

May 8, 2013

Transmitted: PDF File Transmission and 1st Class USPS Mail to CC List

Mr. Kent Johnson
Senior Engineering Geologist
New York State Dept. of Environmental Conservation
Division of Environmental Remediation
Remedial Section B – Remedial Bureau E
625 Broadway
Albany, NY 12233-7017

SUBJECT: Q1 2013 Groundwater Monitoring Program Report

Safety-Kleen Service Center - 60 Seabro Avenue

North Amityville, New York

Dear Mr. Johnson:

This letter serves as the Safety-Kleen Systems, Inc. (Safety-Kleen) first quarter 2013 groundwater monitoring report for the referenced site (**Attachment 1 - Site Map**) Groundwater and soil sampling were completed on March 14, 2013 and soil re-sampling on March 21, 2013. Field services were performed by Basile Environmental Solutions, LLC (BES).

The samples were sent to Test America, Inc. (TA). TA's New Jersey laboratory performed both the Mineral Spirit Range Organics (MSRO) as well as the Volatile Organic Compound (VOC) analyses. TA holds both NY NELAP and NYDOH certifications.

1.0 QUARTERLY GROUNDWATER SAMPLING PROGRAM

On March 15th, 2013 TA notified BES that the DW-1 soil bottom samples were not received within the specified preservation temperature. BES instructed the laboratory to discard the samples. Re-sampling was performed on March 21, 2013. The set was received at the laboratory within acceptable holding and preservation temperatures.

BES determined that ice/cooling packs were not present in the soil sample cooler (they were shipped separately from the water samples) when it was sent to the laboratory. Sampling procedures were reviewed with BES field personnel and the process modified to ensure sufficient cooling materials are placed in coolers prior to shipment.

The following was performed during the monitoring event (as required):

- Measurement of the depth to water (DTW) at each monitoring well, four vapor points and one drywell;
- Monitoring point development for groundwater field/lab parameter measurement;
- Collection of groundwater samples from site monitoring points, and soil samples from one drywell;
- Packing (on ice) and delivery of the sample set to a TA sample collection location, TA courier, or shipment to the laboratory via overnight commercial courier.

1.1 Monitoring Point Field Parameter Collection & Summary

Monitoring wells GT-1 through GT-5, VE-1R, VE-5, VP-A, VP-B, and DW-1 were gauged and field indicator parameters were collected. DW-1 was dry.

Temperature, pH, conductivity, dissolved oxygen, oxidation/reduction potential (ORP), visual turbidity and dissolved ozone were recorded. The field/sampling data is included as **Attachment 2**. The historic to current field data is presented as **Attachment 3 - Table 1**.

Depth-to-water varied seasonally, and ranged from 15.96 feet (GT-4) to 17.90 (GT-5) feet below grade. Comparatively, the water table was on average 1.80 feet higher than reported in December 2012; not uncommon for spring conditions.

The depth to water at selected site monitoring wells is presented below as **Figure 1**. The historical data continues to show that the water table is deeper now than reported historically and continues to trend lower.

Figure 2 depicts the flow conditions for March 14, 2013. The direction of groundwater flow was generally consistent with historic trends; south-southeasterly. The average gradient was measured at 0.17 % versus 0.16% as reported for December 2012.

The DO concentrations on-site were between 1.95 milligrams/liter (mg/l) at VP-A to 4.00 mg/l at GT-4. The DO concentrations are similar to historic levels in the area of GT-1/VE-1.

Generally, the pH across the site is relatively neutral (**Figure 4**), and remains within the range (6 - 8) for naturally occuring groundwater.

1.2 Quarterly Groundwater Sampling

Monitoring wells GT-1, GT-2, GT-3 and GT-5, vapor extraction/monitoring points VE-1R, VE-5, VP-A and VP-B were purged of 3 to 5 well volumes (conditions permitting) of groundwater with a submersible pump or bailer prior to sampling.

Groundwater samples were collected with dedicated, disposable polyethylene bailers and placed into glass containers provided by TA as specified for each analysis. A duplicate sample was collected for quality assurance purposes from well GT-1 and labeled Duplicate.

Samples were kept cool during transport to the laboratory, were accompanied by chain-ofcustody documents and a trip blank. The samples arrived at the laboratory within acceptable USEPA and NYSDEC holding times and preservation requirements.

TA analyzed the samples for Volatile Organic Compounds (VOCs) via EPA Method 8260B, and for Mineral Spirit-Range Organics (MSRO) via Modified EPA Method 8015B.

1.3 Catch Basin DW-1 Media Sampling

DW-1 did not contain standing water and therefore a soil sample was collected. As noted earlier, the submitted sample was collected on March 21, 2013. Specifically the sample, duplicate, and MS/MSD were retained using a new disposable geoprobe-type acetate sleeve. The sleeve was pushed approximately ½ to 1 foot into the bottom sediments of the dry well and retrieved (sampling from above ground).

The soil/sediment sample was removed from the sleeve, and then Encore^(R) tubes were used to retain and preserve them (pushed directly into the sample). They were placed in a cooler, onice and transported to the laboratory the same day via a TA courier. The samples arrived intact and properly preserved.

2.0 QUARTERLY ANALYTICAL RESULTS

Historic (through September 2009) data are presented in **Attachment 3, Table 2**. The groundwater quality data are summarized in **Attachment 3, Table 3**. The laboratory analytical reports are included as **Attachment 4** (on CD, executive summaries in print).

<u>VOCS</u>: Select target VOCs were detected above the method detection limits (EPA Method 8260B) in monitoring points GT-1 (and its duplicate), GT-2, VE-5, VP-A, VP-B and DW-1; none above the respective standards, with the exception at GT-1; 1, 4 dichlorobenzene was detected at 3.6 parts per billion (ppb). The standard is 3 ppb. **Attachment 3 - Table 3** summarizes the positive detections noted at and above the regulatory limit/project-specific lab reporting limits. All detections recorded above the method detection limits can be found in the laboratory reports Executive Summaries (**Attachment 4**).

Mineral Spirit-Range Organics (MSRO): MSRO was not detected in groundwater at GT-2, 3, 5, VE-5, VP-A or VP-B above the method or reporting limits (50 ppb). MSRO concentrations for the Warehouse Area (Container Storage Area-CSA #3) are presented in **Figure 5** below.

MSRO in groundwater was reported at GT-1, its' duplicate and VE-1R. GT-1 concentrations ranged from 21,000 ppb (duplicate) to 22,000 ppb (sample). The standard is 50 ppb. The MSRO concentrations for the GT-1/VE-1 area are presented in **Figure 6** below. Comparatively it was lower at VE-1R (9,900 ppb).

MSRO was detected in the DW-1 soil/sediment bottom sample at concentrations ranging from 19,000 micrograms per kilogram (ug/kg - duplicate) to 23,000 ug/kg (sample). The standard for the site is 10,000 ug/kg. The data was provided to the Department in E-mail correspondence on April 15, 2013.

4.0 SUMMARY

- 1. Groundwater elevations were higher than recorded last period, on average, by 1.80 feet. The direction and magnitude of groundwater flow is generally similar to historic trends.
- DO concentrations ranged between approximately 2 to 4 mg/l; typical of normal historic levels. Also, the pH varied and remained within the range for naturally occurring groundwater.
- 3. Neither VOCs nor MSRO have been detected at either VP-A and VP-B for over two years. A similar trend is also reflected at monitoring point VE-5.
- 4. Both MSRO and VOCs in groundwater remain at concentrations above the requisite standards in the GT-1/VE-1 area; typically as reported this period, MSRO concentrations varied over a broad range.
- 5. MSRO was detected in DW-1 soil/sediment bottom samples at concentrations above the requisite standard. Factors such as parking lot runoff from normal vehicular traffic as well as a dislodged filter basket likely exacerbated the concentrations reported.

No releases of mineral spirits in the area of DW-1 have, according to site environmental monitoring personnel, occurred during 2012.

5.0 RECOMMENDATIONS

- 1. Install oxygen releasing compound filter socks at both GT-1 and VE-1R. The increased DO from the material will assist in enhancing natural degradation. Replace filter socks quarterly or as the groundwater monitoring data suggests.
- 2. Consider performing a batch remedial measure during Q3 2013. ISCO as well as in-situ biologic augmentation may need to be considered as noted in the Q4, 2012 report.

Note: Our consultants completed an analysis of the BOS-200 ® remediation methods and their applicability to the GT-1/VE-1 area. The results will be shared with the Department once reviewed by Safety-Kleen.

3. Drywell DW-1 Actions:

a. Remove the loose sediment from the drywell bottom using a vacuum truck operated by Company personnel. Visually stained sands will be removed.

The contents will be visually and olfactory characterized, and its' physical appearance and condition noted.

- b. Local area clean sand may be used to replace the removed materials, if onsite Company personnel deem it necessary to maintain structural integrity. If so, a Certificate of Contents for the sand fill will be secured, similar to those previously supplied in 2008.
- c. The removed material will be disposed/treated in accordance Federal, State and Local regulations.
- d. Photo-documentation of the cleanout (exterior and interior drywell locations as accessible from ground level) will be taken.
- e. The bottom sediment samples will be collected as per protocol, during the next scheduled quarterly monitoring event (Q2 June 2013).
- f. The result of the cleanout and photo-documentation will be presented as part of the Q2 quarterly report.
- g. Based on the result of the cleanout and quarterly monitoring programs, further actions, if needed will be taken and discussed with and approved by the NYSDEC prior to implementation.
- h. On-site EHS personnel will be inspecting the filter-basket on a regular basis.
- DW-1 maintenance is tentatively scheduled to be performed the week of May 13, 2013.

I am available to discuss the results with you at your convenience. Please do not hesitate to contact me at (513) 956-2172. As always, Safety-Kleen appreciates the Department's assistance with this site.

Sincerely.

Safety-Kleen Systems, Inc.

Stephen D. Fleming, P.E., CHMM

Senior Remediation Manager

FIGURES (in text)

- 1 Depth to Water across the Site
- 2 Groundwater Contour Map 3/14/2013
- 3 Dissolved Oxygen across the Site
- **4** pH Across the Site
- 5 MSRO CSA#3 Area (Former R/F)
- 6 MSRO GT-1/VE-1 Area

Attachments/CC List - Next Page

ATTACHMENTS

- 1 Site Map
- 2 Media Sampling Field Parameter and Lab Sampling Summaries
- 3 Tables

Table 1 – Historic Groundwater Field Data Summary (to Current)

Table 2 – Historic Groundwater Chemical Data Summary (Through 9/2009)

Table 3 – Historic Groundwater Chemical Data Summary (TA Labs)

4 Laboratory Analytical Reports (on CD) – Executive Summaries Attached

Distribution

Person/Department	Method of Transmission
E. Badaracco, Town of Babylon, HW Dept, Lindenhurst, NY	(hard copy – 1 st Class Mail)
C. Horan, NYSDEC, Central Office, Albany, NY	(hard copy – 1 st Class Mail)
M. Leary, NYSDEE, Albany, NY	(hard copy – 1 st Class Mail)
K. Murphy, NYSDEC Region 1, Stony Brook, NY	(hard copy – 1 st Class Mail)–less A3-T2
J. Reidy, USEPA Region II, New York, NY	(hard copy – 1 st Class Mail)
T. Cowans, Safety-Kleen, N. Amityville, NY	(hard copy – 1 st Class Mail, E-copy)
Branch General Manager, Safety-Kleen, N. Amityville, NY	(electronic copy)
N. Nelhuebel, VP Env. Liabilities, Clean Harbors, Norwell, MA	(compact disk – 1 st Class Mail)
J. Basile, Basile Environmental Solutions, LLC, Cortland, NY	(electronic copy)

ATTACHMENT 1

Media Sampling - Field Parameter and Lab Sampling Summary

	SAMPLIN	NG INSTI	RUCTION	S & FIEI	D OBSER	VATION .	LOG					page 1 of 1
		GROUN	DWATER	SAMPLI	NG RECO	RD						
	Safety-Kle	een Serv	ice Cent	er			DATE	Mar 1	4. 2013			
SITE NAME	60 Seabro A						Weather			v windv &	cold ~ 33	F
		,							3,111	, <u>, .</u>		
Sampler	Jim Scerra/SEM											
Well N	Name / ID		1				ı	Rep VE-1		Inside w	arehouse	
Weni	Name / ID	GT-1	GT-2	GT-3	GT-4	DW-1	GT-5	VE-1R	VE-5	VP-A	VP-B	ļ
-	EPA 8260b VOCs	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
-	EPA 8015 MSRO	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
_	ate Sample:	Yes				Yes						
	ment Rinse Blank					Yes						
	S/MSD					Yes						
Collect Field Pa		Yes	Yes	Yes	Yes-Only	Yes	Yes	Yes	Yes	Yes	Yes	
Diameter of We		2 in	2 in	2 in	2 in	Manhole	2 in	4 in	1 in	2 in	2 in	
Depth of Well (ft.)		26.0	27.40	27.48	26.18	10.50	21.2	24.80	24.80	27.5	23.0	
		17.57	17.50	1651	15.06	Б.	17.00	17.20	17.07	10.00	17.50	
Depth to Groundwater (ft.)		17.57	17.50	16.54	15.96	Dry	17.90	17.29	17.07	18.99	17.53	
Water Column Height (ft.)		8.43	9.90	10.94	10.22		3.30	7.51	7.73	8.51	5.47	
volume	Purged (gal)	3.5	4.5	4.5	4.5		1.5	7.5	1.0	4.0	2.5	
Dungin	a Mathad	D-:1	D-:l	D-:1	D-:1		D-:1	D-:1	Tubina	D.:I	D =:1	
ruigii	ng Method	Bailer	Bailer	Bailer	Bailer		Bailer	Bailer	Tubing	Bailer	Bailer	
Comp	ling Time	11:45	09:50	09:20	NA	10:15	09:00	12:15	12:45	11:15	10.20	
	nple date	3/14/13	3/14/13	3/14/13	3/14/13	3/21/13	3/14/13	3/14/13	3/14/13	3/14/13	10:30 3/14/13	
GW Visual Obs		3/14/13	3/14/13	3/14/13	3/14/13	3/21/13	3/14/13	3/14/13	3/14/13	3/14/13	3/14/13	
	color	alaan	It amov	alaan	mot		clear	It away	med brn	lt. brn	med brn	
	sheen	clear	lt gray	clear	rust		no	lt grey				
	odor	no	no	no	no			slight	no no	no no	no	
Field Paramete		slight	no	no	no		no	slight	110	110	no	
	perature (C)	12.1	12.1	11.1	13.3		12.0	12.0	11.0	12.6	13.2	
•	pH	7.30	7.32	7.35	7.88		7.25	7.21	7.20	7.54	7.51	
	ctivity in uS	137	317	314	121		516	169	163	555	503	
	Oxygen (mg/L)	2.90	3.05	3.10	4.00		2.88	2.05	3.71	1.95	2.80	
	(Eh (Mv))	-20	-40	9	-10		-8	-50	18	-5	-22	
	(visual / NTU)	low	low	low	high		low	low	high	med	high	
		0.0	0.0	0.0	0.0		0.0	0.0	0.00	0.0	0.0	
Ozone (mg/l)			<u> </u>		I		<u> </u>					j
Comments												
	VE-1 - Out	of service	- 9/7/2012.	VE-1R is	replacemen	nt vent well	and groun	ndwater mo	nitoring po	oint - In se	rvice 9/7/20	012.

ATTACHMENT 2

Site Map

ATTACHMENT 3

TABLES

Table 1 – Historic Groundwater Field Data Summary (to Current)

Table 2 – Historic Groundwater Chemical Data Summary (Through 9/09)

Table 3 – Historic Groundwater Chemical Data Summary (From 12/09-TA Labs)

Table 1 - Historic Groundwater Field Data Summary (to Current)

Temperature recorded in C
Conductivity measured in uS
Dissolved Oxygen measured in mg/l
Eh measured in Mv
Ozone measured in mg/l

GT-1	_		PAR	RAMETER				
	Depth to	Groundwater						
	Water (ft)	Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
04 May 05								
24-Mar-05	18.29	35.82	12.5	6.50	180	4.9	30	1.38
27-Jun-05	17.20	36.91	16.6	6.33	343	4.67	25	0.07
20-Sep-05	19.12	34.99	18.5	6.17	345	3.98	55	>1.5
13-Dec-05	15.29	38.82	10.7	6.97	157	5.34	<-80	0.10
15-Mar-06	15.07	39.04	12.8	7.02	203	4.27	51	0.34
22-Jun-06	15.81	38.30	15.0	6.64	217	3,95	-48	-0.01
26-Sep-06	17.00	37.11	17.1	7.05	188	2.32	0	-0.70
19-Dec-06	16.53	37.58	16.6	7.05	184	2.40	-36	0.01
27-Mar-07	16.13	37.98	14.0	7.09	462	2.80	-46	0.09
26-Jun-07	16.16	37.95	15.0	7.14	232	1.96	-32	-0.28
20-Sep-07	17.14	36.97	17.3	7.07	171	3.05	-50	0.01
20-Dec-07	18.56	35.55	16.6	7.14	189	2.65	-47	NA
27-Mar-08	15.36	38.75	13.3	7.10	244	2.80	-125	ND
19-Jun-08	16.39	37.72	14.2	7.09	190	2.88	-135	0.07
25-Sep-08	18.10	36.01	17.3	6.22	144	2.23	2	0.20
18-Dec-08	16.20	37.91	16.0	6.53	149	2.95	85	0.09
12-Mar-09	16.47	37.64	12.2	7.00	459	2.96	163	ND
17-Jun-09	15.73	38.38	13.5	7.75	381	5.20	48	0.10
22-Sep-09	17.05	37.06	17.0	7.65	224	4.40	-29	0.10
30-Dec-09	16.49	37.62	15.0	6.85	182	2.80	91	0.08
02-Feb-10	16.75	37.36	13.5	7.03	179	7.35	45	0.00
24-Mar-10	13.80	40.31	12.0	7.08	603	31.50	165	0.60
22-Jun-10	15.30	38.81	15.5	7.03	182	6.57	32	0.00
22-Sep-10	18.70	35.41	17.8	7.08	176	3.98	28	n/m
15-Dec-10	19.28	34.83	15.3	7.13	157	2.95	10	0.00
24-Mar-11	17.83	36.28	13.0	7.60	198	3.21	25	0.00
16-Jun-11	17.01	37.10	14.7	7.03	259	3.68	20	0.02
15-Sep-11	15.88	38.23	19.0	7.06	197	3.62	-62	0.00
16-Dec-11	16.40	37.71	16.0	7.03	186	3.45	-55	0.00
14-Mar-12	17.65	36.46	14.2	7.06	136	2.95	-60	0.00
20-Jun-12	17.48	36.63	16.8	7.06	138	2.88	-45	0.00
28-Aug-12	18.46	35.65	18.0	7.18	118	2.80	-75	0.00
25-Oct-12	19.18	34.93	18.0	7.12	196	4.22	11	0.20
20-Dec-12	19.38	34.73	15.7	7.12	119	2.88	-50	0.00
14-Mar-13	17.57	36.54	12.1	7.30	137	2.90	-20	0.00

GT-2			PAR	AMETER				
Sampling Date	Depth to Water (ft)	Groundwater Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05	17.15	36.98	12.7	6.41	520	2.8	215	1.50
27-Jun-05	16.95	37.18	15.8	7.23	518	2.78	150	0
27-3un-05 20-Sep-05	19.65	34.48	17.1	6.53	500	3.01	125	>1.5
13-Dec-05	15.22	38.91	16.5	7.01	353	3.51	130	>1.5
15-Mar-06	14.97	39.16	12.6	6.87	581	4.56	193	1.11
22-Jun-06	15.69	38.44	16.8	6.50	704	4.45	184	0.07
26-Sep-06	16.89	37.24	17.5	7.09	781	2.93	135	0.10
19-Dec-06	16.42	37.71	14.6	7.06	473	2.88	39	0.27
27-Mar-07	16.01	38.12	13.7	7.09	466	3.05	2	0.45
26-Jun-07	16.03	38.10	15.8	7.12	659	2.76	41	0.60
20-Sep-07	17.02	37.11	17.1	7.08	628	3.11	14	0.27
20-Dec-07	18.48 15.25	35.65	14.7 13.1	7.07 7.06	333 342	3.10	20 -104	NA
27-Mar-08 19-Jun-08	16.30	38.88 37.83	15.1	7.06 7.13	342 478	2.95 2.50	-10 4 -100	ND 0.05
25-Sep-08	18.00	36.13	16.7	6.21	350	1.58	215	0.09
18-Dec-08	16.00	37.98	15.0	6.38	399	1.97	-100	0.09
12-Mar-09	16.15						167	
		37.75	12.9	7.14	500	0.77		ND
17-Jun-09	15.63	38.50	13.0	7.63	270	3.29	57 	0.06
22-Sep-09	16.95	37.18	17.0	7.01	711	2.00	77	0.40
30-Dec-09	16.40	37.73	14.2	6.95	427	2.05	95	0.02
02-Feb-10	16.66	37.47	12.8	7.14	330	2.84	232	0.00
24-Mar-10	13.70	40.43	12.7	7.11	452	2.00	92	0.00
22-Jun-10	15.10	39.03	16.5	7.14	1064	1.17	-29	0.00
22-Sep-10	18.61	35.52	17.0	7.09	302	2.55	-33	n/m
15-Dec-10	19.22	34.91	13.8	7.09	384	2.80	-40	0.00
24-Mar-11	17.77	36.36	11.6	7.05	530	3.14	-25	0.00
16-Jun-11	16.90	37.23	16.0	7.02	667	3.36	-30	0.00
15-Sep-11	15.77	38.36	19.0	7.06	644	2.92	-141	0.00
16-Dec-11	16.33	37.80	15.1	7.10	476	3.05	-105	0.00
13-Mar-12	17.57	36.56	14.0	7.05	403	3.00	-55	0.00
20-Jun-12	17.40	36.73	16.8	7.08	426	2.68	-38	0.00
28-Aug-12	18.36	35.77	18.5	7.17	398	3.07	-40	0.00
25-Oct-12	19.10	35.03	17.5	7.06	315	2.11	-10	0.00
20-Dec-12	19.30	34.83	15.3	7.42	319	3.50	-55	0.00
14-Mar-13	17.50	36.63	12.1	7.32	317	3.05	-40	0.00

GT-3	PARAMETER										
Sampling	Depth to	Groundwater									
Date	Water (ft)	Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone			
24-Mar-05	17.05	36.47	10.5	8.30	80	5.85	160	1.48			
27-Jun-05	15.95	37.57	16.0	6.71	211	7.94	175	0.02			
20-Sep-05	18.53	34.99	17.8	6.30	215	6.90	100	0.20			
13-Dec-05	14.11	39.41	15.5	7.43	235	7.40	130	0.05			
15-Mar-06	13.85	39.67	11.9	7.26	396	9.10	184	0.20			
22-Jun-06	14.56	38.96	15.0	7.26	257	6.20	190	-0.12			
26-Sep-06	15.80	37.72	18.4	7.08	253	5.66	102	0.04			
19-Dec-06	15.34	38.18	16.2	7.05	251	4.20	68	0.05			
27-Mar-07	14.91	38.61	12.1	7.07	225	3.95	-33	0.10			
26-Jun-07	14.96	38.56	13.5	7.07	205	3.40	50	-0.32			
20-Sep-07	15.87	37.65	18.9	7.06	287	4.10	-25	0.18			
20-Dec-07	17.40	36.12	14.9	7.11	164	3.15	65	NA			
27-Mar-08	14.15	39.37	12.0	7.53	202	3.15	-82	0.22			
19-Jun-08	15.20	38.32	14.4	7.09	168	3.00	-75	0.15			
25-Sep-08	16.89	36.63	18.1	6.27	172	5.30	182	0.11			
18-Dec-08	15.05	38.47	13.0	6.85	89	7.75	93	0.20			
12-Mar-09	15.28	38.24	11.7	7.36	214	6.60	125	0.20			
17-Jun-09	14.52	39.00	13.3	7.69	219	6.30	68	0.10			
22-Sep-09	15.83	37.69	18.0	7.25	300	6.70	50	0.01			
30-Dec-09	15.31	38.21	14.4	6.95	186	4.22	97	0.05			
02-Feb-10	15.58	37.94	13.2	7.13	215	7.68	243	0.05			
24-Mar-10	12.63	40.89	10.9	7.08	174	8.24	118	0.00			
22-Jun-10	14.11	39.41	16.0	7.10	226	6.30	49	0.00			
22-Sep-10	17.49	36.03	18.0	7.07	176	2.00	55	n/m			
15-Dec-10	18.15	35.37	14.2	7.07	120	2.18	15	0.00			
24-Mar-11	16.84	36.68	10.7	7.60	160	7.36	15	0.00			
16-Jun-11	16.00	37.52	14.0	7.44	226	7.85	21	0.00			
15-Sep-11	14.85	38.67	19.0	7.02	158	6.99	-37	0.00			
16-Dec-11	15.37	38.15	16.0	7.06	189	4.95	-42	0.00			
14-Mar-12	16.65	36.87	14.0	7.04	191	3.58	-30	0.00			
20-Jun-12	16.49	37.03	16.0	7.21	82	3.54	-10	0.00			
28-Aug-12	17.41	36.11	20.2	7.05	402	6.01	-11	0.00			
25-Oct-12	18.15	35.37	18.4	7.43	134	3.18	-11	0.00			
20-Dec-12	18.37	35.15	15.3	7.85	97	3.81	25	0.00			
14-Mar-13	16.54	36.98	11.1	7.35	314	3.10	9	0.00			

GT-4		PARAMETER											
Sampling	Double to	Cuarra director											
Date	Depth to	Groundwater	Tomporatura 9C	mU.	Cond.	D.O	Eh	0====					
24-Mar-05	Water (ft) 19.85	Elevation (ft) 32.45	Temperature °C 12.8	<mark>рН</mark> 7.10	90	D.O. 3.55	120	Ozone n/c					
24-Mai-05 27-Jun-05	15.75	36.55	15.4	6.33	133	5.50	105	meter fault					
20-Sep-05	16.25	Anomalous WL	16.5	6.93	139	2.52	115	>1.5					
13-Dec-05	13.68	38.62	15.5	7.01	141	5.85	115	>1.5					
15-Mar-06	13.48	38.82	11.6	6.86	200	4.92	46	>1.5					
22-Jun-06	14.22	38.08	13.4	7.26	239	4.50	-56	>1.5					
26-Sep-06	15.40	36.90	17.0	7.04	197	2.10	-40	>1.5					
19-Dec-06	14.88	37.42	16.3	7.03	172	1.95	-70	>1.5					
27-Mar-07	14.51	37.79	12.7	7.06	162	2.02	-55	>1.5					
26-Jun-07	14.56	37.74	13.0	7.07	169	2.00	-116	>1.5					
20-Sep-07	15.52	36.78	16.8	7.03	149	2.70	-40	over range					
20-Dec-07	16.97	35.33	16.4	7.04	130	2.75	-44	NA					
27-Mar-08	13.75	38.55	12.2	7.10	149	2.50	-70	over range					
19-Jun-08	14.78	37.52	13.4	7.08	112	3.50	-45	over range					
25-Sep-08	16.46	35.84	16.0	6.50	174	1.92	-12	over range					
18-Dec-08	14.60	37.70	15.7	7.80	111	1.94	-94	over range					
12-Mar-09	14.80	37.50	12.0	7.45	188	5.06	103	over range					
17-Jun-09	14.06	38.24	12.9	7.88	231	3.50	-45	over range					
22-Sep-09	15.44	36.86	16.3	8.22	163	2.93	-8	over range					
30-Dec-09	14.85	37.45	15.0	7.75	171	2.05	75	over range					
02-Feb-10	15.11	37.19	11.9	7.11	268	5.26	76	over range					
24-Mar-10	12.14	40.16	11.8	7.03	160	6.88	22	over range					
22-Jun-10	13.61	38.69	14.0	7.08	73	3.01	65	over range					
22-Sep-10	17.12	35.18	16.9	7.04	212	2.82	49	n/m					
15-Dec-10	17.65	34.65	16.8	7.02	232	3.05	50	0.00					
24-Mar-11	16.20	36.10	12.8	7.70	190	4.20	50	0.00					
16-Jun-11	15.42	36.88	13.5	7.03	130	3.50	30	0.00					
15-Sep-11	14.31	37.99	17.0	7.32	154	3.85	15	0.00					
16-Dec-11	14.73	37.57	16.8	7.13	177	3.58	10	over range					
14-Mar-12	16.03	36.27	14.3	7.03	197	3.95	11	over range					
20-Jun-12	15.89	36.41	15.2	7.05	188	4.20	15	over range					
28-Aug-12	16.90	35.40	17.2	7.10	190	2.60	10	over range					
25-Oct-12	17.57	34.73	18.0	7.14	150	3.55	20	over range					
20-Dec-12	17.73	34.57	16.5	8.20	119	4.05	-22	0.00					
14-Mar-13	15.96	36.34	13.3	7.88	121	4.00	-10	0.00					

GT-5			PAR	RAMETER				
Sampling Date	Depth to	Groundwater						
Date	Water (ft)	Elevation (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05	17.65	36.64	13.5	6.21	217	3.40	130	1.16
27-Jun-05	17.50	36.79	14.8	6.13	205	7.29	135	0.23
20-Sep-05	19.33	34.96	15.6	6.13	210	6.51	-0.61	0.00
13-Dec-05	15.63	38.66	14.2	6.61	162	6.81	110	0.27
15-Mar-06	15.40	38.89	12.5	6.72	189	7.45	156	0.20
22-Jun-06	16.13	38.16	15.0	6.16	180	6.58	150	0.07
26-Sep-06	17.32	36.97	14.9	7.12	333	6.18	100	0.15
19-Dec-06	16.82	37.47	15.0	7.05	219	5.05	62	0.11
27-Mar-07	16.46	37.83	14.1	7.12	185	4.96	48	0.12
26-Jun-07	16.50	37.79	15.0	7.13	215	3.69	36	0.11
20-Sep-07	17.46	36.83	14.6	7.03	286	4.30	35	0.18
20-Dec-07	18.88	35.41	15.5	7.10	310	4.22	60	NA
27-Mar-08	15.68	38.61	13.5	7.12	219	3.88	-74	ND
19-Jun-08	16.70	37.59	14.5	7.11	189	3.95	-50	0.15
25-Sep-08	18.41	35.88	14.8	6.11	255	4.80	131	0.12
18-Dec-08	16.55	37.74	14.5	6.85	184	7.10	54	0.08
12-Mar-09	16.75	37.54	13.2	7.14	190	5.44	127	0.10
17-Jun-09	16.03	38.26	14.5	7.11	221	7.30	50	0.15
22-Sep-09	17.4	36.89	15.0	7.71	452	6.51	34	0.09
30-Dec-10	16.81	37.48	12.5	6.92	231	4.96	112	0.10
02-Feb-10	17.03	37.26	12.9	7.13	315	6.21	113	0.00
24-Mar-10	14.1	40.19	13.0	7.12	218	5.95	217	0.00
22-Jun-10	15.61	38.68	15.0	7.09	207	8.02	-46	0.00
22-Sep-10	19.08	35.21	15.4	7.07	294	4.25	-35	n/m
15-Dec-10	19.61	34.68	14.8	7.07	243	3.55	-10	0.00
24-Mar-11	18.18	36.11	13.9	7.34	326	4.08	-15	0.00
16-Jun-11	17.33	36.96	15.0	7.05	236	4.00	-10	0.00
15-Sep-11	16.23	38.06	17.0	7.38	142	6.95	6	0.00
16-Dec-11	16.68	37.61	15.7	7.09	173	5.20	10	0.00
14-Mar-12	18.00	36.29	15.2	7.07	302	4.02	15	0.00
20-Jun-12	17.81	36.48	15.8	7.07	315	4.00	15	0.00
28-Aug-12	18.81	35.48	16.1	7.80	186	5.59	11	0.00
25-Oct-12	19.51	34.78	15.8	7.15	232	3.95	14	0.00
20-Dec-12	19.71	34.58	15.0	7.84	110	3.70	40	0.00
14-Mar-13	17.90	36.39	12.0	7.25	516	2.88	-8	0.00

VE-1			PAR	RAMETER				
Sampling	Depth to							
Date	Water (ft)		Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05	N/C		n/c	n/c	n/c	n/c	n/c	0.17
27-Jun-05	17.14		17.0	7.41	457	6.52	140	0.08
20-Sep-05	Dry							
13-Dec-05	15.43		13.5	7.01	111	2.95	<-80	>1.5
15-Mar-06	15.20		NA	7.35	177	N/A	-100	>1.5
22-Jun-06	15.92		16.0	6.89	351	3.00	3.88	>1.5
26-Sep-06	17.10		19.4	7.06	529	3.58	-105	0.22
19-Dec-06	16.63		14.8	7.05	248	3.15	-113	0.25
27-Mar-07	16.23		13.7	7.07	322	2.44	-60	0.2
26-Jun-07	16.29		17.0	7.12	509	1.66	-114	0.10
20-Sep-07	17.25		19.2	7.05	408	2.05	-50	0.11
20-Dec-07	18.62		14.8	7.12	234	2.99	-110	NA
27-Mar-08	15.47		11.4	7.11	268	3.15	-178	0.10
19-Jun-08	16.50		16.0	7.10	181	2.05	-200	over range
25-Sep-08	18.20		19.2	6.53	470	2.60	-106	over range
18-Dec-08	16.32		15.0	6.63	175	1.86	-83	over range
12-Mar-09	16.57		12.0	6.94	212	5.63	178	0.11
17-Jun-09	15.53		17.0	7.84	388	1.97	-109	over range
22-Sep-09	17.15		19.2	7.64	547	1.60	-123	0.03
30-Dec-09	16.59		12.0	6.75	334	1.66	-49	0.09
02-Feb-10	16.83		12.0	7.09	221	2.60	-15	0.02
24-Mar-10	13.90		12.1	7.39	392	34.70	202	over range
22-Jun-10	15.36		17.1	7.08	261	3.93	-60	0.00
22-Sep-10	DRY							
15-Dec-10	DRY							
24-Mar-11	17.95		11.8	7.10	267	4.42	-10	0.00
16-Jun-11	17.13		16.8	7.02	251	3.26	-15	0.00
15-Sep-11	16.00		19.5	7.09	184	1.61	-122	0.00
16-Dec-11	16.51		14.2	7.00	181	1.88	-104	0.00
14-Mar-12	17.78		14.6	7.20	205	1.80	-120	0.00
20-Jun-12	17.62		18.5	7.10	229	2.10	-105	0.00
28-Aug-12	DRY							
25-Oct-12	18.90	VE-1R-Inst 9/7/12	19.2	7.17	232	3.95	14	0.18
20-Dec-12	19.10		16.2	7.02	141	1.88	-50	0.00
14-Mar-13	17.29		12.0	7.21	169	2.05	-50	0.00

VE-5		PA	RAMETER				
Sampling Date	Depth to Water (ft)	Temperature ⁰C	pН	Cond.	D.O.	Eh	Ozone
24-Mar-05	19.64	12.1	6.91	230	4.45	190	0.57
27-Jun-05	16.65	16.7	7.02	235	6.83	125	meter fault
20-Sep-05	18.45	20.0	6.53	238	7.83	100	>1.5
13-Dec-05	5.51	15.0	7.10	230 240	7.63 5.51	105	>1.5 >1.5
15-Dec-05 15-Mar-06	14.62	12.0	7.10	240	4.95	165	>1.5 >1.5
22-Jun-06	15.35	16.0	7.03 7.10	251	3.85	150	>1.5 >1.5
26-Sep-06	16.47	18.0	7.10 7.11	240	2.95	150	>1.5 >1.5
19-Dec-06	16.47	14.1	7.11	263	2.99	29	>1.5 >1.5
03-Jan-00	15.60	14.1	7.00 7.11	203	2.99	8	>1.5
26-Jun-07	15.64	17.3	7.11	212	1.58	15	>1.5
20-3un-07 20-Sep-07	16.60	18.0	7.13	201	2.50	-30	over range
20-Sep-07 20-Dec-07	18.03	13.8	7.04	232	2.80	32	NA
27-Mar-08	14.84	11.0	7.14	198	3.00	-95	ND
19-Jun-08	15.88	16.4	7.16	227	2.85	-100	0.1
25-Sep-08	17.60	18.2	6.04	215	6.18	195	0.05
18-Dec-08	15.70	14.0	6.42	224	6.32	121	0.35
12-Mar-09	15.94	12.0	6.94	212	5.63	178	0.11
17-Jun-09	15.20	15.5	8.01	259	5.60	55	0.06
22-Sep-09	16.53	19.0	7.50	313	9.65	30	0.01
30-Dec-09	15.97	13.0	6.55	249	5.22	131	over range
02-Feb-10	16.23	12.5	7.12	252	8.00	382	over range
24-Mar-10	13.26	12.5	7.13	218	8.20	153	over range
22-Jun-10	14.76	16.8	7.10	275	8.16	-36	over range
22-Sep-10	18.20	19.0	7.04	210	3.20	-40	n/m
15-Dec-10	18.80	15.0	7.08	221	3.05	20	0
24-Mar-11	17.33	11.9	7.12	188	6.02	5	0
16-Jun-11	16.50	15.8	7.04	255	6.15	7	over range
14-Sep-11	15.38	18.0	7.04	184	4.70	37	0
16-Dec-11	15.90	14.6	7.08	220	3.85	25	over range
14-Mar-12	17.14	14.8	7.07	188	3.25	10	over range
20-Jun-12	17.00	18.0	7.07	162	3.05	2	over range
28-Aug-12	17.95	18.4	7.15	205	5.20	10	over range
25-Oct-12	N/S	-	-		-		- 3-
20-Dec-12	18.90	15.0	7.03	163	3.80	11	0.00
14-Mar-13	17.07	11.0	7.20	163	3.71	18	0.00

DW-1			PAR	AMETER				
Sampling								
Date	Depth to Water (ft)		Temperature °C	рН	Cond.	D.O.	Eh	Ozone
24-Mar-05 27-Jun-05 20-Sep-05 13-Dec-05 15-Mar-06 22-Jun-06 26-Sep-06 19-Dec-06 27-Mar-07 20-Sep-07 20-Dec-07 27-Mar-08 19-Jun-08 25-Sep-08 18-Dec-08 12-Mar-09 17-Jun-09 22-Sep-09 30-Dec-09 02-Feb-10 24-Mar-10 22-Jun-10 22-Sep-10 15-Dec-10 24-Mar-11 16-Jun-11 15-Sep-11 16-Dec-11 14-Mar-12 20-Jun-12 28-Aug-12 25-Oct-12 14-Mar-13 VP-A	9.50 6.95 10.36 8.90 8.36 10.35 8.70 8.98 9.58 7.65 7.90 4.30 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	soil sample coll.	7.7 20.6 25.5 12.0 8.6 18.5 22.4 12.5 8.5 21.3 23.0 8.5 8.1 22.4 n/a n/a n/a n/a soil sample wet n/a n/a 8.5 22.0	7.51 6.53 6.27 7.41 7.78 7.46 7.03 7.31 7.16 7.13 7.02 7.21 7.13 n/a n/a n/a n/a n/a n/a n/a n/a 7.30 n/a 7.30 n/a 7.30	543 105 110 43 97 66 65 94 209 67 63 72 82 56 n/a n/a n/a n/a n/a n/a 25 67	5.8 1.94 1.87 11.21 7.41 7.00 3.74 4.25 5.2 4.80 6.70 5.28 4.85 6.55 n/a n/a n/a n/a n/a n/a 10.50 5.60	95 125 -35 45 102 88 34 -41 -60 -25 -46 25 -123 -10 n/a n/a n/a n/a n/a n/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a	n/c 0 0 0 0.1 -0.08 0.05 -0.01 -0.08 0.10 0.07 NA ND 0.08 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.00 0.00
Sampling Date	Depth to							
30-Dec-09 02-Feb-10 24-Mar-10 22-Jun-10 22-Sep-10 15-Dec-10 24-Mar-11 16-Jun-11 15-Sep-11 16-Dec-11 14-Mar-12 20-Jun-12 28-Aug-12 25-Oct-12 20-Dec-12 14-Mar-13	18.13 15.18 16.50 20.05 20.68 19.20 18.40 17.30 17.79 19.06 18.90 19.84 N/S 20.78 18.99	Not Accessible	14.1 13.5 15.5 17.5 16.0 13.5 13.8 18.0 16.6 14.8 15.5 16.8	7.11 7.11 7.13 7.11 7.06 7.10 7.57 7.07 7.06 7.03 7.04 7.16	350 271 188 376 292 255 318 90 233 254 294 367	9.15 9.66 10.23 3.95 3.55 6.10 8.30 7.30 5.88 4.01 3.55 6.20 1.80 1.95	224 144 -60 -45 -35 -20 -12 28 15 20 18 8	0.00 over range over range n/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

VP-B		PAR	AMETER				
Sampling Date	Depth to Water (ft)	Temperature °C	рН	Cond.	D.O.	Eh	Ozone
30-Dec-09	16.28	15.1	7.53	211	1.79	170	0.03
02-Feb-10	16.55	14.1	7.04	340	9.01	190	over range
24-Mar-10	13.68	13.8	7.09	229	7.14	137	over range
22-Jun-10	15.08	15.5	7.13	245	9.40	12	over range
22-Sep-10	18.61	17.0	7.09	370	4.00	16	n/m
15-Dec-10	19.20	14.9	7.03	370	2.97	20	0.00
24-Mar-11	17.75	13.8	7.57	196	5.95	-15	0.00
16-Jun-11	16.92	14.0	7.02	161	8.39	-19	over range
15-Sep-11	15.81	17.5	7.30	96	7.40	-27	0.00
16-Dec-11	16.30	16.3	7.56	171	4.99	-30	over range
14-Mar-12	17.57	14.5	7.05	198	3.91	-15	over range
20-Jun-12	17.40	15.8	7.03	150	3.88	-10	over range
28-Aug-12	18.39	17.0	7.18	164	5.88	-25	over range
25-Oct-12	N/S						
20-Dec-12	19.30	16.0	7.03	183	2.55	-30	0.00
14-Mar-13	17.53	13.2	7.51	503	2.80	-22	0.00

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

T	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
GT-1	3/14/1994	ND	ND	51	410	170	ND	21	81	ND	ND	ND	NS	733
	2/9/1996	ND	ND	5	49	19	13	ND	12	ND	ND	ND	444	98
	5/28/1996	ND	ND	ND	16	24	10	ND	13	ND	ND	ND	186	63
DUPE	5/28/1996	ND	ND	ND	16	23	ND	ND	13	11	ND	ND	244	63
	8/22/1996	ND	ND	8	76	41	20	5	23	ND	ND	ND	588	173
	12/2/1996	ND	ND	ND	42	18	10	ND	10	ND	ND	ND	NS	80
	2/27/1997	ND	ND	ND	34	16	7	ND	8	ND	ND	ND	113	65
SPLIT	2/27/1997	ND	ND	1	29	17	9	3	13	ND	ND	ND	170	72
	5/28/1997	ND	ND	6	52	22	12	ND	11	ND	ND	ND	ND	103
DUPE	5/28/1997	ND	ND	6	52	22	12	ND	11	ND	ND	ND	ND	103
SPLIT	5/28/1997	ND	ND	6	47	20	9	ND	10	ND	ND	ND	51	92
	9/9/1997	ND	ND	22	167	73	33	9	38	ND	ND	ND	308	343
DUPE	9/9/1997	ND	ND	19	150	65	29	9	33	ND	ND	ND	277	304
SPLIT	9/9/1997	ND	ND	17	130	62	33	9	38	ND	ND	ND	5000	289
	12/18/1997	ND	ND	9	62	26	16	4	18	ND	ND	ND	43	135
DUPE	12/18/1997	ND	ND	8	61	26	14	4	16	ND	ND	ND	33	129
	6/25/1998	ND	ND	ND	23	16	17	ND	16	ND	ND	ND	51	72
DUPE	6/25/1998	ND	ND	ND	23	16	17	ND	15	ND	ND	ND	55	70
SPLIT	6/25/1998	ND	ND	ND	18	ND	19	ND	16	ND	ND	ND	ND	53
	10/13/1998	ND	ND	9	70	37	15	ND	21	ND	ND	ND	96	153
DUPE	10/13/1998	ND	ND	7	56	25	14	ND	17	ND	ND	ND	113	119
	12/4/1998	ND	ND	9	51	27	16	ND	17	ND	ND	ND	128	119
DUPE	12/4/1998	ND	ND	9	48	26	16	ND	16	ND	ND	ND	115	114
	6/16/1999	ND	ND	10	54	29	31	8	37	ND	ND	ND	820	168
DUPE	6/16/1999	ND	ND	6	37	18	27	8	35	ND	ND	ND	335	129
	9/30/1999	ND	ND	14	71	45	31	7	34	ND	ND	ND	ND	204
DUPE	9/30/1999	ND	ND	16	80	49	37	9	41	ND	ND	ND	ND	232
	12/22/1999	ND	ND	9	43	23	22	6	26	ND	ND	ND	2480	129
	3/15/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SPLIT	3/15/2000	ND	ND	1	9	5	4	1	4	0	ND	ND	250	24
	6/28/2000	ND	ND	7	36	19	13	ND	13	ND	ND	ND	92	0
SPLIT	6/28/2000	ND	0	5	37	19	17	4	19	2	ND	ND	38	0
	9/20/2000	ND	ND	ND	25	11	13	ND	15	ND	ND	ND	118	0
SPLIT	9/20/2000	ND	ND	ND	10	5	6	2	10	1	ND	ND	23	34
	12/20/2000	ND	ND	ND	8	6	7	ND	8	ND	ND	ND	87	28
SPLIT	12/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	0
	3/15/2001	ND	ND	ND	8	7	6	ND	6	ND	ND	ND	ND	0
SPLIT	3/15/2001	ND	ND	ND	17	8	9	ND	8	ND	ND	ND	3	0
m. malf.	8/23/2001	ND	ND	5	20	8	13	ND	12	ND	ND	ND	186	58
SPLIT	8/23/2001	ND	ND	5	22	8	18	ND	ND	1	ND	ND	450	54
	-													•

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

T	ОС			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	∌v.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	, ,
	11/6/2001	ND	ND	7	35	15	25	ND	24	ND	ND	ND	100	106
SPLIT	11/6/2001	ND	ND	5	27	11	20	ND	18	ND	ND	ND	110	81
	2/5/2002	ND	ND	ND	120	ND	98	ND	92	ND	ND	ND	120000	310
SPLIT	2/5/2002	ND	ND	ND	170	ND	160	ND	160	ND	ND	ND	140000	490
	4/16/2002	ND	ND	ND	53	ND	68	ND	57	ND	ND	ND	360000	178
SPLIT	4/17/2002	ND	ND	ND	63	ND	77	ND	66	ND	ND	ND	490000	206
	10/11/2002	ND	ND	5	17	ND	20	4	18	ND	ND	ND	130	64
DUPE	10/11/2002	ND	ND	5	19	5	22	4	21	ND	ND	ND	880	76
	1/23/2003	ND	ND	ND	10	ND	15	ND	13	ND	ND	ND	340	38
DUPE	1/23/2003	ND	ND	ND	8	ND	14	ND	12	ND	ND	ND	800	34
	4/22/2003	ND	ND	ND	11	ND	20	4	18	ND	ND	ND	310	53
DUPE	4/22/2003	ND	ND	ND	6	ND	19	3	17	ND	ND	ND	240	45
	7/22/2003	ND	ND	ND	15	ND	27	5	22	ND	ND	ND	ND	69
DUPE	7/22/2003	ND	ND	ND	12	ND	21	4	18	ND	ND	ND	ND	55
	12/9/2003	ND	ND	5	22	13	33	9	40	ND	ND	ND	560	122
DUPE	12/9/2003	ND	ND	5	22	14	34	9	42	ND	ND	ND	710	126
uged: 4/22/04	3/25/2004 *	ND	ND	ND	19	8	44	9	41	ND	ND	ND	490	121
DUPE	3/25/2004 *	ND	ND	ND	18	9	42	9	43	ND	ND	ND	ND	121
	6/29/2004	ND	ND	ND	ND	ND	8	ND	9	ND	ND	ND	510	17
DUPE	6/29/2004	ND	ND	ND	5	ND	13	ND	14	ND	ND	ND	ND	32
	10/4/2004	ND	ND	ND	ND	6	5	ND	8	ND	ND	ND	ND	19
DUPE	10/4/2004	ND	ND	ND	5	10	10	3	14	ND	ND	ND	ND	42
	12/28/2004	ND	ND	ND	6	11	11	3	16	ND	ND	ND	320	47
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	6	ND	ND	ND	440	6
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	4	ND	ND	ND	56	9
DUPE	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND		4	9	3	13				180	29
	12/13/2005	ND	ND	ND	8	10	17	6	32	ND	ND	ND	1400	73
	3/15/2006	ND	ND	ND	6	9	26	5	26	ND	ND	ND	2600	72
	6/22/2006	ND	ND	ND	6	9	24	9	29	ND	ND	ND	3300	77
	9/26/2006	ND	ND	ND	ND	ND	15	3	15	ND	ND	ND	3100	33
	12/19/2006	ND	ND	ND	7	ND	23	4	20	ND	ND	ND	2500	54
DUPE	12/19/2006	ND	ND	ND	5	ND	17	3	16	ND	ND	ND	2700	41
	3/27/2007	ND	ND	ND	ND	ND	12	ND	12	ND	ND	ND	1600	24
DUPE	3/27/2007	ND	ND	ND	ND	ND	13	ND	13	ND	ND	ND	1400	26
	6/26/2007	ND	ND	ND	ND	ND	10	ND	12	ND	ND	ND	880	22
DUPE	6/26/2007	ND	ND	ND	ND	ND	8	ND	9	ND	ND	ND	1400	17
	9/20/2007	ND	ND	ND	5	ND	18	5	20	ND	ND	ND	2400	48
DUPE	9/20/2007	ND	ND	ND	7	ND	24	5	24	ND	ND	ND	3000	60
Inje	10/16/2007	ND	ND	ND	ND	ND	ND	ND	4	ND	ND	ND	200	4
IIIJO		110	110	110	110	110	110	110	-	110	110	110		

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

T	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
E	v 10/18/2007	ND	ND	ND	8	6	24	7	31	ND	ND	ND	2800	76
	12/20/2007	ND	ND	ND	ND	ND	7	ND	7	ND	ND	ND	720	14
DUPE	12/20/2007	ND	ND	ND	ND	ND	7	ND	7	ND	ND	ND	550	14
	3/27/2008	ND	ND	ND	ND	ND	6	ND	8	ND	ND	ND	480	14
DUPE	3/27/2008	ND	ND	ND	ND	ND	6	ND	9	ND	ND	ND	1300	15
	6/19/2008	ND	ND	ND	ND	ND	7	ND	10	ND	ND	ND	1900	17
DUPE	6/19/2008	ND	ND	ND	ND	ND	8	ND	10	ND	ND	ND	1900	18
	9/25/2008	ND	ND	ND	ND	ND	18	4	20	ND	ND	ND	3100	42
DUPE	9/25/2008	ND	ND	ND	ND	ND	18	4	21	ND	ND	ND	3000	43.0
	12/18/2008	ND	ND	ND	ND	ND	8.7	ND	11	ND	ND	ND	1300	19.7
DUPE	12/18/2008	ND	ND	ND	ND	ND	8.6	ND	11	ND	ND	ND	1300/4800	19.6
	3/12/2009	ND	PCE-5.7	ND	ND	ND	6.3	ND	10	ND	ND	ND	500	22.0
X-:		ND	PCE-6.3	ND	ND	ND	5.6	ND	9.4	ND	ND	ND	710	21.3
DUPE		Note: 5.7 a	nd 6.3 ug/L	of tetrachlor	oethene w	as also dete	cted in sa	mple and λ	K-2, respect	ively. This p	parameter t	otal is inlouded	I in the Tota	I VOCs.
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	ND
DUPE	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	73	ND
	9/22/2009	ND	ND	ND	ND	ND	3.5	ND	6.2	ND	ND	ND	530	9.7
DUPE	9/22/2009	ND	ND	ND	ND	ND	3	ND	5.8	ND	ND	ND	680	8.9
GT-2	3/14/1994													
	2/9/1996													
	5/28/1996													
	8/22/1996													
	12/2/1996													
	2/27/1997													
	5/28/1997													
	9/9/1997													
	12/18/1997													
	6/25/1998													
	10/13/1998													
	12/4/1998													
	6/16/1999													
	9/30/1999													
	12/22/1999													
	3/15/2000 6/28/2000													
	9/20/2000													
	12/20/2000													
	3/15/2001													
m malf	8/23/2001													
m.malf														
	11/6/2001													

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID CW STND	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND	0/5/0000	1	5	5	5	5	3	3	3	5	5	5	50	
	2/5/2002 4/16/2002													
	10/11/2002													
	1/23/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	4/22/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/22/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/9/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	4/22/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/29/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	10/4/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/28/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
Dur		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
Du	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
GT-3	3/14/1994	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		NS	0
	2/9/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	5/28/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	8/22/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
SPLIT	8/22/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	12/2/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
SPLIT	12/2/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	2/27/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	5/28/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

10	OC .			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	9/9/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/18/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/25/1998	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	10/13/1998	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
SPLIT	10/13/1998	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	12/4/1998	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/16/1999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
SPLIT	6/16/1999												1	0
	9/30/1999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
SPLIT	9/30/1999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/22/1999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/28/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
m. malf.	8/23/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	11/6/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	2/5/2002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	4/16/2002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	10/11/2002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	1/23/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	170	0
	2/27/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	2/27/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	4/22/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	7/22/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/9/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	4/22/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/29/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	10/4/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/28/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND	ND	ND	ND	ND	8	ND	ND	ND	ND	ND	ND	8
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0

Table 2 Historic Groundwater Chemical Data Summary (Through 9/09) S-K N. Amityville, NY

T	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		11	5	5	5	5	3	3	3	5	5	5	50	
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
GT-4	3/14/1994													
	2/9/1996													
	5/28/1996 8/22/1996													
	12/2/1996													
	2/27/1997													
	5/28/1997													
	9/9/1997													
	12/18/1997													
	6/25/1998													
	10/13/1998													
	12/4/1998													
	6/16/1999													
	9/30/1999													
	12/22/1999													
	3/15/2000													
	6/28/2000													
	9/20/2000													
	12/20/2000													
16	3/15/2001													
m malf.	8/23/2001													
	11/6/2001 2/5/2002													
	4/16/2002													
	10/11/2002													
	1/23/2003													
	4/22/2003													
	7/22/2003													
	12/9/2003													
	4/22/2004													
	6/29/2004													
	•													•

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

Т	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	, ,
	10/4/2004													
	12/28/2004													
	3/24/2005													
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/22/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/26/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/19/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/27/2007	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/26/2007	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/20/2007	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/20/2007	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/27/2008	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/2008	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/25/2008	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/18/2008	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/12/2009	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/17/2009	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/22/2009	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GT-5	3/14/1994	ND	ND	ND	ND	ND	ND	ND	ND	27	ND		NS	27
	2/9/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	5/28/1996	ND	ND	ND	ND	ND	ND	ND	ND	18	ND		ND	18
SPLIT	5/28/1996	ND	ND	ND	ND	ND	ND	ND	ND	27	ND		ND	27
	8/22/1996	ND	ND	ND	ND	ND	ND	ND	ND	83	ND		ND	83
DUPE	8/22/1996	ND	ND	ND	ND	ND	ND	ND	ND	112	ND	ND	ND	112
	12/2/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0
	12/2/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	2/27/1997	ND	ND	ND	ND	ND	ND	ND	ND	33	ND	33	ND	33
DUPE	2/27/1997	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	28	ND	28
	5/28/1997	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	11	ND	11
	9/9/1997	ND	ND	ND	ND	ND	ND	ND	ND	38	ND	38	ND	38
	12/18/1997	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	2
	6/25/1998	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	10/13/1998	ND	ND	ND	ND	ND	8	ND	ND	5	ND	5	ND	13
	12/4/1998	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/16/1999	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	ND	15
	9/30/1999	ND	ND	5	ND	17	13	ND	ND	13	ND	ND	ND	49
DUDE	12/22/1999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	12/22/1999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

T	OC			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	3/15/2000	ND	ND	ND	ND	ND	ND	ND	ND	9	ND	ND	ND	9
DUPE	3/15/2000	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	11
	6/28/2000	ND	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND	0
DUPE	6/28/2000	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND	0
	9/20/2000	ND	ND	ND	ND	11	14	ND	ND	ND	ND	ND	ND	0
DUPE	9/20/2000	ND	ND	ND	ND	7	10	ND	ND	ND	ND	ND	ND	17
	12/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	12/20/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	3/15/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
m malf.	8/23/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	8/23/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	11/6/2001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DRY	2/5/2002													
DRY	4/16/2002													
DRY	10/11/2002													
	1/23/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	4/22/2003													-
	7/22/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/9/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/25/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/29/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
•	10/4/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/28/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ö
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ö
	3 2000													٠ .

Table 2
Historic Groundwater Chemical Data Summary (Through 9/09)
S-K N. Amityville, NY

TO	oc			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Well	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DW-1	7/22/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/9/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/25/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/29/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	10/4/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/28/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
DUPE	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/25/2008	dry - N/S			DRY									
		Dry - Soil sa												
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
		Dry - Soil sa												
	9/22/2009	Dry - Soil sa												
VE-5	12/28/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/24/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	7/6/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/13/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/15/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/22/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/26/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/19/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0

T	ос			Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
	ev.	Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
GW STND		1	5	5	5	5	3	3	3	5	5	5	50	
	3/27/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/26/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/20/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/27/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	60	0
	6/19/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
VE-1	3/30/2005	ND	ND	ND	ND	ND		ND	64	ND	ND	ND	2900	164
	7/6/2005	ND	ND	ND	5	ND	41	7	27	ND	ND	ND	5600	80
dry	9/20/2005													
	12/13/2005	ND	ND	ND	18	ND	97	72	71	ND	ND	ND	24000	258
	3/15/2006	ND	ND	ND	19J1M	ND	98J1M	83J1M	83J1M	ND	ND	6-cis 1,2 DCE	39000	289
	6/22/2006	ND	ND	ND	9	ND	57	ND	61	ND	ND	ND	17000	127
	9/26/2006	ND	ND	ND	ND	ND	18	8	26	ND	ND	ND	8600	52
	dup	ND	ND	ND	ND	ND	21	5	20	ND	ND	ND	3900	46
	12/19/2006	ND	ND	ND	ND	ND	37	12	45	ND	ND	ND	27000	94
	3/27/2007	ND	ND	ND	ND	ND	21	9	31	ND	ND	ND	34000	61
	6/26/2007	ND	ND	ND	ND	ND	27	13	40	ND	ND	ND	30000	80
	9/20/2007	ND	ND	ND	ND	ND	6	4	12	ND	ND	ND	9500	22
	12/20/2007	ND	ND	ND	ND	ND	9	7	19	ND	ND	ND	33000	35
	3/27/2008	ND	ND	ND	ND	ND	9	7	18	ND	ND	ND	430	78 ¹
	6/19/2008	ND	ND	ND	ND	ND	6	5	12	ND	ND	ND	21000	23
	9/25/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23000	0
	12/18/2008	ND	ND	ND	ND	ND	ND	ND	7.2	ND	ND	ND	15000	20.2
	3/12/2009	ND	ND	ND	ND	ND	ND	ND	3.9	ND	ND	ND	8000	3.9
		Note: 13 pp												
	6/17/2009	ND	ND	ND	ND	ND	ND	ND	6.0	ND	ND	ND	23000	6
	9/22/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8400	0

Α

Table 2 Historic Groundwater Chemical Data Summary (Through 9/09) S-K N. Amityville, NY

		TOC				Ethyl-		Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
	Well	ev.		Benzene	Toluene	benzene	Xylenes	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirits	VOCs
	ID	- 1	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
(GW STNE)		1	5	5	5	5	3	3	3	5	5	5	50	

	Key
Notes	
BDL = Not detected above the method detection limit	Target Compound Abbreiviations
ND = Not Detected (reported in micrograms per liter (ug/l)	1,2-DCB = 1,2-Dichlorobenzene
NS = Not Sampled	1,3-DCB = 1,3-Dichlorobenzene
NA = Not Applicable	1,4-DCB = 1,4-Dichlorobenzene
TOC = Top of Casing (measured in feet above MSL)	1,2-DCE = 1,2-Dichloroethene
DO = Dissolved Oxygen (reported in milligrams per liter (mg/l)	1,1,1-TCA = 1,1,1-Trichloroethane
J1M = Lab estimated concentration	
Number that is in BOLD exceeds th New York State Class GA Gro	u Trans-1,2-DCE = Trans-1,2-Dichloroethene
GW Standards for Class GA groundwater (NYSDEC TOGS 1.1.1,	10/22/93, Rev. 6/98)

Notes:

1. Tetrachloroethane was detected at a concentration of 5.7 and 6.3 ug/L in sample GT-1 and X-2, respectively.

Table 3

Groundwater Monitoring Results Summary - Test America, Inc. Start Safety-Kleen Systems, Inc. - Corrective Action Program N. Amityville, New York Facility

(Recorded At/Above the T.O.G.S. 1.1.1 Standards or Project-Specific Reporting Limits)
(See Laboratory Report for all Compounds Detected Above the Method Detection Limit)
(Project Laboratory as of 12/2009 - Test America. Inc.)

							Laboratory a	s of 12/									
		Detected				Ethyl-			Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-		Total
Monitoring	Sample	Compound	Acetone	Benzene	Toluene	benzene	Xylenes	PCE	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirit RO	VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
GT-1	12/30/2009	Sample														1,300	
		Ouplicate (X-1))													1,300	
	2/2/2010	Sample														1,000	
	D	uplicate (X-1)														1,100	
	3/24/2010	Sample										3.5 & 4.1				6,400	3.5 & 4.1
	D	uplicate (X-1)										3.5 & 4.2				4,500	3.5 & 4.2
	6/22/2010	Sample														3,000	
	D	uplicate (X-1)														2,400	
	9/22/2010	Sample								4.9		10.0				18,000	14.9
	D	uplicate (X-1)								4.9		11.0				16,000	15.9
	12/15/2010	Sample								9.1	5.2	21.0				12,000	35.3
	D	uplicate (X-1)								9.1	5.1	20.0				39,000	34.2
	3/24/2011	Sample								6.8	4.0	15.0				18,000	25.8
	D	uplicate (X-1)								6.9	4.1	15.0				24,000	26
	6/16/2011	Sample										6.5				8,500	6.5
	D	uplicate (X-1)										7.2				11,000	7.2
	9/15/2011	Sample										5.5				12,000	5.5
	D	uplicate (X-1)															
	12/16/2011	Sample										5.6				15,000	5.6
	1	Ouplicate (X-1))									4.0				7,400	4.0
	3/14/2012	Sample										6.4				16,000	6.4
	[Ouplicate (X-1))									6.1				14,000	6.1
nfo Only H.T.E	6/20/2012											4.0				15,000	4.0
nfo Only H.T.E		Duplicate (X-1))									4.0				12,000	4.0
	8/28/2012											4.5				9,200	4.5
	I	Duplicate (X-1)									4.8				10,000	4.8
	10/25/2012									4.7	4.2	13.0				23,000	21.9
		Duplicate								4.8	4.5	13.0				21,000	22.3
	12/20/2012									4.0	3.6	11.0				24,000	18.6
		Duplicate								3.9	3.5	11.0				32,000	18.4
	3/14/2013											3.6				22,000	3.6
	Dupl	icate										3.8				21,000	3.8
GT-2	12/30/2009																İ
	2/2/2010															67	
	3/24/2010																
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																
	6/16/2011																
	9/15/2011																
	12/16/2011																
	3/14/2012																
fo Only H.T.E	6/20/2012																
	8/28/2012																
	10/25/2012																
	12/20/2012																
	3/14/2013																

		Detected				Ethyl-			Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-		Total
Monitoring	Sample	Compound	Acetone	Benzene	Toluene	benzene	Xylenes	PCE	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirit RO	VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
				1													
GT-3	12/30/2009																
	2/2/2010																
	3/24/2010																
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																
	6/16/2011																
	9/15/2011																
	12/16/2011																
	3/14/2012																
nfo Only H.T.E																	
	8/28/2012																
	10/25/2012																
	12/20/2012																
	3/14/2013																
GT-4	12/30/2009	N/S															
	2/2/2010	N/S															
	3/24/2010	N/S															
	6/22/2010	N/S															
	9/22/2010	N/S															
	12/15/2010	N/S															
	3/24/2011	N/S															
	6/16/2011	N/S															
	9/15/2011	N/S															
	12/16/2011	N/S															
	3/14/2012	N/S															
fo Only H.T.I	6/20/2012	N/S															
	8/28/2012	N/S															
	10/25/2012	N/S															
	12/20/2012	N/S															
	3/14/2013	N/S															

Monitoring Location	Sample Date	Detected Compound Units	Acetone (ug/I)	Benzene (ug/l)	Toluene (ug/l)	Ethyl- benzene (ug/l)	Xylenes (ug/l)	PCE (ug/l)	Chloro- benzene (ug/l)	1,2- DCB (ug/l)	1,3- DCB (ug/l)	1,4- DCB (ug/l)	1,2- DCE (ug/l)	1,1,1- TCA (ug/l)	trans -1,2- DCE (ug/l)	Mineral Spirit RO (ug/l)	Total VOCs (ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
				1				1			1		1			1	
GT-5	12/30/2009																
	2/2/2010																
	3/24/2010																
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																
	6/16/2011																
	9/15/2011																
	12/16/2011																
	3/14/2012																
nfo Only H.T.E																	
	8/28/2012																
	10/25/2012																
	12/20/2012																
	3/14/2013																
VE-1	12/30/2009															23,000	
	2/2/2010															43,000	
	3/24/2010															5,400	
	6/22/2010															8,100	
	9/22/2010	Dry															
	12/15/2010	Dry															
	3/24/2011															8,300	
	6/16/2011															13,000	
	9/15/2011															680	
	12/16/2011															10,000	
	3/14/2012															2,600	
nfo Only H.T.E	6/20/2012															2,400	
	8/28/2012																
	10/25/2012															20,000	
	12/20/2012															12,000	
	3/14/2013															9,900	

		Detected		_		Ethyl-			Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Monitoring	Sample	Compound	Acetone	Benzene	Toluene	benzene	Xylenes	PCE	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirit RO	VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l) 5	(ug/l) 3	(ug/l)	(ug/l) 3	(ug/l)	(ug/l) 5	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
		1		1	1												
VE-5	12/30/2009															190	
	2/2/2010															390	
	3/24/2010																
	6/22/2010 9/22/2010																
	12/15/2010																
	3/24/2011																\vdash
	6/16/2011																
	9/15/2011																
	12/16/2011																
	3/14/2012																
nfo Only H.T.E	6/20/2012																
Oilly 11.11.2	8/28/2012																
	10/25/2012																
	3/14/2013																
VP-A		Not Accessible														l	
VP-A	2/2/2010	NUL ACCESSIBLE	•													99	
	3/24/2010															33	
	6/22/2010																
	9/22/2010																
	12/15/2010																
	3/24/2011																
	6/16/2011																
	9/15/2011																
	12/16/2011																
	3/14/2012																
nfo Only H.T.E	6/20/2012																
Oy 11.11.2	8/28/2012																
																	
	10/25/2012																
	3/14/2013																
VP-B	12/30/2009															58	
	2/2/2010															66	
	3/24/2010		130 & 110													120	130 & 110
	6/22/2010																
,	9/22/2010																
	12/15/2010																
	3/24/2011																
	6/16/2011																
	9/15/2011																
	12/16/2011																
	3/14/2012																
nfo Only H.T.E	6/20/2012																
	8/28/2012																
	10/25/2012																
ļ	3/14/2013	<u> </u>														l .	

		Detected				Ethyl-			Chloro-	1,2-	1,3-	1,4-	1,2-	1,1,1-	trans -1,2-	Mineral	Total
Monitoring	Sample	Compound	Acetone	Benzene	Toluene	benzene	Xylenes	PCE	benzene	DCB	DCB	DCB	DCE	TCA	DCE	Spirit RO	VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	1	5	5	5	5	5	3	3	3	5	5	5	50	n/a
DW-1 SOIL	12/30/2009	Sample															
		Duplicate															
ug/kg	2/2/2010	Sample															
		Duplicate															
	3/24/2010	Sample															
		Duplicate															
	6/22/2010	Sample															
		Duplicate															
	9/22/2010	Sample															
		Duplicate															
	12/15/2010	Sample															
		Duplicate															
	9/15/2011	Sample															
		Duplicate															
	12/16/2011	Sample															
	3/14/2012	Sample															
		Duplicate															
	6/20/2012	Sample															
		Duplicate															
	8/28/2012																
	10/25/2012										Soil Star	ndard is 10,0	00 ug/kg			14,000	
	12/20/2012	Sample															
		Duplicate	Met	thylene Cloride	e: 59	STD: 50											
	3/21/2013	Sample														23,000	
		Duplicate														19,000	
DW-1 WTR	12/30/2009	No standing v	water		l			1			l		l	l	ĺ		
	2/2/2010	No standing v															
	3/24/2010	sampled															
	6/22/2010	No standing v	water														
	9/22/2010	No standing v															
	12/15/2010	No standing v															
	3/24/2011	sampled															
	6/16/2011	sampled															
	9/15/2011	No standing v	water														
		No standing v															
		No standing v															
		No standing v															
		No standing v															
	10/25/2012	No standing v															
		No standing v															
		No standing v															
					l	<u> </u>							l	l	L		

ATTACHMENT 4

LABORATORY ANALYTICAL REPORTS

COMPACT DISK DISTRIBUTION

CC LIST Hard Copy Recipients

(Executive Summaries Attached Herein)

ANALYTICAL REPORT

Job Number: 460-52392-1

Job Description: 2013 Safety-Kleen Amityville

For:

Basile Environmental Solutions, LLC 1188 Hillside Drive Cortland, NY 3045

Attention: Joseph Basile, Jr., MSc.

Approved for release. Jennifer Capece Project Mgmt. Assistant 4/4/2013 2:39 PM

Designee for
Melissa Haas
Project Manager I
melissa.haas@testamericainc.com
04/04/2013
Revision: 1

ennifer R. Capece

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132

Job Number: 460-52392-1

Job Description: 2013 Safety-Kleen Amityville

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Jennifer R. Capece

Approved for release. Jennifer Capece Project Mgmt. Assistant 4/4/2013 2:39 PM

Designee for Melissa Haas

Table of Contents

Cover Title Page	1
Data Summaries	5
Report Narrative	5
Sample Summary	10
Executive Summary	11
Method Summary	13
Method / Analyst Summary	14
Sample Datasheets	15
Surrogate Summary	48
QC Data Summary	50
Data Qualifiers	60
QC Association Summary	61
Lab Chronicle	63
Organic Sample Data	67
GC/MS VOA	67
Method 8260B	67
Method 8260B QC Summary	68
Method 8260B Sample Data	75
Standards Data	140
Method 8260B ICAL Data	140
Method 8260B CCAL Data	185
Raw QC Data	193
Method 8260B Tune Data	193
Method 8260B Blank Data	201
Method 8260B LCS/LCSD Data	205
Method 8260B Run Logs	
	4 1 4

Table of Contents

Method 8260B Prep Data	214
GC VOA	218
Method 8015B - GRO	218
Method 8015B - GRO QC Summary	219
Method 8015B - GRO Sample Data	229
Standards Data	284
Method 8015B - GRO ICAL Data	284
Method 8015B - GRO CCAL Data	305
Raw QC Data	335
Method 8015B - GRO Blank Data	335
Method 8015B - GRO LCS/LCSD Data	350
Method 8015B - GRO Run Logs	380
Method 8015B - GRO Prep Data	383
Shipping and Receiving Documents	388
Client Chain of Custody	389
Sample Receipt Checklist	302

Job Narrative 460-52392-1 Revision

Comments

No additional comments.

After receiving the deliverables, the client asked the lab to check the 8015B result for sample GT-2. The lab reviewed the result and discovered that the integration was not correct. The sample was re-integrated and the 8015B result was corrected. Revised deliverables were sent to the client on 4/4/13.

Receipt

The samples were received on 3/14/2013 5:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 8.1° C.

Except:

Technical and Operational Guidance Series subpart 1.1.1 (The New York State Ambient Water Quality Standards and Guidance Values) references a class GA standard of 0.04 ug/L for 1,2-dibromo-3-Chloropropane and 1,2,3-Trichloropropane. The laboratory is unable to meet this standard by reporting to their established reporting limit (RL) or method detection limit (MDL). Sample results are evaluated to the MDL, which is the lowest level the instrumentation has been able to detect, which is 0.4 ug/L for 1,2-Dibromo-3-Chloropropane and 0.42 ug/L for 1,2,3-Trichloropropane.

The Edison lab does not hold NY certification for the following analytes via method 8260 for water or soil: Ethyl Methacrylate, lodomethane and Methacrylonitrile.

The soils samples were received at the laboratory outside the required temperature criteria. The client was notified and instructed the lab to cancel the soil analyses.

GC/MS VOA

No analytical or quality issues were noted.

GC VOA

Method 8015B: The following samples were diluted to bring the concentration of the target analyte within the calibration range: Duplicate (460-52392-11), VE-1R (460-52392-9), GT-1 (460-52392-3), . Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Project Specific Reporting Limits - Aqueous Samples

For aqueous samples, please note that the reporting limits listed below may vary for each sample analyzed based on sample volume, and/or sample dilution. The aqueous laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC) Technical & Operational Guidance Series (TOGS) section 1.1.1 class GA standards, and ASI's previously reported

laboratory reporting limits where no TOGS class GA standard exists.

Acetonie 50 ug/L Acetonitrie 10 ug/L Acetonitrie 10 ug/L Allyl chloride 5 ug/L Benzene 1 ug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chlorothane 5 ug/L 2-Chlorothyl vinyl ether 20 ug/L Chlorothyl vinyl ether 20 ug/L Chlorothm 7 ug/L Chlorothane 5 ug/L Cis-1,3-Dichloropropene 0.2 ug/L Dibromochlane 5 ug/L cis-1,3-Dichloropropene 0.0 ug/L Dibromochlane 5 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromochlane 5 ug/L 1,2-Dichloropenene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,1-Dichloroethane<	Analyte	Aqueous Project Specific Reporting Limits	Units
Acetonitrile 10 ug/L Allyt klorioride 5 ug/L Benzzene 1 ug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon disulfide 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chlorotethane 5 ug/L Chlorotethane 5 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroethene 5 ug/L cis-1,2-Dichloropropene 0.2 ug/L Dibromochloromethane 5 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromo-4-Chloropropane 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichloroethane 5 ug/L 1,1,2-Dichloroethane 5 ug/L			
Allyl chloride			
Benzyl chloride 1 ug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chlorotenzene 5 ug/L Chloromethane 5 ug/L cis-1,2-Dichlorotenzene 0,2 ug/L Dibromochloromethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dichlorobenzene 3 ug/L Dibromomethane 5 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichlorobenzene 5 ug/L 1,2-Dichloropethane 5 ug/L 1,2-Dichloropethen			
Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chioroethyl vinyl ether 20 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroptenene 0.2 ug/L Dibromochloromethane 50 ug/L Dibromochloromethane 50 ug/L Dibromomethane 5 ug/L 1,2-Dibromochlane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethene 5 ug/L 1,1-Dichloroethene, Total 2 ug/L			
Bromodichloromethane			
Bromoferm			
Brommethane			
2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene 1 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene			
Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromochloromethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 2-Hexanone 5 ug/L 1,2-Dichloroethane 5 ug/L 1,0cdomethane 5 ug/L 1sobutyl alcohol <td></td> <td></td> <td></td>			
Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Cisi-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromodethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichlorobenzene 3 ug/L 1,1-Dichlorobenzene 5 ug/L 1,2-Dichlorobenene 5 ug/L 1,2-Dichlorobenene 5 ug/L			
Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropopane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Iodomethane 5 ug/L Iodomethane 5 ug/L Iodomethane 5 ug/L Iosobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L			
Chloroethyl vinyl ether			
2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropopane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacylonitrile 5 ug/L Methylne Chloride 5 ug/L Methylne Chloride 5 ug/L Methylne Popentanone (MIBK) 5 ug/L Methylene 5 ug/L Styrene 5 ug/			
Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methyl nethacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl methacrylate			
Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,1-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methylnethacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L O-Xylene 5			
cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L lodomethane 5 ug/L Methylene Chloride 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L o-Xylene 5 ug/L Tylene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/			
cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 5 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L			
Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L o-Xylene 5 ug/		5	ug/L
1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,1-Dichloroethane 1 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethylmethacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 25 ug/L Methylene Chloride 5 ug/L Methyl-ene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Metylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Typene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Toluene 5 ug/L			
1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L 1,2-Dichloropropane 1 ug/L 2-Hexplope 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L methylene 5 ug/L 5-Xylene 5 ug/L 5-Xylene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Toluene 5 ug/L		5	ug/L
1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 5 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Mep-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	,		ug/L
Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Idodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	,	3	ug/L
1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		3	ug/L
1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1-Dichloroethane	5	ug/L
1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,2-Dichloroethane		
1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			ug/L
Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L lodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		2	ug/L
Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,2-Dichloropropane		ug/L
2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Ethylbenzene		ug/L
Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Ethyl methacrylate		
Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	2-Hexanone		
Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	lodomethane	5	ug/L
Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Isobutyl alcohol		
Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Methacrylonitrile		
Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Methylene Chloride	5	ug/L
4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		50	ug/L
m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	4-Methyl-2-pentanone (MIBK)		
o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	m&p-Xylene		
Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	o-Xylene	5	ug/L
1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Styrene	5	ug/L
1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1,1,2-Tetrachloroethane	5	ug/L
Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1,2,2-Tetrachloroethane	5	ug/L
Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Tetrachloroethene	5	ug/L
trans-1,4-Dichloro-2-butene 5 ug/L	Toluene	5	ug/L
trans-1,2-Dichloroethene 5 ug/L		5	ug/L
	trans-1,2-Dichloroethene	5	ug/L

Analyte	Aqueous Project Specific Reporting Limit	Units
trans-1,3-Dichloropropene	0.2	ug/L
1,1,1-Trichloroethane	5	ug/L
1,1,2-Trichloroethane	1	ug/L
Trichloroethene	5	ug/L
1,2,3-Trichloropropane	0.04	ug/L
Vinyl acetate	5	ug/L
Vinyl chloride	2	ug/L
Xylenes, Total	15	ug/L
Mineral Spirit Range Organics	50	ug/L

Project Specific Reporting Limits – Solid Samples

For solid samples, please note that the reporting limits listed below will vary for each sample analyzed based on sample moisture content, sample volume, and/or sample dilution. The solid laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC)
Subpart 375-6.8(a) Unrestricted Use Soil Cleanup Objectives and TestAmerica Connecticut's laboratory reporting limits where no part 375 cleanup objectives exist.

Analyte

Solid Project Specific Reporting Limits Units

Analyte	Solid Project Specific Reporting Limits	
Acetone	50	ug/Kg
Acetonitrile	50	ug/Kg
Allyl chloride	5	ug/Kg
Benzene	60	ug/Kg
Benzyl chloride	5	ug/Kg
Bromodichloromethane	5	ug/Kg
Bromoform	5	ug/Kg
Bromomethane	5	ug/Kg
2-Butanone (MEK)	120	ug/Kg
Carbon disulfide	5	ug/Kg
Carbon tetrachloride	760	ug/Kg
Chlorobenzene	1100	ug/Kg
Chloroethane		ug/Kg
2-Chloroethyl vinyl ether		ug/Kg
Chloroform		ug/Kg
Chloromethane		ug/Kg
cis-1,2-Dichloroethene		ug/Kg
cis-1,3-Dichloropropene		ug/Kg
Dibromochloromethane		ug/Kg
1,2-Dibromo-3-Chloropropane		ug/Kg
1,2-Dibromoethane		ug/Kg
Dibromomethane		ug/Kg
1,3-Dichlorobenzene		ug/Kg
1,4-Dichlorobenzene		ug/Kg
1,2-Dichlorobenzene		ug/Kg
Dichlorodifluoromethane		ug/Kg
1,1-Dichloroethane		ug/Kg
1,2-Dichloroethane		ug/Kg
1,1-Dichloroethene		ug/Kg
1,2-Dichloroethene, Total		ug/Kg
1,2-Dichloropropane		ug/Kg
Ethylbenzene		ug/Kg
Ethyl methacrylate		ug/Kg
2-Hexanone		ug/Kg
Iodomethane		ug/Kg
Isobutyl alcohol		ug/Kg
Methacrylonitrile		ug/Kg
Methylene Chloride		ug/Kg
Methyl methacrylate		ug/Kg
4-Methyl-2-pentanone (MIBK)		ug/Kg
m&p-Xylene		ug/Kg
o-Xylene	5	ug/Kg
Styrene	5	ug/Kg
1,1,1,2-Tetrachloroethane		ug/Kg
1,1,2-Tetrachloroethane		ug/Kg
Tetrachloroethene		ug/Kg
Toluene		ug/Kg
trans-1,4-Dichloro-2-butene		ug/Kg
trans-1,2-Dichloroethene		ug/Kg
แลกง- 1,2-มเกมเป็นชนาชาช	190	ug/rtg

Analyte	Solid Project Specific Reporting Limits	Units
trans-1,3-Dichloropropene	5	ug/Kg
1,1,1-Trichloroethane	680	ug/Kg
1,1,2-Trichloroethane	5	ug/Kg
Trichloroethene	470	ug/Kg
1,2,3-Trichloropropane	5	ug/Kg
Vinyl acetate	20	ug/Kg
Vinyl chloride	5	ug/Kg
Xylenes, Total	260	ug/Kg
Mineral Spirit Range Organics	10000	ug/Kg

SAMPLE SUMMARY

Client: Basile Environmental Solutions, LLC Job Number: 460-52392-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
460-52392-3	GT-1	Water	03/14/2013 1145	03/14/2013 1750
460-52392-4	GT-2	Water	03/14/2013 0950	03/14/2013 1750
460-52392-5	GT-3	Water	03/14/2013 0920	03/14/2013 1750
460-52392-6	GT-5	Water	03/14/2013 0900	03/14/2013 1750
460-52392-7	VP-A	Water	03/14/2013 1115	03/14/2013 1750
460-52392-8	VP-B	Water	03/14/2013 1030	03/14/2013 1750
460-52392-9	VE-1R	Water	03/14/2013 1215	03/14/2013 1750
460-52392-10	VE-5	Water	03/14/2013 1245	03/14/2013 1750
460-52392-11	Duplicate	Water	03/14/2013 1000	03/14/2013 1750
460-52392-12	Rinse Blank	Water	03/14/2013 1300	03/14/2013 1750
460-52392-13	Trip Blank	Water	03/14/2013 0000	03/14/2013 1750

EXECUTIVE SUMMARY - Detections

Job Number: 460-52392-1

Client: Basile Environmental Solutions, LLC

Lab Sample ID C	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
	a= 4						
460-52392-3	GT-1	0.94		2.0	/1	92600	
1,2-Dichlorobenzene		0.84	J	3.0	ug/L	8260B 8260B	
1,3-Dichlorobenzene		1.4	J	3.0	ug/L		
1,4-Dichlorobenzene Tetrachloroethene		3.6		3.0	ug/L	8260B 8260B	
	raaniaa	0.12	J	5.0	ug/L	8015B	
Mineral Spirit Range O	rganics	22000		2500	ug/L	00 I 3 B	
460-52392-4	GT-2						
Tetrachloroethene		0.33	J	5.0	ug/L	8260B	
460-52392-6	GT-5						
Chloroform		0.10	J	7.0	ug/L	8260B	
460-52392-7	VP-A						
Tetrachloroethene		0.26	J	5.0	ug/L	8260B	
460-52392-8	VP-B						
Tetrachloroethene	VI -5	0.40	J	5.0	ug/L	8260B	
400 50000 0	VE 4D						
460-52392-9 Tetrachloroethene	VE-1R	0.23	J	5.0	ua/l	8260B	
Mineral Spirit Range O	rganics	9900	J	1300	ug/L ug/L	8015B	
460-52392-10	VE-5						
Tetrachloroethene		0.34	J	5.0	ug/L	8260B	
460-52392-11	DUPLICATE						
1,2-Dichlorobenzene		0.87	J	3.0	ug/L	8260B	
1,3-Dichlorobenzene		1.4	J	3.0	ug/L	8260B	
1,4-Dichlorobenzene		3.8		3.0	ug/L	8260B	
Tetrachloroethene		0.11	J	5.0	ug/L	8260B	
Mineral Spirit Range O	rganics	21000		2500	ug/L	8015B	
460-52392-12	RINSE BLANK						
Chloroform		0.36	J	7.0	ug/L	8260B	
Methylene Chloride		1.5	J	5.0	ug/L	8260B	
,					J		

EXECUTIVE SUMMARY - Detections

Job Number: 460-52392-1

Client: Basile Environmental Solutions, LLC

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
460-52392-13	TRIP BLANK						
Chloroform		0.21	J	7.0	ug/L	8260B	
Methylene Chloride		1.3	J	5.0	ug/L	8260B	

METHOD SUMMARY

Job Number: 460-52392-1

Client: Basile Environmental Solutions, LLC

Lab Location	Method	Preparation Method
TAL EDI	SW846 8260B	
TAL EDI		SW846 5030B
TAL EDI	SW846 8015B	
TAL EDI		SW846 5030B
	TAL EDI TAL EDI TAL EDI	TAL EDI SW846 8260B TAL EDI SW846 8015B

Lab References:

TAL EDI = TestAmerica Edison

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

ANALYTICAL REPORT

Job Number: 460-52761-1

Job Description: 2013 Safety-Kleen Amityville

For:

Basile Environmental Solutions, LLC 1188 Hillside Drive Cortland, NY 3045

Attention: Joseph Basile, Jr., MSc.

Approved for release Kristina Blocker Project Manager I 4/5/2013 8:56 AM

Designee for Melissa Haas Project Manager I melissa.haas@testamericainc.com 04/05/2013

Ustina M.Blocque

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132

Job Number: 460-52761-1

Job Description: 2013 Safety-Kleen Amityville

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Approved for release. Kristina Blocker Project Manager I 4/5/2013 8:56 AM

Designee for

rustina M. Blocku

Melissa Haas

Table of Contents

Cover Title Page	1
Data Summaries	5
Report Narrative	5
Sample Summary	10
Executive Summary	11
Method Summary	12
Method / Analyst Summary	13
Sample Datasheets	14
Surrogate Summary	22
QC Data Summary	24
Data Qualifiers	35
QC Association Summary	36
Lab Chronicle	38
Organic Sample Data	40
GC/MS VOA	40
Method 8260B	40
Method 8260B QC Summary	41
Method 8260B Sample Data	52
Standards Data	64
Method 8260B ICAL Data	64
Method 8260B CCAL Data	121
Raw QC Data	129
Method 8260B Tune Data	129
Method 8260B Blank Data	
	137
Method 8260B LCS/LCSD Data	137 143
Method 8260B LCS/LCSD Data	

Table of Contents

Method 8260B Run Logs	165
Method 8260B Prep Data	167
GC VOA	172
Method 8015B - GRO	172
Method 8015B - GRO QC Summary	173
Method 8015B - GRO Sample Data	179
Standards Data	189
Method 8015B - GRO ICAL Data	189
Method 8015B - GRO CCAL Data	210
Raw QC Data	222
Method 8015B - GRO Blank Data	222
Method 8015B - GRO LCS/LCSD Data	227
Method 8015B - GRO MS/MSD Data	237
Method 8015B - GRO Run Logs	247
Method 8015B - GRO Prep Data	249
norganic Sample Data	253
General Chemistry Data	253
Gen Chem Cover Page	254
Gen Chem MDL	255
Gen Chem Analysis Run Log	257
Gen Chem Prep Data	258
Shipping and Receiving Documents	259
Client Chain of Custody	260
Sample Receipt Checklist	262

Job Narrative 460-52761-1

Comments

No additional comments.

Receipt

The samples were received on 3/21/2013 3:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.1° C.

Except:

Technical and Operational Guidance Series subpart 1.1.1 (The New York State Ambient Water Quality Standards and Guidance Values) references a class GA standard of 0.04 ug/L for 1,2-dibromo-3-Chloropropane and 1,2,3-Trichloropropane. The laboratory is unable to meet this standard by reporting to their established reporting limit (RL) or method detection limit (MDL). Sample results are evaluated to the MDL, which is the lowest level the instrumentation has been able to detect, which is 0.4 ug/L for 1,2-Dibromo-3-Chloropropane and 0.42 ug/L for 1,2,3-Trichloropropane.

The Edison lab does not hold NY certification for the following analytes via method 8260 for water or soil: Ethyl Methacrylate, lodomethane and Methacrylonitrile.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 153421 were outside control limits for several analytes. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC VOA

Method(s) 8015B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 153626 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Project Specific Reporting Limits - Aqueous Samples

For aqueous samples, please note that the reporting limits listed below may vary for each sample analyzed based on sample volume, and/or sample dilution. The aqueous laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC) Technical & Operational Guidance Series (TOGS) section 1.1.1 class GA standards, and ASI's previously reported

laboratory reporting limits where no TOGS class GA standard exists.

Acetone 50 ug/L Acetonitrile 10 ug/L Acetonitrile 10 ug/L Benzene 1 ug/L Benzyl chloride 10 ug/L Bromodichtoromethane 50 ug/L Bromooform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chlorofethane 5 ug/L 2-Chloroform 7 ug/L Chloroform 7 ug/L Chloroform 7 ug/L Cis-1,2-Dichloropethene 5 ug/L cis-1,3-Dichloropethene 5 ug/L cis-1,3-Dichloropethane 5 ug/L 1,2-Dichloropethane 5 ug/L 1,2-Dichlorobenzene 3 ug/L </th <th>Analyte</th> <th>Aqueous Project Specific Reporting Limits</th> <th>Units</th>	Analyte	Aqueous Project Specific Reporting Limits	Units
Acetonitrile 10 ug/L Allyl chloride 5 ug/L Benzene 1 ug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromodichloromethane 50 ug/L Bromodomm 5 ug/L Bromodomid 5 ug/L Carbon disulfide 60 ug/L Carbon disulfide 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L Chloroethane 5 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroethene 5 ug/L cis-1,2-Dichloropropene 0.2 ug/L Dibromochloromethane 5 ug/L 1,2-Dibromo-Schloropropane 0.04 ug/L 1,2-Dibromo-Schloropropane 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichlorobenzene 3 ug/L 1,1,2-Dichloroethane 5 ug/L 1,1,2-Dichloroethane 5 ug/L	-		
Allyl chloride			
Benzene 1 lug/L Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chlorobenzene 5 ug/L Chlorothane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene 5 ug/L 1,2-D			
Benzyl chloride 10 ug/L Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chioroethyl vinyl ether 20 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethene 5 ug/L 1,1-Dichloroethene 5 ug/L <td></td> <td></td> <td></td>			
Bromodichloromethane 50 ug/L Bromoform 5 ug/L Bromomethane 5 ug/L 2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Chloromethane 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloroethane 5 ug/L Chloromethane 5 ug/L Chloromethane 5 ug/L Dibromochloromethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,1-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5			
Bromoform			
Brommethane			
2-Butanone (MEK) 50 ug/L Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloroethyl vinyl ether 20 ug/L Chloroethane 5 ug/L Chloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 3 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene 5 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene 5 ug/L 1,1-Dichloroethene <td></td> <td></td> <td></td>			
Carbon disulfide 60 ug/L Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L Cis-1,2-Dichloroethene 5 ug/L Cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromo-3-Chloropropane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 9 ug/L 1,1-Dichloroethene, Total 2 ug/L 1,2-Dichloropopane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L lodomethane 5 ug/L lodomethane 5 ug/L lodomethane 5 ug/L			
Carbon tetrachloride 5 ug/L Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L Cisi-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromoc-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methylene Chloride			
Chlorobenzene 5 ug/L Chloroethane 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,2-Dichorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methyl nethacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK)			
Chloroethyl vinyl ether 5 ug/L 2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Me			
2-Chloroethyl vinyl ether 20 ug/L Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropopane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L Styrene <			
Chloroform 7 ug/L Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L 1sobutyl alcohol 250 ug/L Methyl nethacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl methacrylate 5 ug/L 4-Methyl methacrylate 5 ug/L 4-Methy			
Chloromethane 5 ug/L cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 1 ug/L 1,3-Dichlorobenzene 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L Nylene 5			
cis-1,2-Dichloroethene 5 ug/L cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Methyl-2-pentanone (MIBK) 5 ug/L Newpy-Xylene 10 ug/L 0-Xylene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene			
cis-1,3-Dichloropropene 0.2 ug/L Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 1 ug/L Dibromomethane 3 ug/L 1,3-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L mep-Xylene 5 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L			
Dibromochloromethane 50 ug/L 1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L 1,2-Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methylene Chloride 5		5	ug/L
1,2-Dibromo-3-Chloropropane 0.04 ug/L 1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	• • •		
1,2-Dibromoethane 5 ug/L Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethylmethacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Metylene 5 ug/L 5 tyrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L			
Dibromomethane 5 ug/L 1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L Methylene 5 ug/L 5tyrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
1,3-Dichlorobenzene 3 ug/L 1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethane 0.6 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		5	ug/L
1,4-Dichlorobenzene 3 ug/L 1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 5 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 5 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
1,2-Dichlorobenzene 3 ug/L Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 0.6 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,3-Dichlorobenzene		ug/L
Dichlorodifluoromethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L 0-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,4-Dichlorobenzene	3	ug/L
1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		3	ug/L
1,2-Dichloroethane 0.6 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L lodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L	Dichlorodifluoromethane		
1,1-Dichloroethene 5 ug/L 1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L lodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L	1,1-Dichloroethane	5	ug/L
1,2-Dichloroethene, Total 2 ug/L 1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,2-Dichloroethane		
1,2-Dichloropropane 1 ug/L Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1-Dichloroethene		ug/L
Ethylbenzene 5 ug/L Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L lodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		2	ug/L
Ethyl methacrylate 5 ug/L 2-Hexanone 50 ug/L lodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,2-Dichloropropane		ug/L
2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Ethylbenzene		ug/L
2-Hexanone 50 ug/L Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Ethyl methacrylate	5	ug/L
Iodomethane 5 ug/L Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	2-Hexanone		
Isobutyl alcohol 250 ug/L Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Iodomethane		
Methacrylonitrile 5 ug/L Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Isobutyl alcohol		
Methylene Chloride 5 ug/L Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Methacrylonitrile		
Methyl methacrylate 50 ug/L 4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Methylene Chloride		
4-Methyl-2-pentanone (MIBK) 5 ug/L m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
m&p-Xylene 10 ug/L o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L			
o-Xylene 5 ug/L Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	m&p-Xylene		
Styrene 5 ug/L 1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	o-Xylene		
1,1,1,2-Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	Styrene	5	ug/L
1,1,2,2-Tetrachloroethane 5 ug/L Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1,1,2-Tetrachloroethane	5	ug/L
Tetrachloroethene 5 ug/L Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L	1,1,2,2-Tetrachloroethane	5	ug/L
Toluene 5 ug/L trans-1,4-Dichloro-2-butene 5 ug/L		5	ug/L
trans-1,4-Dichloro-2-butene 5 ug/L	Toluene	5	ug/L
trans-1,2-Dichloroethene 5lug/l		5	ua/L
		5	ug/L

Analyte	Aqueous Project Specific Reporting Limit	Units
trans-1,3-Dichloropropene	0.2	ug/L
1,1,1-Trichloroethane	5	ug/L
1,1,2-Trichloroethane	1	ug/L
Trichloroethene	5	ug/L
1,2,3-Trichloropropane	0.04	ug/L
Vinyl acetate	5	ug/L
Vinyl chloride	2	ug/L
Xylenes, Total	15	ug/L
Mineral Spirit Range Organics	50	ug/L

Project Specific Reporting Limits – Solid Samples

For solid samples, please note that the reporting limits listed below will vary for each sample analyzed based on sample moisture content, sample volume, and/or sample dilution. The solid laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC) Subpart 375-6.8(a) Unrestricted Use Soil Cleanup Objectives and TestAmerica Connecticut's laboratory reporting limits where no part 375 cleanup objectives exist.

Analyte	Solid Project Specific Reporting Limits	Units
Acetone	50	ug/Kg
Acetonitrile		ug/Kg
Allyl chloride		ug/Kg
Benzene	60	ug/Kg
Benzyl chloride	5	ug/Kg
Bromodichloromethane		ug/Kg
Bromoform		ug/Kg
Bromomethane	5	ug/Kg
2-Butanone (MEK)		ug/Kg
Carbon disulfide	5	ug/Kg
Carbon tetrachloride	760	ug/Kg
Chlorobenzene	1100	ug/Kg
Chloroethane	5	ug/Kg
2-Chloroethyl vinyl ether	5	ug/Kg
Chloroform	370	ug/Kg
Chloromethane	5	ug/Kg
cis-1,2-Dichloroethene	250	ug/Kg
cis-1,3-Dichloropropene	5	ug/Kg
Dibromochloromethane	5	ug/Kg
1,2-Dibromo-3-Chloropropane	10	ug/Kg
1,2-Dibromoethane		ug/Kg
Dibromomethane	5	ug/Kg
1,3-Dichlorobenzene	2400	ug/Kg
1,4-Dichlorobenzene	1800	ug/Kg
1,2-Dichlorobenzene	1100	ug/Kg
Dichlorodifluoromethane		ug/Kg
1,1-Dichloroethane	270	ug/Kg
1,2-Dichloroethane		ug/Kg
1,1-Dichloroethene	330	ug/Kg
1,2-Dichloroethene, Total		ug/Kg
1,2-Dichloropropane	5	ug/Kg
Ethylbenzene	1000	ug/Kg
Ethyl methacrylate	10	ug/Kg
2-Hexanone	10	ug/Kg
Iodomethane	10	ug/Kg
Isobutyl alcohol	150	ug/Kg
Methacrylonitrile		ug/Kg
Methylene Chloride	50	ug/Kg
Methyl methacrylate	10	ug/Kg
4-Methyl-2-pentanone (MIBK)	5	ug/Kg
m&p-Xylene		ug/Kg
o-Xylene		ug/Kg
Styrene		ug/Kg
1,1,1,2-Tetrachloroethane	5	ug/Kg
1,1,2,2-Tetrachloroethane		ug/Kg
Tetrachloroethene		ug/Kg
Toluene		ug/Kg
trans-1,4-Dichloro-2-butene		ug/Kg
trans-1,2-Dichloroethene	190	ug/Kg

Analyte	Solid Project Specific Reporting Limits	Units
trans-1,3-Dichloropropene	5	ug/Kg
1,1,1-Trichloroethane	680	ug/Kg
1,1,2-Trichloroethane	5	ug/Kg
Trichloroethene	470	ug/Kg
1,2,3-Trichloropropane	5	ug/Kg
Vinyl acetate	20	ug/Kg
Vinyl chloride	5	ug/Kg
Xylenes, Total	260	ug/Kg
Mineral Spirit Range Organics	10000	ug/Kg

SAMPLE SUMMARY

Client: Basile Environmental Solutions, LLC Job Number: 460-52761-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
460-52761-1	DW-1	Solid	03/21/2013 1015	03/21/2013 1500
460-52761-1MS	DW-1	Solid	03/21/2013 1015	03/21/2013 1500
460-52761-1MSD	DW-1	Solid	03/21/2013 1015	03/21/2013 1500
460-52761-2	DW-1 DUP	Solid	03/21/2013 1015	03/21/2013 1500

EXECUTIVE SUMMARY - Detections

Client: Basile Environmental Solutions, LLC Job Number: 460-52761-1

Lab Sample ID Client Sample ID			Reporting			
Analyte	Result	Qualifier	Limit	Units	Method	
460-52761-1 DW-1						
Acetone	6.2	JB	60	ug/Kg	8260B	
Methylene Chloride	0.36	JB	60	ug/Kg	8260B	
Mineral Spirit Range Organics	23000		5500	ug/Kg	8015B	
Percent Moisture	9.1		1.0	%	Moisture	
Percent Solids	90.9		1.0	%	Moisture	
460-52761-2 DW-1 DUP						
Acetone	4.8	JB	60	ug/Kg	8260B	
Methylene Chloride	2.9	JB	60	ug/Kg	8260B	
Mineral Spirit Range Organics	19000		6100	ug/Kg	8015B	
Percent Moisture	8.8		1.0	%	Moisture	
Percent Solids	91.3		1.0	%	Moisture	

METHOD SUMMARY

Job Number: 460-52761-1

Client: Basile Environmental Solutions, LLC

Lab Location Method **Preparation Method** Description Matrix: Matrix: Solid Volatile Organic Compounds (GC/MS) TAL EDI SW846 8260B Closed System Purge and Trap TAL EDI SW846 5035 8015B - Mineral Spirt Range Organics TAL EDI SW846 8015B Closed System Purge and Trap TAL EDI SW846 5035 Percent Moisture TAL EDI **EPA Moisture**

Lab References:

TAL EDI = TestAmerica Edison

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.