FINAL VAPOR INVESTIGATION REPORT EUGENE'S DRY CLEANERS SITE NO. 1-52-157

WORK ASSIGNMENT NO. D004434-27

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

Project Number: 3612072087

OCTOBER 2008

This document was prepared for the sole use of New York State Department of Environmental Conservation, the only intended beneficiary of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering and Consulting, P.C.

FINAL VAPOR INVESTIGATION REPORT EUGENE'S DRY CLEANERS SITE NO. 1-52-157

WORK ASSIGNMENT NO D004434-27

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

Project Number: 3612072087

OCTOBER 2008

This document was prepared for the sole use of New York State Department of Environmental Conservation, the only intended beneficiary of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering and Consulting, P.C.

Submitted by:

Eric C. Sandin Project Manager

Approved by:

John W. Peterson Principal Professional

TABLE OF CONTENTS

LIST C	DF FIGURESii
LIST C	DF TABLES iii
GLOSS	SARY OF ACRONYMS AND ABBREVIATIONSiv
1.0	INTRODUCTION
2.0 2.1 2.2 2.3 2.4	SITE LOCATION AND HISTORY2-1SITE LOCATION2-1PHYSICAL SETTING2-1SITE HISTORY2-22006 VAPOR INTRUSION INVESTIGATION SUMMARY2-3
3.0 3.1 3.2 3.3 3.4 3.5	SCOPE OF WORK3-1GENERAL NOTES ON FIELD ACTIVITIES3-1STRUCTURE SAMPLING3-2SOIL VAPOR SAMPLING3-5GROUNDWATER SAMPLING3-6SOIL SAMPLING3-6
4.0 4.1 4.2 4.3 4.4 4.5	DATA ASSESSMENT4-1DATA USABILITY ASSESSMENT4-1INDOOR AIR AND SUB-SLAB SOIL VAPOR RESULTS4-2SOIL VAPOR RESULTS4-4GROUNDWATER RESULTS4-4SOIL RESULTS4-5
5.0	INVESTIGATION FINDINGS
6.0	REFERENCES
FIGUR	RES
TABL	ES

APPENDICES

APPENDIX A:	WASTE CHARACTERIZATION SAMPLE RESULTS
APPENDIX B:	PHOTOGRAPHS
APPENDIX C:	INDOOR AIR QUALITY QUESTIONNAIRES AND INVENTORY FORMS
APPENDIX D:	FIELD DATA RECORDS
APPENDIX E:	DATA USABILITY SUMMARY REPORT

LIST OF FIGURES

Figure

1.1 Site Location

- 3.1 Sample Locations
- 4.1 PCE in 2007 Sub-Slab Vapor and Basement Air
- 4.2 PCE in 2007 Soil Vapor (Outside Locations)
- 4.3 PCE in 2007 Groundwater
- 4.4 PCE in 2007 Soil Samples

LIST OF TABLES

Table

- 3.1 Air Sample Data Collection Summary
- 4.1 Indoor Air VOC Results
- 4.2 Soil Vapor VOC Results
- 4.3 Groundwater VOC Results
- 4.4 Soil VOC Results

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

ADT	Aquifer Drilling and Testing, Inc.								
ASP	Analytical Services Protocol								
bgs	below ground surface								
cis-1,2-DCE	cis-1,2-dichloroethene								
DUSR	Data Usability Summary Report								
HASP	Health and Safety Plan								
MACTEC mg/kg	MACTEC Engineering and Consulting, P.C. milligram(s) per kilogram								
NYSDEC	New York State Department of Environmental Conservation								
NYSDOH	New York State Department of Health								
PCE	tetrachloroethene								
PID	photoionization detector								
Report	Eugene's Dry Cleaners VI report								
RI	Remedial Investigation								
ROD	Record of Decision								
Site	Eugene's Dry Cleaners site								
SVIE	Soil Vapor Intrusion Evaluation								
TCE	Trichloroethene								
TCL	target compound list								

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

µg/L	microgram(s) per liter
$\mu g/m^3$	microgram(s) per cubic meter
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds
VI	Vapor Investigation
WP	Work Plan

1.0 INTRODUCTION

MACTEC Engineering and Consulting, P.C. (MACTEC), under contract to the New York State Department of Environmental Conservation (NYSDEC), conducted a Vapor Investigation (VI) at the Eugene's Dry Cleaners site (Site) (Site # 1-52-157) in the town of Babylon, Suffolk County (see Figure 1.1 for Site Location). This Eugene's Dry Cleaners VI report (Report) documents the activities and results of sampling performed at the Site between December 2007 and January 2008.

The Site is the location of a former dry cleaning facility with known releases of organic chlorinated solvent chemicals. This VI was authorized by NYSDEC as a result of the Site's inclusion in 2005 on the List of Inactive Hazardous Waste Sites with Pre-2003 Remedial Decisions where Disposal of Chlorinated Hydrocarbons Occurred. Additional details of the Site History are provided in Section 2.

This VI was conducted in accordance with the NYSDEC requirements described in Work Assignment No. D004434-27, dated March 28, 2007 (NYSDEC, 2007), and with the April 2006 Superfund Standby Contract No. D004434 between the NYSDEC and MACTEC. The planned Scope of Work was established in the Final VI Work Plan (WP) dated August 2007 (MACTEC, 2007). Vapor and air samples were collected in accordance with the New York State Department of Health (NYSDOH) "*Guidance for Evaluating Soil Vapor Intrusion in the State of New York*" (NYSDOH, 2006). The VI also considered guidance established in the NYSDEC "Draft DER-10 Technical Guidance for Site Investigations and Remediation" (NYSDEC, 2002a).

2.0 SITE LOCATION AND HISTORY

2.1 SITE LOCATION

The Eugene's Dry Cleaner Site is located at 54 East Main Street in the Town of Babylon, Suffolk County. The Town of Babylon is situated near the south shore of Long Island about 30 miles east of New York City. The Site occupies approximately 0.1 acres.

2.2 PHYSICAL SETTING

The Site is located on the south side of East Main Street. The surrounding area is topographically flat and most of the ground surface is developed or paved. MACTEC estimates the ground elevation to be approximately 10 to 15 feet above mean sea level. Nearby properties along East Main Street are predominantly light commercial with residential properties located to the north and south. Two public water supply wells are located approximately 0.5 miles north (upgradient) of the Site.

The Site consists of a single-story masonry building with a sub-level, situated on a soil-supported concrete slab. The building houses several current ground-floor commercial businesses. The former Eugene's Dry Cleaners was located along the eastern side of the structure, a space that is currently occupied by a nail salon.

The southern shore of Long Island in the vicinity of the Site is characterized by a series of northsouth trending linear tidal inlets or creeks. These inlets extend inland from Great South Bay, which is approximately one mile south of the Site. Carlis Creek is located to the west approximately 1900 feet from the Site and Sumpwams Creek is located to the east approximately 1000 feet from the Site. Depth to groundwater measured in monitoring wells in December 2007 was between 6.4 and 8.8 feet below ground surface (bgs). Previous investigations have interpreted groundwater flow as being towards the south southwest, with discharge to Great South Bay or Sumpwams Creek. Observations from the direct-push borings completed in December, 2008 indicate the top ten feet of overburden is composed of one to two feet of silty sand grading to medium to coarse sand and gravel. The Record of Decision (ROD) completed for the Eugene's Dry Cleaners Site (NYSDEC, 2000) indicates the overburden geology is composed of Pleistocene glacial deposits from the ground surface to a depth of 50 to 60 feet bgs. These consist of fine to coarse sand and gravel and overlie the Gardiners Clay, a marine clay with interbedded sand layers and lenses. The Gardiners Clay is reported to be approximately 10 feet thick in the general vicinity of the Site. The Magothy formation, an alluvial deposit of interbedded sand, gravel and clay units, underlies the Gardiners clay and is an important aquifer for Long Island.

2.3 SITE HISTORY

According to the ROD, the Site had been a dry cleaning operation since at least 1989 and ceased operation in 1998. In December 1994, the Suffolk County Department of Health Services, while responding to a fuel oil spill, detected tetrachloroethene (PCE) in the sediment from a basement sump. This contamination was believed to be a result of the facility discharging a PCE/water mixture to the basement sump. In July 1998, a focused Remedial Investigation (RI) was performed by NYSDEC to evaluate the basement and groundwater conditions. Elevated contaminant concentrations were detected in soils and groundwater at the sump and beneath the slab-on-grade at the Site. An Interim Remedial Measure was performed in October 1998 which included power washing the basement and removing approximately three cubic yards of material from the sump.

In February 2005, the Site was included on the List of Inactive Hazardous Waste Sites with Pre-2003 Remedial Decisions where Disposal of Chlorinated Hydrocarbons Occurred. A Soil Vapor Intrusion Evaluation (SVIE) was performed by O'Brien & Gere for the NYSDEC in April and May of 2006. The SVIE included groundwater grab samples, temporary soil vapor points, and indoor air samples from the Site building. PCE and trichloroethene (TCE) were detected within the basement air and in the soil vapor at multiple locations outside the Site building.

The SVIE is summarized in the following subsection. NYSDEC has required additional investigation to investigate the source of elevated soil vapor concentrations, evaluate potential vapor impacts to surrounding structures and to assess and design vapor mitigation system(s).

2.4 2006 VAPOR INTRUSION INVESTIGATION SUMMARY

NYSDEC completed a SVIE in 2006 that included groundwater sampling, soil gas sampling, and indoor air sampling. Groundwater grab samples and soil gas samples were collected at five locations east, west, and south of the Site. Indoor air samples were collected from the building containing the former dry cleaners and an adjacent business space. Samples were analyzed for volatile organic compounds (VOCs).

Chlorinated solvent-type VOCs were detected in four of the five groundwater samples. PCE was detected above drinking water criteria at two locations, GW-5 (9 μ g/L) located adjacent to the Site building (to the east), and GW-1 (7 μ g/L) located approximately 200 feet downgradient to the south.

Five soil gas samples were collected from the same locations as the groundwater samples. Analytical results reported solvent and fuel type VOCs in all five soil gas samples with the highest concentrations of PCE reported at V-5S (5,282 μ g/m³), V-3S (4,926 μ g/m³), and V4S (104 μ g/m³) which were located adjacent to the building to the east, south, and west respectively.

Three indoor air samples were collected during the SVIE. One basement air and one first floor air sample were collected from the western half of the building, which is currently below a retail shop, and one basement air sample was collected form the eastern half of the building which was utilized by the former dry cleaner. Analytical results identified solvent-related VOCs in all indoor air samples, with the highest concentrations reported from the basement of the former dry cleaner. The samples of basement air contained levels of TCE (>1.5 μ g/m³) and PCE (>250 μ g/m³).

3.0 SCOPE OF WORK

Based on the 2006 findings, NYSDEC required additional characterization to evaluate the source of the soil gas impacts and sample vapor at nearby structures. MACTEC performed the majority of the field portion of this VI between December 10, 2007 and December 19, 2007. Indoor air at one additional structure was sampled on January 14 and 15, 2008 due to site construction that interfered with access during the earlier sampling dates.

MACTEC collected soil vapor from seven exterior borings and five sub-slab borings; air samples of ambient (outside) air and indoor air from five structures; groundwater samples from four direct-push borings, five existing monitoring wells and the basement sump in the Site building; soil samples from three sub-slab locations and from the six direct-push borings. The following subsections describe the sampling activities completed during this VI.

This VI was conducted in accordance with the specifications presented in the Quality Assurance Program Plan (ABB-ES, 1994) and the Site-specific Quality Assurance Project Plan, included as Appendix B of the WP. Soil vapor and indoor air samples were analyzed by Con-Test Analytical Laboratory of East Longmeadow, MA. Soil and groundwater samples were analyzed by Mitkem Corporation of Warwick, RI. Both laboratories are NYSDOH-approved and Environmental Laboratory Accreditation Program certified laboratories.

3.1 GENERAL NOTES ON FIELD ACTIVITIES

General field activities, including health and safety, and decontamination, are described in the following subsections.

Health and Safety. The Site-specific Health and Safety Plan (HASP) was provided as Appendix C to the WP. All work was conducted under Level D personal protection as specified in the Program HASP (MACTEC, 2005) and the Site-specific HASP. No health and safety incidents occurred during the field program.

Decontamination. Sampling methods and equipment were selected to minimize decontamination requirements and the possibility of cross contamination. Disposable sampling equipment was used as much as practical. Soil borings were completed using direct-push methods that generated minimal soil waste. Soil waste was containerized as the developed and paved character of the Site footprint did not provide an area to spread soils. The single drum of investigation derived waste soil was sampled for waste characterization and the drum was removed from the Site by Aquifer Drilling and Testing, Inc. (ADT) and disposed as non-hazardous waste at American Landfill in Waynesburg, Ohio. Waste characterization results are included in Appendix A.

3.2 STRUCTURE SAMPLING

MACTEC collected air samples from five structures (Structure 01 to 05) at or near the Eugene's Dry Cleaner Site. The structures are shown on Figure 3.1 and include four current commercial businesses and a church hall (Structure 04).

The targeted sampling approach for each structure included:

- Completion of the NYSDOH Indoor Air Quality Questionnaire and Inventory,
- One sub-slab soil vapor sample,
- One basement (or lowest floor) air sample, and
- A sample from the first livable/occupied floor in the building.

Structures 01 through 04 were sampled between December 11, 2007 and December 13, 2007 and Structure 05 was sampled on January 15, 2008. In December, two ambient air samples (AA-01 and AA-02) were collected north and south of the Site to document outdoor air conditions during the sampling event. One ambient air sample (AA-03) was also collected during the January sample event. Due to the nature of the structures sampled, not all locations have a sub-slab, basement air, and first floor air sample suite.

At Structure 01, a slab-on-grade commercial building currently housing a restaurant, one sub-slab sample was collected within the structure and two first floor air samples were collected.

At Structure 02, the former dry cleaner, two sub-slab samples were collected from different areas within the basement. One sample was collected close to the sump source area and one was

collected as far to the north from the sump as possible. A first floor air sample was also collected. The basement at Structure 02 is shared with Structure 03 and a single basement air sample was collected near the doorway between the two basement areas. Two sub-slab samples were collected at Structure 02.

At Structure 03, a commercial business with a basement adjoining the former dry cleaner, a subslab sample, a basement air sample and a first floor air sample were collected.

At Structure 04, a church hall to the north of the Site, a sub-slab sample, a basement air sample and a first floor air sample were collected.

At Structure 05, a commercial multi-use building, two basement air samples were collected from opposite ends of the building and a first floor air sample was collected. A sub-slab sample was not taken due to the objections of the site contact at the site of sampling.

An air sample data collection summary is presented in Table 3.1.

Indoor Air Surveys

MACTEC conducted indoor air surveys and product inventories at each structure sampled using the NYSDOH "Indoor Air Quality Questionnaire and Building Inventory" form. A MiniRae photoionization detector (PID) that measures parts per billion was used to scan inventoried items that may be off-gassing VOCs. VOCs identified on the containers and are also included on the air sample analytical Target Compound List (TCL) are noted on the inventory forms, along with any PID readings. MACTEC observed cleaning and solvent-type chemicals at Structure 02 on the first floor (a nail salon); however, the business owner did not allow them to be inventoried or the questionnaire to be completed. Structure 04, contained numerous cleaning products but the MiniRae PID was not functioning properly and therefore measurements of total vapor in the vicinity of the cleaners are not available. The completed surveys include sketches of the structure layout and location of air and sub-slab samples.

Sub-slab, Soil vapor and Indoor Air Sampling

Sub-slab soil vapor samples were collected from below the concrete floor slabs at four structures (01, 02, 03 and 04). At each location, MACTEC used a hammer drill to penetrate the floor and install a permanent sub-slab vapor point using a stainless steel sample port and ¼-inch diameter Teflon tubing. Prior to sampling, three volumes of air were purged from the tubing using a polyethylene syringe at a rate less than 200 milliliter/minute. Clean-certified 6-liter SUMMA®-type canisters with a 24-hour regulator control valves were connected to the tubing at each point and used to collect the sub-slab samples. No sub-slab sample was collected at Structure 05. Much of this building has a crawlspace with a concrete floor. Since it is not habitable and due to reluctance of the building owner, the sub-slab was not penetrated.

Basement level indoor air samples were collected from four of the structures (02, 03, 04, and 05). The samples were collected from a few feet above the floor level and were sampled over the same 24-hour period as sub-slab sampling (if performed).

First floor level indoor air samples were collected from all five structures. Two first floor air samples were collected at Structure 01 which was constructed with a slab on grade. The first floor samples were collected from approximately three to five feet above the floor level, and set up with 24-hour flow valves to be collected coincident with the sub-slab and basement air samples.

Three ambient air samples were collected in the vicinity of the structures homes/businesses being sampled for indoor air and sub-slab vapor VOC contamination. AA-01 was located near Structure 04; AA-02 was located just behind (south) the former dry cleaner (Structure 02 and 03). Ambient air sample AA-03 was collected in January during the indoor air sampling for Structure 05.

For all air samples, the time of sample collection, canister vacuum (in inches Hg), canister identification, regulator identification, and weather conditions were recorded in the field log book. After approximately 24-hours, the flow valves were shut off. The time and remaining vacuum in the canister were noted in the field log book. The samples were delivered to Con-Test Laboratory by the field crew. Con-Test analyzed for VOCs via United States Environmental Protection Agency (USEPA) Method TO-15. Laboratory analysis included Category B deliverables.

Photographs of the deployed canisters or interior conditions are included in Appendix B. Completed indoor air quality questionnaires and inventory forms are provided in Appendix C.

3.3 SOIL VAPOR SAMPLING

MACTEC installed soil vapor points at seven locations exterior of structures to establish permanent sampling points to assess residual subsurface contamination. [Note that soil vapor samples collected as part of structure sampling are described in the previous section.] The locations of these points are shown on Figure 3.1 and described below:

DP-01	Upgradient of the Site along the north side of East Main Street;
DP-02	In the alley to the east of the former Eugene's Dry Cleaners building;
DP-03	In the alley to the east of the former Eugene's Dry Cleaners building;
DP-04	Along the south side of the Site building
DP-05	To the south of the Site building and near an existing dry well
DP-06	Southwest of the Site building near well PW-2
DP-07	Southeastern portion of the property at well PW-8

MACTEC collected soil vapor samples from each of the soil vapor points in December 2007.

Soil vapor points DP-02 through DP-07 were installed on December 11th and 12th, 2007 by ADT using direct-push drilling methods. The boreholes were drilled using a two and 3/8-inch outside diameter macrocore sampler to evacuate soils from the borehole. Each boring was advanced into the water table, to a depth of 10 feet bgs. Water was encountered at each location at approximately 7.8 to 8.0 feet bgs. Soil profiles recovered from the direct-push samplers were examined to evaluate soil conditions and identify water-saturated zones. The six inch soil vapor points were installed above the water table at a depth of 4.0 to 5.0 feet bgs. Soil vapor point installation diagrams are presented in Appendix D.

Soil vapor point DP-01 was installed on December 18, 2007 by MACTEC using a hand auger. The soil vapor point was installed to a depth of 4.5 feet bgs. This boring was completed adjacent to existing upgradient monitoring well PW-1 in a sidewalk tree-planting cut-out. Soil samples were not analyzed from this upgradient location.

The soil vapor points were installed, tested, and sampled in accordance with the procedures described in the WP. Each soil vapor point was completed with a flush-to-the-ground road box with sealable cap set into a concrete pad.

The soil gas samples were collected in clean-certified three liter SUMMA®-type canisters with flow regulators set to approximately 20 minutes per sample. Flow into the canisters was less than 0.2 liters per minute, as requested by the NYSDOH. Soil vapor samples were delivered to Con-Test Analytical for analyses of VOCs by USEPA Method TO-15.

3.4 GROUNDWATER SAMPLING

MACTEC collected groundwater samples from nine locations at the Site. Groundwater grab samples were collected from four soil vapor sampling point locations (DP-02, DP-03, DP-04, and DP-05) and from standing water within the sump at the basement of the former dry cleaners. Five groundwater samples were also collected from existing monitoring wells (P-1, PW-1, PW-2, PW-3, and PW-8) using low-flow groundwater sampling methods. A sixth monitoring well, PW-6, appeared to be obstructed or partially filled in and could not be sampled. Field data records for the low flow monitoring well samples are included in Appendix D.

Groundwater samples were submitted to Mitkem for analysis for TCL VOCs using USEPA 8260 methods as described in the NYSDEC Analytical Services Protocol (ASP) (NYSDEC, 2005). Off-Site laboratory analysis included Category B deliverables. The sample set included one field duplicate at DP-04 and a matrix spike and matrix spike duplicate collected at PW-3.

3.5 SOIL SAMPLING

MACTEC collected soil grab samples from six direct-push soil vapor soil borings (DP-02 through DP-07), and from sub-slab borings completed in basement of Structure 02 and Structure 03. A field duplicate sample was collected at boring DP-04. At the direct-push locations, soils were collected in an acetate tube using a 5-foot long core sampler. Upon retrieval, the tubes were removed from the core barrel and opened lengthwise to provide access to the soils. Soils were logged and based on the PID readings and physical evidence such as color or odor, one sample from each boring location was submitted for VOC analysis. No visible contamination or odors

were detected in the borings and therefore a default depth of two or three feet bgs was used to characterize conditions in subsurface soils.

Soil samples were analyzed by Mitkem for VOCs using USEPA method 8260. Off-Site laboratory analysis included Category B deliverables. Soil boring logs with stratigraphic descriptions and drilling information are provided in Appendix D.

4.0 DATA ASSESSMENT

4.1 DATA USABILITY ASSESSMENT

MACTEC reviewed the laboratory data results from the field activities completed in December 2007 and January 2008 to establish that the results met data quality objectives. Project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (DUSR) (NYSDEC, 2002b). This review included evaluations of sample collection, data package completeness, holding times, quality control data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The DUSRs are presented in Appendix E.

Air samples and soil vapor samples were analyzed by Con-Test Analytical Laboratory of East Longmeadow, Massachusetts for VOCs by USEPA Method TO-15. Groundwater samples and soil samples were analyzed by Mitkem Laboratory of Warwick, Rhode Island. Both laboratories provided Category B deliverables as defined in the NYSDEC ASP (NYSDEC, 2005).

The December 2007 field event generated a total of eleven groundwater, ten soil, thirteen soil vapor, and nine air samples. The January 2008 field event generated four air samples. The DUSRs for these two data sets are provided in Appendix E along with tabulated full data results. With the exception of the items discussed in the DUSR, the results are interpreted to be usable as reported by the laboratory. The chemist review added various data validation qualifiers, as dictated by the guidelines. These include:

- U indicates that the analyte was not detected above the reported detection limit
- UJ indicates that the analyte was not detected a the reported detection limit and the detection limit is estimated
- J indicates that the concentration is estimated
- R indicates that the results was rejected during validation
- D indicates that the results was reported from a diluted analytical run

The chemist review noted that two air samples from the December 2007 event (ECFA02, and ECFA03) had slight positive final pressure readings when canister pressure was recorded upon receipt at the laboratory. The laboratory explanation was that temperature differences between the field and laboratory setting and potential differences in the accuracy of pressure gauges caused these positive readings. Detected compounds from these samples were qualified as estimated. MACTEC notes that in contemporaneous samples from a similar NYSDEC Site, a field duplicate sample collected at one location had similar reported concentrations to the field prime sample and did not have a positive laboratory pressure reading. This supports a finding that slight positive pressure does not invalidate the analysis and that the results are accurate and usable.

4.2 INDOOR AIR AND SUB-SLAB SOIL VAPOR RESULTS

Table 4.1 presents a summary of VOCs that were detected in sub-slab soil vapor samples and indoor air samples. MACTEC has grouped the results by structure and included the results for three outdoor ambient air samples that were collected during the time period that the sampling was performed. The NYSDOH has developed two matrices to use as tools in making remedial action decisions when soil vapor may be entering structures. The decision matrices are included in the NYSDOH *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH, 2006). The list of volatile chemicals that the matrices provide guidance for have been amended to seven, as documented to the NYSDEC in a letter dated June 25, 2007 (NYSDOH, 2007). The seven VOCs are: TCE, PCE, 1,1,1-trichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene (cis-1,2-DCE), vinyl chloride, and carbon tetrachloride. The guidance values are applicable when evaluating sub-slab vapor samples in relation to contemporaneous indoor air concentration.

Of the five structures sampled, four included sub-slab soil vapor and indoor air sample sets that can be used to compare to the NYSDOH guidance matrices (01, 02, 03, and 04). Structure 05 had no subslab sampling as explained previously. Where a comparison to the matrices can be made, three compounds, PCE, TCE, and carbon tetrachloride were reported at levels above NYSDOH guidance values.

The results for PCE in indoor basement air and sub-slab soil vapor are shown on Figure 4.1. PCE was reported above NYSDOH guidance at Structures 02, 03 and 04. PCE was not reported at levels above NYSDOH guidance values in samples from Structure 01.

The highest sub-slab vapor concentration, 6500 micrograms per cubic meter ($\mu g/m^3$) was reported at Structure 02. Corresponding indoor air levels for PCE were 78 J $\mu g/m^3$ in first floor air. Basement air results (from BA-03, which collected air from the entire basement beneath Structure 02 and Structure 03) contained PCE at 39 $\mu g/m^3$. Note that a 2006 sample of basement air from this structure contained PCE at 254 $\mu g/m^3$. The elevated 2007 sub-slab concentration yields a category of "MITIGATE" when the appropriate NYSDOH matrix is applied. Low levels of TCE were also reported in the sub-slab and first floor air samples from Structure 02. The levels (1.1 $\mu g/m^3$ in soil vapor and 0.53J $\mu g/m^3$ in indoor air) fall within NYSDOH guidance criteria that recommend that reasonable and practical actions should be taken to identify the source and reduce exposure.

Structure 03, the adjoining retail space, contained PCE in sub-slab vapor (180 μ g/m³), basement air (39 μ g/m³), and first floor air (14 J μ g/m³) at reported concentrations that, while lower than the former dry-cleaners, also indicate a "MITIGATE" guidance recommendation.

At Structure 04, PCE was reported in sub-slab vapor (27 μ g/m³), basement air (10 μ g/m³), and first floor air (3.6 μ g/m³) at reported concentrations that fall within the range for a recommendation that reasonable and practical steps be taken to identify the source and reduce exposure. This structure is approximately 160 feet to the north of the Site.

At Structure 05, (where no sub-slab sample was obtained) PCE was reported at concentrations up to 9.8 μ g/m³ in basement (crawlspace) air. This crawlspace has a concrete floor that appears intact and reportedly was installed in recent years. At this structure, results from nearby exterior soil vapor implants provide supplemental data to evaluate the indoor air findings. See the following subsection for a discussion of soil vapor results.

Carbon tetrachloride was reported in indoor air at all structures, however, the concentrations are similar to those reported in the ambient (outdoor) air samples (i.e., all results are $<0.6 \ \mu g/m^3$). Additionally, carbon tetrachloride was not identified in any groundwater sample. The results suggest to MACTEC that carbon tetrachloride may be present in these structures from possible household influences or at general background concentrations and may therefore not be present as a Site-related contaminant.

4.3 SOIL VAPOR RESULTS

Samples of soil vapor were collected from seven locations near the Site (DP-01 to DP-07). Chlorinated VOCs were detected at elevated concentrations (>100 μ g/m³) at all these locations except DP-01 which is located north of the Site and in an interpreted upgradient direction. The levels of PCE are shown on Figure 4.2. Of note are the concentrations reported at DP-03 (48,000 μ g/m³), DP-04 (2800 μ g/m³), and DP-07 (9100 μ g/m³). DP-03 and DP-04 are adjacent to the former dry cleaners and are closest to the basement sump. DP-07 is approximately 70 feet south of the building and is near monitoring well PW-8 which has the highest level of VOCs in groundwater (see section 4.4 below). TCE is also present at these locations. The results from soil vapor samples are provided on Table 4.2.

VOCs are also present at lower concentrations in the vapor samples locations DP-02, DP-05 and DP-06 with PCE reported below 250 μ g/m³ in these samples. The lowest reported soil vapor concentration of PCE was at the upgradient location DP-01 (3.3 μ g/m³).

4.4 GROUNDWATER RESULTS

VOCs reported in groundwater samples collected from the five monitoring wells, the four directpush borings, and the basement sump, are presented in Table 4.3. The summed total of detected VOCs in each water sample is shown on Figure 4.3. There were no chlorinated solvent VOCs reported in the groundwater sample collected from the upgradient monitoring well PW-1, nor were there any VOCs detected in the groundwater grab samples collected from DP-02, located near the northeast (upgradient) corner of the Site.

VOCs were detected above groundwater criteria (Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations [NYS, 2008]) in samples from two existing monitoring wells, P-1 and PW-8. Vinyl Chloride (2J micrograms per liter [μ g/L]) was reported in the sample from in P-1, and cis-1,2-DCE (9 μ g/L) and PCE (25 μ g/L) were reported at PW-8. These wells are located directly south of the Site building, in the interpreted direction of groundwater flow from the Site and former dry cleaners basement sump.

One or more solvent-type VOCs were reported in grab samples from direct-push locations DP-03, DP-04 and DP-05 and at monitoring wells PW-2 and PW-3, however the reported concentrations were all below criteria and generally at 1 J μ g/L.

In 2006, a groundwater grab sample collected approximately 120 feet to the south of PW-8 (GW-1) contained PCE at 7 ug/L.

No VOCs were reported from the water grab sample from the basement sump at the former dry cleaners.

4.5 SOIL RESULTS

VOCs reported in soil samples from the six direct-push soil vapor borings and from three sub-slab soil vapor borings completed in the basement of the Site building are presented in Table 4.4. All soil samples were collected from above the water table. Soil VOC concentrations were compared to criteria values from, Subpart 375-6.8(a) Unrestricted Use Soil Cleanup, "Remedial Program Soil Clean-up Objectives" (NYS, 2006).

VOC compounds that were detected in one or more soil samples included: acetone, ethyl benzene, naphthalene, PCE, toluene, TCE, and xylene. However, only one result was reported at levels above the unrestricted use soil cleanup criteria. PCE (2.4 milligrams per kilogram [mg/kg]) was reported in DP-03 above the criteria of 1.3 mg/kg. Note that this location also had the highest reported PCE in soil gas. PCE concentrations in all soil samples from the 2007 VI are shown on Figure 4.4.

The three sub-slab soil samples collected below the basement at Structure 02 and Structure 03 contained trace (below reporting limit) or no VOCs. No VOCs were detected at SS-02B and SS-03 and trace levels of PCE and TCE were reported at SS-02A.

All other soil samples contained one or more VOCs that were identified above detection limits but all results are well below appropriate unrestricted soil cleanup criteria.

5.0 INVESTIGATION FINDINGS

The primary goals of this VI were to; provide further information on the source of elevated soil vapor concentrations identified during a previous investigation, perform structure evaluations at the Site and of adjacent structures, and obtain necessary information to design a soil vapor or sub-slab depressurization system, if appropriate.

Based on the review of results from this investigation, MACTEC has identified the following findings:

- The 2007 VI confirmed residual impacts from chlorinated solvents in the Site building. Both the former dry cleaning space (described in this Report as Structure 02) and an adjacent retail business (Structure 03) contained PCE at levels in sub-slab vapor and in indoor air that indicate a "MITIGATE" condition based on current NYSDOH guidance.
- A water sample from the Site basement sump and three sub-slab soil samples from the Site building did not identify a residual source. However, a soil sample collected adjacent to the east of the building (DP-03) found PCE in shallow soil above regulatory criteria. This is confirmed by elevated PCE in soil gas from the same location. Based on these data, MACTEC concludes there is residual PCE contamination in shallow soils near the south end of the former dry cleaners structure. It is not likely that the source of this soil contamination is the basement sump since the sump is at a lower elevation.
- Sampling of adjacent structures did not identify solvents at levels that would indicate a "MITIGATE condition. However, the absence of sub-slab data from Structure 05, coupled with its proximity to DP-03 raise the possibility of elevated PCE in sub-slab vapor beneath that structure.
- VOCs in 2007 water samples from wells P-1 and PW-08 indicate that residual solvents are impacting groundwater (i.e., concentrations are above groundwater criteria). PCE reported at PW-08 and further south in a 2006 groundwater grab sample (GW-1) are indicative of migrating impact. The presence of solvent-type VOCs in these wells is consistent with earlier findings that groundwater is flowing generally southward.
- The magnitude and general distribution of PCE in 2007 soil vapor is consistent with the previous 2006 investigation

The NYSDEC, in consultation with NYSDOH, will evaluate the results presented in this Report to determine the appropriate follow-up actions. MACTEC offers the following recommendations:

1. Obtain access from the property owner of Structure 05 to collect a sub-slab sample to determine if sub-slab soil vapor is the source if the PCE identified at levels of approximately $10 \ \mu g/m^3$ in the crawlspace at this building. In the absence of confirmatory

sub-slab vapor sampling, consider recommending a sub-slab depressurization system in this buildings crawlspace to control potential vapors emanating from residual contamination in soils between this building and the Site.

- 2. Install one or two monitoring wells near PW-6 (as a replacement to the damaged PW-6) to monitor impacted groundwater that is migrating southward from residual source(s) near the south end of the former dry cleaners.
- 3. Sub-slab depressurization systems are recommended to mitigate Structures 02 and 03. A soil vapor extraction system was evaluated, but would not be cost effective due to increased installation, operation, and maintenance costs.
- 4. Contaminated soils near DP-03 do not warrant remedial action due to the low levels of contamination detected in the alley way that are below restricted residential cleanup objects, no impacts to groundwater, and installation of sub-slab depressurized systems at impacted structures are anticipated to be performed. Since the contamination pathways will be addressed, contamination in the soil will naturally decrease in concentration over time.

Based on conversations with NYSDOH, MACTEC has provided the addresses of the structures that were sampled for this VI to the NYSDEC under separate cover.

6.0 **REFERENCES**

- ABB Environmental Services, 1994. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. June 1994.
- MACTEC Engineering and Consulting, Inc. P.C., 2005. *Program Health and Safety Plan*. Prepared for New York State Department of Environmental Conservation, Albany, New York. 2005.
- MACTEC Engineering and Consulting, Inc. P.C., 2007. Final Vapor Investigation Workplan Eugene's Dry Cleaners. Prepared for New York State Department of Environmental Conservation, Albany, New York. August 2007.
- New York State (NYS), 2008. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended January 2008.
- New York State (NYS), 2006. New York Codes, Rules, and Regulations, Title 6, Part 375-Environmental Remediation Programs. December 14, 2006.
- New York State Department of Environmental Conservation (NYSDEC). 2000. Record of Decision Eugene's Dry Cleaners Site Babylon (V) Suffolk County Site 1-52-157. November 2000.
- New York State Department of Environmental Conservation (NYSDEC), 2002a. Draft DER-10, Technical Guidance for Site Investigation and Remediation. December 2002.
- New York State Department of Environmental Conservation (NYSDEC). 2002b. "Guidance for the Development of Data Usability Reports" Division of Environmental Remediation, 2002.
- New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocol";7/05 Edition; July 2005.
- New York State Department of Environmental Conservation (NYSDEC), 2007. Work Assignment #D003826-27, Eugene's Dry Cleaners, Site # 1-52-157 letter dated March 28, 2007.
- New York State Department of Health (NYSDOH), 2006. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", Final, October 2006.

New York State Department of Health (NYSDOH), 2007. NYSDEC letter regarding seven VOCs for indoor air matrices. June 25, 2007.

FIGURES

TABLES

Table: 3.1: Air Sample Data Collection Summary

Location	Field Sample ID	Sample Type	Vapor Point	Can ID	Regulator ID	Start Date	Start Time	Sample End	End Time	Start	End	Canister	Depth	Slab Thickness	Purge	He Tracer	PID Reading:
								Date		Pressure	Pressure	Size		(inches)	(ml)	Detected	Purged Vapor (ppb)
										(inches of Hg)	(inches of						
											Hg)						
Ambient (Outdoor) Air Samples																	
AA-01	ECAA01	Indoor Air	NA	1055	3078	12/12/2007	11:30 AM	12/13/2007	10:48 AM	-29	-7	6 Liter	NA	NA	NA	NA	NA
AA-02	ECAA02	Indoor Air	NA	1122	3084	12/12/2007	11:36 AM	12/13/2007	10:56 AM	-29	-8	6 Liter	NA	NA	NA	NA	NA
AA-03	ECAA03	Indoor Air	NA	1109	3253	1/14/2008	2:15 PM	1/15/2008	1:30 PM	-29	-6.5	6 Liter	NA	NA	NA	NA	NA
Indoor Air Samples																	
FA-01A	ECFA01A	Indoor Air	NA	1275	3079	12/10/2007	12:27 PM	12/11/2007	10:41 AM	-27	-5	6 Liter	NA	NA	NA	NA	NA
FA-01B	ECFA01B	Indoor Air	NA	1336	3050	12/10/2007	12:35 PM	12/11/2007	10:31 AM	-23	-5	6 Liter	NA	NA	NA	NA	NA
FA-02	ECFA02	Indoor Air	NA	1476	3094	12/10/2007	1:17 PM	12/11/2007	12:42 PM	-29	0	6 Liter	NA	NA	NA	NA	NA
FA-03	ECFA03	Indoor Air	NA	1745	3217	12/10/2007	3:40 PM	12/11/2007	3:21 PM	-27.5	0	6 Liter	NA	NA	NA	NA	NA
FA-04	ECFA04	Indoor Air	NA	1669	3048	12/10/2007	4:55 PM	12/11/2007	4:28 PM	-30	-2.5	6 Liter	NA	NA	NA	NA	NA
FA-05	ECFA05	Indoor Air	NA	1755	3265	1/14/2008	1:45 PM	1/15/2008	1:25 PM	-29	0	6 Liter	NA	NA	NA	NA	NA
BA-03	ECBA03-02	Indoor Air	NA	1286	3199	12/11/2007	4:07 PM	12/12/2007	2:52 PM	-30	-5	6 Liter	NA	NA	NA	NA	NA
BA-04	ECBA04	Indoor Air	NA	1152	3295	12/10/2007	4:41 PM	12/11/2007	4:21 PM	-30	-9	6 Liter	NA	NA	NA	NA	NA
BA-05A	ECBA05A	Indoor Air	NA	1635	3178	1/14/2008	1:10 PM	1/15/2008	1:00 PM	-20	0	6 Liter	NA	NA	NA	NA	NA
BA-05B	ECBA05B	Indoor Air	NA	1628	3103	1/14/2008	1:20 PM	1/15/2008	1:05 PM	-30	-10	6 Liter	NA	NA	NA	NA	NA
Soil Vapor Sa	mples - Sub-Slab																
SS-01	ECSS01	Sub Slab	Permanent	1118	3268	12/10/2007	12:27 PM	12/11/2007	10:42 AM	-27	-4	6 Liter	2 in	4	240	NA	140
SS-02A	ECSS02A	Sub Slab	Permanent	1779	3271	12/10/2007	3:31 PM	12/11/2007	3:26 PM	-30	-6	6 Liter	2 in	12	240	NA	0
SS-02B	ECSS02B	Sub Slab	Permanent	1726	3296	12/11/2007	11:57 AM	12/12/2007	3:00 PM	-29	-11	6 Liter	2 in	12	250	NA	0
SS-03	ECSS03	Sub Slab	Permanent	1389	3008	12/10/2007	2:53 PM	12/11/2007	2:42 PM	-30	-20	6 Liter	2 in	2	300	NA	9
SS-03	ECSS03-02	Sub Slab	Permanent	1236	3099	12/11/2007	4:07 PM	12/12/2007	2:55 PM	-30	-9	6 Liter	2 in	2	300	NA	NR
SS-04	ECSS04	Sub Slab	Permanent	1241	3013	12/10/2007	4:40 PM	12/11/2008	4:22 PM	-28	-8.5	6 Liter	NR	NR	240	NA	NR
Soil Vapor Sa	mples - Direct Pus	h Borings		-								-	-				-
DP-01	ECSV01	Soil Vapor	Permanent	1637	NP	12/19/2007	4:10 PM	12/19/2007	4:30 PM	-24	-2	3 liter	4.5 ft	NA	600	0%	0
DP-02	ECSV02	Soil Vapor	Permanent	1686	NP	12/13/2007	10:33 AM	12/13/2007	10:53 AM	-30	-5	3 liter	4 ft	NA	600	0%	0
DP-03	ECSV03	Soil Vapor	Permanent	1513	NP	12/13/2007	10:19 AM	12/13/2007	10:39 AM	-28	-5	3 liter	5 ft	NA	600	0%	0
DP-04	ECSV04	Soil Vapor	Permanent	1399	NP	12/12/2007	2:01 PM	12/12/2007	2:21 PM	-29	-5	3 liter	4 ft	NA	600	0%	0
DP-04	ECSV04-DUP	Soil Vapor	Permanent	1363	NP	12/12/2007	2:23 PM	12/12/2007	2:43 PM	-30	-5	3 liter	4 ft	NA	600	0%	0
DP-05	ECSV05	Soil Vapor	Permanent	1406	NP	12/12/2007	1:47 PM	12/12/2007	2:07 PM	-30	-4	3 liter	4 ft	NA	600	0%	0
DP-06	ECSV06	Soil Vapor	Permanent	1360	NP	12/12/2007	1:32 PM	12/12/2007	1:52 PM	-30	-6	3 liter	4 ft	NA	600	0%	0
DP-07	ECSV07	Soil Vapor	Permanent	1393	NP	12/12/2007	2:12 PM	12/12/2007	2:32 PM	-30	-7	3 liter	4 ft	NA	600	0%	0

NP = Not Provided for 20 Minute Regulators

NR = Not Recorded

NA = Not Applicable
Structure ID	Ambient Air					I	Structure 1					
Location ID	AA	- 01	AA	A-02	AA	-03	SS	-01	FA-	-01A	FA-0	01B
Field Sample ID	ECA	A01	ECA	A02	ECA	A03	ECS	S01	ECF	A01A	ECFA	401B
Field Sample Date	12/13	/2007	12/13	/2007	1/15/	2008	12/11	/2007	12/11	/2007	12/11/	/2007
QC Code	F	'S	F	'S	F	S	F	S	F	⁷ S	F	S
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane	0.25	U	0.25	U	0.25	U	0.29		0.25	U	0.25	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.62		0.69		0.69	U	0.55		0.55		0.76	
1,2,4-Trimethylbenzene	0.35		0.4		0.4		0.23	U	0.44		0.93	
1,2-Dichlorobenzene	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
1,3,5-Trimethylbenzene	0.23	U	0.23	U	0.23	U	0.23	U	0.23	U	0.23	U
1,3-Dichlorobenzene	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
1,4-Dichlorobenzene	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.92	
2-Butanone	3.5	J	3.4	J	2.5		2.4	J	3.2	J	5.3	J
2-Hexanone	0.96	J	0.59	J	0.44	UJ	0.18	UJ	0.48	J	1.1	J
2-Propanol	1.8		3		2.1		2.1		1.5		20	
4-Ethyltoluene	0.23	U	0.23	U	0.23	U	0.23	U	0.23	U	0.27	_
4-Methyl-2-pentanone	0.18	UJ	0.18	UJ	0.18	UJ	0.18	UJ	0.18	UJ	0.18	UJ
Acetone	15		43		11	J	21		10		100	J
Benzene	0.83		0.92		0.92	į į	0.17		1.1		2.2	
Carbon tetrachloride	0.51		0.51		0.34	J	0.34		0.4		0.57	
Chloroform	0.22	U	0.22	U	0.83		17		0.22	U	0.66	_
Chloromethane	1.6		1.4		1		0.09	U	1.2		1.7	
Cis-1,2-Dichloroethene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U
Cyclohexane	0.16	UJ	0.16	UJ	0.16	UJ	0.16	UJ	0.16	UJ	0.43	J
Dichlorodifluoromethane	2.8		2.8		2.3		2.7		2.4		3.2	
Ethanol	18	J	19	J	9	J	180	J	15	J	960	J
Ethyl acetate	0.17	UJ	0.17	UJ	0.33	U	0.17	UJ	0.17	UJ	6.8	J
Ethyl benzene	0.35		0.35		0.27		0.2	U	0.39		0.78	
Heptane	0.26		0.33		0.22		0.18	U	0.33		0.77	
Hexachlorobutadiene	2	UJ	2	UJ	0.96	U	2	UJ	2	UJ	2	UJ
Hexane	0.54		0.6		0.57		0.17	U	0.7		1.4	
Methylene chloride	1.9	U	1.6	U	4.8		1.7	U	2.5	U	2.4	U
Naphthalene	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U
o-Xylene	0.35		0.39		0.27		0.2	U	0.43		0.82	
Propylene	1.5		0.31	U	1.5		0.31	U	0.31	U	0.31	U
Styrene	0.19	U	0.19	U	0.19	U	0.19	U	0.19		0.61	
Tetrachloroethene	0.43		0.73		0.61		4.2		0.55		0.92	
Tetrahydrofuran	0.27	UJ	0.27	UJ	0.14	U	0.27	UJ	0.66	J	0.27	UJ
Toluene	2		2.5		1.7		0.47		2.4		6.8	
Trichloroethene	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U
Trichlorofluoromethane	1.4		1.4		1.1		2.3		1.2		1.8	
Vinyl acetate	0.32	UJ	0.32	UJ	1.1		0.32	UJ	0.32	UJ	0.32	UJ
Xylene, m/p	0.94		1.1		0.66		0.39	U	1.1		2.1	

Structure ID	Structure 2				Structure 3							
Location ID	SS-	02A	SS-	02B	FA	-02	SS	-03	BA	-03	FA	-03
Field Sample ID	ECS	S02A	ECS	S02B	ECF	A02	ECSS	03-02	ECBA	A03-02	ECF	A03
Field Sample Date	12/11	/2007	12/12	2/2007	12/11	/2007	12/12	/2007	12/12	2/2007	12/11/	/2007
QC Code	F	S	F	S	F	S	F	S	F	7S	F	S
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane	54	U	0.44		0.29	J	0.25		0.29		0.25	UJ
1,1,2-Trichloro-1,2,2-Trifluoroethane	76	U	0.55		0.76	J	0.55		0.62		0.69	J
1,2,4-Trimethylbenzene	1500		2.7		1.9	J	0.53		1.8		1.6	J
1,2-Dichlorobenzene	60	U	0.27	U	0.27	UJ	0.27	U	0.27	U	0.27	UJ
1,3,5-Trimethylbenzene	900		0.66		0.66	J	0.23	U	0.53		0.53	J
1,3-Dichlorobenzene	60	U	0.27	U	0.27	UJ	0.27	U	0.27	U	0.27	UJ
1,4-Dichlorobenzene	60	U	0.27	U	1.1	J	0.27	U	0.27	U	0.27	UJ
2-Butanone	300	UJ	1.4	UJ	13	J	2.7	J	1.4	J	2.6	J
2-Hexanone	40	UJ	0.18	UJ	0.18	UJ	0.48	J	0.18	UJ	0.18	UJ
2-Propanol	250	U	1.2	U	500	J	1.2	U	1.2	U	18	J
4-Ethyltoluene	360		0.4		0.88	J	0.23	U	0.44		0.4	J
4-Methyl-2-pentanone	40	UJ	0.18	UJ	0.18	UJ	0.18	UJ	0.18	UJ	0.18	UJ
Acetone	450		39		5700	J	19		110	J	280	J
Benzene	32	U	0.89		1.5	J	0.15	U	0.83		1.6	J
Carbon tetrachloride	62	U	0.34		0.51	J	0.28	U	0.45		0.57	J
Chloroform	48	U	0.7		4.3	J	11		0.22	U	0.22	UJ
Chloromethane	20	U	0.5		1.6	J	0.3		1.4		1.6	J
Cis-1,2-Dichloroethene	40	U	0.29		0.18	UJ	0.18	U	0.18	U	0.18	UJ
Cyclohexane	110	J	1.4	J	0.62	J	0.16	UJ	0.16	UJ	0.5	J
Dichlorodifluoromethane	50	U	2.7		3.2	J	2.6		2.8		3.3	J
Ethanol	190	UJ	19	J	270	J	5.8	J	6.7	J	39	J
Ethyl acetate	36	UJ	0.17	UJ	200	J	0.17	UJ	0.17	UJ	4.2	J
Ethyl benzene	61		0.43		1.3	J	0.2	U	0.31		1.1	J
Heptane	40	U	0.44		3.9	J	0.22		0.37		0.7	J
Hexachlorobutadiene	430	UJ	2	UJ	2	UJ	2	UJ	2	UJ	2	UJ
Hexane	56		0.82		0.17	UJ	0.79		0.73		3.4	J
Methylene chloride	240	U	2.6	U	2	UJ	8.1		2.2	U	3	UJ
Naphthalene	150		0.61		0.58	UJ	0.58	U	0.58	U	0.9	J
o-Xylene	240		0.74		1.6	J	0.2	U	0.43		1	J
Propylene	69	U	0.31	U	0.31	UJ	0.53		0.31	U	0.31	UJ
Styrene	140		0.34		3.9	J	0.19	U	2.5		47	J
Tetrachloroethene	6500		590		78	J	180		39		14	J
Tetrahydrofuran	59	UJ	0.27	UJ	0.27	UJ	0.27	UJ	0.27	UJ	0.27	UJ
Toluene	180		2.8		140	J	0.44		4.2		19	J
Trichloroethene	54	U	1.1		0.53	J	0.29		0.25	U	0.25	UJ
Trichlorofluoromethane	56	U	1.3		1.6	J	1.4		1.4		1.6	J
Vinyl acetate	71	UJ	0.32	UJ	0.32	UJ	0.32	UJ	0.32	UJ	0.32	UJ
Xylene, m/p	230		1.5		3.9	J	0.39		0.86		2.5	J

Structure ID		Structure 4			Structure 5		
Location ID	SS-04	BA-04	FA-04	FA-05	BA-05A	BA-05B	1
Field Sample ID	ECSS04	ECBA04	ECFA04	ECFA05	ECBA05A	ECBA05B	
Field Sample Date	12/11/2007	12/11/2007	12/11/2007	1/15/2008	1/15/2008	1/15/2008	
QC Code	FS	FS	FS	FS	FS	FS	
Parameter	Result Qualifier	Notes:					
1,1,1-Trichloroethane	0.39	0.25 U	Only Detected Compounds shown.				
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.69	0.69	0.62	0.69 U	0.69 U	0.69 U	Samples analyzed for VOCs by USEPA Method TO-15.
1,2,4-Trimethylbenzene	3.6	0.8	0.23 U	3.3	4.1	4.4	Location Name: AA = Ambient Air; SS = Sub-Slab;
1,2-Dichlorobenzene	0.27 U	0.27 U	0.27 U	0.81	0.43	0.32	BA = Basement Air; FA = First Floor Air
1,3,5-Trimethylbenzene	1	0.23 U	0.23 U	0.93	1.2	1.5	Results in microgram per cubic meter (µg/m ³)
1,3-Dichlorobenzene	0.27 U	0.27 U	0.27 U	0.38	0.27 U	0.27 U	QC Code:
1,4-Dichlorobenzene	0.27 U	0.27	0.27 U	35	16	8	FS = Field Sample
2-Butanone	17 J	1.8 J	1.5 J	0.77 U	3	0.77 U	Qualifiers:
2-Hexanone	1.3 J	0.18 UJ	0.18 UJ	0.18 UJ	0.55 J	0.18 UJ	U = Not detected at a concentration greater than the RI
2-Propanol	6.4	16	48	8.9	6.4	4.2	J = Estimated value
4-Ethyltoluene	0.53	0.23 U	0.23 U	1.1	1.3	1.8	Detections are indicated in BOLD
4-Methyl-2-pentanone	0.18 UJ	0.18 UJ	0.18 UJ	0.29 J	0.22 J	0.18 UJ	NYSDOH background indoor air based upon
Acetone	330 J	43	47	7.9 J	16 J	9.4 J	1997-2003 sampling (NYSDOH, 2005).
Benzene	0.32	1.1	1	0.92	0.86	0.98	
Carbon tetrachloride	0.28 U	0.57	0.45	0.34 J	0.34 J	0.34 J	
Chloroform	1.1	2.6	0.35	0.22 U	0.22 U	0.22 U	Highlighted results fall within the guidance criteria for
Chloromethane	0.09 U	1.5	1.4	1	1.1	0.99	Mitigate, as established in "Guidance for Evaluating Soil
Cis-1,2-Dichloroethene	0.18 U	Vapor Intrusion in the State of New York (New York					
Cyclohexane	0.22 J	0.53 J	1.7 J	0.16 UJ	0.16 UJ	0.16 UJ	State Department of Health, 2005).
Dichlorodifluoromethane	8.3	4.6	7.3	2.3	2.2	0.45 U	
Ethanol	10 J	110 J	680 J	80 J	49 J	40 J	Highlighted results fall within the criteria for Monitor, as
Ethyl acetate	0.17 UJ	0.17 UJ	0.17 UJ	0.32	0.33 U	0.33 U	established in "Guidance for Evaluating Soil Vapor
Ethyl benzene	0.43	0.9	0.74	0.62	0.47	0.59	Intrusion in the State of New York (New York State
Heptane	0.33	0.96	1.8	2.7	0.7	1	Department of Health, 2005).
Hexachlorobutadiene	2 UJ	2 UJ	2 UJ	0.96 U	0.96 U	0.96	
Hexane	0.38	3.3	2.2	0.82	0.63	0.82	Highlighted results exceed ambient conditions and fall
Methylene chloride	2.5 U	15	2.6 U	1.4	1.8	0.69	within criteria for recommend that reasonable and
Naphthalene	1.2	0.66	0.58 U	3.9	2.3	0.58 U	practical actions are taken to identify the source(s) and
o-Xylene	0.7	0.7	0.51	0.78	0.74	0.94	reduce exposure, as established in "Guidance for
Propylene	0.73	0.31 U	0.31 U	1.7	1.4	0.16 U	Evaluating Soil Vapor Intrusion" (New York State
Styrene	0.23	1.1	0.19	0.31	0.19 U	0.19 U	Department of Health, 2005).
Tetrachloroethene	27	10	3.6	1.6	1.6	9.8	
Tetrahydrofuran	0.27 UJ	0.27 J	0.27 UJ	0.14 U	0.14 U	0.14 U	
Toluene	2.2	5	26	11	3	4	
Trichloroethene	0.29	0.25 U					
Trichlorofluoromethane	3	1.6	1.6	1.1	1.1	1.2	
Vinyl acetate	0.32 UJ	0.32 UJ	0.32 UJ	0.41	1.4	0.89	
Xylene, m/p	1.6	1.9	1.5	1.4	1.2	1.4	

Table 4.2 Soil Vapor VOC Results

Location	DP-01	DP-02	DP-03	DP-04	DP-04	DP-05	DP-06	DP-07
Field Sample Date	12/19/2007	12/13/2007	12/13/2007	12/12/2007	12/12/2007	12/12/2007	12/12/2007	12/12/2007
Field Sample ID	ECSV01	ECSV02	ECSV03	ECSV04	ECSV04-DUP	ECSV05	ECSV06	ECSV07
QC Code	FS	FS	FS	FS	FD	FS	FS	FS
Parameter	Result Qualifier							
1,1,1-Trichloroethane	0.55 U	0.54 U	54 U	1.9	1.9	0.54 U	0.54 U	2.5
1,2,4-Trimethylbenzene	2.7	17	50 U	3.5	4.2	7.6	4.1	66
1,3,5-Trimethylbenzene	1 U	11	50 U	1.4	1.6	2.5	1.2	63
2-Butanone	4.8	3.1 J	300 U	3 UJ	4.2 J	5.8 J	7.2 J	7.4 UJ
2-Hexanone	0.41 U	0.4 UJ	40 U	1.2 J	2 J	1.6 J	0.98 J	1 UJ
2-Propanol	32	8.3	250 U	2.5 U	2.5 U	2.5 U	25	6.2 U
4-Ethyltoluene	1 U	3.7	50 U	0.88	0.98	1.8	0.98	11
4-Methyl-2-pentanone	0.41 U	0.4 UJ	40 UJ	0.4 UJ	1.3 J	1.1 J	1.1 J	1 UJ
Acetone	160	190 J	240 UJ	12 J	28 J	410 J	760 J	100
Benzene	0.32 U	3.9	32 U	6.3 J	4.5 J	1.6	0.77	2.4
Carbon disulfide	0.31 U	3.2 U	320 U	38 J	22 J	25	3.2	7.8 U
Chloroform	0.48 U	1.4	48 U	3.7	3.6	0.48 U	0.48 U	2.2
Cis-1,2-Dichloroethene	0.39 U	0.4 U	40 U	23	19	0.56	0.4 U	4.2
Cyclohexane	0.34 U	51 J	34 UJ	2.9 J	2.8 J	0.89 J	0.34 UJ	76 J
Dichlorodifluoromethane	5.1	2.4	50 U	4.5	4.5	3	2.8	73
Ethanol	25	28 J	190 UJ	1.9 UJ	2.6 J	47 J	74 J	4.8 UJ
Ethyl acetate	0.37 U	0.36 UJ	36 U	0.36 UJ	0.36 UJ	0.58 J	1.3 J	0.9 UJ
Ethyl benzene	1.6	13	44 U	2.9	2.3	3.7	3.6	3.9
Heptane	0.41 U	32	40 U	3.3 J	2.3 J	0.82	0.57	39
Hexane	2.5	12	36 U	5.9	5.4	2	0.36 U	9.2
Methylene chloride	14	2.4 U	790	3.6 U	10	8.5 U	1.3 U	2.3 U
o-Xylene	1.7	37	44 U	2.8	2.6	4.7	4	39
Propylene	0.18 U	8	69 U	19	17	13	0.69 U	47
Styrene	0.9 U	0.43	42 U	0.42 U	0.42 U	1	1.2	1.1 U
Tetrachloroethene	3.3	230	48000	2800	3200	110	210	9100
Toluene	5.2	49	38 U	7	5.4	6.6	7.3	7.9
trans-1,2-Dichloroethene	0.39 U	0.4 U	40 U	1.5	1.3	0.4 U	0.4 U	1 U
Trichloroethene	0.55 U	0.54 U	760	140	150	0.54 U	0.54 U	180
Trichlorofluoromethane	1.5	1.2	56 U	11	11	1.8	1.2	530
Xylene, m/p	4.3	44	86 U	7.3	6.3	11	11	63

Notes:

Only Detected Compounds shown.

Samples analyzed for VOCs by USEPA Method TO-15.

Results in microgram per cubic meter (μ g/m3)

QC Code:

FS = Field Sample

FD = Field Duplicate

Detections are indicated in **BOLD**

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated value

	Location		DP-02		DP-03		DP-04		-04	DP-05		F	P-1
Fie	ld Sample Date	12/12	2/2007	12/12/2007		12/11/2007		12/11/2007		12/11/2007		12/12	2/2007
]]	Field Sample ID		GW02	ECGW03		ECGW04		ECGW04DUP		ECGW05		EC	CP01
	QC Code		FS		S	F	7S	F	D	F	7S]	FS
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,2-Dichlorobenzene	3	5	U	1	J	5	U	5	U	5	U	2	J
Chloromethane	5	5	U	5	U	5	UJ	1	J	5	UJ	5	U
Cis-1,2-Dichloroethene	5	5	U	5	U	1	J	1	J	5	U	2	J
Tetrachloroethene	5	5	U	5	U	5	U	1	J	1	J	5	U
Trichloroethene	5	5	U	5	U	5	U	5	U	5	U	5	U
Vinyl chloride	2	5	U	5	U	5	U	5	U	5	U	2	J

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code: FS = Field Sample FD = Field Duplicate Qualifiers: U = Not detected at a concentration greater than the reporting limit J = Estimated value Criteria = Values from Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance values and Groundwater Effluent Limitations (NYSDEC, 2008). Detections are indicated in **BOLD** Highlighted results exceed criteria

	Location		on PW-1		PW-2		V-3	PV	V-8	SUI	MP-2
]	Field Sample Date	12/12	12/12/2007		12/11/2007		12/12/2007		/2007	12/19	9/2007
	Field Sample ID		ECPW1		ECPW2		PW3	ECPW8		EC02	SUMP
	QC Code	F	FS		S	F	7S	F	FS	I	FS
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,2-Dichlorobenzene	3	5	U	5	U	5	U	5	U	5	U
Chloromethane	5	5	U	5	UJ	5	U	1	J	5	U
Cis-1,2-Dichloroethene	5	5	U	5	U	5	U	9		5	U
Tetrachloroethene	5	5	U	1	J	3	J	25		5	U
Trichloroethene	5	5	U	5	U	1	J	5	U	5	U
Vinyl chloride	2	5	U	5	U	5	U	5	U	5	U

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code: FS = Field Sample FD = Field Duplicate Qualifiers: U = Not detected at a concentration greater than the reporting limit J = Estimated value Criteria = Values from Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance values and Groundwater Effluent Limitations (NYSDEC, 2008). Detections are indicated in BOLD Highlighted results exceed criteria

Table 4.4: Soil VOC Results

	Location		DP-02		DP-03		DP-04		P-04	DP-05		DP	-06
	Field Sample Date	12/12/2007		12/12/2007		12/11/2007		12/11/2007		12/11/2007		12/11	/2007
	Field Sample ID	ECGS	0203	ECGS0303		ECGS0403		ECGS0403DUP		ECGS0502		ECG	S0602
Sam	ple Depth (feet bgs)	3	3		3		3		3		2		2
	QC Code	F	S	F	S	F	7S	F	D	F	S	F	7S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetone	0.05		R		R	0.002	J	0.002	J	0.002	J	0.016	J
Ethyl benzene	1	0.003	U	0.003	UJ	0.003	U	0.003	U	0.003	UJ	0.001	J
Naphthalene	12	0.003	U	0.003	UJ	0.003	UJ	0.003	UJ	0.003	UJ	0.004	UJ
Tetrachloroethene	1.3	0.001	J	2.4	D	0.011	J	0.024	J	0.008	J	0.008	J
Toluene	0.7	0.003	U	0.003	UJ	0.001	J	0.001	J	0.001	J	0.006	J
Trichloroethene	0.47	0.003	U	0.005	J	0.003	U	0.003	U	0.003	UJ	0.004	UJ
Xylene, m/p	0.26	0.003	U	0.003	UJ	0.0006	J	0.0006	J	0.0008	J	0.003	J
Xylenes, Total	0.26	0.003	U	0.003	UJ	0.0006	J	0.0006	J	0.0008	J	0.003	J

Notes:

Results reported in milligrams per kilogram (mg/kg)

Only detected compounds shown.

Samples analyzed for VOC EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

R = Result was rejected during validation

D = Result was reported from a diluted analytical run.

Criteria = Values from Subpart 375-6.8(a) Unrestricted Use Soil Cleanup, "Remedial Program Soil Clean-up Objectives" (NYS, 2006). Detections are indicated in **BOLD Highlighted results exceed criteria**

Table 4.4: Soil VOC Results

Location		DP-07		SS-02A		SS-02B		SS	-03	
	Field	l Sample Date	12/11	12/11/2007		12/19/2007		12/19/2007		/2007
Field Sample ID		ECG	ECGS0703		ECSS02A00		ECSS02B00		\$0300	
Sample Depth (feet bgs)			3		0.5).5	0	.5	
QC Code		F	7S	F	7S	H	FS	F	⁷ S	
Parameter Name		Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetone		0.05	0.002	J		R		R		R
Ethyl benzene		1	0.003	U	0.004	UJ	0.004	UJ	0.004	U
Naphthalene		12	0.003	UJ	0.002	J	0.004	UJ	0.004	U
Tetrachloroethene		1.3	0.006		0.001	J	0.004	UJ	0.004	U
Toluene		0.7	0.001	J	0.004	UJ	0.004	UJ	0.004	U
Trichloroethene		0.47	0.003	U	0.0009	J	0.004	UJ	0.004	U
Xylene, m/p		0.26	0.003	U	0.004	UJ	0.004	UJ	0.004	U
Xylenes, Total		0.26	0.003	U	0.004	UJ	0.004	UJ	0.004	U

Notes:

Results reported in milligrams per kilogram (mg/kg) Only detected compounds shown. Samples analyzed for VOC EPA Method 8260B QC Code: FS = Field Sample FD = Field Duplicate Qualifiers: U = Not detected at a concentration greater than the reporting limit

J = Estimated value

R = Result was rejected during validation

D = Result was reported from a diluted analytical run.

Criteria = Values from Subpart 375-6.8(a) Unrestricted Use Soil Cleanup, "Remedial Program Soil Clean-up Objectives" (NYS, 2006). Detections are indicated in **BOLD Highlighted results exceed criteria**

APPENDIX A

WASTE CHARACTERIZATION SAMPLE RESULTS

Mitkem Laboratories

Date: 25-Jan-08

Client: MACTEC Engineering & Consulting

Client Sample ID: ECDS1

Lab ID: G0059-01

Project:Active Industrial Uniform SiteCollection Date:01/15/08 12:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
FLASHPOINT by Pensky-Martens Closed-Cup	Method	SW1010_S		
Ignitability	FLAME OUT @ 145	200 °F	1 01/17/2008 12:00	R26445
Reactive Cyanide Released from Wastes		SW7.3.3.2_S		
Reactive Cyanide	ND	1.1 mg/Kg	1 01/17/2008 11:04	34375
Reactive Sulfide Released from Wastes		SW7.3.4.2 S		,
Reactive Sulfide	ND	. 1.1 mg/Kg	1 01/17/2008 6:30	34376
Soil and Waste pH		SW9045 S		
pH	10	1.0 S.U.	1 01/17/2008 12:00	R26434

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		D DULY DID	7 7			
				Ē	ECDS1	
Lab Name: MITKEM LABORA	TORIES	Contract:	•			
Lab Code: MITKEM Cas	e No.:	SAS No.:	SDG	No.: N	/IG0059	
Matrix: (soil/water) SC)IL	La	ab Sample ID	: G0059	9-01B	
Sample wt/vol:	8.2 (g/mL) G	La	ab File ID:	V1J35	536	
Level: (low/med) LC	W	Da	ate Received	: 01/10	5./08	
% Moisture: not dec. 6	i	Da	ate Analyzed	: 01/17	7/08	
GC Column: DB-624 II): 0.25 (mm)	D	ilution Fact	or: 1.(C	
Soil Extract Volume:	(mL)	Sc	oil Aliquot	Volume	:	(1
CAS NO.	COMPOUND	CONCENTI (ug/L o)	RATION UNITS rug/Kg) UG/	: KG	Q	
$\begin{array}{c} 75-71-8$	Dichlorodifluc Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluor 1,1-Dichloroet Acetone Iodomethane Carbon Disulf: Methylene Chlo trans-1,2-Dichloroet Vinyl acetate 2-Butanone Cis-1,2-Dichloropt Bromochloromet Chloroform 1,1,1-Trichlo 2,2-Dichloropt Bromochloromet Chloroform 1,1,1-Trichlo 1,2-Dichloropt Benzene Trichloroether 1,2-Dichloropt Benzene Trichloroether 1,2-Dichloropt Benzene Trichloroether 1,2-Dichloropt Carbon Tetrac 1,2-Dichloropt Benzene Trichloroether 1,2-Dichloropt Carbon Tetrac 1,2-Dichloropt Carbon Tetrac 1,2-Dichloropt	promethane romethane thene ide pride hloroethene thane thane ropene thane ropene hloride thane ne ropane e methane ne ne ne ne ne ropane hloropropene hloropropene ntanone		33333333333333333333333333333333333333	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·

FORM I VOA

.

1A VOLATILE ORGANICS ANALYSIS DATA SH	EET	EPA SAMPLE	NO.
		ECDS1	
Lab Name: MITKEM LABORATORIES Contract:			
Lab Code: MITKEM Case No.: SAS No.:	SDG	No.: MG0059	
Matrix: (soil/water) SOIL	Lab Sample ID:	G0059-01B	
Sample wt/vol: 8.2 (g/mL) G	Lab File ID:	V1J3536	
Level: (low/med) LOW	Date Received:	01/16/08	
% Moisture: not dec. 6	Date Analyzed:	01/17/08	
GC Column: DB-624 ID: 0.25 (mm)	Dilution Facto	or: 1.0	
Soil Extract Volume:(mL)	Soil Aliquot V	olume:	(uL
CAS NO. COMPOUND (ug/L	TRATION UNITS: or ug/Kg) UG/K	CG Q	
142-28-91, 3-Dichloropropane 127-18-4Tetrachloroethene 591-78-62-Hexanone 124-48-1Dibromochloromethane 106-93-41, 2-Dibromoethane 108-90-7Chlorobenzene 630-20-61, 1, 1, 2-Tetrachloroethan 100-41-4Ethylbenzene	ne	3 U 71 3 3 3 3 3 3 3 0 1 0 1 0 7 3 3	

FORM I VOA

VOLATILE OR	GANICS ANALYSIS DATA	SHEET	EPA SAMPLE NO.
Lab Name: MITKEM LABORA	TORIES Contra	ct:	ECDS1
Lab Code: MITKEM Cas	e No.: SAS N	Io.: SDG	No.: MG0059
Matrix: (soil/water) SO	IL	Lab Sample ID	: G0059-01B
Sample wt/vol:	8.2 (g/mL) G	Lab File ID:	V1J3536
Level: (low/med) LO	W	Date Received	: 01/16/08
% Moisture: not dec. 6		Date Analyzed	: 01/17/08
GC Column: DB-624 ID	: 0.25 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(mL)	Soil Aliquot	Volume:(uL)
CAS NO.	COMPOUND (ug	ICENTRATION UNITS 1/L or ug/Kg) UG/:	: KG Q
76-13-1 79-20-9 110-81-7 108-87-2	1,1,2-Trichloro-1,2, Methyl Acetate Cyclohexane Methylcyclohexane	2-Triflu	3 U 3 U 1 J 11

1E VOLATILE ORGANICS ANALYSIS DAT	A SHEET	EPA SAMPLE NO.	
TENTATIVELY IDENTIFIED COM	IPOUNDS	ECDS1	
Lab Name: MITKEM LABORATORIES Contr	act:		
Lab Code: MITKEM Case No.: SAS	No.: SDG	No.: MG0059	
Matrix: (soil/water) SOIL	Lab Sample ID	: G0059-01B	
Sample wt/vol: 8.2 (g/mL) G	Lab File ID:	V1J3536	
Level: (low/med) LOW	Date Received	: 01/16/08	
% Moisture: not dec. 6	Date Analyzed	: 01/17/08	
GC Column: DB-624 ID: 0.25 (mm)	Dilution Facto	or: 1.0	
Soil Extract Volume: (mL)	Soil Aliquot	Volume: (ul	.)

Number TICs found: 11

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
CAS NONBER 1. 583-57-3 2. 2207-04-7 3. 541-05-9 4. 5. 1678-91-7 6. 3073-66-3 7. 1795-26-2 8. 9. 3728-54-9 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 23. 24. 25. 26. 27. 28. 29.	CYCLOHEXANE, 1,2-DIMETHYL- CYCLOHEXANE, 1,4-DIMETHYL-, CYCLOTRISILOXANE, HEXAMETHYL UNKNOWN CYCLOHEXANE, ETHYL- CYCLOHEXANE, 1,1,3-TRIMETHYL CYCLOHEXANE, 1,3,5-TRIMETHYL UNKNOWN CYCLOHEXANE, 1-ETHYL-2-METHY UNKNOWN UNKNOWN	K1 8.03 8.18 8.31 8.70 8.77 8.84 9.14 9.84 10.25 10.54 11.80	ESI. CONC.	U ====== NJ NJ NJ NJ NJ NJ J J J J J
30		·	·	<u> </u>

	U.	s.	EPA	-	CLP
--	----	----	-----	---	-----

1 --

EPA SAMPLE NO.

			INORGANIC ANAI	LYSIS DATA SH	IEET		ECDS1		
Lab Name:	Mitkem Lab	oratories		Contract:	20070	6322			
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.:	MG0059	
Matrix (so	il/water):	WATER		Lab Sample	ID:	G0059-0)1		
Level (low,	/med): MED			Date Received: 01/16			/2008		
% Solids:	0.0								

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7440-38-2	Arsenic	13.3	В		P
7440-39-3	Barium	329			P
7440-43-9	Cadmium	0.11	U		P
7440-47-3	Chromium	0.93	В		P
7439-92-1	Lead	92.4			P
7439-97-6	Mercury	0.11	U		CV
7782-49-2	Selenium	91.2			P
7440-22-4	Silver	42.5			P

Comments:

APPENDIX B

SITE PHOTOGRAPHS

APPENDIX B: SITE PHOTOS

Front of Site View South from Street.

Front of Site View West along E. Main Str.

Back of Site View North along East wall.

Back of Site View North at Site.

Back of Site View West.

Back of Site View South.

EC Structure 01 First Floor/Office Air

EC Structure 01 Sprinkler Room Air

EC Structure 01 Sub-Slab Air

EC Site Sump in basement.

EC Sub-slab Air 02A

EC Site Basement Sub-slab Air 02B.

EC Structure 02 First Floor Air,

EC Structure 03 First Floor Air.

EC Structure 04 Basement Chemicals.

EC Structure 04 Basement Chemicals.

EC Structure 04 Sub-slab Air.

EC Structure 04 Basement Air.

EC Structure 04 First Floor Air.

EC Structure 05 Basement Air.

EC Structure 05 First Floor Chemicals.

EC Structure 05 First Floor Air.

EC Ambient Air 001.

EC Well Point P1.

EC Well Point PW-6.

EC Soil Vapor Point 05

EC Soil Vapor Point 07.

APPENDIX C

INDOOR AIR QUALITY QUESTIONNAIRES AND INVENTORY FORMS

IND	NEW YO OOR AIR QUALI	RK STATE DEPA TY QUESTIONN	ARTMENT OF HEA	NG INVENTORY		
	CENT	ER FOR ENVIRO	NMENTAL HEAL	EH I	a cation t	
	This form must be	completed for each	residence involved in	indoor air testing. U	DCATION	
· · ·	P1-1 N	Auller	Doto/Time Pre	nared 12.10,02	1 4130	
Preparer's Name						
Preparer's Affilia	tion <u>MAC</u>		Phone No	103 313 - 4402	-	
Durmana of Inves	igation VA	por Intr	15100	*		
Puipose of myes		· · · · · · · · · · · · · · · · · · ·	· · · · ·			
1. OCCUPANT	(own	ur of Pizza	Shop)			
Interviewed:) N					
Internet C	Palastic	First Name	. Andy			
Last Name:	14 65015	1115t 11ame	St BL	1		
Address:	30-32	E Main	1, Dab	ylon NT	•	
County: 2	v-fork.					
Home Phone:	(pm)	Office Phone:	631 321 598	0		
Home Phone:	to (pm)	Office Phone:	631 321 598	0	~	
Home Phone: 🖌 Number of Occu	pants/persons at thi	Office Phone: is location	631 321 598 Age of Occupants	, 0	、 	
Home Phone:	upants/persons at thi	Office Phone: is location	G31 321 598 Age of Occupants	<u>, 0</u>		
Home Phone: Number of Occu 2. OWNER OR	upants/persons at this	Office Phone: is location Check if same as occ	631 321 598 Age of Occupants upant)	<u>, 0</u> 		
Home Phone: Number of Occu 2. OWNER OR Interviewed:	apants/persons at this LANDLORD: (C	Office Phone: is location Check if same as occ	631 321 598 Age of Occupants upant)	<u>, 0</u>		
Home Phone: Number of Occu 2. OWNER OR Interviewed: Last Name:	apants/persons at thi LANDLORD: (C	Office Phone: is location Check if same as occ First Name:	631 321 598 Age of Occupants upant)	<u>, 0</u>	· · ·	•
Home Phone: Number of Occu 2. OWNER OR Interviewed: Last Name: Address:	apants/persons at thi LANDLORD: (C	Office Phone: is location Check if same as occ First Name:	63 32 598 Age of Occupants upant)	<u>, 0</u>	· · ·	•
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address:	apants/persons at thi LANDLORD: (C	Office Phone: is location Check if same as occ First Name:	63 32 598 Age of Occupants upant)	<u>, 0</u>	· · ·	•
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County:	apants/persons at thi LANDLORD: (C	Office Phone: is location Check if same as occ First Name:	631 321 598 Age of Occupants upant)	<u>, 0</u>		
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone:	upants/persons at this LANDLORD: (C Y / N	Office Phone:is location is location Check if same as occ First Name: Office Phone:	631 321 598 Age of Occupants upant)			
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone:	apants/persons at this LANDLORD: (C	Office Phone: is location Check if same as occ First Name: Office Phone:	631 321 598 Age of Occupants upant)		· · · · · · · · · · · · · · · · · · ·	
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone:	tpants/persons at this LANDLORD: (C Y / N CHARACTERIST	Office Phone: is location Check if same as occ First Name: Office Phone: Office Phone:	631 321 598 Age of Occupants upant)	<u>, 0</u>		
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone: 3. BUILDING	tipants/persons at thi LANDLORD: (C Y / N CHARACTERIST	Office Phone: is location Check if same as occ First Name: Office Phone: TICS	<u>63 321 598</u> Age of Occupants upant)	<u>, 0</u>		
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone: 3. BUILDING Type of Buildi	apants/persons at thi LANDLORD: (C Y / N CHARACTERIST ng: (Circle appropr	Office Phone: is location Check if same as occ First Name: Office Phone: Office Phone: Office Phone:	<u>63 321 598</u> Age of Occupants upant)			
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone: 3. BUILDING Type of Buildi Reside	apants/persons at this LANDLORD: (C Y / N CHARACTERIST ng: (Circle appropr ntial Sc	Office Phone:	C31 321 598 Age of Occupants upant)			
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone: 3. BUILDING Type of Buildi Reside Industr	apants/persons at this LANDLORD: (C Y / N CHARACTERIST ng: (Circle appropr ntial Sc ial C	Office Phone:	<u>Age of Occupants</u> upant)		· · · · · · · · · · · · · · · · · · ·	
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone: 3. BUILDING Type of Buildi Reside Industr	apants/persons at this LANDLORD: (C Y / N CHARACTERIST ng: (Circle appropr ntial So ial C	Office Phone:	C31 321 598 Age of Occupants upant) nercia/Multi-use			
Home Phone: Number of Occu 2. OWNER OF Interviewed: Last Name: Address: County: Home Phone: 3. BUILDING Type of Buildi Reside Industr	apants/persons at this LANDLORD: (C Y / N CHARACTERIST ng: (Circle appropr ntial So ial C	Office Phone:	<u>G3 321 598</u> Age of Occupants upant) nercia/Multi-use			

Locatim ECOL

•

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	Colonial Mobile Home use Townhouses/Condos Other:	
ultiple units, how ma	any?		• :
he property is comme	ercial, type?	1 - Si \ In with	
Business Type(s)	Strip Mall	(Vitza Jhop) ~ 10 cm (1	÷
Does it include reside	ences (i.e., multi-use)	12 Y / D If yes, how many?	
her characteristics:			· •.
Number of floors	1	Building age	•
Is the building insula	ated? \mathcal{O}/N	How air tight? (Tight/ Average / Not Tight	
AIRFLOW			•
se air current tubes o	or tracer smoke to ev	valuate airflow patterns and qualitatively describe:	
irflow between floors			
Airflow near source	~		
Outdoor air infiltration	n 🔶		· .
· · · · · · · · · · · · · · · · · · ·			
Infiltration into air du	ncts 🥌		

2

location Ecol

BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

•				
a. Above grade construction:	wood frame	concrete	stone	brick (bloc
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	/
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finisl	ned
j. Sump present?	Y/N			

k. Water in sump? Y / N / not applicable

Basement/Lowest level depth below grade: ___O___(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

(gas, sewer utilities

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard

Heat pump Stream radiation Wood stove Hot water baseboard Radiant floor Outdoor wood boiler Other ____

The primary type of fuel used is:

Natural Gas Electric Wood Fuel Oil Propane Coal

aas

Basement

Central Air

Outdoors

Kerosene Solar

Domestic hot water tank fueled by:

Boiler/furnace located in:

Air conditioning:

Main Floor

Window units Open Windows

Other ron

None

Are there air distribution ducts present?

Location Ecol

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

(Y)/N

	• • • • • • • • • • • • • • • • • • •				- .
					_,
					_
7. OCCUPANCY		Occessionally	Seldom	Almost Never	NA
Is basement/lowest lev	vel occupied? Full-time	Occasionally	, loundry N	vorkshon, storage)	•
Level Gener	al Use of Each Floor (e.g.,	familyroom, bedro	<u>oom, launury, y</u>	VOIRSHOP, Store Doy	• •
Basement					ж
1 st Floor	Pizza Shop			 	
2 nd Floor	<u>~</u>			na an ann an Airtean a Airtean an Airtean an Airtean an Airtean an Airtean Airtean Airtean Airtean Airtean Airtean Airtean Airtean Air	
3 rd Floor				·	
4 th Floor					
8. FACTORS THA	T MAY INFLUENCE INDO	OOR AIR QUALI	ry Spriv	ikter system Componer	its I shed
a. Is there an atta	ched garage?		YN		•
b. Does the garag	e have a separate heating ur	nit?	Y/N/NA	· · ·	
c. Are petroleum stored in the g	-powered machines or vehic arage (e.g., lawnmower, atv, o	les . car)	Y / N / NA Please spec) fy	
d. Has the building	ng ever had a fire?	· · · ·	Y/N Wh	en?	
e. Is a kerosene o	or unvented gas space heater	present?	Y N WI	ere?	
f. Is there a work	cshop or hobby/craft area?	ΥA	N Where & T	уре?	<u></u>
g. Is there smok	ing in the building?	Y/	(N) How frequ	ently?	, ,
h. Have cleaning	g products been used recentl	y? ('Y	N When & T	ype? <u>regularta</u>)
i. Have cosmetic	e products been used recentl	y? (7	/N When & T	ype? <u>Vegular</u> i]

j. mas painting/staining been done in the last o month	IS? Y /N Where & When?
k. Is there new carpet, drapes or other textiles?	Y / 🕅 Where & When?
l. Have air fresheners been used recently?	YN When & Type?
m. Is there a kitchen exhaust fan?	YN If yes, where vented?
n. Is there a bathroom exhaust fan?	N If yes, where vented?
o. Is there a clothes dryer?	Y /N If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	(Y) N When & Type?
Are there odors in the building? If yes, please describe:	Food Cooking
o any of the building occupants use solvents at work? .g., chemical manufacturing or laboratory, auto mechanic oiler mechanic, pesticide application, cosmetologist	Y (N) c or auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	∽ ·
If yes, are their clothes washed at work?	Y/N
o any of the building occupants regularly use or work sponse)	: at a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less Yes, work at a dry-cleaning service	No Unknown
there a radon mitigation system for the building/strue the system active or passive? Active/Passive	cture? Y / N Date of Installation:
. WATER AND SEWAGE	
Vater Supply: Public Water Drilled Well D	Driven Well Dug Well Other:
ewage Disposal: Public Sewer Septic Tank L	each Field Dry Well Other:
0. RELOCATION INFORMATION (for oil spill resid	lential emergency)
a. Provide reasons why relocation is recommended:	. NA
	to friends/family relocate to hotel/motel
b. Residents choose to: remain in home relocated	
b. Residents choose to: remain in home relocated c. Responsibility for costs associated with reimburs	ement explained? Y/N
 b. Residents choose to: remain in home relocated c. Responsibility for costs associated with reimburse d. Relocation package provided and explained to re 	ement explained? Y/N sidents? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

- 1													1	1					·		_				. 1		
										·										,		1 1					
- 1											•	1	1	1					1	1							
				4		2		1		÷ .		1)	•					1		۱	1 1				1	2
	}	. 1		4	1	\$	i	÷ .		•				•								i i			. 1		·
- 1					;		1	:	1	i			1	1	! 1					1	<u></u>						_
	1						1	1		3	k i i		1		· · · · · · · · · · · · · · · · · · ·		_			£	:						6
)				1 .	1	and the second	farmer and		÷			7		F I				1		2	4 :			. 1		í
						1	1	£	•	1			i	1	E !				1	•	1	1			. 1		(
				•	3	1	}	1	*			ŧ	1		í (t 1		1	1	1	1 1			(†		
			•	1	1	1	1	•	1	1	1		1		•					4	£						÷
				1	1	1	•	1	i	1	,	Ł	4	1													
			3	1	1	:	£	1		·	<u> </u>							1	1		2	1					
			•				A			1	1	3 · ·	1 .	1		1	1	•			Ł						
_				T	:	1	1	1	;	1	1	1		1	1	Į			a	1	1	1 .			, 1		ŧ .
		ł		1	F		÷ .	1	1	1	1	1	1	1		•	•	1			2	i			i 1		ŧ .
			1	1	1	i .	1	t	1.	+	1		1	1	1	Ł			1	t	·		·	·			÷
		1	1		1	1	1	1	•		1	1	F			<u>. </u>	÷					1		1	¢ 1		ł –
	1 :				1		1	1		*				1	1		[• •	14	1	1	1		3			•
	· · · · · ·	L						-	1	+	1	1	1	1	1	1	1		8	1	;	1	<u>ا</u>	1	(I		s .
	1	1	1	i		1	1	{	1	1	1	1		1	1	1	1		1.1		•	1	1 .	1			1
	L	•					i .	,	1		1		(1	(1	F		VI.	1	,	1		•			
	•	1	1	1		1	\$		£		1	•	1	1	1		·	(.i.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							T.
	1	1	1	1	1	4	1	1	2 M	1	1				<u> </u>				1	1	1	1	1	l I			
	1	1	1	1							-		1	1	1	1	1	1	1	1	1	1	1	1			
_	<u> </u>	·				1	:	1	1	3	1	ŧ		1	•	1	1	1	1	1	1	1	1			:	4
		1	1	1	4	1	1	÷	1	5			4	1			1			1	÷	1	1	4		4	1
	1	1	E E	1		:	1	1	1	1	1	1	E	1		1	1		+	4		1	1	L			<u> </u>
	1	1 .		ī.	5	1	1	1	1	1	1	1		1		1											
	1	ł	1	1	1	1		1	1																		
	1	1	L					-																			
_																											

Location Ecol.

12. OUTDOOR PLOT

Location Ecol Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Pp

RAE

Location Ecol.

Location Attached	Product Description	Size (units) muitrek	Conditio	n* Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
(sprinkler)	deverages	cases	Vo		0	Ч
1ST floor	See photos			b		
office		+				
	\	++				л.
						2
<u>, , , , , , , , , , , , , , , , , , , </u>	an an an an an ann ann ann an an an an a		e de la companya de l			
· ·			·····		an a	
<u> </u>						
	· · · · · · · · · · · · · · · · · · ·					
	\					
		\				
· · · ·						

* Describe the condition of the product containers as **Unopened (UO)**, Used (U), or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

O, R3	
NEW YORK STATE DEPARTI INDOOR AIR QUALITY QUESTIONNAIR CENTER FOR ENVIRONM	MENT OF HEALTH E AND BUILDING INVENTORY ENTAL HEALTH A
This form must be completed for each resid	lence involved in indoor air testing. 664 HM ECO3
Preparer's Name Ph.1 Muller	_ Date/Time Prepared _ 12.10.07/ 1430
Preparer's Affiliation MACTEL	Phone No. 603 315 4402
Purpose of Investigation Vapor Introsco	
1. OCCUPANT:	
Interviewed: X/N	
Last Name: First Name:	Theresa
Address: 50 E. Main St.,	Babylon, NY .
County: S& Holk	
Home Phone: Office Phone:	1 661 - 1526
Number of Occupants/persons at this location 3 As	ge of Occupants <u>36-50</u>
2. OWNER OR LANDLORD: (Check if same as occupan	t X)
Interviewed: Y/N	
Last Name:First Name:	
Address:	
County:	
Home Phone: Office Phone:	
3. BUILDING CHARACTERISTICS	
Type of Building: (Circle appropriate response)	
Residential Industrial Commercial Commercial	al/Multi-use

Location ECO3

Ranch 2 Raised Ranch 2 Cape Cod 0 Duplex 4 Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
ultiple units, how many? _		
he property is commercial,	type?	(Burgers Surf Shop)
Business Type(s)	t Shop	2
Does it include residences (i.e., multi-use)? (Y)	N If yes, how many? 5
her characteristics:		
Number of floors_Buseme	nt + 2 flairs Bui	ilding age_unknown (~504rs)
Is the building insulated?	N Ho	w air tight? Tight / Average / Not Tight
AIRFLOW		
irflow between floors		
Airflow near source		
Outdoor air infiltration	-	
Infiltration into air ducts		

2

BASEMENT AN	D CONSTRUCTION (CHARACTERISTICS	(Circle all that apply)
-------------	------------------	-----------------	-------------------------

a. Above grade construction:	wood frame	concrete	stone	brick	
b. Basement type:	full	crawlspace	slab	other	đ
c. Basement floor:	concrete	dirt	stone	other	· }
d. Basement floor:	uncovered	covered	covered with		
e. Concrete floor:	unsealed	sealed	sealed with	<u>/</u>	
f. Foundation walls:	poured	block	stone	other brick	
g. Foundation walls:	unsealed	sealed	sealed with		
h. The basement is:	wet	damp	dry	moldy	
i. The basement is:	finished	unfinished	partially finis	hed	.)
j. Sump present?	(Y) N	in adjucen	f basemen	+ (common	basement)
k. Water in sump?	N / not applicable	Ŭ		• • •	

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

cracks, holes large hole in basement Hoor

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard

Domestic hot water tank fueled by:

Heat pump Stream radiation Wood stove Hot water baseboard Radiant floor Outdoor wood boiler Other

The primary type of fuel used is:

Natural Gas Electric Wood

Boiler/furnace located in:

Fuel Oil Propane Coal Kerosene Solar

Main Floor

Other <u>ceiling(in side</u>)

Location EC03

Air conditioning:

entral Air Windo

Basement

gast

Outdoors

Window units Open Windows

None

Location ECO3

. /

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

(Y)N

4

				·	_
	· ·				-
7. Occorrance	level occupied? Full-time	Occasionally	Seldom	Almost Never	
Is basement/lowest	l Use of Each Floor (e.g., fai	milvroom, bedro	oom, laundry, v	vorkshop, storage)	
Level Gen	eral Use of Each Floor (C.g., X				
Basement	open	· · ·			'
1 st Floor	surf shop	·			
	residences			· · · · · · · · · · · · · · · · · · ·	
2 ⁴⁴ Floor					
3 rd Floor					
4 th Floor					
	AT MAN INFI LIFNCE INDOO	R AIR QUALI	ſY		. •
a. Is there an at	tached garage?		Y		
b. Does the gar	age have a separate heating unit	?	Y/N/NA		
c. Are petroleu stored in the	m-powered machines or vehicles garage (e.g., lawnmower, atv, car	; ;)	Y / N /NA Please speci) fy	
d Has the buil	ding ever had a fire?		Y (N) Wh	en?	<u> </u>
u. Has the sur	e or unvented gas space heater p	resent?	Y NWh	lere?	
e. 15 a Kerosen	prizehon or hobby/craft area?	Y(N Where & T	уре?	<u></u>
I. IS there a wo	line in the building?	Y	N How freque	ently?	
g. Is there smo)KIIIg III tile bullung.	$(\overline{\mathfrak{Q}})$	∽ ′N When & T	уре?	
h. Have clean	ing products been used recently?) The Pr		
i. Have cosme	tic products been used recently?		IN WINEIL & I	урс:	

Location EC03

5.	Loca
j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
I. Have air fresheners been used recently?	Y (N) When & Type?
m. Is there a kitchen exhaust fan?	Y /N If yes, where vented?
n. Is there a bathroom exhaust fan?	Y(N) If yes, where vented?
o. Is there a clothes dryer?	Y (N) If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y (N When & Type?
Are there odors in the building? If yes, please describe: Poly ure than	e in board area
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic o boiler mechanic, pesticide application, cosmetologist	Y N or auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used? Some ?	solvents on boards brought in
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work a response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	t a dry-cleaning service? (Circle appropriate No Unknown
Is there a radon mitigation system for the building/struct	ure? Y / Date of Installation:
is the system active or passive? Active/Passive	
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Dri	ven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Lea	ach Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill resider	ntial emergency)
a. Provide reasons why relocation is recommended: _	<u> </u>
b. Residents choose to: remain in home / relocate to	friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimburser	nent explained? Y / N
d. Relocation package provided and explained to resi	dents? Y / N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

. (

Location Ed3
12. OUTDOOR PLOT

Location ECO3

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Location EC03

Make & Model of field instrument used: ____ PPb RAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients / Field Reading (units)	t Photo** <u>Y/N</u>
0	No products			- 1	
IST	Way, cleaning sovay				
					<u>^</u>
			·	•	
	1	·····	a good and a state of the second state of the		
					· · · · · · · · · · · · · · · · · · ·
					. .
·					
· · ·					
					-

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

• .	NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR	AIR OUALITY QUESTIONNAIRE AND BUILDING INVENTORY
	CENTER FOR ENVIRONMENTAL HEALTH

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH	1 (1 Frall
This form must be completed for each residence involved in indoor air testing.	Location FLOS
Preparer's Name Phil Miller Date/Time Prepared 12.10.07	1650
Preparer's Affiliation MACTEC Phone No. 603 315 4402	<u>.</u>
Purpose of Investigation Vapor Intrusion	
1. OCCUPANT:	T T T T T T T T T T T T T T T T T T T
Interviewed: (y)/ N	•
Last Name: Adams First Name: Aimee	
Address: 79 E. Main St., Babylon, NY	
County: <u>SJ.f.folk</u>	· .
Home Phone: Office Phone: 631 422 4340	
Number of Occupants/persons at this location Age of Occupants $3 - 10$, 20 129 Students, 25 staff	0-60
2. OWNER OR LANDLORD: (Check if same as occupant)	
Interviewed: Y/N	
Last Name:First Name:	· · · · · · · · · · · · · · · · · · ·
Address:	•
County:	
Home Phone: Office Phone:	
3. BUILDING CHARACTERISTICS	
Type of Building: (Circle appropriate response)	
Residential Commercial/Multi-use Industrial Church Other:	

L·MA FROY

Í

e property is residential,	type: (Circle appropria		L L		
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Co Other:	ndos	· · ·	
nultiple units, how many	?				
he property is commercia	al, type?			7 I	•
Business Type(s)	First Presbyte	grian Church	, of Baby	lon	
Dass it include residence	s (i.e., multi-use)? Y	N If yes,	how many?	- · ·	
Does it menude residence					· · ·
ther characteristics: Basement +	2 floors Bu	ilding age 45 U	S		
Number of floors		we air tight? Tight	Average/ Not Ti	ght	
Is the building insulated	Y N Ho	w an ugin. 116.		•	
ATDELOW		, l		•	
					1 A A
ise air current tubes or tr	acer smoke to evaluat	e airflow patterns :	nd qualitatively o	describe:	• •
ise air current tubes or tr	acer smoke to evaluat	e airflow patterns :	ınd qualitatively (describe:	
ise air current tubes or tr	acer smoke to evaluat	e airflow patterns :	nd qualitatively o	describe:	
Se air current tubes or tr	acer smoke to evaluat	e airflow patterns :	nd qualitatively o	describe:	
Se air current tubes or tr	acer smoke to evaluate	e airflow patterns :	nd qualitatively o	describe:	
Airflow between floors	acer smoke to evaluate	e airflow patterns :	nd qualitatively (describe:	
Airflow between floors	acer smoke to evaluate	e airflow patterns :	nd qualitatively o	describe:	
Airflow between floors	acer smoke to evaluate	e airflow patterns :	nd qualitatively o	describe:	
Airflow between floors	acer smoke to evaluate	e airflow patterns :	nd qualitatively o	describe:	
se air current tubes or tra hirflow between floors	acer smoke to evaluate	e airflow patterns :	nd qualitatively o	describe:	
Airflow between floors Airflow near source Outdoor air infiltration	acer smoke to evaluate	e airflow patterns	nd qualitatively o	describe:	
Airflow between floors Airflow near source Outdoor air infiltration	acer smoke to evaluate	e airflow patterns	nd qualitatively o	describe:	
Airflow between floors Airflow near source Outdoor air infiltration	acer smoke to evaluate	e airflow patterns	nd qualitatively o	describe:	
Airflow between floors Airflow near source Outdoor air infiltration	acer smoke to evaluate	e airflow patterns :	nd qualitatively o	describe:	
Airflow between floors Airflow near source Outdoor air infiltration Infiltration into air ducts		e airflow patterns	nd qualitatively o	describe:	
Airflow between floors Airflow near source Outdoor air infiltration Infiltration into air ducts		e airflow patterns	nd qualitatively o	describe:	

. .

BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

BASEMENT AND CONSTRU	CTION CHARA	3 ACTERISTICS	(Circle all that a	pply)	Locat	TM FC04
a. Above grade construction:	wood frame	concrete	stone	brick	block	
b. Basement type:	full	crawlspace	slab	other _		
c. Basement floor:	concrete	dirt	stone	other _		· · ·
d. Basement floor:	uncovered	covered	covered with		?	
e. Concrete floor:	unsealed	sealed	sealed with		1	
f. Foundation walls:	poured	block	stone	other _	brick	
g. Foundation walls:	unsealed	sealed	sealed with _			
h. The basement is:	wet	damp	dry	moldy		
i. The basement is:	finished	unfinished	partially finis	hed		
j. Sump present?	YN					
k. Water in sump? Y/J	N / not applicable	e			•	
crawl space		•				
		· .				. .
HEATING, VENTING and A	IR CONDITION	NING (Circle all	that apply) oly – note prima	urv)	• •	: · · .
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radia Wood stove	tion Rad Out	water baseboard iant floor door wood boile	> • Other		-
'he primary type of fuel used is: Natural Gas Electric Wood Domestic hot water tank fueled b	Fuel Oil Propane Coal Fue	Ker Sola . 01	osene ir		•	
Boiler/furnace located in• Ra	sement Ou	tdoors Ma	in Floor	Other		
Air and differings	entral Air Wi	ndow units Ope	en Windows	None)	

5.

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y[/ N

Location FCO4

.7

7. OCCUPAN	ICY	Occasionally	Seldom	Almost Never
Is basement/10	Coneral Use of Each Floor (e.g., fan	nilyroom, bedro	om, laundry, w	<u>orkshop, storage)</u>
Level	Workshop, Storage		· · · · · · · · · · · · · · · · · · ·	
1 st Floor	Classrooms, offices	gym_	bathrooms	<u>.</u>
2 nd Floor	Classrooms, bathro	oms	na an a	
3 rd Floor		• 		
4 th Floor		· ·		
8. FACTORS	S THAT MAY INFLUENCE INDOO an attached garage?	R AIR QUALIT	Т Ү Ү (Î)	
b. Does the	e garage have a separate heating unit?		Y/N/NA	
c. Are petr stored in	roleum-powered machines or vehicles n the garage (e.g., lawnmower, atv, car)		Y / N /NA Please specif	ÿ
d. Has the	building ever had a fire?	•	Y (N) Whe	n?
e. Is a ker	osene or unvented gas space heater pr	esent?	Y (N) Whe	ere?
f. Is there	a workshop or hobby/craft area?		N Where & Ty	pe? Basemen [
g. Is there	e smoking in the building?	. Ч (N How freque	ntly?
h. Have c	leaning products been used recently?	(\mathbf{Y})	N When & Ty	pe?
i. Have c	osmetic products been used recently?	Y)	N When & Ty	pe?

(a) a second statement and the second statement of the second statement of

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

Location Ecot

12. OUTDOOR PLOT

Location ECOY

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

Location Ecoy

List specific products found in the residence that have the potential to affect indoor air quality.

Location Basement	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y/N</u>
	photos			<i>,</i> 1		Y
	toilet cleaner				·	
LC	Scram (Soz (Hz	Sol		4	·	1
₽1	cleaner (Pri)					Y
11	alcohol					4
L i	winder					4
ii l	Silicon Salar					Y
{						Y
						Y
					-	
					And the second s	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	\					
					;	

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

there are hundreds of cheaners - see photos. Notes : Also

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

Ppb RAE not working properly.

	is form must b	e completed for each res	idence involved	l in indoc	or air tes	ting.	Dun	
Preparer's Name	Phil A	1viler	Date/Time I	Prepared	1.14	-08		
Preparer's Affiliation	MAC	TEL	Phone No	781	245	6606	,	
Purpose of Investigat 1. OCCUPANT: Interviewed: Y/N	ion <u>V</u> e	apor Intrus n	<u></u>	· · · ·				• •
Last Name:	. :	First Name:		• •	· •	· .		
Address:	•			:		•		
County:	·			• • •		•		

Contact Information Provided To NYSDEC And NYSDOH Under Separate Cover

3.	BUIL	DING	CHAR	ACTEF	USTICS
----	------	------	------	-------	--------

OSR-3

Type of Building: (Circle appropriate response)

Residential Industrial

School Church Commercial/Multi-use

Ĝ

	· · · · · · · · · · · · · · · · · · ·
, , , , , , , , , , , , , , , , , , ,	2 If the property is residential, type? (Circle appropriate response)
•	Ranch2-Family3-FamilyECOSRaised RanchSplit LevelColonialECOSCape CodContemporaryMobile HomeDuplexApartment HouseTownhouses/CondosModularLog HomeOther:
	If multiple units, how many?
	If the property is commercial, type?
	Business Type(s) Talbot's Lawyers Real Estate , Dress Shap
	Does it include residences (i.e., multi-use)? Y N If yes, how many?
	Other characteristics:
	Number of floors 1 + crawlspace Building age - 1950
	Is the building insulated YNN How air tight? (Fight/ Average / Not Tight
	4 AIRFLOW
	Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:
·	Airflow between floors
	Airflow near source
	Outdoor air infiltration
	Infiltration into air ducts
• •	

. . .

I.

husers see

BASEMENT AND CO	NSIRUCTION		•			•			
a. Above grade constru	ction: woo	d frame	concret	S stor	1 e · ·	brick	E	100	5
b. Basement type:	full		crawlsp	ace slat)	other _			
c. Basement floor:	cont	crete	dirt ·	stor	ne	other _			
d. Basement floor:	unce	overed	covered	l cov	ered with				
e. Concrete floor:	unse	aled	sealed	seal	ed with				
f. Foundation walls:	pou	red	block	stor	ne	other_			
g. Foundation walls:	unse	ealed	sealed	seal	ed with				
h. The basement is:	wet		damp	dry).	moldy			
i. The basement is:	fini	shed	unfinish	ned part	ially finish	led			
i. Sump present?	Y/						•	· .	
k Water in sumn?	V/N/not	unnlicable)		•		subfig-	· .	
K. Water in sump:	1/11/1100	ippincatile	·	•	· · ·		Hens	1240	ngo :
lentify potential soil vapo	th below grade r entry points a	:	(feet) oximate siz	ze (e.g., crac	ks, utility	ports, dr	ains)		
dentify potential soil vapo vtikty	th below grade r entry points a ports	:	(feet) oximate si:	ze (e.g., crac	ks, utility	ports, dr	ains)		•
dentify potential soil vapo utility	th below grade r entry points a ports	: nd appro	(feet) oximate siz	ze (e.g., crac	ks, utility	ports, dr	ains)	- 	•
dentify potential soil vapo utility HEATING, VENTING ype of heating system(s) r Hot air circulation Space Heaters Electric baseboard	th below grade r entry points a ports and AIR CON used in this buil Hea Stree Wo	DITION ding: (cir cam radia	(feet) oximate siz ING (Circ rcle all tha tion	ie all that apply no Hot water b Radiant floo	bly) ote primar aseboard or	y) Other	ains) voof	· 	•
dentify potential soil vapo utility HEATING, VENTING 'ype of heating system(s) r Hot air circulation Space Heaters Electric baseboard The primary type of fuel u	th below grade r entry points a ports and AIR CON used in this buil Hea Stra Wo	DITION ding: (cir am radia od stove	(feet) oximate siz ING (Circ rcle all tha tion	te (e.g., crac de all that app at apply no Hot water b Radiant floo Outdoor wo	bly) te primar aseboard or ood boiler	y) Other_	ains) roof	· 	•
dentify potential soil vapo u tility HEATING, VENTING 'ype of heating system(s) t Hot air circulation Space Heaters Electric baseboard The primary type of fuel u	th below grade r entry points a ports and AIR CON used in this buil Hea Stra Wo sed is:	DITION ding: (cir cam radia od stove	(feet) oximate siz ING (Circ rcle all tha tion	te (e.g., crac le all that app at apply no Hot water b Radiant floo Outdoor wo	bly) te primar aseboard or bod boiler	y) Other	ains) 1005		
dentify potential soil vapor u tility HEATING, VENTING Ype of heating system(s) to Hot air circulation Space Heaters Electric baseboard The primary type of fuel un Natural Gase Electric Wood	th below grade r entry points a ports and AIR CON used in this buil Hea Stra Wo sed is: Fue Pro Coa	DITION ding: (cir ding: (cir at pump sam radia od stove	(feet) oximate siz ING (Circ rcle all tha tion	le all that app t apply – no Hot water b Radiant floo Outdoor wo Kerosene Solar	ks, utility oly) ote primar aseboard or od boiler	y) Other_	ains) roof		
dentify potential soil vapo u tility HEATING, VENTING ype of heating system(s) r Hot air circulation Space Heaters Electric baseboard The primary type of fuel us Natural Gas Electric Wood Domestic hot water tank fu	th below grade r entry points a ports and AIR CON used in this buil Hea Stra Wo sed is: Fue Pro Coa	DITION ding: (cia tt pump earm radia od stove	(feet) oximate siz ING (Circ rcle all tha tion	le all that app t apply no Hot water b Radiant floo Outdoor wo Kerosene Solar	ks, utility	y) Other_	ains) Yosf		
dentify potential soil vapo u tility HEATING, VENTING ype of heating system(s) r Hot air circulation Space Heaters Electric baseboard The primary type of fuel un Natural Gas Electric Wood Domestic hot water tank fu Boiler/furnace located in:	th below grade r entry points a ports and AIR CON used in this buil Hea Stra Wo sed is: Fue Pro Coa neled by: Basement	ind appro and appro DITION ding: (cir the pump earm radia od stove el Oil pane al outo	(feet) oximate siz ING (Circ rcle all tha tion	le all that app t apply no Hot water b Radiant floo Outdoor wo Kerosene Solar Le fric Main Floor	ks, utility	y) Other_ Other_	roof Yoof		•

Are there air distribution ducts present?

Locatim tu Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y/N

	·	····		· . ·	· · · .	· · · · ·	· · ·	
		· .						•••
							 · ·	
	· ·			•			_	.['
			· · · ·	• • • :		·	- · ·	
	7. OCCUPA	NCY		• • • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·
	Is basement/lo	west level occupied?	Full-time	Occasionally	Seldom	Almost Never	· · · ·	
	Level	General Use of Eacl	<u>ı Floor (e.g., fa</u>	milyroom, bedro	oom, laundry, w	orkshop, storage)		
	evanlspace Basement	Sprizk	cler, util	Hier				
	1 st Floor	Coinn	urcial					j ·
	2 nd Floor			· ·		• • • •	· · · ·	
	3 rd Floor			· · · · · · · · · · · · · · · · · · ·				
	4 th Floor		<u> </u>				· ·	
•		•					•••	
	8. FACTORS	THAT MAY INFLU	ENCE INDOOI	R AIR QUALITY	Č	· · · · ·	•	
	a. Is there a	n attached garage?	· · ·	· · · · ·	Y	•		
	b. Does the g	garage have a separat	e heating unit?	•	Y/N/	· · · · ·	: •	
	c. Are petro stored in t	leum-powered machin the garage (e.g., lawnr	nes or vehicles . nower, atv, car)	• . •	Y / N / 10 Please specify_	· · · · · · · · · · · · · · · · · · ·	-	
· 、	d. Has the b	uilding ever had a fire	e?	• •.	Y 🐼 When?			
	e. Is a keros	ene or unvented gas s	pace heater pres	sent?	Y/Ø Where?	· · · · · · · · · · · · · · · · · · ·		·
	f. Is there a	workshop or hobby/ci	raft area?	Y /	Where & Type?)		
	g. Is there sr	noking in the building	3?	Y 🕥	How frequently	?		1
	h. Have clea	ning products been us	sed recently?	Ø N	When & Type?	• 		
	i. Have cosm	netic products been us	ed recently?	YN	When & Type?			
				•	-			

	i. Has painting/staining been done in the last 6 months?	Y / Where & When? 6
 •	k. Is there new carpet, drapes or other textiles?	ØN Where & When?
•••• •••	l. Have air fresheners been used recently?	(V) N When & Type?
· •	m. Is there a kitchen exhaust fan?	Y / 🖉 If yes, where vented?
	n. Is there a bathroom exhaust fan?	Y (N) If yes, where vented?
•	o. Is there a clothes dryer?	Y / If yes, is it vented outside? Y / N
. ·	p. Has there been a pesticide application?	Y N When & Type?
	Are there odors in the building? If yes, please describe:	у/Ø
	Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y / uto body shop, painting, fuel oil delivery,
••••	If yes, what types of solvents are used?	<u></u>
	If yes, are their clothes washed at work?	Y/N
	Yes, use dry-cleaning infrequently (weekly) Yes, work at a dry-cleaning regularly (weekly) Yes, work at a dry-cleaning service	No Unknown
• * •	Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	e? Y N Date of Installation:
2	9. WATER AND SEWAGE	
		n Well Dug Well Other:
	Water Supply: Public Water Drilled Well Driver	
	Water Supply: Public Water Drilled Well Driver Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
	Water Supply: Public Water Drilled Well Driver Sewage Disposal: Public Sewer Septic Tank Leach 10. RELOCATION INFORMATION (for oil spill residenti	al emergency)
	Water Supply: Public Water Drilled Well Driver Sewage Disposal: Public Sewer Septic Tank Leach 10. RELOCATION INFORMATION (for oil spill residenti a. Provide reasons why relocation is recommended:	al emergency)
	 Water Supply: Public Water Drilled Well Driver Sewage Disposal: Public Sever Septic Tank Leach 10. RELOCATION INFORMATION (for oil spill residenti a. Provide reasons why relocation is recommended: b. Residents choose to: remain in home relocate to fri 	al emergency)
	 Water Supply: Public Water Drilled Well Driver Sewage Disposal: Public Sever Septic Tank Leach 10. RELOCATION INFORMATION (for oil spill residentional a. Provide reasons why relocation is recommended:	Field Dry Well Other: al emergency) N/A iends/family relocate to hotel/motel nt explained? Y/N

11. FLOOR PLANS

Location trob sampling ECOS Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

12. OUTDOOR PLOT

Location ECOS

ELO5

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _

• .

List specific products found in the residence that have the potential to affect indoor air quality.

.

POB RAE

·:

. •

Location E

ECOS

Field Photo ** Size Instrument Condition^{*} Location **Product Description Chemical Ingredients** (units) Reading Y/N (units) Pt b Store Rainbow 12% J Ч 0 Windex 22 1202 น V Ø N 1202 Roach Killer 47 J \mathcal{N} 0

* Describe the condition of the product containers as **Unopened (UO)**, Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

APPENDIX D

FIELD DATA RECORDS

SOIL VAPOR IMPLANT SAMPLING RECORD Boring ID: DP-07. Project No.: 3612072087 Project: EUGENE'S DAY CLEANER Checked By: ELS Protection Level: D Ground Elevation: **Client Name:** NYSDEC Logged By: PM Driller's Name: ANDREA BABEL **Drilling Contractor: Drilling Method:** ADT GEOPPOBE Sample Date/Time: Start Time: Installation,Date/Time: End Time: **Rig Type:** 12 13 2007 12/12/07 1033 He Breakthrough %: None Initial He %: 95% Final He %: 90% 0%) Auger Size: ____ **Overburden Drilling Notes: Graphic Log** Depth (feet) See Soil Boring Log DR-02 Vapor Point Blow Counts Recovery Soil Vapor Construction Diagram Sample ID Soil Votor: ECGS0203 Notes Soil Vapor Point Construction Notes: Fluch-to-grade Road Box Bentonite Surface seal Coarse Sand No. 1 HDPE tubing (1/4" OD) Bentonite, hydroted 0.5' to 1.5' bas "Screen Implant - Glass beads (Greoprobe brand) 2,5' to 4.0' - Bottom of SV point = 4.0' bas MACTEC FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, Maine 04101

SOIL VAPOR IMPLANT SAMPLING RECORD Boring ID: DP-03 Project No.: 3612072087 Project: EUGENE'S DAY CLEANER Checked By: ELS NYSDEC Logged By: PM Protection Level: D Client Name: Ground Elevation: Drilling Method: Driller's Name: **Drilling Contractor:** ADT GEOPPOBE BABEL ANDREA Installation Date/Time: Sample Date/Time: Start Time: End Time: Rig Type: 1019 12/12/2007 12:30 12132007 Initial He %: 95 Final He %: 90 % He Breakthrough %: Auger Size: None **Overburden Drilling Notes:** Log Depth (feet) See boring log DP-03 Graphic Vapor Point Recovery Blow Counts Soil Vapor Construction Diagram Notes Soil Vapor Point Construction Notes: Flush-to-grade Road Box 0.5 Bentonite Surface Seal Coarse Sand (No. 1) HOPE tubing (1/4" OD) Bentonite, hydracted 1.5 to 2.5 ft 6" Screen Implant 1.5 No. 1 Sand 2.5' to 3.5' bgs Glass Brads (Greoprobe brand) 4.S 1sft thick 3.5 to 5.0' bas 3.5 S.O Bottom of SU Point 5.0 TEC FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, Maine 04101

SOIL VAPOR IMPLANT SAMPLING RECORD **Boring ID:** DP-04 Project: EUGENE'S DAY CLEANER Checked By: ELS Project No.: 3612072087 Protection Level: D Client Name: NYSDEC Logged By: PM Ground Elevation: Driller's Name: **Drilling Contractor: Drilling Method:** ADT GEOPPOBE Start Time: End Time: Sample Date/Time: Rig Type: Installation Date/Time: 1901 1400 1401 12/11/2007 12/12/2007 He Breakthrough %: Initial He %: 95% Final He %: 9% Auger Size: NA 0% **Overburden Drilling Notes: Sraphic Log** Depth (feet) See baring log for details Vapor Point Blow Counts Soil Vapor Recovery Construction Diagram Notes Flush-to-grade Road Box Soil Vapor Point Construction Notes: Bentonite Surface Seal - temporary replaced rest day with concrete surface - Coarie Sand (NO. 1) çeal HDPE Tubing (1/q" 00) Bentonte, hydrated 0.5 to 1.5 bgs 6" Screen Implant 3.5 to 4.0' bes Sand, No. 1 1.5 to 2.5 Glass Beads (Geoprobe brand) 2.5 to 4.0 bgs Bottom of SV Point 4.0 bgs **ACTEC** FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, Maine 04101

Boring ID: SOIL VAPOR IMPLANT SAMPLING RECORD DP-05 Project: EUGENE'S DAY CLEANER Checked By: E2S Project No.: 3612072087 Protection Level: D NYSDEC Logged By: PM Ground Elevation: Client Name: Driller's Name: Drilling Method: **Drilling Contractor:** ADT GEOPPOBE Sample Date/Time: Installation Date/Time: Start Time: End Time: Rig Type: 11:45 12/12/2007 1347 1397 12/11/2007 NA Auger Size: NA Initial He %: 957 Final He %: 90% He Breakthrough %: 0% **Overburden** Drilling Notes: **Graphic Log** Depth (feet) See boring log for details Vapor Point Soil Vapor Recovery Blow Counts Construction Diagram Notes Flush-to-grade Road Box Soil Vapor Point Construction Notes: Bentonite Surface Seal - Coarse Sand (NO. 1) HDRE Tubing (1/q" 00) Bentonte, hydrated 0.5 -1.5 6" Screen Implant 3.5 to 4.0' bas coarse Sand 1.5 to 2.5 Glass Beads (Geoprobe brand) 2.5 to 4.0' bas Bottom of SV Point 4.0' bas IACTEC FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, Maine 04101

Boring ID: SOIL VAPOR IMPLANT SAMPLING RECORD DP-06 Project: EUGENE'S DAY CLEANER Checked By: ELS Project No.: 3612072087 Protection Level: D Ground Elevation: Client Name: NYSDEC Logged By: PM Driller's Name: ANDREA BABEL Drilling Method: Drilling Contractor: ADT GEOPPOSE 10:00 12 12 07 17 Installation Date/Time: Start Time: End Time: Rig Type: 1352 1332 12/11/2007 Auger Size: NA He Breakthrough %: 0% Initial He %: 95 7 Final He %: 90 7 **Overburden Drilling Notes: Braphic Log** Jepth (feet) See boring log for details Vapor Point Soil Vapor Recovery Blow Counts Construction Diagram Notes Flush-to-grade Road Box Soil Vapor Point Construction Notes: Bentonite Surface Seal 0-0.5' bgs 0.0 - Coarse Sand (NO. 1) 0.5-10 HDRE Tubing (1/q" 00) Bentonte, hydrated 6" Screen Implant 0.5 Sand, No. 1 Coarse Glass Beads (Geoprobe brand) 1.5 2.5 Bottom of SV Point 4.0 4.0 TEC FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, Maine 04101

Boring ID: SOIL VAPOR IMPLANT SAMPLING RECORD DP-07 Project: EUGENE'S DAY CLEANER Checked By: ELS Project No.: 3612072087 Protection Level: D Client Name: NYSDEC Logged By: PM Ground Elevation: Driller's Name: Drilling Method: **Drilling Contractor:** ADT GEOPPOBE Installation Date/Time: Sample Date/Time: Start Time: End Time: Rig Type: 16:05 12/12/2007 12/11/2007 1412 He Breakthrough %: No test performed Initial He %: Final He %: Auger Size: **Overburden Drilling Notes: Graphic Log** Depth (feet) See baring log for details. Vapor Point Soil Vapor Recovery Blow Counts Construction Diagram Notes Flush-to-grade Road Box Soil Vapor Point Construction Notes: Bentonite Surface Seel - temporany -replaced with concrete pad - COarse Sand (NO. 1) HDPE Tubing (1/q" 00) Bentonite, hydrated 12.5' to 1.5' bgs 6" Screen Implant 3.5 \$ 4.0' bas Sand 1.5 to 2.5 Glass Beads (Geoprobe brand) 2.5 to 4.0' bes Bottom of SV Point 4.0' bas IACTEC FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, Maine 04101

¥		DP-0Z			Page1_ of1
MACT	EC Boring Location.	ene's	Geologist:	PLC	
-`*_* # [*]	Project Wanter 2 - 5	log crean	Drilling Cor	npany: A	PT
e en	Date Started:		Drilling Met	thod: Di	rect Push
Soil Boring	LOG Date Completed: 1	2/12/01			DOLOS B.
MACTEC	Total Depth: 10	\	Depth to H		<u> </u>
Wakefield, I	AA Comments:				
anth .	on Kamphy Description	Penetration/	Headspace	Blows/ 6 inches	Sample ID
fcet)	Strangtening	Recovery (roca)	UPP-1		ECGSO 203
	Hand augered	2:0 Elssings	401		@ 3' BGS
. 4097	14 brown - Oork	There is a		- Al-	0.110
5 brou		لعديمين	-		1
35	avel From 0.9-1	A			
1005	e ; moist				
5 0.0.	ON MOST BROWN	5.0/3.7	201		
7 dar	NOU SEND				
10 0.1-	3,3 MOSTIN HIGHT I	preven.			
Scurve), uniform loose	 A 1 A 2 A 2			Construction Grab
mes	Afine grained				General 07
	bands	- я			ECGWOL
3.3	3.7 MOSTN 600	up-			e lo' bgs
red	lish brown gras	UE174	and the second se	a <u>a a ana</u>	@ 09:50 Ur
Same	0.000, WET.				
			б Т		
			14 1		
	· · · · ·				
•	۶. ۲				
			·	n <mark>e seren eren eren eren eren eren eren er</mark>	
				1 1	
		•			
					Note : Top 3'
			1		of boring nor
			, a		GIEARES NO
					and here as I am
<u>المناجعة المناجعة ا</u>		ج ج ج			Prepared by: PLC

. .

÷

م کا کا م

P:VADMINISTRATIVE/FORMS/Field Forms/boring log blankxis

ecked by. Ec

بر ا						Page1_ of _1
M	ACTEC	Boring Location:	ne 's	Geologist:	DLC	
·· · ·		Date Started: um 11 7-1	Cleane	Drilling Con	npany: 🔉	DT
eall	Boring 00	Date Completed: 121		Drilling Met	hod: Di	FOCT PUSH
301	MACTEG	Total Depth: 10		Depth to W	ater. A	pprov B' B65
107	Audubon Road	Comments'	<u></u>	1		
<u></u>	ancheld, meas		Penetration/	Headspace	Blows/	Sample D
)epin (feet)	Strabgra		Recovery (lect)	000117		ECGS0303
0	Pre	z BGS	2.0		- 7 7	@ 3 865
5		STU . Brown-	12.6		1	11:45
	dark brou	un sing sand				
	med dens	- 5118111 - molst				
	0.2.2.0	some as				
	above	brown	5			
						and and a start of the start of
		- 0 5 0.2-				
5	0-0.2. 3 Z.0 SECTI	an above	5.0/3.8			
10	0.2-2.5	MOSTLY brow				
	redaist	LIL SOFTED , D	amb			Graindwater Grab
	2.5-3.6	· Scurve as				EC GW02
·	above ,	but greet -1	ren.		÷.	@ 0950-Es
	more 8					1150
					en ante ante ante ante ante ante ante an	<u><u>(w)</u> (U) <u>Bg</u>S</u>
						Ministration of the second sec
		i Na Maria				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				<u> </u>		
	1999. 				1	
		· · ·			1 1	
]						· · · · · · · · · · · · · · · · · · ·
 						hand augered
1						UTILITIES (gas)
ł						
ļ						Prepared by: by -

P:VADMINISTRATIVE/FORMS/Field Forms/boring log blank.xls

Checker Di. ECS

Ст. Л.	ACTIC	Boring Location:		DP-0	4	Page101
IVI	ALIEU	Project Name:	- ··· · · · · · · · · ·	Geologist:	PLC	
		Date Starfed: 12/11)07	Drilling Cor	mpany: A	Þ .
Sal	l Boring Log	Date Completed: 321	1107	Drilling Met	ihod: Di	rect Push
۽ پر مين	MACTEC	Total Denth		Depth to W	ater. 🧠	8 ·
107	Audubon Road					
N.	Vakeneld, MA	Comments:	Penetration	Headspace	Blows	Sample ID
epth from th	Stratigra	phy Description	Recovery (feet)	(ppm)	6 inches	
(tézer)	0-031 M	STOY STO	5.01			Sec. Hoz
9.):	brown gt	avelly scand	an Xoura		l	ECGSOREZ
5	0.3-0.4:0	oncreat tra	5			æ 3. 865
	0.4 - 0.7 : 1	LOSTH reddish				@ 13:40
	6700 Se	No poor 14 9rd		<u></u>	en e	r <u>- Andrea Alberto Andrea Ing</u> ra
	icese i m	NIST OF THE				
	Grown S	in sere . +			T	
	dense, da	***				
	1405		5.4		2 - -	
5	0-0.7. 5		1		1	
١c	I'LL SECTI	Urbay mare	1 - 1			
	05 0.6'					Groovdwater Gra
<u>.</u>	0.7.1.2.	Massing grow	e 13-7			ELGWOG
	light bec	wn brewn	Sand		Ĵ.	
	1.2-27:	Mossin med-			- As	@ 10 0gs
•	sord, ver	in the form is				@ 13:45
	Barry					
•		-				
••••					а С	
f.						
		•		alan M		
				1 ¹		
ļ			<u> </u>		-	
1			2 22			

.....

• •

 $\xi > \tau_{\rm s}$

P:VADMINISTRATIVE/FORMS/Field Forms/boring log blank xis:

Checked by: ECS

en. 10	ACTEC	Boring Location:		PP-0	,s	Page1_ of _1
M	ALIEU	Project Name: Eugen	no 15	Geologist:	PLC	
		Date Started:	1200CFS	Drilling Cor	mpány: 🗡	DT
		Date Country 12/11/	<u> </u>	Drilling Me	thod: p .	POLT PUSh
501	Boring Loy	Date Completed.		Donth to W	later:	B' Bes
107	MACTEC Audubon Road	Total Depth: 101	· · · ·		ar	
Ŵ	/akefield, MA	Comments:			Discont	
epth	Strikigra	uphy Description	Penetration/ Recovery (RS)	(ppm)	6 Inches	Sample ID
foet)		Jarks				ECGSOSOZ
0	0-0-2 M	105714 51174	5.012.3			@ 2' 365
5	asphalt #	averial drin	brown	· · ·	1	
	0.2-0.9:	MOSTY STOOM				C IIICO
	FILL, Schr		1			and the second
	0.9 - 1.6 : 1	LOSTLY light				
	brown	ded loose				•
	maist	in in the second se				
•	1.6-2.5	MOSSIN SUTH				
	Sand, bro	med dente				
	moist	n an	5.01			
			13.5		1	
5	Section	above , but l	-		I. I.	nd San an a
10	In color		L - 130	1- 10 m		Groundwater Grab
<u>):</u>	1.0.2.2	HOSTH STON	Jeily			IECGW05
	sand. V	ery well gra	929,			
	loose, a	omb. ogerie	24			le lo bgs
	2.2-3.6	: MOSTIN DROW		4		(e) ((·US
:	Scand . Sc				5 7	
	wer.					
						2
	Y.	a		-		• •
retik A						
, or con						
	*					
ŀ			n e V V			· · · · · · · · · · · · · · · · · · ·
					20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	
	,					
1		<u>م</u> ،				· ·
1			4	ł		

Checked by: ECS

P:VADMINISTRATIVE/FORMS/Field Forms/boring log blank xis

<u></u>		Boring Location:	P	P-06		Page1_ of1		
M	AUTEU	Project Name: E.	ne's	Geologist: DUC				
		FUYE	Pricie	Drilling Cor	npany: A	24		
		Date Started: 12/19/6	e an a secondada Aliante de la companya de la company Aliante de la companya					
Soil	Boring Log	Date Completed: 12/	11107	Drilling Method: Divect yost				
1	MACTEO	Total Depth: 10		Depth to W	ater: 🥆	SC		
107 /	Audubon Road			<u>.</u>				
A A S	akenelu, inin	Comments:	Penetration	Headspace	Blows	Sample ID		
)epth	Stratig	aphy Description	Recovery (lect)	(ppm)	6 inches			
foat)	a - e . 2 . M	OLTH OSphalt				EC690602		
0	6105- 10	ose, dt-l	5.0/2.5		1	@ 2' 365		
<u>ہ</u>	.2.0.3	MOSTH JOYK						
2	brown - 1	STOLEN SITT				10.12		
	0.3-01"	s: serve as	4		p .			
	above b	or dorier	<u></u>					
	and or	1. A PROVIDE A PROVIDA PROVIDE A PROVIDA PROVIDE A PROVIDA PROVIDA PROVIDA PROVIDA PROVIDA PROVI	4					
.	1.0 - 2.3	me aravel			3			
	well gra	ded moist						
	dense	· · · · · · · · · · · · · · · · · · ·	1 sec					
	2.3.25	: Mossil 24						
	brick fi	rags		1 2 2				
	1	6 Post						
			N 5.01					
5		m), medden	14 34	5	1			
	mell 950	ded. Brick				÷		
	frags at	0.4 × br	ey-n					
	0.4-1.6	MOSTIN SCA	54					
	gravel	minsure . ver	2			Groundwater		
	well gr	wed ITTORE			ļ.,	Gress sample		
	co 6 6)*	e	NE			ECGNOG		
•	1.6.1.9:		ne brewn			Q10'bas		
	19-3.2	1 MOSTIN STO	24724					
<u>,</u>	Score ,	onp.						
				s Ba L				
l .								
l l								
		<u> </u>				чv		
1	4							
I					-			
				н р. н. 1				
1		· ·			مجئند والمح	Proposed by:		

Checked by: Ecs

.

P:VADMINISTRATIVE/FORMS/Field Forms/boring log blank xis

1

المجردية يواقع م خار	<u></u>	ſ		8-07		Page1_ of _1
M.	ACTEC	Boring Location:		Geologist:	PLC	
		Project Name: 509e	cicaners		nnanv: A	
		Date Started: 12/11/0	n	Dittaning cos	inpeninty A	
Soil Boring Log		Date Completed: 1= / 1	107	Drilling Me	moa: Di	rect Push
407		Total Depth: 10	Depth to W	ater. 9	(Capprox)	
W	akefield, MA	Comments:				
Seoth	Ctother		Penetration	Headspace	Blows/ 6 inches	Sample ID
(foet)	Single	, , , , , , , , , , , , , , , , , , ,	Recovery (1014)	<u>QP717</u>	•	ECGSO703
0	0-0.5; M	5314 10050	5.01	1.001	j.	@ 7. Dec
A L	black as	phot one	3.3		1	
5	0.5-1.2	MOSTH brow	K -			16:He
	dar & brew	moist, odori		1		an in an giù giù 70 giù 1
	Some	gravel			<u>An ini an an an an ini a</u> An	n an
	12-2.0:	Scime as abo			ł	
	Uniferm					
	20-2.7:	MOSTIN SOME	35		2	
	above, b	T LIGHTER IN				
	2.7-3.3 N	LOSTH INSHT				
All	brown. 3	ravelly save				
12	100 Se	, 964 19		di d		
•		ener i sita di				
5	0-0.2 1 1 KILTY SO	nd, med de	9.0/4.c	20.1		
11	moiss	200 C 1855				
10	0.2 - 0.5	MOSTH Stav	e/17			
	schol, or	and ,) cose		<u> </u>		
	0.5-0.7	: Block, 1009	e		-	
c r	ash-ince	mascrial				
6 J	0.7.4.0	MOSTH DICU		-		
	W/ OFAL	1. well grad	e t ,			
	WETI OC	or)esc				
	n an an an Anna Anna Anna Anna Anna Ann An Anna Anna	·.				
1		•	ļ			
-		The second s				
				ł	-	
		٨				
			, , , , , , , , , , , , , , , , , , ,			
1					· ·	

Checked by: ELS

ALL ALL

1.1

P:VADMINISTRATIVE/FORMS/Field Forms/boring log blank xis

MACTEC ENGINEERING & CONSULTING INC	
PROJECT Antice International Engenet's	01
	<u>•</u> <u></u>
START 1030 END 1/40 TIME 1/30	<u>.</u>
SAMPLE ISIS ID ECPO	
COLLECTED MS1D	
MSD ID	
WATER LEVEL / WELL DATA	
MEASURED HISTORICAL HISTORICAL CASING STICKUP CASING VELL CASING / WELL DEPTH T (TOR) (FROM GROUND) FT DIFFERENCE	FT
DEPTH TO B. PI FT (TOR) SCREEN FT DIAMETER 74 IN MATERIAL TV C	
HEIGHT OF	
WATER COLUMN 6.69 FT x 0.55 GAL/FT (4 IN) = 0.15 GAL/OL TOTAL VOLUME PURGED 2.76 G	AL
Total purge volume = (ml per:min.) x time (min.) x 0.00026 gal/ml AMBIENT AIR O PPM WELL MOUTH 5200 -PH	
PURGE DATA	
TIME DEPTH TO PURGE RATE TEMP, TURBIDITY SPEC. COND. WATER (ft) (mil/min) (degrees C) pH (units) (NTU) Administration D C (mod) ORP (m)A Commente	
1052 Begin Privance @ 300 mL/ usin Vellew/brow	5
1057 14.70 300 15.49 6.42 - 337 2.03 -51.6 clearing	
1102 14:70 300 15.80 6,60 - 342 0.78 -75.3 clear	
1107 14.70 300 15.92 6.72 - 346 0.46 -94.8 "	
1112 14:70 300 15.84 6.74 - 348 0.44 -92.3 11	
1117 14.70 300 15.79 6.77 - 348 0.45 -109.4 "	_
1122 14.70 300 15.85 6.78 - 349 0.36 -114.2 "	
1127 14.70 300 13.85 0.78 - 350 0.35 -/12.3	_
1130 Collect Sample [ECPO]	
	<u> </u>
PURGING SAMPLING DECON FLUIDS USED WATER LEVEL EQUIPMENT USED PERISTALTIC PUMP METHANOL SUBMERSIBLE PUMP LIQUINOX FLOAT ACTIVATED SUBMERSIBLE PUMP DOTABLE WATER FLOAT ACTIVATED BLADDER PUMP DEIONIZED WATER FLOAT ACTIVATED PVC/SILICON TUBING DEIONIZED WATER FLOAT ACTIVATED WATERA NITRIC ACID NONE-Dedicated Tubing NUMBER OF FILTERS USED	
ANALYTICAL PARAMETERS METHOD METHOD PRESERVATION VOLUME SAMPLE SAMPLE SAMPLE BOTTL COLLECTED DINUMBER SAMPLE SAMPLE BOTTL COLLECTED SAMPLE SAM	E <u>-</u> - - - - - - - - - - - - - - - - - -
NOTES AND SAMPLE OBSERVATIONS Stabilization is considered achieved when three consecutive readings are taken a intervals within the following limits: Temp 3 %; Turbidity 10% > than 1 NTU; DO - 10%; Sp. Cond 3%; pH - 0.1 u SIGNATURE: RECEIVED BY:	it 3 to 5 min, nit; ORP - 10

MACTEC ENGINEERING & CONSULTING INC.	PAGE 1 OF 1
FIELD DATA RECORD - GROUNDWATER SAMPLING	· · · · · · · · · · · · · · · · · · ·
PROJECT Active Industriel Uniform E. gene's	DATE 12.12.07
WELL ID PW-1	BOTTLE
SAMPLE ISIS ID ECPVI	TIME 1232
QC SAMPLES DUPLICATE ID	
COLLECTED MS ID	
WATER LEVEL / WELL DATA	H. between
MEASURED PROTECTIVE PROTE WELL DEPTH T (TOR) HISTORICAL CASING STICKUP CASING WELL DEPTH T (TOR) FT (TOR) FT DIFFER	TIVE DI ONA T MESSU SYWELL ENCE D.37 FT Pt.
DEPTH TO 6.37 FT (TOR) SCREEN WELL WATER IN MATER	IAL PVC
HEIGHT OF	· · · · · · · · · · · · · · · · · · ·
WATER COLUMN 3.23 FT × 0.65 GAL/FT (4 IN) = 0.13 GAL/OL TOTAL VOLUME PL	IRGED 2.50 GAL
Total purge volume = (ml per min.) x time (min.) x 0.00026 gal/ml AMBIENT AIR O PPM WELLM	
PURGE DATA	
TIME DEPTH TO PURGE RATE. TEMP. TURBIDITY SPEC. COND WATER (ft) (nL(min)) (degrees C) pH (initis) (NT(II) (uhtmos/cm) D.O (mail.) ORP (m)	Comments
1200 Benan Purging @ 306 mL/min	Yellow / Brown
1205 6.37 300 13.23 6.43 - 153 6.03 54.9	clearing
1210 6.37 300 1330 6.25 - 46146 5.47 72.4	clearing
1215 6.37 500 3.26 6.20 - 143 5.36 79 1	clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1230 6.37 300 13.27 6.14 - 142 5.33 97	2 1/
1232 Collect Sample TECPWI	
EQUIPMENT DOCUMENTATION PURGING SAMPLING PERISTALTIC PUMP DECON FLUIDS USED WATER LEVEL EQUIPMENT SUBMERSIBLE PUMP LIQUINOX FLOAT ACTIVATED BLADDER PUMP POTABLE WATER KECK INTERFACE F PVC/SILICON TUBING DEIONIZED WATER KECK INTERFACE F WATTERA NITRIC ACID NUMBER OF FILTERS USEI PRESS/VAC FILTER NONE- Dedicated Tubing NUMBER OF FILTERS USEI	TUSED: ROBE
ANALYTICAL PARAMETERS	SAMPLE BOTTLE
NUMBER FILTERED METHOD REQUIRED COLLECTED TCL.VOCs 82608 N HCW4degC 2x 40mL 2 Image: State of the state of th	Ec / Px // / / / / / / / / / / / / / / / /
NOTES AND SAMPLE OBSERVATIONS Stabilization is considered achieved when the	ee consecutive readings are taken at 3 to 5 mln.
intervels within the following limits: Temp 3 %; Turbidity 10% > Ihan 1 NTU; D) D-10%; Sp. Cond 3%; pH - 0.1 unit; ORP - 10 m
SIGNATURE	yen -

e se

مانا مرمعين المرار

NACTED ENCI		CONCULTING	100							
FIELD DAT		D - GROU		R SAMF	PLING				PAGE <u>1</u> OF	
PROJECT Active	Industrial Unifor	Eizene	ŝ						DATE 12.11.	07
	PW-2	,							BOTTLE	_
					START	300	END 14	2.5	TIME 1414	
SAMPLE ISIS ID	L Prop		r	i						
	CTED	MS ID								
		MSD ID	L]				
WATER LEVEL /	WELL DATA				PROTE	CTIVE		PROTECT	D./E	
MEASURED WELL DEPTH	10.45	T (TOR) HIS		— та	OR) (FROM	G STICKUP	Fi Fi	CASING / DIFFEREN		T
DEPTH TO WATER	8.79	T (TOR) SC		FI FI	WELL DIAME	TÈR	L IN	WELL MATERIAL	HOPE	
HEIGHT OF	· · · · · · · · · · · · · · · · · · ·	×	0.04 (Im)	2 IN)	-	· · ·			Land the second s	
WATER COLU	MN 1.60	FT x	0.65 GALIFT (4 IN) =	0.068	GALVOL	TOTAL	VOLUME PURG	SED 4.2.1 G	AÚ.
Total purge vol	ume = (m) per mi	in.) x time (min.) :	c 0.00026 gal/m	1	AMBIE		Э _{РРМ}	WELL MOL	лн 0.7 рр	M
URGE DATA						mslein				
TIME	DEPTH TO	PURGE RATE	TEMP.		TURBIDITY	SPEC. COND.		0		
m lans	VVAIER (II)	(mL/min)	(degrees C)	DH (units)	L (NTU)	i (Wilmoolem)	D:O: (mg/L)	ORP (mV)	Silfie	
1320	Hask	y to	Yer D	300 M						
1327	8-79	300	13.23	6.49	71000	398	1.89	159.3		-
1332	8.79	300	13.87	6 55	71000	402	1.58	125.8		-
1337	8.79	300	13.90	6.57	21000	406	1.44	1162		
1342	8.79	300	13.93	6.59	399	408	1.42	1097		
1347	8.79	300	13.89	6.59	307	409	1.37	102.7	·	_
1352	8.78	300	13.95	6.60	286	412	1.37	94.0		
1357	8.78	300	13.89	6.63	234	416	2.4	836	Cleaned out Ph-th	4
1402	8.79	300	14.0	6.61	180	418	1.43	80.		_
1407	8.79	300	14.06	6.5	75	119 1170	1.38	11.0	·····	
14 12	0.79	300	15,46	6.61	1/9	7.40	1.38	14. 7		
	CUMENTATIO	N TALTIC PUMP ERSIBLE PUMP ILICON TUBING IN/SILICON TUBI ERA E FILTER WAC FILTER		N FLUIDS US METHANOL LIQUINOX POTABLE W DEIONIZED HEXANE NITRIC ACIL NONE- Dedi	ED ATER WATER Caled Tubing		WATER LEVEL	EQUIPMENT U RIC COND. PRO ACTIVATED NTERFACE PRO	SED)8E 	
	RAMETERS TCL [™] OC₅		METHOD <u>NUMBER</u> 82608	<u>FILTER</u> N	PRESERV ED METH HCl/4d	/ATION VC QD REC egC タン て	DLUME QUIRED (40mL		SAMPLE BOTTL EC, PW 2 / / / / / / / / / / / / / / /	F / / / / / /
NOTES AND SAM	MPLE OBSER	VATIONS			- 	Stabilizati	on is considered ac	hieved when three c	onsecutivo roadings are laken at	3 to 5 min.
Clea	ned out	Flothr	n Ce li P	1353	}	intervals i Temp 3	within the following I %; Turbidity 10% >	iniis: • than 1 NTU; DO - 1	10%; Sp. Cond 3%; pH - 0,1 un	nî; orp - 10
	-				-	SIGNATU	RE: Mu	in 11	Hele_	
						RECEIVED	ВҮ;	•		
			· · · · · ·							

MACTEC END	NEEDING	CONCURTING	INC						· · · · · · · · · · · · · · · · · · ·		
FIELD DAT		RD - GROU	, INC. INDWATE	ER SAMI	PLING			•	PAGE OF	1	
PROJECT Active	Industrial Unifer	m Eugen	e's						DATE 12-12-0	7	
WELLID	PW-3	-							BOTTLE		
SAMPLE ISIS ID	EL	PW-3			START	0045	END 091	50	TIME 0940		
	MPLES	DUPLICATE ID							,		
COLLE	CTED	MS ID MSD ID	E	C PW	5 M 5 5 M 5 D						
WATER LEVEL /	WELL DATA										
MEASURED WELL DEPTH	9.80	T (TOR) HIS		ा (1	PROT CASIN FOR) (FROM	ECTIVE IG STICKUP I GROUND)	F	PROTECTI CASING / V DIFFEREN	VE VELLF	ŕ	
DEPTH TO WATER	6.75	T (TOR) LEI					1 _{IN}	WELL MATERIAL	HDPE]	
HEIGHT OF WATER COLUN	an 3.05	FT ×	0.16 GAL/FT 0.65 GAL/FT	(2 IN) (4 IN) =	0.13	GALVOL		VOLUME PURG	ED 2.96 GAI		
Total purge volu	me = (mi per mi	in.) x time (min.) y	0.00026 gal/m	l.	AMBIE		D PPM	WELL MOU			
PURGE DATA					not while	MS/cm	······································				
TIME	DEPTH TO WATER (ft)	PURGE RATE (mL/min)	TEMP. (degrees C)	pH (Units)	TURBIDITY (NTU)	SPEC, COND. (uhmos/em)	D.O. (mg/L)	ORP (mV)	Comments		
0902	Begin	Pure	ing	0 7	00 ml/	M.I.					
0711	696	360	11.04	5.85		96	5.93	187.5	elear	_	
0921	6,76	300	10.99	5.07		95	1.59	147.5			
0926	6.96	300	11.00	5.95		96	1.48	154 2		-	
0931	6.96	300	11.00	5.87	-	97	1.46	149.9		-	
936	6.96	300	10.98	5.90		78	1.43	14-6.8	1,		
0940	Coller	t Sau	-pte [ECPU	3						
									-		
· · · ·		· · ·				-					
EQUIPMENT DOC	UMENTATIO	N:	· · · · · · · · · · · · · · · · · · ·			······································					
PURGING SAM	IPLING PERIST SUBME BLADDE PVC/SIL TEFLON WATTE IN LINE PRESS/	ALTIC: PUMP RSIBLE: PUMP ER PUMP JCON TUBING JSILICON TUBIN RÁ FILTER VAC FILTER	G DECO	I FLUIDS USE METHANOL LIQUINOX POTABLE W DEIONIZED I HEXANE NITRIC ACID NONE- Dedic	ED ATER WATER alled Tubing	 [-	WATER LEVEL	EQUIPMENT USI NC COND. PROB ACTIVATED ITERFACE PROP 	ED 1927 - 1927 -		
ANALYTICAL PAR	RAMETERS		METHOD NUMBER	EILTER	PRESERVI			SAMPLE	SAMPLE BOTTLE		
	TCL.VOCs		82608 P	N 19 19	HCl/4de	ε <u></u> <i>β</i> × Ζ	40mL. 16 84		EC.PW3 EC.PW3 MSI EC.PW3MSI		
NOTES AND SAM	PLE OBSERV	ATIONS				Stabilizatio Intervals w Temp: - 3 f	n is considered achi ithin the following lin %; Turbidity 10% > t	eved when three con hits; han 1 NTU; DO - 109	seculivo readings are taken at 3 t %: Sp. Cond3%; pH - 0,1 unit; (o.5 min. DRP - 10	
						SIGNATUR RECEIVED B	e: <u></u> Y:	3	igen		
MACTEC ENGINEERING & CONSULTING, INC.	PAGE 1_OF_1_										
---	---	--	--	--	--	--	--	--	--	--	--
FIELD DATA RECORD - GROUNDWATER SAMPLING											
PROJECT Active Industrial Uniform ENgene's	DATE 12- 11.07										
WELL ID PW- 8											
QC SAMPLES DUPLICATE ID											
COLLECTED MS ID											
WATER LEVEL / WELL DATA	· · · · · · · · · · · · · · · · · · ·										
MEASURED HISTORICAL CASING S WELL DEPTH 11.2.5 FT (TOR) WELL DEPTH T (TOR) (FROM GI	IVE PROTECTIVE TICKUP CASING / WELL ROUND) FT DIFFERENCE FT										
	MATERIAL HDPF										
HEIGHT OF $0.16 \text{ GAL/FT (2 IN)}$ WATER COLUMN 3.95 FT X $0.65 \text{ GAL/FT (2 IN)}$ O.16 GAL/FT (4 IN) =											
Total purge volume = (ml per min.) x time (min.) x 0.00026 gal/ml AMBIENT	AIR O PPM WELL MOUTH										
PURGE DATA											
TIME DEPTH TO PURGE RATE TEMP. TURBIDITY SI	PEC. COND.										
WATER (ft) (mL/min) (degrees C) pH (units) (NTU) (1457) Begin D. (A. @ ROD. 1)	uhmos/cm) D.O. (mo/L) ORP (mV) Comments										
1800 730 300 1361 683 334	358 336 228										
1505 7.36 300 13.74 6.68 11.5	358 2.35 18.8										
1510 7.30 300 13.84 6.62 263	359 1.84 13.8										
1515 7.29 300 13,93 6.59 15 3	354 1.35 10.6										
1520 7.29 300 3.96 6.59 5.39	359 1.34 3.4										
1525 7.30 300 140 6.58 2.96	360 1.31 -2.9										
1330 7.30 300 13.99 6.58 2.20	360 1.14 - 7.3										
1535 7.29 300 14.0 6.57 2.24	360 1.05 -124										
1540 7.30 300 13.99 6.58 2.22	360 1.03 -11.5										
1545 1.50 500 13.99 6.58 L.15	360 1.0 2 -120										
EQUIPMENT DOCUMENTATION											
PURGING SAMPLING DECON FLUIDS USED PERISTALTIC PUMP METHANOL SUBMERSIBLE PUMP LIQUINOX BLADDER PUMP POTABLE WATER PVC/SILICON TUBING DEIONIZED WATER TEFLON/SILICON TUBING HEXANE WATTERA NITRIC ACID IN LING FILTER NONE- Dedicated Tubing	WATER LEVEL EQUIPMENT USED X ELECTRIC COND. PROBE FLOAT ACTIVATED KECK INTERFACE PROBE NUMBER OF FILTERS USED										
ANALYTICAL PARAMETERS											
NUMBER FILTERED METHOD NUMBER FILTERED METHOD	VOLUME SAUTE REQUIRED COLLECTED 3x 40mL EC/PL8/ 2										
NOTES AND SAMPLE OBSERVATIONS	Stabilization is considered achieved when three consecutive readings are taken at 3 to 5 min.										
	intervals within the following limits: Temp3 %; Turbidity 10% > than 1 NTU; DO - 10%; Sp. Cond 3%; pH - 0.1 unit; ORP - 10 mV.										
	SIGNATURE: Laga-1. Laga-										
	RECEIVED BY:										

MACTEC EI	NGINEERING &	CONSULTING	INC.			<u>.</u>			PAGE	OF
FIELD D	ATA RECOF	D - GROU	NDWATE	R SAMP	LING		<u>.</u>			
ROJECT	tive Industrial Uniter	m Eugene	's						DATE 12	12.07
	PW-	6			START	1000		10		
AMPLE ISIS	ID CI				<u>Non</u>	1]
	SAMPLES	DUPLICATE ID		·····						
	JELEGIED	MS ID MSD ID								
NATER LEV	EL / WELL DATA		· · · · · · · · · · · · · · · · · · ·		DOOT	ENTRIE	•	Door	No.	Flushman
MEASURE WELL DEF	ь тн 6.20,	HIS T (TOR) WE		ាញ	CASIN CR) (FROM		FT	CASING /	WELL	FT
DEPTH TO WATER) <u> </u>	T (TOR)	REEŃ	T 4	WELL	TER.	IN	WELL MATERIAL	. HD	PE
HEIGHT O	F		0.16 GAL/FT	(2 IN)						
WATER CO	OLUMN	FT x	0.65 GAL/FT ((4 IN) = 5 IN)		GALIVOL	TOTAL	VOLUME PURC	ED	GAL
Total purge	volume = (ml per m	ìn.) x time (min.) x	: 0.00026 gal/m	I	AMBIE		РРМ	WELL MOI	лн	PPM
URGE DAT	A					· · · · · ·				<u> </u>
TIME	DEPTH TO	PURGE RATE	TEMP.	nH (unite)	TURBIDITY	SPEC. COND.	D.O. (moll)	0000	Commente	
We	11 Not	Ywyed	<u> </u>	10 Wat	1410) 					
:										
-	•									
					·····		-			
		-								
	SAMPLING SAMPLING SUBIN BLADD PVC/S TEFLC WATTI IN LINI PRESS	N. TALTIC PUMP ERSIBLE PUMP ILICON TUBING IN/SILICON TUBI RA FILTER SWAC FILTER		N FLUIDS USE METHANOL LIQUINOX POTABLE W/ DEIONIZED V HEXANE NITRIC ACID NONE- Dedic	D ATER VATER aled Tubing		WATER LEVEL ELECTI FLOAT KECKJ	EQUIPMENT U RIC COND. PRO ACTIVATED NTERFACE PRO	SED BE 	
IALYTICAL	PARAMETERS		METHOD		PRESER			SAMPLE	SAMP	
	TCL VÕCs	No	NUMBER B260B Sar Well	filteri N N Ple Is I	D METH Heildd Collee Xry !	oo Rei epc Z Z	<u>UURED</u> V 40mL		EC.PV	UMBERS / / / / / / / / / / / / / / / / / /
DTES AND	SAMPLE OBSER	VATIONS			<u>.</u>	Stabilizati Intervals o Temp, - 3	ion is considered acl within the following 1 %; Turbkity 10% >	hieved when three c mits; than 1 NTU; DO - 1	onsecutive reading: 10%; Sp. Cond 35	stare laken at 3 to 5 mi 6; pH = 0.1 unit; ORP =
					•	SIGNATU	RE: 1/12	- 1. 12	l-	

ÿ

APPENDIX E

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT DECEMBER 2007 EUGENE'S DRY CLEANERS LINDENHURST, NEW YORK

Introduction:

Eleven groundwater, ten soil, thirteen soil vapor, and nine air samples were collected by MACTEC at the Eugene's Dry Cleaners site in December 2007 and submitted for off-site laboratory analyses. Air and soil vapor samples were analyzed by Contest Analytical Laboratory located in East Longmeadow, Massachusetts and groundwater and soil samples were analyzed by Mitkem Laboratories located in Warwick, RI. A listing of samples included in this investigation is presented in Table 1. Samples were analyzed for the following parameters:

- Volatile organic compounds (VOCs) in air and soil vapor by EPA Method TO-15.
- Volatile organic compounds (VOCs) in groundwater by EPA Method 8260B.
- Volatile organic compounds (VOCs) in soil by EPA Method 8260B.

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2000).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002). Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. With the exception of the items discussed below, results are interpreted to be usable as reported by the laboratory. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected above the reported detection limit

- UJ = target analyte is not detected at the reported detection limit and is estimated
- J =concentration is estimated
- R = result was rejected during validation
- D = result was reported from a diluted analytical run.

A summary of the final field sample data is presented in Table 2. Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

Volatile Organic Compounds - Groundwater

Blank Contamination

The method blank (VBLK2N) reported a result for trichloroethene $(1.0\mu g/L)$. An action level was calculated at five times the detections reported in the blank. The results for trichloroethene in samples ECGW04, ECGW04DUP, ECPW8, and ECPW2 were less than the action level and were qualified as non-detect (U).

Initial Calibration

The initial calibration had relative response factors that were below the control limit of 0.05 for acetone (0.011) and 2-butanone (0.018). The results for these compounds were non-detect in samples ECGW05, ECGW04, ECGW04DUP, ECPW8, and ECPW2 and were qualified as rejected (R) due to the low response factors. In addition, the percent relative standard deviation between relative response factors was greater than the control limit of 30 for chloromethane (35). The results for chloromethane were qualified as estimated (J/UJ) in the samples listed above.

The initial calibration had relative response factors that were below the control limit of 0.05 for acetone (0.020) and 2-butanone (0.030). The results for these compounds were non-detect in samples ECGW02, ECGW03, ECPW3, ECPW1, ECP01, and EC02SUMP and were qualified as rejected (R) due to the low response factors.

Continuing Calibration

The continuing calibration had relative response factors that were below the control limit of 0.05 for acetone (0.011) and 2-butanone (0.023). The results for these compounds were non-detect in samples ECGW05, ECGW04, ECGW04DUP, ECPW8, and ECPW2 and were qualified as rejected (R) due to the low response factors. In addition, the percent differences between the initial and continuing calibration factors were greater than the control limit of 20 for methyl-tert-buty-ether (42), 2-butanone (28), 2,2-dichloropropane (23), 4-methyl-2-pentanone (36), 2-hexanone (36), naphthalene (29), 1,1,2-trichloro-1,2,2-trifluoromethane (30), methyl acetate (31), and methylcyclohexane (26). The results for these compounds were all non-detect in the samples listed above and were qualified as estimated (UJ) except 2-butanone which was rejected (R) due to low response factors.

The continuing calibration had relative response factors that were below the control limit of 0.05 for acetone (0.015) and 2-butanone (0.026). In addition, the percent difference between the initial and continuing calibration response factors was greater than the control limit of 20 for acetone (25). The results for these compounds were non-detect in sample ECPW3 and were qualified as rejected (R) due to the low response factors.

The continuing calibration had relative response factors that were below the control limit of 0.05 for acetone (0.016) and 2-butanone (0.026). The results for these compounds were non-detect in samples ECGW02, ECGW03, ECPW1, and ECP01 and were qualified as rejected (R) due to the low response factors.

The continuing calibration had relative response factors that were below the control limit of 0.05 for acetone (0.027) and 2-butanone (0.032). In addition, the percent difference between the initial and continuing calibration response factors was greater than the control limit of 20 for acetone (35). The results for these compounds were non-detect in sample EC02SUMP and were qualified as rejected (R) due to the low response factors.

Tentatively Identified Compounds

Tentatively Identified Compounds (TICS) were reported in accordance with method 8260B guidelines. No TICs were identified in the groundwater samples associated with this data set.

Volatile Organic Compounds - Soil

Blank Contamination

The method blank reported a result for naphthalene $(2.0\mu g/kg)$. An action level was calculated at five times the detections reported in the blank. The result for naphthalene in sample ECGS0403DUP was less than the action level and was qualified as non-detect (U).

P:\Projects\nysdec1\projects\Eugene's Dry Cleaners\4.0 Project Deliverables\4.1 Reports\VI Report\Final\Appendix E - DUSRs\DUSR_Eugene.doc

Surrogates

Samples ECGS0602, ECGS0502, and ECGS0303 reported percent recoveries for the surrogates toluene-d8 (138, 140, 130) and bromofluorobenzene (67, 68, 72) that were outside laboratory control limits. The samples were reanalyzed with similar results. All results associated with the initial analyses of samples ECGS0602, ECGS0502, and ECGS0303 were qualified as estimated (J/UJ).

Sample ECGS0403DUP reported a percent recovery for toluene-d8 (118) that was greater than laboratory control limits indicating a potential high bias. Positive results in sample ECGS0403DUP were qualified as estimated (J).

Samples ECSS02A00 and ECSS02B00 reported percent recoveries for the surrogate dibromofluorobenzene (23, 23) that were below laboratory control limits indicating a potential low bias. All results associated with samples ECSS02A00 and ECSS02B00 were qualified as estimated (J/UJ).

Internal Standards

Samples ECGS0403, ECGS0403DUP, and ECGS0703 reported low recoveries for the internal standard 1,4-dichlorobenzene-d4. The samples were reanalyzed with similar results. All compounds associated with this internal standard were non-detect in samples ECGS0403, ECGS0403DUP, and ECGS0703 and were qualified as estimated (UJ).

Sample ECGS0602 reported low recoveries for all three internal standards and samples ECGS0502 and ECGS0303 reported low recoveries for the internal standards chlorobenzene-d5 and 1,4-dichlorobenzene-d4. The samples were re-analyzed with similar results. All compounds associated with these internal standards were qualified as estimated (J/UJ) in the samples listed above.

Initial Calibration

The initial calibration had relative response factors that were below the control limit of 0.05 for acetone (0.025) and 2-butanone (0.020). All results for acetone were positive in samples ECGS0602, ECGS0502, ECGS0403, ECGS0403DUP, and ECGS0703 and were qualified as estimated (J). All results for 2-butanone were non-detect and were rejected (R) in the samples listed above due to the low response factors.

The initial calibration had relative response factors that were below the control limit of 0.05 for acetone (0.025) and 2-butanone (0.020). All results for acetone and 2-butanone were non-detect and were rejected (R) in samples ECGS0203 and ECGS0303 due to the low response factors.

The initial calibration had relative response factors that were below the control limit of 0.05 for acetone (0.038) and 2-butanone (0.049). All results for acetone and 2-butanone were non-detect and were rejected (R) in samples ECSS02A00, ECSS02B00, and ECSS0300 due to the low response factors.

Continuing Calibration

The continuing calibration had relative response factors that were below the control limit of 0.05 for acetone (0.021) and 2-butanone (0.019). All results for acetone were positive in samples ECGS0602, ECGS0403, ECGS0403DUP, and ECGS0703 and were qualified as estimated (J). All results for 2-butanone were non-detect and were rejected (R) in the samples listed above due to the low response factors. In addition, the percent difference between the initial and continuing calibration factors was greater than the control limit of 20 for cyclohexane (22). The results for cyclohexane were non-detect in the samples listed above and were qualified as estimated (UJ).

The continuing calibration had relative response factors that were below the control limit of 0.05 for acetone (0.027) and 2-butanone (0.021). All results for acetone and 2-butanone were non-detect and were rejected (R) in samples ECGS0203 and ECGS0303 due to the low response factors. In addition, the percent difference between the initial and continuing calibration response factors was greater than the

control limit of 20 for iodomethane (21) and vinyl acetate (21). The results for these compounds were nondetect in the samples listed above and were qualified as estimated (UJ).

Duplicates

The relative percent difference between sample ECGS0403 and its field duplicate was greater than the control limit of 50 for tetrachloroethene (74). The results for tetrachloroethene were qualified as estimated (J) in samples ECGS0403 and ECGS0403DUP.

Laboratory Control Sample

The LCSD had a percent recovery for naphthalene that was greater than laboratory control limits indicating a potential high bias. The result for naphthalene in sample ECSS02A00 was positive and was qualified as estimated (J).

Matrix Spike/Matrix Spike Duplicate

The MS/MSD associated with sample ECGS0403 reported a percent recovery for tetrachloroethene (143) that was greater than laboratory control limits indicating a potential high bias. The results for tetrachloroethene in samples ECGS0403 and ECGS0403DUP were positive and were qualified as estimated (J). In addition, the percent recoveries for 1,2,4-trichlorobenzene (57) and 1,2,3-trichlorobenzene (57) were below laboratory control limits indicating a potential low bias. The results for these compounds were non-detect in samples ECGS0403 and ECGS0403DUP and were qualified as estimated (UJ).

Tentatively Identified Compounds

Tentatively Identified Compounds (TICS) were reported in accordance with method 8260B guidelines. TICs were reported in the soil samples ECGS0602, ECGS0403, and ECSS02A00 and are identified in Table 2.5.

Volatile Organic Compounds – Air/Soil Vapor

Blank Contamination

The method blank reported a detection of methylene chloride $(0.26 \,\mu g/m^3)$. An action level was calculated at ten times the detection reported in the blank for methylene chloride and was then multiplied by any applicable dilution factors. The results for methylene chloride were less than the action level in samples ECSS01, ECFA01A, ECFA01B, ECFA02, ECSS02B, ECSS02A, ECFA03, ECSS04, ECFA04, ECBA03-02, ECAA01, ECAA02, EXSV06, ECSV05, ECSV04, ECSV07 and ECSV02 and were qualified as nondetect (U).

Continuing Calibration

The continuing calibration had percent differences between the initial and continuing calibration response factors that were greater than the control limit of 25 for ethanol (-36), 2-butanone (34), vinyl acetate (29), ethyl acetate (36), tetrahydrofuran (34), cyclohexane (26), 4-methyl-2-pentanone (35), 2-hexanone (32), 1,2,4-trichlorobenzene (-27) and hexachlorobutadiene (33). The results for these compounds were qualified as estimated (J/UJ) in samples ECSS01, ECFA01A, ECFA01B, ECFA02, ECSS02B, ECSS02A, ECFA03, ECSS04, ECBA04, ECFA04, ECSS03-02, ECBA03-02, ECAA01, ECAA02, ECSV06, ECSV05, ECSV04, ECSV07, ECSV04-DUP, and ECSV02.

The continuing calibration had percent differences between the initial and continuing calibration response factors that were greater than the control limit of 25 for acetone (-34), ethanol (-34), and cyclohexane (26). The results for these compounds were non-detect in sample ECSV03 and were qualified as estimated (UJ).

Laboratory Control Sample

The LCS had percent recoveries for 2-butanone (65) and 4-methyl-2-pentanone (61) that were less than the control limit of 70-130 indicating a potential low bias. In addition, the result for ethanol (157) was greater than the control limit of 50-150 indicating a potential high bias. Results for 2-butanone and 4-methyl-2-pentanone were qualified as estimated (J/UJ) in samples ECSS01, ECFA01A, ECFA01B, ECFA02, ECSS02B, ECSS02A, ECFA03, ECSS04, ECBA04, ECFA04, ECSS03-02, ECBA03-02, ECAA01, ECAA02, ECSV06, ECSV05, ECSV04, ECSV07, ECSV04-DUP, and ECSV02. Positive results for ethanol, in the samples listed above, were qualified as estimated (J).

The LCS had a percent recovery for 4-methyl-2-pentanone (69) that was less than the control limit of 70-130 indicating a potential low bias. The result for 4-methyl-2-pentanone was non-detect in sample ECSV03 and was qualified as estimated (UJ).

Duplicates

The relative percent differences between sample ECSV04 and its field duplicate were greater than the control limit of 30 for acetone (80), benzene (33), carbon disulfide (53), and heptane (36). The results for these compounds were qualified as estimated (J) in samples ECSV04 and ECSV04DUP. In addition, the results for 2-butanone, ethanol, and 4-methyl-2-pentanone were inconsistent. The results from the original sample were all non-detect while the results reported in the field duplicate were greater than two times the reporting limit. The results for these compounds were qualified as estimated (J/UJ) in samples ECSV04 and ECSV04DUP.

Miscellaneous

Samples ECFA02 and ECFA03 had final pressure readings of +1"Hg upon receipt at the laboratory. Based on the positive pressure readings at the time of receipt, the sampling intervals and flow rates for the canisters are in question. All results associated with the samples above were qualified as estimated (J/UJ).

The results for ethanol in samples ECSS01, ECFA01B, ECBA04, and ECFA04 were found to be greater than the calibration range of the instrument and were qualified as estimated (J).

The result for acetone in samples ECFA01B, ECFA02, ECFA03, ECSS04, ECBA03-02, ECSV06, ECSV05, and ECSV02 were found to be greater than the calibration range of the instrument and were qualified as estimated (J).

6 7 .0	a		26.0.2	D	-
SDG	Sample Name	Date Collected	Method	Parameter	Туре
LIMT-12191	ECSS01	12/11/2007	TO-15	VOC	FS
LIMT-12191	ECFA01A	12/11/2007	TO-15	VOC	FS
LIMT-12191	ECFA01B	12/11/2007	TO-15	VOC	FS
LIMT-12191	ECFA02	12/11/2007	TO-15	VOC	FS
LIMT-12404	ECSV01	12/19/2007	TO-15	VOC	FS
LIMT-12191	ECSS02B	12/12/2007	TO-15	VOC	FS
LIMT-12191	ECSS02A	12/11/2007	TO-15	VOC	FS
LIMT-12191	ECFA03	12/11/2007	TO-15	VOC	FS
LIMT-12191	ECSS04	12/11/2007	TO-15	VOC	FS
LIMT-12191	ECBA04	12/11/2007	TO-15	VOC	FS
LIMT-12191	ECFA04	12/11/2007	TO-15	VOC	FS

TABLE 1 Sample Summary

P:\Projects\nysdec1\projects\Eugene's Dry Cleaners\4.0 Project Deliverables\4.1 Reports\VI Report\Final\Appendix E - DUSRs\DUSR_Eugene.doc

LIMT-12191	ECSS03-02	12/12/2007	TO-15	VOC	FS
LIMT-12191	ECBA03-02	12/12/2007	TO-15	VOC	FS
LIMT-12191	ECAA01	12/13/2007	TO-15	VOC	FS
LIMT-12191	ECAA02	12/13/2007	TO-15	VOC	FS
LIMT-12191	ECSV06	12/12/2007	TO-15	VOC	FS
LIMT-12191	ECSV05	12/12/2007	TO-15	VOC	FS
LIMT-12191	ECSV04	12/12/2007	TO-15	VOC	FS
LIMT-12191	ECSV07	12/12/2007	TO-15	VOC	FS
LIMT-12191	ECSV04-DUP	12/12/2007	TO-15	VOC	FD
LIMT-12191	ECSV03	12/13/2007	TO-15	VOC	FS
LIMT-12191	ECSV02	12/13/2007	TO-15	VOC	FS
F1857	ECGS0203	12/12/2007	SW8260	VOC	FS
F1857	ECGW02	12/12/2007	SW8260	VOC	FS
F1857	ECGS0303	12/12/2007	SW8260	VOC	FS
F1857	ECGS0303	12/12/2007	SW8260	VOC	FS
F1857	ECGW03	12/12/2007	SW8260	VOC	FS
F1839	ECGS0602	12/11/2007	SW8260	VOC	FS
F1839	ECGS0602	12/11/2007	SW8260	VOC	FS
F1839	ECGS0502	12/11/2007	SW8260	VOC	FS
F1839	ECGS0502	12/11/2007	SW8260	VOC	FS
F1839	ECGW05	12/11/2007	SW8260	VOC	FS
F1839	ECGS0403	12/11/2007	SW8260	VOC	FS
F1839	ECGS0403DUP	12/11/2007	SW8260	VOC	FD
F1839	ECGS0403DUP	12/11/2007	SW8260	VOC	FD
F1839	ECGW04	12/11/2007	SW8260	VOC	FS
F1839	ECGW04DUP	12/11/2007	SW8260	VOC	FD
F1839	ECGS0703	12/11/2007	SW8260	VOC	FS
F1839	ECGS0703	12/11/2007	SW8260	VOC	FS
F1857	ECPW3	12/12/2007	SW8260	VOC	FS
F1857	ECPW1	12/12/2007	SW8260	VOC	FS
F1839	ECPW8	12/11/2007	SW8260	VOC	FS
F1857	ECP01	12/12/2007	SW8260	VOC	FS
F1839	ECPW2	12/11/2007	SW8260	VOC	FS
F1839	TRIPBLANK	12/11/2007	SW8260	VOC	TB
F1904	ECSS02A00	12/19/2007	SW8260	VOC	FS
F1904	ECSS02B00	12/19/2007	SW8260	VOC	FS
F1904	ECSS0300	12/19/2007	SW8260	VOC	FS
F1904	EC02SUMP	12/19/2007	SW8260	VOC	FS
F1904	TRIP BLANK	12/19/2007	SW8260	VOC	ТВ

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2000. "Analytical Services Protocols"; June 2000.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Data Validator: Amanda Zeidler

dula zeroh Signature

Date February 4, 2008

Reviewed by Julie Ricardi for:

Quality Assurance Officer: Chris Ricardi, NRCC-EAC

ris Ricarda

Date: 2/15/08

DATA USABILITY SUMMARY REPORT JANUARY 2008 EUGENE'S DRY CLEANERS LINDENHURST, NEW YORK

Introduction:

Four air samples were collected by MACTEC at the Eugene's Dry Cleaners site in January 2008 and submitted for off-site laboratory analyses. Air samples were analyzed by Contest Analytical Laboratory located in East Longmeadow, Massachusetts. A listing of samples included in this investigation is presented in Table 1. Samples were analyzed for the following parameters:

• Volatile organic compounds (VOCs) in air by EPA Method TO-15.

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002). Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. With the exception of the items discussed below, results are interpreted to be usable as reported by the laboratory. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected above the reported detection limit UJ = target analyte is not detected at the reported detection limit and is estimated J = concentration is estimated

A summary of the final field sample data is presented in Table 2. Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

Volatile Organic Compounds – Air

Blank Contamination

Detections for 2-butanone (0.21 μ g/m³) and 2-hexanone (0.09 μ g/m³) are reported in the method blank. Action levels were established at five times the reported blank detections. The results for 2-butanone in samples ECBA05B and ECFA05, and 2-hexanone in samples ECAA03 and ECBA05B are less than the action limits and were qualified non-detect (U).

Initial Calibration

In the initial calibration, the percent relative standard deviation (RSD) for acetone (46) and ethanol (52) exceed the quality control (QC) criteria of 30. The results for acetone and ethanol were qualified estimated (J).

Continuing Calibration

In the continuing calibration, the percent difference for 1,3-butadiene (27), acetone (48), ethanol (37), carbon tetrachloride (26), cyclohexane (29), 4-methyl-2-pentanone (28), 2-hexanone (30), and 1,2,4-trichlorobenzene (38) exceeds the QC limit of 25. Results for acetone and ethanol were qualified

previously under the initial calibration criteria. Results for 1,3-butadiene, carbon tetrachloride, cyclohexane, 4-methyl-2-pentanone, 2-hexanone, and 1,2,4-trichlorobenzene were qualified estimated (J/UJ).

Miscellaneous

The reported result for ethanol in sample ECFA05 exceeds the calibration range of the instrument. The result was qualified estimated (J).

SDG	Sample Name	Date Collected	Method	Parameter	Туре
LIMT-12926	ECBA05A	1/15/2008	TO-15	VOC	FS
LIMT-12926	ECBA05B	1/15/2008	TO-15	VOC	FS
LIMT-12926	ECFA05	1/15/2008	TO-15	VOC	FS
LIMT-12926	ECAA03	1/15/2008	TO-15	VOC	FS

TABLE 1 **Sample Summary**

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Data Validator: Wolfgang D. Calicchio

Signature

Moffy D. Clinkes Date February 19, 2008

Reviewed by:

Quality Assurance Officer: Chris Ricardi, NRCC-EAC

Chris Ricard

Date: 3/18/08

I ah Sample Id	F1839.03A	F1839-06A	F1839-07A	F1839-09A	F1839-10A	F1839-11A	F1857-02A	
Lab Sample Tu Lab Sample Delivery Groun	F1839	F1839	F1839	F1839	F1839	F1839	F1857	
Lab Sample Derivery Group	DP-05	DP-04	DP-04	PW-8	PW.2	00	DP-02	
Field Sample Id	ECGW05	ECGW04	ECGW04DUP	ECPW8	ECPW2	TRIPRLANK	ECGW02	
Field Sample Date	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/12/2007	
Oc Code	FS	FS	FD	FS	FS	TB	FS	
Parameter	Result Oualifier							
1.1.1.2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1.1.1-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1.1.2.2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1.1.2-Trichloro-1.2.2-Trifluoroethane	5 UJ	5 U	5 U					
1.1.2-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1.1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1.1-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2,3-Trichlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2,3-Trichloropropane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2,4-Trichlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2,4-Trimethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dibromo-3-chloropropane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dibromoethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloropropane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,3,5-Trimethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,3-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,3-Dichloropropane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,4-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
2,2-Dichloropropane	5 UJ	5 U	5 U					
2-Butanone	R	R	R	R	R	5 U	R	
2-Chlorotoluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
2-Hexanone	5 UJ	5 U	5 U					
4-Chlorotoluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
4-iso-Propyltoluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
4-Methyl-2-pentanone	5 UJ	5 U	5 U					
Acetic acid, methyl ester	5 UJ	5 U	5 U					
Acetone	R	R	R	R	R	5 U	R	
Benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromochloromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromoform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromomethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Carbon disulfide	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Carbon tetrachloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chlorodibromomethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	

Lab Sample Id	F1839-03A	F1839-06A	F1839-07A	F1839-09A	F1839-10A	F1839-11A	F1857-02A
Lab Sample Delivery Group	F1839	F1839	F1839	F1839	F1839	F1839	F1857
Loc Name	DP-05	DP-04	DP-04	PW-8	PW-2	QC	DP-02
Field Sample Id	ECGW05	ECGW04	ECGW04DUP	ECPW8	ECPW2	TRIPBLANK	ECGW02
Field Sample Date	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/12/2007
Qc Code	FS	FS	FD	FS	FS	ТВ	FS
Parameter	Result Qualifier						
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5 UJ	5 UJ	1 J	1 J	5 UJ	5 U	5 U
Cis-1,2-Dichloroethene	5 U	1 J	1 J	9	5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethyl benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Iodomethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl cyclohexane	5 UJ	5 U	5 U				
Methyl Tertbutyl Ether	5 UJ	5 U	5 U				
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Naphthalene	5 UJ	5 U	5 U				
o-Xylene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Propylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Styrene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
tert-Butylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	1 J	5 U	1 J	25	1 J	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Xylene, m/p	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Xylenes, Total	5 U	5 U	5 U	5 U	5 U	5 U	5 U

Notes:

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by EPA Method 8260B QC Code: FS = Field Sample FD = Field Duplicate TB = Trip Blank Qualifiers: U = Not detected at a concentration greater than the reporting limit J = Estimated value

R = Result was rejected during validation

Table 2.1: Groundwater VOC Results

Lab Sample Id	F185'	7-04A	F1857	7-05A	F1857	'-06A	F185	7-07A	F1904	I-04A	F1904	-05A
Lab Sample Delivery Group	F1	857	F18	357	F18	857	F1	857	F19	904	F19	004
Loc Name	DP	-03	PV	V-3	PW	7-1	Р	-1	SUM	1P-2	Q	С
Field Sample Id	ECG	GW03	ECI	PW3	ECP	PW1	EC	P01	EC028	SUMP	TRIP F	BLANK
Field Sample Date	12/12	/2007	12/12	/2007	12/12/	/2007	12/12	/2007	12/19	/2007	12/19	/2007
Qc Code	F	rs	F	S	F	S	FS		FS		Т	B
Parameter	Result	Qualifier										
1,1,1,2-Tetrachloroethane	5	U	5	U	5	U	5	U	5	U	5	U
1,1,1-Trichloroethane	5	U	5	U	5	U	5	U	5	U	5	U
1,1,2,2-Tetrachloroethane	5	U	5	U	5	U	5	U	5	U	5	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	5	U	5	U	5	U	5	U	5	U	5	U
1,1,2-Trichloroethane	5	U	5	U	5	U	5	U	5	U	5	U
1,1-Dichloroethane	5	U	5	U	5	U	5	U	5	U	5	U
1,1-Dichloroethene	5	U	5	U	5	U	5	U	5	U	5	U
1,1-Dichloropropene	5	U	5	U	5	U	5	U	5	U	5	U
1,2,3-Trichlorobenzene	5	U	5	U	5	U	5	U	5	U	5	U
1,2,3-Trichloropropane	5	U	5	U	5	U	5	U	5	U	5	U
1,2,4-Trichlorobenzene	5	U	5	U	5	U	5	U	5	U	5	U
1,2,4-Trimethylbenzene	5	U	5	U	5	U	5	U	5	U	5	U
1,2-Dibromo-3-chloropropane	5	U	5	U	5	U	5	U	5	U	5	U
1,2-Dibromoethane	5	U	5	U	5	U	5	U	5	U	5	U
1,2-Dichlorobenzene	1	J	5	U	5	U	2	J	5	U	5	U
1,2-Dichloroethane	5	U	5	U	5	U	5	U	5	U	5	U
1,2-Dichloropropane	5	U	5	U	5	U	5	U	5	U	5	U
1,3,5-Trimethylbenzene	5	U	5	U	5	U	5	U	5	U	5	U
1,3-Dichlorobenzene	5	U	5	U	5	U	5	U	5	U	5	U
1,3-Dichloropropane	5	U	5	U	5	U	5	U	5	U	5	U
1,4-Dichlorobenzene	5	U	5	U	5	U	5	U	5	U	5	U
2,2-Dichloropropane	5	U	5	U	5	U	5	U	5	U	5	U
2-Butanone		R		R		R		R		R	5	U
2-Chlorotoluene	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	5	U	5	U	5	U	5	U	5	U	5	U
4-Chlorotoluene	5	U	5	U	5	U	5	U	5	U	5	U
4-iso-Propyltoluene	5	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone	5	U	5	U	5	U	5	U	5	U	5	U
Acetic acid, methyl ester	5	U	5	U	5	U	5	U	5	U	5	U
Acetone		R		R		R		R		R	5	U
Benzene	5	U	5	U	5	U	5	U	5	U	5	U
Bromobenzene	5	U	5	U	5	U	5	U	5	U	5	U
Bromochloromethane	5	U	5	U	5	U	5	U	5	U	5	U
Bromodichloromethane	5	U	5	U	5	U	5	U	5	U	5	U
Bromoform	5	U	5	U	5	U	5	U	5	U	5	U
Bromomethane	5	U	5	U	5	U	5	U	5	U	5	U
Carbon disulfide	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	U	5	U	5	U	5	U	5	U	5	U
Chlorobenzene	5	U	5	U	5	U	5	U	5	U	5	U
Chlorodibromomethane	5	U	5	U	5	U	5	U	5	U	5	U
Chloroethane	5	U	5	U	5	U	5	U	5	U	5	U

Table 2.1: Groundwater VOC Results

Lab Sample Id	F1857-04A	F1857-05A	F1857-06A	F1857-07A	F1904-04A	F1904-05A
Lab Sample Delivery Group	F1857	F1857	F1857	F1857	F1904	F1904
Loc Name	DP-03	PW-3	PW-1	P-1	SUMP-2	QC
Field Sample Id	ECGW03	ECPW3	ECPW1	ECP01	EC02SUMP	TRIP BLANK
Field Sample Date	12/12/2007	12/12/2007	12/12/2007	12/12/2007	12/19/2007	12/19/2007
Qc Code	FS	FS	FS	FS	FS	TB
Parameter	Result Qualifier					
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5 U	5 U	5 U	5 U	5 U	5 U
Cis-1,2-Dichloroethene	5 U	5 U	5 U	2 J	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	5 U	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5 U	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5 U	5 U	5 U	5 U	5 U	5 U
Ethyl benzene	5 U	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	5 U	5 U	5 U	5 U	5 U	5 U
Iodomethane	5 U	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5 U	5 U	5 U	5 U	5 U	5 U
Methyl cyclohexane	5 U	5 U	5 U	5 U	5 U	5 U
Methyl Tertbutyl Ether	5 U	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5 U	5 U	5 U	5 U	5 U	5 U
Naphthalene	5 U	5 U	5 U	5 U	5 U	5 U
o-Xylene	5 U	5 U	5 U	5 U	5 U	5 U
Propylbenzene	5 U	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5 U	5 U	5 U	5 U	5 U	5 U
Styrene	5 U	5 U	5 U	5 U	5 U	5 U
tert-Butylbenzene	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5 U	3 J	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5 U	1 J	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	5 U	5 U	5 U	2 J	5 U	5 U
Xylene, m/p	5 U	5 U	5 U	5 U	5 U	5 U
Xylenes, Total	5 U	5 U	5 U	5 U	5 U	5 U

Notes: Results in micrograms per liter (µg/L) Samples analyzed for VOCs by EPA Method 8260B QC Code: FS = Field Sample FD = Field Duplicate TB = Trip Blank Qualifiers: U = Not detected at a concentration greater than the reporting limit J = Estimated value R = Result was rejected during validation

Lab Sample Id	F183	9-01B	F183	9-02B	F183	9-04B	F183	9-05B	F183	9-08B	F185	7-01B	F185	7-03B
Lab Sample Delivery Group	F1	839	F1	839	F1	.839	F1	839	F1	.839	F1	857	F1	857
Loc Name	DP	- 06	DF	P-05	DI	P-04	DF	P-04	DI	P-07	DI	P-02	DF	2-03
Field Sample Id	ECG	S0602	ECG	S0502	ECG	S0403	ECGS0	403DUP	ECG	S0703	ECG	S0203	ECG	rS0303
Field Sample Date	12/11	/2007	12/11	/2007	12/1	1/2007	12/11	1/2007	12/11	1/2007	12/12	2/2007	12/12	2/2007
Qc Code	F	rs	I	FS]	FS	F	FD	FS		I	FS	F	FS
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1,2-Tetrachloroethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,1,1-Trichloroethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,1,2,2-Tetrachloroethane	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,1,2-Trichloro-1,2,2-Trifluoroethane	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,1,2-Trichloroethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,1-Dichloroethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,1-Dichloroethene	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,1-Dichloropropene	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,2,3-Trichlorobenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,2,3-Trichloropropane	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,2,4-Trichlorobenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,2,4-Trimethylbenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,2-Dibromo-3-chloropropane	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,2-Dibromoethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,2-Dichlorobenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,2-Dichloroethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,2-Dichloropropane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,3,5-Trimethylbenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,3-Dichlorobenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
1,3-Dichloropropane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
1,4-Dichlorobenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
2,2-Dichloropropane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
2-Butanone		R		R		R		R		R		R		R
2-Chlorotoluene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
2-Hexanone	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
4-Chlorotoluene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
4-iso-Propyltoluene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
4-Methyl-2-pentanone	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
Acetic acid, methyl ester	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
Acetone	16	J	2	J	2	J	2	J	2	J		R		R
Benzene	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
Bromobenzene	4	UJ	3	UJ	3	UJ	3	UJ	3	UJ	3	U	3	UJ
Bromochloromethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
Bromodichloromethane	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ
Bromoform	4	UJ	3	UJ	3	U	3	U	3	U	3	U	3	UJ

Lab Sample Id	F1839-01B	F1839-02B	F1839-04B	F1839-05B	F1839-08B	F1857-01B	F1857-03B
Lab Sample Delivery Group	F1839	F1839	F1839	F1839	F1839	F1857	F1857
Loc Name	DP-06	DP-05	DP-04	DP-04	DP-07	DP-02	DP-03
Field Sample Id	ECGS0602	ECGS0502	ECGS0403	ECGS0403DUP	ECGS0703	ECGS0203	ECGS0303
Field Sample Date	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/12/2007	12/12/2007
Qc Code	FS	FS	FS	FD	FS	FS	FS
Parameter	Result Qualifier						
Bromomethane	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Carbon disulfide	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Carbon tetrachloride	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Chlorobenzene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Chlorodibromomethane	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Chloroethane	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Chloroform	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Chloromethane	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Cis-1,2-Dichloroethene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
cis-1,3-Dichloropropene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Cyclohexane	4 UJ	3 U	3 UJ				
Dibromomethane	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Dichlorodifluoromethane	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Ethyl benzene	1 J	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Hexachlorobutadiene	4 UJ	3 U	3 UJ				
Iodomethane	4 UJ	3 UJ	3 U	3 U	3 U	3 UJ	3 UJ
Isopropylbenzene	4 UJ	3 U	3 UJ				
Methyl cyclohexane	4 UJ	3 U	3 UJ				
Methyl Tertbutyl Ether	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Methylene chloride	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
n-Butylbenzene	4 UJ	3 U	3 UJ				
Naphthalene	4 UJ	3 U	3 UJ				
o-Xylene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Propylbenzene	4 UJ	3 U	3 UJ				
sec-Butylbenzene	4 UJ	3 U	3 UJ				
Styrene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
tert-Butylbenzene	4 UJ	3 U	3 UJ				
Tetrachloroethene	8 J	8 J	11 J	24 J	6	1 J	2400 D
Toluene	6 J	1 J	1 J	1 J	1 J	3 U	3 UJ
trans-1,2-Dichloroethene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
trans-1,3-Dichloropropene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Trichloroethene	4 UJ	3 UJ	3 U	3 U	3 U	3 U	5 J
Trichlorofluoromethane	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ
Vinyl acetate	4 UJ	3 UJ	3 U	3 U	3 U	3 UJ	3 UJ
Vinyl chloride	4 UJ	3 UJ	3 U	3 U	3 U	3 U	3 UJ

La	b Sample Id	F183	9-01B	F183	89-02B	F1839-04B		F183	F1839-05B		9-08B	F1857-01B		F1857-03B					
Lab Sample Del	livery Group	F1	.839	F1839		F1839		F1839		F1839		F1839		F1839		F1	857	F1	857
	Loc Name	DI	DP-06		DP-05		DP-04		DP-04		P-07	DP-02		02 DP-03					
Fie	ld Sample Id	ECG	ECGS0602		S0502	ECG	S0403	ECGS0	403DUP	ECG	S0703	ECG	S0203	ECG	S0303				
Field	Sample Date	12/11	12/11/2007		12/11/2007		12/11/2007		12/11/2007		12/11/2007		2/2007	12/12/2007					
	Qc Code]	FS]	FS	FS		FD		FS		FS		FS					
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
Xylene, m/p		3 J		0.8	J	0.6	J	0.6	J	3	U	3	U	3	B UJ				
Xylenes, Total		3	J	0.8	J	0.6	J	0.6	J	3	U	3	U	3	B UJ				

Notes:

Results in micrograms per kilogram ($\mu g/kg$) Samples analyzed for VOCs by EPA Method 8260B QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

R = Result was rejected during validation

D = Result was reported from a diluted analytical run.

Lab Sample Id	F1904	4-01B	F190	4-02B	F1904	4-03B
Lab Sample Delivery Group	F1	904	F1	904	F19	904
Loc Name	SS-02A		SS-	02B	SS	-03
Field Sample Id	ECSS02A00		ECSS	02B00	ECSS	50300
Field Sample Date	12/19	/2007	12/19	/2007	12/19	/2007
Qc Code	F	S	F	TS .	F	S
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1,2-Tetrachloroethane	4	UJ	4	UJ	4	U
1,1,1-Trichloroethane	4	UJ	4	UJ	4	U
1,1,2,2-Tetrachloroethane	4	UJ	4	UJ	4	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	4	UJ	4	UJ	4	U
1,1,2-Trichloroethane	4	UJ	4	UJ	4	U
1,1-Dichloroethane	4	UJ	4	UJ	4	U
1,1-Dichloroethene	4	UJ	4	UJ	4	U
1,1-Dichloropropene	4	UJ	4	UJ	4	U
1,2,3-Trichlorobenzene	4	UJ	4	UJ	4	U
1,2,3-Trichloropropane	4	UJ	4	UJ	4	U
1,2,4-Trichlorobenzene	4	UJ	4	UJ	4	U
1,2,4-Trimethylbenzene	4	UJ	4	UJ	4	U
1,2-Dibromo-3-chloropropane	4	UJ	4	UJ	4	U
1,2-Dibromoethane	4	UJ	4	UJ	4	U
1,2-Dichlorobenzene	4	UJ	4	UJ	4	U
1,2-Dichloroethane	4	UJ	4	UJ	4	U
1,2-Dichloropropane	4	UJ	4	UJ	4	U
1,3,5-Trimethylbenzene	4	UJ	4	UJ	4	U
1,3-Dichlorobenzene	4	UJ	4	UJ	4	U
1,3-Dichloropropane	4	UJ	4	UJ	4	U
1,4-Dichlorobenzene	4	UJ	4	UJ	4	U
2,2-Dichloropropane	4	UJ	4	UJ	4	U
2-Butanone		R		R		R
2-Chlorotoluene	4	UJ	4	UJ	4	U
2-Hexanone	4	UJ	4	UJ	4	U
4-Chlorotoluene	4	UJ	4	UJ	4	U
4-iso-Propyltoluene	4	UJ	4	UJ	4	U
4-Methyl-2-pentanone	4	UJ	4	UJ	4	U
Acetic acid, methyl ester	4	UJ	4	UJ	4	U
Acetone		R		R		R
Benzene	4	UJ	4	UJ	4	U
Bromobenzene	4	UJ	4	UJ	4	U
Bromochloromethane	4	UJ	4	UJ	4	U
Bromodichloromethane	4	UJ	4	UJ	4	U
Bromoform	4	UJ	4	UJ	4	U

Lab Sample Id	F1904	4-01B	F1904	4-02B	F1904	4-03B	
Lab Sample Delivery Group	F1	904	F1	904	F1904		
Loc Name	SS-	02A	SS-	02B	SS	-03	
Field Sample Id	ECSS	02A00	ECSS	02B00	ECSS	50300	
Field Sample Date	12/19	/2007	12/19	/2007	12/19	/2007	
Qc Code	F	Ś	F	S	F	S	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Bromomethane	4	UJ	4	UJ	4	U	
Carbon disulfide	4	UJ	4	UJ	4	U	
Carbon tetrachloride	4	UJ	4	UJ	4	U	
Chlorobenzene	4	UJ	4	UJ	4	U	
Chlorodibromomethane	4	UJ	4	UJ	4	U	
Chloroethane	4	UJ	4	UJ	4	U	
Chloroform	4	UJ	4	UJ	4	U	
Chloromethane	4	UJ	4	UJ	4	U	
Cis-1,2-Dichloroethene	4	UJ	4	UJ	4	U	
cis-1,3-Dichloropropene	4	UJ	4	UJ	4	U	
Cyclohexane	4	UJ	4	UJ	4	U	
Dibromomethane	4	UJ	4	UJ	4	U	
Dichlorodifluoromethane	4	UJ	4	UJ	4	U	
Ethyl benzene	4	UJ	4	UJ	4	U	
Hexachlorobutadiene	4	UJ	4	UJ	4	U	
Iodomethane	4	UJ	4	UJ	4	U	
Isopropylbenzene	4	UJ	4	UJ	4	U	
Methyl cyclohexane	4	UJ	4	UJ	4	U	
Methyl Tertbutyl Ether	4	UJ	4	UJ	4	U	
Methylene chloride	4	UJ	4	UJ	4	U	
n-Butylbenzene	4	UJ	4	UJ	4	U	
Naphthalene	2	J	4	UJ	4	U	
o-Xylene	4	UJ	4	UJ	4	U	
Propylbenzene	4	UJ	4	UJ	4	U	
sec-Butylbenzene	4	UJ	4	UJ	4	U	
Styrene	4	UJ	4	UJ	4	U	
tert-Butylbenzene	4	UJ	4	UJ	4	U	
Tetrachloroethene	1	J	4	UJ	4	U	
Toluene	4	UJ	4	UJ	4	U	
trans-1,2-Dichloroethene	4	UJ	4	UJ	4	U	
trans-1,3-Dichloropropene	4	UJ	4	UJ	4	U	
Trichloroethene	0.9	J	4	UJ	4	U	
Trichlorofluoromethane	4	UJ	4	UJ	4	U	
Vinyl acetate	4	UJ	4	UJ	4	U	
Vinyl chloride	4	UJ	4	UJ	4	U	

	Lab Sample Id	F190	4-01B	F1904	4-02B	F1904	4-03B
	Lab Sample Delivery Group	F1	904	F19	904	F19	904
	Loc Name	SS-	02A	SS-	02B	SS	-03
	Field Sample Id	ECSS	02A00	ECSS	02B00	ECS	S0300
	Field Sample Date	12/19	/2007	12/19	/2007	12/19	/2007
	Qc Code	I	rs	F	S	F	rs
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier
Xylene, m/p		4	UJ	4	UJ	4	U
Xylenes, Total		4	UJ	4	UJ	4	U

Notes:

Results in micrograms per kilogram (μ g/kg) Samples analyzed for VOCs by EPA Method 8260B QC Code: FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

R = Result was rejected during validation

D = Result was reported from a diluted analytical rur

Lab Sample Id	07B48779	07B48780	07B48781	07B48784	07B48786	07B48787	
Lab Sample Delivery Group	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	
Loc Name	FA-01A	FA-01B	FA-02	FA-03	BA-04	FA-04	
Field Sample Id	ECFA01A	ECFA01B	ECFA02	ECFA03	ECBA04	ECFA04	
Field Sample Date	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	12/11/2007	
Qc Code	FS	FS	FS	FS	FS	FS	
Parameter	Result Qualifier						
1,1,1-Trichloroethane	0.25 U	0.25 U	0.29 J	0.25 UJ	0.25 U	0.25 U	
1,1,2,2-Tetrachloroethane	0.31 U	0.31 U	0.31 UJ	0.31 UJ	0.31 U	0.31 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.55	0.76	0.76 J	0.69 J	0.69	0.62	
1,1,2-Trichloroethane	0.25 U	0.25 U	0.25 UJ	0.25 UJ	0.25 U	0.25 U	
1,1-Dichloroethane	0.18 U	0.18 U	0.18 UJ	0.18 UJ	0.18 U	0.18 U	
1,1-Dichloroethene	0.18 U	0.18 U	0.18 UJ	0.18 UJ	0.18 U	0.18 U	
1,2,4-Trichlorobenzene	0.34 UJ						
1,2,4-Trimethylbenzene	0.44	0.93	1.9 J	1.6 J	0.8	0.23 U	
1,2-Dibromoethane	0.35 U	0.35 U	0.35 UJ	0.35 UJ	0.35 U	0.35 U	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.32 U	0.32 U	0.32 UJ	0.32 UJ	0.32 U	0.32 U	
1,2-Dichlorobenzene	0.27 U	0.27 U	0.27 UJ	0.27 UJ	0.27 U	0.27 U	
1,2-Dichloroethane	0.18 U	0.18 U	0.18 UJ	0.18 UJ	0.18 U	0.18 U	
1,2-Dichloropropane	0.21 U	0.21 U	0.21 UJ	0.21 UJ	0.21 U	0.21 U	
1,3,5-Trimethylbenzene	0.23 U	0.23 U	0.66 J	0.53 J	0.23 U	0.23 U	
1,3-Dichlorobenzene	0.27 U	0.27 U	0.27 UJ	0.27 UJ	0.27 U	0.27 U	
1,4-Dichlorobenzene	0.27 U	0.92	1.1 J	0.27 UJ	0.27	0.27 U	
2-Butanone	3.2 J	5.3 J	13 J	2.6 J	1.8 J	1.5 J	
2-Hexanone	0.48 J	1.1 J	0.18 UJ	0.18 UJ	0.18 UJ	0.18 UJ	
2-Propanol	1.5	20	500 J	18 J	16	48	
4-Ethyltoluene	0.23 U	0.27	0.88 J	0.4 J	0.23 U	0.23 U	
4-Methyl-2-pentanone	0.18 UJ						
Acetone	10	100 J	5700 J	280 J	43	47	
Benzene	1.1	2.2	1.5 J	1.6 J	1.1	1	
Benzyl chloride	0.24 U	0.24 U	0.24 UJ	0.24 UJ	0.24 U	0.24 U	
Bromodichloromethane	0.3 U	0.3 U	0.3 UJ	0.3 UJ	0.3 U	0.3 U	
Bromoform	0.46 U	0.46 U	0.46 UJ	0.46 UJ	0.46 U	0.46 U	
Bromomethane	0.18 U	0.18 U	0.18 UJ	0.18 UJ	0.18 U	0.18 U	
Butadiene, 1,3-	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U	0.1 U	
Carbon disulfide	1.5 U	1.5 U	1.5 UJ	1.5 UJ	1.5 U	1.5 U	
Carbon tetrachloride	0.4	0.57	0.51 J	0.57 J	0.57	0.45	
Chlorobenzene	0.21 U	0.21 U	0.21 UJ	0.21 UJ	0.21 U	0.21 U	
Chlorodibromomethane	0.39 U	0.39 U	0.39 UJ	0.39 UJ	0.39 U	0.39 U	
Chloroethane	0.12 U	0.12 U	0.12 UJ	0.12 UJ	0.12 U	0.12 U	
Chloroform	0.22 U	0.66	4.3 J	0.22 UJ	2.6	0.35	
Chloromethane	1.2	1.7	1.6 J	1.6 J	1.5	1.4	
Cis-1,2-Dichloroethene	0.18 U	0.18 U	0.18 UJ	0.18 UJ	0.18 U	0.18 U	

Lab Sample Id	07B4	48779	07B 4	07B48780		8781	07B 4	18784	07B 4	8786	07B48787	
Lab Sample Delivery Group	LIMT	-12191	LIMT	-12191	LIMT	-12191	LIMT	-12191	LIMT	-12191	LIMT	-12191
Loc Name	FA	-01A	FA-	FA-01B		FA-02		-03	BA	-04	FA-04	
Field Sample Id	ECF	A01A	ECF	A01B	ECFA02		ECFA03		ECH	BA04	ECH	FA04
Field Sample Date	12/11	/2007	12/11	/2007	12/11	12/11/2007		/2007	12/11/2007		12/11	/2007
Qc Code	I	FS	F	S	F	S	F	TS .	F	rs	F	S
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
cis-1,3-Dichloropropene	0.2	U	0.2	U	0.2	UJ	0.2	UJ	0.2	U	0.2	U
Cyclohexane	0.16	UJ	0.43	J	0.62	J	0.5	J	0.53	J	1.7	J
Dichlorodifluoromethane	2.4		3.2		3.2	J	3.3	J	4.6		7.3	
Ethanol	15	J	960	J	270	J	39	J	110	J	680	J
Ethyl acetate	0.17	UJ	6.8	J	200	J	4.2	J	0.17	UJ	0.17	UJ
Ethyl benzene	0.39		0.78		1.3	J	1.1	J	0.9		0.74	
Heptane	0.33		0.77		3.9	J	0.7	J	0.96		1.8	
Hexachlorobutadiene	2	UJ	2	UJ	2	UJ	2	UJ	2	UJ	2	UJ
Hexane	0.7		1.4		0.17	UJ	3.4	J	3.3		2.2	
Methyl Tertbutyl Ether	0.17	U	0.17	U	0.17	UJ	0.17	UJ	0.17	U	0.17	U
Methylene chloride	2.5	U	2.4	U	2	UJ	3	UJ	15		2.6	U
Naphthalene	0.58	U	0.58	U	0.58	UJ	0.9	J	0.66		0.58	U
o-Xylene	0.43		0.82		1.6	J	1	J	0.7		0.51	
Propylene	0.31	U	0.31	U	0.31	UJ	0.31	UJ	0.31	U	0.31	U
Styrene	0.19		0.61		3.9	J	47	J	1.1		0.19	
Tetrachloroethene	0.55		0.92		78	J	14	J	10		3.6	
Tetrahydrofuran	0.66	J	0.27	UJ	0.27	UJ	0.27	UJ	0.27	J	0.27	UJ
Toluene	2.4		6.8		140	J	19	J	5		26	
trans-1,2-Dichloroethene	0.18	U	0.18	U	0.18	UJ	0.18	UJ	0.18	U	0.18	U
trans-1,3-Dichloropropene	0.2	U	0.2	U	0.2	UJ	0.2	UJ	0.2	U	0.2	U
Trichloroethene	0.25	U	0.25	U	0.53	J	0.25	UJ	0.25	U	0.25	U
Trichlorofluoromethane	1.2		1.8		1.6	J	1.6	J	1.6		1.6	
Vinyl acetate	0.32	UJ	0.32	UJ	0.32	UJ	0.32	UJ	0.32	UJ	0.32	UJ
Vinyl chloride	0.12	U	0.12	U	0.12	UJ	0.12	UJ	0.12	U	0.12	U
Xylene, m/p	1.1		2.1		3.9	J	2.5	J	1.9		1.5	

Notes:

Results in micrograms per cubic meter ($\mu g/m^3$) Air samples analyzed for VOCs by EPA Method TO-15 QC Code: FS = Field Sample Qualifiers: U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

Lab Sample Id	07B4	8789	07B4	18790	07B 4	8791	08F	802194	08B	02195	08H	302196	08E
Lab Sample Delivery Group	LIMT	-12191	LIMT	-12191	LIMT	-12191	LIM	T-12926	LIM	Г-12926	LIM	T-12926	LIM
Loc Name	BA	-03	AA	-01	AA	-02	BA	A-05A	BA	-05B	F	A-05	Α
Field Sample Id	ECBA	03-02	ECA	AA01	ECA	A02	EC	BA05A	ECI	BA05B	EC	CFA05	EC
Field Sample Date	12/12	/2007	12/13	3/2007	12/13	/2007	1/1	5/2008	1/15	5/2008	1/1	5/2008	1/1
Qc Code	F	S	I	FS	F	ſS		FS		FS		FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result
1,1,1-Trichloroethane	0.29		0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25
1,1,2,2-Tetrachloroethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.62		0.62		0.69		0.69	U	0.69	U	0.69	U	0.69
1,1,2-Trichloroethane	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25
1,1-Dichloroethane	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18
1,1-Dichloroethene	0.18	U	0.18	U	0.18	U	0.36	U	0.36	U	0.36	U	0.36
1,2,4-Trichlorobenzene	0.34	UJ	0.34	UJ	0.34	UJ	0.67	UJ	0.67	UJ	0.67	UJ	0.67
1,2,4-Trimethylbenzene	1.8		0.35		0.4		4.1		4.4		3.3		0.4
1,2-Dibromoethane	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.32	U	0.32	U	0.32	U	0.63	U	0.63	U	0.63	U	0.63
1,2-Dichlorobenzene	0.27	U	0.27	U	0.27	U	0.43		0.32		0.81		0.27
1,2-Dichloroethane	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18
1,2-Dichloropropane	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21
1,3,5-Trimethylbenzene	0.53		0.23	U	0.23	U	1.2		1.5		0.93		0.23
1,3-Dichlorobenzene	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.38		0.27
1,4-Dichlorobenzene	0.27	U	0.27	U	0.27	U	16		8		35		0.27
2-Butanone	1.4	J	3.5	J	3.4	J	3		0.77	U	0.77	U	2.5
2-Hexanone	0.18	UJ	0.96	J	0.59	J	0.55	J	0.18	UJ	0.18	UJ	0.44
2-Propanol	1.2	U	1.8		3		6.4		4.2		8.9		2.1
4-Ethyltoluene	0.44		0.23	U	0.23	U	1.3		1.8		1.1		0.23
4-Methyl-2-pentanone	0.18	UJ	0.18	UJ	0.18	UJ	0.22	J	0.18	UJ	0.29	J	0.18
Acetone	110	J	15		43		16	J	9.4	J	7.9	J	11
Benzene	0.83		0.83		0.92		0.86		0.98		0.92		0.92
Benzyl chloride	0.24	U	0.24	U	0.24	U	0.24	U	0.24	U	0.24	U	0.24
Bromodichloromethane	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3
Bromoform	0.46	U	0.46	U	0.46	U	0.46	U	0.46	U	0.46	U	0.46
Bromomethane	0.18	U	0.18	U	0.18	U	0.35	U	0.35	U	0.35	U	0.35
Butadiene, 1,3-	0.1	U	0.1	U	0.1	U	0.2	UJ	0.2	UJ	0.2	UJ	0.2
Carbon disulfide	1.5	U	1.5	U	1.5	U	0.29	U	0.29	U	0.29	U	0.29
Carbon tetrachloride	0.45		0.51		0.51		0.34	J	0.34	J	0.34	J	0.34
Chlorobenzene	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21
Chlorodibromomethane	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39
Chloroethane	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.12
Chloroform	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.83
Chloromethane	1.4		1.6		1.4		1.1		0.99		1		1
Cis-1,2-Dichloroethene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18

Lab Sample Id	07B4	8789	07B4	8790	07B4	18791	08E	302194	08B	02195	08B	02196	08E
Lab Sample Delivery Group	LIMT	-12191	LIMT	-12191	LIMT	-12191	LIM	Т-12926	LIMT	Г-12926	LIM	Г-12926	LIM
Loc Name	BA	-03	AA	-01	AA	A-02	BA	A-05A	BA	-05B	F	A-05	Α
Field Sample Id	ECBA	A03-02	ECA	AA01	ECA	AA02	EC	BA05A	ECF	BA05B	EC	FA05	EC
Field Sample Date	12/12	/2007	12/13	/2007	12/13	3/2007	1/1	5/2008	1/15	5/2008	1/15	5/2008	1/1
Qc Code	F	S	F	^r S	F	?S		FS	!	FS		FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result
cis-1,3-Dichloropropene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2
Cyclohexane	0.16	UJ	0.16	UJ	0.16	UJ	0.16	UJ	0.16	UJ	0.16	UJ	0.16
Dichlorodifluoromethane	2.8		2.8		2.8		2.2		0.45	U	2.3		2.3
Ethanol	6.7	J	18	J	19	J	49	J	40	J	80	J	9
Ethyl acetate	0.17	UJ	0.17	UJ	0.17	UJ	0.33	U	0.33	U	0.32		0.33
Ethyl benzene	0.31		0.35		0.35		0.47		0.59		0.62		0.27
Heptane	0.37		0.26		0.33		0.7		1		2.7		0.22
Hexachlorobutadiene	2	UJ	2	UJ	2	UJ	0.96	U	0.96		0.96	U	0.96
Hexane	0.73		0.54		0.6		0.63		0.82		0.82		0.57
Methyl Tertbutyl Ether	0.17	U	0.17	U	0.17	U	0.17	U	0.17	U	0.17	U	0.17
Methylene chloride	2.2	U	1.9	U	1.6	U	1.8		0.69		1.4		4.8
Naphthalene	0.58	U	0.58	U	0.58	U	2.3		0.58	U	3.9		0.58
o-Xylene	0.43		0.35		0.39		0.74		0.94		0.78		0.27
Propylene	0.31	U	1.5		0.31	U	1.4		0.16	U	1.7		1.5
Styrene	2.5		0.19	U	0.19	U	0.19	U	0.19	U	0.31		0.19
Tetrachloroethene	39		0.43		0.73		1.6		9.8		1.6		0.61
Tetrahydrofuran	0.27	UJ	0.27	UJ	0.27	UJ	0.14	U	0.14	U	0.14	U	0.14
Toluene	4.2		2		2.5		3		4		11		1.7
trans-1,2-Dichloroethene	0.18	U	0.18	U	0.18	U	0.36	U	0.36	U	0.36	U	0.36
trans-1,3-Dichloropropene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2
Trichloroethene	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25
Trichlorofluoromethane	1.4		1.4		1.4		1.1		1.2		1.1		1.1
Vinyl acetate	0.32	UJ	0.32	UJ	0.32	UJ	1.4		0.89		0.41		1.1
Vinyl chloride	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.12
Xylene, m/p	0.86		0.94		1.1		1.2		1.4		1.4		0.66

Notes:

Results in micrograms per cubic meter (µg/m³) Air samples analyzed for VOCs by EPA Method TO-15 QC Code: FS = Field Sample Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

Lab San	nple Id:02197
Lab Sample Delivery	Group T-12926
Loc	Name A-03
Field San	nple Id AA03
Field Samp	le Date5/2008
Q	c Code FS
Parameter	Qualifier
1,1,1-Trichloroethane	U
1,1,2,2-Tetrachloroethane	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	U
1,1,2-Trichloroethane	U
1,1-Dichloroethane	U
1,1-Dichloroethene	U
1,2,4-Trichlorobenzene	UJ
1,2,4-Trimethylbenzene	
1,2-Dibromoethane	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	U
1,2-Dichlorobenzene	U
1,2-Dichloroethane	U
1,2-Dichloropropane	U
1,3,5-Trimethylbenzene	U
1,3-Dichlorobenzene	U
1,4-Dichlorobenzene	U
2-Butanone	
2-Hexanone	UJ
2-Propanol	
4-Ethyltoluene	U
4-Methyl-2-pentanone	UJ
Acetone	J
Benzene	
Benzyl chloride	U
Bromodichloromethane	U
Bromoform	U
Bromomethane	U
Butadiene, 1,3-	UJ
Carbon disulfide	U
Carbon tetrachloride	J
Chlorobenzene	U
Chlorodibromomethane	U
Chloroethane	U
Chloroform	
Chloromethane	
Cis-1,2-Dichloroethene	U

Lab Sample Id	02197
Lab Sample Delivery Group	Г-12926
Loc Name	A-03
Field Sample Id	AA03
Field Sample Date	5/2008
Qc Code	FS
Parameter	Qualifier
cis-1,3-Dichloropropene	U
Cyclohexane	UJ
Dichlorodifluoromethane	
Ethanol	J
Ethyl acetate	U
Ethyl benzene	
Heptane	
Hexachlorobutadiene	U
Hexane	
Methyl Tertbutyl Ether	U
Methylene chloride	
Naphthalene	U
o-Xylene	
Propylene	
Styrene	U
Tetrachloroethene	
Tetrahydrofuran	U
Toluene	
trans-1,2-Dichloroethene	U
trans-1,3-Dichloropropene	U
Trichloroethene	U
Trichlorofluoromethane	
Vinyl acetate	
Vinyl chloride	U
Xylene, m/p	

Notes:

Results in micrograms per cubic meter ($\mu g/m^3$) Air samples analyzed for VOCs by EPA Method TO-15 QC Code: FS = Field Sample Qualifiers: U = Not detected at a concentration greater than the reporting limit J = Estimated value

Table 2.4: Soil Vapor VOC Results

Lab Sample Id	07B48778	07B48782	07B48783	07B48785	07B48788	07B48792	
Lab Sample Delivery Group	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	
Loc Name	SS-01	SS-02B	SS-02A	SS-04	SS-03	DP-06	
Field Sample Id	ECSS01	ECSS02B	ECSS02A	ECSS04	ECSS03-02	ECSV06	
Field Sample Date	12/11/2007	12/12/2007	12/11/2007	12/11/2007	12/12/2007	12/12/2007	
Qc Code	FS	FS	FS	FS	FS	FS	
Parameter	Result Qualifier						
1,1,1-Trichloroethane	0.29	0.44	54 U	0.39	0.25	0.54 U	
1,1,2,2-Tetrachloroethane	0.31 U	0.31 U	68 U	0.31 U	0.31 U	0.68 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.55	0.55	76 U	0.69	0.55	0.76 U	
1,1,2-Trichloroethane	0.25 U	0.25 U	54 U	0.25 U	0.25 U	0.54 U	
1,1-Dichloroethane	0.18 U	0.18 U	40 U	0.18 U	0.18 U	0.4 U	
1,1-Dichloroethene	0.18 U	0.18 U	40 U	0.18 U	0.18 U	0.4 U	
1,2,4-Trichlorobenzene	0.34 UJ	0.34 UJ	74 UJ	0.34 UJ	0.34 UJ	0.74 UJ	
1,2,4-Trimethylbenzene	0.23 U	2.7	1500	3.6	0.53	4.1	
1,2-Dibromoethane	0.35 U	0.35 U	76 U	0.35 U	0.35 U	0.76 U	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.32 U	0.32 U	70 U	0.32 U	0.32 U	0.7 U	
1,2-Dichlorobenzene	0.27 U	0.27 U	60 U	0.27 U	0.27 U	0.6 U	
1,2-Dichloroethane	0.18 U	0.18 U	40 U	0.18 U	0.18 U	0.4 U	
1,2-Dichloropropane	0.21 U	0.21 U	46 U	0.21 U	0.21 U	0.46 U	
1,3,5-Trimethylbenzene	0.23 U	0.66	900	1	0.23 U	1.2	
1,3-Dichlorobenzene	0.27 U	0.27 U	60 U	0.27 U	0.27 U	0.6 U	
1,4-Dichlorobenzene	0.27 U	0.27 U	60 U	0.27 U	0.27 U	0.6 U	
2-Butanone	2.4 J	1.4 UJ	300 UJ	17 J	2.7 J	7.2 J	
2-Hexanone	0.18 UJ	0.18 UJ	40 UJ	1.3 J	0.48 J	0.98 J	
2-Propanol	2.1	1.2 U	250 U	6.4	1.2 U	25	
4-Ethyltoluene	0.23 U	0.4	360	0.53	0.23 U	0.98	
4-Methyl-2-pentanone	0.18 UJ	0.18 UJ	40 UJ	0.18 UJ	0.18 UJ	1.1 J	
Acetone	21	39	450	330 J	19	760 J	
Benzene	0.17	0.89	32 U	0.32	0.15 U	0.77	
Benzyl chloride	0.24 U	0.24 U	52 U	0.24 U	0.24 U	0.52 U	
Bromodichloromethane	0.3 U	0.3 U	66 U	0.3 U	0.3 U	0.66 U	
Bromoform	0.46 U	0.46 U	110 U	0.46 U	0.46 U	1.1 U	
Bromomethane	0.18 U	0.18 U	38 U	0.18 U	0.18 U	0.38 U	
Butadiene, 1,3-	0.1 U	0.1 U	22 U	0.1 U	0.1 U	0.22 U	
Carbon disulfide	1.5 U	1.5 U	320 U	1.5 U	1.5 U	3.2	
Carbon tetrachloride	0.34	0.34	62 U	0.28 U	0.28 U	0.62 U	
Chlorobenzene	0.21 U	0.21 U	46 U	0.21 U	0.21 U	0.46 U	
Chlorodibromomethane	0.39 U	0.39 U	86 U	0.39 U	0.39 U	0.86 U	
Chloroethane	0.12 U	0.12 U	26 U	0.12 U	0.12 U	0.26 U	
Chloroform	17	0.7	48 U	1.1	11	0.48 U	
Chloromethane	0.09 U	0.5	20 U	0.09 U	0.3	0.2 U	
Cis-1,2-Dichloroethene	0.18 U	0.29	40 U	0.18 U	0.18 U	0.4 U	

Table 2.4: Soil Vapor VOC Results

Lab Sample Id	07B4	48778	07B48782		07B4	8783	07B4	8785	07B4	8788	07B48792		
Lab Sample Delivery Group	LIMT	LIMT-12191		LIMT-12191		-12191	LIMT	-12191	LIMT	-12191	LIMT	-12191	
Loc Name	SS	SS-01		SS-02B		SS-02A		-04	SS-03		DP	DP-06	
Field Sample Id	EC	ECSS01		ECSS02B		S02A	ECSS04		ECSS	503-02	ECS	SV06	
Field Sample Date	12/11	1/2007	12/12	/2007	12/11/2007		12/11/2007		12/12	/2007	12/12	/2007	
Qc Code]	FS	F	S	F	'S	F	S	F	S	F	ſS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
cis-1,3-Dichloropropene	0.2	U	0.2	U	44	U	0.2	U	0.2	U	0.44	U	
Cyclohexane	0.16	UJ	1.4	J	110	J	0.22	J	0.16	UJ	0.34	UJ	
Dichlorodifluoromethane	2.7		2.7		50	U	8.3		2.6		2.8		
Ethanol	180	J	19	J	190	UJ	10	J	5.8	J	74	J	
Ethyl acetate	0.17	UJ	0.17	UJ	36	UJ	0.17	UJ	0.17	UJ	1.3	J	
Ethyl benzene	0.2	U	0.43		61		0.43		0.2	U	3.6		
Heptane	0.18	U	0.44		40	U	0.33		0.22		0.57		
Hexachlorobutadiene	2	UJ	2	UJ	430	UJ	2	UJ	2	UJ	4.3	UJ	
Hexane	0.17	U	0.82		56		0.38		0.79		0.36	U	
Methyl Tertbutyl Ether	0.17	U	0.17	U	36	U	0.17	U	0.17	U	0.36	U	
Methylene chloride	1.7	U	2.6	U	240	U	2.5	U	8.1		1.3	U	
Naphthalene	0.58	U	0.61		150		1.2		0.58	U	1.3	U	
o-Xylene	0.2	U	0.74		240		0.7		0.2	U	4		
Propylene	0.31	U	0.31	U	69	U	0.73		0.53		0.69	U	
Styrene	0.19	U	0.34		140		0.23		0.19	U	1.2		
Tetrachloroethene	4.2		590		6500		27		180		210		
Tetrahydrofuran	0.27	UJ	0.27	UJ	59	UJ	0.27	UJ	0.27	UJ	0.59	UJ	
Toluene	0.47		2.8		180		2.2		0.44		7.3		
trans-1,2-Dichloroethene	0.18	U	0.18	U	40	U	0.18	U	0.18	U	0.4	U	
trans-1,3-Dichloropropene	0.2	U	0.2	U	44	U	0.2	U	0.2	U	0.44	U	
Trichloroethene	0.25	U	1.1		54	U	0.29		0.29		0.54	U	
Trichlorofluoromethane	2.3		1.3		56	U	3		1.4		1.2		
Vinyl acetate	0.32	UJ	0.32	UJ	71	UJ	0.32	UJ	0.32	UJ	0.71	UJ	
Vinyl chloride	0.12	U	0.12	U	26	U	0.12	U	0.12	U	0.26	U	
Xylene, m/p	0.39	U	1.5		230		1.6		0.39		11		

Notes:

Results in micrograms per cubic meter $(\mu g/m^3)$ Soil Vapor samples analyzed for VOCs by EPA Method TO-15 QC Code: FS = Field Sample FD = Field Duplicate Qualifiers: U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

Table 2.4: Soil Vapor VOC Results

Lab Sample Id	07B48793	07B48794	07B48795	07B48796	07B48797	07B48798	
Lab Sample Delivery Group	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	
Loc Name	DP-05	DP-04	DP-07	DP-04	DP-03	DP-02	
Field Sample Id	ECSV05	ECSV04	ECSV07	ECSV04-DUP	ECSV03	ECSV02	
Field Sample Date	12/12/2007	12/12/2007	12/12/2007	12/12/2007	12/13/2007	12/13/2007	
Qc Code	FS	FS	FS	FD	FS	FS	
Parameter	Result Qualifier						
1,1,1-Trichloroethane	0.54 U	1.9	2.5	1.9	54 U	0.54 U	
1,1,2,2-Tetrachloroethane	0.68 U	0.68 U	1.7 U	0.68 U	68 U	0.68 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.76 U	0.76 U	1.9 U	0.76 U	76 U	0.76 U	
1,1,2-Trichloroethane	0.54 U	0.54 U	1.4 U	0.54 U	54 U	0.54 U	
1,1-Dichloroethane	0.4 U	0.4 U	1 U	0.4 U	40 U	0.4 U	
1,1-Dichloroethene	0.4 U	0.4 U	1 U	0.4 U	40 U	0.4 U	
1,2,4-Trichlorobenzene	0.74 UJ	0.74 UJ	1.9 UJ	0.74 UJ	74 U	0.74 UJ	
1,2,4-Trimethylbenzene	7.6	3.5	66	4.2	50 U	17	
1,2-Dibromoethane	0.76 U	0.76 U	1.9 U	0.76 U	76 U	0.76 U	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.7 U	0.7 U	1.8 U	0.7 U	70 U	0.7 U	
1,2-Dichlorobenzene	0.6 U	0.6 U	1.5 U	0.6 U	60 U	0.6 U	
1,2-Dichloroethane	0.4 U	0.4 U	1 U	0.4 U	40 U	0.4 U	
1,2-Dichloropropane	0.46 U	0.46 U	1.2 U	0.46 U	46 U	0.46 U	
1,3,5-Trimethylbenzene	2.5	1.4	63	1.6	50 U	11	
1,3-Dichlorobenzene	0.6 U	0.6 U	1.5 U	0.6 U	60 U	0.6 U	
1,4-Dichlorobenzene	0.6 U	0.6 U	1.5 U	0.6 U	60 U	0.6 U	
2-Butanone	5.8 J	3 UJ	7.4 UJ	4.2 J	300 U	3.1 J	
2-Hexanone	1.6 J	1.2 J	1 UJ	2 J	40 U	0.4 UJ	
2-Propanol	2.5 U	2.5 U	6.2 U	2.5 U	250 U	8.3	
4-Ethyltoluene	1.8	0.88	11	0.98	50 U	3.7	
4-Methyl-2-pentanone	1.1 J	0.4 UJ	1 UJ	1.3 J	40 UJ	0.4 UJ	
Acetone	410 J	12 J	100	28 J	240 UJ	190 J	
Benzene	1.6	6.3 J	2.4	4.5 J	32 U	3.9	
Benzyl chloride	0.52 U	0.52 U	1.3 U	0.52 U	52 U	0.52 U	
Bromodichloromethane	0.66 U	0.66 U	1.7 U	0.66 U	66 U	0.66 U	
Bromoform	1.1 U	1.1 U	2.6 U	1.1 U	110 U	1.1 U	
Bromomethane	0.38 U	0.38 U	0.95 U	0.38 U	38 U	0.38 U	
Butadiene, 1,3-	0.22 U	0.22 U	0.55 U	0.22 U	22 U	0.22 U	
Carbon disulfide	25	38 J	7.8 U	22 J	320 U	3.2 U	
Carbon tetrachloride	0.62 U	0.62 U	1.6 U	0.62 U	62 U	0.62 U	
Chlorobenzene	0.46 U	0.46 U	1.2 U	0.46 U	46 U	0.46 U	
Chlorodibromomethane	0.86 U	0.86 U	2.2 U	0.86 U	86 U	0.86 U	
Chloroethane	0.26 U	0.26 U	0.65 U	0.26 U	26 U	0.26 U	
Chloroform	0.48 U	3.7	2.2	3.6	48 U	1.4	
Chloromethane	0.2 U	0.2 U	0.5 U	0.2 U	20 U	0.2 U	
Cis-1,2-Dichloroethene	0.56	23	4.2	19	40 U	0.4 U	

Table 2.4: Soil Vapor VOC Results

Lab Sample Id	07B48793 07B48794		07B48795	07B48796	07B48797	07B48798	
Lab Sample Delivery Group	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	LIMT-12191	
Loc Name	DP-05	DP-04	DP-07	DP-04	DP-03	DP-02	
Field Sample Id	ECSV05	ECSV04	ECSV07	ECSV04-DUP	ECSV03	ECSV02	
Field Sample Date	12/12/2007	12/12/2007	12/12/2007	12/12/2007	12/13/2007	12/13/2007	
Qc Code	FS	FS	FS	FD	FS	FS	
Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
cis-1,3-Dichloropropene	0.44 U	0.44 U	1.1 U	0.44 U	44 U	0.44 U	
Cyclohexane	0.89 J	2.9 J	76 J	2.8 J	34 UJ	51 J	
Dichlorodifluoromethane	3	4.5	73	4.5	50 U	2.4	
Ethanol	47 J	1.9 UJ	4.8 UJ	2.6 J	190 UJ	28 J	
Ethyl acetate	0.58 J	0.36 UJ	0.9 UJ	0.36 UJ	36 U	0.36 UJ	
Ethyl benzene	3.7	2.9	3.9	2.3	44 U	13	
Heptane	0.82	3.3 J	39	2.3 J	40 U	32	
Hexachlorobutadiene	4.3 UJ	4.3 UJ	11 UJ	4.3 UJ	430 U	4.3 UJ	
Hexane	2	5.9	9.2	5.4	36 U	12	
Methyl Tertbutyl Ether	0.36 U	0.36 U	0.9 U	0.36 U	36 U	0.36 U	
Methylene chloride	8.5 U	3.6 U	2.3 U	10	790	2.4 U	
Naphthalene	1.3 U	1.3 U	3.2 U	1.3 U	130 U	1.3 U	
o-Xylene	4.7	2.8	39	2.6	44 U	37	
Propylene	13	19	47	17	69 U	8	
Styrene	1	0.42 U	1.1 U	0.42 U	42 U	0.43	
Tetrachloroethene	110	2800	9100	3200	48000	230	
Tetrahydrofuran	0.59 UJ	0.59 UJ	1.5 UJ	0.59 UJ	59 U	0.59 UJ	
Toluene	6.6	7	7.9	5.4	38 U	49	
trans-1,2-Dichloroethene	0.4 U	1.5	1 U	1.3	40 U	0.4 U	
trans-1,3-Dichloropropene	0.44 U	0.44 U	1.1 U	0.44 U	44 U	0.44 U	
Trichloroethene	0.54 U	140	180	150	760	0.54 U	
Trichlorofluoromethane	1.8	11	530	11	56 U	1.2	
Vinyl acetate	0.71 UJ	0.71 UJ	1.8 UJ	0.71 UJ	71 U	0.71 UJ	
Vinyl chloride	0.26 U	0.26 U	0.65 U	0.26 U	26 U	0.26 U	
Xylene, m/p	11	7.3	63	6.3	86 U	44	

Notes:

Results in micrograms per cubic meter $(\mu g/m^3)$ Soil Vapor samples analyzed for VOCs by EPA Method TO-1 QC Code: FS = Field Sample FD = Field Duplicate Qualifiers: U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

Table 2.4: Soil Vapor VOC Results

Lab Sample Id	07B50031	
Lab Sample Delivery Group	LIMT-12404	
Loc Name	DP-01	
Field Sample Id	ECSV01	
Field Sample Date	12/19/2007	
Qc Code	FS	
Parameter	Result	Qualifier
1,1,1-Trichloroethane	0.55	U
1,1,2,2-Tetrachloroethane	0.7	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.8	U
1,1,2-Trichloroethane	0.55	U
1,1-Dichloroethane	0.4	U
1,1-Dichloroethene	0.39	U
1,2,4-Trichlorobenzene	0.75	U
1,2,4-Trimethylbenzene	2.7	
1,2-Dibromoethane	0.8	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.7	U
1,2-Dichlorobenzene	1.3	U
1,2-Dichloroethane	0.4	U
1,2-Dichloropropane	0.46	U
1,3,5-Trimethylbenzene	1	U
1,3-Dichlorobenzene	0.6	U
1,4-Dichlorobenzene	0.6	U
2-Butanone	4.8	
2-Hexanone	0.41	U
2-Propanol	32	
4-Ethyltoluene	1	U
4-Methyl-2-pentanone	0.41	U
Acetone	160	
Benzene	0.32	U
Benzyl chloride	0.55	U
Bromodichloromethane	0.7	U
Bromoform	1.1	U
Bromomethane	0.38	U
Butadiene, 1,3-	0.22	U
Carbon disulfide	0.31	U
Carbon tetrachloride	0.65	U
Chlorobenzene	0.46	U
Chlorodibromomethane	0.85	U
Chloroethane	0.26	U
Chloroform	0.48	U
Chloromethane	0.2	U
Cis-1,2-Dichloroethene	0.39	U

Table 2.4: Soil Vapor VOC Results

	Lab Sample Id	07B50031		
	Lab Sample Delivery Group	LIMT	-12404	
	Loc Name	DP	-01	
	Field Sample Id	ECS	SV01	
	Field Sample Date	12/19/2007		
	Qc Code	F	S	
Parameter		Result	Qualifier	
cis-1,3-Dichloropropene		0.45	U	
Cyclohexane		0.34	U	
Dichlorodifluoromethane		5.1		
Ethanol		25		
Ethyl acetate		0.37	U	
Ethyl benzene		1.6		
Heptane		0.41	U	
Hexachlorobutadiene		1.1	U	
Hexane		2.5		
Methyl Tertbutyl Ether		0.36	U	
Methylene chloride		14		
Naphthalene		0.65	U	
o-Xylene		1.7		
Propylene		0.18	U	
Styrene		0.9	U	
Tetrachloroethene		3.3		
Tetrahydrofuran		0.3	U	
Toluene		5.2		
trans-1,2-Dichloroethene		0.39	U	
trans-1,3-Dichloropropene		0.45	U	
Trichloroethene		0.55	U	
Trichlorofluoromethane		1.5		
Vinyl acetate		0.35	U	
Vinyl chloride		0.25	U	
Xylene, m/p		4.3		

Notes:

Results in micrograms per cubic meter $(\mu g/m^3)$ Soil Vapor samples analyzed for VOCs by EPA Method TO-1 QC Code: FS = Field Sample FD = Field Duplicate Qualifiers: U = Not detected at a concentration greater than the reporting limit J = Estimated value

Table 2.5: TIC Results

SDG	Sample ID	Lab ID	Sample Date	Compound	Result	Qualifier	Туре	Matrix
MF1839	ECGS0602	F1839-01B	12/11/2007	Unknown	16	J	FS	Soil
MF1839	ECGS0602	F1839-01B	12/11/2007	Unknown	6	J	FS	Soil
MF1839	ECGS0602	F1839-01B	12/11/2007	Unknown	21	J	FS	Soil
MF1839	ECGS0403	F1839-04B	12/11/2007	Unknown	21	J	FS	Soil
MF1904	ECSS02A00	F1904-01B	12/19/2007	Unknown	5	J	FS	Soil
MF1904	ECSS02A00	F1904-01B	12/19/2007	2,3,4,5,6,7-Hexahydro-1H-Cy	4	NJ	FS	Soil
MF1904	ECSS02A00	F1904-01B	12/19/2007	2-methyl naphthalene	8	NJ	FS	Soil
MF1904	ECSS02A00	F1904-01B	12/19/2007	1,6-dimethyl naphthalene	6	NJ	FS	Soil
MF1904	ECSS02A00	F1904-01B	12/19/2007	Unknown	5	J	FS	Soil

Notes:

Qualifiers:

J = Estimated Value

N = Tentative identification based on presumptive evidence

Type:

FS = Field Sample