18-4 Tetrachloroethane 10 U U 127-18-6 2-Hexanone 10 U	67-66-3	Chloroform	10	υ
56-23-5 Carbon tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 10 U 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-80-3 Toluene 10 U U 108-88-3 Toluene 10 U U 10061-02-6 trans-1,3-Dichloropropene 10 U U 10061-02-6 trans-1,3-Dichloropropene 10 U U 127-18-4 Tetrachloroethane 10 U U 127-18-4 Tetrachloroethene 10 U U	71-55-6	1,1,1-Trichloroethane	10	U
71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 10 U 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 1061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 127-18-4 Tetrachloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	110-82-7	Cyclohexane	10	บ 🗂
107-06-2 1,2-Dichloroethane 10 U 79-01-6 Trichloroethene 10 U 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10661-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 101001-02-6 trans-1,3-Dichloropropene 10 U 101001-02-6 trans-1,3-Dichloropropene 10 U 101001-02-6 trans-1,3-Dichloropropene 10 U 101001-02-6 trans-1,3-Dichloroethane 10 U 101001-02-7 1,1,2-Trichloroethane 10 U 101001-03-03 1,1,2-Trichloroethane 10 U	56-23-5	Carbon tetrachloride	10	U
79-01-6 Trichloroethene 10 U 108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 1061-01-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 101001-02-6 trans-1,3-Dichloropropene 10 U 10102-03 1,1,2-Trichloroethane 10 U 102-18-4 Tetrachloroethene 10 U 101-18-6 2-Hexanone 10 U	71-43-2	Benzene	10	U
108-87-2 Methylcyclohexane 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 127-18-4 Tetrachloroethane 10 U 127-18-4 2-Hexanone 10 U	107-06-2	1,2-Dichloroethane	10	U
78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	79-01-6	Trichloroethene	10	U
75-27-4 Bromodichloromethane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	108-87-2	Methylcyclohexane	10	U 🔳
10061-01-5 cis-1,3-Dichloropropene 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	78-87-5	1,2-Dichloropropane	10	U
108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	75-27-4	Bromodichloromethane	10	υ
108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	10061-01-5	cis-1,3-Dichloropropene	10	υ
10061-02-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	108-10-1		10	υς
79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	108-88-3	Toluene	10	U
79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	10061-02-6	trans-1,3-Dichloropropene	10	υ
127-18-4 Tetrachloroethene 10 U 591-78-6 2-Hexanone 10 U	79-00-5		10	Ų
	127-18-4		10	U
124-48-1 Dibromochloromethane 10 U	591-78-6	2-Hexanone	10	Ŭ
	124-48-1	Dibromochloromethane	10	Ŭ

FORM I VOA - 1

and the second se

能

FAIR001 S72

EPA SAMPLE NO.

FB 111913

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: <u>H2M LABS INC</u> Contract: Lab Code: 10478 Case No.: FAIR SAS No. _____ SDG No.: FAIR001 Matrix: (soil/water) WATER Lab Sample ID: <u>1311B27-013A</u> Sample wt/vol: 5 (g/mL ML Lab File ID: 3\A79631.D Level: (low/med) LOW Date Received: <u>11/20/13</u> % Moisture: not dec. Date Analyzed: <u>11/23/13</u> GC Column: Rtx-624 ID: 18 (mm) Dilution Factor: 1.00 Soil Extract Volume: (µL) Soil Aliquot Volu _____ (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (total)	10	U
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	U 🍼
98-82-8	Isopropylbenzene	10	Ţ
79-34-5	1,1,2,2-Tetrachloroethane	10	Ţ
541-73-1	1,3-Dichlorobenzene	10	Ţ
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	υ
96-12-8	1,2-Dibromo-3-chloropropane	10	υ 🍸
120-82-1	1,2,4-Trichlorobenzene	10	U

FORM I VOA - 2

FAIR001 S73

1F	EPA SAMPLE NO.
VOLATILE ORGANICS A TENTATIVELY IDEN	FB 111913
Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: 10478 Case No.: FAIR	SAS No.: SDG No.: FAIR001
Matrix: (soil/water) WATER	Lab Sample ID: <u>1311B27-013A</u>
Sample wt/vol: 5 (g/mL)	ML Lab File ID: <u>3\A79631.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: Rtx-624 ID: .18 (mm)	Dilution Factor: 1.00
Soil Extract Volume: (µ1)	Soil Aliquot Volume: $\underline{0}$ (µL)
	CONCENTRATION UNITS:
Number TICs found: 0	(µg/L or µg/Kg) UG/L
CAS NUMBER COMPOUND	IAME RT EST.CONC. Q

1

FORM I VOA-TIC

OLM04.2

			Form 1			CLIENT SAMPLE NO.
						FB 111913
Lab Name:	H2M LABS INC		Con	tract:		
Lab Code:	10478	Case No.:	FAIR	SAS No.:	SDG	No.: FAIR001
Matrix: (soi)	l/water)	Potable Wate	er		Lab Sample ID:	<u>1311B27-013B</u>
Sample wt/vol	1:	<u>500</u> (g/	/mL) <u>ML</u>	:	Lab File ID:	<u>C67437.D</u>
Level: (lo	ow/med)	LOW			Date Received:	11/20/2013
% Moisture: 1	not dec.				Date Extracted:	<u>11/21/2013</u>
GC Column: E	Rtx-624	LD: <u>.18</u> (mm)			Date Analyzed:	12/3/2013
Extract Volu	ume: 100	00 (µl)			Dilution Factor:	1.00
Injection Vo	olume: 1	(µl)				
				CONCENT	RATION UNITS:	
CAS	NO.	COMPOUND		(ug/L o	r ug/Kg)	<u>µg/г</u> б
	123-91-1	1,4-Dioxane			٩	77 0.05 U

FORM I VOA

B522

EPA SAMPLE NO.

Trip Blank

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: E2M LABS INCContract:Lab Code: 10478Case No.: FAIRSAS No.SDG No.: FAIR001Matrix: (soil/water)WATERLab Sample ID: 1311B27-014ASample wt/vol:5(g/mL MLLab File ID: 3\A79630.DLevel:(low/med)LOWDate Received: 11/20/13% Moisture: not dec.Date Analyzed: 11/23/13GC Column:Rtx-624ID: 18 (mm)Soil Extract Volume:(µL)Soil Aliquot Volu

CONCENTRATION UNITS:

CAS NO.	COMPOUND (µg	g/L or µg/Kg <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	10	τυ
74-87-3	Chloromethane	10	υ 💆
75-01-4	Vinyl chloride	10	υ
74-83-9	Bromomethane	10	υ
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	υ
75-35-4	1,1-Dichloroethene	10	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon disulfide	10	υ
79-20-9	Methyl Acetate	10	υJ
75-09-2	Methylene chloride	10	<u> </u>
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4	Methyl tert-butyl ether	10	Ŭ
75-34-3	1,1-Dichloroethane	10	υ
156-59-2	cis-1,2-Dichloroethene	10	υ
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7	Cyclohexane	10	υ
56-23-5	Carbon tetrachloride	10	U
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	U
79-01-6	Trichloroethene	10	U
108-87-2	Methylcyclohexane	10	Ū J
78-87-5	1,2-Dichloropropane	10	υ
75-27-4	Bromodichloromethane	10	υ
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-pentanone	10	U 🦳
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	Ū
124-48-1	Dibromochloromethane	10	

1B

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

Trip Blank

Lab Name: <u>H2M LABS INC</u>	Contract:
Lab Code: <u>10478</u> Case No.: FAIR	SAS No SDG No.: FAIR001
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>1311B27-014A</u>
Sample wt/vol: 5 (g/mL ML	Lab File ID: <u>3\A79630.D</u>
Level: (low/med) LOW	Date Received: <u>11/20/13</u>
% Moisture: not dec.	Date Analyzed: <u>11/23/13</u>
GC Column: <u>Rtx-624</u> ID: <u>.18</u>	(mm) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg <u>UG/L</u>	Q
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	10	ΰ
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (total)	10	υ
100-42-5	Styrene	10	υ
75-25-2	Bromoform	10	υ 🖵
98-82-8	Isopropylbenzene	10	ΰ
79-34-5	1,1,2,2-Tetrachloroethane	10	ΰ
541-73-1	1,3-Dichlorobenzene	10	ΰ
106-46-7	1,4-Dichlorobenzene	10	ΰ
95-50-1	1,2-Dichlorobenzene	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	υς
120-82-1	1,2,4-Trichlorobenzene	10	U

FAIR001 S76

1 <i>F</i>	EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET	Trip Blank
TENTATIVELY IDENTIFIED COMPOUNDS	
Lab Name: <u>H2M LABS INC</u> Contract:	
Lab Code: 10478 Case No.: FAIR SAS No.:	SDG No.: FAIR001
Matrix: (soil/water) WATER Lab Sample I	D: <u>1311B27-014A</u>
Sample wt/vol: 5 (g/mL) ML Lab File ID:	3\A79630.D
Level: (low/med) LOW Date Receive	d: <u>11/20/13</u>
<pre>% Moisture: not dec.</pre> Date Analyze	d: <u>11/23/13</u>
GC Column: Rtx-624 ID: .18 (mm) Dilution Fac	tor: <u>1.00</u>
Soil Extract Volume: (µ1) Soil Aliquot	Volume: $\underline{0}$ (µL)
CONCENTRATION UNITS:	×
Number TICs found: 0 (µg/L or µg/Kg)	UG/L
CAS NUMBER COMPOUND NAME RT	EST.CONC. Q

4. 4. OLM04.2

•

APPENDIX D

ECOLEST LABORATORIES, INC.

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

LAB NO.120619.01

Email: ecotestlab@aol.com Website: www.ecotestlabs.com 02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE	OF	SAMPLE:	IN-1
SOURCE	OF	SAMPLE:	
COL	LEC	TED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1400

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
t-1,3Dichloropropene	ug/L	< 5	022112	5	EPA8260
112 Trichloroethane	ug/L	< 5	022112	5	EPA8260
Tetrachloroethene	ug/L	790	022112 D	50	EPA8260
1,3-Dichloropropane	ug/L	< 5	022112	5	EPA8260
Chlorodibromomethane	ug/L	< 5	022112	5	EPA8260
1,2 Dibromoethane	ug/L	< 5	022112	5	EPA8260
Chlorobenzene	ug/L	< 5	022112	5	EPA8260
Ethyl Benzene	ug/L	< 5	022112	5	EPA8260
1112Tetrachloroethane	ug/L	< 5	022112	5	EPA8260
m + p Xylene	ug/L	< 10	022112	10	EPA8260
o Xylene	ug/L	< 5	022112	5	EPA8260
Styrene	ug/L	< 5	022112	5	EPA8260
Bromoform	ug/L	< 5	022112	5	EPA8260
Isopropylbenzene	ug/L	< 5	022112	5	EPA8260
Bromobenzene	ug/L	< 5	022112	5	EPA8260
1122Tetrachloroethane	ug/L	< 5	022112	5	EPA8260
123-Trichloropropane	ug/L	< 5	022112	5	EPA8260
n-Propylbenzene	ug/L	< 5	022112	5	EPA8260
2-Chlorotoluene	ug/L	< 5	022112	5	EPA8260
135-Trimethylbenzene	ug/L	< 5	022112	5	EPA8260
4-Chlorotoluene	ug/L	< 5	022112	5	EPA8260
tert-Butylbenzene	ug/L	< 5	022112	5	EPA8260
124-Trimethylbenzene	ug/L	< 5	022112	5	EPA8260
sec-Butylbenzene	ug/L	< 5	022112	5	EPA8260
p-Isopropyltoluene	ug/L	< 5	022112	5	EPA8260
cc:Eairchild	Skonicki				

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS: D: Indicates compound at secondary dilution.

Thomas Powell DIRECTOR

Page 2 of 4

rn = 3096

NYSDOH ID # 10320

ECOLEST LABORATORIES, INC.

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB NO.120619.01

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE (DF	SAMPLE:	IN-1
SOURCE (DF	SAMPLE:	
COLL	_EC	TED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1400

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Dichlorodifluoromethane	ug/L	< 5	022112	5	EPA8260
Chloromethane	ug/L	< 5	022112	5	EPA8260
Vinyl Chloride	ug/L	30	022112	5	EPA8260
Bromomethane	ug/L	< 5	022112	5	EPA8260
Chloroethane	ug/L	< 5	022112	5	EPA8260
Trichlorofluoromethane	ug/L	< 5	022112	5	EPA8260
1,1 Dichloroethene	ug/L	11	022112	5	EPA8260
Methylene Chloride	ug/L	< 5	022112	5	EPA8260
t-1,2-Dichloroethene	ug/L	< 5	022112	5	EPA8260
1,1 Dichloroethane	ug/L	15	022112	5	EPA8260
2,2-Dichloropropane	ug/L	< 5	022112	5	EPA8260
c-1,2-Dichloroethene	ug/L	440	022112	5	EPA8260
Bromochloromethane	ug/L	< 5	022112	5	EPA8260
Chloroform	ug/L	< 5	022112	5	EPA8260
111 Trichloroethane	ug/L	< 5	022112	5	EPA8260
Carbon Tetrachloride	ug/L	< 5	022112	5	EPA8260
1,1-Dichloropropene	ug/L	< 5	022112	5	EPA8260
Benzene	ug/L	6	022112	5	EPA8260
1,2 Dichloroethane	ug/L	< 5	022112	5	EPA8260
Trichloroethene	ug/L	440	022112	5	EPA8260
1,2 Dichloropropane	ug/L	< 5	022112	5	EPA8260
Dibromomethane	ug/L	< 5	022112	5	EPA8260
Bromodichloromethane	ug/L	< 5	022112	5	EPA8260
c-1,3Dichloropropene	ug/L	< 5	022112	5	EPA8260
Toluene	ug/L	< 5	022112	5	EPA8260
cc:Fairchild,		i			

LRL=Laboratory Reporting Limit

REMARKS:

rn = 3095

Thomas Powell DIRECTOR

NYSDOH ID # 10320

Page 1 of 4

ECOLEST LABORATORIES, INC.

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.01

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	IN-1
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1400

MATRIX:Water SAMPLE:

			DATE TIME	DATE TIME ANALYTICAL	
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
t-1,3Dichloropropene	ug/L	< 5	022112	5	EPA8260
112 Trichloroethane	ug/L	< 5	022112	5	EPA8260
Tetrachloroethene	ug/L	790	022112 D	50	EPA8260
1,3-Dichloropropane	ug/L	< 5	022112	5	EPA8260
Chlorodibromomethane	ug/L	< 5	022112	5	EPA8260
1,2 Dibromoethane	ug/L	< 5	022112	5	EPA8260
Chlorobenzene	ug/L	< 5	022112	5	EPA8260
Ethyl Benzene	ug/L	< 5	022112	5	EPA8260
1112Tetrachloroethane	ug/L	< 5	022112	5	EPA8260
m + p Xylene	ug/L	< 10	022112	10	EPA8260
o Xylene	ug/L	< 5	022112	5	EPA8260
Styrene	ug/L	< 5	022112	5	EPA8260
Bromoform	ug/L	< 5	022112	5	EPA8260
Isopropylbenzene	ug/L	< 5	022112	5	EPA8260
Bromobenzene	ug/L	< 5	022112	5	EPA8260
1122Tetrachloroethane	ug/L	< 5	022112	5	EPA8260
123-Trichloropropane	ug/L	< 5	022112	5	EPA8260
n-Propylbenzene	ug/L	< 5	022112	5	EPA8260
2-Chlorotoluene	ug/L	< 5	022112	5	EPA8260
135-Trimethylbenzene	ug/L	< 5	022112	5	EPA8260
4-Chlorotoluene	ug/L	< 5	022112	5	EPA8260
tert-Butylbenzene	ug/L	< 5	022112	5	EPA8260
124-Trimethylbenzene	ug/L	< 5	022112	5	EPA8260
sec-Butylbenzene	ug/L	< 5	022112	5	EPA8260
p-Isopropy)toluene	ug/L	< 5	022112	5	EPA8260
cc:Fairchild,	Skopick	i			

LRL=Laboratory Reporting Limit

REMARKS: D: Indicates compound at secondary dilution.

Thomas Powell DIRECTOR

of 4

Page 2

NYSDOH ID # 10320

rn = 3096

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.01

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	IN-1
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1400

MATRIX:Water SAMPLE:

			DATE TIME	-1	ANALYTICAL -
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 5	022112	5	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 5	022112	5	EPA8260
n-Butylbenzene	ug/L	< 5	022112	5	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 5	022112	5	EPA8260
Dibromochloropropane	ug/L	< 5	022112	5	EPA8260
124-Trichlorobenzene (v)	ug/L	< 5	022112	5	EPA8260
Hexachlorobutadiene	ug/L	< 5	022112	5	EPA8260
Naphthalene(v)	ug/L	< 5	022112	5	EPA8260
123-Trichlorobenzene	ug/L	< 5	022112	5	EPA8260
ter.ButylMethylEther	ug/L	34	022112	5	EPA8260
p-Ethyltoluene	ug/L	< 5	022112	5	EPA8260
Freon 113	ug/L	20	022112	5	EPA8260
1245 Tetramethylbenz	ug/L	< 5	022112	5	EPA8260
Acetone	ug/L	< 50	022112	50	EPA8260
Methyl Ethyl Ketone	ug/L	< 50	022112	50	EPA8260
Methylisobutylketone	ug/L	< 50	022112	50	EPA8260
Chlorodifluoromethane	ug/L	< 5	022112	5	EPA8260
p Diethylbenzene	ug/L	< 5	022112	5	EPA8260
	-			-	

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell Il. Par DIRECTOR

rn = 3097

NYSDOH ID # 10320

Page 3 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.01

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	IN-1
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1400

MATRIX:Water SAMPLE:

			DATE TIME	ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL METHOD
Iron as Fe	mg/L	0.17	022212	0.01 EPA200.7
Manganese as Mn	mg/L	0.1	022212	0.01 EPA200.7
Zinc as Zn	mg/L	0.07	022212	0.01 EPA200.7
pH@lab units		5.8	022212 0928	0.1 SM184500HB
Tot Dissolved Solids	mg/L	97	022112	10 S182540C

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell hur DIRECTOR

Page 4 of 4

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.02

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: IN-1 SOURCE OF SAMPLE: COLLECTED BY: Client

: Client DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1400

MATRIX:Water SAMPLE: DISSOLVED

			DATE TIME	ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL METHOD
Iron as Fe	mg/L	0.12	022112	0.01 EPA200.7
Manganese as Mn	mg/L		022112	0.01 EPA200.7
Zinc as Zn	mg/L	0.12	022112	0.01 EPA200.7

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR

Page 1 of 1

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB NO.120619.03

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	IN-2
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1350

MATRIX:Water SAMPLE:

				DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	R	ESULT	FLAG OF ANALYSIS	LRL	METHOD
Dichlorodifluoromethane	ug/L	<	1	022112	1	EPA8260
Chloromethane	ug/L	<	1	022112	1	EPA8260
Vinyl Chloride	ug/L	<	1	022112	1	EPA8260
Bromomethane	ug/L	<	1	022112	1	EPA8260
Chloroethane	ug/L	<	1	022112	1	EPA8260
Trichlorofluoromethane	ug/L	<		022112	1	EPA8260
1,1 Dichloroethene	ug/L	<	1	022112	1	EPA8260
Methylene Chloride	ug/L		1	022112	1	EPA8260
t-1,2-Dichloroethene	ug/L	<	1	022112	1	EPA8260
1,1 Dichloroethane	ug/L	<	-	022112	1	EPA8260
2,2-Dichloropropane	ug/L	<		022112	1	EPA8260
c-1,2-Dichloroethene	ug/L	<		022112	1	EPA8260
Bromochloromethane	ug/L	<		022112	1	EPA8260
Chloroform	ug/L	<		022112	1	EPA8260
111 Trichloroethane	ug/L	<		022112	1	EPA8260
Carbon Tetrachloride	ug/L	<		022112	1	EPA8260
1,1-Dichloropropene	ug/L	<	-	022112	1	EPA8260
Benzene	ug/L	<		022112	1	EPA8260
1,2 Dichloroethane	ug/L	<		022112	1	EPA8260
Trichloroethene	ug/L	<	-	022112	1	EPA8260
1,2 Dichloropropane	ug/L	<		022112	1	EPA8260
Dibromomethane	ug/L	<		022112	1	EPA8260
Bromodichloromethane	ug/L	<	1	022112	1	EPA8260
c-1,3Dichloropropene	ug/L	<	1	022112	1	EPA8260
Toluene	ug/L	<	1	022112	1	EPA8260
cc:Eairchild	Skonicki	i				

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR au

> Page 1 of 4

rn = 3100

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.03

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	IN-2
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1350

MATRIX:Water SAMPLE:

					DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RES	JULT	FLAG	OF ANALYSIS	LRL	METHOD
t-1,3Dichloropropene	ug/L	< 1			022112	1	EPA8260
112 Trichloroethane	ug/L	< 1			022112	1	EPA8260
Tetrachloroethene	ug/L	< 1			022112	1	EPA8260
1,3-Dichloropropane	ug/L	< 1			022112	1	EPA8260
Chlorodibromomethane	ug/L	< 1			022112	1	EPA8260
1,2 Dibromoethane	ug/L	< 1			022112	1	EPA8260
Chlorobenzene	ug/L	< 1			022112	1	EPA8260
Ethyl Benzene	ug/L	< 1			022112	1	EPA8260
1112Tetrachloroethane	ug/L	< 1			022112	1	EPA8260
m + p Xylene	ug/L	< 2			022112	2	EPA8260
o Xylene	ug/L	< 1			022112	1	EPA8260
Styrene	ug/L	< 1			022112	1	EPA8260
Bromoform	ug/L	< 1			022112	1	EPA8260
Isopropylbenzene	ug/L	< 1			022112	1	EPA8260
Bromobenzene	ug/L	< 1			022112	1	EPA8260
1122Tetrachloroethane	ug/L	< 1			022112	1	EPA8260
123-Trichloropropane	ug/L	< 1			022112	1	EPA8260
n-Propylbenzene	ug/L	< 1			022112	1	EPA8260
2-Chlorotoluene	ug/L	< 1			022112	1	EPA8260
135-Trimethylbenzene	ug/L	< 1			022112	1	EPA8260
4-Chlorotoluene	ug/L	< 1			022112	1 🔬	EPA8260
tert-Butylbenzene	ug/L	< 1			022112	1 [~]	EPA8260
124-Trimethylbenzene	ug/L	< 1			022112	1	EPA8260
sec-Butylbenzene	ug/L	< 1			022112	1	EPA8260
p-Isopropyltoluene	`ug∕L	< 1			022112	1	EPA8260
co:Esimobild	Chandald						-

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR_____

n = 3101

NYSDOH ID # 10320

Page 2 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB NO.120619.03

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	IN-2
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1350

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
n-Butylbenzene	ug/L	< 1	022112	1	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
Dibromochloropropane	ug/L	< 1	022112	1	EPA8260
124-Trichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
Hexachlorobutadiene	ug/L	< 1	022112	1	EPA8260
Naphthalene(v)	ug/L	< 1	022112	1	EPA8260
123-Trichlorobenzene	ug/L	< 1	022112	1	EPA8260
ter.Buty1Methy1Ether	ug/L	11	022112	1	EPA8260
p-Ethyltoluene	ug/L	< 1	022112	1	EPA8260
Freon 113	ug/L	< 1	022112	1	EPA8260
1245 Tetramethylbenz	ug/L	< 1	022112	1	EPA8260
Acetone	ug/L	< 10	022112	10	EPA8260
Methyl Ethyl Ketone	ug/L	< 10	022112	10	EPA8260
Methylisobutylketone	ug/L	< 10	022112	10	EPA8260
Chlorodifluoromethane	ug/L	< 1	022112	1	EPA8260
p Diethylbenzene	ug/L	< 1	022112	1	EPA8260

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell M. Part DIRECTOR

Page 3 of 4

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB NO.120619.03

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 Donald Miller ATTN:

PO#:

SOURCE OF SAMPLE:	IN-2
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1350

MATRIX:Water SAMPLE:

			DATE TIME	AN	ALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS		METHOD
Iron as Fe	mg/L	0.16	022212	0.01	EPA200.7
Manganese as Mn	mg/L	0.1	022212	0.01	EPA200.7
Zinc as Zn	mg/L	0.04	022212	0.01	EPA200.7
pH@lab units		7.3	022212 0933	0.1	SM184500HB
Tot Dissolved Solids	mg/L	100	022112	10	S182540C

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR

of 4

Page 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.04

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: IN-2 SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:02/17/12 RECEIVED:02/17/12

TIME COL'D:1350

MATRIX:Water SAMPLE: DISSOLVED

			DATE TIME		LYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL M	1ETHOD
Iron as Fe	mg/L	< 0.01	022112	0.01	EPA200.7
Manganese as Mn	mg/L	0.09	022112	0.01	EPA200.7
Zinc as Zn	mg/L	0.03	022112	0.01	EPA200.7

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR______

Page 1 of 1

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.05

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: Effluent SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1345

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Dichlorodifluoromethane	ug/L	< 1	022112	1	EPA8260
Chloromethane	ug/L	< 1	022112	1	EPA8260
Vinyl Chloride	ug/L	< 1	022112	1	EPA8260
Bromomethane	ug/L	< 1	022112	1	EPA8260
Chloroethane	ug/L	< 1	022112	1	EPA8260
Trichlorofluoromethane	ug/L	< 1	022112	1	EPA8260
1,1 Dichloroethene	ug/L	< 1	022112	1	EPA8260
Methylene Chloride	ug/L	< 1	022112	1	EPA8260
t-1,2-Dichloroethene	ug/L	< 1	022112	1	EPA8260
1,1 Dichloroethane	ug/L	< 1	022112	1	EPA8260
2,2-Dichloropropane	ug/L	< 1	022112	1	EPA8260
c-1,2-Dichloroethene	ug/L	< 1	022112	1	EPA8260
Bromochloromethane	ug/L	< 1	022112	1	EPA8260
Chloroform	ug/L	< 1	022112	1	EPA8260
111 Trichloroethane	ug/L	< 1	022112	1	EPA8260
Carbon Tetrachloride	ug/L	< 1	022112	1	EPA8260
1,1-Dichloropropene	ug/L	< 1	022112	1	EPA8260
Benzene	ug/L	< 1	022112	1	EPA8260
1,2 Dichloroethane	ug/L	< 1	022112	1	EPA8260
Trichloroethene	ug/L	< 1	022112	1	EPA8260
1,2 Dichloropropane	ug/L	< 1	022112	1	EPA8260
Dibromomethane	ug/L	< 1	022112	1	EPA8260
Bromodichloromethane	ug/L	< 1	022112	1	EPA8260
c-1,3Dichloropropene	ug/L	< 1	022112	1	EPA8260
Toluene	ug/L	< 1	022112	1	EPA8260
cc:Fairchild	Skonicki				

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR MIL. Pave

Page 1 of 4

rn = 3105

NYSDOH ID # 10320

5 88 9 44

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB NO.120619.05

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 Donald Miller ATTN:

PO#:

SOURCE OF SAMPLE: Effluent SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1345

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
t-1,3Dichloropropene	ug/L	< 1	022112	1	EPA8260
112 Trichloroethane	ug/L	< 1	022112	1	EPA8260
Tetrachloroethene	ug/L	< 1	022112	1	EPA8260
1,3-Dichloropropane	ug/L	< 1	022112	1	EPA8260
Chlorodibromomethane	ug/L	< 1	022112	1	EPA8260
1,2 Dibromoethane	ug/L	< 1	022112	1	EPA8260
Chlorobenzene	ug/L	< 1	022112	1	EPA8260
Ethyl Benzene	ug/L	< 1	022112	1	EPA8260
1112Tetrachloroethane	ug/L	< 1	022112	1	EPA8260
m + p Xylene	ug/L	< 2	022112	2	EPA8260
o Xylene	ug/L	< 1	022112	1	EPA8260
Styrene	ug/L	< 1	022112	1	EPA8260
Bromoform	ug/L	< 1	022112	1	EPA8260
Isopropylbenzene	ug/L	< 1	022112	1	EPA8260
Bromobenzene	ug/L	< 1	022112	1	EPA8260
1122Tetrachloroethane	ug/L	< 1	022112	1	EPA8260
123-Trichloropropane	ug/L	< 1	022112	1	EPA8260
n-Propylbenzene	ug/L	< 1	022112	1	EPA8260
2-Chlorotoluene	ug/L	< 1	022112	1	EPA8260
135-Trimethylbenzene	ug/L	< 1	022112	1	EPA8260
4-Chlorotoluene	ug/L	< 1	022112	1	EPA8260
tert-Butylbenzene	ug/L	< 1	022112	1	EPA8260
124-Trimethylbenzene	ug/L	< 1	022112	1	EPA8260
sec-Butylbenzene	ug/L	< 1	022112	1	EPA8260
p-Isopropyltoluene	ug/L	< 1	022112	1	EPA8260
cc:Eairchild	Skonicki				

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell 1/1 DIRECTOR 0

Page 2 of 4

ł.

rn = 3106

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.05

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	Effluent
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1345

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
n-Butylbenzene	ug/L	< 1	022112	1	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
Dibromochloropropane	ug/L	< 1	022112	1	EPA8260
124-Trichlorobenzene (v)	ug/L	< 1	022112	1	EPA8260
Hexachlorobutadiene	ug/L	< 1	022112	1	EPA8260
Naphthalene(v)	ug/L	< 1	022112	1	EPA8260
123-Trichlorobenzene	ug/L	< 1	022112	1	EPA8260
ter.ButylMethylEther	ug/L	3	022112	1	EPA8260
p-Ethyltoluene	ug/L	< 1	022112	1	EPA8260
Freon 113	ug/L	< 1	022112	1	EPA8260
1245 Tetramethylbenz	ug/L	< 1	022112	1	EPA8260
Acetone	ug/L	< 10	022112	10	EPA8260
Methyl Ethyl Ketone	ug/L	< 10	022112	10	EPA8260
Methylisobutylketone	ug/L	< 10	022112	10	EPA8260
Chlorodifluoromethane	ug/L	< 1	022112	1	EPA8260
p Diethylbenzene	ug/L	< 1	022112	1	EPA8260

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR

Page 3 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com	Website: www.ecotestlabs.com
LAB NO.120619.05	02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

SOURCE OF SAMPLE: Effluent SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1345

PO#:

MATRIX:Water SAMPLE:

			DATE TIME	A	VALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.16	022212	0.01	EPA200.7
Manganese as Mn	mg/L	0.1	022212	0.01	EPA200.7
Zinc as Zn	mg/L	0.04	022212	0.01	EPA200.7
pH@lab units		7.3	022212 0936	0.1	SM184500HB
Tot Dissolved Solids	mg/L	98	022112	10	S182540C

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell III. Part DIRECTOR

of 4

Page 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.120619.06

02/27/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: Effluent SOURCE OF SAMPLE: COLLECTED BY: Client DATE COL'D:02/17/12 RECEIVED:02/17/12 TIME COL'D:1345 MATRIX:Water SAMPLE: DISSOLVED

			DATE TIME	ANAL	YTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL ME	THOD
Iron as Fe	mg/L	< 0.01	022112	0.01 E	PA200.7
Manganese as Mn	mg/L	0.09	022112	0.01 E	PA200.7
Zinc as Zn	mg/L	0.03	022112	0.01 E	PA200.7

cc:Fairchild, Skopicki

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell Il. Pave DIRECTOR

Page 1 of 1

NYSDOH ID # 10320

n = 3109

Representing: YES NO NA Representing:		YES NO NA	JULI VED					W FIRE-all HIVE LEAD AND REFERENT		WAKE MILLY L'SOMM IN-Z		WATER 3012 3 pm IN -1	C.) DATE TIME	(Soll. COLLECTED SAMPLE IDENTIFICATION 1 10 1	Job No.:	Inel A	CUKER	ving report: PONALS MILLER	800FAX:783 478-5775	LEAN, VA 22102	10 Treads ISLYD. JUINE 100 /00/	FAIRCHILD - MAIRON CORP.	COT EST LABORATORIES, INC. • ENVIRONMENTAL TESTING 377 Sheffield Avenue, North Babylon, New York 11703 (631) 422-5777 • FAX (631) 422-5770 • Email: ecotestlab@aol.com
Representing:	Relinquished by: (Signature)	Representing:	Relinquished by: (Signature)										111111	81/2/ 12/ B	0	E I	1/1/1/1/1/1	1/1/1/2/21	11/1/1/1/1	11/1/11	1111111	TYPE & NUMBER OF CONTAINERS,	ING
YES NO NA Representing:	DATE/TIME SEAL INTACT? Received by: (Signature)	YES NO NA Representing:	DATE/TIME SEAL INTACT? Received by: (Signature)			4.0°C			NOCON DESUND	 S TANDAG D			REMARKS-TESTS REQUIRED		(Ir) Celera Date	· •						7	CHAIN OF CUSTODY RECORD

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB NO.121148.01

04/06/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 Donald Miller

PO#:

SOURCE OF SAMPLE: IN-1 SOURCE OF SAMPLE: COLLECTED BY: Client

ATTN:

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1100

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Dichlorodifluoromethane	ug/L	< 5	033012	5	EPA8260
Chloromethane	ug/L	< 5	033012	5	EPA8260
Vinyl Chloride	ug/L	31	033012	5	EPA8260
Bromomethane	ug/L	< 5	033012	5	EPA8260
Chloroethane	ug/L	< 5	033012	5	EPA8260
Trichlorofluoromethane	ug/L	< 5	033012	5	EPA8260
1,1 Dichloroethene	ug/L	9	033012	5	EPA8260
Methylene Chloride	ug/L	< 5	033012	5	EPA8260
t-1,2-Dichloroethene	ug/L	< 5	033012	5	EPA8260
1,1 Dichloroethane	ug/L	17	033012	5	EPA8260
2,2-Dichloropropane	ug/L	< 5	033012	5	EPA8260
c-1,2-Dichloroethene	ug/L	440	033012	5	EPA8260
Bromochloromethane	ug/L	< 5	033012	5	EPA8260
Chloroform	ug/L	< 5	033012	5	EPA8260
111 Trichloroethane	ug/L	< 5	033012	5	EPA8260
Carbon Tetrachloride	ug/L	< 5	033012	5	EPA8260
1,1-Dichloropropene	ug/L	< 5	033012	5	EPA8260
Benzene	ug/L	5	033012	5	EPA8260
1,2 Dichloroethane	ug/L	< 5	033012	5	EPA8260
Trichloroethene	ug/L	450	033012	5	EPA8260
1,2 Dichloropropane	ug/L	< 5	033012	5	EPA8260
Dibromomethane	ug/L	< 5	033012	5	EPA8260
Bromodichloromethane	ug/L	< 5	033012	5	EPA8260
c-1,3Dichloropropene	ug/L	< 5	033012	5	EPA8260
Toluene	ug/L	< 5	033012	5	EPA8260
co:Wire to Wat	ter			-	C. 1.0200

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell TH. Park DIRECTOR

of 4

Page 1

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB NO.121148.01

04/06/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 Donald Miller ATTN:

PO#:

SOURCE	OF	SAMF	LE:	IN-1
SOURCE	OF	SAME	'LE:	
COL	LEC	TED	BY:	Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1100

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
t-1,3Dichloropropene	ug/L	< 5	033012	5	EPA8260
112 Trichloroethane	ug/L	< 5	033012	5	EPA8260
Tetrachloroethene	ug/L	740	D 033012	20	EPA8260
1,3-Dichloropropane	ug/L	< 5	033012	5	EPA8260
Chlorodibromomethane	ug/L	< 5	033012	5	EPA8260
1,2 Dibromoethane	ug/L	< 5	033012	5	EPA8260
Chlorobenzene	ug/L	< 5	033012	5	EPA8260
Ethyl Benzene	ug/L	< 5	033012	5	EPA8260
1112Tetrachloroethane	ug/L	< 5	033012	5	EPA8260
m + p Xylene	ug/L	< 10	033012	10	EPA8260
o Xylene	ug/L	< 5	033012	5	EPA8260
Styrene	ug/L	< 5	033012	5	EPA8260
Bromoform	ug/L	< 5	033012	5	EPA8260
Isopropylbenzene	ug/L	< 5	033012	5	EPA8260
Bromobenzene	ug/L	< 5	033012	5	EPA8260
1122Tetrachloroethane	ug/L	< 5	033012	5	EPA8260
123-Trichloropropane	ug/L	< 5	033012	5	EPA8260
n-Propylbenzene	ug/L	< 5	033012	5	EPA8260
2-Chlorotoluene	ug/L	< 5	033012	5	EPA8260
135-Trimethylbenzene	ug/L	< 5	033012	5	EPA8260
4-Chlorotoluene	ug/L	< 5	033012	5	EPA8260
tert-Butylbenzene	ug/L	< 5	033012	5	EPA8260
124-Trimethylbenzene	ug/L	< 5	033012	5	EPA8260
sec-Butylbenzene	ug/L	< 5	033012	5	EPA8260
p-Isopropyltoluene	ug/L	< 5	033012	5	EPA8260
could be to be					

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS: D: Indicates compound reported at secondary dilution.

Thomas Powell DIRECTOR

of 4

Page 2

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

		-	, , , , , , , , , , , , , , , , , , , ,	•
Email: e LAB NO.121148.	otestlab@aol.com 01	Website:	www.ecotestlabs.com 04/06/12	
ATTN:	Fairchild Corporat 1600 Tysons Blvd., McLean, VA 22102 Donald Miller		P0#:	
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	IN-1			
COLLECTED BY:		DL'D:03/30/ DL'D:1100	12 RECEIVED:03/30/12	

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 5	033012	5	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 5	033012	5	EPA8260
n-Butylbenzene	ug/L	< 5	033012	5	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 5	033012	5	EPA8260
Dibromochloropropane	ug/L	< 5	033012	5	EPA8260
124-Trichlorobenzene (v)	ug/L	< 5	033012	5	EPA8260
Hexachlorobutadiene	ug/L	< 5	033012	5	EPA8260
Naphthalene(v)	ug/L	< 5	033012	5	EPA8260
123-Trichlorobenzene	ug/L	< 5	033012	5	EPA8260
ter.ButylMethylEther	ug/L	42	033012	5	EPA8260
p-Ethyltoluene	ug/L	< 5	033012	5	EPA8260
Freon 113	ug/L	20	033012	5	EPA8260
1245 Tetramethylbenz	ug/L	< 5	033012	5	EPA8260
Acetone	ug/L	< 50	033012	50	EPA8260
Methyl Ethyl Ketone	ug/L	< 50	033012	50	EPA8260
Methylisobutylketone	ug/L	< 50	033012	50	EPA8260
Chlorodifluoromethane	ug/L	< 5	033012	5	EPA8260
p Diethylbenzene	ug/L	< 5	033012	5	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS;

Thomas Powell TIL Pave DIRECTOR

NYSDOH ID # 10320

Page 3 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: e LAB NO.121148.	otestiab@aoi.com		/ww.ecotestlabs.com
ATTN:	Fairchild Corporat 1600 Tysons Blvd., McLean, VA 22102 Donald Miller		PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	IN-1		
		OL'D:03/30/12 OL'D:1100	RECEIVED:03/30/12

			DATE TIME		ALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.18	040412	0.01	EPA200.7
Manganese as Mn	mg/L	0.09	040412	0.01	EPA200.7
Zinc as Zn	_mg/L	0.08	040412	0.01	EPA200.7
Tot Dissolved Solids	mg/L	120	040312	10	S182540C
pH@lab units		5.8	033012 1519	0.1	S184500HB

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

	Thomas Powell	
DIRECTOR_	THI Pavel	

Page 4 of 4

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: e LAB NO.121148.	o testlab@ac 02	ol.com Website:	www.ecotestlabs.com 04/06/12
ATTN:	Fairchild Co 1600 Tysons McLean, VA 2 Donald Millo	Blvd., Suite 100 22102	PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	IN-1		
COLLECTED BY: MATRIX:Water SA	Client MPLE: DISSOLV	TIME COL'D:1100	12 RECEIVED:03/30/12

ANALYTICAL PARAMETERS Iron as Fe Manganese as Mn	mg/L	RESULT 0.14 0.09	DATE TIME ANALYTICA FLAG OF ANALYSIS LRL METHOD 040412 0.01 EPA20 040412 0.01 EPA20	0.7
-			040412 0.01 EPA20	0.7
Zinc as Zn	mg/L	0.25	040412 0.01 EPA20	0.7

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS: Sample was filtered by EcoTest Labs.

	Thomas Powell	
DIRECTOR_	TH. Pavell	

rn = 5841

NYSDOH ID # 10320

Page 1 of 1

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com	Website: www.ecotestlabs.com
LAB NO.121148.03	04/06/12

	Fairchild Corporation	
	1600 Tysons Blvd., Suite	100
	McLean, VA 22102	
ATTN:	Donald Miller	

PO#:

SOURCE	OF	SAMPLE;	IN-2
SOURCE	OF	SAMPLE:	
COL	LEC	TED BY:	Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1050

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	
Dichlorodifluoromethane	ug/L	< 1	033012	1	EPA8260
Chloromethane	ug/L	< 1	033012	1	EPA8260
Vinyl Chloride	ug/L	< 1	033012	1	EPA8260
Bromomethane	ug/L	< 1	033012	1	EPA8260
Chloroethane	ug/L	< 1	033012	1	EPA8260
Trichlorofluoromethane	ug/L	< 1	033012	1	EPA8260
1,1 Dichloroethene	ug/L	< 1	033012	1	EPA8260
Methylene Chloride	ug/L	< 1	033012	1	EPA8260
t-1,2-Dichloroethene	ug/L	< 1	033012	1	EPA8260
1,1 Dichloroethane	ug/L	< 1	033012	1	EPA8260
2,2-Dichloropropane	ug/L	< 1	033012	1	EPA8260
c-1,2-Dichloroethene	ug/L	< 1	033012	1	EPA8260
Bromochloromethane	ug/L	< 1	033012	1	EPA8260
Chloroform	ug/L	< 1	033012	1	EPA8260
111 Trichloroethane	ug/L	< 1	033012	1	EPA8260
Carbon Tetrachloride	ug/L	< 1	033012	1	EPA8260
1,1-Dichloropropene	ug/L	< 1	033012	1	EPA8260
Benzene	ug/L	< 1	033012	1	EPA8260
1,2 Dichloroethane	ug/L	< 1	033012	1	EPA8260
Trichloroethene	ug/L	< 1	033012	1	EPA8260
1,2 Dichloropropane	ug/L	< 1	033012	1	EPA8260
Dibromomethane	ug/L	< 1	033012	1	EPA8260
Bromodichloromethane	ug/L	< 1	033012	1	EPA8260
c-1,3Dichloropropene	ug/L	< 1	033012	1	EPA8260
Toluene	ug/L	< 1	033012	1	EPA8260
cc:Wire to Wa	ter				

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR

Page 1 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com	Website:	www.ecot
LAR NO 121148 03		04/06/10

LAB NO.121148.03

www.ecotestlabs.com 04/06/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

6 . .

PO#:

SOURCE OF SAMPLE: IN-2 SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1050

MATRIX:Water SAMPLE:

ANALYTICAL PARAMETERS	Labor Trees		DATE TIME		ANALYTICAL
	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
t-1,3Dichloropropene 112 Trichloroethane	ug/L	< 1	033012	1	EPA8260
	ug/L	< 1	033012	1	EPA8260
Tetrachloroethene	_ug/L	< 1	033012	1	EPA8260
1,3-Dichloropropane	ug/L	< 1	033012	1	EPA8260
Chlorodibromomethane	ug/L	< 1	033012	1	EPA8260
1,2 Dibromoethane	ug/L	< 1	033012	1	EPA8260
Chlorobenzene	ug/L	< 1	033012	1	EPA8260
Ethyl Benzene	ug/L	< 1	033012	1	EPA8260
1112Tetrachloroethane	ug/L	< 1	033012	1	EPA8260
m + p Xylene	ug/L	< 2	033012	2	EPA8260
o Xylene	ug/L	< 1	033012	1	EPA8260
Styrene	ug/L	< 1	033012	1	EPA8260
Bromoform	ug/L	< 1	033012	1	EPA8260
Isopropylbenzene	ug/L	< 1	033012	1	EPA8260
Bromobenzene	ug/L	< 1	033012	1	EPA8260
1122Tetrachloroethane	ug/L	< 1	033012	1	EPA8260
123-Trichloropropane	ug/L	< 1	033012	1	EPA8260
n-Propylbenzene	ug/L	< 1	033012	1	EPA8260
2-Chlorotoluene	ug/L	< 1	033012	1	EPA8260
135-Trimethylbenzene	ug/L	< 1	033012	1	EPA8260
4-Chlorotoluene		< 1	033012	i i	EPA8260
tert-Butylbenzene	—	< 1	033012	ŀ	EPA8260
124-Trimethylbenzene		< 1	033012	∔ 1	
sec-Butylbenzene	-	< 1	033012	1	EPA8260
p-Isopropyltoluene		< 1	033012	1	EPA8260
co:Wire to I		-	000012	T	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR 211 Paul

NYSDOH ID # 10320

Page 2 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com	Website: www.ecotestlabs.com
LAB NO.121148.03	04/06/12

	Fairchild Corporation
	1600 Tysons Blvd., Suite 100
	McLean, VA 22102
ATTN:	Donald Miller

SOURCE OF SAMPLE: IN-2 SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1050

PO#:

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
n-Butylbenzene	ug/L	< 1	033012	1	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
Dibromochloropropane	ug/L	< 1	033012	1	EPA8260
124-Trichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
Hexachlorobutadiene	ug/L	< 1	033012	1	EPA8260
Naphthalene(v)	ug/L	< 1	033012	1	EPA8260
123-Trichlorobenzene	ug/L	< 1	033012	1	EPA8260
ter.ButylMethylEther	ug/L	14	033012	1	EPA8260
p-Ethyltoluene	ug/L	< 1	033012	1	EPA8260
Freon 113	ug/L	< 1	033012	1	EPA8260
1245 Tetramethylbenz	ug/L	< 1	033012	1	EPA8260
Acetone	ug/L	< 10	033012	10	EPA8260
Methyl Ethyl Ketone	ug/L	< 10	033012	10	EPA8260
Methylisobutylketone	ug/L	< 10	033012	10	EPA8260
Chlorodifluoromethane	ug/L	< 1	033012	1	EPA8260
p Diethylbenzene	ug/L	< 1	033012	1	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR 211

Page 3 of 4

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ec LAB NO.121148.0		Website:	www.ecotestlabs.com 04/06/12
ATTN:	Fairchild Corporat 1600 Tysons Blvd., McLean, VA 22102 Donald Miller		PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:			
COLLECTED BY:	Client DATE CO	DL'D:03/30/	12 RECEIVED:03/30/12

TIME COL'D:1050

MATRIX:Water SAMPLE:

			DATE TIME	AI	VALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.15	040412	0.01	EPA200.7
Manganese as Mn	mg/L	0.1	040412	0.01	EPA200.7
Zinc as Zn	mg/L	0.07	040412	0.01	EPA200.7
Tot Dissolved Solids	mg/L	120	040312	10	S182540C
pH@lab units		7.4	033012 1524	0.1	S184500HB

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS;

Thomas Powell DIRECTOR 111

of 4

Page 4

ENVIRONMENTAL TESTING

0.01 EPA200.7

EPA200.7

0.01

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: e LAB NO.121148.	o testlab@a	ol.com	Website:	www.ecotes 04/06/12	tlabs.com	
ATTN:	Fairchild C 1600 Tysons McLean, VA Donald Mill	Blvd., 22102		PO#:		
SOURCE OF SAMPLE; SOURCE OF SAMPLE: COLLECTED BY:	IN-2 Client			12 RECEIVED:0)3/30/12	
MATRIX:Water SA	MPLE: DISSOL ^y		DL'D:1050			
ANALYTICAL PARAMETERS Iron as Fe	UNITS mg/L	RESULT < 0.01	FLA	DATE TIME G OF ANALYSIS 040412	ANALYTICAL LRL METHOD 0.01 EPA200.7	7

mg/L 0.09

mg/L 0.04

cc:Wire to Water

LRL=Laboratory Reporting Limit

040412

040412

REMARKS: Sample was filtered by EcoTest Labs.

Thomas Powell MIL Paul DIRECTOR

rn = 5846

Manganese as Mn

Zinc as Zn

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.121148.05

04/06/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: Effluent SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1100

MATRIX:Water SAMPLE:

			DATE TIME	ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS I	_RL METHOD
Dichlorodifluoromethane	ug/L	< 1	033012	1 EPA8260
Chloromethane	ug/L	< 1	033012	1 EPA8260
Vinyl Chloride	ug/L	< 1	033012	1 EPA8260
Bromomethane	ug/L	< 1	033012	1 EPA8260
Chloroethane	ug/L	< 1	033012	1 EPA8260
Trichlorofluoromethane	ug/L	< 1	033012	1 EPA8260
1,1 Dichloroethene	ug/L	< 1	033012	1 EPA8260
Methylene Chloride	ug/L	< 1	033012	1 EPA8260
t-1,2-Dichloroethene	ug/L	< 1	033012	1 EPA8260
1,1 Dichloroethane	ug/L	< 1	033012	1 EPA8260
2,2-Dichloropropane	ug/L	< 1	033012	1 EPA8260
c-1,2-Dichloroethene	ug/L	< 1	033012	1 EPA8260
Bromochloromethane	ug/L	< 1	033012	1 EPA8260
Chloroform	ug/L	< 1	033012	1 EPA8260
111 Trichloroethane	ug/L	< 1	033012	1 EPA8260
Carbon Tetrachloride	ug/L	< 1	033012	1 EPA8260
1,1-Dichloropropene	ug/L	< 1	033012	1 EPA8260
Benzene	ug/L	< 1	033012	1 EPA8260
1,2 Dichloroethane	ug/L	< 1	033012	1 EPA8260
Trichloroethene	ug/L	< 1	033012	1 EPA8260
1,2 Dichloropropane	ug/L	< 1	033012	1 EPA8260
Dibromomethane	ug/L	< 1	033012	EPA8260
Bromodichloromethane	ug/L	< 1	033012	E EPA8260
c-1,3Dichloropropene	-	< 1	033012	EPA8260
Toluene	-	< 1	033012	EPA8260
cc:Wire to Wa				LENOZOU

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell TH Paul DIRECTOR

of 4

Page 1

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: Effluent -SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1100

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
t-1,3D1chloropropene	ug/L	< 1	033012	1	EPA8260
112 Trichloroethane	ug/L	< 1	033012	1	EPA8260
Tetrachloroethene	ug/L	< 1	033012	1	EPA8260
1,3-Dichloropropane	ug/L	< 1	033012	1	EPA8260
Chlorodibromomethane	ug/L	< 1	033012	1	EPA8260
1,2 Dibromoethane	ug/L	< 1	033012	1	EPA8260
Chlorobenzene	ug/L	< 1	033012	1	EPA8260
Ethyl Benzene	ug/L	< 1	033012	1	EPA8260
1112Tetrachloroethane	ug/L	< 1	033012	1	EPA8260
m + p Xylene	ug/L	< 2	033012	2	EPA8260
o Xylene	ug/L	< 1	033012	1	EPA8260
Styrene	ug/L	< 1	033012	1	EPA8260
Bromoform	ug/L	< 1	033012	1	EPA8260
Isopropylbenzene	ug/L	< 1	033012	1	EPA8260
Bromobenzene	ug/L	< 1	033012	1	EPA8260
1122Tetrachloroethane	ug/L	< 1	033012	1	EPA8260
123-Trichloropropane	ug/L	< 1	033012	1	EPA8260
n-Propylbenzene	ug/L	< 1	. 033012	1	EPA8260
2-Chlorotoluene	ug/L	< 1	033012	1	EPA8260
135-Trimethylbenzene	ug/L	< 1	033012	1	EPA8260
4-Chlorotoluene	ug/L	< 1	033012	1	EPA8260
tert-Butylbenzene	ug/L	< 1	033012	1	EPA8260
124-Trimethylbenzene	ug/L	< 1	033012	1	EPA8260
sec-Butylbenzene	ug/L	< 1	033012	1	EPA8260
p-Isopropyltoluene	ug/L	< 1	033012	1	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell VII. Part DIRECTOR

of 4

Page 2

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.121148.05

04/06/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE:	Effluent
SOURCE OF SAMPLE:	
COLLECTED BY:	Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1100

MATRIX:Water SAMPLE:

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
n-Butylbenzene	ug/L	< 1	033012	1	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
Dibromochloropropane	ug/L	< 1	033012	1	EPA8260
124-Trichlorobenzene (v)	ug/L	< 1	033012	1	EPA8260
Hexachlorobutadiene	ug/L	< 1	033012	1	EPA8260
Naphthalene(v)	ug/L	< 1	033012	1	EPA8260
123-Trichlorobenzene	ug/L	< 1	033012	1	EPA8260
ter.ButylMethylEther	ug/L	3	033012	1	EPA8260
p-Ethyltoluene	ug/L	< 1	033012	1	EPA8260
Freon 113	ug/L	< 1	033012	1	EPA8260
1245 Tetramethylbenz	ug/L	< 1	033012	1	EPA8260
Acetone	ug/L	< 10	033012	10	EPA8260
Methyl Ethyl Ketone	ug/L	< 10	033012	10	EPA8260
Methylisobutylketone	ug/L	< 10	033012	10	EPA8260
Chlorodifluoromethane	ug/L	< 1	033012	1	EPA8260
p Diethylbenzene	ug/L	< 1	033012	1	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR 01/1 Paul

of 4

Page 3

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com LAB NO.121148.05	Website:	www.ecotestlabs.com 04/06/12
Fairchild Corporati		

1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: Effluent SOURCE OF SAMPLE: COLLECTED BY: Client

DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1100

MATRIX:Water SAMPLE:

			DATE TIME	A	VALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.15	040412	0.01	EPA200.7
Manganese as Mn	mg/L	0.1	040412	0.01	EPA200.7
Zinc as Zn	mg/L	0.03	040412	0.01	EPA200.7
Tot Dissolved Solids	mg/L	110	040312	10	S182540C
pH@lab units		7.3	033012 1528	0.1	S184500HB

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

Thomas Powell DIRECTOR 211

of 4

Page 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

LAB NO.121148.06

04/06/12

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller

PO#:

SOURCE OF SAMPLE: Effluent SOURCE OF SAMPLE:

COLLECTED BY: Client DATE COL'D:03/30/12 RECEIVED:03/30/12 TIME COL'D:1100

MATRIX:Water SAMPLE: DISSOLVED

			DATE TIME	ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL METHOD
Iron as Fe	mg/L	< 0.01	040412	0.01 EPA200.7
Manganese as Mn	mg/L	0.09	040412	0.01 EPA200.7
Zinc as Zn	mg/L	0.02	040412	0.01 EPA200.7

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS: Sample was filtered by EcoTest Labs.

Thomas Powell MI. Pave DIRECTOR

of 1

Page 1

NYSDOH ID # 10320

ENVIRONMENTAL TESTING

L

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

ATTN:	Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 Donald Miller	PO#:	
SOURCE OF SAMPLE:	Fairchild Corporation		

TIME COL'D:0830

SOURCE OF SAMPLE: COLLECTED BY: DScheer

er DATE COL'D:04/30/12 RECEIVED:04/30/12

MATRIX:Water SAMPLE: Influent-1

			DATE TIME	ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS I	
Dichlorodifluoromethane	ug/L	< 5	050212	5 EPA8260
Chloromethane	ug/L	< 5	050212	5 EPA8260
Vinyl Chloride	ug/L	35	050212	5 EPA8260
Bromomethane	ug/L	< 5	050212	5 EPA8260
Chloroethane	ug/L	< 5	050212	5 EPA8260
Trichlorofluoromethane	ug/L	< 5	050212	5 EPA8260
1,1 Dichloroethene	ug/L	9	050212	5 EPA8260
Methylene Chloride	ug/L	< 5	050212	5 EPA8260
t-1,2-Dichloroethene	ug/L	< 5	050212	5 EPA8260
1,1 Dichloroethane	ug/L	18	050212	5 EPA8260
2,2-Dichloropropane	ug/L	< 5	050212	5 EPA8260
c-1,2-Dichloroethene	ug/L	440	050212	5 EPA8260
Bromochloromethane	ug/L	< 5	050212	5 EPA8260
Chloroform	ug/L	< 5	050212	5 EPA8260
111 Trichloroethane	ug/L	< 5	050212	5 EPA8260
Carbon Tetrachloride	ug/L	< 5	050212	5 EPA8260
1,1-Dichloropropene	ug/L	< 5	050212	5 EPA8260
Benzene	ug/L	6	050212	5 EPA8260
1,2 Dichloroethane	ug/L	< 5	050212	5 EPA8260
Trichloroethene	ug/L	430	050212	5 EPA8260
1,2 Dichloropropane	ug/L	< 5	050212	5 EPA8260
Dibromomethane	ug/L	< 5		5 EPA8260
Bromodichloromethane	ug/L	< 5	050212	5 EPA8260
c-1,3Dichloropropene	ug/L	< 5	050212	5 EPA8260
Toluene	ug/L	< 5	050212	5 EPA8260
and literated by	tain			

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR Page 1 of 4

rn = 8382

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. . N. BABYLON, N.Y. 11703 . (631) 422-5777. FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

ATTN:	Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 Donald Miller	• PO#:
OF SAMPLE:	Fairchild Corporation	

SOURCE OF SAMPLE: Fairchi SOURCE OF SAMPLE: COLLECTED BY: DScheer

DATE COL'D:04/30/12 RECEIVED:04/30/12 TIME COL'D:0830

MATRIX:Water SAMPLE: Influent-1

			DATE TIME ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS LRL METHOD
t-1,3Dichloropropene	ug/L	< 5	050212 5 EPA8260
112 Trichloroethane	ug/L	< 5	050212 5 EPA8260
Tetrachloroethene	ug/L	800	D 050212 5 EPA8260
1,3-Dichloropropane	ug/L	< 5	050212 5 EPA8260
Chlorodibromomethane	ug/L	< 5	050212 5 EPA8260
1,2 Dibromoethane	ug/L	< 5	050212 5 EPA8260
Chlorobenzene	ug/L	< 5	050212 5 EPA8260
Ethyl Benzene	ug/L	< 5	050212 5 EPA8260
1112Tetrachloroethane	ug/L	< 5	050212 5 EPA8260
m + p Xylene	ug/L	< 10	050212 10 EPA8260
o Xylene	ug/L	< 5	050212 5 EPA8260
Styrene	ug/L	< 5	050212 5 EPA8260
Bromoform	ug/L	< 5	050212 5 EPA8260
Isopropylbenzene	ug/L	< 5	050212 5 EPA8260
Bromobenzene	ug/L	< 5	050212 5 EPA8260
1122Tetrachloroethane	ug/L	< 5	050212 5 EPA8260
123-Trichloropropane	ug/L	< 5	050212 5 EPA8260
n-Propylbenzene	ug/L	< 5	050212 5 EPA8260
2-Chlorotoluene	ug/L	< 5	050212 5 EPA8260
135-Trimethylbenzene	ug/L	< 5	050212 5 EPA8260
4-Chlorotoluene	ug/L	< 5	050212 5 EPA8260
tert-Butylbenzene	ug/L	< 5	050212 5 EPA8260
124-Trimethylbenzene	ug/L	< 5	050212 5 EPA8260
sec-Butylbenzene	ug/L	< 5	050212 5 EPA8260
p-Isopropyltoluene	ug/L	< 5	050212 5 EPA8260
co:Wire to	Water		

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS: D: Indicates compound at secondary dilutuon.

DIRECTOR of 4 Page 2

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com

ATTN:	Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 Donald Miller	PO#:
SOURCE OF SAMPLE:	Fairchild Corporation	

SOURCE OF SAMPLE: COLLECTED BY: DScheer

Scheer DATE COL'D:04/30/12 RECEIVED:04/30/12 TIME COL'D:0830

MATRIX:Water SAMPLE: Influent-1

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 5	050212	5	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 5	050212	5	EPA8260
n-Butylbenzene	ug/L	< 5	050212	5	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 5	050212	5	EPA8260
Dibromochloropropane	ug/L	< 5	050212	5	EPA8260
124-Trichlorobenzene (v)	ug/L	< 5	050212	5	EPA8260
Hexachlorobutadiene	ug/L	< 5	050212	5	EPA8260
Naphthalene(v)	ug/L	< 5	050212	5	EPA8260
123-Trichlorobenzene	ug/L	< 5	050212	5	EPA8260
ter.ButylMethylEther	ug/L	42	050212	5	EPA8260
p-Ethyltoluene	ug/L	< 5	050212	5	EPA8260
Freon 113	ug/L	20	050212	5	EPA8260
1245 Tetramethylbenz	ug/L	< 5	050212	5	EPA8260
Acetone	ug/L	< 50	050212	50	EPA8260
Methyl Ethyl Ketone	ug/L	< 50	050212	50	EPA8260
Methylisobutylketone	ug/L	< 50	050212	50	EPA8260
Chlorodifluoromethane	ug/L	< 5	050212	5	EPA8260
p Diethylbenzene	ug/L	< 5	050212	5	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR Page 3

rn = 8384

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: eco LAB NO.121554.			w.ecotestlabs.com
	Fairchild Corpor 1600 Tysons Blvd McLean, VA 22102	., Suite 100	
ATTN:	Donald Miller		PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Corpor	ation	
COLLECTED BY:		COL'D:04/30/12 COL'D:0830	RECEIVED:04/30/12
MATRIX:Water SA	MPLE: Influent-1		

			DATE TIME	AN	ALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.15	050312	0.01	EPA200.7
Manganese as Mn	mg/L	0.1	050312	0.01	EPA200.7
Zinc as Zn	mg/L	1.4	050312	0.01	EPA200.7
Tot Dissolved Solids	mg/L	130	050112	10	S182540C
pH@lab units		6.8	043012 1245	0.1	SM184500HB

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR Page 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com Website: www.ecotestlabs.com LAB N0.121554.02 05/07/12

ATTN:	Fairchild Corpo 1600 Tysons Blv McLean, VA 2210 Donald Miller	1., Suite 100	PO#:	
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Corpo	ration		
COLLECTED BY:		COL'D:04/30/12 COL'D:0830	RECEIVED:04/30	1/12
MATRIX:Water SA	MPLE: Influent-1	DISSOLVED		

			DATE TIME	A	NALTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.14	050312	0.01	EPA200.7
Manganese as Mn	mg/L	0.09	050312	0.01	EPA200.7
Zinc as Zn	mg/L	0.13	050312	0.01	EPA200.7

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS: Filtered in the field by client.

DIRECTOR Page 1 of 1

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com LAB NO.121554.03		Website:	www.ecotestlabs.com 05/07/12
	Fairchild Corpora 1600 Tysons Blvd. McLean, VA 22102		0
ATTN:	Donald Miller		PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Corpora	ition	
COLLECTED BY:	DScheer DATE	COL'D:04/3	0/12 RECEIVED:04/30/12
MATRIX:Water SA		COL'D:0900	1

			DATE TIME	ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL METHOD
Dichlorodifluoromethane	ug/L	< 1	050212	1 EPA8260
Chloromethane	ug/L	< 1	050212	1 EPA8260
Vinyl Chloride	ug/L	< 1	050212	1 EPA8260
Bromomethane	ug/L	< 1	050212	1 EPA8260
Chloroethane	ug/L	< 1	050212	1 EPA8260
Trichlorofluoromethane	ug/L	< 1	050212	1 EPA8260
1,1 Dichloroethene	ug/L	< 1 ·	050212	1 EPA8260
Methylene Chloride	ug/L	< 1	050212	1 EPA8260
t-1,2-Dichloroethene	ug/L	< 1	050212	1 EPA8260
1,1 Dichloroethane	ug/L	< 1	050212	1 EPA8260
2,2-Dichloropropane	ug/L	< 1	050212	1 EPA8260
c-1,2-Dichloroethene	ug/L	< 1	050212	1 EPA8260
Bromochloromethane	ug/L	< 1	050212	1 EPA8260
Chloroform	ug/L	< 1	050212	1 EPA8260
111 Trichloroethane	ug/L	< 1	050212	1 EPA8260
Carbon Tetrachloride	ug/L	< 1	050212	1 EPA8260
1,1-Dichloropropene	ug/L	< 1	050212	1 EPA8260
Benzene	ug/L	< 1	050212	1 EPA8260
1,2 Dichloroethane	ug/L	< 1	050212	1 EPA8260
Trichloroethene	ug/L	< 1	050212	1 EPA8260
1,2 Dichloropropane	ug/L	< 1	050212	1 EPA8260
Dibromomethane	ug/L	< 1	050212	1 EPA8260
Bromodichloromethane	ug/L	< 1	050212	1 EPA8260
c-1,3Dichloropropene	ug/L	< 1	050212	1 EPA8260
Toluene	ug/L	< 1	050212	1 EPA8260
co:Wire to W	later			

NYSDOH ID # 10320

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR Page 1 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com LAB NO.121554.03		com Website:	www.ecotestlabs.com 05/07/12	
	McLean, VA	Blvd., Suite 10 22102		
ATTN:	Donald Miller		PO#:	
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild C	Corporation		
COLLECTED BY:	DScheer	DATE COL'D:04/3 TIME COL'D:0900	0/12 RECEIVED:04/30/12	
MATRIX:Water SAMPLE: Influent-2				

ANALYTICAL PARAMETERS	UNITS	RESULT	DATE TIME FLAG OF ANALYSIS	1.01	ANALYTICAL METHOD
			050212		
t-1,3Dichloropropene	ug/L			1	EPA8260
112 Trichloroethane	ug/L	< 1	050212	1	EPA8260
Tetrachloroethene	ug/L	< 1	050212	1	EPA8260
1,3-Dichloropropane	ug/L	< 1	050212	1	EPA8260
Chlorodibromomethane	ug/L	< 1	050212	1	EPA8260
1,2 Dibromoethane	ug/L	< 1	050212	1	EPA8260
Chlorobenzene	ug/L	< 1	050212	1	EPA8260
Ethyl Benzene	ug/L	< 1	050212	1	EPA8260
1112Tetrachloroethane	ug/L	< 1	050212	1	EPA8260
m + p Xylene	ug/L	< 2	050212	2	EPA8260
o Xylene	ug/L	< 1	050212	1	EPA8260
Styrene	ug/L	< 1	050212	1	EPA8260
Bromoform	ug/L	< 1	050212	1	EPA8260
Isopropylbenzene	ug/L	< 1	050212	1	EPA8260
Bromobenzene	ug/L	< 1	050212	1	EPA8260
1122Tetrachloroethane	ug/L	< 1	050212	1	EPA8260
123-Trichloropropane	ug/L	< 1	050212	1	EPA8260
n-Propylbenzene	ug/L	< 1	050212	1	EPA8260
2-Chlorotoluene	ug/L	< 1	050212	1	EPA8260
135-Trimethylbenzene	ug/L	< 1	050212	1	EPA8260
4-Chlorotoluene	ug/L	< 1	050212	1	EPA8260
tert-Butylbenzene	ug/L	< 1	050212	1	EPA8260
124-Trimethylbenzene	ug/L	< 1	050212	1	EPA8260
sec-Butylbenzene	ug/L	< 1	050212	1	EPA8260
p-Isopropyltoluene	ug/L	< 1	050212	1	EPA8260
co:Wire to	_				

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR Page 2 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: eco LAB NO.121554.		n Website:	www.ecotestlabs.com 05/07/12
	Fairchild Cor 1600 Tysons B McLean, VA 22	vd., Suite 10	00
ATTN:	Donald Miller		PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Corp	oration	
COLLECTED BY:			30/12 RECEIVED:04/30/12
MATRIX:Water SA	NPLE: Influent	ME COL'D:0900)

MATRIX:Water SAMPLE: Influent-2

			DATE TIME		ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
1,3 Dichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
n-Butylbenzene	ug/L	< 1	050212	1	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
Dibromochloropropane	ug/L	< 1	050212	1	EPA8260
124-Trichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
Hexachlorobutadiene	ug/L	< 1	050212	1	EPA8260
Naphthalene(v)	ug/L	< 1	050212	1	EPA8260
123-Trichlorobenzene	ug/L	< 1	050212	1	EPA8260
ter.ButylMethylEther	ug/L	13	050212	1	EPA8260
p-Ethyltoluene	ug/L	< 1	050212	1	EPA8260
Freon 113	ug/L	< 1	050212	1	EPA8260
1245 Tetramethylbenz	ug/L	< 1	050212	1	EPA8260
Acetone	ug/L	< 10	050212	10	EPA8260
Methyl Ethyl Ketone	ug/L	< 10	050212	10	EPA8260
Methylisobutylketone	ug/L	< 10	050212	10	EPA8260
Chlorodifluoromethane	ug/L'	< 1	050212	1	EPA8260
p Diethylbenzene	ug/L	< 1	050212	1	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR Page 3

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: eco LAB NO. 121554.		com	Website:	www.eco 05/07/	testlabs.com
ATTN:	Fairchild Co 1600 Tysons McLean, VA 2 Donald Millo	Blvd. 22102			PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Co	orporat	tion		
COLLECTED BY:	DScheer		COL'D:04/3 COL'D:0900		IVED:04/30/12

MATRIX:Water SAMPLE: Influent-2

			DATE TIME	A	NALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg∕L	0.14	050312	0.01	EPA200.7
Manganese as Mn	mg/L	0.09	050312	0.01	EPA200.7
Zinc as Zn	mg/L	0.02	050312	0.01	EPA200.7
Tot Dissolved Solids	mg/L	120	050112	10	S182540C
pH@lab units		7.5	043012 1248	0.1	SM184500HB

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR Page 4 of

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com	Website: www.ecotestlabs.com
LAB NO.121554.04	05/07/12
Fairchild Corpora	

1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller PO#:

SOURCE OF SAMPLE:	Fairchild	Corporation
SOURCE OF SAMPLE:		
COLLECTED BY:	DScheer	DATE COL'D:04/30/12 RECEIVED:04/30/12
		TIME COL'D:0900
MATDIX Watan SA	MOLE: Tool 1	

MATRIX:Water SAMPLE: Influent-2 DISSOLVED

			DATE TIME	A	NALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.13	050312	0.01	EPA200.7
Manganese as Mn	mg/L	0.09	050312	0.01	EPA200.7
Zinc as Zn	mg/L	0.02	050312	0.01	EPA200.7

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS: Filtered in the field by client.

DIRECTOR Page 1 of

n = 8391

ENVIRONMENTAL TESTING

ANAL YTTCAL

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: eco LAB NO.121554.	testlab@aol.com 05	Website:	www.ecotestlabs.com 05/07/12
	Fairchild Corpo 1600 Tysons Blv McLean, VA 2210	d., Suite 10	00
ATTN:	Donald Miller		PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Corpo	ration	
COLLECTED BY:		E COL'D:04/3 E COL'D:0900	0/12 RECEIVED:04/30/12
MATRIX:Water SA	MPLE: Effluent-1		

			DATE TIME		ANALTIICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Dichlorodifluoromethane	ug/L	< 1	050212	1	EPA8260
Chloromethane	ug/L	< 1	050212	1	EPA8260
Vinyl Chloride	ug/L	< 1	050212	1	EPA8260
Bromomethane	ug/L	< 1	050212	1	EPA8260
Chloroethane	ug/L	< 1	050212	1	EPA8260
Trichlorofluoromethane	ug/L	< 1	050212	1	EPA8260
1,1 Dichloroethene	ug/L	< 1	050212	1	EPA8260
Methylene Chloride	ug/L	< 1	050212	1	EPA8260
t-1,2-Dichloroethene	ug/L	< 1	050212	1	EPA8260
1,1 Dichloroethane	ug/L	< 1	050212	1	EPA8260
2,2-Dichloropropane	ug/L	< 1	050212	1	EPA8260
c-1,2-Dichloroethene	ug/L	< 1	050212	1	EPA8260
Bromochloromethane	ug/L	< 1	050212	1	EPA8260
Chloroform	ug/L	< 1	050212	1	EPA8260
111 Trichloroethane	ug/L	< 1	050212	1	EPA8260
Carbon Tetrachloride	ug/L	< 1	050212	1	EPA8260
1,1-Dichloropropene	ug/L	< 1	050212	1	EPA8260
Benzene	ug/L	< 1	050212	1	EPA8260
1,2 Dichloroethane	ug/L	< 1	050212	1	EPA8260
Trichlaraethene	ug/L	< 1	050212	1	EPA8260
1,2 Dichloropropane	ug/L	< 1	050212	1	EPA8260
Dibromomethane	ug/L	< 1	050212	1	EPA8260
Bromodichloromethane	ug/L	< 1	050212	1	EPA8260
c-1,3Dichloropropene	ug/L	< 1	050212	1	EPA8260
Toluene	ug/L	< 1	050212	1	EPA8260
op:Wing to W					

cc:Wire to Water

LRL=Laboratory Reporting Limit

DATE TIME

REMARKS:

lon DIRECTOR Page 1 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: eco LAB NO.121554.		Website:	www.ecotestlabs.com 05/07/12
	Fairchild Corpo 1600 Tysons Blw McLean, VA 2210	d., Suite 10	
ATTN:	Donald Miller		PO#:
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Corpo	ration	
COLLECTED BY:		E COL'D:04/3 E COL'D:0900	0/12 RECEIVED:04/30/12
MATRIX:Water SA	MPLE: Effluent-1		

			DATE TIME	ANALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS L	
t-1,3Dichloropropene	ug/L	< 1	050212	1 EPA8260
112 Trichloroethane	ug/L	< 1	050212	1 EPA8260
Tetrachloroethene	ug/L	< 1	050212	1 EPA8260
1,3-Dichloropropane	ug/L	< 1	050212	1 EPA8260
Chlorodibromomethane	ug/L	< 1	050212	1 EPA8260
1,2 Dibromoethane	ug/L	< 1	050212	1 EPA8260
Chlorobenzene	ug/L	< 1	050212	1 EPA8260
Ethyl Benzene	ug/L	< 1	050212	1 EPA8260
1112Tetrachloroethane	ug/L	< 1	050212	1 EPA8260
m + p Xylene	ug/L	< 2		2 EPA8260
o Xylene	ug/L	< 1	050212	1 EPA8260
Styrene	ug/L	< 1	050212	1 EPA8260
Bromoform	ug/L	< 1	050212	1 EPA8260
Isopropylbenzene	ug/L	< 1	050212	1 EPA8260
Bromobenzene	ug/L	< 1	050212	1 EPA8260
1122Tetrachloroethane	ug/L	< 1	050212	1 EPA8260
123-Trichloropropane	ug/L	< 1	050212	1 EPA8260
n-Propylbenzene	ug/L	< 1	050212	1 EPA8260
2-Chlorotoluene	ug/L	< 1	050212	I EPA8260
135-Trimethylbenzene	ug/L	< 1	050212	l EPA8260
4-Chlorotoluene	ug/L	< 1	050212	L EPA8260
tert-Butylbenzene	ūg/L	< 1	050212	EPA8260
124-Trimethylbenzene	ug/L	< 1	050212	EPA8260
sec-Butylbenzene	ug/L	< 1	050212	EPA8260
p-Isopropyltoluene	ug/L	< 1	050212 1	EPA8260
co:Wire to				

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

DIRECTOR NYSDOH ID # 10320 Page 2 of

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Fairchild Corporation 1600 Tysons Blvd., Suite 100 McLean, VA 22102 ATTN: Donald Miller PO#: SOURCE OF SAMPLE: Fairchild Corporation SOURCE OF SAMPLE: COLLECTED BY: DScheer DATE COL'D:04/30/12 RECEIVED:04/30/12 TIME COL'D:0900 MATRIX:Water SAMPLE: Effluent-1	Email: eco LAB NO.121554.		om Website	e: www.ecotest	labs.com
SOURCE OF SAMPLE: Fairchild Corporation SOURCE OF SAMPLE: COLLECTED BY: DScheer DATE COL'D:04/30/12 RECEIVED:04/30/12 TIME COL'D:0900		1600 Tysons McLean, VA 2	Blvd., Suite 2102		
SOURCE OF SAMPLE: COLLECTED BY: DScheer DATE COL'D:04/30/12 RECEIVED:04/30/12 TIME COL'D:0900	ATTN:	Donald Mille	ir	PO#:	
TIME COL'D:0900		Fairchild Co	rporation		
	COLLECTED BY:				:04/30/12
	MATRIX:Water SA				
DATE TIME ANALYTICAL					
ANALYTICAL PARAMETERS UNITS RESULT FLAG OF ANALYSIS LRL METHOD					

	011210	ILCOUL I			
1,3 Dichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
1,4 Dichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
n-Butylbenzene	ug/L	< 1	050212	1	EPA8260
1,2 Dichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
Dibromochloropropane	ug/L	< 1	050212	1	EPA8260
124-Trichlorobenzene (v)	ug/L	< 1	050212	1	EPA8260
Hexachlorobutadiene	ug/L	< 1	050212	1	EPA8260
Naphthalene(v)	ug/L	< 1	050212	1	EPA8260
123-Trichlorobenzene	ug/L	< 1	050212	1	EPA8260
ter.ButylMethylEther	ug/L	8	050212	1	EPA8260
p-Ethyltoluene	ug/L	< 1	050212	1	EPA8260
Freon 113	ug/L	< 1	050212	1	EPA8260
1245 Tetramethylbenz	ug/L	< 1	050212	1	EPA8260
Acetone	ug/L	< 10	050212	10	EPA8260
Methyl Ethyl Ketone	ug/L	< 10	050212	10	EPA8260
Methylisobutylketone	ug/L	< 10	050212	10	EPA8260
Chlorodifluoromethane	ug/L	< 1	050212	1	EPA8260
p Diethylbenzene	ug/L	< 1	050212	1	EPA8260

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

la DIRECTOR Page 3 1

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: ecotestlab@aol.com	Website: www.ecotestlabs.com				
LAB N0.121554.05	05/07/12				
Fairchild Corpor 1600 Tysons Blvd McLean, VA 22102 ATTN: Donald Miller					

SOURCE OF SAMPLE: F SOURCE OF SAMPLE:	airchild Co	orpora	ation	
COLLECTED BY: D	Scheer			RECEIVED:04/30/12
		LIWE	COL'D:0900	

MATRIX:Water SAMPLE: Effluent-1

			DATE TIME	A	VALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg/L	0.14	050312	0.01	EPA200.7
Manganese as Mn	mg/L	0.09	050312	0.01	EPA200.7
Zinc as Zn	mg/L	0.03	050312	0.01	EPA200.7
Tot Dissolved Solids	mg/L	130	050112	10	S182540C
pH@lab units		7.5	043012 1250	0.1	SM184500HB

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS:

	1
	4 DC
	DIRECTOR Hones
NYSDOH ID # 10320	Page 4 of 4

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (631) 422-5777• FAX (631) 422-5770

Email: eco LAB NO.121554.		om Website:	www.ecotestlabs. 05/07/12	com
ATTN:	Fairchild Co 1600 Tysons McLean, VA 2 Donald Mille	Blvd., Suite 10 22102	00 PO#:	
SOURCE OF SAMPLE: SOURCE OF SAMPLE:	Fairchild Co	prporation		
COLLECTED BY:	DScheer	DATE COL'D:04/3 TIME COL'D:0900	0/12 RECEIVED:04/3	30/12
MATRIX:Water SA	MPLE: Effluer	nt-1 DISSOLVED		
			DATE TIME	

			DATE TIME	AN	NALYTICAL
ANALYTICAL PARAMETERS	UNITS	RESULT	FLAG OF ANALYSIS	LRL	METHOD
Iron as Fe	mg∕L	0.14	050312	0.01	EPA200.7
Manganese as Mn	mg/L	0.09	050312	0.01	EPA200.7
Zinc as Zn	mg/L	0.02	050312	0.01	EPA200.7

cc:Wire to Water

LRL=Laboratory Reporting Limit

REMARKS: Filtered in the field by client.

DIRECTOR NYSDOH ID # 10320 Page 1 of

Reinquished by: (Signature) DATETIME SEAL INTACT? Hepresenting: FG: (A.N. 4) Hork 90000 YES NO NA Refinquished by: (Signature) DATETTIME SEAL INTACT? Pepresenting: YES NO NA	WATER 4/20 900 EFFLUENT - 1	MATER USA COLLECTED SAMPLE IDENTIFICATION (Soil, DATE TIME SAMPLE IDENTIFICATION WATER USA JAN INFLUENT - 1 WATER USA COM INFLUENT - 3	TEST LABORATORIES, INC. • heffield Avenue, North Eabylon, N 22-5777 • FAX (631) 422-5770 • Email FAIRCHILD-MAIRCOLL CORP. 1600 TYSONS BLVD. SUITE : MCLEAN, VA 22102 MCLEAN, VA 22102 MCLEAN, VA 22102 *Ceeiving report: DONALD MILLER tby: DANIEL SCHEER
Received ov: /Signature DATE/TIME SEAL INTACT? Received by: (Signature) Received ov: /Signature Pate/Test NC NA Representing: Received ov: /Signature Pate/Time SEAL INTACT? Representing: Received ov: /Signature Pate/Time SEAL INTACT? Representing: Received ov: /Signature Pate/Time SEAL INTACT? Representing: Representing: Pate/Time SEAL INTACT? Received by: (Signature) Representing: VEX NC NA	40 DEGREES C	REAL OF LOW STREET	UMBER OF COM

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Lab No. : 1207209-001

ClientSample ID. : INFLUENT - 1

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

Attn To : Donald Miller

Collected :7/5/2012 11:00:00 AM Received :7/5/2012 11:20:00 AM

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Collected By DS99

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Method Numbe	r <u>Analyzed</u>
Iron	0.15		1	mg/L	E200.7	07/10/2012 9:58 PM
Manganese	0.09		1	mg/L	E200.7	07/10/2012 9:58 PM
Zinc	0.25		1	mg/L	E200.7	07/10/2012 9:58 PM
Iron	0.14		1	mg/L	E200.7	07/10/2012 8:02 PM
Manganese	0.09		1	mg/L	E200.7	07/10/2012 8:02 PM
Zinc	0.19		1	mg/L	E200.7	07/10/2012 8:02 PM
1,1,1-Trichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
1,1-Dichloroethane	25		1	µg/L	SW8260B	07/09/2012 8:34 PM
1,1-Dichloroethene	15		1	µg/L	SW8260B	07/09/2012 8:34 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
1,2-Dichloroethene (total)	580	D	10	µg/L	SW8260B	07/11/2012 12:46 AM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
2-Butanone	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B	07/09/2012 8:34 PM
4-Methyl-2-pentanone	< 10	С	1	µg/L	SW8260B	07/09/2012 8:34 PM
Acetone	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Benzene	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Bromoform	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Bromomethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Chloroethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Chloroform	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	07/09/2012 8:34 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Dibromochloromethane	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Freon-113	32		1	µg/L	SW8260B	07/09/2012 8:34 PM
Methylene chloride	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Styrene	< 10		1	µg/L	SW8260B	07/09/2012 8:34 PM
Tetrachloroethene	1,000	D	10	µg/L	SW8260B	07/11/2012 12:46 AM
Toluene	< 10		1	μg/L	SW8260B	07/09/2012 8:34 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc. 575 Broad Hollow Road, Melville, NY

LABORATORY RESULTS

Results for the samples and analytes requested

1207200-001

Lab No. : 1207209-001 ClientSample ID. : INFLUENT - 1 Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

Attn To: Donald Miller

Collected :7/5/2012 11:00:00 AM Received :7/5/2012 11:20:00 AM Collected By DS99

TEL: (631) 694-3040 FAX: (631) 420-8436

Parameter(s)	Results	<u>Qualifier</u>	<u>D</u> .	.F. <u>Units</u>		Method Numb	er Analyzed
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	07/09/2012 8:34 PM
Trichloroethene	530	D	10	µg/L		SW8260B	07/11/2012 12:46 AM
Vinyl chloride	56		1	µg/L		SW8260B	07/09/2012 8:34 PM
Xylene (total)	< 10		1	µg/L		SW8260B	07/09/2012 8:34 PM
Surr: 1,2-Dichloroethane-d4	95.1		1	%REC	53-183	SW8260B	07/09/2012 8:34 PM
Surr: 4-Bromofluorobenzene	102		1	%REC	63-140	SW8260B	07/09/2012 8:34 PM
Surr: Toluene-d8	86.6		1	%REC	60-135	SW8260B	07/09/2012 8:34 PM
рН	5.2	н	+ 1	pH Units		SM4500-H B	07/05/2012 6:14 PM
pH Temperature	23.8	н	+ 1	°C		SM4500-H B	07/05/2012 6:14 PM
Total Dissolved Solids	109		1	mg/L		SM2540C	07/11/2012 1:03 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Lab No. : 1207209-002

ClientSample ID. : INFLUENT - 2

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected :7/5/2012 11:00:00 AM Received :7/5/2012 11:20:00 AM Collected By DS99

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Method Number	<u>Analyzed</u>
Iron	0.14		1	mg/L	E200.7	07/10/2012 10:03 PM
Manganese	0.09		1	mg/L	E200.7	07/10/2012 10:03 PM
Zinc	0.11		1	mg/L	E200.7	07/10/2012 10:03 PM
Iron	0.02		1	mg/L	E200.7	07/10/2012 8:07 PM
Manganese	0.09		1	mg/L	E200.7	07/10/2012 8:07 PM
Zinc	0.08		1	mg/L	E200.7	07/10/2012 8:07 PM
1,1,1-Trichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
2-Butanone	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B	07/09/2012 9:03 PM
4-Methyl-2-pentanone	< 10	С	1	µg/L	SW8260B	07/09/2012 9:03 PM
Acetone	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Benzene	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Bromoform	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Bromomethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Chloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Chloroform	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	07/09/2012 9:03 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Dibromochloromethane	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Freon-113	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Methylene chloride	< 10		1	μg/L	SW8260B	07/09/2012 9:03 PM
Styrene	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM
Tetrachloroethene	< 10		1	μg/L	SW8260B	07/09/2012 9:03 PM
Toluene	< 10		1	µg/L	SW8260B	07/09/2012 9:03 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc. 575 Broad Hollow Road, Melville, NY

LABORATORY RESULTS

Lab No. : 1207209-002

ClientSample ID. : INFLUENT - 2

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

Attn To : Donald Miller

Collected :7/5/2012 11:00:00 AM Received :7/5/2012 11:20:00 AM Collected By DS99

TEL: (631) 694-3040 FAX: (631) 420-8436

Parameter(s)	Results	Qualifier	<u>D.</u> F	<u>. Units</u>		Method Numb	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	07/09/2012 9:03 PM
Trichloroethene	< 10		1	µg/L		SW8260B	07/09/2012 9:03 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	07/09/2012 9:03 PM
Xylene (total)	< 10		1	µg/L		SW8260B	07/09/2012 9:03 PM
Surr: 1,2-Dichloroethane-d4	99.1		1	%REC	53-183	SW8260B	07/09/2012 9:03 PM
Surr: 4-Bromofluorobenzene	99.8		1	%REC	63-140	SW8260B	07/09/2012 9:03 PM
Surr: Toluene-d8	86.5		1	%REC	60-135	SW8260B	07/09/2012 9:03 PM
рН	6.8	H +	1	pH Units		SM4500-H B	07/05/2012 6:16 PM
pH Temperature	23.9	H +	1	°C		SM4500-H B	07/05/2012 6:16 PM
Total Dissolved Solids	114		1	mg/L		SM2540C	07/11/2012 1:06 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 7/14/2012

Joann M. Slavin Laboratory Manager

Page 4 of 7

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Lab No. : 1207209-003

ClientSample ID. : EFFLUENT - 1

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

Collected :7/5/2012 11:00:00 AM Received :7/5/2012 11:20:00 AM Collected By DS99

Iron 0.15 1 mg/L E200.7 07/10/2012 10:07 PM Manganese 0.09 1 mg/L E200.7 07/10/2012 10:07 PM Zinc 0.04 1 mg/L E200.7 07/10/2012 10:07 PM Jinc 0.03 1 mg/L E200.7 07/10/2012 8:11 PM Manganese 0.09 1 mg/L E200.7 07/10/2012 8:11 PM Zinc 0.03 1 mg/L E200.7 07/10/2012 8:11 PM J.1.1.2.Trichloroethane <10 1 µg/L SW8260B 07/09/2012 9:32 PM J.1.2.Dichloroethane <10 1 µg/L SW8260B 07/09/2012 9:32 PM J.1.Dichloroethane <10 1 µg/L SW8260B 07/09/2012 9:32 PM J.2.Dichloroethane <10 1 µg/L SW8260B 07/09/2012 9:32 PM J.2.Dichloroethane <10 1 µg/L SW8260B 07/09/2012 9:32 PM J.2.Dichloroethane <10 1 µg/L SW8260B 07/09/	Parameter(s)	Results	<u>Qualifier</u>	D.F.	Units	Method Numbe	er Analyzed
Manganese 0.09 1 mg/L E200.7 07/10/2012 10:07 PM Zinc 0.04 1 mg/L E200.7 07/10/2012 10:07 PM Iron 0.03 1 mg/L E200.7 07/10/2012 8:11 PM Janc 0.03 1 mg/L E200.7 07/10/2012 8:11 PM Zinc 0.03 1 mg/L E200.7 07/10/2012 8:11 PM 1,1,1-Trichloroethane <10			duamor				
Zinc 0.04 1 mg/L E200.7 07/10/2012 10:07 PM Iron 0.03 1 mg/L E200.7 07/10/2012 8:11 PM Manganese 0.09 1 mg/L E200.7 07/10/2012 8:11 PM Zinc 0.03 1 mg/L E200.7 07/10/2012 8:11 PM 1,1,1-Trichloroethane <10					0		
Iron 0.03 1 mg/L E200.7 07/10/2012 8:11 PM Manganese 0.09 1 mg/L E200.7 07/10/2012 8:11 PM Zinc 0.03 1 mg/L E200.7 07/10/2012 8:11 PM 1,1,1-2:Trichloroethane <10	0			-	-		
Manganese 0.09 1 mg/L E20.7 07/10/2012 8:11 PM Zinc 0.03 1 mg/L E20.7 07/10/2012 8:11 PM 1,1,1-Trichloroethane <10					-		
Zinc 0.03 1 mg/L E200.7 07/10/2012 8:11 PM 1,1,1-Trichloroethane <10				-	•		
1,1,1-Trichloroethane < 10	0				•		
1,1,2,2-Tetrachloroethane < 10	Zinc	0.03		1	mg/L	E200.7	07/10/2012 8:11 PM
1,1,2-Trichloroethane < 10 1 µg/L SW8260B 07/09/2012 9:32 PM 1,1-Dichloroethane < 10	1,1,1-Trichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
1,1-Dichloroethane< 101 $\mu g/L$ SW8260B07/09/2012 9:32 PM1,1-Dichloroethane< 10	1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
1,1-Dichloroethane < 10	1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
1,2-Dichloroethane < 10	1,1-Dichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
1,2-Dichloroethene (total) < 10	1,1-Dichloroethene	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
1,2-Dichloropropane <10	1,2-Dichloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
2-Butanone < 10	1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
2-Hexanone < 10 c 1 µg/L SW8260B 07/09/2012 9:32 PM 4-Methyl-2-pentanone < 10	1,2-Dichloropropane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
4-Methyl-2-pentanone< 10c1μg/LSW8260B07/09/2012 9:32 PMAcetone< 10	2-Butanone	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Acetone < 10 1 µg/L SW8260B 07/09/2012 9:32 PM Benzene < 10	2-Hexanone	< 10	С	1	µg/L	SW8260B	07/09/2012 9:32 PM
Benzene < 10 1 µg/L SW8260B 07/09/2012 9:32 PM Bromodichloromethane < 10	4-Methyl-2-pentanone	< 10	С	1	µg/L	SW8260B	07/09/2012 9:32 PM
Bromodichloromethane< 101μg/LSW8260B07/09/2012 9:32 PMBromoform< 10	Acetone	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Bromoform< 101µg/LSW8260B07/09/2012 9:32 PMBromomethane< 10	Benzene	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Bromomethane< 101μg/LSW8260B07/09/2012 9:32 PMCarbon disulfide< 10	Bromodichloromethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Carbon disulfide< 101µg/LSW8260B07/09/2012 9:32 PMCarbon tetrachloride< 10	Bromoform	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Carbon tetrachloride< 101µg/LSW8260B07/09/2012 9:32 PMChlorobenzene< 10	Bromomethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Chlorobenzene< 101µg/LSW8260B07/09/2012 9:32 PMChloroethane< 10	Carbon disulfide	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Chloroethane< 101µg/LSW8260B07/09/2012 9:32 PMChloroform< 10	Carbon tetrachloride	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Chloroform < 10	Chlorobenzene	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Chloromethane< 10c1µg/LSW8260B07/09/2012 9:32 PMcis-1,3-Dichloropropene< 10	Chloroethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
cis-1,3-Dichloropropene< 101µg/LSW8260B07/09/2012 9:32 PMDibromochloromethane< 10	Chloroform	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Dibromochloromethane< 101μg/LSW8260B07/09/2012 9:32 PMEthylbenzene< 10	Chloromethane	< 10	с	1	µg/L	SW8260B	07/09/2012 9:32 PM
Ethylbenzene< 101μg/LSW8260B07/09/2012 9:32 PMFreon-113< 10	cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Freen-113< 101μg/LSW8260B07/09/2012 9:32 PMMethylene chloride< 10	Dibromochloromethane	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Freen-113< 101μg/LSW8260B07/09/2012 9:32 PMMethylene chloride< 10	Ethylbenzene	< 10		1	µg/L	SW8260B	07/09/2012 9:32 PM
Styrene < 10 1 μg/L SW8260B 07/09/2012 9:32 PM Tetrachloroethene < 10	Freon-113	< 10		1		SW8260B	07/09/2012 9:32 PM
Styrene < 10 1 μg/L SW8260B 07/09/2012 9:32 PM Tetrachloroethene < 10	Methylene chloride	< 10		1		SW8260B	07/09/2012 9:32 PM
Tetrachloroethene < 10 1 μg/L SW8260B 07/09/2012 9:32 PM	-	< 10		1		SW8260B	07/09/2012 9:32 PM
	Tetrachloroethene	< 10		1		SW8260B	07/09/2012 9:32 PM
	Toluene	< 10		1		SW8260B	07/09/2012 9:32 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc. 575 Broad Hollow Road, Melville, NY

LABORATORY RESULTS

Lab No. : 1207209-003

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

Attn To: Donald Miller

Collected :7/5/2012 11:00:00 AM Received :7/5/2012 11:20:00 AM Collected By DS99

TEL: (631) 694-3040 FAX: (631) 420-8436

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.</u> F	<u> Units</u>		Method Numb	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	07/09/2012 9:32 PM
Trichloroethene	< 10		1	µg/L		SW8260B	07/09/2012 9:32 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	07/09/2012 9:32 PM
Xylene (total)	< 10		1	µg/L		SW8260B	07/09/2012 9:32 PM
Surr: 1,2-Dichloroethane-d4	102		1	%REC	53-183	SW8260B	07/09/2012 9:32 PM
Surr: 4-Bromofluorobenzene	103		1	%REC	63-140	SW8260B	07/09/2012 9:32 PM
Surr: Toluene-d8	87.0		1	%REC	60-135	SW8260B	07/09/2012 9:32 PM
рН	6.9	H +	1	pH Units		SM4500-H B	07/05/2012 6:18 PM
pH Temperature	23.8	H +	1	°C		SM4500-H B	07/05/2012 6:18 PM
Total Dissolved Solids	106		1	mg/L		SM2540C	07/11/2012 1:09 PM

ClientSample ID. : EFFLUENT - 1

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Н	2	labs
	М	

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Sample Receipt Checklist

	11 costilei <u>11 il</u>	<u>minizinteto bicom</u>				
Client Name FAIR		Date an	d Time Received:	7/5/2012 11:20:00 AM		
Work Order Number: 1207209 RcptNo:	1	Received by: MelissaWatson				
Completed by: M - W av		eviewed by: eviewed Date:	Jempy 7/6/201	2 2:49:52 PM		
Carrier name: Client						
Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Are matrices correctly identified on Chain of custody? Is it clear what analyses were requested? Custody seals intact on sample bottles? Samples in proper container/bottle?	Yes Yes Yes Yes Yes Yes	No No No No No No No No No No	Not Present			
Were correct preservatives used and noted? Preservative added to bottles: Sample Condition? Sufficient sample volume for indicated test? Were container labels complete (ID, Pres, Date)? All samples received within holding time?	Yes Intact Yes Yes Yes	Broken D No D No D	Leaking			
Was an attempt made to cool the samples? All samples received at a temp. of $> 0^{\circ}$ C to 6.0° C? Response when temperature is outside of range:	Yes Yes Samples		same day and chil	led.		
Sample Temp. taken and recorded upon receipt? Water - Were bubbles absent in VOC vials? Water - Was there Chlorine Present? Water - pH acceptable upon receipt? Are Samples considered acceptable?	Yes V Yes V Yes V Yes V Yes V	No No No No No No No No	-	22° □ ▼		
Custody Seals present? Airbill or Sticker? Airbill No:	Yes 🗌 Air Bill 🗌	No 🗹 Sticker	Not Present			
Case Number: SDG:		SAS:				
Any No response should be detailed in the comments see	ction below, if applica	ble				
Contact Mode: Phone: Fax: Client Instructions:	erson Contacted:	In Person:				

CorrectiveAction:

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1208240-001 ClientSample ID. : INFLUENT - 1

Fairchild Corporation

1600 Tysons Blvd.

TEL: (631) 694-3040 FAX: (631) 420-8436

575 Broad Hollow Road, Melville, NY

McLean, Virginia 22102

Attn To : **Donald Miller**

Collected :8/6/2012 2:00:00 PM Received :8/6/2012 2:30:00 PM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D.F.	<u>Units</u>	Method Numb	er <u>Analyzed</u>
Iron	0.26		1	mg/L	E200.7	08/09/2012 2:15 PM
Manganese	0.10		1	mg/L	E200.7	08/09/2012 2:15 PM
Zinc	0.46		1	mg/L	E200.7	08/09/2012 2:15 PM
Iron	0.17		1	mg/L	E200.7	08/09/2012 2:49 PM
Manganese	0.09		1	mg/L	E200.7	08/09/2012 2:49 PM
Zinc	0.16		1	mg/L	E200.7	08/09/2012 2:49 PM
1,1,1-Trichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
1,1-Dichloroethane	33	С	1	µg/L	SW8260B	08/09/2012 7:32 PM
1,1-Dichloroethene	21		1	µg/L	SW8260B	08/09/2012 7:32 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
1,2-Dichloroethene (total)	610	D	10	µg/L	SW8260B	08/14/2012 3:17 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
2-Butanone	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
2-Hexanone	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Acetone	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Benzene	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Bromodichloromethane	< 10		1	μg/L	SW8260B	08/09/2012 7:32 PM
Bromoform	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Bromomethane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Carbon disulfide	< 10	С	1	µg/L	SW8260B	08/09/2012 7:32 PM
Carbon tetrachloride	< 10	С	1	µg/L	SW8260B	08/09/2012 7:32 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Chloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Chloroform	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Chloromethane	< 10	С	1	μg/L	SW8260B	08/09/2012 7:32 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Dibromochloromethane	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM
Ethylbenzene	< 10		1	μg/L	SW8260B	08/09/2012 7:32 PM
Freon-113	41		1	µg/L	SW8260B	08/09/2012 7:32 PM
Methylene chloride	< 10		1	μg/L	SW8260B	08/09/2012 7:32 PM
Styrene	< 10		1	μg/L	SW8260B	08/09/2012 7:32 PM
Tetrachloroethene	1,000	D	10	µg/L	SW8260B	08/14/2012 3:17 PM
Toluene	< 10		1	µg/L	SW8260B	08/09/2012 7:32 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 8/15/2012

Joann M. Slavin

Laboratory Manager

Sample Information...

Type : Aqueous

Origin: Influent

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1208240-001 ClientSample ID. : INFLUENT - 1 Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

Attn To : Donald Miller

Collected :8/6/2012 2:00:00 PM Received :8/6/2012 2:30:00 PM Collected By WIRE TO WATER

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Parameter(s)	Results	<u>Qualifi</u>	er	<u>D.</u> F	. <u>Units</u>		Method Numbe	r Analyzed
trans-1,3-Dichloropropene	< 10			1	µg/L		SW8260B	08/09/2012 7:32 PM
Trichloroethene	540	D		10	µg/L		SW8260B	08/14/2012 3:17 PM
Vinyl chloride	64			1	µg/L		SW8260B	08/09/2012 7:32 PM
Xylene (total)	< 10			1	µg/L		SW8260B	08/09/2012 7:32 PM
Surr: 1,2-Dichloroethane-d4	112			1	%REC	53-183	SW8260B	08/09/2012 7:32 PM
Surr: 4-Bromofluorobenzene	122			1	%REC	63-140	SW8260B	08/09/2012 7:32 PM
Surr: Toluene-d8	102			1	%REC	60-135	SW8260B	08/09/2012 7:32 PM
рН	5.1	н	+	1	pH Units		SM4500-H B	08/06/2012 8:05 PM
pH Temperature	12.0	н	+	1	°C		SM4500-H B	08/06/2012 8:05 PM
Total Dissolved Solids	122			1	mg/L		SM2540C	08/08/2012 1:21 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : **1208240-002** ClientSample ID. : INFLUENT - 2 Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

Collected : 8/6/2012 2:00:00 PM

Received :8/6/2012 2:30:00 PM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Method Number	er <u>Analyzed</u>
Iron	0.17		1	mg/L	E200.7	08/09/2012 2:28 PM
Manganese	0.10		1	mg/L	E200.7	08/09/2012 2:28 PM
Zinc	0.02		1	mg/L	E200.7	08/09/2012 2:28 PM
Iron	0.12		1	mg/L	E200.7	08/09/2012 2:54 PM
Manganese	0.08		1	mg/L	E200.7	08/09/2012 2:54 PM
Zinc	0.03		1	mg/L	E200.7	08/09/2012 2:54 PM
1,1,1-Trichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
1,2-Dichloroethene (total)	< 10	с	1	µg/L	SW8260B	08/09/2012 7:01 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
2-Butanone	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
2-Hexanone	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Acetone	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Benzene	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Bromoform	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Bromomethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Carbon disulfide	< 10	с	1	µg/L	SW8260B	08/09/2012 7:01 PM
Carbon tetrachloride	< 10	С	1	µg/L	SW8260B	08/09/2012 7:01 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Chloroethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Chloroform	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	08/09/2012 7:01 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Dibromochloromethane	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	08/09/2012 7:01 PM
Freon-113	< 10		1	μg/L	SW8260B	08/09/2012 7:01 PM
Methylene chloride	< 10		1	μg/L	SW8260B	08/09/2012 7:01 PM
Styrene	< 10		1	μg/L	SW8260B	08/09/2012 7:01 PM
Tetrachloroethene	< 10		1	μg/L	SW8260B	08/09/2012 7:01 PM
Toluene	< 10		1	μg/L	SW8260B	08/09/2012 7:01 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : **1208240-002** ClientSample ID. : INFLUENT - 2 Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

Attn To : Donald Miller

Collected :8/6/2012 2:00:00 PM Received :8/6/2012 2:30:00 PM Collected By WIRE TO WATER

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Parameter(s)	<u>Results</u>	Quali	fier	<u>D.</u>	F. <u>Units</u>		Method Numbe	r <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10			1	µg/L		SW8260B	08/09/2012 7:01 PM
Trichloroethene	< 10			1	µg/L		SW8260B	08/09/2012 7:01 PM
Vinyl chloride	< 10			1	µg/L		SW8260B	08/09/2012 7:01 PM
Xylene (total)	< 10			1	µg/L		SW8260B	08/09/2012 7:01 PM
Surr: 1,2-Dichloroethane-d4	110			1	%REC	53-183	SW8260B	08/09/2012 7:01 PM
Surr: 4-Bromofluorobenzene	120			1	%REC	63-140	SW8260B	08/09/2012 7:01 PM
Surr: Toluene-d8	100			1	%REC	60-135	SW8260B	08/09/2012 7:01 PM
рН	7.0	Н	+	1	pH Units		SM4500-H B	08/06/2012 8:09 PM
pH Temperature	11.5	Н	+	1	°C		SM4500-H B	08/06/2012 8:09 PM
Total Dissolved Solids	123			1	mg/L		SM2540C	08/08/2012 1:24 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1208240-003 ClientSample ID. : EFFLUENT - 1 Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

Collected : 8/6/2012 2:00:00 PM

Received :8/6/2012 2:30:00 PM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Method Numbe	er <u>Analyzed</u>
Iron	0.16		1	mg/L	E200.7	08/09/2012 2:45 PM
Manganese	0.10		1	mg/L	E200.7	08/09/2012 2:45 PM
Zinc	0.04		1	mg/L	E200.7	08/09/2012 2:45 PM
Iron	0.10		1	mg/L	E200.7	08/09/2012 2:58 PM
Manganese	0.08		1	mg/L	E200.7	08/09/2012 2:58 PM
Zinc	0.03		1	mg/L	E200.7	08/09/2012 2:58 PM
1,1,1-Trichloroethane	< 10		1	μg/L	SW8260B	08/09/2012 6:31 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
2-Butanone	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
2-Hexanone	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Acetone	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Benzene	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Bromoform	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Bromomethane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Carbon disulfide	< 10	С	1	µg/L	SW8260B	08/09/2012 6:31 PM
Carbon tetrachloride	< 10	С	1	µg/L	SW8260B	08/09/2012 6:31 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Chloroethane	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Chloroform	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	08/09/2012 6:31 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Dibromochloromethane	< 10		1	μg/L	SW8260B	08/09/2012 6:31 PM
Ethylbenzene	< 10		1	μg/L	SW8260B	08/09/2012 6:31 PM
Freon-113	< 10		1	μg/L	SW8260B	08/09/2012 6:31 PM
Methylene chloride	< 10		1	μg/L	SW8260B	08/09/2012 6:31 PM
Styrene	< 10		1	μg/L	SW8260B	08/09/2012 6:31 PM
Tetrachloroethene	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
Toluene	< 10		1	µg/L	SW8260B	08/09/2012 6:31 PM
-	-			10		

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

s = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : **1208240-003** ClientSample ID. : EFFLUENT - 1 Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 1600 Tysons Blvd. McLean, Virginia 22102

Attn To : Donald Miller

Collected :8/6/2012 2:00:00 PM Received :8/6/2012 2:30:00 PM Collected By WIRE TO WATER

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Parameter(s)	Results	<u>Quali</u>	ifier	<u>D.</u>	F. <u>Units</u>		Method Numbe	r Analyzed
trans-1,3-Dichloropropene	< 10			1	µg/L		SW8260B	08/09/2012 6:31 PM
Trichloroethene	< 10			1	µg/L		SW8260B	08/09/2012 6:31 PM
Vinyl chloride	< 10			1	µg/L		SW8260B	08/09/2012 6:31 PM
Xylene (total)	< 10			1	µg/L		SW8260B	08/09/2012 6:31 PM
Surr: 1,2-Dichloroethane-d4	109			1	%REC	53-183	SW8260B	08/09/2012 6:31 PM
Surr: 4-Bromofluorobenzene	120			1	%REC	63-140	SW8260B	08/09/2012 6:31 PM
Surr: Toluene-d8	101			1	%REC	60-135	SW8260B	08/09/2012 6:31 PM
рН	7.0	н	+	1	pH Units		SM4500-H B	08/06/2012 8:11 PM
pH Temperature	10.9	Н	+	1	°C		SM4500-H B	08/06/2012 8:11 PM
Total Dissolved Solids	126			1	mg/L		SM2540C	08/08/2012 1:27 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Н	2	labs
	М	

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Sample Receipt Checklist

Client Name FAIR		Da	ate and Time Received:	8/6/2012 2:30:00 PM
Work Order Number: 1208240 Rcpt	No: 1	Re	eceived by MelissaWa	tson
Completed by: M - Wat		Reviewed by:		Junell 25-17-40 DM
Completed Date: <u>8/6/2012</u>		Reviewed Date	e. <u>6/11/201</u>	<u>2 5:17:49 PM</u>
Carrier name: <u>Client</u>				
Chain of custody present? Chain of custody signed when relinquished and receiv Chain of custody agrees with sample labels? Are matrices correctly identified on Chain of custody? Is it clear what analyses were requested? Custody seals intact on sample bottles?	Yes	✓ No ✓ No ✓ No ✓ No	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Not Present	
Samples in proper container/bottle? Were correct preservatives used and noted? Preservative added to bottles:	Yes Yes			
Sample Condition? Sufficient sample volume for indicated test? Were container labels complete (ID, Pres, Date)? All samples received within holding time?	Intact Yes Yes Yes	✓ No ✓ No	h ☐ Leaking	
Was an attempt made to cool the samples? All samples received at a temp. of > 0° C to 6.0° C? Response when temperature is outside of range:	Yes Yes Sampl		o □ o ✔ d the same day and chil	led.
Sample Temp. taken and recorded upon receipt? Water - Were bubbles absent in VOC vials? Water - Was there Chlorine Present? Water - pH acceptable upon receipt? Are Samples considered acceptable?	Yes Yes Yes Yes Yes	No No No No No No No No		2.9 °
Custody Seals present? Airbill or Sticker? Airbill No:	Yes Air Bil	No Sticke	r Not Present	
Case Number: SDG:		SAS:		
Any No response should be detailed in the comments $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	s section below, if app	licable.		
Client Contacted? Ves No Contact Mode: Phone: Fax: Client Instructions: Proceed with pH	Person Contacted:	Sampler	erson:	
Date Contacted: 8/6/2012	Contacted By:	MelissaWatson		

Comments: The samples for pH were received outside the analytical holdtime. The client is aware.

pH holding time

CorrectiveAction:

Regarding:

A division of H2M Labs, Inc.

LABORATORY RESULTS

Lab No. : 1210B47-001A

Results for the samples and analytes requested

Fairchild Corporation

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To : Donald Miller

Collected :10/19/2012 3:15:00 PM :10/19/2012 3:20:00 PM Received

Collected By : WIRE TO WATER

Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed	
1,1,1-Trichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
1,1,2,2-Tetrachloroethane	< 10		1	μg/L		SW8260B	10/23/2012 3:12 AM	
1,1,2-Trichloroethane	< 10		1	μg/L		SW8260B	10/23/2012 3:12 AM	
1,1-Dichloroethane	22		1	µg/L		SW8260B	10/23/2012 3:12 AM	
1,1-Dichloroethene	14		1	μg/L		SW8260B	10/23/2012 3:12 AM	
1,2-Dichloroethane	< 10		1	μg/L		SW8260B	10/23/2012 3:12 AM	
1,2-Dichloroethene (total)	590	Dc	10	μg/L		SW8260B	11/01/2012 9:23 PM	
1,2-Dichloropropane	< 10		1	μg/L		SW8260B	10/23/2012 3:12 AM	
2-Butanone	< 10		1	μg/L		SW8260B	10/23/2012 3:12 AM	
2-Hexanone	< 10		1	μg/L		SW8260B	10/23/2012 3:12 AM	
4-Methyl-2-pentanone	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Acetone	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Benzene	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Bromodichloromethane	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Bromoform	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Bromomethane	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Carbon disulfide	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Carbon tetrachloride	< 10	С	1	µg/L		SW8260B	10/23/2012 3:12 AM	
Chlorobenzene	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Chloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Chloroform	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Chloromethane	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
cis-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Dibromochloromethane	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Ethylbenzene	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Freon-113	31	С	1	µg/L		SW8260B	10/23/2012 3:12 AM	
Methylene chloride	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Styrene	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Tetrachloroethene	930	D	10	µg/L		SW8260B	11/01/2012 9:23 PM	
Toluene	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Trichloroethene	480	D	10	µg/L		SW8260B	11/01/2012 9:23 PM	
Vinyl chloride	46		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Xylene (total)	< 10		1	µg/L		SW8260B	10/23/2012 3:12 AM	
Surr: 1,2-Dichloroethane-d4	81.1		1	%REC	53-183	SW8260B	10/23/2012 3:12 AM	
Surr: 4-Bromofluorobenzene	106		1	%REC	63-140	SW8260B	10/23/2012 3:12 AM	
Surr: Toluene-d8	101		1	%REC	60-135	SW8260B	10/23/2012 3:12 AM	
Qualifiers: E = Value above quantitation range B = Found in Blank Joann M. Jlauring D.F. = Dilution Factor D = Results for Dilution H = Received/analyzed outside of analytical holding time Laboratory Manager								

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported :

Laboratory Manager

Sample Information... Type : Aqueous

Origin: Influent

Client Sample ID. INFLUENT - 1

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Lab No. : 1210B47-001B

Results for the samples and analytes requested

Fairchild Corporation

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To: Donald Miller

 Collected
 :10/19/2012 3:15:00 PM

 Received
 :10/19/2012 3:20:00 PM

 Collected By :
 WIRE TO WATER

conected by . WIRE TO WATER

Client Sample ID. INFLUENT - 1

Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	Results	Qua	lifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
рН	7.2	Н	+	1	pH Units	6	SM4500-H B	10/19/2012 6:18 PM
pH Temperature	18.8	Н	+	1	°C		SM4500-H B	10/19/2012 6:18 PM
Total Dissolved Solids	113			1	mg/L		SM2540C	10/23/2012 4:00 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To : Donald Miller

Collected :10/19/2012 3:15:00 PM Received :10/19/2012 3:20:00 PM

Collected By : WIRE TO WATER

Lab No. :	1210B47-001C

Client Sample ID. INFLUENT - 1

Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.36		1	mg/L		E200.7	10/31/2012 1:38 PM
Manganese	0.10		1	mg/L		E200.7	10/31/2012 1:38 PM
Zinc	0.04		1	mg/L		E200.7	10/31/2012 1:38 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Lab No. : 1210B47-001D

Client Sample ID. INFLUENT - 1

Sample Information... Type : Aqueous

1600 Tysons Blvd. McLean, Virginia 22102

Attn To : Donald Miller

Origin: Influent

Collected :10/19/2012 3:15:00 PM DISSOLVED Received :10/19/2012 3:20:00 PM Collected By : WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.15		1	mg/L		E200.7	10/31/2012 1:41 PM
Manganese	0.09		1	mg/L		E200.7	10/31/2012 1:41 PM
Zinc	0.03		1	mg/L		E200.7	10/31/2012 1:41 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To : Donald Miller

Collected :10/19/2012 3:15:00 PM Received :10/19/2012 3:20:00 PM

Collected By : WIRE TO WATER

Lab No. : 1210B47-002A Client Sample ID. INFLUENT - 2 Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
1,1,1-Trichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
1,1,2-Trichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
1,1-Dichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
1,1-Dichloroethene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
1,2-Dichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
1,2-Dichloroethene (total)	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
1,2-Dichloropropane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
2-Butanone	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
2-Hexanone	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
4-Methyl-2-pentanone	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Acetone	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Benzene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Bromodichloromethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Bromoform	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Bromomethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Carbon disulfide	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Carbon tetrachloride	< 10	С	1	µg/L		SW8260B	10/23/2012 3:42 AM
Chlorobenzene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Chloroethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Chloroform	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Chloromethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
cis-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Dibromochloromethane	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Ethylbenzene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Freon-113	< 10	С	1	µg/L		SW8260B	10/23/2012 3:42 AM
Methylene chloride	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Styrene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Tetrachloroethene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Toluene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Trichloroethene	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Vinyl chloride	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Xylene (total)	< 10		1	µg/L		SW8260B	10/23/2012 3:42 AM
Surr: 1,2-Dichloroethane-d4	82.4		1	%REC	53-183	SW8260B	10/23/2012 3:42 AM
Surr: 4-Bromofluorobenzene	106		1	%REC	63-140	SW8260B	10/23/2012 3:42 AM
Surr: Toluene-d8	101		1	%REC	60-135	SW8260B	10/23/2012 3:42 AM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

575 Broad Hollow Road, Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Lab No. : 1210B47-002B

Results for the samples and analytes requested

Fairchild Corporation

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To : Donald Miller

Collected :10/19/2012 3:15:00 PM Received :10/19/2012 3:20:00 PM Collected By : WIRE TO WATER

Client Sample ID. INFLUENT - 2

Parameter(s)	<u>Results</u>	Qual	ifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
рН	5.4	н	+	1	pH Unit	S	SM4500-H B	10/19/2012 6:20 PM
pH Temperature	18.5	Н	+	1	°C		SM4500-H B	10/19/2012 6:20 PM
Total Dissolved Solids	113			1	mg/L		SM2540C	10/23/2012 4:03 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Sample Information...

Type : Aqueous

Origin: Influent

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

1600 Tysons Blvd.

McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :10/19/2012 3:15:00 PM

 Received
 :10/19/2012 3:20:00 PM

Collected By : WIRE TO WATER

Lab No. :	1210B47-002C
Client Sample ID.	INFLUENT - 2

Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.23		1	mg/L		E200.7	10/31/2012 1:45 PM
Manganese	0.09		1	mg/L		E200.7	10/31/2012 1:45 PM
Zinc	0.10		1	mg/L		E200.7	10/31/2012 1:45 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

Lab No. : 1210B47-002D

Client Sample ID. INFLUENT - 2

Sample Information... Type : Aqueous

Origin: Influent

1600 Tysons Blvd.

McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected :10/19/2012 3:15:00 PM DISSOLVED Received :10/19/2012 3:20:00 PM

Collected By : WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.25		1	mg/L		E200.7	10/31/2012 1:49 PM
Manganese	0.09		1	mg/L		E200.7	10/31/2012 1:49 PM
Zinc	0.08		1	mg/L		E200.7	10/31/2012 1:49 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

McLean, Virginia 22102

Attn To : Donald Miller

Collected :10/19/2012 3:15:00 PM :10/19/2012 3:20:00 PM Received

Collected By : WIRE TO WATER

Lab No. :	1210B47-003A
Client Sample ID.	EFFLUENT - 1

Sample Information... Type : Aqueous

Origin: Effluent

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
1,1,1-Trichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
1,1,2-Trichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
1,1-Dichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
1,1-Dichloroethene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
1,2-Dichloroethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
1,2-Dichloroethene (total)	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
1,2-Dichloropropane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
2-Butanone	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
2-Hexanone	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
4-Methyl-2-pentanone	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Acetone	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Benzene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Bromodichloromethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Bromoform	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Bromomethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Carbon disulfide	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Carbon tetrachloride	< 10	С	1	µg/L		SW8260B	10/23/2012 4:11 AM
Chlorobenzene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Chloroethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Chloroform	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Chloromethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
cis-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Dibromochloromethane	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Ethylbenzene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Freon-113	< 10	С	1	µg/L		SW8260B	10/23/2012 4:11 AM
Methylene chloride	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Styrene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Tetrachloroethene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Toluene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Trichloroethene	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Vinyl chloride	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Xylene (total)	< 10		1	µg/L		SW8260B	10/23/2012 4:11 AM
Surr: 1,2-Dichloroethane-d4	84.5		1	%REC	53-183	SW8260B	10/23/2012 4:11 AM
Surr: 4-Bromofluorobenzene	107		1	%REC	63-140	SW8260B	10/23/2012 4:11 AM
Surr: Toluene-d8	102		1	%REC	60-135	SW8260B	10/23/2012 4:11 AM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Lab No. : 1210B47-003B

Results for the samples and analytes requested

Fairchild Corporation

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To: Donald Miller

Collected :10/19/2012 3:15:00 PM Received :10/19/2012 3:20:00 PM

Collected By : WIRE TO WATER

Client Sample ID.	EFFLUENT - 1

Sample Information... Type : Aqueous

Origin: Effluent

Parameter(s)	Results	Qua	lifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
рН	7.2	Н	+	1	pH Units	6	SM4500-H B	10/19/2012 6:25 PM
pH Temperature	19.0	Н	+	1	°C		SM4500-H B	10/19/2012 6:25 PM
Total Dissolved Solids	117			1	mg/L		SM2540C	10/23/2012 4:06 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Lab No. : 1210B47-003C

Results for the samples and analytes requested

Fairchild Corporation

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To: Donald Miller

 Collected
 :10/19/2012 3:15:00 PM

 Received
 :10/19/2012 3:20:00 PM

 Collected By :
 WIRE TO WATER

Client Sample ID. EFFLUENT - 1

Sample Information... Type : Aqueous

Origin: Effluent

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.22		1	mg/L		E200.7	10/31/2012 1:54 PM
Manganese	0.09		1	mg/L		E200.7	10/31/2012 1:54 PM
Zinc	0.09		1	mg/L		E200.7	10/31/2012 1:54 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Lab No. : 1210B47-003D

Client Sample ID. EFFLUENT - 1

Sample Information... Type : Aqueous

1600 Tysons Blvd. McLean, Virginia 22102

Attn To : Donald Miller

Origin: Effluent

Collected :10/19/2012 3:15:00 PM DISSOLVED Received :10/19/2012 3:20:00 PM Collected By : WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.17		1	mg/L		E200.7	10/31/2012 1:57 PM
Manganese	0.09		1	mg/L		E200.7	10/31/2012 1:57 PM
Zinc	0.03		1	mg/L		E200.7	10/31/2012 1:57 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Н	2	labs
	М	

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Sample Receipt Checklist

Client Name FAIR		Date and	Time Received:	10/19/2012 3:20:00 PM			
Work Order Number: 1210B47 RcptNo	o: 1	Received by MelissaWatson					
Completed by: M - Wat		Reviewed by:	Stu 7	Munell			
Completed Date: <u>10/19/2012</u>	I	Reviewed Date:		<u>2 5:45:04 PM</u>			
Carrier name: <u>Client</u>							
Chain of custody present?	Yes	✓ No □					
Chain of custody signed when relinquished and receive	-	✓ No □					
Chain of custody agrees with sample labels?		✓ No □					
Are matrices correctly identified on Chain of custody?	-	✓ No 🗌					
Is it clear what analyses were requested?	-	✓ No □					
Custody seals intact on sample bottles?	Yes	No □	Not Present	\checkmark			
Samples in proper container/bottle?	_	✓ No □					
Were correct preservatives used and noted?			NA				
Preservative added to bottles:	165 1						
Sample Condition?	Intact	Broken	Leaking				
Sufficient sample volume for indicated test?			Leaking				
Were container labels complete (ID, Pres, Date)?	-	✓ No □					
All samples received within holding time?	Yes						
Was an attempt made to cool the samples?	_	✓ No □	NA				
All samples received at a temp. of $> 0^{\circ}$ C to 6.0° C?	Yes		NA				
Response when temperature is outside of range:		s were collected the s					
Sample Temp. taken and recorded upon receipt?			To 14				
Water - Were bubbles absent in VOC vials?	-	✓ No □	No Vials				
Water - Was there Chlorine Present?	Yes	No □	NA				
		✓ No □	No Water				
Water - pH acceptable upon receipt?	-		NO Water				
Are Samples considered acceptable?							
Custody Seals present?	Yes	No 🗹					
Airbill or Sticker?	Air Bil	Sticker	Not Present				
Airbill No:							
Case Number: SDG:		SAS:					
Any No response should be detailed in the comments s	section below if applic	ahle					
Client Contacted? Ves No	Person Contacted:						
Contact Mode: Phone: Fax:		In Person:					
Client Instructions:							
	Constants of Disc						
	Contacted By:						
Regarding:							
Comments:	L h - L d C						
The samples for pH were received outside the analyti	cal holdtime.						
CorrectiveAction:							

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To: Donald Miller

Collected :1/17/2013 3:15:00 PM Received :1/17/2013 3:35:00 PM

Collected By : WIRE TO WATER

Lab No. :	1301835-001A
Client Sample ID.	INFLUENT - 1

Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
1,1,1-Trichloroethane	< 10	С	1	µg/L		SW8260B	01/23/2013 7:29 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
1,1,2-Trichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
1,1-Dichloroethane	28		1	µg/L		SW8260B	01/23/2013 7:29 PM
1,1-Dichloroethene	17		1	µg/L		SW8260B	01/23/2013 7:29 PM
1,2-Dichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
1,2-Dichloroethene (total)	720	D	10	µg/L		SW8260B	01/30/2013 5:31 PM
1,2-Dichloropropane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
2-Butanone	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
2-Hexanone	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
4-Methyl-2-pentanone	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Acetone	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Benzene	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Bromodichloromethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Bromoform	< 10	С	1	µg/L		SW8260B	01/23/2013 7:29 PM
Bromomethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Carbon disulfide	< 10	С	1	µg/L		SW8260B	01/23/2013 7:29 PM
Carbon tetrachloride	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Chlorobenzene	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Chloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Chloroform	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Chloromethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
cis-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Dibromochloromethane	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Ethylbenzene	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Freon-113	41	С	1	µg/L		SW8260B	01/23/2013 7:29 PM
Methylene chloride	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Styrene	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Tetrachloroethene	1,100	Dc	10	µg/L		SW8260B	01/30/2013 5:31 PM
Toluene	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Trichloroethene	630	D	10	µg/L		SW8260B	01/30/2013 5:31 PM
Vinyl chloride	75		1	µg/L		SW8260B	01/23/2013 7:29 PM
Xylene (total)	< 10		1	µg/L		SW8260B	01/23/2013 7:29 PM
Surr: 1,2-Dichloroethane-d4	99.7		1	%REC	53-183	SW8260B	01/23/2013 7:29 PM
Surr: 4-Bromofluorobenzene	82.1		1	%REC	63-140	SW8260B	01/23/2013 7:29 PM
Surr: Toluene-d8	87.8		1	%REC	60-135	SW8260B	01/23/2013 7:29 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

TOUU TYSONS DIVU.

McLean, Virginia 22102 Attn To : Donald Miller

Collected :1/17/2013 3:15:00 PM Received :1/17/2013 3:35:00 PM

Collected By : WIRE TO WATER

Lab No. : 1301835-001B Client Sample ID. INFLUENT - 1 Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	Results	<u>Qual</u>	ifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
рН	5.5	Н	+	1	pH Units		SM4500-H B	01/17/2013 6:45 PM
pH Temperature	19.2	Н	+	1	°C		SM4500-H B	01/17/2013 6:45 PM
Total Dissolved Solids	131			1	mg/L		SM2540C	01/23/2013 2:24 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To: Donald Miller

Collected : 1/17/2013 3:15:00 PM Received : 1/17/2013 3:35:00 PM Collected By : WIRE TO WATER Lab No. : 1301835-001C Client Sample ID. INFLUENT - 1 Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.21		1	mg/L		E200.7	01/29/2013 3:05 PM
Manganese	0.10		1	mg/L		E200.7	01/29/2013 3:05 PM
Zinc	0.14		1	mg/L		E200.7	01/29/2013 3:05 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Lab No. : 1301835-001D

Sample Information... Type : Aqueous

Client Sample ID. INFLUENT - 1

Origin: Influent

Attn To:Donald MillerCollected:1/17/2013 3:15:00 PMDISSOLVEDReceived:1/17/2013 3:35:00 PMCollected By:WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.07		1	mg/L		E200.7	01/29/2013 3:09 PM
Manganese	0.10		1	mg/L		E200.7	01/29/2013 3:09 PM
Zinc	0.12		1	mg/L		E200.7	01/29/2013 3:09 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

1600 Tysons Blvd.

McLean, Virginia 22102

Attn To : Donald Miller

Collected : 1/17/2013 3:25:00 PM Received : 1/17/2013 3:35:00 PM

Collected By : WIRE TO WATER

Lab No. : 1301835-002A Client Sample ID. INFLUENT - 2 Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
1,1,1-Trichloroethane	< 10	с	1	µg/L		SW8260B	01/23/2013 7:59 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
1,1,2-Trichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
1,1-Dichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
1,1-Dichloroethene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
1,2-Dichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
1,2-Dichloroethene (total)	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
1,2-Dichloropropane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
2-Butanone	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
2-Hexanone	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
4-Methyl-2-pentanone	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Acetone	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Benzene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Bromodichloromethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Bromoform	< 10	С	1	µg/L		SW8260B	01/23/2013 7:59 PM
Bromomethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Carbon disulfide	< 10	С	1	µg/L		SW8260B	01/23/2013 7:59 PM
Carbon tetrachloride	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Chlorobenzene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Chloroethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Chloroform	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Chloromethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
cis-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Dibromochloromethane	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Ethylbenzene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Freon-113	< 10	С	1	µg/L		SW8260B	01/23/2013 7:59 PM
Methylene chloride	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Styrene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Tetrachloroethene	< 10	С	1	µg/L		SW8260B	01/23/2013 7:59 PM
Toluene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Trichloroethene	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Xylene (total)	< 10		1	µg/L		SW8260B	01/23/2013 7:59 PM
Surr: 1,2-Dichloroethane-d4	99.5		1	%REC	53-183	SW8260B	01/23/2013 7:59 PM
Surr: 4-Bromofluorobenzene	82.7		1	%REC	63-140	SW8260B	01/23/2013 7:59 PM
Surr: Toluene-d8	89.5		1	%REC	60-135	SW8260B	01/23/2013 7:59 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

1600 Tysons Biva.

McLean, Virginia 22102

 Attn To:
 Donald Miller

 Collected
 :1/17/2013 3:25:00 PM

 Received
 :1/17/2013 3:35:00 PM

Collected By : WIRE TO WATER

Lab No. : 1301835-002B Client Sample ID. INFLUENT - 2 Sample Information... Type : Aqueous

Origin: Influent

Parameter(s)	Results	Qua	ifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
рН	7.3	Н	+	1	pH Units		SM4500-H B	01/17/2013 6:47 PM
pH Temperature	19.4	Н	+	1	°C		SM4500-H B	01/17/2013 6:47 PM
Total Dissolved Solids	121			1	mg/L		SM2540C	01/23/2013 2:27 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

McLean, Virginia 22102

Attn To : Donald Miller Collected :1/17/2013 3:25:00 PM : 1/17/2013 3:35:00 PM Received

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Collected By : WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	<u>Analyzed</u>
Iron	0.16		1	mg/L		E200.7	01/29/2013 3:13 PM
Manganese	0.10		1	mg/L		E200.7	01/29/2013 3:13 PM
Zinc	0.03		1	mg/L		E200.7	01/29/2013 3:13 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Sample Information... Type : Aqueous

Client Sample ID. INFLUENT - 2

Origin: Influent

Lab No. : 1301835-002C

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation

Lab No. : **1301835-002D**

Client Sample ID. INFLUENT - 2

Sample Information... Type : Aqueous

Origin: Influent

1600 Tysons Blvd. McLean, Virginia 22102

Attn To: Donald Miller

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

 Collected
 : 1/17/2013 3:25:00 PM
 DISSOLVED

 Received
 : 1/17/2013 3:35:00 PM
 Collected By : WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	< 0.02		1	mg/L		E200.7	01/29/2013 3:17 PM
Manganese	0.09		1	mg/L		E200.7	01/29/2013 3:17 PM
Zinc	0.03		1	mg/L		E200.7	01/29/2013 3:17 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

TOUU TYSUIIS DIVU.

McLean, Virginia 22102

Attn To: Donald Miller

Collected : 1/17/2013 3:00:00 PM Received : 1/17/2013 3:35:00 PM

Collected By : WIRE TO WATER

Lab No. : 1301835-003A Client Sample ID. EFFLUENT - 1 Sample Information... Type : Aqueous

Origin: Effluent

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
1,1,1-Trichloroethane	< 10	С	1	µg/L		SW8260B	01/23/2013 8:28 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
1,1,2-Trichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
1,1-Dichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
1,1-Dichloroethene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
1,2-Dichloroethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
1,2-Dichloroethene (total)	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
1,2-Dichloropropane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
2-Butanone	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
2-Hexanone	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
4-Methyl-2-pentanone	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Acetone	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Benzene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Bromodichloromethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Bromoform	< 10	С	1	µg/L		SW8260B	01/23/2013 8:28 PM
Bromomethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Carbon disulfide	< 10	С	1	µg/L		SW8260B	01/23/2013 8:28 PM
Carbon tetrachloride	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Chlorobenzene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Chloroethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Chloroform	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Chloromethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
cis-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Dibromochloromethane	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Ethylbenzene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Freon-113	< 10	С	1	µg/L		SW8260B	01/23/2013 8:28 PM
Methylene chloride	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Styrene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Tetrachloroethene	< 10	С	1	µg/L		SW8260B	01/23/2013 8:28 PM
Toluene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Trichloroethene	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Xylene (total)	< 10		1	µg/L		SW8260B	01/23/2013 8:28 PM
Surr: 1,2-Dichloroethane-d4	99.4		1	%REC	53-183	SW8260B	01/23/2013 8:28 PM
Surr: 4-Bromofluorobenzene	81.2		1	%REC	63-140	SW8260B	01/23/2013 8:28 PM
Surr: Toluene-d8	90.0		1	%REC	60-135	SW8260B	01/23/2013 8:28 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

McLean, Virginia 22102

Attn To : Donald Miller

Collected :1/17/2013 3:00:00 PM Received :1/17/2013 3:35:00 PM Collected By : WIRE TO WATER Lab No. : 1301835-003B Client Sample ID. EFFLUENT - 1 Sample Information... Type : Aqueous

Origin: Effluent

Parameter(s)	Results	<u>Qua</u>	lifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
рН	7.4	н	+	1	pH Units		SM4500-H B	01/17/2013 6:49 PM
pH Temperature	19.7	Н	+	1	°C		SM4500-H B	01/17/2013 6:49 PM
Total Dissolved Solids	119			1	mg/L		SM2540C	01/23/2013 2:30 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

McLean, Virginia 22102

Attn To:Donald MillerCollected:1/17/2013 3:00:00 PMReceived:1/17/2013 3:35:00 PMCollected By:WIRE TO WATER

Lab No. : 1301835-003C Client Sample ID. EFFLUENT - 1 Sample Information... Type : Aqueous

Origin: Effluent

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	0.17		1	mg/L		E200.7	01/29/2013 3:21 PM
Manganese	0.10		1	mg/L		E200.7	01/29/2013 3:21 PM
Zinc	0.04		1	mg/L		E200.7	01/29/2013 3:21 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Fairchild Corporation 1600 Tysons Blvd.

McLean, Virginia 22102

575 Broad Hollow Road, Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Lab No. : 1301835-003D

Sample Information... Type : Aqueous

Client Sample ID. EFFLUENT - 1

Origin: Effluent

Attn To:Donald MillerCollected:1/17/2013 3:00:00 PMDISSOLVEDReceived:1/17/2013 3:35:00 PMCollected By:WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Method Number	Analyzed
Iron	< 0.02		1	mg/L		E200.7	01/29/2013 3:25 PM
Manganese	0.10		1	mg/L		E200.7	01/29/2013 3:25 PM
Zinc	0.04		1	mg/L		E200.7	01/29/2013 3:25 PM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Comments:

CorrectiveAction:

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Sample Receipt Checklist

	website.	<u> </u>	12mid03.com		
Client Name FAIR			Date and T	ime Received:	1/17/2013 3:35:00 PM
Work Order Number: 1301835 Rcpt	No: 1		Received b	y MelissaWat	son
Completed by: Similary force	lli	Rev	viewed by:	oann?	M. Slavin
Completed Date: <u>1/17/2013 5:57:12 PM</u>		Rev	viewed Date:	<u>1/21/201</u>	<u>3 2:53:21 PM</u>
Carrier name: Client					
Chain of custody present?	Yes	\checkmark	No 🗌		
Chain of custody signed when relinquished and receiv	ved? Yes	✓	No 🗌		
Chain of custody agrees with sample labels?	Yes	✓	No 🗌		
Are matrices correctly identified on Chain of custody?	Yes	✓	No 🛄		
Is it clear what analyses were requested?	Yes	✓	No 🛄		_
Custody seals intact on sample bottles?	Yes		No	Not Present	\checkmark
Samples in proper container/bottle?	Yes	\checkmark	No 🗌		
Were correct preservatives used and noted?	Yes	✓	No 🗌	NA	
Preservative added to bottles:					
Sample Condition?	Intact	✓	Broken 🗌	Leaking	
Sufficient sample volume for indicated test?	Yes		No 🛄		
Were container labels complete (ID, Pres, Date)?	Yes		No 🛄		
All samples received within holding time?	Yes	\checkmark	No		
Was an attempt made to cool the samples?	Yes	\checkmark	No 🗌	NA	
All samples received at a temp. of > 0° C to 6.0° C?	Yes	\checkmark	No 🗌	NA	
Response when temperature is outside of range:			_		
Sample Temp. taken and recorded upon receipt?	Yes	✓	No 🗌	To 0	.2 °
Water - Were bubbles absent in VOC vials?	Yes	✓	No 🛄	No Vials	
Water - Was there Chlorine Present?	Yes		No 🗌	NA	
Water - pH acceptable upon receipt?	Yes	✓	No 🗔	No Water	
Are Samples considered acceptable?	Yes	✓	No 🗌		
Custody Seals present?	Yes		No 🔽		
Airbill or Sticker?	Air Bil		Sticker	Not Present	\checkmark
Airbill No:					
Case Number: SDG:			SAS:		
Any No response should be detailed in the comments	s section below, if app	licable	e		
Client Contacted? Ves V No	Person Contacted:				
Contact Mode: Phone: Fax:	Email:		In Person:		
Client Instructions:					
Date Contacted:	Contacted By:				
	Contacted by.				
Regarding:					

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-001

ClientSample ID. : INFLUENT - 1

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:55:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Iron Manganese Zinc Iron Manganese Zinc 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.38 0.10 0.10 0.03 0.10		1 1 1	mg/L mg/L	E200.7 E200.7	03/07/2013 12:14 PM
Zinc Iron Manganese Zinc 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.10 0.03 0.10			mg/L	E200 7	
Iron Manganese Zinc 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.03 0.10		1		E200.7	03/07/2013 12:14 PM
Manganese Zinc 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.10			mg/L	E200.7	03/07/2013 12:14 PM
Zinc 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane			1	mg/L	E200.7	03/07/2013 12:18 PM
Zinc 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.54		1	mg/L	E200.7	03/07/2013 12:18 PM
1,1,2,2-Tetrachloroethane	0.51		1	mg/L	E200.7	03/07/2013 12:18 PM
	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1-Dichloroethane	21		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1-Dichloroethene	11		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,2-Dichloroethene (total)	540	D	10	µg/L	SW8260B	02/28/2013 3:26 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Acetone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromoform	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromomethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Freon-113	29	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Styrene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Tetrachloroethene	930	Dc	10	µg/L	SW8260B	02/28/2013 3:26 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc. 575 Broad Hollow Rd., Melville, NY

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Origin: Influent

Lab No. : 1302A92-001

ClientSample ID. : INFLUENT - 1

Type : Aqueous

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

Collected : 2/26/2013 10:55:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	.F. <u>Units</u>		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Trichloroethene	460	Dc	10	µg/L		SW8260B	02/28/2013 3:26 PM
Vinyl chloride	54		1	µg/L		SW8260B	02/28/2013 2:57 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Surr: 1,2-Dichloroethane-d4	101		1	%REC	53-183	SW8260B	02/28/2013 2:57 PM
Surr: 4-Bromofluorobenzene	92.1		1	%REC	63-140	SW8260B	02/28/2013 2:57 PM
Surr: Toluene-d8	97.6		1	%REC	60-135	SW8260B	02/28/2013 2:57 PM
рН	5.5	H +	1	pH Units		SM4500-H B	02/26/2013 5:34 PM
pH Temperature	19.6	H +	1	°C		SM4500-H B	02/26/2013 5:34 PM
Total Dissolved Solids	106		1	mg/L		SM2540C	03/05/2013 10:39 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-001

ClientSample ID. : INFLUENT - 1

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:55:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.</u>	<u>F. Units</u>	Method Numbe	er <u>Analyzed</u>
Iron	0.38		1	mg/L	E200.7	03/07/2013 12:14 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:14 PM
Zinc	0.10		1	mg/L	E200.7	03/07/2013 12:14 PM
Iron	0.03		1	mg/L	E200.7	03/07/2013 12:18 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:18 PM
Zinc	0.51		1	mg/L	E200.7	03/07/2013 12:18 PM
1,1,1-Trichloroethane	< 10	С	1	μg/L	SW8260B	02/28/2013 2:57 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1-Dichloroethane	21		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1-Dichloroethene	11		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,2-Dichloroethene (total)	540	D	10	µg/L	SW8260B	02/28/2013 3:26 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
2-Hexanone	< 10	с	1	µg/L	SW8260B	02/28/2013 2:57 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Acetone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromoform	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromomethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloromethane	< 10	с	1	µg/L	SW8260B	02/28/2013 2:57 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Dibromochloromethane	< 10	с	1	µg/L	SW8260B	02/28/2013 2:57 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Freon-113	29	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Styrene	< 10		1	μg/L	SW8260B	02/28/2013 2:57 PM
Tetrachloroethene	930	Dc	10	µg/L	SW8260B	02/28/2013 3:26 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Type : Aqueous

Sample Information...

Fairchild Corporation

Lab No. : 1302A92-001 ClientSample ID. : INFLUENT - 1

Origin: Influent

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:55:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	.F. <u>Units</u>		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Trichloroethene	460	Dc	10	µg/L		SW8260B	02/28/2013 3:26 PM
Vinyl chloride	54		1	µg/L		SW8260B	02/28/2013 2:57 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Surr: 1,2-Dichloroethane-d4	101		1	%REC	53-183	SW8260B	02/28/2013 2:57 PM
Surr: 4-Bromofluorobenzene	92.1		1	%REC	63-140	SW8260B	02/28/2013 2:57 PM
Surr: Toluene-d8	97.6		1	%REC	60-135	SW8260B	02/28/2013 2:57 PM
рН	5.5	H 4	- 1	pH Units		SM4500-H B	02/26/2013 5:34 PM
pH Temperature	19.6	н ч	- 1	°C		SM4500-H B	02/26/2013 5:34 PM
Total Dissolved Solids	106		1	mg/L		SM2540C	03/05/2013 10:39 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 8130 Boone Blvd.

Lab No. : 1302A92-002

ClientSample ID. : INFLUENT - 2

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:45:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	. <u>F. Units</u>	Method Numb	er <u>Analyzed</u>
Iron	0.14		1	mg/L	E200.7	03/07/2013 12:22 PM
Manganese	0.09		1	mg/L	E200.7	03/07/2013 12:22 PM
Zinc	0.03		1	mg/L	E200.7	03/07/2013 12:22 PM
Iron	0.05		1	mg/L	E200.7	03/07/2013 12:26 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:26 PM
Zinc	0.03		1	mg/L	E200.7	03/07/2013 12:26 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Acetone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromoform	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromomethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Freon-113	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Styrene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Tetrachloroethene	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Melville, NY

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Lab No. : 1302A92-002

Fairchild Corporation 8130 Boone Blvd.

575 Broad Hollow Rd.

Vienna, Virginia 221182-2640

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:45:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s) **Results** Qualifier <u>D.F.</u> Units Method Number Analyzed trans-1,3-Dichloropropene SW8260B 02/28/2013 2:29 PM < 10 1 µg/L Trichloroethene SW8260B 02/28/2013 2:29 PM < 10 С 1 µg/L SW8260B Vinyl chloride < 10 02/28/2013 2:29 PM 1 µg/L Xylene (total) < 10 1 µg/L SW8260B 02/28/2013 2:29 PM Surr: 1,2-Dichloroethane-d4 102 %REC 53-183 SW8260B 02/28/2013 2:29 PM 1 Surr: 4-Bromofluorobenzene 91.8 %REC 63-140 SW8260B 02/28/2013 2:29 PM 1 Surr: Toluene-d8 98.8 %REC 60-135 SW8260B 02/28/2013 2:29 PM 1 pН 7.3 н pH Units SM4500-H B 02/26/2013 5:37 PM 1 + н °C pH Temperature 19.6 + 1 SM4500-H B 02/26/2013 5:37 PM **Total Dissolved Solids** SM2540C 49 1 mg/L 03/05/2013 10:42 AM

ClientSample ID. : INFLUENT - 2

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 3/7/2013

Joann M. Slavin Laboratory Manager

Page 6 of 13

Type : Aqueous

Origin: Influent

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-002

ClientSample ID. : INFLUENT - 2

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:45:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	.F. <u>Units</u>	Method Number	Analyzed
Iron	0.14		1	mg/L	E200.7 03	3/07/2013 12:22 PM
Manganese	0.09		1	mg/L	E200.7 03	3/07/2013 12:22 PM
Zinc	0.03		1	mg/L	E200.7 03	3/07/2013 12:22 PM
Iron	0.05		1	mg/L	E200.7 03	3/07/2013 12:26 PM
Manganese	0.10		1	mg/L	E200.7 03	3/07/2013 12:26 PM
Zinc	0.03		1	mg/L	E200.7 03	3/07/2013 12:26 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B 02	2/28/2013 2:29 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
2-Butanone	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B 02	2/28/2013 2:29 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Acetone	< 10	С	1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Benzene	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Bromoform	< 10	с	1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Bromomethane	< 10	С	1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Carbon disulfide	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Chlorobenzene	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Chloroethane	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Chloroform	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Chloromethane	< 10	С	1	µg/L	SW8260B 02	2/28/2013 2:29 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Dibromochloromethane	< 10	с	1	µg/L	SW8260B 02	2/28/2013 2:29 PM
Ethylbenzene	< 10		1	μg/L	SW8260B 02	2/28/2013 2:29 PM
Freon-113	< 10	С	1	μg/L	SW8260B 02	2/28/2013 2:29 PM
Methylene chloride	< 10		1	μg/L	SW8260B 02	2/28/2013 2:29 PM
Styrene	< 10		1	μg/L	SW8260B 02	2/28/2013 2:29 PM
Tetrachloroethene	< 10	С	1	μg/L		2/28/2013 2:29 PM
Toluene	< 10		1	μg/L	SW8260B 02	2/28/2013 2:29 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

 $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

 $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-002 ClientSample ID. : INFLUENT - 2 Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:45:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>		D.F. <u>Units</u>		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:29 PM
Trichloroethene	< 10	С	1	µg/L		SW8260B	02/28/2013 2:29 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	02/28/2013 2:29 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:29 PM
Surr: 1,2-Dichloroethane-d4	102		1	%REC	53-183	SW8260B	02/28/2013 2:29 PM
Surr: 4-Bromofluorobenzene	91.8		1	%REC	63-140	SW8260B	02/28/2013 2:29 PM
Surr: Toluene-d8	98.8		1	%REC	60-135	SW8260B	02/28/2013 2:29 PM
рН	7.3	H +	1	pH Units		SM4500-H B	02/26/2013 5:37 PM
pH Temperature	19.6	H +	1	°C		SM4500-H B	02/26/2013 5:37 PM
Total Dissolved Solids	49		1	mg/L		SM2540C	03/05/2013 10:42 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 3/7/2013

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation

Lab No. : 1302A92-003 ClientSample ID. : EFFLUENT - 1

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : **Donald Miller**

Collected :2/26/2013 10:30:00 AM DISSOLVED Received :2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D</u> .	.F. <u>Units</u>	Method Numbe	er Analyzed
Iron	0.15		1	mg/L	E200.7	03/07/2013 12:41 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:41 PM
Zinc	0.04		1	mg/L	E200.7	03/07/2013 12:41 PM
Iron	< 0.02		1	mg/L	E200.7	03/07/2013 12:45 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:45 PM
Zinc	0.06		1	mg/L	E200.7	03/07/2013 12:45 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Acetone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Bromoform	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Bromomethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Freon-113	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Styrene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Tetrachloroethene	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-003

Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:30:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	[D.F. <u>Units</u>		Method Numb	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Trichloroethene	< 10	С	1	µg/L		SW8260B	02/28/2013 2:00 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Surr: 1,2-Dichloroethane-d4	102		1	%REC	53-183	SW8260B	02/28/2013 2:00 PM
Surr: 4-Bromofluorobenzene	91.8		1	%REC	63-140	SW8260B	02/28/2013 2:00 PM
Surr: Toluene-d8	98.4		1	%REC	60-135	SW8260B	02/28/2013 2:00 PM
рН	7.3	н -	- 1	pH Units		SM4500-H B	02/26/2013 5:40 PM
pH Temperature	19.8	н·	- 1	°C		SM4500-H B	02/26/2013 5:40 PM
Total Dissolved Solids	115		1	mg/L		SM2540C	03/05/2013 10:45 AM

ClientSample ID. : EFFLUENT - 1

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Page 10 of 13

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Type : Aqueous

Fairchild Corporation

Lab No. : 1302A92-003 ClientSample ID. : EFFLUENT - 1

Origin: Effluent

Sample Information...

8130 Boone Blvd. Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

Aun To . Donaid Willer

 Collected
 : 2/26/2013 10:30:00 AM

 Received
 : 2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	.F. <u>Units</u>	Method Number Analyzed
Iron	0.15		1	mg/L	E200.7 03/07/2013 12:41 PM
Manganese	0.10		1	mg/L	E200.7 03/07/2013 12:41 PM
Zinc	0.04		1	mg/L	E200.7 03/07/2013 12:41 PM
Iron	< 0.02		1	mg/L	E200.7 03/07/2013 12:45 PM
Manganese	0.10		1	mg/L	E200.7 03/07/2013 12:45 PM
Zinc	0.06		1	mg/L	E200.7 03/07/2013 12:45 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
2-Butanone	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Acetone	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Benzene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Bromoform	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Bromomethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Carbon disulfide	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chlorobenzene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chloroform	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chloromethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Ethylbenzene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Freon-113	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Methylene chloride	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Styrene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Tetrachloroethene	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Toluene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

 $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

 $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-003 ClientSample ID. : EFFLUENT - 1 Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:30:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	r	D.F. Units		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	μg/L		SW8260B	02/28/2013 2:00 PM
Trichloroethene	< 10	С	1	µg/L		SW8260B	02/28/2013 2:00 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Surr: 1,2-Dichloroethane-d4	102		1	%REC	53-183	SW8260B	02/28/2013 2:00 PM
Surr: 4-Bromofluorobenzene	91.8		1	%REC	63-140	SW8260B	02/28/2013 2:00 PM
Surr: Toluene-d8	98.4		1	%REC	60-135	SW8260B	02/28/2013 2:00 PM
рН	7.3	н	+ 1	pH Units		SM4500-H B	02/26/2013 5:40 PM
pH Temperature	19.8	н	+ 1	°C		SM4500-H B	02/26/2013 5:40 PM
Total Dissolved Solids	115		1	mg/L		SM2540C	03/05/2013 10:45 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Comments:

CorrectiveAction:

H2M LABS INC 575 Broad Hollow Rd. Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Sample Receipt Checklist

Client Name FAIR			Date and T	ime Received:	2/26/2013 11:35:00 AM		
Work Order Number: 1302A92 Rcpth	lo: 1	Received by LindsayPacelli					
Completed by: Sinclawy Conce Completed Date: <u>2/26/2013 5:23:11 PM</u>	lli		viewed by:		M . Slavin 3 3:21:26 PM		
		1.01	lewed Bale.	<u></u>	<u>0 0.21.201 m</u>		
Carrier name: <u>Client</u>							
Chain of custody present?	ed? Yes	✓	No 🗔				
Chain of custody signed when relinquished and receive Chain of custody agrees with sample labels?	Yes	 ✓ 					
Are matrices correctly identified on Chain of custody?	Yes						
Is it clear what analyses were requested?	Yes						
Custody seals intact on sample bottles?	Yes		No 🗌	Not Present	\checkmark		
Samples in proper container/bottle?	Yes	\checkmark	No 🗆				
Were correct preservatives used and noted?	Yes	✓		NA			
Preservative added to bottles:							
Sample Condition?	Intact	\checkmark	Broken	Leaking			
Sufficient sample volume for indicated test?	Yes	\checkmark	No 🗌	0			
Were container labels complete (ID, Pres, Date)?	Yes	\checkmark	No 🗌				
All samples received within holding time?	Yes	\checkmark	No 🗌				
Was an attempt made to cool the samples?	Yes	✓	No 🗌	NA			
All samples received at a temp. of > 0° C to 6.0° C?	Yes	\checkmark	No 🗌	NA			
Response when temperature is outside of range:							
Sample Temp. taken and recorded upon receipt?	Yes	\checkmark	No 🗌	To 2	.3 °		
Water - Were bubbles absent in VOC vials?	Yes	\checkmark	No	No Vials			
Water - Was there Chlorine Present?	Yes		No	NA			
Water - pH acceptable upon receipt?	Yes	\checkmark	No 🗌	No Water			
Are Samples considered acceptable?	Yes	\checkmark	No 🗌				
Custody Seals present?	Yes		No 🔽				
Airbill or Sticker?	Air Bil		Sticker	Not Present	\checkmark		
Airbill No:							
Case Number: SDG:			SAS:				
Any No response should be detailed in the comments	section below, if app	licabl	e				
Client Contacted?	Person Contacted:						
Contact Mode: Phone: Fax:			In Person:				
Client Instructions:							
	Contracted Dy:						
Date Contacted:	Contacted By:						
Regarding:							

Page 13 of 13

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-001

ClientSample ID. : INFLUENT - 1

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:55:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D</u>	<u>F. Units</u>	Method Number Analyzed	
Iron	0.38		1	mg/L	E200.7 03/07/2013 12: ⁻	14 PM
Manganese	0.10		1	mg/L	E200.7 03/07/2013 12:	14 PM
Zinc	0.10		1	mg/L	E200.7 03/07/2013 12:	14 PM
Iron	0.03		1	mg/L	E200.7 03/07/2013 12:	18 PM
Manganese	0.10		1	mg/L	E200.7 03/07/2013 12:	18 PM
Zinc	0.51		1	mg/L	E200.7 03/07/2013 12:	18 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
1,1-Dichloroethane	21		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
1,1-Dichloroethene	11		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
1,2-Dichloroethene (total)	540	D	10	µg/L	SW8260B 02/28/2013 3:26	3 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
2-Butanone	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Acetone	< 10	С	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Benzene	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Bromoform	< 10	С	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Bromomethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Carbon disulfide	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Chlorobenzene	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Chloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Chloroform	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Chloromethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Dibromochloromethane	< 10	с	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Ethylbenzene	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Freon-113	29	с	1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Methylene chloride	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Styrene	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM
Tetrachloroethene	930	Dc	10	µg/L	SW8260B 02/28/2013 3:26	3 PM
Toluene	< 10		1	µg/L	SW8260B 02/28/2013 2:57	7 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc. 575 Broad Hollow Rd., Melville, NY

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Origin: Influent

Lab No. : 1302A92-001

ClientSample ID. : INFLUENT - 1

Type : Aqueous

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

Collected : 2/26/2013 10:55:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	.F. <u>Units</u>		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Trichloroethene	460	Dc	10	µg/L		SW8260B	02/28/2013 3:26 PM
Vinyl chloride	54		1	µg/L		SW8260B	02/28/2013 2:57 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Surr: 1,2-Dichloroethane-d4	101		1	%REC	53-183	SW8260B	02/28/2013 2:57 PM
Surr: 4-Bromofluorobenzene	92.1		1	%REC	63-140	SW8260B	02/28/2013 2:57 PM
Surr: Toluene-d8	97.6		1	%REC	60-135	SW8260B	02/28/2013 2:57 PM
рН	5.5	H +	1	pH Units		SM4500-H B	02/26/2013 5:34 PM
pH Temperature	19.6	H +	1	°C		SM4500-H B	02/26/2013 5:34 PM
Total Dissolved Solids	106		1	mg/L		SM2540C	03/05/2013 10:39 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-001

ClientSample ID. : INFLUENT - 1

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:55:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.</u>	<u>F. Units</u>	Method Numbe	er <u>Analyzed</u>
Iron	0.38		1	mg/L	E200.7	03/07/2013 12:14 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:14 PM
Zinc	0.10		1	mg/L	E200.7	03/07/2013 12:14 PM
Iron	0.03		1	mg/L	E200.7	03/07/2013 12:18 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:18 PM
Zinc	0.51		1	mg/L	E200.7	03/07/2013 12:18 PM
1,1,1-Trichloroethane	< 10	С	1	μg/L	SW8260B	02/28/2013 2:57 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1-Dichloroethane	21		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,1-Dichloroethene	11		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
1,2-Dichloroethene (total)	540	D	10	µg/L	SW8260B	02/28/2013 3:26 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
2-Hexanone	< 10	с	1	µg/L	SW8260B	02/28/2013 2:57 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Acetone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromoform	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Bromomethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Chloromethane	< 10	с	1	µg/L	SW8260B	02/28/2013 2:57 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Dibromochloromethane	< 10	с	1	µg/L	SW8260B	02/28/2013 2:57 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Freon-113	29	С	1	µg/L	SW8260B	02/28/2013 2:57 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Styrene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM
Tetrachloroethene	930	Dc	10	µg/L	SW8260B	02/28/2013 3:26 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:57 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Type : Aqueous

Sample Information...

Fairchild Corporation

Lab No. : 1302A92-001 ClientSample ID. : INFLUENT - 1

Origin: Influent

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:55:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	.F. <u>Units</u>		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Trichloroethene	460	Dc	10	µg/L		SW8260B	02/28/2013 3:26 PM
Vinyl chloride	54		1	µg/L		SW8260B	02/28/2013 2:57 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:57 PM
Surr: 1,2-Dichloroethane-d4	101		1	%REC	53-183	SW8260B	02/28/2013 2:57 PM
Surr: 4-Bromofluorobenzene	92.1		1	%REC	63-140	SW8260B	02/28/2013 2:57 PM
Surr: Toluene-d8	97.6		1	%REC	60-135	SW8260B	02/28/2013 2:57 PM
рН	5.5	H 4	- 1	pH Units		SM4500-H B	02/26/2013 5:34 PM
pH Temperature	19.6	н ч	- 1	°C		SM4500-H B	02/26/2013 5:34 PM
Total Dissolved Solids	106		1	mg/L		SM2540C	03/05/2013 10:39 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 8130 Boone Blvd.

Lab No. : 1302A92-002

ClientSample ID. : INFLUENT - 2

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:45:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	. <u>F. Units</u>	Method Numb	er <u>Analyzed</u>
Iron	0.14		1	mg/L	E200.7	03/07/2013 12:22 PM
Manganese	0.09		1	mg/L	E200.7	03/07/2013 12:22 PM
Zinc	0.03		1	mg/L	E200.7	03/07/2013 12:22 PM
Iron	0.05		1	mg/L	E200.7	03/07/2013 12:26 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:26 PM
Zinc	0.03		1	mg/L	E200.7	03/07/2013 12:26 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Acetone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromoform	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromomethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Freon-113	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Styrene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Tetrachloroethene	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Melville, NY

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Lab No. : 1302A92-002

Fairchild Corporation 8130 Boone Blvd.

575 Broad Hollow Rd.

Vienna, Virginia 221182-2640

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:45:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s) **Results** Qualifier <u>D.F.</u> Units Method Number Analyzed trans-1,3-Dichloropropene SW8260B 02/28/2013 2:29 PM < 10 1 µg/L Trichloroethene SW8260B 02/28/2013 2:29 PM < 10 С 1 µg/L SW8260B Vinyl chloride < 10 02/28/2013 2:29 PM 1 µg/L Xylene (total) < 10 1 µg/L SW8260B 02/28/2013 2:29 PM Surr: 1,2-Dichloroethane-d4 102 %REC 53-183 SW8260B 02/28/2013 2:29 PM 1 Surr: 4-Bromofluorobenzene 91.8 %REC 63-140 SW8260B 02/28/2013 2:29 PM 1 Surr: Toluene-d8 98.8 %REC 60-135 SW8260B 02/28/2013 2:29 PM 1 pН 7.3 н pH Units SM4500-H B 02/26/2013 5:37 PM 1 + н °C pH Temperature 19.6 + 1 SM4500-H B 02/26/2013 5:37 PM **Total Dissolved Solids** SM2540C 49 1 mg/L 03/05/2013 10:42 AM

ClientSample ID. : INFLUENT - 2

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 3/7/2013

Joann M. Slavin Laboratory Manager

Page 6 of 13

Type : Aqueous

Origin: Influent

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-002

ClientSample ID. : INFLUENT - 2

Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:45:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D</u>	.F. <u>Units</u>	Method Numbe	r Analyzed
Iron	0.14		1	mg/L	E200.7	03/07/2013 12:22 PM
Manganese	0.09		1	mg/L	E200.7	03/07/2013 12:22 PM
Zinc	0.03		1	mg/L	E200.7	03/07/2013 12:22 PM
Iron	0.05		1	mg/L	E200.7	03/07/2013 12:26 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:26 PM
Zinc	0.03		1	mg/L	E200.7	03/07/2013 12:26 PM
1,1,1-Trichloroethane	< 10	с	1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
2-Hexanone	< 10	с	1	µg/L	SW8260B	02/28/2013 2:29 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Acetone	< 10	с	1	µg/L	SW8260B	02/28/2013 2:29 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromoform	< 10	с	1	µg/L	SW8260B	02/28/2013 2:29 PM
Bromomethane	< 10	с	1	µg/L	SW8260B	02/28/2013 2:29 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Chloromethane	< 10	с	1	µg/L	SW8260B	02/28/2013 2:29 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Freon-113	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Styrene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM
Tetrachloroethene	< 10	С	1	µg/L	SW8260B	02/28/2013 2:29 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:29 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

 $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

 $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-002 ClientSample ID. : INFLUENT - 2 Sample Information...

Type : Aqueous

Origin: Influent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:45:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>		D.F. <u>Units</u>		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:29 PM
Trichloroethene	< 10	С	1	µg/L		SW8260B	02/28/2013 2:29 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	02/28/2013 2:29 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:29 PM
Surr: 1,2-Dichloroethane-d4	102		1	%REC	53-183	SW8260B	02/28/2013 2:29 PM
Surr: 4-Bromofluorobenzene	91.8		1	%REC	63-140	SW8260B	02/28/2013 2:29 PM
Surr: Toluene-d8	98.8		1	%REC	60-135	SW8260B	02/28/2013 2:29 PM
рН	7.3	H +	1	pH Units		SM4500-H B	02/26/2013 5:37 PM
pH Temperature	19.6	H +	1	°C		SM4500-H B	02/26/2013 5:37 PM
Total Dissolved Solids	49		1	mg/L		SM2540C	03/05/2013 10:42 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 3/7/2013

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation

Lab No. : 1302A92-003 ClientSample ID. : EFFLUENT - 1

8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : **Donald Miller**

Collected :2/26/2013 10:30:00 AM DISSOLVED Received :2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>D</u> .	.F. <u>Units</u>	Method Numbe	er Analyzed
Iron	0.15		1	mg/L	E200.7	03/07/2013 12:41 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:41 PM
Zinc	0.04		1	mg/L	E200.7	03/07/2013 12:41 PM
Iron	< 0.02		1	mg/L	E200.7	03/07/2013 12:45 PM
Manganese	0.10		1	mg/L	E200.7	03/07/2013 12:45 PM
Zinc	0.06		1	mg/L	E200.7	03/07/2013 12:45 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
2-Butanone	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Acetone	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Benzene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Bromoform	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Bromomethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Carbon disulfide	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chlorobenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chloroethane	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chloroform	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Chloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Ethylbenzene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Freon-113	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Methylene chloride	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Styrene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM
Tetrachloroethene	< 10	С	1	µg/L	SW8260B	02/28/2013 2:00 PM
Toluene	< 10		1	µg/L	SW8260B	02/28/2013 2:00 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-003

Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To: Donald Miller

Collected : 2/26/2013 10:30:00 AM DISSOLVED Received : 2/26/2013 11:35:00 AM Collected By WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	<u>[</u>	D.F. <u>Units</u>		Method Numb	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Trichloroethene	< 10	С	1	µg/L		SW8260B	02/28/2013 2:00 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Surr: 1,2-Dichloroethane-d4	102		1	%REC	53-183	SW8260B	02/28/2013 2:00 PM
Surr: 4-Bromofluorobenzene	91.8		1	%REC	63-140	SW8260B	02/28/2013 2:00 PM
Surr: Toluene-d8	98.4		1	%REC	60-135	SW8260B	02/28/2013 2:00 PM
рН	7.3	H +	- 1	pH Units		SM4500-H B	02/26/2013 5:40 PM
pH Temperature	19.8	н +	- 1	°C		SM4500-H B	02/26/2013 5:40 PM
Total Dissolved Solids	115		1	mg/L		SM2540C	03/05/2013 10:45 AM

ClientSample ID. : EFFLUENT - 1

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Page 10 of 13

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Type : Aqueous

Fairchild Corporation

Lab No. : 1302A92-003 ClientSample ID. : EFFLUENT - 1

Origin: Effluent

Sample Information...

8130 Boone Blvd. Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

Aun To . Donaid Willer

 Collected
 : 2/26/2013 10:30:00 AM

 Received
 : 2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifier</u>	D	.F. <u>Units</u>	Method Number Analyzed
Iron	0.15		1	mg/L	E200.7 03/07/2013 12:41 PM
Manganese	0.10		1	mg/L	E200.7 03/07/2013 12:41 PM
Zinc	0.04		1	mg/L	E200.7 03/07/2013 12:41 PM
Iron	< 0.02		1	mg/L	E200.7 03/07/2013 12:45 PM
Manganese	0.10		1	mg/L	E200.7 03/07/2013 12:45 PM
Zinc	0.06		1	mg/L	E200.7 03/07/2013 12:45 PM
1,1,1-Trichloroethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1,2-Trichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1-Dichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,1-Dichloroethene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,2-Dichloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,2-Dichloroethene (total)	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
1,2-Dichloropropane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
2-Butanone	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
2-Hexanone	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
4-Methyl-2-pentanone	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Acetone	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Benzene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Bromodichloromethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Bromoform	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Bromomethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Carbon disulfide	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Carbon tetrachloride	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chlorobenzene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chloroethane	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chloroform	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Chloromethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
cis-1,3-Dichloropropene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Dibromochloromethane	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Ethylbenzene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Freon-113	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Methylene chloride	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Styrene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM
Tetrachloroethene	< 10	С	1	µg/L	SW8260B 02/28/2013 2:00 PM
Toluene	< 10		1	µg/L	SW8260B 02/28/2013 2:00 PM

Qualifiers: E = Value above quantitation range

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

 $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit below calibration range

J = Estimated value - below calibration range

 $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported : 3/7/2013

Joann M. Slavin

Laboratory Manager

NYSDOH ID#10478

A division of H2M Labs, Inc.

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1302A92-003 ClientSample ID. : EFFLUENT - 1 Sample Information...

Type : Aqueous

Origin: Effluent

Fairchild Corporation 8130 Boone Blvd.

Vienna, Virginia 221182-2640

575 Broad Hollow Rd., Melville, NY

TEL: (631) 694-3040 FAX: (631) 420-8436

Attn To : Donald Miller

 Collected
 :2/26/2013 10:30:00 AM

 Received
 :2/26/2013 11:35:00 AM

 Collected By
 WIRE TO WATER

Parameter(s)	Results	<u>Qualifie</u>	<u>r</u>	D.F. Units		Method Numbe	er <u>Analyzed</u>
trans-1,3-Dichloropropene	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Trichloroethene	< 10	С	1	µg/L		SW8260B	02/28/2013 2:00 PM
Vinyl chloride	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Xylene (total)	< 10		1	µg/L		SW8260B	02/28/2013 2:00 PM
Surr: 1,2-Dichloroethane-d4	102		1	%REC	53-183	SW8260B	02/28/2013 2:00 PM
Surr: 4-Bromofluorobenzene	91.8		1	%REC	63-140	SW8260B	02/28/2013 2:00 PM
Surr: Toluene-d8	98.4		1	%REC	60-135	SW8260B	02/28/2013 2:00 PM
рН	7.3	н	+ 1	pH Units		SM4500-H B	02/26/2013 5:40 PM
pH Temperature	19.8	Н	+ 1	°C		SM4500-H B	02/26/2013 5:40 PM
Total Dissolved Solids	115		1	mg/L		SM2540C	03/05/2013 10:45 AM

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit below calibration range
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 3/7/2013

Joann M. Slavin Laboratory Manager

Comments:

CorrectiveAction:

H2M LABS INC 575 Broad Hollow Rd. Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Sample Receipt Checklist

Client Name FAIR			Date and T	ime Received:	2/26/2013 11:35:00 AM
Work Order Number: 1302A92 Rcpth	lo: 1		Received b	y LindsayPac	elli
Completed by: Sinclawy Conce Completed Date: <u>2/26/2013 5:23:11 PM</u>	lli		viewed by:		M . Slavin 3 3:21:26 PM
		1.01	lewed Bale.	<u></u>	<u>0 0.21.201 m</u>
Carrier name: <u>Client</u>					
Chain of custody present?	ed? Yes	✓	No 🗔		
Chain of custody signed when relinquished and receive Chain of custody agrees with sample labels?	Yes				
Are matrices correctly identified on Chain of custody?	Yes				
Is it clear what analyses were requested?	Yes				
Custody seals intact on sample bottles?	Yes		No 🗌	Not Present	
Samples in proper container/bottle?	Yes	\checkmark	No 🗆		
Were correct preservatives used and noted?	Yes	✓		NA	
Preservative added to bottles:					
Sample Condition?	Intact	\checkmark	Broken	Leaking	
Sufficient sample volume for indicated test?	Yes	\checkmark	No 🗌	-	
Were container labels complete (ID, Pres, Date)?	Yes	\checkmark	No 🗌		
All samples received within holding time?	Yes	\checkmark	No		
Was an attempt made to cool the samples?	Yes	\checkmark	No 🗌	NA	
All samples received at a temp. of > 0° C to 6.0° C?	Yes	\checkmark	No 🗌	NA	
Response when temperature is outside of range:		_	_		
Sample Temp. taken and recorded upon receipt?	Yes		No 🛄	To 2	.3 _
Water - Were bubbles absent in VOC vials?	Yes	✓	No 🛄	No Vials	
Water - Was there Chlorine Present?	Yes		No 🛄	NA	
Water - pH acceptable upon receipt?	Yes	✓	No 🛄	No Water	
Are Samples considered acceptable?	Yes	\checkmark	No 🗔		
Custody Seals present?	Yes		No 🗹		
Airbill or Sticker?	Air Bil		Sticker	Not Present	
Airbill No:					
Case Number: SDG:			SAS:		
Any No response should be detailed in the comments	section below, if app	licabl	e		
Client Contacted?	Person Contacted:				
Contact Mode: Phone: Fax:			In Person:		
Client Instructions:					
Date Contacted:	Contacted By:				
Regarding:	Contacted Dy.				
negalulity.					

Page 13 of 13

A division of H2M Labs, Inc.

575 Broad Hollow Rd., Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Donald Miller Attn To :

Collected :4/4/2013 1:30:00 PM Received :4/4/2013 3:20:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1304343-001A

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: SW8	3260B :					Analyst: KcS
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
1,1,2-Trichloroethane	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
1,1-Dichloroethane	21		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
1,1-Dichloroethene	13		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
1,2-Dichloroethane	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
1,2-Dichloroethene (total)	680	D	10	µg/L	04/11/2013 4:07 PM	Container-02 of 02
1,2-Dichloropropane	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
2-Butanone	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
2-Hexanone	< 10	с	1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
4-Methyl-2-pentanone	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Acetone	< 10	с	1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Benzene	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Bromodichloromethane	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Bromoform	< 10	с	1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Bromomethane	< 10	с	1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Carbon disulfide	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Carbon tetrachloride	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Chlorobenzene	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Chloroethane	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Chloroform	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Chloromethane	< 10	с	1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Dibromochloromethane	< 10	с	1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Ethylbenzene	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Freon-113	27		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Methylene chloride	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Styrene	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Tetrachloroethene	1,300	D	10	µg/L	04/11/2013 4:07 PM	Container-02 of 02
Toluene	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
rans-1,3-Dichloropropene	< 10		1	µg/L	04/11/2013 2:42 PM	Container-01 of 02
Trichloroethene	560	D	10	µg/L	04/11/2013 4:07 PM	Container-02 of 02
Vinyl chloride	61		1	μg/L	04/11/2013 2:42 PM	Container-01 of 02
Xylene (total)	< 10		1	μg/L	04/11/2013 2:42 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit > MDL and < LOQ

- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported : 4/16/2013

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 4/4/2013 1:30:00 PMReceived: 4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample In

Client Sample ID: INFLUENT - 1

Lab No.: 1304343-001A

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: SW8260)B :					<u>Analyst:</u> KcS
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Surr: 1,2-Dichloroethane-d4	99.5	1	%REC	Limit 53-183	04/11/2013 2:42 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	92.0	1	%REC	Limit 63-140	04/11/2013 2:42 PM	Container-01 of 02
Surr: Toluene-d8	97.2	1	%REC	Limit 60-135	04/11/2013 2:42 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 4/4/2013 1:30:00 PMReceived: 4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-001B

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SM4500-H	B : IOC						Analyst: BJV
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		5.9	н	+	1	pH Units	04/04/2013 4:34 PM	Container-01 of 01
pH Temperature		15.1	Н	+	1	°C	04/04/2013 4:34 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		109			1	mg/L	04/11/2013 10:51 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- $\ensuremath{\mathsf{s}}$ = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:4/4/2013 1:30:00 PMReceived:4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-001C

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 4/11/2013 12:00:00 PM	Analyst: Cl	М
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:	<u>:</u>
Iron		0.94	1	mg/L	04/15/2013 10:46 AM	Container-01	1 of 01
Manganese		0.11	1	mg/L	04/15/2013 10:46 AM	Container-01	1 of 01
Zinc		0.07	1	mg/L	04/15/2013 10:46 AM	Container-01	1 of 01

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

DISSOLVED

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 4/4/2013 1:30:00 PM Received : 4/4/2013 3:20:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-001D T

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: E200.7	: Prep Method:	E200.7	Prep Date: 4/11/2013 12:00:00 PM	Analyst: CM
Parameter(s)	Results Qualifier	D.F. Units	Analyzed:	Container:
Iron	< 0.02	1 mg/L	04/15/2013 10:50 AM	Container-01 of 01
Manganese	0.11	1 mg/L	04/15/2013 10:50 AM	Container-01 of 01
Zinc	0.09	1 mg/L	04/15/2013 10:50 AM	Container-01 of 01

Client Sample ID: INFLUENT - 1

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 4/16/2013

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :4/4/2013 1:45:00 PM Received :4/4/2013 3:20:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1304343-002A

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

1,1,2,2-Tetrachloroethane 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,1,2-Tichloroethane 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,1-Dichloroethane 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,1-Dichloroethane 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,2-Dichloroethane 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,2-Dichloroethane 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,2-Dichloroethene (total) 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Butanone <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Hexanone <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Bornone <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Ibchloroethane <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Bornofichloromethane <10 1 µg/L 04/11/201	Analytical Method: S	W8260B :					Analyst: KcS
1, 1, 2, 2-Tetrachloroethane <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1, 1, 1-Dichloroethane <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1, 1-Dichloroethane <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1, 1-Dichloroethane <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1, 2-Dichloroethane <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1, 2-Dichloroethene (total) <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Dichloropropane <10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Hexanone <10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Hexanone <10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Hexanone <10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 2-Hoxanone <10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Bromodi	Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1_2-Trichloroethane < 10	1,1,1-Trichloroethane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
International matrix Image: Market Matrix Image: Market Matrix Image: Market Matrix Image: Market Ma	1,1,2,2-Tetrachloroethane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
1,1-Dichloroethene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,2-Dichloroethene < 10	1,1,2-Trichloroethane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
1,2-Dichloroethane <10	1,1-Dichloroethane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
1,2-Dichloropethene (total) 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 1,2-Dichloropropane <10	1,1-Dichloroethene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
1,2-Dichloropropane <10	1,2-Dichloroethane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Automotion Automot	1,2-Dichloroethene (total)	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
2-Hexanore 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 4-Methyl-2-pentanone <10	1,2-Dichloropropane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
AMethyl-2-pentanone < 10	2-Butanone	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Acetone < 10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Benzene < 10	2-Hexanone	< 10	С	1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Restance< 101 $\mu g/L$ $04/11/2013 2:13 PM$ Container-01 of Q2Bromodichloromethane< 10	4-Methyl-2-pentanone	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Bromodichloromethane Image: Line of the second se	Acetone	< 10	С	1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Bromoform < 10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of Q2 Bromoform < 10	Benzene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Bromomethane < 10	Bromodichloromethane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Carbon disulfide< 101 $\mu g/L$ 04/11/2013 2:13 PMContainer-01 of 02Carbon tetrachloride< 10	Bromoform	< 10	С	1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Carbon tetrachloride < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Chlorobenzene < 10	Bromomethane	< 10	С	1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Chlorobenzene < 10	Carbon disulfide	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Chloroethane < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Chloroform < 10	Carbon tetrachloride	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Chloroform < 10	Chlorobenzene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Chloromethane < 10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 cis-1,3-Dichloropropene < 10	Chloroethane	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
cis-1,3-Dichloropropene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Dibromochloromethane < 10	Chloroform	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Dibromochloromethane < 10 c 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Ethylbenzene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Freon-113 < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Methylene chloride < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Styrene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Tetrachloroethene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Toluene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Trichloroethene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Trichloroethene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Trichloroethene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Vinyl chloride < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02	Chloromethane	< 10	С	1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Ethylbenzene < 10	cis-1,3-Dichloropropene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Freon-113 < 10	Dibromochloromethane	< 10	С	1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Methylene chloride < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Styrene < 10	Ethylbenzene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Styrene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Tetrachloroethene < 10	Freon-113	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Tetrachloroethene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 Toluene < 10	Methylene chloride	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Toluene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 trans-1,3-Dichloropropene < 10	Styrene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Toluene < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02 trans-1,3-Dichloropropene < 10	Tetrachloroethene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Trichloroethene < 10 1 μg/L 04/11/2013 2:13 PM Container-01 of 02 Vinyl chloride < 10	Toluene	< 10		1		04/11/2013 2:13 PM	Container-01 of 02
Vinyl chloride < 10 1 µg/L 04/11/2013 2:13 PM Container-01 of 02	trans-1,3-Dichloropropene	< 10		1	µg/L	04/11/2013 2:13 PM	Container-01 of 02
Vinyl chloride < 10 1 μg/L 04/11/2013 2:13 PM Container-01 of 02	Trichloroethene	< 10		1		04/11/2013 2:13 PM	Container-01 of 02
	Vinyl chloride	< 10		1		04/11/2013 2:13 PM	Container-01 of 02
	Xylene (total)	< 10		1		04/11/2013 2:13 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

 $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit > MDL and < LOQ

- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 4/4/2013 1:45:00 PMReceived: 4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-002A Client Sample ID: INFLUENT - 2 Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: SW8260	В:					<u>Analyst:</u> KcS
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Surr: 1,2-Dichloroethane-d4	101	1	%REC	Limit 53-183	04/11/2013 2:13 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	91.7	1	%REC	Limit 63-140	04/11/2013 2:13 PM	Container-01 of 02
Surr: Toluene-d8	98.1	1	%REC	Limit 60-135	04/11/2013 2:13 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ $\,$
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 4/4/2013 1:45:00 PMReceived: 4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-002B

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SM4500-H	B : IOC						<u>Analyst:</u> BJV
Parameter(s)		Results	<u>Qualifie</u>	r	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
pН		6.9	Н	+	1	pH Units	04/04/2013 4:38 PM	Container-01 of 01
pH Temperature		15.5	н	+	1	°C	04/04/2013 4:38 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		111			1	mg/L	04/11/2013 10:54 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:4/4/2013 1:45:00 PMReceived:4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1304343-002C

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: E200	7: <u>Prep Method</u> :	<u>:</u> E200	0.7	Prep Date: 4/11/2013 12:00:00 PM	Analyst: CM
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron	1.28	1	mg/L	04/15/2013 10:54 AM	Container-01 of 01
Manganese	0.11	1	mg/L	04/15/2013 10:54 AM	Container-01 of 01
Zinc	0.03	1	mg/L	04/15/2013 10:54 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 9 of 16

A division of H2M Labs, Inc.

575 Broad Hollow Rd., Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Donald Miller Attn To :

Collected :4/4/2013 1:45:00 PM DISSOLVED Received :4/4/2013 3:20:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 4/11/2013 12:00:00 PM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		< 0.02	1	mg/L	04/15/2013 10:58 AM	Container-01 of 01
Manganese		0.11	1	mg/L	04/15/2013 10:58 AM	Container-01 of 01
Zinc		0.03	1	mg/L	04/15/2013 10:58 AM	Container-01 of 01

Client Sample ID: INFLUENT - 2

Lab No.: 1304343-002D

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd., Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Donald Miller Attn To :

Collected :4/4/2013 2:00:00 PM Received :4/4/2013 3:20:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Client Sample ID: EFFLUENT - 1

Lab No.: 1304343-003A

Sample Information:

Type : Aqueous

Origin: Effluent

	3260B :					Analyst: KcS
Parameter(s)	<u>Results</u> Qu	<u>alifier</u> <u>D</u>	. <u>F. Uni</u>	<u>s</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of C
1,1,2,2-Tetrachloroethane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
1,1,2-Trichloroethane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
I,1-Dichloroethane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
I,1-Dichloroethene	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
1,2-Dichloroethane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
,2-Dichloroethene (total)	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
1,2-Dichloropropane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
2-Butanone	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
2-Hexanone	< 10	c 1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
1-Methyl-2-pentanone	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Acetone	< 10	c 1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Benzene	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Bromodichloromethane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of C
Bromoform	< 10	c 1	µg/L		04/11/2013 1:44 PM	Container-01 of C
Bromomethane	< 10	c 1	µg/L		04/11/2013 1:44 PM	Container-01 of C
Carbon disulfide	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of C
Carbon tetrachloride	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of C
Chlorobenzene	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of C
Chloroethane	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Chloroform	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Chloromethane	< 10	c 1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
cis-1,3-Dichloropropene	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Dibromochloromethane	< 10	c 1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Ethylbenzene	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0
Freon-113	< 10	1			04/11/2013 1:44 PM	Container-01 of 0
Methylene chloride	< 10	1			04/11/2013 1:44 PM	Container-01 of 0
Styrene	< 10	1			04/11/2013 1:44 PM	Container-01 of 0
etrachloroethene	< 10	1			04/11/2013 1:44 PM	Container-01 of 0
Toluene	< 10	1			04/11/2013 1:44 PM	Container-01 of 0
rans-1,3-Dichloropropene	< 10	1			04/11/2013 1:44 PM	Container-01 of 0
Trichloroethene	< 10	1	μg/L		04/11/2013 1:44 PM	Container-01 of 0
/inyl chloride	< 10	1	μg/L		04/11/2013 1:44 PM	Container-01 of 0
(ylene (total)	< 10	1	µg/L		04/11/2013 1:44 PM	Container-01 of 0

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit > MDL and < LOQ

- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 4/4/2013 2:00:00 PMReceived: 4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-003A Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method: SW8260B :									
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:			
Surr: 1,2-Dichloroethane-d4	98.7	1	%REC	Limit 53-183	04/11/2013 1:44 PM	Container-01 of 02			
Surr: 4-Bromofluorobenzene	91.8	1	%REC	Limit 63-140	04/11/2013 1:44 PM	Container-01 of 02			
Surr: Toluene-d8	98.5	1	%REC	Limit 60-135	04/11/2013 1:44 PM	Container-01 of 02			

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ $\,$
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 4/4/2013 2:00:00 PMReceived: 4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

......

Lab No.: 1304343-003B

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method:	SM4500-H	B : IOC						Analyst: BJV
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
pН		6.9	Н	+	1	pH Units	04/04/2013 4:39 PM	Container-01 of 01
pH Temperature		15.0	Н	+	1	°C	04/04/2013 4:39 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		98			1	mg/L	04/11/2013 10:57 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ $\,$
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:4/4/2013 2:00:00 PMReceived:4/4/2013 3:20:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-003C

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 4/11/2013 12:00:00 PM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		3.33	1	mg/L	04/15/2013 11:02 AM	Container-01 of 01
Manganese		0.12	1	mg/L	04/15/2013 11:02 AM	Container-01 of 01
Zinc		0.03	1	mg/L	04/15/2013 11:02 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

575 Broad Hollow Rd. , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 4/4/2013 2:00:00 PM Received : 4/4/2013 3:20:00 PM DISSOLVED Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1304343-003D

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method: E200.7 :	Prep Method:	E200.7	Prep Date: 4/11/2013 12:00:00 PM	Analyst: CM
Parameter(s)	Results Qualifier	<u>D.F. Units</u>	Analyzed:	Container:
Iron	< 0.02	1 mg/L	04/15/2013 11:06 AM	Container-01 of 01
Manganese	0.12	1 mg/L	04/15/2013 11:06 AM	Container-01 of 01
Zinc	< 0.02	1 mg/L	04/15/2013 11:06 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ
- J = Estimated value below calibration range
- s = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

Н	2	labs
	Μ	

H2M LABS INC 575 Broad Hollow Rd. Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Sample Receipt Checklist

Client Name FAIR			Date and T	Time Received:	4/4/2013 3:20:00 PM
Work Order Number: 1304343 RcptNo: 1				by: LindsayPad	
Completed by: Sendsong forcelli		Revie	ewed by:	bann	M. Slavin
Completed Date: <u>4/4/2013 3:38:58 PM</u>		Revie	ewed Date:	4/8/201	13 3:02:59 PM
Carrier name: Client					
Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Are matrices correctly identified on Chain of custody? Is it clear what analyses were requested?	Yes Yes Yes Yes	 <	No No No No		
Custody seals intact on sample bottles? Samples in proper container/bottle? Were correct preservatives used and noted? Preservative added to bottles:	Yes Yes Yes	<!--</td--><td>No 🗌 No 🗍 No 🗍</td><td>Not Present</td><td></td>	No 🗌 No 🗍 No 🗍	Not Present	
Sample Condition? Sufficient sample volume for indicated test? Were container labels complete (ID, Pres, Date)? All samples received within holding time?	Intact Yes Yes Yes	> > >	Broken No No No No	Leaking	
Was an attempt made to cool the samples? All samples received at a temp. of > 0° C to 6.0° C? Response when temperature is outside of range:	Yes Yes		No 🗌 No 🗌	NA NA	
Sample Temp. taken and recorded upon receipt? Water - Were bubbles absent in VOC vials? Water - Was there Chlorine Present? Water - pH acceptable upon receipt? Are Samples considered acceptable?	Yes Yes Yes Yes Yes	 <	No	To 1 No Vials NA No Water	1.8 ° □ ☑
Custody Seals present? Airbill or Sticker? Airbill No:	Yes Air Bil		No ☑ Sticker □	Not Present	
Case Number: SDG:		S	AS:		
	elow, if appl ===================================	icable.	=====	=====	

Contact Mode:	Phone:	Fax:	Email:	In Person:
Client Instructions:				
Date Contacted:			Contacted By:	
Regarding:				
Comments:				
CorrectiveAction:				

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 8/6/2013 2:30:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

the lab and is responsible only for the certified tests request

Sample Information:

Type : Aqueous

Origin: Influent

Lab No. : 1308268-001A Client Sample ID: INFLUENT - 1

Analytical Method:	SW8260B :	Prep Method:	503	0B		Analyst: KG
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
1,1,2,2-Tetrachloroethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
1,1,2-Trichloroethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
1,1-Dichloroethane	17	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
I,1-Dichloroethene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
,2-Dichloroethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
1,2-Dichloroethene (total)	440	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
,2-Dichloropropane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
2-Butanone	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
2-Hexanone	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
I-Methyl-2-pentanone	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Acetone	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Benzene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Bromodichloromethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Bromoform	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Bromomethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Carbon disulfide	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Carbon tetrachloride	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Chlorobenzene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Chloroethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Chloroform	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Chloromethane	< 10	Dc	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
cis-1,3-Dichloropropene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Dibromochloromethane	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Ethylbenzene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Freon-113	21	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
lethylene chloride	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Styrene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
etrachloroethene	690	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
oluene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
rans-1,3-Dichloropropene	< 10	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
Frichloroethene	370	D	10	µg/L	08/12/2013 6:37 PM	Container-01 of 0
/inyl chloride	37	D	10	μg/L	08/12/2013 6:37 PM	Container-01 of (

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 8/6/2013 2:30:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1308268-001A

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: SW8260	B :	Prep Method:	503	0B			Analyst: KG
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10	D	10	µg/L		08/12/2013 6:37 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	86.3	D	10	%REC	Limit 53-183	08/12/2013 6:37 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	91.7	D	10	%REC	Limit 63-140	08/12/2013 6:37 PM	Container-01 of 02
Surr: Toluene-d8	77.3	D	10	%REC	Limit 60-135	08/12/2013 6:37 PM	Container-01 of 02

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 16

A division of H2M Labs, Inc.

 ',
 Melville, NY 11747

 TEL: (631) 694-3040
 FAX: (631) 420-8436

 NYSDOH ID#10478
 FAX: (631) 420-8436

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:8/6/2013 2:30:00 PMReceived:8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1308268-001B

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SM4500-H	B : IOC						Analyst: JL
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		5.3	н	+	1	pH Units	08/06/2013 7:52 PM	Container-01 of 01
pH Temperature		19.8	Н	+	1	°C	08/06/2013 7:52 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MLM
Parameter(s)		Results	<u>Qualifie</u>	r	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		115			1	mg/L	08/08/2013 3:21 PM	Container-01 of 01

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 16

Melville NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : **Donald Miller** Collected :8/6/2013 2:30:00 PM Received :8/6/2013 3:00:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1308268-001C

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: E	200.7 :	Prep Method:	E20	0.7	Prep Date: 8/7/2013 9:00:00 AM	Analyst:	Aba
Parameter(s)	Res	ults Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	<u>Contair</u>	ner:
Iron	0.2)	1	mg/L	08/08/2013 3:14 PM	Containe	r-01 of 01
Manganese	0.1)	1	mg/L	08/08/2013 3:14 PM	Containe	r-01 of 01
Zinc	0.0	7	1	mg/L	08/08/2013 3:14 PM	Containe	r-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 16

DISSOLVED

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 8/6/2013 2:30:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1308268-001D

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: E200	7: Prep Method:	E200.7	Prep Date: 8/12/2013 9:28:00 AM	Analyst: Aba
Parameter(s)	Results Qualifier	D.F. Units	Analyzed:	Container:
Iron	0.11	1 mg/L	08/12/2013 3:41 PM	Container-01 of 01
Manganese	0.09	1 mg/L	08/12/2013 3:41 PM	Container-01 of 01
Zinc	0.11	1 mg/L	08/12/2013 3:41 PM	Container-01 of 01

 Qualifiers:
 E = Value above quantitation range, Value estimated.

 B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- $\mathsf{r} = \mathsf{Reporting}\ \mathsf{limit} > \mathsf{MDL}\ \mathsf{and} < \mathsf{LOQ}, \ \mathsf{Value}\ \mathsf{estimated}.$
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 16

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

vienna, vA 221162-2040

Attn To:Donald MillerCollected: 8/6/2013 2:45:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1308268-002A Client Sample ID: INFLUENT - 2 Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SW8260B : Prep Method:	503	0B		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
1,1,2-Trichloroethane	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
1,1-Dichloroethane	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
1,1-Dichloroethene	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
1,2-Dichloroethane	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
1,2-Dichloroethene (total)	250	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
1,2-Dichloropropane	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
2-Butanone	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
2-Hexanone	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
4-Methyl-2-pentanone	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Acetone	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Benzene	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Bromodichloromethane	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Bromoform	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Bromomethane	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Carbon disulfide	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Carbon tetrachloride	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
Chlorobenzene	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Chloroethane	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Chloroform	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Chloromethane	< 10 c	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Dibromochloromethane	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
Ethylbenzene	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
Freon-113	< 10	1	μg/L	08/12/2013 6:06 PM	Container-01 of 02
Methylene chloride	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
Styrene	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
Tetrachloroethene	170 D	5	µg/L	08/14/2013 12:38 PM	Container-02 of 02
Toluene	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
Trichloroethene	140	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02
Vinyl chloride	< 10	1	µg/L	08/12/2013 6:06 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

 $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte

- $\mathsf{r} = \mathsf{Reporting}\ \mathsf{limit} > \mathsf{MDL}\ \mathsf{and} < \mathsf{LOQ}, \ \mathsf{Value}\ \mathsf{estimated}.$
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 16

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To :Donald MillerCollected: 8/6/2013 2:45:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1308268-002A Client Sample ID: INFLUENT - 2 Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: SW82	260B :	Prep Method:	5030)B			Analyst: KG
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10		1	µg/L		08/12/2013 6:06 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	88.2		1	%REC	Limit 53-183	08/12/2013 6:06 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	92.3		1	%REC	Limit 63-140	08/12/2013 6:06 PM	Container-01 of 02
Surr: Toluene-d8	77.4		1	%REC	Limit 60-135	08/12/2013 6:06 PM	Container-01 of 02

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

A division of H2M Labs, Inc.

 ',
 Melville, NY 11747

 TEL: (631) 694-3040
 FAX: (631) 420-8436

 NYSDOH ID#10478
 FAX: (631) 420-8436

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:8/6/2013 2:45:00 PMReceived:8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1308268-002B

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SM4500-H	B : IOC						Analyst: JL
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		6.1	Н	+	1	pH Units	08/06/2013 7:54 PM	1 Container-01 of 01
pH Temperature		20.0	Н	+	1	°C	08/06/2013 7:54 PM	1 Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MLM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		111			1	mg/L	08/08/2013 3:24 PN	1 Container-01 of 01

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC

Joann M. Slavin

Laboratory Manager

unless otherwise noted. This report shall not be reproduced except in full,

without the written approval of the laboratory.

', Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 8/6/2013 2:45:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

the lab and is responsible only for the certified tests request

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	00.7	Prep Date: 8/7/2013 9:00:00 AM	Analyst: Aba
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.19	1	mg/L	08/08/2013 3:19 PM	Container-01 of 01
Manganese		0.10	1	mg/L	08/08/2013 3:19 PM	Container-01 of 01
Zinc		0.12	1	mg/L	08/08/2013 3:19 PM	Container-01 of 01

Client Sample ID: INFLUENT - 2

Lab No.: 1308268-002C

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 9 of 16

DISSOLVED

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :8/6/2013 2:45:00 PM Received :8/6/2013 3:00:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1308268-002D

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: E200.7 :	Prep Method:	E200.7	Prep Date: 8/12/2013 9:28:00 AM	Analyst: Aba
Parameter(s)	Results Qualifier	<u>D.F.</u> <u>Units</u>	Analyzed:	Container:
Iron	< 0.02	1 mg/L	08/12/2013 3:46 PM	Container-01 of 01
Manganese	0.09	1 mg/L	08/12/2013 3:46 PM	Container-01 of 01
Zinc	0.09	1 mg/L	08/12/2013 3:46 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- $\mathsf{r} = \mathsf{Reporting}\ \mathsf{limit} > \mathsf{MDL}\ \mathsf{and} < \mathsf{LOQ}, \ \mathsf{Value}\ \mathsf{estimated}.$
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 16

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

vienna, vA 221102-2040

Attn To:Donald MillerCollected: 8/6/2013 3:00:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Lab No. : 1308268-003A Client Sample ID: EFFLUENT - 1

Type : Aqueous

Origin: Effluent

Analytical Method:	SW8260B : Prep Method:	503	0B		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
1,1,2-Trichloroethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
1,1-Dichloroethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
1,1-Dichloroethene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
1,2-Dichloroethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
1,2-Dichloroethene (total)	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
1,2-Dichloropropane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
2-Butanone	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
2-Hexanone	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
4-Methyl-2-pentanone	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Acetone	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Benzene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Bromodichloromethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Bromoform	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Bromomethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Carbon disulfide	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Carbon tetrachloride	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Chlorobenzene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Chloroethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Chloroform	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Chloromethane	< 10 c	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Dibromochloromethane	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Ethylbenzene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Freon-113	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Methylene chloride	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Styrene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Tetrachloroethene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Toluene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 10	1	μg/L	08/12/2013 5:36 PM	Container-01 of 02
Trichloroethene	< 10	1	µg/L	08/12/2013 5:36 PM	Container-01 of 02
Vinyl chloride	< 10	1	µg/L	08/12/2013 5:36 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 16

 ',
 Melville, NY 11747

 TEL: (631) 694-3040
 FAX: (631) 420-8436

 NYSDOH ID#10478
 FAX: (631) 420-8436

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:8/6/2013 3:00:00 PMReceived:8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

the lab and is responsible only for the certified tests requests

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method: SW8	260B :	Prep Method:	5030	ЭB			Analyst: KG
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10		1	µg/L		08/12/2013 5:36 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	85.9		1	%REC	Limit 53-183	08/12/2013 5:36 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	91.3		1	%REC	Limit 63-140	08/12/2013 5:36 PM	Container-01 of 02
Surr: Toluene-d8	77.3		1	%REC	Limit 60-135	08/12/2013 5:36 PM	Container-01 of 02

Lab No.: 1308268-003A

Client Sample ID: EFFLUENT - 1

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 12 of 16

A division of H2M Labs, Inc.

 ',
 Melville, NY 11747

 TEL: (631) 694-3040
 FAX: (631) 420-8436

 NYSDOH ID#10478
 FAX: (631) 420-8436

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 8/6/2013 3:00:00 PMReceived: 8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1308268-003B

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method:	SM4500-H	IB:IOC						Analyst: JL
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		7.1	н	+	1	pH Units	08/06/2013 7:56 PM	Container-01 of 01
pH Temperature		20.0	Н	+	1	°C	08/06/2013 7:56 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MLM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		113			1	mg/L	08/08/2013 3:27 PM	Container-01 of 01

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound
- Date Reported : 8/15/2013

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 16

', Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:8/6/2013 3:00:00 PMReceived:8/6/2013 3:00:00 PMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1308268-003C Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method:	E200.7 :	Prep Method:	E20	00.7	Prep Date: 8/7/2013 9:00:00 AM	Analyst: A	Aba
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Containe	er:
Iron		0.24	1	mg/L	08/08/2013 3:23 PM	Container-0	01 of 01
Manganese		0.10	1	mg/L	08/08/2013 3:23 PM	Container-0	01 of 01
Zinc		0.02	1	mg/L	08/08/2013 3:23 PM	Container-0	01 of 01

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Laboratory Manager

Joann M. Slavin

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 16

DISSOLVED

', Melville, NY 11747
 TEL: (631) 694-3040
 FAX: (631) 420-8436
 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :8/6/2013 3:00:00 PM Received :8/6/2013 3:00:00 PM Collected By WIRE TO WATER LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1308268-003D

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method: E20	0.7: Prep Method:	E200.7	Prep Date: 8/12/2013 9:28:00 AM	Analyst: Aba
Parameter(s)	Results Qualifier	<u>D.F.</u> <u>Units</u>	Analyzed:	Container:
Iron	0.03	1 mg/L	08/12/2013 3:50 PM	Container-01 of 01
Manganese	0.09	1 mg/L	08/12/2013 3:50 PM	Container-01 of 01
Zinc	0.07	1 mg/L	08/12/2013 3:50 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- $\ensuremath{\mathsf{c}}$ = Calibration acceptability criteria exceeded for this analyte
- $\mathsf{r} = \mathsf{Reporting}\ \mathsf{limit} > \mathsf{MDL}\ \mathsf{and} < \mathsf{LOQ}, \ \mathsf{Value}\ \mathsf{estimated}.$
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC

Joann M. Slavin

Laboratory Manager

unless otherwise noted. This report shall not be reproduced except in full,

without the written approval of the laboratory.

Page 15 of 16

Η	2	labs
	М	

H2M LABS INC

Sample Receipt Checklist

Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.h2mlabs.com</u>

Client Name FAIR		Date and Time Received: 8/6/2013 3:00:00 PM			
Work Order Number: 1308268 RcptNo: 1		Received by MelissaWatson Reviewed by:			
Completed by:	R				
Completed Date: <u>8/6/2013 6:10:51 PM</u>	R	eviewed Date:	<u>8/13/201</u>	13 1:06:36 PM	
Carrier name: <u>Client</u>					
Chain of custody present?	Yes 🗸	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌			
Are matrices correctly identified on Chain of custody?	Yes 🗸	No 🗌			
Is it clear what analyses were requested?	Yes 🗸	No 🗌			
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	\checkmark	
Samples in proper container/bottle?	Yes 🗸	No 🗌			
Were correct preservatives used and noted?	Yes 🗸	No 🗌	NA		
Preservative added to bottles:					
Sample Condition?	Intact 🗸	Broken	Leaking		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌			
Were container labels complete (ID, Pres, Date)?	Yes 🗸	No 🗌			
All samples received within holding time?	Yes	No 🗹			
Was an attempt made to cool the samples?	Yes 🗸	No 🗌	NA		
All samples received at a temp. of > 0° C to 6.0° C?	Yes 🗸	No 🗌	NA		
Response when temperature is outside of range:					
Sample Temp. taken and recorded upon receipt?	Yes 🗸	No 🗌	To 6	5.9 °	
Water - Were bubbles absent in VOC vials?	Yes 🗸	No 🗆	No Vials		
Water - Was there Chlorine Present?	Yes	No 🗆	NA	\checkmark	
Water - pH acceptable upon receipt?	Yes 🗸	No 🗆	No Water		
Are Samples considered acceptable?	Yes 🗸				
Custody Seals present?	Yes	No 🗹			
Airbill or Sticker?	Air Bil	Sticker	Not Present		
Airbill No:				-	
		SAS:			

Any No response should be detailed in the comments section below, if applicable.

Client Contacted? Contact Mode: Client Instructions:	☐ Yes ✔ No ☐ Phone: ☐ Fax	Person Contacted:	☐ In Person:
Date Contacted: Regarding: Comments: pH out of holdg		Contacted By:	
CorrectiveAction:			

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 10/16/2013 11:30:00 AM Received : 10/16/2013 11:55:00 AM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-001A Client Sample ID: INFLUENT - 1 Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SW8260 :	Prep Method:	5030	C		Analyst: GKB
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
1,1,2-Trichloroethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
1,1-Dichloroethane	13		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
1,1-Dichloroethene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
1,2-Dichloroethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
1,2-Dichloroethene (total)	320		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
1,2-Dichloropropane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
2-Butanone	< 10	С	1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
2-Hexanone	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
4-Methyl-2-pentanone	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Acetone	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Benzene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Bromodichloromethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Bromoform	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Bromomethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Carbon disulfide	< 10	С	1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Carbon tetrachloride	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Chlorobenzene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Chloroethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Chloroform	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Chloromethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Dibromochloromethane	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Ethylbenzene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Freon-113	20	С	1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Methylene chloride	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Styrene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Tetrachloroethene	740	D	5	µg/L	10/17/2013 5:07 PM	Container-02 of 02
Toluene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 10		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02
Trichloroethene	320	D	5	µg/L	10/17/2013 5:07 PM	Container-02 of 02
Vinyl chloride	36		1	µg/L	10/17/2013 4:36 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- $\mathsf{r} = \mathsf{Reporting}\ \mathsf{limit} > \mathsf{MDL}\ \mathsf{and} < \mathsf{LOQ}, \ \mathsf{Value}\ \mathsf{estimated}.$
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

ECO EST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :10/16/2013 11:30:00 AM Received :10/16/2013 11:55:00 AM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1310896-001A

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: SW8260	:	Prep Method:	5030	C			Analyst: GKB
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10		1	µg/L		10/17/2013 4:36 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	76.8		1	%REC	Limit 53-183	10/17/2013 4:36 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	91.7		1	%REC	Limit 63-140	10/17/2013 4:36 PM	Container-01 of 02
Surr: Toluene-d8	85.2		1	%REC	Limit 60-135	10/17/2013 4:36 PM	Container-01 of 02

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

ECOTEST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 10/16/2013 11:30:00 AMReceived: 10/16/2013 11:55:00 AMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1310896-001B

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SM4500-H	B : IOC						Analyst: JL
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		5.6	н	+	1	pH Units	10/16/2013 5:51 PM	Container-01 of 01
pH Temperature		10.3	Н	+	1	°C	10/16/2013 5:51 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MLM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		112			1	mg/L	10/16/2013 2:48 PM	Container-01 of 01

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

ECO EST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

vienna, vA 221182-2040

Attn To:Donald MillerCollected: 10/16/2013 11:30:00 AMReceived: 10/16/2013 11:55:00 AMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-001C

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	E200.7:	Prep Method:	E20	0.7	Prep Date: 10/23/2013 10:00:00 AM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.23	1	mg/L	10/28/2013 12:40 PM	Container-01 of 01
Manganese		0.10	1	mg/L	10/28/2013 12:40 PM	Container-01 of 01
Zinc		0.21	1	mg/L	10/28/2013 12:40 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

ECOTEST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 10/16/2013 11:30:00 AM Received : 10/16/2013 11:55:00 AM DISSOLVED Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	00.7	Prep Date: 10/23/2013 10:00:00 AM Analyst: CM	
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed: Container:	
Iron		0.11	1	mg/L	10/28/2013 12:44 PM Container-01 of	of 01
Manganese		0.10	1	mg/L	10/28/2013 12:44 PM Container-01 of	of 01
Zinc		0.12	1	mg/L	10/28/2013 12:44 PM Container-01 of	of 01

Client Sample ID: INFLUENT - 1

Lab No.: 1310896-001D

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 16

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :10/16/2013 11:15:00 AM Received :10/16/2013 11:55:00 AM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-002A Client Sample ID: INFLUENT - 2 Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SW8260 : Prep Method:	503	0C		Analyst: GKB
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
1,1,2-Trichloroethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
1,1-Dichloroethane	14	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
1,1-Dichloroethene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
1,2-Dichloroethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
1,2-Dichloroethene (total)	350	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
1,2-Dichloropropane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
2-Butanone	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
2-Hexanone	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
4-Methyl-2-pentanone	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Acetone	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Benzene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Bromodichloromethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Bromoform	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Bromomethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Carbon disulfide	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Carbon tetrachloride	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Chlorobenzene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Chloroethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Chloroform	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Chloromethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Dibromochloromethane	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Ethylbenzene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Freon-113	< 10 c	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Methylene chloride	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Styrene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Tetrachloroethene	560 D	5	µg/L	10/23/2013 9:40 PM	Container-02 of 02
Toluene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 10	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02
Trichloroethene	290 D	5	µg/L	10/23/2013 9:40 PM	Container-02 of 02
Vinyl chloride	30	1	µg/L	10/23/2013 5:13 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- $\mathsf{r} = \mathsf{Reporting}\ \mathsf{limit} > \mathsf{MDL}\ \mathsf{and} < \mathsf{LOQ}, \ \mathsf{Value}\ \mathsf{estimated}.$
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 16

ECO EST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :10/16/2013 11:15:00 AM Received :10/16/2013 11:55:00 AM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1310896-002A

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method: SW8260	:	Prep Method:	5030)C			Analyst: GKB
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10		1	µg/L		10/23/2013 5:13 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	80.6		1	%REC	Limit 53-183	10/23/2013 5:13 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	92.1		1	%REC	Limit 63-140	10/23/2013 5:13 PM	Container-01 of 02
Surr: Toluene-d8	80.0		1	%REC	Limit 60-135	10/23/2013 5:13 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

ECOTEST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 10/16/2013 11:15:00 AMReceived: 10/16/2013 11:55:00 AMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-002B Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	SM4500-H	B : IOC						Analyst: JL
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		5.7	н	+	1	pH Units	10/16/2013 5:55 PM	Container-01 of 01
pH Temperature		10	Н	+	1	°C	10/16/2013 5:55 PM	Container-01 of 01
Analytical Method:	SM2540C :	IOC						Analyst: MLM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		113			1	mg/L	10/16/2013 2:51 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

ECO EST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

vienna, vA 221182-2040

Attn To:Donald MillerCollected: 10/16/2013 11:15:00 AMReceived: 10/16/2013 11:55:00 AMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1310896-002C

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 10/23/2013 10:00:00 AM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.22	1	mg/L	10/28/2013 12:49 PM	Container-01 of 01
Manganese		0.10	1	mg/L	10/28/2013 12:49 PM	Container-01 of 01
Zinc		0.07	1	mg/L	10/28/2013 12:49 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

ECOTEST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 10/16/2013 11:15:00 AM Received : 10/16/2013 11:55:00 AM DISSOLVED Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Type : Aqueous

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 10/23/2013 10:00:00 AM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.07	1	mg/L	10/28/2013 12:53 PM	Container-01 of 01
Manganese		0.10	1	mg/L	10/28/2013 12:53 PM	Container-01 of 01
Zinc		0.11	1	mg/L	10/28/2013 12:53 PM	Container-01 of 01

Client Sample ID: INFLUENT - 2

Lab No.: 1310896-002D

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 16

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 10/16/2013 11:00:00 AM Received : 10/16/2013 11:55:00 AM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-003A Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method:	SW8260 : <u>Prep Method:</u>	5030	C		Analyst: GKB
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10	1	µg/L	10/23/2013 5:43 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
1,1,2-Trichloroethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
1,1-Dichloroethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
1,1-Dichloroethene	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
1,2-Dichloroethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
1,2-Dichloroethene (total)	190	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
1,2-Dichloropropane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
2-Butanone	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
2-Hexanone	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
4-Methyl-2-pentanone	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Acetone	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Benzene	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Bromodichloromethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Bromoform	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Bromomethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Carbon disulfide	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Carbon tetrachloride	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Chlorobenzene	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Chloroethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Chloroform	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Chloromethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Dibromochloromethane	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Ethylbenzene	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Freon-113	< 10 c	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Methylene chloride	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Styrene	< 10	1	µg/L	10/23/2013 5:43 PM	Container-01 of 02
Tetrachloroethene	120	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Toluene	< 10	1	µg/L	10/23/2013 5:43 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Trichloroethene	90	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02
Vinyl chloride	< 10	1	μg/L	10/23/2013 5:43 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- $\mathsf{r} = \mathsf{Reporting}\ \mathsf{limit} > \mathsf{MDL}\ \mathsf{and} < \mathsf{LOQ}, \ \mathsf{Value}\ \mathsf{estimated}.$
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 16

ECO EST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :10/16/2013 11:00:00 AM Received :10/16/2013 11:55:00 AM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-003A

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method: SW8260	:	Prep Method:	5030	C			Analyst: GKB
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10		1	µg/L		10/23/2013 5:43 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	80.9		1	%REC	Limit 53-183	10/23/2013 5:43 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	92.0		1	%REC	Limit 63-140	10/23/2013 5:43 PM	Container-01 of 02
Surr: Toluene-d8	80.1		1	%REC	Limit 60-135	10/23/2013 5:43 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 12 of 16

ECOTEST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected: 10/16/2013 11:00:00 AMReceived: 10/16/2013 11:55:00 AMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-003B Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method:	SM4500-H	B : IOC						Analyst: JL
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
pН		6.8	Н	+	1	pH Units	10/16/2013 5:57 PM	Container-01 of 01
pH Temperature		10.4	н	+	1	°C	10/16/2013 5:57 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MLM
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		120			1	mg/L	10/16/2013 2:54 PM	Container-01 of 01

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 16

ECO EST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd. Vienna, VA 221182-2640

vienna, vA 221182-2040

Attn To:Donald MillerCollected: 10/16/2013 11:00:00 AMReceived: 10/16/2013 11:55:00 AMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1310896-003C Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 10/23/2013 10:00:00 AM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.20	1	mg/L	10/28/2013 12:57 PM	Container-01 of 01
Manganese		0.11	1	mg/L	10/28/2013 12:57 PM	Container-01 of 01
Zinc		0.05	1	mg/L	10/28/2013 12:57 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 16

ECOTEST LABORATORIES

A division of H2M Labs, Inc.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To: Donald Miller

Collected : 10/16/2013 11:00:00 AM Received : 10/16/2013 11:55:00 AM DISSOLVED Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1310896-003D

Sample Information:

Type : Aqueous

Origin: Effluent

Analytical Method: E20	0.7 : Prep Method:	E200.7	Prep Date: 10/23/2013 10:00:00 AM	Analyst: CM
Parameter(s)	Results Qualifier	<u>D.F.</u> <u>Units</u>	Analyzed:	Container:
Iron	0.05	1 mg/L	10/28/2013 1:14 PM	Container-01 of 01
Manganese	0.10	1 mg/L	10/28/2013 1:14 PM	Container-01 of 01
Zinc	0.09	1 mg/L	10/28/2013 1:14 PM	Container-01 of 01

Client Sample ID: EFFLUENT - 1

Qualifiers: E = Value above quantitation range, Value estimated.B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 16

Η	2	labs
	М	

Client Instructions: Date Contacted:

CorrectiveAction:

Regarding: Comments:

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: www.h2mlabs.com

Sample Receipt Checklist

		,, costie.		<u>unnaos.com</u>		
Client Name FAIR				Date and T	Time Received:	10/16/2013 11:55:00 AM
Work Order Number: 13108	96 RcptNo: 1			Received b	by Jamie Sper	0
Completed by:	in fr		Revie	ewed by: 🧲	sty 7	Junel
Completed Date: <u>10/16/2</u>	013 11:57:19 AM		Revie	ewed Date:		3 3:58:07 PM
Carrier name: Client						
Chain of custody present?		Yes	\checkmark	No 🗌		
Chain of custody signed when	relinguished and received?	Yes	\checkmark	No 🗌		
Chain of custody agrees with s	ample labels?	Yes	\checkmark	No 🗌		
Are matrices correctly identified		Yes	\checkmark	No 🗌		
Is it clear what analyses were r	equested?	Yes	\checkmark	No 🗌		
Custody seals intact on sample	e bottles?	Yes		No 🗌	Not Present	
Samples in proper container/bo	ottle?	Yes	\checkmark	No 🗌		
Were correct preservatives use	ed and noted?	Yes	\checkmark	No 🗌	NA	
Preservative added to bottles:						
Sample Condition?		Intact	\checkmark	Broken 🗌	Leaking	
Sufficient sample volume for in	dicated test?	Yes		No 🗌		
Were container labels complete	e (ID, Pres, Date)?	Yes		No 🛄		
All samples received within hol	ding time?	Yes	\checkmark	No 🗔		
Was an attempt made to cool t	he samples?	Yes	\checkmark	No 🗌	NA	
All samples received at a temp	o. of > 0° C to 6.0° C?	Yes	\checkmark	No 🗌	NA	
Response when temperature is	s outside of range:					
Sample Temp. taken and record	rded upon receipt?	Yes	\checkmark	No 🗌	To 3	.8 °
Water - Were bubbles absent i	n VOC vials?	Yes	\checkmark	No	No Vials	
Water - Was there Chlorine Pre	esent?	Yes		No 🗌	NA	\checkmark
Water - pH acceptable upon re	ceipt?	Yes	\checkmark	No 🗌	No Water	
Are Samples considered accept	otable?	Yes	\checkmark	No 🗌		
Custody Seals present?		Yes		No 🗹		
Airbill or Sticker?		Air Bil		Sticker	Not Present	\checkmark
Airbill No:						
Case Number:	SDG:		S	AS:		
Any No response should be de	stailed in the comments section	n below, if appl	icable.			
			= == =	=====	=====	
Client Contacted?	es 🗹 No 🛛 Perso	n Contacted:				
Contact Mode:	hone: Fax:	Email:		In Person:		

Contacted By:

Page 16 of 16

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

 Attn To:
 Donald Miller

 Collected
 :11/6/2013 11:30:00 AM

 Received
 :11/6/2013 11:45:00 AM

 Collected By
 WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-001A

Client Sample ID: INFLUENT - 1

Sample Information: Type : Waste Water

•••

Origin: Influent

Analytical Method:	SW8260 :	Prep Method:	5030	C		Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of (
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of 0
1,1,2-Trichloroethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of 0
1,1-Dichloroethane	16		1	µg/ĩL	11/08/2013 2:01 AM	Container-01 of 0
1,1-Dichloroethene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of 0
1,2-Dichloroethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of 0
1,2-Dichloroethene (total)	370		1	µg/L	11/08/2013 2:01 AM	Container-01 of (
1,2-Dichloropropane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of (
2-Butanone	< 10	С	1	µg/L	11/08/2013 2:01 AM	Container-01 of 0
2-Hexanone	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of (
4-Methyl-2-pentanone	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of (
Acetone	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Benzene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Bromodichloromethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Bromoform	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Bromomethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Carbon disulfide	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Carbon tetrachloride	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Chlorobenzene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Chloroethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Chloroform	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Chloromethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
cis-1,3-Dichloropropene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Dibromochloromethane	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Ethylbenzene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Freon-113	28		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Methylene chloride	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Styrene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Tetrachloroethene	850	D	10	µg/L	11/08/2013 10:53 PM	Container-02 of
Toluene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
rans-1,3-Dichloropropene	< 10		1	µg/L	11/08/2013 2:01 AM	Container-01 of
Trichloroethene	370	D	10	µg/L	11/08/2013 10:53 PM	1 Container-02 of
Vinyl chloride	45		1	μg/L	11/08/2013 2:01 AM	Container-01 of

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : **Donald Miller** Collected :11/6/2013 11:30:00 AM Received :11/6/2013 11:45:00 AM

Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-001A

Client Sample ID: INFLUENT - 1

Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method: SW8260	1:	Prep Method:		C				Analyst: GKB	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>			Analyzed:	Container:	
Xylene (total)	< 10		1	µg/L			11/08/2013 2:01 AM	Container-01 of 02	
Surr: 1,2-Dichloroethane-d4	88.5		1	%REC	Limit	53-183	11/08/2013 2:01 AM	Container-01 of 02	
Surr: 4-Bromofluorobenzene	93.6		1	%REC	Limit	63-140	11/08/2013 2:01 AM	Container-01 of 02	
Surr: Toluene-d8	95.6		1	%REC	Limit	60-135	11/08/2013 2:01 AM	Container-01 of 02	

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation

8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller Collected :11/6/2013 11:30:00 AM

Received :11/6/2013 11:45:00 AM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1311275-001B

Sample Information:

Type : Waste Water

Client Sample ID: INFLUENT - 1

Origin: Influent

Analytical Method:	SM4500-H	B:IOC	kund hite ookt					<u>Analyst:</u> AW
Parameter(s)		Results	Qualifie	r	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		5.1	н	+	1	pH Units	11/06/2013 6:20 PM	Container-01 of 01
pH Temperature		23.9	н	+	1	°C	11/06/2013 6:20 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: MLM
Parameter(s)		Results	Qualifie	r	D.F.	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		121			1	mg/L	11/11/2013 1:54 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank D.F. = Dilution Factor D = Results for Dilution

- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound
- It manager processiphile entremester i re-

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation

8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : **Donald Miller** Collected :11/6/2013 11:30:00 AM Received :11/6/2013 11:45:00 AM

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-001C

Client Sample ID: INFLUENT - 1

Sample Information: Type : Waste Water

Origin: Influent

Collected By WIRE TO WATER

Analytical Method: E200.7 :		Prep Metho	<u>d:</u> E	200.7	Prep Date: 11/7/2013 10:48:47 AM	Analyst: CM	
Parameter(s)		Results Qualifier	<u>D.</u> F	<u> Units</u>	Analyzed:	Container:	
Iron	103	0.19	1	mg/L	11/12/2013 11:59 AM	Container-01 of 01	
Manganese		0.10	1	mg/L	11/12/2013 11:59 AM	Container-01 of 01	
Zinc		0.06	1	mg/L	11/12/2013 11:59 AM	Container-01 of 01	

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

11/14/2013 Date Reported :

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

DISSOLVED

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Collected : 11/6/2013 11:30:00 AM

Collected By WIRE TO WATER

Donald Miller

:11/6/2013 11:45:00 AM

Fairchild Corporation

Vienna, VA 221182-2640

8130 Boone Blvd.

Attn To :

Received

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-001D

Client Sample ID: INFLUENT - 1

Sample Information: Type : Waste Water

Origin: Influent

Analytical Method:	E200.7 :		Prep Method:	E20	0.7	Prep Date: 1	1/12/2013 12:03:55 PM	Analyst:	Aba
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	<u>Contai</u>	ner:
Iron		0.11		1	mg/L		11/13/2013 2:08 PM	Containe	r-01 of 01
Manganese		0.09		1	mg/L		11/13/2013 2:08 PM	Containe	r-01 of 01
Zinc		0.08		1	mg/L		11/13/2013 2:08 PM	Containe	r-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank D.F. = Dilution Factor D = Results for Dilution

- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation

8130 Boone Blvd. Vienna, VA 221182-2640

Attn To: Donald Miller Collected :11/6/2013 11:15:00 AM Received :11/6/2013 11:45:00 AM Collected By WIRE TO WATER LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at

the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-002A

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method:	SW8260 :		Prep Method:	5030	C		Analyst: GKB
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
1,1,2,2-Tetrachloroethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
1,1,2-Trichloroethane		< 10		1	μg/L	11/08/2013 2:31 AM	Container-01 of 02
1,1-Dichloroethane		15		ĩ	µg/L	11/08/2013 2:31 AM	Container-01 of 02
1,1-Dichloroethene		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
1,2-Dichloroethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
1,2-Dichloroethene (total)		360		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
1,2-Dichloropropane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
2-Butanone		< 10	С	1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
2-Hexanone		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
4-Methyl-2-pentanone		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Acetone		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Benzene		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Bromodichloromethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Bromoform		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Bromomethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Carbon disulfide		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Carbon tetrachloride		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 02
Chlorobenzene		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Chloroethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Chloroform		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Chloromethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
cis-1,3-Dichloropropene		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Dibromochloromethane		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Ethylbenzene		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Freon-113		12		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Methylene chloride		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Styrene		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
Tetrachloroethene		750	D	5	µg/L	11/08/2013 10:18 PM	Container-02 of 0
Toluene		< 10		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0
trans-1,3-Dichloropropene		< 10		1	μg/L	11/08/2013 2:31 AM	Container-01 of 0
Trichloroethene		350	D	5	µg/L	11/08/2013 10:18 PM	Container-02 of 0
Vinyl chloride		34		1	µg/L	11/08/2013 2:31 AM	Container-01 of 0

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin

Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller Collected :11/6/2013 11:15:00 AM Received :11/6/2013 11:45:00 AM

Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-002A

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method: SW8260	1:	Prep Method:	5030	C				Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>			Analyzed:	Container:
Xylene (total)	< 10		1	µg/L			11/08/2013 2:31 AM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	89.7		1	%REC	Limit	53-183	11/08/2013 2:31 AM	Container-01 of 02
Surr: 4-Bromofluorobenzene	93.5		1	%REC	Limit	63-140	11/08/2013 2:31 AM	Container-01 of 02
Surr: Toluene-d8	96.8		1	%REC	Limit	60-135	11/08/2013 2:31 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit > MDL and < LOQ, Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

11/14/2013 Date Reported :

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Received :11/6/2013 11:45:00 AM Collected By WIRE TO WATER

Donald Miller

:11/6/2013 11:15:00 AM

Fairchild Corporation

Vienna, VA 221182-2640

8130 Boone Blvd.

Attn To :

Collected

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1311275-002B

Client Sample ID: INFLUENT - 2

Sample Information: Type : Waste Water

Type . Waste Water

Origin: Influent

Analytical Method:	SM4500-H	B: IOC		No cella				Analyst: AW
Parameter(s)		Results	Qualifie	er	D.F.	<u>Units</u>	Analyzed:	Container:
pН	2010-000 C.Color	5.1	н	+	1	pH Units	11/06/2013 6:23 PM	Container-01 of 01
pH Temperature		23.9	н	+	1	°C	11/06/2013 6:23 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC			2000 - D	the C		Analyst: MLM
Parameter(s)		Results	Qualifie	er	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		130			1	mg/L	11/11/2013 1:57 PM	Container-01 of 01

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 11/14/2013

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation

8130 Boone Blvd. Vienna, VA 221182-2640

 Attn To:
 Donald Miller

 Collected
 :11/6/2013 11:15:00 AM

 Received
 :11/6/2013 11:45:00 AM

 Collected By
 WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1311275-002C

Client Sample ID: INFLUENT - 2

Sample Information: Type : Waste Water

Origin: Influent

Analytical Method:	E200.7:	Prep Method:	E20	0.7	Prep Date: 11/7/2013 10:48:47 AM	Analyst:	CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Contair	ner:
Iron		0.20	1	mg/L	11/12/2013 12:04 PM	Container	r-01 of 01
Manganese		0.10	1	mg/L	11/12/2013 12:04 PM	Container	r-01 of 01
Zinc		0.18	1	mg/L	11/12/2013 12:04 PM	Container	r-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit > MDL and < LOQ, Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported : 11/14/2013

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

DISSOLVED

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Donald Miller

:11/6/2013 11:15:00 AM

Fairchild Corporation

Vienna, VA 221182-2640

8130 Boone Blvd.

Attn To :

Collected

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1311275-002D

Client Sample ID: INFLUENT - 2

Sample Information:

Type : Waste Water

Origin: Influent

:11/6/2013 11:45:00 AM Received Collected By WIRE TO WATER Prep Date: 11/12/2013 12:03:55 PM Analyst: Aba Analytical Method: E200.7 : Prep Method: E200.7

Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed	<u>l:</u>	Container:
Iron	0.03	1	mg/L	11/13/2013 2:	13 PM	Container-01 of 01
Manganese	0.09	1	mg/L	11/13/2013 2:	13 PM	Container-01 of 01
Zinc	0.15	1	mg/L	11/13/2013 2:	13 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 11/14/2013

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To:Donald MillerCollected:11/6/2013 11:00:00 AMReceived:11/6/2013 11:45:00 AMCollected ByWIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-003A

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Waste Water

Origin: Effluent

Analytical Method:	SW8260 :	Prep Method:	5030	DC		Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
1,1,2-Trichloroethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
1,1-Dichloroethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
1,1-Dichloroethene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
1,2-Dichloroethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
1,2-Dichloroethene (total)	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
1,2-Dichloropropane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
2-Butanone	< 10	с	1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
2-Hexanone	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
4-Methyl-2-pentanone	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Acetone	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Benzene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Bromodichloromethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Bromoform	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Bromomethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Carbon disulfide	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Carbon tetrachloride	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Chlorobenzene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Chloroethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Chloroform	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Chloromethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
cis-1,3-Dichloropropene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Dibromochloromethane	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Ethylbenzene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Freon-113	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Methylene chloride	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Styrene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Tetrachloroethene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Toluene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
trans-1,3-Dichloropropene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Trichloroethene	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02
Vinyl chloride	< 10		1	µg/L	11/08/2013 3:01 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation

8130 Boone Blvd. Vienna, VA 221182-2640

Attn To : Donald Miller Collected :11/6/2013 11:00:00 AM Received : 11/6/2013 11:45:00 AM

Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-003A

Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Waste Water

Origin: Effluent

Analytical Method: SW8260	:	Prep Method:	5030	C				Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>			Analyzed:	Container:
Xylene (total)	< 10		1	µg/L			11/08/2013 3:01 AM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	87.7		1	%REC	Limit	53-183	11/08/2013 3:01 AM	Container-01 of 02
Surr: 4-Bromofluorobenzene	93.3		1	%REC	Limit	63-140	11/08/2013 3:01 AM	Container-01 of 02
Surr: Toluene-d8	97.3		1	%REC	Limit	60-135	11/08/2013 3:01 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound
- 11/14/2013 Date Reported :

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640 Attn To : Donald Miller

 Attn To:
 Donald Miller

 Collected
 :11/6/2013 11:00:00 AM

 Received
 :11/6/2013 11:45:00 AM

 Collected By
 WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1311275-003B

Client Sample ID: EFFLUENT - 1

Sample Information: Type : Waste Water

Origin: Effluent

Analytical Method: SM4500-H B : IOC Analyst: AW Analyzed: Container: Parameter(s) Qualifier D.F. Units Results pH Units 11/06/2013 6:25 PM Container-01 of 01 6.8 н 1 pH + 23.8 н 1 °C 11/06/2013 6:25 PM Container-01 of 01 pH Temperature + Analytical Method: SM2540C : IOC Analyst: MLM Container: Parameter(s) Analyzed: Results Qualifier D.F Units 11/11/2013 2:00 PM Container-01 of 01 1 **Total Dissolved Solids** 113 mg/L

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit > MDL and < LOQ, Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

 Attn To:
 Donald Miller

 Collected
 :11/6/2013 11:00:00 AM

 Received
 :11/6/2013 11:45:00 AM

 Collected By
 WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-003C

Client Sample ID: EFFLUENT - 1

Sample Information: Type : Waste Water

Origin: Effluent

Analytical Method:	E200.7 :		Prep Method:	E20	0.7	Prep Date: 11/7/2013 10:48:47 AM	Analyst: CM
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.19		1	mg/L	11/12/2013 12:08 PM	Container-01 of 01
Manganese		0.10		1	mg/L	11/12/2013 12:08 PM	Container-01 of 01
Zinc		0.05		1	mg/L	11/12/2013 12:08 PM	Container-01 of 01

 Qualifiers:
 E = Value above quantitation range, Value estimated.

 B = Found in Blank
 D.F. = Dilution Factor
 D = Results for Dilution

 H = Received/analyzed outside of analytical holding time
 + = ELAP / NELAC does not offer certification for this analyte

 c = Calibration acceptability criteria exceeded for this analyte

r = Reporting limit > MDL and < LOQ, Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 16

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller Collected :11/6/2013 11:00:00 AM

Received :11/6/2013 11:45:00 AM DISSOLVED Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No.: 1311275-003D

Client Sample ID: EFFLUENT - 1

Sample Information: Type : Waste Water

Origin: Effluent

Analytical Method:	E200.7:	70	Prep Method:	E20	0.7	Prep Date: 11/12/2013 12:03:55 PM	Analyst:	Aba
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Contair	ner:
Iron		0.02		1	mg/L	11/13/2013 2:17 PM	Container	r-01 of 01
Manganese		0.09		1	mg/L	11/13/2013 2:17 PM	Container	r-01 of 01
Zinc		0.05		1	mg/L	11/13/2013 2:17 PM	Containe	r-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Joann M. Slavin Laboratory Manager

Test results meet the requirements of NELAC unless otherwise noted.

TEL: (631) 694-3040 F	H2M LABS INC Broad Hollow Road Melville, NY 11747 4X: (631) 420-8436 www.h2mlabs.com	Sample Re	eceipt Checklist
Client Name FAIR	Date a	and Time Received:	11/6/2013 11:45:00 AM
Work Order Number: 1311275 RcptNo: 1	Receiv	ved by JoshLaedke	
Completed by: durin Am	Reviewed by:	Joann 7	M. Slavin
Completed Date: <u>11/7/2013 5:00:49 PM</u>	Reviewed Date:	<u>11/7/2013</u>	3 4:08:35 PM
Carrier name: <u>Client</u>			
Chain of custody present? Ye	s 🗹 🛛 No 🗌		
Chain of custody signed when relinquished and received? Ye	s 🗹 🛛 No 🗌		
Chain of custody agrees with sample labels? Ye	s 🗹 🛛 No 🗌		
Are matrices correctly identified on Chain of custody? Ye	s 🗹 🛛 No 🗌		
Is it clear what analyses were requested? Ye	s 🗹 🛛 No 🗌	and the second sec	-
Custody seals intact on sample bottles? Ye	s 🗌 🛛 No 🗌	Not Present	
	s 🗹 🛛 🗌		
Were correct preservatives used and noted? Ye	s 🗹 🛛 No 🗌	NA	
Preservative added to bottles:		1	-
Sample Condition? Intac			
	s 🗹 No 🗌		
	s 🗹 No 🗌	1	
, ,	s 🗹 No 🗌	J	
	s 🗹 🛛 No 🗌] NA	
All samples received at a temp. of > 0° C to 6.0° C? Ye	s 🗹 🛛 No 🗌	NA	
Response when temperature is outside of range:			
Contribute the second sec	s 🗹 🛛 No 🗌		2 °
Water - Were bubbles absent in VOC vials? Ye	s 🗹 🛛 No 🗌	No Vials	
Water - Was there Chlorine Present? Ye] NA	
Water - pH acceptable upon receipt? Ye	s 🗹 No 🗌	No Water	
Are Samples considered acceptable? Ye	s 🖌 No]	
Custody Seals present? Ye	s 🗌 🛛 No 🗹]	
Airbill or Sticker? Air E	il 🗌 🛛 Sticker 🗆	Not Present	
Airbill No:			
Case Number: SDG:	SAS:		
Any No response should be detailed in the comments section below, if an Client Contacted? Yes V No Person Contacted			

. .

Contact Mode:	Phone:	Fax:	Email:	In Person:	
Client Instructions:					
Date Contacted:		Co	ntacted By:		
Regarding:					
Comments:					
CorrectiveAction:					

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To: Donald Miller

Collected :1/20/2014 2:30:00 PM Received :1/20/2014 2:45:00 PM

Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-001A Client Sample ID: INFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Influent

1.1 1 μg/L 0.125/2014 2.22 AM Container-01 of 1,1.2:Totkhoroethane < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of 1,1.2:Totkhoroethane < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of 1,1.2:Totkhoroethane 22 1 μg/L 0.125/2014 2.22 AM Container-01 of 1,1.2:Totkhoroethane 22 1 μg/L 0.125/2014 2.22 AM Container-01 of 1,2:Dichloroethane < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of 2.Dichloroethane < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of 2.Dichloropropane < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of 2.Butanone < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of Vectorne < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of Vectorne < 10 1 μg/L 0.125/2014 2.22 AM Container-01 of Vectorne < 10	Analytical Method:	SW8260 :	Prep Method:	503	0C		Analyst: BL
1,2,2-Terkahoroethane <10 1 µg/L 01/25/2014 2.22 AM Container-01 of 1,1,2-Trichloroethane <10 1 µg/L 01/25/2014 2.22 AM Container-01 of 1,1-Dichloroethane 22 1 µg/L 01/25/2014 2.22 AM Container-01 of 2,Dichloroethane 14 1 µg/L 01/25/2014 2.22 AM Container-01 of 2,Dichloroethane <10 1 µg/L 01/25/2014 2.22 AM Container-01 of 2,Dichloroethane <10 1 µg/L 01/25/2014 2.22 AM Container-01 of 2,Dichloroethane <10 1 µg/L 01/25/2014 2.22 AM Container-01 of 2,Dichloroethane <10 1 µg/L 01/25/2014 2.22 AM Container-01 of 4:Butanone <10 1 µg/L 01/25/2014 2.22 AM Container-01 of I-Methyl-2-pentanone <10 1 µg/L 01/25/2014 2.22 AM Container-01 of Stomodichloromethane <10 1 µg/L 01/25/2014 2.22 AM Container-01 of Stomodichloromethane <10 1 µg/L 01/25/2014 2.22 AM<	Parameter(s)	<u>Result</u>	<u>s</u> Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,2-Trichloroethane <10	1,1,1-Trichloroethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
1-Dichloroethane 22 1 µg/L 01/25/2014 2:22 AM Container-01 of 1-Dichloroethane 14 1 µg/L 01/25/2014 2:22 AM Container-01 of 2-Dichloroethane <10	1,1,2,2-Tetrachloroethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Inclusion Implement Implement <thimplement< th=""> <thimplement< th=""> <thi< td=""><td>1,1,2-Trichloroethane</td><td>< 10</td><td></td><td>1</td><td>µg/L</td><td>01/25/2014 2:22 AM</td><td>Container-01 of 02</td></thi<></thimplement<></thimplement<>	1,1,2-Trichloroethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
2. Dickloroethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of ,2. Dickloropethane < 10	1,1-Dichloroethane	22		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Jack Holdstand Jack Holdstand Jack Holdstand Jack Holdstand Jack Holdstand Container-02 of Actioner-02 of Actioner-01 of Container-01 of Container	1,1-Dichloroethene	14		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Particular Participation Participati	1,2-Dichloroethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
PB Butanone < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of PHexanone < 10	1,2-Dichloroethene (total)	580	D	100	µg/L	01/27/2014 3:19 PM	Container-02 of 02
betwee < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of L-Methyl-2-pentanone < 10	1,2-Dichloropropane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Hethyl-2-pentanone < 10 µg/L 01/25/2014 2:22 AM Container-01 of Acetone Acetone < 10	2-Butanone	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Acteone < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Benzene < 10	2-Hexanone	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Benzene < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Bromodichloromethane < 10	4-Methyl-2-pentanone	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Baromodichloromethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Baromoform < 10	Acetone	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Anomotive 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Bromoor 1 µg/L 01/25/2014 2:22 AM Container-01 of Carbon disulfide <10	Benzene	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Bromomethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Carbon disulfide < 10	Bromodichloromethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Carbon disulfide < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Carbon tetrachloride < 10	Bromoform	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Carbon tetrachloride < 10	Bromomethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Chlorobenzene < 10	Carbon disulfide	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Chloroethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Chloroform < 10	Carbon tetrachloride	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Chloroform < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Chloromethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Chloromethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Dibromochloromethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Dibromochloromethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Chthylbenzene < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Freon-113 33 1 µg/L 01/25/2014 2:22 AM Container-01 of Adethylene chloride < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Styrene < 10 µg/L 01/25/2014 2:22 AM Container-01 of Orduene < 10 µg/L 01/25/2014 2:22 AM Container-01 of Orduene < 10 µg/L 01/25/2014 2:22 AM Container-01 of Orduene < 10 µg/L 01/25/2014 2:22 AM Container-01 of Toluene < 10 µg/L	Chlorobenzene	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Chloromethane < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Dibromochloromethane < 10	Chloroethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
isis-1,3-Dichloropropene < 10	Chloroform	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Dibromochloromethane < 10	Chloromethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Ethylbenzene < 10	cis-1,3-Dichloropropene	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Freen-113 33 1 µg/L 01/25/2014 2:22 AM Container-01 of Methylene chloride < 10	Dibromochloromethane	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Methylene chloride < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Styrene < 10	Ethylbenzene	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Styrene < 10 1 µg/L 01/25/2014 2:22 AM Container-01 of Tetrachloroethene 990 D 100 µg/L 01/27/2014 3:19 PM Container-02 of Toluene < 10	Freon-113	33		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Tetrachloroethene 990 D 100 μg/L 01/27/2014 3:19 PM Container-02 of Toluene <10	Methylene chloride	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Following < 10 1 μg/L 01/25/2014 2:22 AM Container-01 of rans-1,3-Dichloropropene < 10	Styrene	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
rans-1,3-Dichloropropene < 10 μg/L 01/25/2014 2:22 AM Container-01 of richloroethene 440 D 100 μg/L 01/27/2014 3:19 PM Container-02 of	Tetrachloroethene	990	D	100	µg/L	01/27/2014 3:19 PM	Container-02 of 02
Trichloroethene 440 D 100 µg/L 01/27/2014 3:19 PM Container-02 of	Toluene	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
Trichloroethene 440 D 100 µg/L 01/27/2014 3:19 PM Container-02 of	trans-1,3-Dichloropropene	< 10		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02
	Trichloroethene	440	D	100		01/27/2014 3:19 PM	Container-02 of 02
	Vinyl chloride	71		1	µg/L	01/25/2014 2:22 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Mune

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 1/20/2014 2:30:00 PM Received : 1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-001A Client Sample ID: INFLUENT - 1

Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method: SW8260	:	Prep Method:	5030	C			Analyst: BL
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10		1	µg/L		01/25/2014 2:22 AM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	116		1	%REC	Limit 53-183	01/25/2014 2:22 AM	Container-01 of 02
Surr: 4-Bromofluorobenzene	114		1	%REC	Limit 63-140	01/25/2014 2:22 AM	Container-01 of 02
Surr: Toluene-d8	98.8		1	%REC	Limit 60-135	01/25/2014 2:22 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :1/20/2014 2:30:00 PM Received :1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-001B Client Sample ID: INFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method:	SM4500-H	B : IOC						Analyst: MW
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
pН		5.0	Н	+	1	pH Units	01/20/2014 5:44 PM	Container-01 of 01
pH Temperature		20.8	Н	+	1	°C	01/20/2014 5:44 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						Analyst: CO
Parameter(s)		Results	<u>Qualifie</u>	r	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		113			1	mg/L	01/22/2013 10:51 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :1/20/2014 2:30:00 PM Received :1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-001C Client Sample ID: INFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 1/21/2014 8:25:36 AM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.25	1	mg/L	01/21/2014 5:16 PM	Container-01 of 01
Manganese		0.10	1	mg/L	01/21/2014 5:16 PM	Container-01 of 01
Zinc		0.13	1	mg/L	01/21/2014 5:16 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To: Donald Miller

Collected : 1/20/2014 2:30:00 PM Received : 1/20/2014 2:45:00 PM DISSOLVED

Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-001D Client Sample ID: INFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 1/21/2014 1:50:05 PM	Analyst: CM
Parameter(s)	<u>Re</u>	esults Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron	0.	.25	1	mg/L	01/24/2014 1:39 PM	Container-01 of 01
Manganese	0.	.10	1	mg/L	01/24/2014 1:39 PM	Container-01 of 01
Zinc	0.	.40	1	mg/L	01/24/2014 1:39 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 16

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To: Donald Miller

Collected :1/20/2014 2:15:00 PM Received :1/20/2014 2:45:00 PM

Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-002A Client Sample ID: INFLUENT - 2 Sample Information:

Type : Waste Water

Origin: Influent

1,1,2,2-Tetrachloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,1,2-Tichloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,1-Dichloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,1-Dichloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,2-Dichloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,2-Dichloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,2-Dichloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 2-Butanone < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 2-Hexanone < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Benzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromodichloromethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromodichloromethane < 10 1	Analytical Method:	SW8260 : Prep Method:	503	0C		Analyst: BL
1,1,2,2-Tetrachloroethane < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 1,1,2,7-Tetrachloroethane < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 1,1-Dichloroethane < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 1,1-Dichloroethane < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 1,2-Dichloroethane < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 1,2-Dichloroethane < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 1,2-Dichloroethane < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 2-Butanone < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 2-Hexanone < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 2-Hexanone < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 2-Hexanone < 10 1 µg/L 01/27/2014 249 PM Container-01 of 02 Bromodichloromethane < 10 1 µg/L	Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,2-Trichloroethane < 10	1,1,1-Trichloroethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
1.1-Dichloroethane < 10	1,1,2,2-Tetrachloroethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
1.1-Dichloroethene 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,2-Dichloroethene 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,2-Dichloroethene 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 1,2-Dichloroethene 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 2-Butanone <10	1,1,2-Trichloroethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
1.2-Dichlorozethane <10	1,1-Dichloroethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
12-Dichloroethene (total) < 10	1,1-Dichloroethene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
1.2-Dichloropropane <10	1,2-Dichloroethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
2-Butanone < 10	1,2-Dichloroethene (total)	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
2-Hexanone <10	1,2-Dichloropropane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
4-Methyl-2-pentanone < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Acetone < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Benzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromodichloromethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromodichloromethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromothane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Carbon disulfide < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Chlorobenzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Chlorobenzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Chlorobenzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Chlorobenzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02	2-Butanone	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Acetone < 10	2-Hexanone	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Benzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromodichloromethane < 10	4-Methyl-2-pentanone	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Bromodichloromethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromoform < 10	Acetone	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Bromoform < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Bromomethane < 10	Benzene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Bromomethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Carbon disulfide < 10	Bromodichloromethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Carbon disulfide < 10	Bromoform	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Carbon tetrachloride < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Chlorobenzene < 10	Bromomethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Chlorobenzene < 10	Carbon disulfide	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Chloroethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Chloroform < 10	Carbon tetrachloride	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Chloroform < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Chloromethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 cis-1,3-Dichloropropene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Dibromochloromethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Ethylbenzene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Freon-113 < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Methylene chloride < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Styrene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Toluene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Trans-1,3-Dichloropropene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Trans-1,3-Dichloropropene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Trans-1,3-Dichloropropene < 10 1 µg/L <td>Chlorobenzene</td> <td>< 10</td> <td>1</td> <td>µg/L</td> <td>01/27/2014 2:49 PM</td> <td>Container-01 of 02</td>	Chlorobenzene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Chloromethane < 10	Chloroethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
cis-1,3-Dichloropropene < 10	Chloroform	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Dibromochloromethane < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Ethylbenzene < 10	Chloromethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Ethylbenzene < 10	cis-1,3-Dichloropropene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Freen-113< 101μg/L01/27/2014 2:49 PMContainer-01 of 02Methylene chloride< 10	Dibromochloromethane	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Methylene chloride < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Styrene < 10	Ethylbenzene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Styrene < 10 1 μg/L 01/27/2014 2:49 PM Container-01 of 02 Tetrachloroethene < 10	Freon-113	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Tetrachloroethene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 Toluene < 10	Methylene chloride	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Toluene < 10 1 µg/L 01/27/2014 2:49 PM Container-01 of 02 trans-1,3-Dichloropropene < 10	Styrene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
trans-1,3-Dichloropropene < 10 1 μg/L 01/27/2014 2:49 PM Container-01 of 02 Trichloroethene < 10	Tetrachloroethene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Trichloroethene< 101 μ g/L01/27/2014 2:49 PMContainer-01 of 02	Toluene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
	trans-1,3-Dichloropropene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
Vinyl chloride < 10 1 μg/L 01/27/2014 2:49 PM Container-01 of 02	Trichloroethene	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02
	Vinyl chloride	< 10	1	µg/L	01/27/2014 2:49 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Mune

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :1/20/2014 2:15:00 PM Received :1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-002A Client Sample ID: INFLUENT - 2 Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method: SW8260	: <u>Pre</u>	ep Method:	5030	C				Analyst: BL
Parameter(s)	Results C	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>			Analyzed:	Container:
Xylene (total)	< 10		1	µg/L			01/27/2014 2:49 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	124		1	%REC	Limit 53-	-183	01/27/2014 2:49 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	128		1	%REC	Limit 63-	-140	01/27/2014 2:49 PM	Container-01 of 02
Surr: Toluene-d8	126		1	%REC	Limit 60-	-135	01/27/2014 2:49 PM	Container-01 of 02

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 7 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :1/20/2014 2:15:00 PM Received :1/20/2014 2:45:00 PM Collected By WIRE TO WATER LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-002B Client Sample ID: INFLUENT - 2 Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method:	SM4500-H B : IOC						Analyst: MW
Parameter(s)	Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
pН	6.8	Н	+	1	pH Units	01/20/2014 5:48 PM	Container-01 of 01
pH Temperature	20.8	н	+	1	°C	01/20/2014 5:48 PM	Container-01 of 01
Analytical Method:	SM2540C : IOC						Analyst: CO
Parameter(s)	Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids	111			1	mg/L	01/22/2013 10:54 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 8 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :1/20/2014 2:15:00 PM Received :1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-002C Client Sample ID: INFLUENT - 2 Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	00.7	Prep Date: 1/21/2014 8:25:36 AM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.23	1	mg/L	01/21/2014 5:34 PM	Container-01 of 01
Manganese		0.10	1	mg/L	01/21/2014 5:34 PM	Container-01 of 01
Zinc		0.03	1	mg/L	01/21/2014 5:34 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Date Reported : 1/28/2014

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 9 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To: Donald Miller

Collected : 1/20/2014 2:15:00 PM Received : 1/20/2014 2:45:00 PM DISSOLVED Collected By WIRE TO WATER LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-002D Client Sample ID: INFLUENT - 2 Sample Information:

Type : Waste Water

Origin: Influent

Analytical Method:	E200.7 :	Prep Method:	E20	00.7	Prep Date: 1/21/2014 1:50:05 PM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.08	1	mg/L	01/24/2014 1:45 PM	Container-01 of 01
Manganese		0.10	1	mg/L	01/24/2014 1:45 PM	Container-01 of 01
Zinc		0.06	1	mg/L	01/24/2014 1:45 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 16

575 Broad Hollow Road , Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To: Donald Miller

Collected :1/20/2014 2:00:00 PM Received :1/20/2014 2:45:00 PM

Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-003A Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Effluent

Parameter(s) Results Qualifier D.F. Units Analyzed: Container() 1,1,1-Trichloroethane < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 1,1,2Trichloroethane < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 1,1-Dichloroethane < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 1,1-Dichloroethane < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 1,2-Dichloroethane < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 1,2-Dichloroethane < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 1,2-Dichloroethane < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 2-Butanone < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 2-Hexanone < 10 1 µg/L 01/25/2014 321 AM Container-01 of Q 2-Hexanone < 10 1 µg/L 01/25/2014 321 AM Container-01	Analytical Method:	SW8260 : Prep Method:	503	0C		Analyst: BL
1,1,2,2 Tetrachloroethane <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 1,1,2,2 Tetrachloroethane <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 1,1-Dichloroethane <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 1,1-Dichloroethane <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 1,2-Dichloroethane <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 1,2-Dichloroethane <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 2-Butanone <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 2-Hexanone <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 2-Hexanone <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 2-Hexanone <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 2-Hexanone <10 1 µg/L 01/25/2014 3.21 AM Containe-01 of 02 2-Methyl-2-pentanone <10 1 µg/	Parameter(s)	Results Qualifier	<u>D.F.</u>	Units	Analyzed:	Container:
1,1,2-Trichloroethane < 10	1,1,1-Trichloroethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
1-Dichloroethane <10 1 µg/L 01/25/2014 3:21 AM Container-01 of Q2 1,1-Dichloroethane <10	1,1,2,2-Tetrachloroethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
In biological status Image of the status <td>1,1,2-Trichloroethane</td> <td>< 10</td> <td>1</td> <td>µg/L</td> <td>01/25/2014 3:21 AM</td> <td>Container-01 of 02</td>	1,1,2-Trichloroethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
1,2-Dichloroethane < 10	1,1-Dichloroethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
1,2-Dichloropethene (total) < 10	1,1-Dichloroethene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
1,2-Dichloropropane < 10	1,2-Dichloroethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
2-Butanone < 10	1,2-Dichloroethene (total)	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
2-Hexanone < 10	1,2-Dichloropropane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
4-Methyl-2-pentanone < 10	2-Butanone	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Acetone <10	2-Hexanone	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Benzene < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Bromodichloromethane < 10	4-Methyl-2-pentanone	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Bromodichloromethane < 10	Acetone	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Bromoform < 10 1 μg/L 01/25/2014 3:21 AM Container-01 of 02 Bromomethane < 10	Benzene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Bromomethane < 10 1 µg/L 01/25/2014.3:21 AM Container-01 of 02 Carbon disulfide < 10	Bromodichloromethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Carbon disulfide < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Carbon tetrachloride < 10	Bromoform	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Carbon tetrachloride < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Chlorobenzene < 10	Bromomethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Chlorobenzene < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Chloroothane < 10	Carbon disulfide	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Chloroethane < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Chloroform < 10	Carbon tetrachloride	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Chloroform < 10	Chlorobenzene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Chloromethane < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 cis-1,3-Dichloropropene < 10	Chloroethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
cis-1,3-Dichloropropene < 10	Chloroform	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Dibromochloromethane < 10	Chloromethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Ethylbenzene < 10	cis-1,3-Dichloropropene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Freen-113 < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Methylene chloride < 10	Dibromochloromethane	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Methylene chloride < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Styrene < 10	Ethylbenzene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Styrene < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Tetrachloroethene < 10	Freon-113	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Tetrachloroethene < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 Toluene < 10	Methylene chloride	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Toluene < 10 1 µg/L 01/25/2014 3:21 AM Container-01 of 02 trans-1,3-Dichloropropene < 10	Styrene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
trans-1,3-Dichloropropene < 10 1 μg/L 01/25/2014 3:21 AM Container-01 of 02 Trichloroethene < 10	Tetrachloroethene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Trichloroethene< 101 μ g/L01/25/2014 3:21 AMContainer-01 of 02	Toluene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
15	trans-1,3-Dichloropropene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
Vinyl chloride < 10 1 μg/L 01/25/2014 3:21 AM Container-01 of 02	Trichloroethene	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02
	Vinyl chloride	< 10	1	µg/L	01/25/2014 3:21 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

- B = Found in Blank
- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 1/20/2014 2:00:00 PM Received : 1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-003A Client Sample ID: EFFLUENT - 1

Sample Information:

Type : Waste Water

Origin: Effluent

Analytical Method: SW8260): Prep Method	l: 5030	0C			Analyst: BL
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Xylene (total)	< 10	1	µg/L		01/25/2014 3:21 AM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	117	1	%REC	Limit 53-183	01/25/2014 3:21 AM	Container-01 of 02
Surr: 4-Bromofluorobenzene	112	1	%REC	Limit 63-140	01/25/2014 3:21 AM	Container-01 of 02
Surr: Toluene-d8	98.3	1	%REC	Limit 60-135	01/25/2014 3:21 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound
- Date Reported : 1/28/2014

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 12 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected : 1/20/2014 2:00:00 PM Received : 1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-003B Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Effluent

Analytical Method:	SM4500-H	B : IOC						Analyst: MW
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
рН		6.8	н	+	1	pH Units	01/20/2014 5:51 PM	Container-01 of 01
pH Temperature		20.5	Н	+	1	°C	01/20/2014 5:51 PM	Container-01 of 01
Analytical Method:	SM2540C	: IOC						<u>Analyst:</u> CO
Parameter(s)		Results	<u>Qualifie</u>	<u>r</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Total Dissolved Solids		108			1	mg/L	01/22/2013 10:57 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte

c = Calibration acceptability criteria exceeded for this analyte

- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To : Donald Miller

Collected :1/20/2014 2:00:00 PM Received :1/20/2014 2:45:00 PM Collected By WIRE TO WATER

LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-003C Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Effluent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 1/21/2014 8:25:36 AM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.20	1	mg/L	01/21/2014 5:39 PM	Container-01 of 01
Manganese		0.10	1	mg/L	01/21/2014 5:39 PM	Container-01 of 01
Zinc		< 0.02	1	mg/L	01/21/2014 5:39 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 16

Fairchild Corporation 8130 Boone Blvd.

Vienna, VA 221182-2640

Attn To: Donald Miller

Collected :1/20/2014 2:00:00 PM Received :1/20/2014 2:45:00 PM DISSOLVED Collected By WIRE TO WATER LABORATORY RESULTS

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Lab No. : 1401831-003D Client Sample ID: EFFLUENT - 1 Sample Information:

Type : Waste Water

Origin: Effluent

Analytical Method:	E200.7 :	Prep Method:	E20	0.7	Prep Date: 1/21/2014 1:50:05 PM	Analyst: CM
Parameter(s)		Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron		0.05	1	mg/L	01/24/2014 1:51 PM	Container-01 of 01
Manganese		0.10	1	mg/L	01/24/2014 1:51 PM	Container-01 of 01
Zinc		0.06	1	mg/L	01/24/2014 1:51 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated. B = Found in Blank

- D.F. = Dilution Factor D = Results for Dilution
- H = Received/analyzed outside of analytical holding time
- + = ELAP / NELAC does not offer certification for this analyte
- c = Calibration acceptability criteria exceeded for this analyte
- r = Reporting limit > MDL and < LOQ, Value estimated.
- J = Estimated value below calibration range
- S = Recovery exceeded control limits for this analyte
- N = Indicates presumptive evidence of compound

Sty Munell

Sr.Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 16

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Sample Receipt Checklist

i	websile: y	www.p	<u>acetads.com</u>		
Client Name FAIR			Date and T	ime Received:	1/20/2014 2:45:00 PM
Work Order Number: 1401831 RcptNo: 1			Received b	y MelissaWat	son
Completed by: M - Wat		Rev	iewed by:	femper .	Car
Completed Date: <u>1/20/2014</u>		Rev	iewed Date:	<u>1/24/2014</u>	10:23:15 AM
Carrier name: Client					
Chain of custody present?	Yes	\checkmark	No 🗌		
Chain of custody signed when relinquished and received?	Yes	 ✓ 	No 🗌		
Chain of custody agrees with sample labels?	Yes	\checkmark			
Are matrices correctly identified on Chain of custody?	Yes				
Is it clear what analyses were requested?	Yes	\checkmark			
Custody seals intact on sample bottles?	Yes			Not Present	
				NOL FIESEIIL	
Samples in proper container/bottle?	Yes		No 🛄		
Were correct preservatives used and noted?	Yes	\checkmark	No 🗌	NA	
Preservative added to bottles:			_		_
Sample Condition?	Intact	✓	Broken 🛄	Leaking	
Sufficient sample volume for indicated test?	Yes	\checkmark	No 🗌		
Were container labels complete (ID, Pres, Date)?	Yes	\checkmark	No 🗌		
All samples received within holding time?	Yes		No 🗹		
Was an attempt made to cool the samples?	Yes	\checkmark	No 🗌	NA	
All samples received at a temp. of > 0° C to 6.0° C?	Yes			NA	
Response when temperature is outside of range:	163	L.			
	Yes	\checkmark	No	Τ. 4	4.0
Sample Temp. taken and recorded upon receipt?					.1 °
Water - Were bubbles absent in VOC vials?	Yes		No 🗌	No Vials	
Water - Was there Chlorine Present?	Yes		No 🗌	NA	
Water - pH acceptable upon receipt?	Yes	✓	No 🛄	No Water	
Are Samples considered acceptable?	Yes	\checkmark	No 🗌		
Custody Seals present?	Yes		No 🔽		
Airbill or Sticker?	Air Bil		Sticker	Not Present	
Airbill No:					
Case Number: SDG:		ŝ	SAS:		
Any No response should be detailed in the comments section	below, if app	licable). 	=====	
Client Contacted? 🗌 Yes 🗌 No 🗹 NA	Person Cont	acted	:		
Contact Mode: Phone: Fax:	Email:		In Person:		
Client Instructions:					
	cted By:				
	nou by.				
Regarding:					
Comments:	,				
The samples were received outside the analytical holding tin	ne tor pH.				

CorrectiveAction: