

April 26, 2011

Transmitted: USPS Priority Mail and 1st Class USPS Mail to CC List

Mr. Kent Johnson Senior Engineering Geologist New York State Dept. of Environmental Conservation Division of Environmental Remediation – Bureau E 625 Broadway Albany, NY 12233-7250

SUBJECT: Groundwater Monitoring Report

1st Quarter 2011 (Report 1 of 4)

Safety- Kleen Service Center, 60 Seabro Ave, North Amityville, NY

Dear Mr. Johnson:

This letter serves as the Safety-Kleen Systems, Inc. (Safety-Kleen) quarterly groundwater monitoring report for the referenced site. Basile Environmental Solutions, LLC (BES) collected the samples and field data on March 24, 2011.

The samples were sent to the new project laboratory, Test America, Inc. (TA). TA holds NY NELAP and NYDOH laboratory certifications. Analytical Services, Inc. (ASI), the former project laboratory, chose not to renew specific New York State certifications in November, 2009. Therefore, Safety-Kleen selected another project laboratory to complete the analyses required. The change-over in labs, and TA's necessity to "get-up-to-speed", required method adjustment and further consultation with the former laboratory and New York State Department of Environmental Conservation (NYSDEC) in order to adequately duplicate the Mineral Spirits (dissolved and soil phases) analysis methods.

The change resulted in a new revised laboratory reporting format for this project, as well as all New York Safety-Kleen sites. Further, standardization of the project-specific laboratory reporting limits, to match, as practicable, the T.O.G.S. 1.1.1 groundwater quality standards, as well as selected former laboratory limits (when no standard was available), have also been implemented. Please see the attached laboratory report for specific formatting and reporting changes.

1.0 QUARTERLY GROUNDWATER SAMPLING WORK SCOPE

The following scope of work was performed at the above referenced site during the reporting

period:

- Measurement of the depth to water (DTW) at each monitoring well, four vapor points and one select drywell location;
- Monitoring point development for groundwater field parameter monitoring and measurement;
- Collection of groundwater samples from site monitoring points, and one drywell water sample;
- Packing (on ice) and shipment of the sample set to TA, the previously noted project designated laboratory, via overnight courier.

Monitoring wells GT-1 through GT-5, VE-1, VE-5, VP-A, VP-B, and DW-1 were gauged and field indicator parameters were collected. Water, this quarter was present in both VE-1 and DW-1. Temperature, pH, conductivity, dissolved oxygen, redox potential, visual turbidity and dissolved ozone were recorded for each monitoring location. The Field Log Sampling Summary Form is included as **Attachment 1.**

The DO concentrations from June 2009 through March 2011 for the GT-1/VE-1 area are summarized and presented for comparison in **Table 1a/Graph 1a.** The historic field data are presented in **Attachment 3, Table 2.** The concentration of DO at GT-1 was slightly higher this quarter, and lower than pre-injection concentrations.

The average groundwater pH varied when compared to the previous event, and appears generally higher than last quarter. The change in pH over time in the GT-1/VE-1 area is presented below. The pH still remains within the range for naturally occurring groundwater.

Depth-to-water varied seasonally. A rise in the water table position was observed this quarter. **Attachment 2, Groundwater Contour Map** depicts the flow conditions for the sampling event. Direction of groundwater flow was generally consistent with historic trends; average gradient was generally southeast-southwesterly. This quarter's average gradient was measured at 0.16 %. This is shallower than the previous quarter (0.21 %).

1.2 Quarterly Groundwater Sampling

Monitoring wells GT-1, GT-2, GT-3 and GT-5, vapor extraction/monitoring points VE-1, VE-5, VP-A and VP-B were purged of 3 to 5 well volumes (conditions permitting) of groundwater with a submersible pump or bailer prior to sampling.

Groundwater samples were collected with dedicated, disposable polyethylene bailers and placed into glass containers provided by TA as specified for each analysis. A duplicate sample was collected for quality assurance purposes from well GT-1 and labeled X-2.

Samples were kept cool during overnight transport to the laboratory and were accompanied by chain-of-custody documents and a trip blank. The samples arrived at the laboratory within acceptable USEPA and NYSDEC holding times and preservation requirements. TA analyzed the water and groundwater samples for Volatile Organic Compounds (VOCs) via EPA Method 8260B, and for Mineral Spirit-Range Organics (MSRO) via Modified EPA Method 8015B.

1.3 Catch Basin DW-1 Media Sampling

DW-1 did contain standing water therefore a water sample was collected from the base of the unit using a disposable bailer.

2.0 QUARTERLY ANALYTICAL RESULTS

Historic (through September 2009) data are presented in **Attachment 3, Table 3**. This quarter's groundwater quality data are summarized in **Attachment 3, Table 4**. The laboratory analytical report is included as **Attachment 4**. The format and project-specific reporting limits for the laboratory report were reviewed with the NYSDEC and deemed acceptable.

<u>VOCS:</u> Select target VOCs were detected above the method detection limits (EPA Method 8260B) in monitoring points GT-2, GT-3, GT-5, VE-1, VE-5, VP-A, VP-B and DW-1, but at concentrations below the project-specific laboratory and regulatory reporting limits.

Target compounds were also detected at GT-1 above the water quality standards and method detection limits for 1,2 dichlorobenzene, 1,3 dichlorobenzene, 1,4 dichlorobenzene (6.8, 4.0 and 15 ppb respectively). The duplicate sample, X-2 showed similar results.

Table 4 summarizes the positive detections noted at and above the regulatory limit/project-specific lab reporting limits. All detections recorded above the method detection limits, can be found in the laboratory report Executive Summary (Attachment 4).

<u>Mineral Spirit-Range Organics (MSRO):</u> The comparability of the dissolved and solid phase mineral spirit-range organics data, to previous results, remains under review. As noted in last quarter's report, TA in consultation with the NYSDEC, as well as the former project laboratory ASI, prepared and is using a method similar to that previously employed by them. The nomenclature "Mineral Spirit Range Organics" is TA's suggested convention for reporting the results. The revised nomenclature was reviewed with the NYSDEC during a teleconference and deemed acceptable.

The March 2011 analyses did not detect MSRO at GT-2, GT-3, GT-5, VE-5, VP-A, VP-B or DW-1. MSRO was detected at GT-1 and in its duplicate, X-2, at concentrations of 18,000 ppb and 24,000 ppb respectively. This is higher than reported last quarter. MSRO was also detected at 8,300 ppb at VE-1. The following graph (**Graph 1C**) notes the changes in concentration of MSRO in the GT-1/VE-1 area.

4.0 SUMMARY

- 1. Groundwater elevations seasonally fluctuated, as was apparent in the water table elevations. The water table was higher than recorded last quarter by approximately 1.5 feet.
- 2. The direction and magnitude of groundwater flow was generally similar to historic trends.
- 3. DO remained at lower levels in site monitoring points including the GT-1/VE-1 area.
- 4. Concentrations of VOCs detected in groundwater above the standards were only reported at GT-1. Other target VOCs detected were present above the MDLs, but below the regulatory reporting limits.
- 5. Mineral spirit range organics (MSRO) were detected at GT-1 and VE-1. The GT-1 results are higher in the sample, than reported during the previous quarter, and remain above the GWQS for mineral spirits. VE-1 results were similar to its previous sampling (June 2010) event.

5.0 RECOMMENDATIONS

- 1. Implement another injection and vapor extraction program during the 2nd quarter of 2011.
- 2. Install replacement sparge point for AS-4R and VE-1. VE-1 will be replaced with a 2-inch point.
- 3. Continue monitoring groundwater on-site for VOCs and MSRO.
- 4. Further evaluate the MSRO data with historic concentrations for parity.

Should you have questions or comments concerning this report, please do not hesitate to contact me at (513) 956-2172. As always, Safety-Kleen appreciates the Department's assistance with this site.

Sincerely,

Safety-Kleen Systems, Inc.

Stephen + em

Stephen D. Fleming, P.E., CHMM Senior Remediation Manager

Attachments:

- 1. Groundwater Gauging and Field Parameter Data
- 2. Groundwater Contour Map
- 3. Tables

Tables 1a, 1b (in text)

Table 2 – Historic Groundwater Field Data Summary (to Current)

Table 3 – Historic Groundwater Chemical Data Summary (Through 9/2009)

Table 4 – Historic Groundwater Chemical Data Summary (TA Labs)

Graphs - 1a, 1b, 1c (in text)

4. Laboratory Analytical Report (on CD for Hard Copy Recipients) – Exec Summary Atch

Distribution

Person/Department	Method of Transmission

E. Badaracco, Town of Babylon, HW Dept, Lindenhurst, NY	(hard copy – 1 st Class Mail)
C. Horan, NYSDEC, Central Office, Albany, NY	(hard copy – 1 st Class Mail)
M. Leary, NYSDEE, Albany, NY	(hard copy – 1 st Class Mail)
K. (Katy) Murphy, NYSDEC Region 1, Stony Brook, NY	(hard copy – 1 st Class Mail) – no table 3
J. Reidy, USEPA Region II, New York, NY	(hard copy – 1 st Class Mail)
T. Cowans, Safety-Kleen – N. Amityville, NY	(hard copy – 1 st Class Mail, E-copy)
J. Grabina, Safety-Kleen – N. Amityville, NY	(electronic copy)
M. Hansen, Safety-Kleen - Dewitt, NY	(electronic copy)
A. Proctor, Woodard & Curran, Cheshire, CT	(electronic copy)
J. Basile, Basile Environmental Solutions, LLC, Cortland, NY	(electronic copy)

ATTACHMENT 1

Groundwater Gauging and Field Parameter Data Recording Form

SAMPLING INSTRUCTIONS & FIELD OBSERVATION LOG

GROUNDWATER SAMPLING RECORD

	Safety-Kleen Service Center	DATE	24-Mar-11
SITE NAME	North Amityville, New York	Weathe	gradual clearing, cold (32F)

Samplers Jim Scerra/SEM		Inside warehouse								
Well Name / ID	GT-1	GT-2	GT-3	GT-4	DW-1	GT-5	VE-5	VE-1	VP-A	VP-B
Lab Analysis - EPA 8260 VOCs	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Lab Analysis - EPA 8260a MS	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Duplicate Sample:	Yes									
Collect Field Parameters	Yes	Yes	Yes	Yes-Only	Yes	Yes	Yes	Yes	Yes	Yes
Diameter of Well Casing	2 in	2 in	2 in	2 in	Manhole	2 in	1 in	1 in	2 in	2 in
Depth of Well (ft.)	26.0	27.40	27.48	26.18	10.50	21.2	19.64	27.48	27.5	23
Depth to Groundwater (ft.)	17.83	17.77	16.84	16.20	9.82	18.18	17.33	17.95	19.20	17.75
Water Column Height (ft.)	8.17	9.63	10.64	9.98		3.02	2.31	9.53	8.30	5.25
Volume Purged (gal)	4.0	4.5	4.5	4.0	NA	1.5	0.5	1.0	4.0	2.5
Purging Method	bailer	bailer	bailer	bailer		bailer	bailer		bailer	bailer
Sampling Time	10:00	09:30	09:00	NA	10:30	08:15	12:15	11:45	10:50	11:15
Sample date	3/24/11	3/24/11	3/24/11		3/24/11	3/24/11	3/24/11	3/24/11	3/24/11	3/24/11
GW Visual Observations										
color	clear	lt brown	clear	brown/rust	clear	clear	brown	grey	brown	brown
sheen	yes	no	no	no	no	no	no	slight	no	no
odor	yes	no	no	no	no	no	no	yes	no	no
Field Parameters										
Temperature (C)	13.0	11.6	10.7	12.8	8.5	13.9	11.9	11.8	13.5	13.8
рН	7.60	7.05	7.60	7.70	7.10	7.34	7.12	7.10	7.10	7.57
Conductivity in uS	198	530	160	190	25	326	188	267	255	196
Dissolved Oxygen (mg/L)	3.21	3.14	7.36	4.20	10.50	4.08	6.02	4.42	6.10	5.95
ORP (Eh (Mv))	25	-25	15	50	80	-15	5	-10	-20	-15
Turbidity (visual / NTU)	low	low	low	high	low	low	high	med	med	high
Ozone (mg/l)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Dü	pncate	on	G	l - I	(X-

Comments

Water in DW-1 was from snow melt from roof top of building adjacent to location.

ATTACHMENT 2

Groundwater Contour Map

Safety-Kleen Systems, Inc. - N. Amityville, NY

				-Kieen Systems, ir dwater Elevation (
	Gener	al Informati					radient Cal	culation	
Wells	Gauged & not us	sed:					1	T	
	None		Date	e: 3/24/2011	Upgradient Elevation (ft)	Down Gradient Elevation (ft)	Delta H (ft)	Dist. b/w U/D (ft)	Gradient in ft/f
Мар	Scale Conversion	n:							
inch	to feet			3 to 1 3 to 2	36.68 36.68	36.28 36.36	0.40 0.32	230.99 213.92	0.17% 0.15%
1.00	40.00	40.00		3 to 4 3 to 5	36.68 36.68	36.10 36.11	0.58 0.57	442.87 302.00	0.13% 0.19%
	Cont	our Interval Form	nula:					Average:	0.16%
F hi = Distance o i = delta from hig elta h = distance BW = difference	hest elevation (ft) between monitor	ing points (ft)		Formula ii x Delta h) / DBW					
			٧	Vell Pair Specific	Calculation	าร			
Well Pair	Well ID (hi) (GW Elev - ft)	Well ID (Io) (GW Elev - ft)	Delta h (ft)	Distance Between Wells (ft)	Well Pair	Well ID (hi) (GW Elev - ft)	Well ID (Io) (GW Elev - ft)	Delta h (ft)	Distance Between Wells
GT-3 to GT-4	36.68	36.10	0.58	442.87	GT-3 to GT-5	36.68	36.11	0.57	302.00
Elevations	Delta from	Distance from			Elevations	Delta from	Distance from		
to Plot	hi (ft)	hi (ft)	No. cms		to Plot	hi (ft)	hi (ft)	No. cms	
36.50	0.18	137.4	3.4		36.50	0.18	95.4	2.4	
36.30	0.38	290.2	7.3		36.30	0.38	201.3	5.0	
36.10	0.58	442.9	11.1		36.10	0.58	307.3	7.7	
35.75	0.93	710.1	17.8		35.75	0.93	492.7	12.3	
35.50	1.18	901.0	22.5		35.50	1.18	625.2	15.6	
Well Pair	Well ID (hi)	Well ID (Io)		Distance					
	(GW Elev - ft)	(GW Elev - ft)	` ` `	Between Wells (ft)		Monitor	ing Point Eleva	ation Data	
GT-3 to GT-2	36.68	36.36	0.32	213.92					
Elevations	Delta from	Distance from				Monitoring		Elevation (ft)	
to Plot	hi (ft)	hi (ft)	No. cms			Point	1		1
36.50	0.18	120.3	3.0			GT-1		36.28	
36.30 36.10	0.38 0.58	254.0 387.7	6.4 9.7			GT-2		36.36	
35.75 35.50	0.93 1.18	621.7 788.8	15.5 19.7			GT-3		36.68	
								00.00	
Well Pair	Well ID (hi) (GW Elev - ft)	Well ID (Io) (GW Elev - ft)	Delta h (ft)	Distance Between Wells (ft)		GT-4		36.10]
GT-3 to GT-1	36.68	36.28	0.40	230.99		GT-5		36.11]
Elevations	Delta from	Distance from							
to Plot	hi (ft)	hi (ft)	No. cms						
36.50	0.18	103.9	2.6						
36.30	0.38	219.4	5.5						
36.10 35.75	0.58	334.9 537.1	8.4 13.4						
35.75 35.50	0.93 1.18	537.1 681.4	13.4 17.0						
33.30	1.10	001.4	17.0						

ATTACHMENT 3

TABLES

Tables 1a thru 1b (in text)

Table 2 – Historic Groundwater Field Data Summary (to Current)

Table 3 – Historic Groundwater Chemical Data Summary (Through 9/09)

Table 4 – Historic Groundwater Chemical Data Summary (From 12/09-TA Labs)

Table 2 - Historic Groundwater Field Data Summary (to Current)

GT-1			PAF	RAMETER				
	Depth to	Groundwater						
	Water (ft)	Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05	18.29	35.82	12.5	6.50	180	4.9	30	1.38
27-Jun-05	17.20	36.91	16.6	6.33	343	4.67	25	0.07
20-Sep-05	19.12	34.99	18.5	6.17	345	3.98	55	>1.5
13-Dec-05	15.29	38.82	10.7	6.97	157	5.34	<-80	0.10
15-Mar-06	15.07	39.04	12.8	7.02	203	4.27	51	0.34
22-Jun-06	15.81	38.30	15.0	6.64	217	3,95	-48	-0.01
26-Sep-06	17.00	37.11	17.1	7.05	188	2.32	0	-0.70
19-Dec-06	16.53	37.58	16.6	7.05	184	2.40	-36	0.01
27-Mar-07	16.13	37.98	14.0	7.09	462	2.80	-46	0.09
26-Jun-07	16.16	37.95	15.0	7.14	232	1.96	-32	-0.28
20-Sep-07	17.14	36.97	17.3	7.07	171	3.05	-50	0.01
20-Dec-07	18.56	35.55	16.6	7.14	189	2.65	-47	NA
27-Mar-08	15.36	38.75	13.3	7.10	244	2.80	-125	ND
19-Jun-08	16.39	37.72	14.2	7.09	190	2.88	-135	0.07
25-Sep-08	18.10	36.01	17.3	6.22	144	2.23	2	0.20
18-Dec-08	16.20	37.91	16.0	6.53	149	2.95	85	0.09
12-Mar-09	16.47	37.64	12.2	7.00	459	2.96	163	ND
17-Jun-09	15.73	38.38	13.5	7.75	381	5.20	48	0.10
22-Sep-09	17.05	37.06	17.0	7.65	224	4.40	-29	0.10
30-Dec-09	16.49	37.62	15.0	6.85	182	2.80	91	0.08
02-Feb-10	16.75	37.36	13.5	7.03	179	7.35	45	0.00
24-Mar-10	13.80	40.31	12.0	7.08	603	31.50	165	0.60
22-Jun-10	15.30	38.81	15.5	7.03	182	6.57	32	0.00
22-Sep-10	18.70	35.41	17.8	7.08	176	3.98	28	n/m
15-Dec-10	19.28	34.83	15.3	7.13	157	2.95	10	0.00
24-Mar-11	17.83	36.28	13.0	7.60	198	3.21	25	0.00

GT-2			PAF	RAMETER	<u> </u>			
Sampling	Depth to	Groundwater						
Date	Water (ft)	Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05	17.15	36.98	12.7	6.41	520	2.8	215	1.50
27-Jun-05	16.95	37.18	15.8	7.23	518	2.78	150	0
20-Sep-05	19.65	34.48	17.1	6.53	500	3.01	125	>1.5
13-Dec-05	15.22	38.91	16.5	7.01	353	3.51	130	>1.5
15-Mar-06 22-Jun-06	14.97 15.69	39.16 38.44	12.6 16.8	6.87 6.50	581 704	4.56 4.45	193 184	1.11 0.07
26-Sep-06	16.89	37.24	17.5	7.09	70 4 781	2.93	135	0.07
19-Dec-06	16.42	37.71	14.6	7.06	473	2.88	39	0.27
27-Mar-07	16.01	38.12	13.7	7.09	466	3.05	2	0.45
26-Jun-07	16.03	38.10	15.8	7.12	659	2.76	41	0.60
20-Sep-07	17.02	37.11	17.1	7.08	628	3.11	14	0.27
20-Dec-07 27-Mar-08	18.48 15.25	35.65 38.88	14.7 13.1	7.07 7.06	333 342	3.10 2.95	20 -104	NA ND
19-Jun-08	16.30	37.83	15.2	7.06	478	2.50	-10 4 -100	0.05
25-Sep-08	18.00	36.13	16.7	6.21	350	1.58	215	0.09
18-Dec-08	16.15	37.98	15.0	6.38	399	1.97	-100	0.10
12-Mar-09	16.38	37.75	12.9	7.14	500	0.77	167	ND
17-Jun-09	15.63	38.50	13.0	7.63	270	3.29	57	0.06
22-Sep-09	16.95	37.18	17.0	7.01	711	2.00	77	0.40
30-Dec-09	16.40	37.73	14.2	6.95	427	2.05	95	0.02
02-Feb-10	16.66	37.47	12.8	7.14	330	2.84	232	0.00
24-Mar-10	13.70	40.43	12.7	7.11	452	2.00	92	0.00
22-Jun-10	15.10	39.03	16.5	7.14	1064	1.17	-29	0.00
22-Sep-10	18.61	35.52	17.0	7.09	302	2.55	-33	n/m
15-Dec-10	19.22	34.91	13.8	7.09	384	2.80	-40	0.00
24-Mar-11	17.77	36.36	11.6	7.05	530	3.14	-25	0.00
GT-3			PAF	RAMETER	!			
Sampling	Double to	One we division						
Date	Depth to Water (ft)	Groundwater Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05	17.05	36.47	10.5	8.30	80	5.85	160	1.48
27-Jun-05	15.95	37.57	16.0	6.71	211	7.94	175	0.02
20-Sep-05	18.53	34.99	17.8	6.30	215	6.90	100	0.20
13-Dec-05	14.11	39.41	15.5	7.43	235	7.40	130	0.05
15-Mar-06	13.85	39.67	11.9	7.26	396	9.10	184	0.20
22-Jun-06	14.56	38.96	15.0	7.26	257	6.20	190	-0.12
26-Sep-06	15.80	37.72	18.4	7.08	253	5.66	102	0.04
19-Dec-06	15.34	38.18	16.2	7.05	251	4.20	68	0.05
27-Mar-07 26-Jun-07	14.91 14.96	38.61 38.56	12.1 13.5	7.07 7.07	225 205	3.95 3.40	-33 50	0.10 -0.32
20-Sep-07	14.96 15.87	37.65	18.9	7.07 7.06	205 287	3.40 4.10	-25	-0.32 0.18
20-Sep-07 20-Dec-07	17.40	36.12	14.9	7.00	164	3.15	65	NA
27-Mar-08	14.15	39.37	12.0	7.53	202	3.15	-82	0.22
19-Jun-08	15.20	38.32	14.4	7.09	168	3.00	-75	0.15
25-Sep-08	16.89	36.63	18.1	6.27	172	5.30	182	0.11
18-Dec-08	15.05	38.47	13.0	6.85	89	7.75	93	0.20
12-Mar-09	15.28	38.24	11.7	7.36	214	6.60	125	0.20
17-Jun-09	14.52	39.00	13.3	7.69	219	6.30	68 50	0.10
22-Sep-09 30-Dec-09	15.83 15.31	37.69 38.21	18.0 14.4	7.25 6.95	300 186	6.70 4.22	50 97	0.01 0.05
02-Feb-10	15.58	38.21 37.94	13.2	6.95 7.13	215	4.22 7.68	97 243	0.05 0.05
24-Mar-10	12.63	40.89	10.9	7.13	174	8.24	118	0.00
22-Jun-10	14.11	39.41	16.0	7.10	226	6.30	49	0.00
	17.49	36.03	18.0	7.07	176	2.00	55	n/m
22-Sep-10								
22-Sep-10 15-Dec-10	18.15	35.37	14.2	7.07	120	2.18	15	0.00
•				7.07 7.60	120 160	2.18 7.36	15 15	0.00 0.00

GT-4			PAF	RAMETER				
Sampling	Boother	Crowndwater						
Date	Depth to Water (ft)	Groundwater Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05	19.85	32.45	12.8	7.10	90	3.55	120	n/c
27-Jun-05	15.75	36.55	15.4	6.33	133	5.50	105	meter fault
20-Sep-05	16.25	Anomalous WL	16.5	6.93	139	2.52	115	>1.5
13-Dec-05	13.68	38.62	15.5	7.01	141	5.85	115	>1.5
15-Mar-06	13.48	38.82	11.6	6.86	200	4.92	46	>1.5
22-Jun-06	14.22	38.08	13.4	7.26	239	4.50	-56	>1.5
26-Sep-06	15.40	36.90	17.0	7.04	197	2.10	-40 -70	>1.5
19-Dec-06	14.88	37.42	16.3 12.7	7.03	172 162	1.95	-70 -55	>1.5
27-Mar-07 26-Jun-07	14.51 14.56	37.79 37.74	13.0	7.06 7.07	162	2.02 2.00	-၁၁ -116	>1.5 >1.5
20-Sep-07	15.52	36.78	16.8	7.03	149	2.70	-40	Out of Range
20-Dec-07	16.97	35.33	16.4	7.04	130	2.75	-44	NA
27-Mar-08	13.75	38.55	12.2	7.10	149	2.50	-70	Out of Range
19-Jun-08	14.78	37.52	13.4	7.08	112	3.50	-45	Out of Range
25-Sep-08	16.46	35.84	16.0	6.50	174	1.92	-12	Out of Range
18-Dec-08	14.60	37.70	15.7	7.80	111	1.94	-94	Out of Range
12-Mar-09	14.80	37.50	12.0	7.45	188	5.06	103	Out of Range
17-Jun-09	14.06	38.24	12.9	7.88	231	3.50	-45	Out of Range
22-Sep-09	15.44	36.86	16.3	8.22	163	2.93	-8	Out of Range
30-Dec-09	14.85	37.45	15.0	7.75	171	2.05	75 70	Out of Range
02-Feb-10	15.11	37.19	11.9	7.11	268	5.26	76	Out of Range
24-Mar-10 22-Jun-10	12.14 13.61	40.16 38.69	11.8 14.0	7.03 7.08	160 73	6.88 3.01	22 65	Out of Range Out of Range
22-Sep-10	17.12	35.18	16.9	7.03 7.04	73 212	2.82	49	n/m
15-Dec-10	17.12	34.65	16.8	7.02	232	3.05	50	0
24-Mar-11	16.20	36.10	12.8	7.70	190	4.20	50	0
GT-5				RAMETER				
Sampling								
Date	Depth to	Groundwater						
24-Mar-05	Water (ft) 17.65	Elevation (ft)	Temperature °C 13.5	<mark>рН</mark> 6.21	Cond. 217	D.O. 3.40	Eh 130	Ozone 1.16
27-Jun-05	17.65	36.64 36.79	14.8	6.13	205	7.29	135	0.23
20-Sep-05	19.33	34.96	15.6	6.13	210	6.51	-0.61	0.00
13-Dec-05	15.63	38.66	14.2	6.61	162	6.81	110	0.27
15-Mar-06	15.40	38.89	12.5	6.72	189	7.45	156	0.20
22-Jun-06	16.13	38.16	15.0	6.16	180	6.58	150	0.07
26-Sep-06	17.32	36.97	14.9	7.12	333	6.18	100	0.15
19-Dec-06	16.82	37.47	15.0	7.05	219	5.05	62	0.11
27-Mar-07	16.46	37.83	14.1	7.12	185	4.96	48	0.12
26-Jun-07 20-Sep-07	16.50 17.46	37.79 36.83	15.0 14.6	7.13 7.03	215 286	3.69 4.30	36 35	0.11 0.18
20-Dec-07	18.88	35.41	15.5	7.10	310	4.22	60	NA
27-Mar-08	15.68	38.61	13.5	7.12	219	3.88	-74	ND
19-Jun-08	16.70	37.59	14.5	7.11	189	3.95	-50	0.15
25-Sep-08	18.41	35.88	14.8	6.11	255	4.80	131	0.12
18-Dec-08	16.55	37.74	14.5	6.85	184	7.10	54	0.08
12-Mar-09	16.75	37.54	13.2	7.14	190	5.44	127	0.10
17-Jun-09	16.03	38.26	14.5	7.11	221	7.30	50	0.15
22-Sep-09 30-Dec-10	17.4 16.81	36.89 37.48	15.0 12.5	7.71 6.92	452 231	6.51 4.96	34 112	0.09 0.10
02-Feb-10	17.03	37.46 37.26	12.5	7.13	315	4.96 6.21	113	0.00
24-Mar-10	14.1	40.19	13.0	7.12	218	5.95	217	0.00
22-Jun-10	15.61	38.68	15.0	7.09	207	8.02	-46	0.00
22-Sep-10	19.08	35.21	15.4	7.07	294	4.25	-35	n/m
15-Dec-10	19.61	34.68	14.8	7.07	243	3.55	-10	0.00
24-Mar-11	18.18	36.11	13.9	7.34	326	4.08	-15	0.00

VE-1		PAI	RAMETER	!			
Sampling							
Date	Depth to						_
	Water (ft)	Temperature ⁰C	pH	Cond.	D.O.	Eh	Ozone
24-Mar-05	N/C	n/c	n/c	n/c	n/c	n/c	0.17
27-Jun-05	17.14	17.0	7.41	457	6.52	140	0.08
20-Sep-05 13-Dec-05	Dry 15.43	13.5	7.01	111	2.95	<-80	>1.5
15-Dec-05 15-Mar-06	15.43	NA	7.01	177	2.95 N/A	-100	>1.5 >1.5
22-Jun-06	15.20	16.0	6.89	351	3.00	3.88	>1.5
26-Sep-06	17.10	19.4	7.06	529	3.58	-105	0.22
19-Dec-06	16.63	14.8	7.05	248	3.15	-113	0.25
27-Mar-07	16.23	13.7	7.07	322	2.44	-60	0.2
26-Jun-07	16.29	17.0	7.12	509	1.66	-114	0.10
20-Sep-07	17.25	19.2	7.05	408	2.05	-50	0.11
20-Dec-07	18.62	14.8	7.12	234	2.99	-110	NA
27-Mar-08	15.47	11.4	7.11	268	3.15	-178	0.10
19-Jun-08	16.50	16.0	7.10	181	2.05	-200	Out of Range
25-Sep-08	18.20	19.2	6.53	470	2.60	-106	Out of Range
18-Dec-08	16.32	15.0	6.63	175	1.86	-83	Out of Range
12-Mar-09	16.57	12.0	6.94	212	5.63	178	0.11
17-Jun-09	15.53	17.0	7.84	388	1.97	-109	Out of Range
22-Sep-09	17.15	19.2	7.64	547	1.60	-123	0.03
30-Dec-09	16.59	12.0	6.75	334	1.66	-49	0.09
02-Feb-10	16.83	12.0	7.09	221	2.60	-15	0.02
24-Mar-10	13.90	12.1	7.39	392	34.70	202	over range
22-Jun-10	15.36	17.1	7.08	261	3.93	-60	0.00
22-Sep-10	DRY						
15-Dec-10	DRY	11.8	7.10	267	4.40	-10	0.00
24-Mar-11 VE-5	17.95				4.42	-10	0.00
)				
		PAI	RAMETER				
Sampling	Depth to		RAMETER				
	Depth to Water (ft)	PAI Temperature °C	PH PH	Cond.	D.O.	Eh	Ozone
Sampling Date 24-Mar-05	Water (ft) 19.64	Temperature ºC 12.1		Cond. 230	4.45	Eh 190	Ozone 0.57
Sampling Date 24-Mar-05 27-Jun-05	Water (ft)	Temperature °C 12.1 16.7	<mark>рН</mark> 6.91 7.02	Cond. 230 235	4.45 6.83	190 125	
Sampling Date 24-Mar-05 27-Jun-05 20-Sep-05	Water (ft) 19.64 16.65 18.45	Temperature °C 12.1 16.7 20.0	рН 6.91 7.02 6.53	Cond. 230 235 238	4.45 6.83 7.83	190 125 100	0.57 meter fault >1.5
Sampling Date 24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05	Water (ft) 19.64 16.65 18.45 5.51	Temperature °C 12.1 16.7 20.0 15.0	pH 6.91 7.02 6.53 7.10	Cond. 230 235 238 240	4.45 6.83 7.83 5.51	190 125 100 105	0.57 meter fault >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06	Water (ft) 19.64 16.65 18.45 5.51 14.62	Temperature °C 12.1 16.7 20.0 15.0 12.0	pH 6.91 7.02 6.53 7.10 7.05	Cond. 230 235 238 240 240	4.45 6.83 7.83 5.51 4.95	190 125 100 105 165	0.57 meter fault >1.5 >1.5 >1.5
Sampling Date 24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0	pH 6.91 7.02 6.53 7.10 7.05 7.10	Cond. 230 235 238 240 240 251	4.45 6.83 7.83 5.51 4.95 3.85	190 125 100 105 165 150	0.57 meter fault >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11	Cond. 230 235 238 240 240 251 240	4.45 6.83 7.83 5.51 4.95 3.85 2.95	190 125 100 105 165 150 157	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06	Cond. 230 235 238 240 240 251 240 263	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99	190 125 100 105 165 150 157 29	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11	Cond. 230 235 238 240 240 251 240 263 226	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71	190 125 100 105 165 150 157 29	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15	Cond. 230 235 238 240 240 251 240 263 226 212	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58	190 125 100 105 165 150 157 29 8 15	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
Sampling Date 24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04	Cond. 230 235 238 240 240 251 240 263 226 212 201	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50	190 125 100 105 165 150 157 29 8 15 -30	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
Sampling Date 24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14	Cond. 230 235 238 240 240 251 240 263 226 212 201 232	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80	190 125 100 105 165 150 157 29 8 15 -30 32	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00	190 125 100 105 165 150 157 29 8 15 -30 32 -95	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 Out of Range NA ND
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 Out of Range NA ND 0.1
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 Out of Range NA ND 0.1 0.05
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >0ut of Range NA ND 0.1 0.05 0.35 0.11
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09 22-Sep-09	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20 16.53	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5 19.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01 7.50	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259 313	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60 9.65	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55 30	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20 16.53 15.97	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5 19.0 13.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01 7.50 6.55	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259 313 249	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60 9.65 5.22	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55 30 131	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09 22-Sep-09 30-Dec-09	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20 16.53	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5 19.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01 7.50	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259 313 249 252	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60 9.65 5.22 8.00	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55 30 131 382	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09 22-Sep-09 30-Dec-09 02-Feb-10	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20 16.53 15.97 16.23	Temperature °C 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5 19.0 13.0 12.5	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01 7.50 6.55 7.12	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259 313 249	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60 9.65 5.22	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55 30 131	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09 22-Sep-09 02-Feb-10 24-Mar-10	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20 16.53 15.97 16.23 13.26	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5 19.0 13.0 12.5 12.5	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01 7.50 6.55 7.12 7.13	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259 313 249 252 218	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60 9.65 5.22 8.00 8.20	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55 30 131 382 153	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09 22-Sep-09 30-Dec-09 02-Feb-10 24-Mar-10 22-Jun-10 22-Sep-10 15-Dec-10	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20 16.53 15.97 16.23 13.26 14.76	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5 19.0 13.0 12.5 12.5 16.8	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01 7.50 6.55 7.12 7.13 7.10	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259 313 249 252 218 275	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60 9.65 5.22 8.00 8.20 8.16	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55 30 131 382 153 -36 -40 20	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 03-Jan-00 26-Jun-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09 22-Sep-09 30-Dec-09 02-Feb-10 24-Mar-10 22-Jun-10 22-Sep-10	Water (ft) 19.64 16.65 18.45 5.51 14.62 15.35 16.47 16.00 15.60 15.64 16.60 18.03 14.84 15.88 17.60 15.70 15.94 15.20 16.53 15.97 16.23 13.26 14.76 18.20	Temperature ℃ 12.1 16.7 20.0 15.0 12.0 16.0 18.0 14.1 14.5 17.3 18.0 13.8 11.0 16.4 18.2 14.0 12.0 15.5 19.0 13.0 12.5 12.5 16.8 19.0	pH 6.91 7.02 6.53 7.10 7.05 7.10 7.11 7.06 7.11 7.15 7.04 7.14 7.09 7.16 6.04 6.42 6.94 8.01 7.50 6.55 7.12 7.13 7.10 7.04	Cond. 230 235 238 240 240 251 240 263 226 212 201 232 198 227 215 224 212 259 313 249 252 218 275 210	4.45 6.83 7.83 5.51 4.95 3.85 2.95 2.99 2.71 1.58 2.50 2.80 3.00 2.85 6.18 6.32 5.63 5.60 9.65 5.22 8.00 8.20 8.16 3.20	190 125 100 105 165 150 157 29 8 15 -30 32 -95 -100 195 121 178 55 30 131 382 153 -36 -40	0.57 meter fault >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5 >1.5

DW-1			PAR	AMETER				
Sampling	Depth to							
Date	Water (ft)		Temperature ^o C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05			7.7	7.51	543	5.8	95	n/c
27-Jun-05			20.6	6.53	105	1.94	125	0
20-Sep-05	9.50		25.5	6.27	110	1.87	-35	0
13-Dec-05	6.95		12.0	7.41	43	11.21	45	0
15-Mar-06	10.36		8.6	7.78	97	7.41	102	0.1
22-Jun-06	8.90		18.5	7.46	66	7.00	88	-0.08
26-Sep-06	8.36		22.4	7.03	65	3.74	34	0.05
19-Dec-06	10.35		12.5	7.31	94	4.25	-41	-0.01
27-Mar-07	8.70		8.5	7.16	209	5.2	-60	-0.08
26-Jun-07	8.98		21.3	7.13	67	4.80	-25	0.10
20-Sep-07	9.58		23.0	7.08	63	6.70	-46	0.07
20-Dec-07	7.65		8.5	7.02	72	5.28	25	NA
27-Mar-08	7.90		8.1	7.21	82	4.85	-123	ND
19-Jun-08	4.30		22.4	7.13	56	6.55	-10	0.08
25-Sep-08	DRY		n/a	n/a	n/a	n/a	n/a	n/a
18-Dec-08	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
12-Mar-09	10.48	soil sample coll.	13.0	7.30	65	6.55	-8	ND
17-Jun-09	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
22-Sep-09	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
30-Dec-09	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
02-Feb-10	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
24-Mar-10	DRY	soil sample coll.	soil sample wet	n/a	n/a	n/a	n/a	n/a
22-Jun-10	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
22-Sep-10	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
15-Dec-10	DRY	soil sample coll.	n/a	n/a	n/a	n/a	n/a	n/a
24-Mar-11	9.82		8.5	7.10	25	10.50	80	0.00
VP-A			PAR	AMETER				
Sampling								
Date	Depth to							
	Water (ft)		Temperature °C	рН	Cond.	D.O.	Eh	Ozone
30-Dec-09		Not Accessible						
02-Feb-10	18.13		14.1	7.11	350	9.15	224	0.00
24-Mar-10	15.18		13.5	7.11	271	9.66	144	over range
22-Jun-10	16.50		15.5	7.13	188	10.23	-60	over range
22-Sep-10	20.05		17.5	7.11	376	3.95	-45	n/m
15-Dec-10 24-Mar-11	20.68 19.20		16.0	7.06	292 255	3.55	-35	0 0
			13.5	7.10	255	6.10	-20	

Sampling Date	Depth to Water (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
30-Dec-09	16.28	15.1	7.53	211	1.79	170	0.03
02-Feb-10	16.55	14.1	7.04	340	9.01	190	over range
24-Mar-10	13.68	13.8	7.09	229	7.14	137	over range
22-Jun-10	15.08	15.5	7.13	245	9.40	12	over range
22-Sep-10	18.61	17.0	7.09	370	4.00	16	n/m
15-Dec-10	19.20	14.9	7.03	370	2.97	20	0
24-Mar-11	17.75	13.8	7.57	196	5.95	-15	0

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

Т	ОС			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	` • /
GT-1	3/14/1994	ND	ND	51	410	170	ND	21	81	ND	ND	ND	NS	733
	2/9/1996	ND	ND	5	49	19	13	ND	12	ND	ND	ND	444	98
	5/28/1996	ND	ND	ND	16	24	10	ND	13	ND	ND	ND	186	63
DUPE	5/28/1996	ND	ND	ND	16	23	ND	ND	13	11	ND	ND	244	63
	8/22/1996	ND	ND	8	76	41	20	5	23	ND	ND	ND	588	173
	12/2/1996	ND	ND	ND	42	18	10	ND	10	ND	ND	ND	NS	80
	2/27/1997	ND	ND	ND	34	16	7	ND	8	ND	ND	ND	113	65
SPLIT	2/27/1997	ND	ND	1	29	17	9	3	13	ND	ND	ND	170	72
	5/28/1997	ND	ND	6	52	22	12	ND	11	ND	ND	ND	ND	103
DUPE	5/28/1997	ND	ND	6	52	22	12	ND	11	ND	ND	ND	ND	103
SPLIT	5/28/1997	ND	ND	6	47	20	9	ND	10	ND	ND	ND	51	92
	9/9/1997	ND	ND	22	167	73	33	9	38	ND	ND	ND	308	343
DUPE	9/9/1997	ND	ND	19	150	65	29	9	33	ND	ND	ND	277	304
SPLIT	9/9/1997	ND	ND	17	130	62	33	9	38	ND	ND	ND	5000	289
	12/18/1997	ND	ND	9	62	26	16	4	18	ND	ND	ND	43	135
DUPE	12/18/1997	ND	ND	8	61	26	14	4	16	ND	ND	ND	33	129
	6/25/1998	ND	ND	ND	23	16	17	ND	16	ND	ND	ND	51	72
DUPE	6/25/1998	ND	ND	ND	23	16	17	ND	15	ND	ND	ND	55	70
SPLIT	6/25/1998	ND	ND	ND	18	ND	19	ND	16	ND	ND	ND	ND	53
	10/13/1998	ND	ND	9	70	37	15	ND	21	ND	ND	ND	96	153
DUPE	10/13/1998	ND	ND	7	56	25	14	ND	17	ND	ND	ND	113	119
	12/4/1998	ND	ND	9	51	27	16	ND	17	ND	ND	ND	128	119
DUPE	12/4/1998	ND	ND	9	48	26	16	ND	16	ND	ND	ND	115	114
	6/16/1999	ND	ND	10	54	29	31	8	37	ND	ND	ND	820	168
DUPE	6/16/1999	ND	ND	6	37	18	27	8	35	ND	ND	ND	335	129
	9/30/1999	ND	ND	14	71	45	31	7	34	ND	ND	ND	ND	204
DUPE	9/30/1999	ND	ND	16	80	49	37	9	41	ND	ND	ND	ND	232
	12/22/1999	ND	ND	9	43	23	22	6	26	ND	ND	ND	2480	129
	3/15/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SPLIT	3/15/2000	ND	ND	1	9	5	4	1	4	0	ND	ND	250	24
	6/28/2000	ND	ND	7	36	19	13	ND	13	ND	ND	ND	92	0
SPLIT	6/28/2000	ND	0	5	37	19	17	4	19	2	ND	ND	38	0
	9/20/2000	ND	ND	ND	25	11	13	ND	15	ND	ND	ND	118	0
SPLIT	9/20/2000	ND	ND	ND	10	5	6	2	10	1	ND	ND	23	34
	12/20/2000	ND	ND	ND	8	6	7	ND	8	ND	ND	ND	87	28
SPLIT	12/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	0
	3/15/2001	ND	ND	ND	8	7	6	ND	6	ND	ND	ND	ND	0
SPLIT	3/15/2001	ND	ND	ND	17	8	9	ND	8	ND	ND	ND	3	0
m. malf.	8/23/2001	ND	ND	5	20	8	13	ND	12	ND	ND	ND	186	58
SPLIT	8/23/2001	ND	ND	5	22	8	18	ND	ND	1	ND	ND	450	54

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

T	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	11/6/2001	ND	ND	7	35	15	25	ND	24	ND	ND	ND	100	106
SPLIT	11/6/2001	ND	ND	5	27	11	20	ND	18	ND	ND	ND	110	81
	2/5/2002	ND	ND	ND	120	ND	98	ND	92	ND	ND	ND	120000	310
SPLIT	2/5/2002	ND	ND	ND	170	ND	160	ND	160	ND	ND	ND	140000	490
	4/16/2002	ND	ND	ND	53	ND	68	ND	57	ND	ND	ND	360000	178
SPLIT	4/17/2002	ND	ND	ND	63	ND	77	ND	66	ND	ND	ND	490000	206
	10/11/2002	ND	ND	5	17	ND	20	4	18	ND	ND	ND	130	64
DUPE	10/11/2002	ND	ND	5	19	5	22	4	21	ND	ND	ND	880	76
	1/23/2003	ND	ND	ND	10	ND	15	ND	13	ND	ND	ND	340	38
DUPE	1/23/2003	ND	ND	ND	8	ND	14	ND	12	ND	ND	ND	800	34
	4/22/2003	ND	ND	ND	11	ND	20	4	18	ND	ND	ND	310	53
DUPE	4/22/2003	ND	ND	ND	6	ND	19	3	17	ND	ND	ND	240	45
	7/22/2003	ND	ND	ND	15	ND	27	5	22	ND	ND	ND	ND	69
DUPE	7/22/2003	ND	ND	ND	12	ND	21	4	18	ND	ND	ND	ND	55
	12/9/2003	ND	ND	5	22	13	33	9	40	ND	ND	ND	560	122
DUPE	12/9/2003	ND	ND	5	22	14	34	9	42	ND	ND	ND	710	126
luged: 4/22/04		ND	ND	ND	19	8	44	9	41	ND	ND	ND	490	121
DUPE	3/25/2004 *	ND	ND	ND	18	9	42	9	43	ND	ND	ND	ND	121
	6/29/2004	ND	ND	ND	ND	ND	8	ND	9	ND	ND	ND	510	17
DUPE	6/29/2004	ND	ND	ND	5	ND	13	ND	14	ND	ND	ND	ND	32
	10/4/2004	ND	ND	ND	ND	6	5	ND	8	ND	ND	ND	ND	19
DUPE	10/4/2004	ND	ND	ND	5	10	10	3	14	ND	ND	ND	ND	42
	12/28/2004	ND	ND	ND	6	11	11	3	16	ND	ND	ND	320	47
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	6	ND	ND	ND	440	6
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	4	ND	ND	ND	56	9
DUPE	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND		4	9	3	13				180	29
	12/13/2005	ND	ND	ND	8	10	17	6	32	ND	ND	ND	1400	73
	3/15/2006	ND	ND	ND	6	9	26	5	26	ND	ND	ND	2600	72
	6/22/2006	ND	ND	ND	6	9	24	9	29	ND	ND	ND	3300	77
	9/26/2006	ND	ND	ND	ND	ND	15	3	15	ND	ND	ND	3100	33
	12/19/2006	ND	ND	ND	7	ND	23	4	20	ND	ND	ND	2500	54
DUPE	12/19/2006	ND	ND	ND	5	ND	17	3	16	ND	ND	ND	2700	41
	3/27/2007	ND	ND	ND	ND	ND	12	ND	12	ND	ND	ND	1600	24
DUPE	3/27/2007	ND	ND	ND	ND	ND	13	ND	13	ND	ND	ND	1400	26
	6/26/2007	ND	ND	ND	ND	ND	10	ND	12	ND	ND	ND	880	22
DUPE	6/26/2007	ND	ND	ND	ND	ND	8	ND	9	ND	ND	ND	1400	17
	9/20/2007	ND	ND	ND	5	ND	18	5	20	ND	ND	ND	2400	48
DUPE	9/20/2007	ND	ND	ND	7	ND	24	5	24	ND	ND	ND	3000	60
Inje	10/16/2007	ND	ND	ND	ND	ND	ND	ND	4	ND	ND	ND	200	4

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

	ГОС			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
E	v 10/18/2007	ND	ND	ND	8	6	24	7	31	ND	ND	ND	2800	76
	12/20/2007	ND	ND	ND	ND	ND	7	ND	7	ND	ND	ND	720	14
DUPE	12/20/2007	ND	ND	ND	ND	ND	7	ND	7	ND	ND	ND	550	14
	3/27/2008	ND	ND	ND	ND	ND	6	ND	8	ND	ND	ND	480	14
DUPE	3/27/2008	ND	ND	ND	ND	ND	6	ND	9	ND	ND	ND	1300	15
	6/19/2008	ND	ND	ND	ND	ND	7	ND	10	ND	ND	ND	1900	17
DUPE	6/19/2008	ND	ND	ND	ND	ND	8	ND	10	ND	ND	ND	1900	18
	9/25/2008	ND	ND	ND	ND	ND	18	4	20	ND	ND	ND	3100	42
DUPE	9/25/2008	ND	ND	ND	ND	ND	18	4	21	ND	ND	ND	3000	43.0
	12/18/2008	ND	ND	ND	ND	ND	8.7	ND	11	ND	ND	ND	1300	19.7
DUPE	12/18/2008	ND	ND	ND	ND	ND	8.6	ND	11	ND	ND	ND	1300/4800	19.6
	3/12/2009	ND	PCE-5.7	ND	ND	ND	6.3	ND	10	ND	ND	ND	500	22.0
X-		ND	PCE-6.3	ND	ND	ND	5.6	ND	9.4	ND	ND	ND	710	21.3
DUPE		Note: 5.7 a	nd 6.3 ug/L	of tetrachlo	roethene w	as also dete	ected in sa	mple and	X-2, respec	tively. This	parameter	total is inlcuded	d in the Tota	I VOCs.
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	ND
DUPE	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	73	ND
	9/22/2009	ND	ND	ND	ND	ND	3.5	ND	6.2	ND	ND	ND	530	9.7
DUPE	9/22/2009	ND	ND	ND	ND	ND	3	ND	5.8	ND	ND	ND	680	8.9
GT-2	3/14/1994													
	2/9/1996													
	5/28/1996													
	8/22/1996													
	12/2/1996													
	2/27/1997													
	5/28/1997													
	9/9/1997													
	12/18/1997													
	6/25/1998													
	10/13/1998													
	12/4/1998													
	6/16/1999													
	9/30/1999													
	12/22/1999													
	3/15/2000													
	6/28/2000													
	9/20/2000													
	12/20/2000													
	3/15/2001													
m.malf	8/23/2001													
	11/6/2001													

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

TO	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
	Date	(ug/l)	(ug/l)	(ug/l)										
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	2/5/2002													
	4/16/2002													
	10/11/2002													
	1/23/2003	ND	ND	0										
	4/22/2003	NS	NS	NS										
	7/22/2003	ND	ND	0										
	12/9/2003	ND	ND	0										
	4/22/2004	ND	ND	0										
	6/29/2004	ND	ND	0										
	10/4/2004	ND	ND	0										
	12/28/2004	ND	ND	7										
	3/24/2005	ND	ND	0										
Dup		ND	ND	0										
	7/6/2005	ND	ND	0										
	9/20/2005	ND	ND	0										
	12/13/2005	ND	ND	0										
	3/15/2006	ND	ND	0										
	6/22/2006	ND	ND	0										
	9/26/2006	ND	ND	0										
	12/19/2006	ND	ND	0										
	3/27/2007	ND	ND	0										
	6/26/2007	ND	ND	0										
	9/20/2007	ND	ND	0										
	12/20/2007	ND	ND	0										
	3/27/2008	ND	ND	0										
	6/19/2008	ND	ND	0										
	9/25/2008	ND	ND	0										
	12/18/2008	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	0
	3/12/2009 6/17/2009	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0
	9/22/2009	ND ND	ND ND	0										
GT-3	3/14/1994	ND	NS	0										
G1-3	2/9/1996	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND		ND	0
	5/28/1996	ND		ND	0									
	8/22/1996	ND		ND	0									
SPLIT	8/22/1996	ND		ND	0									
OI LIT	12/2/1996	ND		ND	0									
SPLIT	12/2/1996	ND		ND	0									
OI LII	2/27/1997	ND		ND	0									
	5/28/1997	ND	ND	0										
	5/28/1997	טא	טא	טא	טט	טא	טא	טט	טט	טא	טא	ND	טא	U

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

Т	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)										
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	9/9/1997	ND	ND	0										
	12/18/1997	ND	ND	0										
	6/25/1998	ND	ND	0										
	10/13/1998	ND	ND	0										
SPLIT	10/13/1998	ND		ND	0									
	12/4/1998	ND	ND	0										
	6/16/1999	ND	ND	0										
SPLIT	6/16/1999												1	0
	9/30/1999	ND	ND	0										
SPLIT	9/30/1999	ND	ND	0										
	12/22/1999	ND	ND	0										
	3/15/2000	ND	ND	0										
	6/28/2000	ND	ND	0										
	9/20/2000	ND	ND	0										
	12/20/2000	ND	ND	0										
	3/15/2001	ND	ND	0										
m. malf.	8/23/2001	ND	ND	0										
	11/6/2001	ND	ND	0										
	2/5/2002	ND	ND	0										
	4/16/2002	ND	ND	0										
	10/11/2002	ND	ND	0										
	1/23/2003	ND	170	0										
DUDE	2/27/2003	ND	ND	0										
DUPE	2/27/2003	ND	ND	0										
	4/22/2003	ND	ND	0										
	7/22/2003	ND	ND	0										
	12/9/2003	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0
	4/22/2004 6/29/2004	ND ND	ND	ND	0									
	10/4/2004	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND ND	0
	12/28/2004	ND ND	ND ND	0 0										
	3/24/2005	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND ND	ND ND	ND ND		ND ND	ND ND	0						
	12/13/2005	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	
	3/15/2005	ND ND	ND ND	0 0										
	6/22/2006	ND ND	ND ND	0										
	9/26/2006	ND ND	ND ND											
	12/19/2006	ND ND	ND ND	ND ND	ND ND	ND ND	8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0 8
	3/27/2006		ND ND	ND ND		ND ND	8 ND	ND ND	ND ND		ND ND		ND ND	0
	6/26/2007	ND ND	ND ND	0										
	0/20/2007	טאו	טא	טא	טאו	ND	טא	טא	טאו	טאו	טא	שוו	טאו	U

Table 3 Historic Groundwater Chemical Data Summary (Through 9/09) S-K N. Amityville, NY

Т	ос			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID GW STND	Date	(ug/l)	(ug/l)	(ug/l)										
GW SIND	9/20/2007	1 ND	5 ND	5 ND	5 ND	5 ND	3 ND	3 ND	3 ND	5 ND	5 ND	5 ND	50 ND	0
	12/20/2007	ND	ND ND	ND	0									
	3/27/2008	ND	ND	0										
	6/19/2008	ND	ND	0										
	9/25/2008	ND	ND	0										
	12/18/2008	ND	ND	0										
	3/12/2009	ND	ND	0										
	6/17/2009	ND	ND	0										
	9/22/2009	ND	ND	0										
GT-4	3/14/1994													
	2/9/1996													
	5/28/1996													
	8/22/1996 12/2/1996													
	2/27/1996													
	5/28/1997													
	9/9/1997													
	12/18/1997													
	6/25/1998													
	10/13/1998													
	12/4/1998													
	6/16/1999													
	9/30/1999													
	12/22/1999													
	3/15/2000 6/28/2000													
	9/20/2000													
	12/20/2000													
	3/15/2001													
m malf.	8/23/2001													
	11/6/2001													
	2/5/2002													
	4/16/2002													
	10/11/2002													
	1/23/2003													
	4/22/2003 7/22/2003													
	12/9/2003													
	4/22/2004													
	6/29/2004													
	3/23/2004													ı

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

Т	ОС			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)								
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	10/4/2004													
	12/28/2004													
	3/24/2005													
	9/20/2005	ND	ND	ND	ND	0								
	12/13/2005	ND	ND	ND	ND	0								
	3/15/2006	NS	NS	NS	NS	NS								
	6/22/2006	NS	NS	NS	NS	NS								
	9/26/2006	NS	NS	NS	NS	NS								
	12/19/2006	NS	NS	NS	NS	NS								
	3/27/2007	NS	NS	NS	NS	NS								
	6/26/2007	NS	NS	NS	NS	NS								
	9/20/2007	NS	NS	NS	NS	NS								
	12/20/2007	NS	NS	NS	NS	NS								
	3/27/2008	NS	NS	NS	NS	NS								
	6/19/2008	NS	NS	NS	NS	NS								
	9/25/2008	NS	NS	NS	NS	NS								
	12/18/2008	NS	NS	NS	NS	NS								
	3/12/2009	NS	NS	NS	NS	NS								
	6/17/2009	NS	NS	NS	NS	NS								
OT 5	9/22/2009	NS	NS	NS	NS	NS								
GT-5	3/14/1994	ND	27	ND		NS	27							
	2/9/1996	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND		ND	0
CDLIT	5/28/1996	ND	ND	ND	ND	ND			ND	18	ND		ND	18
SPLIT	5/28/1996 8/22/1996	ND ND	27 83	ND ND		ND ND	27 83							
DUPE	8/22/1996	ND ND	83 112	ND ND	ND	ND ND	83 112							
DOPE	12/2/1996	ND ND	ND	ND ND	ND	ND ND	0							
	12/2/1996	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	0
	2/27/1997	ND	33	ND	33	ND	33							
DUPE	2/27/1997	ND	28	ND	28	ND	28							
DOFL	5/28/1997	ND	11	ND	11	ND	11							
	9/9/1997	ND	38	ND	38	ND	38							
	12/18/1997	ND	2	ND	ND	ND	2							
	6/25/1998	ND	ND	ND	ND	0								
	10/13/1998	ND	ND	ND	ND	ND	8	ND	ND	5	ND	5	ND	13
	12/4/1998	ND	ND	ND	ND	0								
	6/16/1999	ND	15	ND	ND	ND	15							
	9/30/1999	ND	ND	5	ND	17	13	ND	ND	13	ND	ND	ND	49
	12/22/1999	ND	ND	ND	ND	0								
DUPE	12/22/1999	ND	ND	ND	ND	0								
	,, .000													•

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

	ОС			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	3/15/2000	ND	ND	ND	ND	ND	ND	ND	ND	9	ND	ND	ND	9
DUPE	3/15/2000	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	11
	6/28/2000	ND	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND	0
DUPE	6/28/2000	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND	0
	9/20/2000	ND	ND	ND	ND	11	14	ND	ND	ND	ND	ND	ND	0
DUPE	9/20/2000	ND	ND	ND	ND	7	10	ND	ND	ND	ND	ND	ND	17
	12/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	12/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	3/15/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
m malf.	8/23/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	8/23/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	11/6/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DRY	2/5/2002													
DRY	4/16/2002													
DRY	10/11/2002													
	1/23/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	4/22/2003													
	7/22/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/9/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/25/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/29/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
`	10/4/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/28/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0

Table 3
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

Т	ОС			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DW-1	7/22/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/9/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/25/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/29/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	10/4/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/28/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/25/2008	dry - N/S			DRY									
		Dry - Soil sa						ND	ND	ND	ND	ND	ND	0
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/17/2009 9/22/2009	Dry - Soil sa Dry - Soil sa												
VE-5	12/28/2009	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	0
VE-3	3/24/2005	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	0
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	0
	12/13/2006	ND	טאו	IND	ND	IND	ND	ND	ND	IND	ND	טאו	IND	U

	ос			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	60	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
VE-1	3/30/2005	ND	ND	ND	ND	ND		ND	64	ND	ND	ND	2900	164
	7/6/2005	ND	ND	ND	5	ND	41	7	27	ND	ND	ND	5600	80
dry	9/20/2005													
	12/13/2005	ND	ND	ND	18	ND	97	72	71	ND	ND	ND	24000	258
	3/15/2006	ND	ND	ND	19J1M	ND	98J1M	83J1M	83J1M	ND	ND	6-cis 1,2 DCE	39000	289
	6/22/2006	ND	ND	ND	9	ND	57	ND	61	ND	ND	ND	17000	127
	9/26/2006	ND	ND	ND	ND	ND	18	8	26	ND	ND	ND	8600	52
	dup	ND	ND	ND	ND	ND	21	5	20	ND	ND	ND	3900	46
	12/19/2006	ND	ND	ND	ND	ND	37	12	45	ND	ND	ND	27000	94
	3/27/2007	ND	ND	ND	ND	ND	21	9	31	ND	ND	ND	34000	61
	6/26/2007	ND	ND	ND	ND	ND	27	13	40	ND	ND	ND	30000	80
	9/20/2007	ND	ND	ND	ND	ND	6	4	12	ND	ND	ND	9500	22
	12/20/2007	ND	ND	ND	ND	ND	9	7	19	ND	ND	ND	33000	35
	3/27/2008	ND	ND	ND	ND	ND	9	7	18	ND	ND	ND	430	78 ¹
	6/19/2008	ND	ND	ND	ND	ND	6	5	12	ND	ND	ND	21000	23
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23000	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	7.2	ND	ND	ND	15000	20.2
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	3.9	ND	ND	ND	8000	3.9
		Note: 13 pp	b of isoprop	ylbenzene	was also d	etected. This	s paramete		nlcuded in th	ne Total VC	OCs columi			
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	6.0	ND	ND	ND	23000	6
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8400	0

Α

Table 3 Historic Groundwater Chemical Data Summary (Through 9/09) S-K N. Amityville, NY

	TOC	;			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev		Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	1	Date	e (ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STN	D		1	5	5	5	5	3	3	3	5	5	5	50	

	Key
Notes	
BDL = Not detected above the method detection limit	Target Compound Abbreiviations
ND = Not Detected (reported in micrograms per liter (ug/l)	1,2-DCB = 1,2-Dichlorobenzene
NS = Not Sampled	1,3-DCB = 1,3-Dichlorobenzene
NA = Not Applicable	1,4-DCB = 1,4-Dichlorobenzene
TOC = Top of Casing (measured in feet above MSL)	1,2-DCE = 1,2-Dichloroethene
DO = Dissolved Oxygen (reported in milligrams per liter (mg/l)	1,1,1-TCA = 1,1,1-Trichloroethane
J1M = Lab estimated concentration	
Number that is in BOLD exceeds th New York State Class GA Grou	Trans-1,2-DCE = Trans-1,2-Dichloroethene
GW Standards for Class GA groundwater (NYSDEC TOGS 1.1.1, 1	0/22/93, Rev. 6/98)

Notes:

1. Tetrachloroethane was detected at a concentration of 5.7 and 6.3 ug/L in sample GT-1 and X-2, respectively.

Table 4 Groundwater Monitoring Results Summary - Test America, Inc. Start Safety-Kleen Systems, Inc. - Corrective Action Program N. Amityville, New York Facility

(Recorded At/Above the T.O.G.S. 1.1.1 Standards or Project-Specific Reporting Limits)

(See Laboratory Report for all Compounds Detected Above the Method Detection Limit)

(Project Laboratory as of 12/2009 - Test America, Inc.)

Monitoring	Sample	Detected Compound	Acetone	Benzene	Toluene	Ethyl- benzene	Xylenes	PCE	Chloro- benzene	1,2- DCB	1,3- DCB	1,4- DCB	1,2- DCE	1,1,1- TCA	trans -1,2- DCE	Mineral Spirit RO	Total VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
<u></u>				1							1				1		
GT-1	12/30/2009	Sample														1,300	
	- /- /	Duplicate (X-2)														1,300	
	2/2/2010	Sample														1,000	
		Duplicate (X-2)														1,100	
	3/24/2010	Sample										3.5 & 4.1					3.5 & 4.1
		Duplicate (X-2)										3.5 & 4.2				4,500	3.5 & 4.2
	6/22/2010	Sample														3,000	
		Duplicate (X-2)														2,400	
	9/22/2010	Sample								4.9		10.0				18,000	14.9
		Duplicate (X-2)								4.9		11.0				16,000	15.9
	12/15/2010	Sample								9.1	5.2	21.0				12,000	35.3
		Duplicate (X-2)								9.1	5.1	20.0				39,000	34.2
	3/24/2011	Sample								6.8	4.0	15.0				18,000	25.8
		Duplicate (X-2)								6.9	4.1	15.0				24,000	26
GT-2	12/30/2009																
	2/2/2010															67	
	3/24/2010																
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																

		Detected				Ethyl-			Chloro-	1,2-	1,3-	1,4-	1,2-		trans -1,2-	Mineral	Total
Monitoring	Sample	Compound	Acetone	Benzene	Toluene	benzene	Xylenes	PCE	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirit RO	VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
	I		1						1 1				1				
GT-3	12/30/2009																
	2/2/2010																
	3/24/2010																
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																
OT 4	10/00/0000	N/O															
GT-4	12/30/2009	N/S															
	2/2/2010	N/S															
	3/24/2010	N/S															
	6/22/2010	N/S															
	9/22/2010	N/S															
[12/15/2010	N/S															
	3/24/2011	N/S															
																	_

Compound Units OGS-STD->	Acetone (ug/l) 50	Benzene (ug/l) 1	Toluene (ug/l) 5	benzene (ug/l) 5	Xylenes (ug/l) 5	PCE (ug/l) 5	benzene (ug/l) 5	DCB (ug/l) 3	DCB (ug/l) 3	DCB (ug/l) 3	DCE (ug/l) 5	TCA (ug/l) 5	DCE (ug/l) 5	Spirit RO (ug/l) 50	VOCs (ug/l) n/a
										1					
OGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
			l												
										<u> </u>				23,000	
														43,000	
														5,400	
Dry														0,100	
Diy														8300	
														0300	
	Dry Dry														

Monitoring	Sample	Detected Compound	Acetone		Toluene	Ethyl- benzene	-	PCE	Chloro- benzene	1,2- DCB	1,3- DCB	1,4- DCB	1,2- DCE	TCA	trans -1,2- DCE	Mineral Spirit RO	Total VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
VE-5	12/30/2009															190	
	2/2/2010															390	
	3/24/2010																
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																
VP-A	12/30/2009	Not Accessible															
	2/2/2010															99	
	3/24/2010																
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																
V/D D	40/00/2000		<u> </u>			1					1		1		<u>. </u>	F •	
VP-B	12/30/2009										-		1			58	-
	2/2/2010		400.0.445								-		1			66	400.0.41
	3/24/2010		130 & 110										1			120	130 & 110
	6/22/2010																
	9/22/2010																
	12/15/2010										1						
	3/24/2011																
													1				
																	<u> </u>

Monitoring	Sample	Detected Compound	Acetone	Benzene	Toluene	Ethyl- benzene	Xylenes	PCE	Chloro- benzene	1,2- DCB	1,3- DCB	1,4- DCB	1,2- DCE	1,1,1- TCA	trans -1,2- DCE	Mineral Spirit RO	Total VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
DW-1 SOIL	12/30/2009	Sample															
		Duplicate															
	2/2/2010	Sample															
		Duplicate															
	3/24/2010	Sample															
		Duplicate															
	6/22/2010	Sample															
		Duplicate															
	9/22/2010	Sample															
		Duplicate															
	12/15/2010	Sample															
		Duplicate															
DW-1 WTR	12/30/2009	No standing water															
	2/2/2010	No standing water															
	3/24/2010	sampled															
	6/22/2010	No standing water															
ŀ	9/22/2010	No standing water															
ŀ	12/15/2010	No standing water															
ļ	3/24/2011																
ļ																	
ļ																	

ATTACHMENT 4

LABORATORY ANALYTICAL REPORT

COMPACT DISK DISTRIBUTION

CC LIST Hard Copy Recipients

(Executive Summary Attached Herein)

ANALYTICAL REPORT

Job Number: 220-15043-1

Job Description: Safety-Kleen N. Amityville, NY

For:

Basile Environmental Solutions, LLC 1188 Hillside Drive Cortland, NY 3045

Attention: Joseph Basile, Jr., MSc.

Approved for releas Joan Widomski Project Manager I 4/8/2011 1:14 PM

Designee for
Jackie Trudell
Project Manager I
jackie.trudell@testamericainc.com
04/08/2011

Joan Widomskin

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Project Manager.

TestAmerica Connecticut Certifications and Approvals: CTDOH PH-047, MADEP CT023, RIDOH A43, NYDOH 10602, NY NELAP 10602, NHDES 2528, NJDEP CT410, ME DOH CT023, UT DOH 2032614458

Page 1 of 341

Job Number: 220-15043-1

Job Description: Safety-Kleen N. Amityville, NY

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Designee for Jackie Trudell

Joan Widomskin

Approved for release. Joan Widomski Project Manager I 4/8/2011 1:14 PM

Table of Contents

Cover Title Page	1
Data Summaries	5
Report Narrative	5
Sample Calculation Summary	10
Sample Summary	11
Executive Summary	12
Method Summary	14
Method / Analyst Summary	15
Sample Datasheets	16
Surrogate Summary	49
QC Data Summary	51
Data Qualifiers	58
QC Association Summary	59
Lab Chronicle	60
Organic Sample Data	63
GC/MS VOA	63
Method 8260B	63
Method 8260B QC Summary	64
Method 8260B Sample Data	71
Standards Data	153
Method 8260B ICAL Data	153
Method 8260B CCAL Data	218
Raw QC Data	227
Method 8260B Tune Data	227
Method 8260B Blank Data	235
Method 8260B LCS/LCSD Data	240

Table of Contents

Method 8260B Run Logs	246
GC VOA	248
Method 8015B - GRO	248
Method 8015B - GRO QC Summary	249
Method 8015B - GRO Sample Data	252
Standards Data	267
Method 8015B - GRO ICAL Data	267
Method 8015B - GRO CCAL Data	294
Raw QC Data	310
Method 8015B - GRO Blank Data	310
Method 8015B - GRO LCS/LCSD Data	316
Method 8015B - GRO Run Logs	328
Method 8015B - GRO Prep Data	331
Shipping and Receiving Documents	337
Client Chain of Custody	338
Sample Receipt Checklist	339
Interlab Coc (where applicable)	341

Project Specific Reporting Limits - Aqueous Samples

For aqueous samples, please note that the reporting limits listed below may vary for each sample analyzed based on sample volume, and/or sample dilution. The aqueous laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC) Technical & Operational Guidance Series (TOGS) section 1.1.1 class GA standards, and ASI's previously reported

laboratory reporting	limits where no TOGS	S class GA standard exists.

Acetonie 50 ug/L Acetonitrie 10 ug/L Acetonitrie 10 ug/L Allyl chloride 5 ug/L Benzene 1 ug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chlorothane 5 ug/L 2-Chlorothyl vinyl ether 20 ug/L Chlorothyl vinyl ether 20 ug/L Chlorothm 7 ug/L Chlorothane 5 ug/L Cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 5 ug/L 1,2-Dichloropropene 0.04 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dichloropropane 0.04 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,1-D	Analyte	Aqueous Project Specific Reporting Limits	Units
Acetonitrile 10 ug/L Allyt klorioride 5 ug/L Benzzene 1 ug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon disulfide 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chlorotethane 5 ug/L Chlorotethane 5 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroethene 5 ug/L cis-1,2-Dichloropropene 0.2 ug/L Dibromochloromethane 5 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromo-4-Chloropropane 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichloroethane 5 ug/L 1,1,2-Dichloroethane 5 ug/L			
Allyl chloride			
Benzyl chloride 1 ug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chlorotenzene 5 ug/L Chloromethane 5 ug/L cis-1,2-Dichlorotenzene 0,2 ug/L Dibromochloromethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dichlorobenzene 3 ug/L Dibromomethane 5 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichlorobenzene 5 ug/L 1,2-Dichloropethane 5 ug/L 1,2-Dichloropethen			
Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chioroethyl vinyl ether 20 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroptenene 0.2 ug/L Dibromochloromethane 50 ug/L Dibromochloromethane 50 ug/L Dibromomethane 5 ug/L 1,2-Dibromochlane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethene 5 ug/L 1,1-Dichloroethene, Total 2 ug/L			
Bromodichloromethane			
Bromoferm			
Brommethane			
2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene 1 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene			
Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromochloromethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 2-Hexanone 5 ug/L 1,2-Dichloroethane 5 ug/L 4-Methylachohol 250 ug/L Methylmethacryl			
Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Cisi-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromodethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichlorobenzene 3 ug/L 1,1-Dichlorobenzene 5 ug/L 1,2-Dichlorobenene 5 ug/L 1,2-Dichlorobenene 5 ug/L			
Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropopane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Iodomethane 5 ug/L Iodomethane 5 ug/L Iodomethane 5 ug/L Iosobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L			
Chloroethyl vinyl ether			
2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropopane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylne Chloride 5 ug/L Methylne Chloride 5 ug/L Methylene Chloride			
Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methyl nethacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl methacrylate			
Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,1-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methylnethacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L O-Xylene 5			
cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L lodomethane 5 ug/L Methylene Chloride 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L o-Xylene 5 ug/L Tylene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/			
cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 5 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L			
Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloropropane 1 ug/L 2-Dichloropropane 1 ug/L 2-Dichloropropane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L		5	ug/L
1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,1-Dichloroethane 1 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L Vylene 5 ug/L 5 tyrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L			
1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethylmethacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 25 ug/L Methylene Chloride 5 ug/L Methyl-ene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Metylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Typene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Toluene 5 ug/L			
1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L 1,2-Dichloropropane 1 ug/L 2-Hexplope 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		5	ug/L
1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 5 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Mep-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	,		ug/L
Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Idodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	,	3	ug/L
1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		3	ug/L
1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1-Dichloroethane	5	ug/L
1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,2-Dichloroethane		
1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			ug/L
Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L lodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		2	ug/L
Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,2-Dichloropropane		ug/L
2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Ethylbenzene		ug/L
Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Ethyl methacrylate		
Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	2-Hexanone		
Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	lodomethane	5	ug/L
Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Isobutyl alcohol		
Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Methacrylonitrile		
Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Methylene Chloride	5	ug/L
4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		50	ug/L
m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	4-Methyl-2-pentanone (MIBK)		
o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	m&p-Xylene		
Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	o-Xylene	5	ug/L
1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Styrene	5	ug/L
1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1,1,2-Tetrachloroethane	5	ug/L
Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1,2,2-Tetrachloroethane	5	ug/L
Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Tetrachloroethene	5	ug/L
trans-1,4-Dichloro-2-butene 5 ug/L	Toluene	5	ug/L
trans-1,2-Dichloroethene 5 ug/L		5	ug/L
	trans-1,2-Dichloroethene	5	ug/L

Analyte	Aqueous Project Specific Reporting Limit	Units
trans-1,3-Dichloropropene	0.2	ug/L
1,1,1-Trichloroethane	5	ug/L
1,1,2-Trichloroethane	1	ug/L
Trichloroethene	5	ug/L
1,2,3-Trichloropropane	0.04	ug/L
Vinyl acetate	5	ug/L
Vinyl chloride	2	ug/L
Xylenes, Total	15	ug/L
Mineral Spirit Range Organics	50	ug/L

Project Specific Reporting Limits – Solid Samples

For solid samples, please note that the reporting limits listed below will vary for each sample analyzed based on sample moisture content, sample volume, and/or sample dilution. The solid laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC) Subpart 375-6.8(a) Unrestricted Use Soil Cleanup Objectives and TestAmerica Connecticut's laboratory reporting limits where no part 375 cleanup objectives exist.

Analyte	Solid Project Specific Reporting Limits	Units
Acetone	50	ug/Kg
Acetonitrile	50	ug/Kg
Allyl chloride	5	ug/Kg
Benzene	60	ug/Kg
Benzyl chloride	5	ug/Kg
Bromodichloromethane	5	ug/Kg
Bromoform		ug/Kg
Bromomethane	5	ug/Kg
2-Butanone (MEK)	120	ug/Kg
Carbon disulfide	5	ug/Kg
Carbon tetrachloride	760	ug/Kg
Chlorobenzene	1100	ug/Kg
Chloroethane	5	ug/Kg
2-Chloroethyl vinyl ether	5	ug/Kg
Chloroform		ug/Kg
Chloromethane		ug/Kg
cis-1,2-Dichloroethene	250	ug/Kg
cis-1,3-Dichloropropene		ug/Kg
Dibromochloromethane		ug/Kg
1,2-Dibromo-3-Chloropropane		ug/Kg
1,2-Dibromoethane		ug/Kg
Dibromomethane		ug/Kg
1,3-Dichlorobenzene		ug/Kg
1,4-Dichlorobenzene		ug/Kg
1,2-Dichlorobenzene		ug/Kg
Dichlorodifluoromethane		ug/Kg
1,1-Dichloroethane	270	ug/Kg
1,2-Dichloroethane	20	ug/Kg
1,1-Dichloroethene	330	ug/Kg
1,2-Dichloroethene, Total	5	ug/Kg
1,2-Dichloropropane	5	ug/Kg
Ethylbenzene	1000	ug/Kg
Ethyl methacrylate	10	ug/Kg
2-Hexanone	10	ug/Kg
Iodomethane	10	ug/Kg
Isobutyl alcohol	150	ug/Kg
Methacrylonitrile		ug/Kg
Methylene Chloride	50	ug/Kg
Methyl methacrylate		ug/Kg
4-Methyl-2-pentanone (MIBK)		ug/Kg
m&p-Xylene	5	ug/Kg
o-Xylene	5	ug/Kg
Styrene	5	ug/Kg
1,1,1,2-Tetrachloroethane		ug/Kg
1,1,2,2-Tetrachloroethane		ug/Kg
Tetrachloroethene		ug/Kg
Toluene		ug/Kg
trans-1,4-Dichloro-2-butene		ug/Kg
trans-1,2-Dichloroethene	190	ug/Kg

Analyte	Solid Project Specific Reporting Limits	Units
trans-1,3-Dichloropropene	5	ug/Kg
1,1,1-Trichloroethane	680	ug/Kg
1,1,2-Trichloroethane	5	ug/Kg
Trichloroethene	470	ug/Kg
1,2,3-Trichloropropane	5	ug/Kg
Vinyl acetate	20	ug/Kg
Vinyl chloride	5	ug/Kg
Xylenes, Total	260	ug/Kg
Mineral Spirit Range Organics	10000	ug/Kg

Job Narrative 220-15043-1

Comments

No additional comments.

Receipt

Technical and Operational Guidance Series subpart 1.1.1 (The New York State Ambient Water Quality Standards and Guidance Values) references a class GA standard of 0.04 ug/L for 1,2-dibromo-3-Chloropropaneand 1,2,3-Trichloropropane. The laboratory is unable to meet this standard by reporting to their established reporting limit (RL) or method detection limit (MDL). Sample results are evaluated to the MDL, which is the lowest level the instrumentation has been able to detect, which is 0.21 ug/L for 1,2-Dibromo-3-Chloropropane and 0.17 ug/L for 1,2,3-Trichloropropane.

The following QC sample was received at the laboratory without a sample collection time documented on the chain of custody: TRIP BLANK (220-15043-11). As a result, a sample collection time of 12:00am, on the date of collection, has been used.

The following sample(s) was received at the laboratory without a sample collection time documented on the chain of custody: X-2 (220-15043-10). The client was contacted, and the laboratory was instructed to use the same collection time as sample GT-1.

All other samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

FORMULAS FOR NYSDEC SAMPLE CALCULATIONS

Volatiles

(Ax)(IS)(DF)

(AIS)(RRF)(V)(% solids) = C

(AX)(IS)(VT)(1000)(DF)

(AIS)(RRF)(VA)(V)(% solids) = C (for medium level soils)

SemiVolatiles

(AX)(IS)(VE)(DF)(GPC factor is 2 if needed)

(AIS)(RRF)(volume injected)(V)(% solids) = C

Pesticides

(AX)(VE)(DF)

(RRF)(V)(% solids)(volume injected) = C

PCBs for compound/retention time

(AX)(VE)(DF)

(RRF of compound at the stated retention time)(V)(% solids)(volume injected) = C

DRO/CTETPH

(AX)(VE)(DF)

(RRF)(V)(% solids)(volume injected) = C

AX = area of the target Ion

AIS = Area of Internal standard

C = concentration as ug/L or ug/Kg

 $\mathbf{DF} = \text{dilution}$

IS = Internal standard concentration (ng)

RRF = average RF (from initial cal except CLP methods from continuing cal)

V =sample volume for liquids in mls or sample weight for solids in grams

VA = volume of aliquot for medium level soils

VE = volume of concentrated extract

VT = volume of methanol for volatile medium level soils

SAMPLE SUMMARY

Client: Basile Environmental Solutions, LLC Job Number: 220-15043-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
220-15043-1	GT-1	Water	03/24/2011 1000	03/25/2011 1330
220-15043-2	GT-2	Water	03/24/2011 0930	03/25/2011 1330
220-15043-3	GT-3	Water	03/24/2011 0900	03/25/2011 1330
220-15043-4	GT-5	Water	03/24/2011 0815	03/25/2011 1330
220-15043-5	VP-A	Water	03/24/2011 1050	03/25/2011 1330
220-15043-6	VP-B	Water	03/24/2011 1115	03/25/2011 1330
220-15043-7	DW-1 (SURFACE WATER)	Water	03/24/2011 1030	03/25/2011 1330
220-15043-8	VE-1	Water	03/24/2011 1145	03/25/2011 1330
220-15043-9	VE-5	Water	03/24/2011 1215	03/25/2011 1330
220-15043-10	X-2	Water	03/24/2011 1000	03/25/2011 1330
220-15043-11TB	TRIP BLANK	Water	03/24/2011 0000	03/25/2011 1330

EXECUTIVE SUMMARY - Detections

Client: Basile Environmental Solutions, LLC Job Number: 220-15043-1

Lab Sample ID Analyte	Client Sample ID	Result / C	Qualifier	Reporting Limit	Units	Method	
220-15043-1	GT-1						
Acetone		4.1	J	50	ug/L	8260B	
cis-1,2-Dichloroethe	ne	0.25	J	5.0	ug/L	8260B	
1,2-Dichlorobenzene	9	6.8		3.0	ug/L	8260B	
1,3-Dichlorobenzene		4.0		3.0	ug/L	8260B	
1,4-Dichlorobenzene	Э	15		3.0	ug/L	8260B	
1,2-Dichloroethene,	Total	0.25	J	2.0	ug/L	8260B	
Methylene Chloride		0.11	JΒ	5.0	ug/L	8260B	
m&p-Xylene		0.37	J	10	ug/L	8260B	
o-Xylene		0.28	J	5.0	ug/L	8260B	
Tetrachloroethene		0.74	J	5.0	ug/L	8260B	
Xylenes, Total		0.65	J	15	ug/L	8260B	
Mineral Spirit Range	e Organics	18000		2500	ug/L	8015B	
220-15043-2	GT-2						
Acetone		1.6	J	50	ug/L	8260B	
Tetrachloroethene		1.2	Ĵ	5.0	ug/L	8260B	
retractionectivene		1.2	Ü	0.0	ug/L	02000	
220-15043-3	GT-3						
Acetone		0.84	J	50	ug/L	8260B	
Methylene Chloride		0.12	JB	5.0	ug/L	8260B	
220-15043-4	GT-5						
Acetone		1.1	J	50	ug/L	8260B	
Methylene Chloride		0.12	J B	5.0		8260B	
Metriylerie Chionde		0.12	JD	5.0	ug/L	0200B	
220-15043-5	VP-A						
Acetone		1.4	J	50	ug/L	8260B	
Tetrachloroethene		0.52	J	5.0	ug/L	8260B	
220-15043-6	VP-B						
		1.0		E0	ua/l	9260D	
Acetone Mothylana Chlorida		1.6 0.10	J JB	50 5.0	ug/L	8260B 8260B	
Methylene Chloride Tetrachloroethene		0.10		5.0 5.0	ug/L		
retrachioroethene		0.33	J	5.0	ug/L	8260B	
220-15043-7	DW-1 (SURFACE WATER)						
Acetone		5.8	J	50	ug/L	8260B	
		- -	-		- 5 –		

EXECUTIVE SUMMARY - Detections

Client: Basile Environmental Solutions, LLC

Lab Sample ID Analyte	Client Sample ID	Result / 0	Qualifier	Reporting Limit	Units	Method
220-15043-8	VE-1					
Acetone Methylene Chloride Tetrachloroethene Mineral Spirit Range	e Organics	1.8 0.10 0.72 8300	J J B J	50 5.0 5.0 1000	ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8015B
220-15043-9	VE-5					
Acetone Methylene Chloride Tetrachloroethene		1.6 0.14 0.22	J J B J	50 5.0 5.0	ug/L ug/L ug/L	8260B 8260B 8260B
220-15043-10	X-2					
Acetone 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene m&p-Xylene o-Xylene Tetrachloroethene Xylenes, Total Mineral Spirit Range	e e	3.2 6.9 4.1 15 0.40 0.31 0.92 0.71 24000	J J J	50 3.0 3.0 3.0 10 5.0 5.0 15 5000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8015B
220-15043-11TB	TRIP BLANK					
Acetone Methylene Chloride		0.97 1.6	J J B	50 5.0	ug/L ug/L	8260B 8260B

Job Number: 220-15043-1