Division of Easardous Waste Remediation Bureau of Easardous Site Control

ADDITIONS/CHANGES TO REGISTRY: SUMMARY OF APPROVALS

SITE NAME: _	SAG HARBOR GAS P	LAN	T DEC	1.D.	NUMBER 152517
Current Class	rification				
Activity:	lass 2 Reclass	ify to		Deli Cate	gory Modify
Approvals:					F
Regional Haza	ardous Waste Engineer	Yes		No	
BEEI of NYSDO	он	Yes		No	See attucked letter from EHB TO A CHRUSENDED S/29,
DEE		Yes		No	
BERA	Remediation Action Bureau Director [Class 2]	Yes	4	No	
BHSC: a.	Investigation Section	Yes		No.	
b.	O&M Section [Class 4]	Yes	1/4	No	
. c.	Site Control Section	7	15 ful 1	//. \\	January Date 10/1/97
d.	Director		in R		Date 10/2/91
Completion C	Checklist				Completed By: Initials Date
OWNER NOTIFI	CATION LETTER?				
ADJACENT PRO	OPERTY OWNER NOTIFICATION LET	rer?			11/12/97
ENE/LEGAL NO	OTICE SENT? ion Only)				·
COMMENTS SUI	MMARIXED/PLACE IN REPOSITORY				
FINAL NOTIF	ICATION SENT TO OWNER?				
		المراجعة		ctivi	ities & dates:
(For propos	ed Class 2a sites only) Plann	ea ln	TESLIGALIVE A	7 .	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS WASTE REMEDIATION

CTTT	INVESTIGATION	TNICODMATITAN

	SIT	E INVESTIGATI	ON INFORMATION	
1. SITE NAME		2. SITE NUMBER	3. TOWN/CITY/VILLAGE	4. COUNTY
Sag Harbor Gas Plant	; _	1525 7	Sag Harbor	Suffolk
5. REGION	6. CLASSIFICATION			
1		CURRE	ENT PROPOSED - 2	MODIFY
7. LOCATION OF SITE	(Attach U.S.G.S. Top	ographic Map showin	g site location)	
a. Quadrangle - Gree	nport			
b. Site Latitude 4	1° 00' 10"	Site Longitude 72	° 17' 55"	
c. Tax Map Numbers -	0903/002/02/10 {Tow	n of Southampton/Vi	llage of Sag Harbor)	
d. Site Street Addre	ess - Bridge Street,	Sag Harbor, New Yor	k 11963	
8. BRIEFLY DESCRIBE	THE SITE (Attach sit	e plan showing disp	osal/sampling locations)	
After LILCO purchase	ed the site, the gas	plant ceased operat	anufactured gas was made from eith ions and a pressurized gas holder for the more inclusive Sag Harbor	was installed.
a. Area - 0.8 acres	b. EPA ID Number	- NYD986869170		
c. Completed ()Phase I ()Ph	ase II (x) PS	A ()RI/FS (x)PA/SI	()Other
9. Hazardous Waste D	isposed (Include EP	A Hazardous Waste N	(umbers)	
benzene exceeds 0.5 exceedence of the TC	mg/l in four of the LP limit of 0.5 mg/l	on-site monitoring , is present at the	ed to the underlying groundwater. wells. This indicates that leache site (EPA Hazardous Waste No. DOI outing to the levels of benzene in	able benzene, in 18). A former crude oil
10. ANALYTICAL DATA	AVAILABLE			
	coundwater ()Surfac a of Standards or Gui		t (x)Soil ()Waste ()Leachate	()EPTox ()TCLP
ug/l total xylenes, oil tank - 2,900 ug/ ug/l total PAHs. MW total PAHs. MW-3 -	and 4,331 ug/l total 'l benzene, 1,400 ug/ J-2 near the former p	PAHs. MW-5 locate 1 toluene, 2,000 ug purifying house - 5, X (520 ug/1 benzene	g/l benzene, 350 ug/l toluene, 540 d in the former generator room and f/l ethylbenzene, 2,800 ug/l total 429 ug/l total BTEX (650 ug/l benz e) and 5,634 ug/l total PAHs. Surf	d next to a former crude xylenes, and 12,381 zene) and 6,246 ug/l
11. CONCLUSION				
benzene in the grou of toluene, ethylben groundwater. The s volatility of some of properties. Addition contaminants. Soil of this contaminatio	ndwater indicate that zene, xylenes and valurface soils contain the contaminants, the area is proresamples at nearby read has not been estable.	t leachable benzene arious polynuclear a high levels of PAHs here is the potential ne to flooding. Floo esidential properties blished. The underl	oils and underlying groundwater. e above the TCLP limit of 0.5 mg/l in above the TCLP limit of 0.5 mg/l in above the TCLP limit of 0.5 mg/l in above the shallow depth to ground for vapors to enter nearby resider above detected PAH contamination of the shave detected PAH contamination of the shave detected path contaminated surface runoff or ground the shall be above the shall be shall	is present. High levels also present in the undwater and the ntial and commercial he surface n. However, the source for drinking water in the
12. SITE IMPACT DATA				
a. Nearest Surface Water: Dista		Direction - northwest	Classification - unknown	
b. Nearest Groundwater: Depth		Flow Direction - west or south	**	pal
c. Nearest Water Supply: Dista		Direction - southwest	Active (x)Yes ()No	amainic opposi
d. Nearest Building: Distance		Direction - southwest	Use - residential (Harbor Close Condo I. Controlled Site Access?	ominiums) (x)Y ()N
e. In State Economic Developm	nent Zone?	()Y (x)N ()Y (x)N	j. Exposed hazardous waste?	(x)Y ()N
 f. Crops or livestock on site? g. Documented fish or wildlife r 	mortalitu?	()Y (x)N ()Y (x)N	k. HRS Score	(A)1 ()14
h. Impact on special status fish	-	()Y (x)N	I. For Class 2: Priority Category - 2	
13. SITE OWNER'S NAME	Of Wilding 1000C.22.	14. ADDRESS		15. TELEPHONE NUMBER
Long Island Lighting Co. (LILC	O)	175 East Old Country Re	d Hicksville, NY_11801	(516) 391-6132
16. PRESARER LA LL	Tewest 5/2/9	7	17. APPROVED	10/2/97
Signature	Date		Signature Date	PICC DED
	ntal Engineer I, NYSDEC/DER/F	Region 1	Earl H. Barcomb, Di	rector, BHSC, DER

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-7010

August 29, 1997

G. Anders Carlson, Ph.D.
Director
Bureau of Environmental Exposure Investigation
Room 205
NYS Department of Health
Two University Place
Albany, NY 12203-3313

Dear Dr. Carlson:

Our records show that your office has not yet forwarded recommendations to us for the sites on the enclosed list.

To assure further action is not delayed, we plan to make final Registry listing decisions on these sites by September 12, 1997. Please provide your recommendations to us by this date so that we might incorporate them into our final decisions.

Sincerely,

Earl H. Barcomb

Director

Bureau of Hazardous Site Control Div. of Environmental Remediation

Enclosure

bcc: E. Barcomb

RaMarino ⇒ W. Bayer

i

WB/srh

CLASSIFICATION WORKSHEET

	
Site	: Sag Hurbor Gas Plant county: Saffolk Region
1.	Hazardous waste disposed? Y (to 2) N (Stop) U (Stop) Consequential amount of Y (to 3) N (stop) U (Stop) hazardous waste? Part 375-1.4(a)(1) applies? N (to 4)
٠.	Y (as checked below; Class 2; to 5)
	a. endangered or threatened species d. fish, shellfish, crustacea or wildlife
	b. streams, wetlands or coastal zone e. fire, spill, explosion or toxic reaction
	c. bioaccumulation f. proximity to people or water supplies
4.	part 375-1.4(a)(2) applies? \(\text{N (Cl 3; Stop)} \) \(\text{U (Cl 2a; Stop)} \) \(\text{V (Class 2; to 5)} \) \(\text{A sole source againer is contaminated.} \) The Surface \(\text{Soils are contaminated} \)
5.	Factor(s) considered in making this determination: The underlying aguifer is very shallow, Vapors are possible. Residential properties are nearby.
	the aguifer has been used for drinking in the past. The area is prone to floading Migration of the surface contaminants to nearby
	properties is possible. The wastes discharged are persistent since the discharges occurred proor to 1929. A nearby saltwater may receive contaminated surface runoff and/or discharges from contaminated groundwater
<u>s</u>	Consequential Hazardous Waste Yes No Unknown
	Significant Threat Proposed Classification
	5/2/97 Auth/ Stout EEI Signature and Title

NEW YORK STATE DEPARTMENTS OF ENVIRONMENTAL CONSERVATION AND HEALTH INACTIVE HAZARDOUS WASTE DISPOSAL SITE PRIORITY RANKING WORKSHEET SITE NAME SQ9 SITE I.D. Priority I - Sites for which remediation should supersede Vall other Class 2 sites. Priority I can be assigned if any one of the following questions can be answered affirmatively. a) Has a public or private water supply which is currently in use been contaminated or threatened?....... Has human exposure to contaminants (or the potential for exposure) been identified which represents a significant (1)(If'l or more c) Has bioaccumulation of site contaminants in flora or fauna boxes are resulted in a health advisory?..... d) Are site contaminants present at levels that are acutely toxic checked, to fish or wildlife or that have caused documented fish or check this box | wildlife mortality?..... e) Is there a potentially responsible party or volunteer ready, willing and able to proceed with remediation?..... Priority II - Important Sites. Priority II will be assigned if any of the following questions can be answered affirmatively. a) Has a Class A or AA surface water body or a primary or principal aquifer been contaminated or threatened without contaminating or threatening an existing water supply?..... Has bioaccumulation of site contaminants in flora or fauna resulted in actionable levels (but not a health advisory)?... Are contaminants at levels chronically toxic to [If 1 or fish/wildlife?.... Have endangered, threatened or rare species, significant more boxes habitats, designated coastal zone or regulated wetlands are checked, check this been impacted by releases from the site?..... box] * Priority III - will be assigned unless one or more of the site prioritization criteria, specified above, apply to a site. After remedial needs for (3)Priority I and II sites have been accommodated, remediation of sites under this category can be considered. If priority III, check box 3. Enter the number of the priority box checked 1, 2, or 3 here..... This is the site's priority rank. **FACTORS** IJC Factor - If the site has been identified by the International Joint Commission (IJC) as a component in a remedial action plan, subtract (1) from (5) the value in box 4 and enter the result in box 5...... Yes No EDZ Factor - If the site is within a New York State designated Economic Development Zone (EDZ) should this fact cause the site priority to be raised?.. Community Support Factor - If the site has been targeted for local government-Yes No supported development, should this fact cause the site priority to be raised?..... If either "yes" box is checked, subtract 1 from the value in box 4 and enter the result into box 6. If "no" is checked, the value in box 6 equals box 4 (or box 5 if applicable). If both IJC and EDZ/Community Support factors apply, only 1 (not 2) will be subtracted form the value in box 4. The resultant value in box 6 (6) will never be less than 1..... No IRM NOTE: Should this site be considered a candidate for an Interim Remedial Measure (IRM) as defined by 6NYCRR Part 375-1.3n?............... If "yes", please explain why:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION INACTIVE HAZARDOUS WASTE DISPOSAL REPORT

10/15/97

CLASSIFICATION CODE: 2 REGION: 1 SITE CODE: 152159

EPA ID: NYD986869170

NAME OF SITE: Sag Harbor Gas Plant

STREET ADDRESS: Bridge Street

TOWN/CITY: COUNTY: ZIP:
Sag Harbor Suffolk 11963

SITE TYPE: Open Dump- Structure-X Lagoon- Landfill- Treatment Pond-

ESTIMATED SIZE: 0.8 Acres

SITE OWNER/OPERATOR INFORMATION:

CURRENT OWNER NAME....: Long Island Lighting Co. (LILCO)

CURRENT OWNER ADDRESS.: 175 East Old Country Rd., Hicksville, NY

OWNER(S) DURING USE...: Multiple Owners
OPERATOR DURING USE...: Multiple Operators

OPERATOR ADDRESS....:

PERIOD ASSOCIATED WITH HAZARDOUS WASTE: From 1859 To 1929

SITE DESCRIPTION:

Betweeb 1859 and 1929, a town gas plant was operated on this 0.8 acre site. Manufactured gas was made from either coal or rosin. After LILCO purchased the site in 1929, the gas plant ceased operations and a pressurized gas holder was installed.

The site was originally studied by the NYSDEC and the USEPA under the more inclusive Sag Harbor Bridge Site. The Bridge Street area was first identified as an area of concern in 1987 when Suffolk County Water Authority personnel discovered environmental contamination when performing an excavation on Bridge Street. It is unknown whether the former Sag Harbor Gas Plant was the source of this contamination.

Manufactured gas wastes, consisting primarily of aromatic volatile organics and polycyclic aromatic hydrocarbons, have been found on LILCO"s parcel. The surface soils and the underlying groundwater have been impacted. Three separate studies were completed by USEPA in 1988, 1989, and 1990. A State funded Preliminary Site Assessment (PSA) was completed in 1993. The results of an 1996 LILCO funded investigation, which included the construction and sampling of 6 monitoring wells on the LILCO parcel, has recently been provided to the NYSDEC and resulted in the listing of this parcel. Discharges of coal gas wastes have impacted the surface soils and underlying groundwater. The concentrations of benzene in the groundwater indicate that leachable benzene above the TCLP limit of 0.5 mg/l is present. High levels of toluene, ethylbenzene, xylenes and various polynuclear aromatic hydrocarbons (PAHs) are also present in the groundwater. Surface soils also contain high levels of PAHs.

HAZARDOU	S WASTE DISPOSED:		
	TYPE	QUANTITY (un	nits)
benzene	(D018) Waste	unknown	

SITE CODE: 152159

ANALYTICAL DATA AVAILABLE:

Air- Surface Water- Groundwater-X Soil-X Sediment-

CONTRAVENTION OF STANDARDS:

Groundwater-X Drinking Water- Surface Water- Air-

LEGAL ACTION:

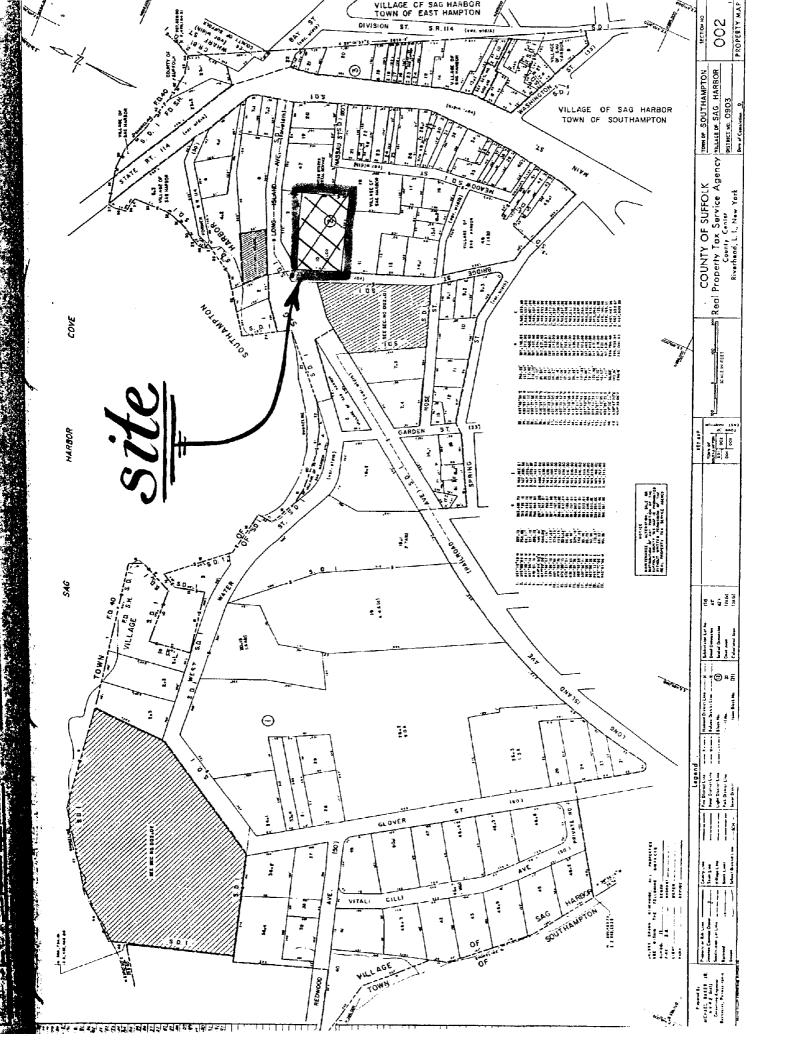
State- Federal-Negotiation in Progress- Order Signed-TYPE..:

STATUS:

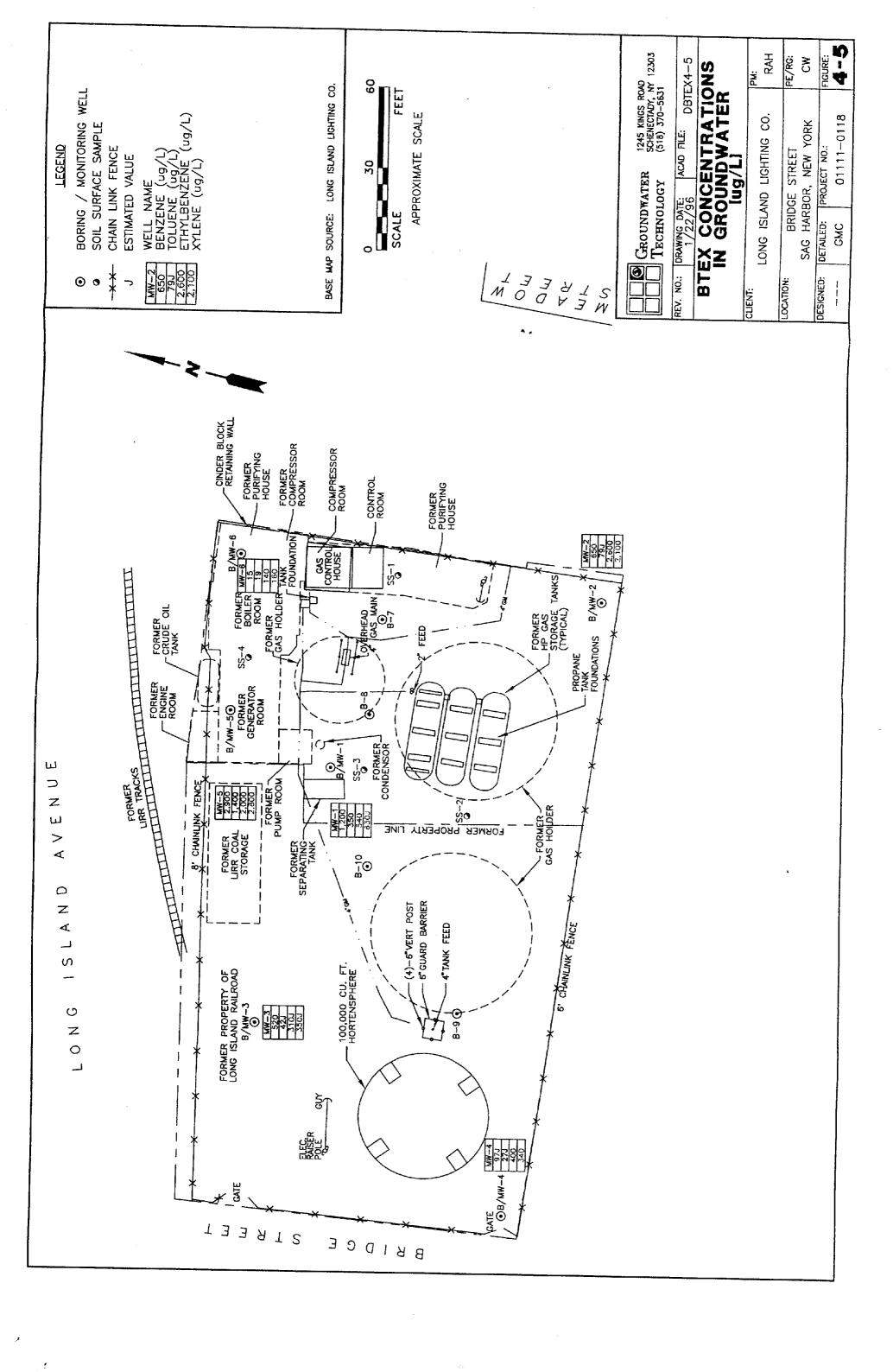
REMEDIAL ACTION:

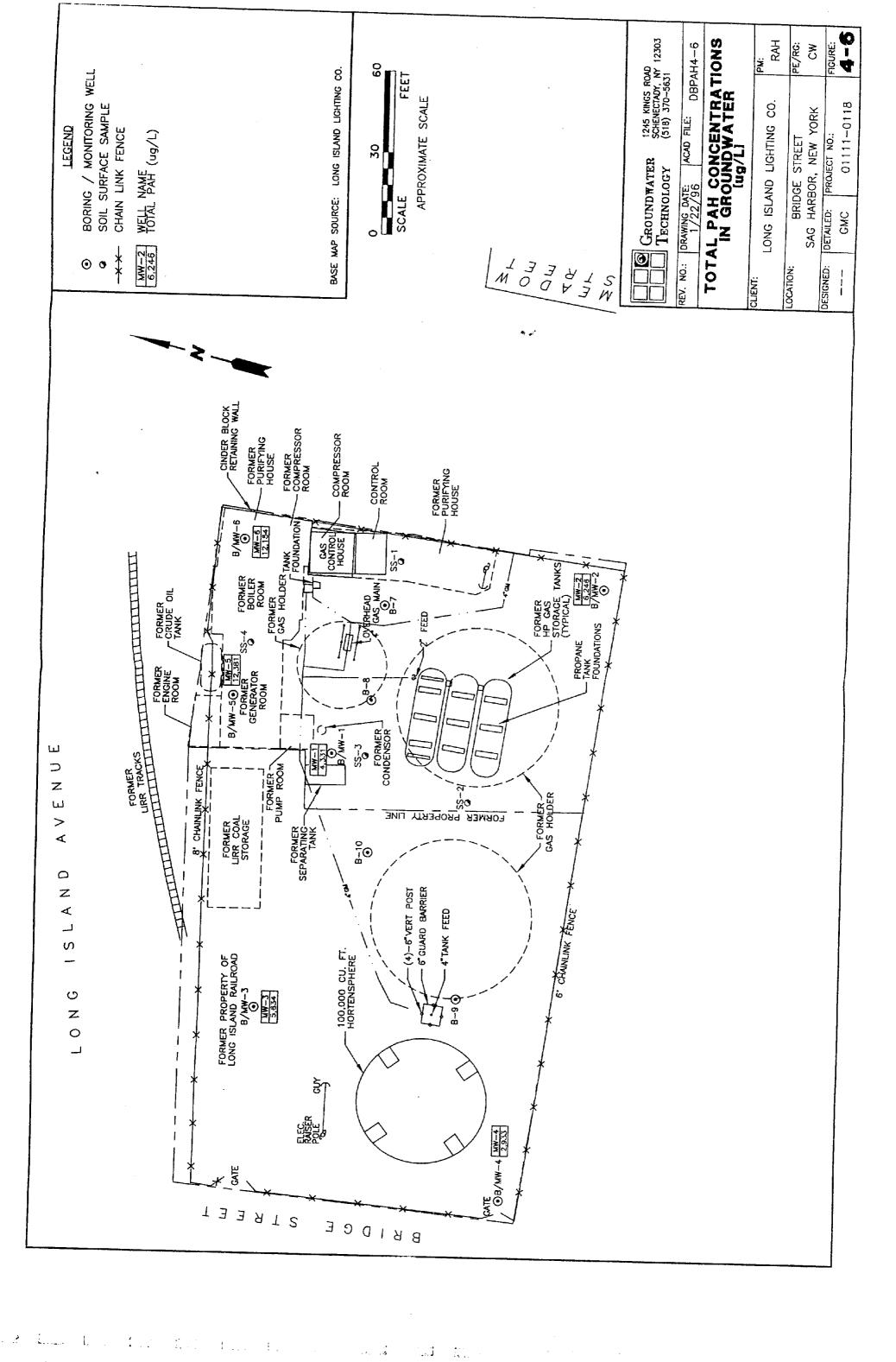
Proposed- Under design- In Progress- Completed-

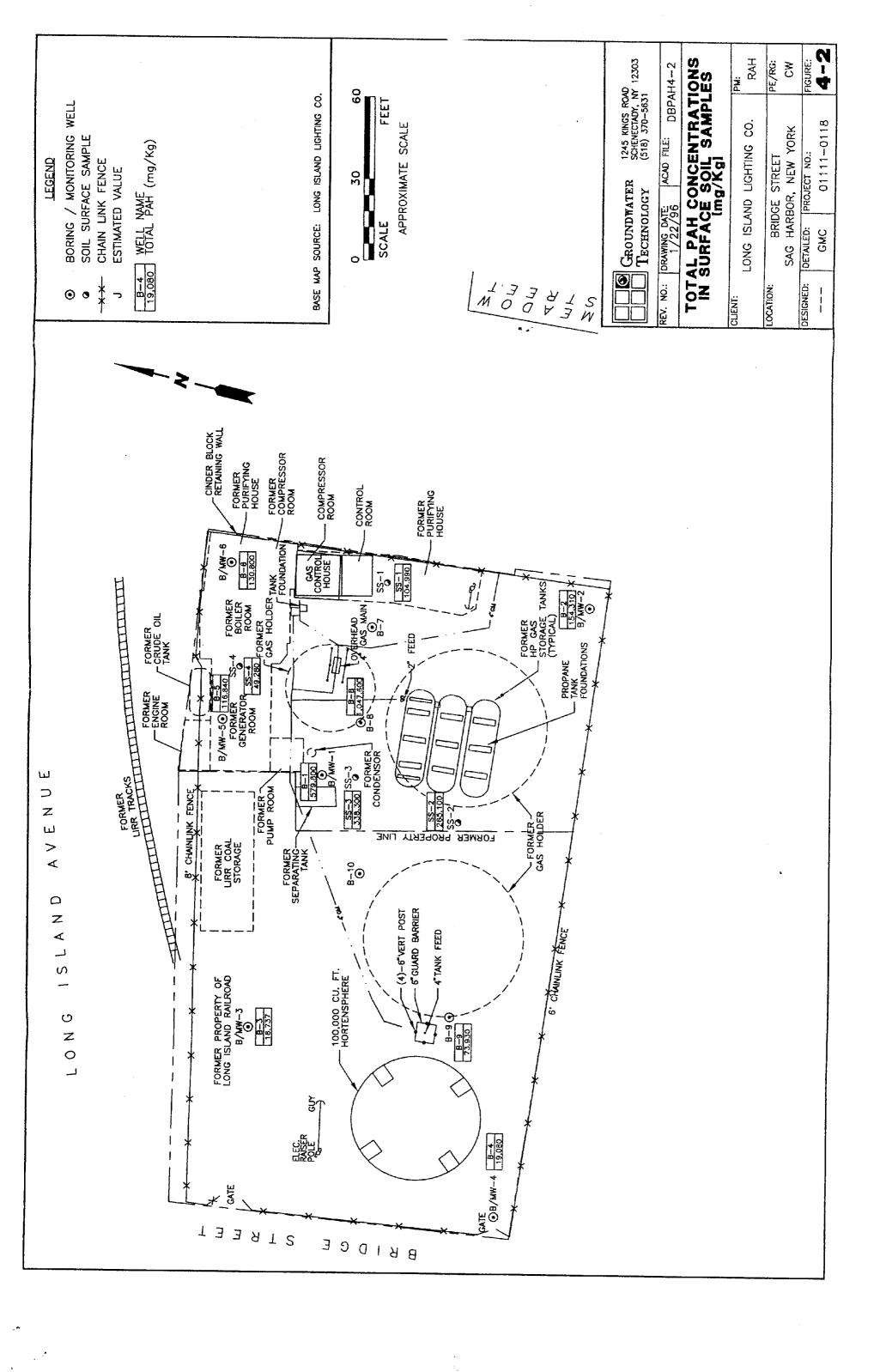
NATURE OF ACTION:


GEOTECHNICAL INFORMATION: SOIL TYPE: lend and gravel

GROUNDWATER DEPTH: less than 1 ft.


ASSESSMENT OF ENVIRONMENTAL PROBLEMS:


The underlying groundwater is contaminated primarily by aromatic volatile organics and various polycyclic aromatic hydrocarbons at concentrations above groundwater standards. A groundwater plume may pass beneath nearby properties. Because groundwater is only a few feet below ground surface, vapors eminating from groundwater are possible.


ASSESSMENT OF HEALTH PROBLEMS:

ENGINEEPING-SCIENCE

02-8907-29-L! REV. NO. 1

FINAL DRAFT LISTING SITE INSPECTION REPORT SAG HARBOR - BRIDGE STREET SAG HARBOR, NEW YORK VOLUME I

PREPARED UNDER
TECHNICAL DIRECTIVE DOCUMENT NO. 02-8907-29
CONTRACT NO. 68-01-7346

FOR THE

ENVIRONMENTAL SERVICES DIVISION
U.S. ENVIRONMENTAL PROTECTION AGENCY

FEBRUARY 22, 1990

NUS CORPORATION SUPERFUND DIVISION

RECEIVE OCT I 0 1991

BUREAU A HAZARDOUS SITE DIVISION OF HAZ WASTE REMEDIA

SUBMITTED BY:

OSEPH MAYO

PROJECT MANAGER

REVIEWED/APPROVED BY:

RONALD M. NAMAN FIT OFFICE MANAGER The judgmental soil sample collected adjacent to the vegetable garden on the Casman property showed the presence of six PAHs ranging in concentration from 1,800 to 10,000 ug/kg and having a total concentration of 37,800 ug/kg. In addition, the sample contained lead at the notable concentration of 2,620 mg/kg. This lead level is approximately three times greater than the maximum lead concentration found in natural soils. There is no known source to which the lead concentration in the sample can be attributed. The PAHs found on the Casman property were also found on the LILCO and LIF properties.

Only one compound, butylbenzylphthalate, was detected in the judgmental soil sample (at a concentration of 590 ug/kg) on the Greenberg property. The concentration of this compound was estimated and it is not known to be associated with the site.

One of the two judgmental samples collected from the HCC property contained benzo(b)fluoranthene at a concentration of 4,200 ug/kg and the other sample contained lead at a concentration of 1,870 mg/kg. Benzo(b)fluoranthene was also detected in samples from the LILCO and LIF properties. The lead concentration in the sample is more than two times greater than the maximum lead concentration typically found in natural soils. It should be noted that both samples were collected adjacent to Bridge Street and that PAH and lead levels are typically elevated adjacent to roadways.

The only substance detected at a concentration significantly above background in the judgmental soil sample and duplicate judgmental soil sample from the Howe property was copper. Copper was detected in the soil sample and the duplicate soil sample at concentrations of 2720 mg/kg and 1,000 mg/kg, respectively. Copper is not known to be associated with any sources from the site. The sample was collected near the intersection of the Howe, LIF, and parking lot properties.

3.5 WASTE SOURCE SUMMARY

This section provides a comprehensive description of the waste/source areas associated with the SHBS Site. The waste source area description is based on information collected during the PA, SSI, and LSI investigations and any other investigations that were conducted at the site.

Nonsampling waste source information gathered during the PA and SSI indicated that a town gas plant operated on the property that is currently the LILCO facility and that an oil spiil occurred on the LIF property. Field observations during the SSI indicated that the soil in the vicinity of the LIF oil tank appeared stained. SCWA personnel reported skin irritation while excavating a trench on Bridge-Street.

In a study conducted by Storch Associates, a sample from a boring (B-1) near the border of the LIF and LILCO properties showed the presence of benzene, toluene, ethylbenzene, styrene, xylenes, pesticides, and petroleum hydrocarbons. Ethylbenzene and total xylenes were also detected at concentrations significantly above background in samples collected from the LILCO and LIF properties. These compounds are typically associated with petroleum products; however, xylenes, benzene, and toluene are also known to be associated with gas plant tars.

A wide range of PAH compounds were detected at concentrations significantly above background in grid soil samples collected from the LILCO and LIF properties during the LSI. A number of PAHs were also detected in soil samples collected from the LILCO and LIF properties during the SSI. PAHs were also detected in samples collected from other properties during the SSI, but fewer PAHs were detected in these samples and the concentrations were lower. Similarly, PAHs detected in soil samples collected from the LILCO and LIF properties during the LSI were generally larger in number and higher in concentration than the PAHs detected in samples from other properties in the area. In fact, only, two samples collected during the LSI (Casman property and HCC property) showed the presence of any PAHs at concentrations exceeding background levels. Most of the soil samples collected during the SSI and LSI contained more than one of the PAHs that are typically found in manufactured gas plant tars. On the basis of the SSI and LSI sampling results, the LILCO and LIF properties are considered to be contaminated with PAHs at concentrations significantly above background. In addition, many of the PAH compounds detected on these two properties are associated with manufactured gas plant tars. Therefore, the source area is 84,000 ft¹ and it consists of the LILCO, LIF, and Casman properties.

Soil samples were collected on the Greenberg property to confirm the presence of PCBs, which were detected at estimated concentrations in samples collected during the SSI. Analytical results for soil samples collected from the Greenberg property during the LSI did not show the presence of any PCBs. However, PCBs, identified as the commercial mixture Aroclor-1260, were detected in one sample collected from the LILCO property.

	Sampling Locations Sag Harbor Gas Plant LSI, 2190 For Harbor Bridge Street
BBA03 BBA02 BBA02 BBA02 BBA03 BBA03 BBA03 BBA08 BBA08 BBA08 BBA08 BBA08 BBA08 BBA08 BBA08 BBA10 BBA10 BBA10 BBA10 BBA10 O"-8" O"-6" O"-12" 12" 12" 12" 13" O"-12" 13" 13" O"-12" 13" 13" O"-12" 13" O"-12" O"-12"	Soil on from Sas
	THE STREET

BRIDGE STREET

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

1.OCATION DATE COLLECTED PARAMETER UNITS FARAMETER UNITS FORECOLLECTED FARAMETER UNITS FORECOLLECTED FORECOLL	B-1-1 11/13/95 9 J 2 J 13 U 10 J	11/13/95 11/13/95 14 1 1 5 1 42	- v	B-4-1 11/13/95	B.5-1 11/13/95	B-6-1 11/13/95
PARAMETER UNITS BTEX Benzene ug/Kg Toltuene ug/Kg Xylene (total) ug/Kg TOTAL BTEX	9 J 2 J 13 U 10 J	14 1 J 5 J 62	1			:
	9 J 2 J 13 U 10 J	14 1 J 5 J 42				
1 1 1	9 1 2 J 13 U 10 J	14 1 J 5 J 42				
	2 J 13 U 10 J 10 J	1 1 5 1 42 42 60		;		
ă V	13 U 10 J 10 J	5 J 42 60		64	180	12 U
	10 1	42		f 099	1400 U	12 U
	21		12 0	9200	3100	12 U
			ND O	12000 21924	3800 7080	12 U * ND
PAlis						
Acenaphthene	26000 UJ	4500 U	(2)	1 000001		
Acenaphthylene ug/Kg	25000 J	3000 1	440	1 000001	008/	12000 U
Anthracene ug/Kg	7,007,0	6 02.6	F .	140000	4000 U	3400 J
knzo(a)antiracene	1 00061	6 0/8	140.5	f 000069	6400	12000 U
Benzo(a)pyrene	1 000001	0000	1300	780000 J	0009	5300 J
thene	5 00007	00061	2300	650000 J	2800	16000
	f 00000	14000	1200	340000 3	3300 J	9100 J
	00075	33000	1400	240000 J	6100	29000
	, 20000	11000	1400	450000 J	2400 J	7100 J
1,1,000	46000 J	1 5000	1400	750000 J	7300	1 0012
	4900 J	1900 J	110 J	820000 R	740 1	1 0031
THOUSENITION NEW NEW NEW NEW NEW NEW NEW NEW NEW NE	35000 J	4100 J	1900	1600000	. 0077	1 0001
Horene ug/Kg	2700 J	4500 11	1 011		0000	7800
Indeno(1,2,3-cd)pyrene ug/Kg	r 00069	34000	01-	7,0000	6200	12000 U
Naphthalene	0000	2000	00/1	300000	4600	24000
	. 00001	740	310 J	5000000 1	8600	1600 J
	10000	1200 J	460	2600000 J	27000	1700 J
gy/dn	64000 J	0086	2500	2500000 J	18000	9300

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

LOCATION DATE COLLECTED	į	JJ-8 11/14/95	B-9 11/14/95	SS-1 11/13/95	SS-2 11/14/95	SS-3 11/13/9 5	SS-4 11/13/95
PARAMETER	UNITS						
BTEX							
Benzene	ug/Kg	2 J	32	13 U	11 0	12 U	U 11
Toluene	ug/Kg	13 U	3 J	13 U	11 U	12 U	n 11
Ethylbenzene	ug/Kg	13 U	12 U	13 U	11 0	12 U	U 11
Nyfene (total) TOTAL BTEX	ug/Kg	13 U	7 11 g	13 U ND	U II U	12 U ND	n II n
D A 11e							
Acemphiliene	ug/Kg	13000 J	4100 UJ	4400 11	7300 1	11,00001	11 00%
Acenaphthylene	ug/Kg	28000 J	3800 J	2800 J	23000	10000 I	1,500 L
Anthracene	ug/Kg	12000 J	1400 J	980 J	10000	2700 J	f 089
Benzo(a)anthracene	ug/Kg	\$5000	3800 J	0096	19000	23000	4600
Benzo(a)pyrene	ug/Kg	120000	12000 J	10000	23000	\$2000	5200
Benzo(b)fluoranthene	ng/Kg	79000	\$500 J	0096	17000	33000 J	3600 J
Benzo(g,h,i)perylene	ug/Kg	74000	8500 J	7600	9500 J	32000	3200 J
Isenzo(k)thoranthene	ug/Kg	82000	7400 J.	6300	20000	22000	3100 J
Chrysene	ug/Kg	00086	5800 J	11000	21000	29000	5500
Dibenz(a,h)anthracene	ug/Kg	7100 J	720 J	1100 J	2000 J	3600 J	3800 U
Fluoranthene	ug/Kg	110000	3300 J	0086	24000	20000	2000
Fluorene	ug/Kg	8500 J	170 J	4400 U	f 0006	12000 U	3800 U
Indeno(1,2,3-cd)pyrene	ug/Kg	9200	13000 J	13000	28000	28000	4600
Naphthalene	ug/Kg	14000 J	740 J	610 J	1300 J	1400 J	3800 U
Phenanthrene	ug/Kg	22000 J	2200 J	3600 J	12000	3600 J	2600 J
	ug/Kg	20000	2000 J	19000	44000	48000	9700
TOTAL PAIIs and the second second		1047600	73930	104990	265100	338300	49280

TABLE B.3 GROUNDWATER ANALYTICAL RESULTS SAG HARBOR

Location Date Sampled		MW-1 11/21/25	MW-2 11/21/95	MW-3 11/21/95	MW-4 11/21/95	MW-5 11 <u>71</u> 795	MW-6 11/21/95
PARAMETER	UNITS						
итех							
lknzene	ng/L	1200	650	\$20	07.1	0000	:
Taluene	ng/L	350 D	79.3	47 1	2 1 50	1400	C† :
Ethylbenzene	ug/L	540	2600	310 J	400	1400	61
Nylene (total)	սջ/Լ	630 J	2100	350 J	340	2800	041
TOTAL BTEX		2720	5429 · · · · · · · · · · · · · · · · · · ·	1222	864	9100	334
PAHS							
Acenaphthene	ug/L	430 J	240 J	220.1	1001	. 070	
Acenaphthylene	ug/I.	17	12	10 01	800 11	r nor	250 1
Anthracene	ug/L	58.3	35	0 01	3.2	140.1	- x
Benzo(a)anthracene	ug/L	22	33	? -	75 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	800 K
Benzo(a)pyrene	ng/L	16	800 R	10 U	. 8	. «S	800 K
Bertzo(b)Huoranthene	ug/l.	8 3	12	10 U	4 3	3 23	1 008
Detrock of management	ug/L	3.1	f 9	10 U	2 J	9.1	800 R
Chronic	J/80 -:-	= \$	~	10 U	5 J	39	800 R
Diberg(a blanthracent	ugu.	77	29	1.3	=	99	800 R
Firemethers	ug/L	300 R	800 R	10 U	D 0I	1000 R	800 R
Elization	nga L	7 4 K	23	7.3	33	170 J	800 R
Language Control	ug/l,	170 J	93 J	10 U	94 J	I 80 J	86 J
inacho(1,4,3-cu)pyrene	ug/l,	3.	5 J	10 U	2.3	- œ	800 J
Naphithalene	ug∕l.	2600 J	3800 1	5400 J	2400 J	9300 J	3700 J
Phenanthrene	ug/L	300 J	200 J	10 U	110 J	630 J	1 011
lyrene TOTAL PAIIs 4	T/Sin	97 J	64	5. J	10	270 J	800 R
		*** * * 43.5] ************************************	6246	5634	2933	12381	12154

TABLE 11-3 GROUNDWATER ANALYTICAL RESULTS SAG HARBOR

Location Date Complete		MW-1	MW-2	MIW-3	MW-4	MW-5	MW-6
L'alt Sall litte		64/17/11	11/21/95	11/21/95	11/21/95	11/21/95	11/21/95
PAIGNIETER	UNITS						
SEMILYOLATILE ORGANICS (Cont.)							
bis(2-Chloroethoxy)methane	ug/L	500 R	800 R	10 U	D 01	1000 R	800 R
bis(2-Chloroethyl)Ether	ug/L	500 R	800 R	10 U	10 U	1000 R	800 R
bis(2-Ethylbexyl)pluhatate	ug/L	500 R	800 R	10 U	10 U	1000 R	800 R
Butylbenzylphilialate	ng/L	500 R	800 R	10 U	D 01	1000 R	800 R
Carbazole	ug/L	13	2 J	10 U	5.1	12	8008 800 R
Dibenzofuran	ug/L	≃	5.3	D 01	6	5 3	92
Diethylphthalate	ng/L	500 R	800 R	10 U	10 U	1000 R	800 R
Dimethy/pluthalate	ug/L	500 R	800 R	10 U	10 U	1000 R	800 R
Di-n-butylphilialate	ug/L	300 R	800 R	10 O	10 U	1000 R	800 R
Di-n-octylphthalate	ug/L	S00 R	800 R	10 U	10 U	1000 R	O 008
llexachlorobenzene	ug/L	S00 R	008 000	10 U	10 U	1000 R	800 R
Hexachlorobutadiene	ng/L	500 R	800 R	10 U	10 U	1000 R	800 R
Hexachlorocyclopentadiene	ug/L	500 R	800 R	10 U	10 U	1000 R	800 R
Hexachloroethane	ug/L	500 R	800 R	10 C	10 U	1000 R	800 R
Isophorone	ug/L	500 R	800 R	D 01	10 O	1000 R	800 R
Nitrobenzene	ug/L	500 R	800 R	10 O	10 U	1000 R	8008 R
N-Nitroso-di-n-propylantine	ug/L	500 R	800 R	10 U	10 U	1000 R	800 R
N-Nitrosodiphenylamine	ug/L	5 00 R	800 R	D 01	D 01	1000 R	800 R
Pentachlorophenol	ug/L	1200 U	2000 R	25 U	25 U	2500 R	2000 R
Phenol	ug/L	200 U	800 R	10 U	10 U	1000 R	800 R

(1.2 can dile a rough list y from 2/20

LONG ISLAND LIGHTING COMPANY

445 BROAD HOLLOW ROAD . MELVILLE, NEW YORK 11747

February 6, 1997

Mr. Robert R. Stewart
Environmental Engineer I
New York State Department of
Environmental Conservation
Building 40 - SUNY Stony Brook
Stony Brook, NY 1790-2356

Sag Harbor-Bridge Street Site - LILCO Parcel

Dear Mr. Stewart:

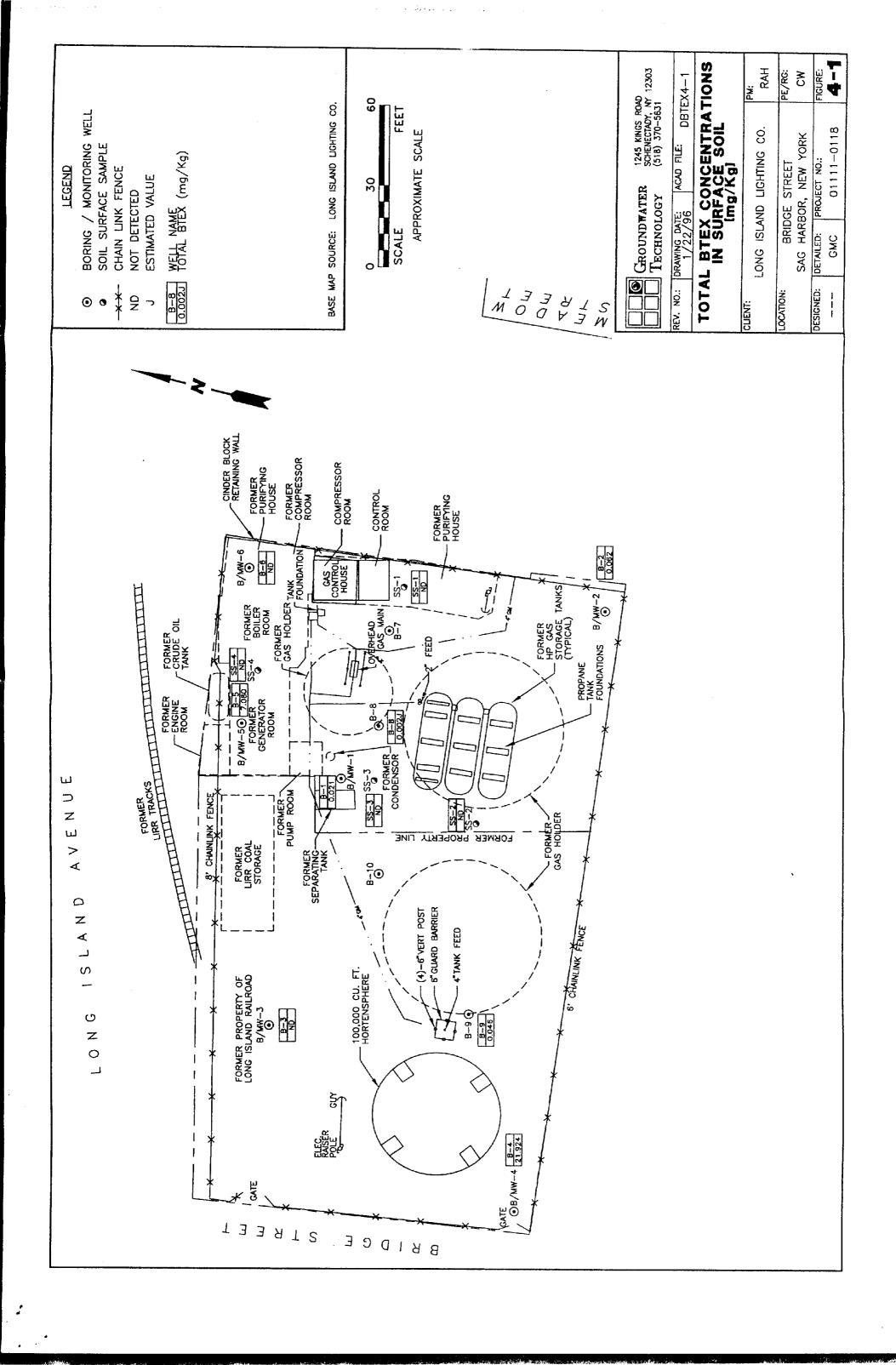
Pursuant to our past discussions, I am forwarding to you analytical data which was collected as part of a Phase I site investigation of the Company's former Sag Harbor Manufactured Gas Plant (MGP) site.

The data provided includes:

- Figure 4-1, Total BTEX Concentrations in Surface Soil
- Figure 4-2, Total PAH Concentrations in Surface Soil Samples
- Figure 4-3, Total BTEX Concentrations in Subsurface Soil
- Figure 4-4, Total PAH Concentrations in Subsurface Soil Samples
- Figure 4-5, BTEX Concentrations in Groundwater
- Figure 4-6, Total PAH Concentrations in Groundwater
- Validated Analytical Data in support of the above Figures

The Company is providing this data in support of your effort to reconsider the status of the Sag Harbor-Bridge Street Site. Notwithstanding this submittal, the Company does not agree with relisting the site on the Registry of Inactive Hazardous Waste Sites. The Department has previously evaluated the Sag Harbor-Bridge Street Site and found only low levels of contamination which warranted delisting from the Registry.

Please contact the undersigned at (516) 391-6144 if you have any questions regarding the data provided or the Company's parcel.


Theodore O. Leissing

Theader Ofing

Environmental Engineering Department

TOL/

Attachments

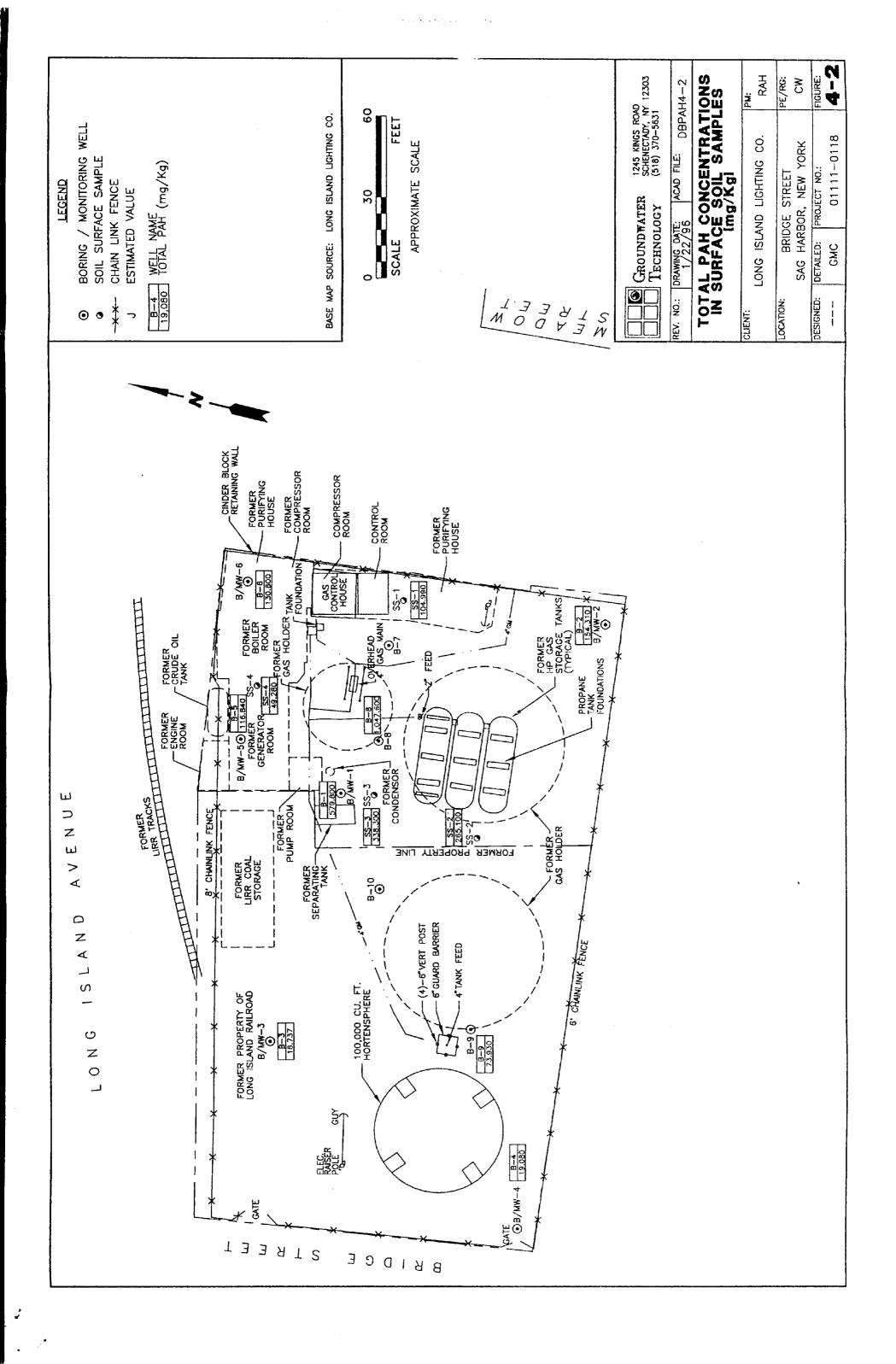


TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

B-3-1 11/13/95 11/13/								
FR UNITS 1	LOCATION DATE COLLECTED		B-1-1 11/13/95	B-2-1 11/13/95	B-3-1 11/13/95	B-4-1 11/13/95	B-S-1 11/13/95	B-6-1 11/13/95
ug/Kg 9 J 14 12 U 64 ug/Kg 2 J 1 J 12 U 660 J th ug/Kg 1 J 1 J 1 U 9200 th ug/Kg 13 U 42 12 U 9200 th ug/Kg 10 J 42 12 U 9200 th ug/Kg 26000 UJ 4300 U 67 J 12000 th ug/Kg 26000 UJ 4300 U 67 J 19000 th ug/Kg 25000 J 440 140000 J th 1700 J 870 J 140 J 650000 J th 1700 J 1800 J 140 J 65000 J th 1700 J 1300 J 140 J 1400 J 14000 J th 1700 J 1100 J 1400 J 14000 J 14000 J 14000 J th 1700 J 110 J 17000 J 1400 J 140	PARANIETER	UNITS						
ug/kg 9 J 14 12 U 66 ug/kg 2 J 1 J 12 U 660 J tr. ug/kg 13 U 5 J 12 U 660 J tr. ug/kg 10 J 42 12 U 9200 tr. ug/kg 26000 UJ 430 U 43 U 1300 tr. ug/kg 28000 U 4300 U 440 U 13000 tracene ug/kg 73000 J 3000 J 440 U 140000 J tracene ug/kg 73000 J 440 U 140000 J tracene ug/kg 73000 J 1400 U 730000 J tranthene ug/kg 37000 J 1400 U 730000 J tranthene ug/kg 4500 J 1100 J 110 J 820000 J tranthene ug/kg 4500 J 1500 J 110 J 15000 J tranthene ug/kg 4500 J 1400 J 110 J 250000 J tranthene ug/kg 4500 J	втех							
ug/Kg 2 J 1 J 1 J 0 G th ug/Kg 13 U 5 J 12 U 660 J th ug/Kg 10 J 42 12 U 9200 FEX ug/Kg 26000 UJ 42 12 U 9200 en ug/Kg 26000 UJ 4300 U 67 J 12000 ene ug/Kg 25000 U 4300 U 440 14000 U ene ug/Kg 25000 J 440 14000 J 1900 U ene ug/Kg 10000 J 1900 U 440 U 14000 J 1900 J ene ug/Kg 10000 J 1900 U 140 J 65000 J 1900 J 26000 J 26000 J ed) ug/Kg 5900 J 3400 J 110 J 460 J 26000 J 26000 J 26000 J	Benzene	ug/Kg	6 9	4	11 11	3	•	
13 13 15 15 15 15 15 15	Toluene	ug/Kg	2 5	: -	2 2	1 037	f 081	
1)	Ethylbenzene	ug/Kg	. n cı		2 2	0000	1400 0	
F.X. P. P. P. P. P. P. P.	Nylene (total)	ug/Kg	1 01	42	12 U	13000	2000	o :
te ug/kg 26000 UJ 4500 U 67 J 1500000 J cne ug/kg 25000 J 3000 J 440 140000 J hazene ug/kg 7700 J 870 J 140 J 690000 J cne ug/kg 39000 J 19000 2300 65000 J perylene ug/kg 57000 J 14000 2300 65000 J amilhene ug/kg 57000 J 11000 1400 750000 J amilhene ug/kg 46000 J 11000 1400 750000 J amilhene ug/kg 46000 J 15000 110 J 750000 J amilhene ug/kg 45000 J 11000 110 J 750000 J ug/kg 35000 J 4100 J 110 J 720000 J cd)pyrene ug/kg 9500 J 30000 J 760000 J ug/kg 9500 J 1200 J 1300 J 760000 J cd)pyrene ug/kg 1300 J 460 760000 J	TOTAL BTEX		**************************************	9	ND	1914	7080	O ZI
ene ug/kg 26000 UJ 4500 U 67 J 1500000 J ene ug/kg 23000 J 3000 J 440 140000 J ug/kg 7700 J 870 J 140 J 690000 J ene ug/kg 30000 J 1300 780000 J analthene ug/kg 30000 J 1400 2300 perylene ug/kg 50000 J 1400 240000 J vanthene ug/kg 50000 J 11000 1400 450000 J vanthene ug/kg 4000 J 1500 J 110 J 820000 J valkg 33000 J 110 J 720000 J 720000 J ug/kg 2700 J 4100 J 110 J 720000 J ug/kg 9500 J 34000 J 1700 360000 J ug/kg 9500 J 940 J 310 J 360000 J ug/kg 9500 J 940 J 310 J 360000 J to 1200 J 1200 J 460 260000 J	PAIIs							
eith 1g/Kg 23000 J 3000 J 440 10000 J ug/Kg 7700 J 870 J 140 J 690000 J erb ug/Kg 39000 J 6500 1300 780000 J erb ug/Kg 100000 J 19000 2300 650000 J xanthene ug/Kg 57000 J 1400 240000 J perferie ug/Kg 50000 J 11000 1400 240000 J vanthene ug/Kg 46000 J 15000 1400 750000 J val/Kg 46000 J 15000 J 110 J 820000 J val/Kg 33000 J 4100 J 110 J 820000 J val/Kg 2700 J 4500 J 110 J 720000 J val/Kg 65000 J 34000 J 1700 300000 J val/Kg 9500 J 34000 J 310 J 260000 J val/Kg 9500 J 1200 J 460 260000 J	Acenaphthene	ug/Kg	26000 UJ	4500 U	67.1	1 5000001	7006	
tig/Kg 7700 J 870 J 140 J 690000 J tracele ug/Kg 39000 J 6500 1300 780000 J ene ug/Kg 60000 J 19000 2300 65000 J xauthenc ug/Kg 57000 J 1400 24000 J 34000 J perylene ug/Kg 57000 J 1100 1400 24000 J vanthence ug/Kg 46000 J 1500 1400 45000 J value ug/Kg 4500 J 1100 110 J 820000 J value ug/Kg 35000 J 4100 J 110 J 720000 J value ug/Kg 69000 J 4400 J 110 J 720000 J value ug/Kg 9500 J 940 J 310 J 260000 J value ug/Kg 1000 J 1200 J 460 J 260000 J	Acenaphihylene	ug/Kg	25000 J	3000	440	140000 1	1900	7,000
hraceine ug/kg 39000 J 6500 1300 780000 J ene ug/kg 100000 J 19000 2300 650000 J xanthene ug/kg 57000 J 1400 240000 J perylene ug/kg 57000 J 11000 1400 240000 J xanthene ug/kg 50000 J 11000 1400 450000 J ug/kg 46000 J 1500 J 110 J 820000 J ug/kg 35000 J 4100 J 110 J 820000 J ug/kg 2700 J 4100 J 110 J 720000 J ug/kg 69000 J 4500 U 110 J 720000 J ug/kg 69000 J 34000 1700 360000 J ug/kg 9500 J 940 J 310 J 460 260000 J	Authracene	ug/Kg	L 0077	870 J	140 J	1 000069	4000	3400 J
ende lig/kg 100000 J 19000 2300 650000 J Azauthene lig/kg 60000 J 14000 1200 340000 J perylene ug/kg 57000 J 13000 1400 240000 J Arauthene ug/kg 46000 J 11000 1400 450000 J ug/kg 46000 J 15000 J 110 J 820000 J ug/kg 35000 J 4100 J 110 J 820000 J ug/kg 2700 J 4500 U 110 J 720000 J ug/kg 69000 J 34000 1700 360000 J ug/kg 9500 J 940 J 310 J 560000 J ug/kg 10000 J 460 26000 J	Benzo(a)anthracene	ug/Kg	39000 J	6500	1300	780000 1	0009	0 00071
ng/kg 60000 J 14000 1200 340000 J perylene ug/kg 57000 J 33000 1400 240000 J oranthene ug/kg 50000 J 11000 1400 450000 J onlitracene ug/kg 4900 J 15000 J 110 J 820000 R strong lug/kg 33000 J 4100 J 110 J 820000 R cd)pyrene ug/kg 69000 J 4500 U 110 J 720000 J ug/kg 69000 J 34000 1700 300000 J ug/kg 9500 J 940 J 310 J 500000 J	lknzo(a)pyrene	ug/Kg	1000001	19000	2300	650000 1	2800	1,000
perylene ug/kg 57000 J 33000 1400 240000 J oranthene ug/kg 50000 J 11000 1400 450000 J ug/kg 45000 J 15000 110 J 820000 J influacene ug/kg 35000 J 4100 J 110 J 820000 R influacene ug/kg 35000 J 4100 J 110 J 720000 J cd)pyrene ug/kg 69000 J 34000 1700 300000 J ug/kg 9500 J 940 J 310 J 500000 J chonon J 460 250000 J 250000 J	Benzo(b)Huoranthene	ug/Kg	60000	14000	1200	340000 1	1 001	1 0010
vg/Kg 50000 J 11000 1400 45000 J vg/Kg 46000 J 15000 1400 750000 J indiracene ug/Kg 4900 J 1900 J 110 J 820000 R t ug/Kg 2700 J 4100 J 1900 110 J 720000 J cd)pyrene ug/Kg 69000 J 34000 1700 300000 J ug/Kg 9500 J 940 J 310 J 500000 J t ug/Kg 10000 J 260000 J	Benzo(g.h,i)perylene	ug/Kg	\$7000 J	33000	1400	240000 J	0019	29000
ug/Kg 46000 J 15000 1400 750000 J ug/Kg 4900 J 1900 J 110 J 820000 R ug/Kg 35000 J 4100 J 1900 160000 J cd/pyrene ug/Kg 69000 J 34000 1700 300000 J ug/Kg 9500 J 940 J 310 J 5000000 J ug/Kg 10000 J 1200 J 460 260000 J	Benzo(k)fluoranthene	ug/Kg	20000 J	11000	1400	450000 J	2400 J	7100 1
third active to the first total and the first	Citystee 7.3	ug/Kg	46000 J	15000	1400	750000 J	7300	710017
the Mark the street of the str	Dibenz(A,h)anilwacene	ug/Kg	4900 3	1 0061	110 J	820000 R	740 J	1 500 1
-cd)pyrene ug/Kg 69000 J 34000 1700 300000 J ug/Kg 69000 J 940 J 310 J 5000000 J ug/Kg 10000 J 1200 J 460 260000 J	r luoranthene	ug/Kg	35000 J	4100 J	1900	1600000 J	0099	1 0081
-cd)pyrene ug/Kg 69000 J 34000 1700 300000 J ug/Kg 9500 J 940 J 310 J 5000000 J ug/Kg 10000 J 1200 J 460 2600000 J	Fliorene	ug/Kg	2700 J	4500 U	110 J	720000 J	6200	12000 1
ug/Kg 9500 J 940 J 310 J 5000000 J 460 2500000 J 310 J	Indeno(1,2,3-cd)pyrene	ug/Kg	69000 J	34000	1700	300000 J	4600	24000
ug/Kg 10000 J 1200 J 460 2600000 1	Naphthalene	ug/Kg	9500 J	940 J	310 J	\$000000 J	8600	1 0091
	Phenanthrene	ug/Kg	100001	1200 J	460	2600000 J	22000	1 0021
-	Pyrene	ug/Kg	64000 J	0086	2500	2500000 J	18000	0000

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

LOCATION DATE COLLECTED		B-8 11/14/95	B-9 11/14/95	SS-1 11/13/95	SS-2 11/14/95	SS-3 11/13/95	SS-4 11/13/95
PARANIETER	UNITS						
BTEX							
Benzene	ug/Kg	2 J	32	13 U	n 11	12 U	חוו
Toluene	ug/Kg	13 U	3 J	13 U	חוו	12 U	o 11
Ethylbenzene	ug/Kg	13 U	12 U	13 U	ם בו	12 U	n 11
Nylene (total)	ug/Kg	13 U	1 11	D 61	U 11	12 U) II
TOTAL BTEX		7	9 0 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND	ND	QN	gy •
PAlis							
Acenaphthene	ug/Kg	13000 J	4100 UJ	4400 U	2300 J	12000 U	3800 U
Acenaphthylene	ug/Kg	28000 J	3800 J	2800 J	23000	100001	1 500 1
Anthracene	ug/Kg	12000 J	1400 1	f 086	10000	2700 J	f 089
Benzo(a)anthracene	ug/Kg	8 \$ 000	3800 J	0096	19000	23000	4600
Benzo(a)pyrene	ug/Kg	120000	12000 J	00001	23000	\$2000	5200
Denzo(b)fluoranthene	ug/Kg	79000	2500 J	0096	17000	33000 J	3600 J
Benzo(g,h,i)perylene	ug/Kg	74000	8200 1	2600	9500 J	32000	3200 J
Ekrizo(k)lluoranihene	ug/Kg	82000	7400 J	6300	20000	22000	3100 J
Chrysene	ug/Kg	00086	8800 J	11000	21000	29000	5500
Dibenz(a,h)anthracene	ug/Kg	7100 J	720 J	10011	2000 J	3600 J	3800 U
Fluoranihene	ng/Kg	110000	3300 J	0086	24000	20000	2000
Fluorene	ng/Kg	8500 J	1 0/L	4400 U	I 0006	12000 U	3800 U
Indeno(1,2,3-cd)pyrene	ug/Kg	9200	13000 J	13000	28000	28000	4600
Naphthalene	ug/Kg	14000 J	740 J	610 J	1300 J	1400 J	3800 U
Phenanthrene	ug/Kg	22000 J	2200 J	3600 J	12000	3600 J	2600 J
Pyrene	ug/Kg	200000	S000 J	19000	44000	48000	9700
TOTAL PAIIs		1047600	73930	104990	265100	338300	49280

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

				SAV HARBUR			
LOCATION DATE COLLECTED		B-1-1 11/13/95	B-2-1 11/13/95	B-3-1 11/13/95	B-4-1 11/13/95	B-5-1 11/13/95	B-6-1 11/13/95
PARAMETER PESTICIDES	UNITS						
ALDOL	ug/Kg	2600 AJ	2100 AJ	2100 AJ	V.	N.	2700 A1
ALDOL	ug/Kg	NA	NA	٧X	Y Y	¥ Z	NA NA
4.4".DDD	ug/Kg	22 UJ	13 UJ	S UI	4 5	8.0 UJ	ID 61
4,4'-DDE	ug/Kg		13 UI	8.0 UJ	34 UJ		in 61
4,4'.DDT	ug/Kg	22 UJ	37 J	8.0 UJ	120 J		
Aldrin	ug/Kg	n =	to 6.9	4.1 UJ	17 UJ	4. U	
alpha-1111C	ng/Kg	ਤ =	6.9 UJ	4.1 UJ	I7 UJ	4.1 UJ	
alpha-Chlordane	ng/Kg	50 II	(1) 6'9	4.1 UJ	IJ UJ	4.	
Aroclor-1016	ng/Kg	220 UJ	130 UJ	to 0#	340 UJ	80 UJ	
Aroctor-1221	ug/Kg	440 UJ	270 UJ	IO 091	680 UJ	160 UJ	-
Aroclor-1232	ng/Kg	220 UJ	I30 UI	80 UI	340 UJ	80 UJ	in 061
Aroclor-1242	ug/Kg	220 UJ	I30 UI	80 Uj			
Aroclor-1248	ug/Kg	-	130 UJ	80 UJ	340 UJ		
Aroclor-1254	ug/Kg	220 UJ	130 UJ	80 UJ	340 UJ	£0 08	IO 061
Aroclor-1260	ug/Kg	220 UJ	130 UJ	80 UJ	340 UJ		-
beta-BIIC	ug/Kg	n =	6.9 UJ	.i. U.	I7 UI	4.1 U	
della-BIIC	ug/Kg	<u> </u>	to 6.9	4.1 UJ	tu 71		
Dieldria	ug/Kg	22 UJ	13 UJ	1.9.1	34 UJ	_	IO 61
Endosullan I	ug/Kg	<u>7</u> 0 =	6.9 UJ	4.1 UJ	I) UI	4.1 UJ	10 OI
Endosullan II	ug/Kg	58 J	13 UI	4.3 J	110 J	8.0 UJ	38)
Endosulian sulfate	ug/Kg	22 UJ	16 J	8.0 UJ	34 UJ	8.0 UJ	
Endrin	ug/Kg	22 UJ		_	190 J	8.0 UJ	
Endrin aldehyde	ug/Kg	41 3	40)		240 J	8.0 UJ	
Endrin kelone	ug/Kg	22 UI	13 U	8:0 UJ	34 UJ	8.0 UJ	
gamma-BHC (Lindane)	ug/Kg	n ::	6.9 UJ	4.1 UJ	m 21	4.1 UJ	
gannna-Chlordane	ug/Kg	n ::	IU 6.9	4.1 UJ	19 1	4.1 UJ	IO 01
Il eptachior	ug/Kg	70 11	6.9 UJ		17 UJ	4.1 UJ	
Heptachlor epoxide	ug/Kg	n n	6.9 UJ		17 UJ	4.1 UJ	
Methoxychlor	ug/Kg	ſ 001	71. J		460 J	41 UJ	
Loxaphene	ug/Kg	1100 UJ	n 069	410 UJ	1700 UJ	410 UJ	

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

				WOODWIN DUG			
LOCATION DATE COLLECTED		B-1-1 11/13/95	B-2-1 11/13/95	B-3-1 11/13/95	B-4-1 11/13/95	B-5-1 11/13/95	B-6-1 11/13/95
PARAMETER	UNITS						
YOLATILE ORGANICS							
1,1-Dichloroethene	ug/Kg	13 U	14 U	12 U	4900 U	1400 13	13 11
1, 1, 1-Trichloroethane	ug/Kg	13 U	14 U	12 U	4900 U	1400 U	2 2 2
I, i.2. Trichloroethane	ug/Kg	13 U	14 U	12 U	4900 U	1400 U	12 U
I, I, Z. Tetrachloroethane	ug/Kg	13 U	14 U	12 U	4900 U	1400 U	12 U
1,2-Dichardenhane	ug/Kg	13 U	. 14 U	12 U	4900 U	1400 U	12 U
1,2-Dichieroctivene (10tal)	ug/Kg	13 U	74 U	12 U	4900 U	1400 U	12 U
1,2-13/Chloropane	ug/Kg	13 O	14 U	12 U	4900 U	1400 U	12 U
Z-Intended	ug/Kg	4 3	14 D	13 U	2000 J	1400 U	12 U
Z-Hexahone	ug/Kg	13 0	14 U	12 U	4900 U	1400 U	12 U
4-Methyl-Z-Pentanone	ug/Kg	13 (14 U	12 U	4900 U	1400 U	12 U
Accione	ug/kg	13 13	20 13	14 13	4900 U	1400 U	12 U
Dromodichloromethane	ng/Kg	13 C	14 U	12 U	4900 U	1400 U	12 U
il comotom	ug/Kg) EI	14 U	12 U	4900 U	1400 U	12 U
Control November	ug/Kg	13 0	14 U	12 U	4900 U	1400 U	12 U
Cathon Tashings	ug/kg	13 O	14 O	13 U	4900 U	1400 U	12 U
Carbon Letrachionide	ug/Kg 	13 C	7 C	12 U	4900 U	1400 U	12 U
Cities of	ug/kg	ם כו	14 U	12 U	4900 U	1400 U	12 U
Chlorectaine	ug/Kg	13 U	14 U	12 U	4900 U	1400 U	13 C
Chlorenthen	ug/Kg	D (1	14 U	12 U	4900 U	1400 U	13 U
cie.1 3. Dichlorocones	a Revision	o :	7	12 U	4900 U	1400 U	12 U
	2 :) :	7	13 N	4900 U	1400 U	13 U
	ug/kg	13 0	14 U	12 U	4900 U	1400 U	12 U
Alculylene Unforde	ug/kg	en **	11 B	12 B	15000 J	810 B	ea
Slyrene	ug/Kg	13 U	14 U	13 C	4900 U	1400 U	12 U
i etrachloroethene	ug/Kg	D CI	14 U	12 U	4900 U	1400 U	12 13
trans-1,3-Dichloropropene	ug/Kg	13 U	14 U	12 U	4900 U	1400 U	12 11
Trichloroethene	ug/Kg	13 U	14 U	12 U	4900 U	1400 U	12 U
Vmyl Chloride	ug/Kg	13 U	14 U	12 U	4900 U	1400 U	12 U

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

LOCATION DATE COLLECTED		B-1-1 11/13/95	B-2-1 11/13/95	B-3-1 11/13/95	B-4-1 11/13/95	D-5-1 11/13/95	B-6-1 11/13/95
PARAMETER	UNITS						
SEMI-VOLATILE ORGANICS							
1,2-Dichlorobenzene	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 13
1,2,4-Trichlorobenzene	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 13
1,3-Dichlorobenzene	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
1,4-Dichlorobenzene	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 11
2-Chloronaphthalene	ug/Kg	26000 UJ	4500 U	410 U	\$20000 R	4000 n	12000 11
2-Chlorophenol	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
2-Methymaphthalene	ug/Kg	3700 J	4500 U	67 J	1900000 R	3500 J	1 460 J
2-Methylphenol	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 N	12000 [1
2-Neroaniline	ug/Kg	f0 00099	11000 U	O 086	2000000 R	O 0096	29000 U
Z-Introphenol	ug/Kg	26000 UJ	4200 U	410 U	820000 R	4000 U	12000 U
2,2'-oxybis(1-Chloropropane)	ug/Kg	Z6000 U	4500 U	410 U	820000 U	4000 U	12000 U
Z.4-Dichlorophenol	ug/Kg	26000 UJ	4200 U	410 U	820000 R	4000 U	12000 U
7,4-Dimelliylphenol	ug/Kg	26000 UJ	4200 U	410 U	820000 R	4000 U	12000 U
2,4-Duntrophenol	ug/Kg	F 00099	11000 U	O 086	2000000 R	U 0096	29000 U
2,4-Dinkrotokusie	ug/Kg	26000 UJ	4200 U	410 U	820000 R	4000 U	12000 U
2,4,5.1 nchlosophenol	ug/Kg	66000 UJ	11000 U	O 086	2000000 R	U 0096	29000 U
2,4,6-1 nethorophenol	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
Z.o-Dinardoluene	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
	ug/Kg	60000 UJ	O 00011	O 086	2000000 R	U 0096	29000 U
5,3 - U.Chloropenzidine	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
4-Diomophenyl-phenylenker	ug/Kg	26000 UJ	4500 U	410 C	820000 R	4000 U	12000 U
4-Chloro-3-Methylphenol	ug/kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
4-Chlorountine	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
4-Chlorophenyi-phenylether	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
4-Atciliyiphenol	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
4-Nitroaniine	ug/Kg	fO 00099	U 00011	O 086	2000000 R	Ω 00%	29000 U
4-Nitrophenol	ug/Kg	66000 UJ	U 00011	O 086	2000000 R	O 0096	29000 U
4.6-12miro-2-nethylpkenol	ug/Kg	66000 UJ	11000 U	O 086	2000000 R	n 0096	29000 U

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

				!			
LOCATION DATE COLLECTED		B-1-1 11/13/95	B-2-1 11/13/95	B-3-1 11/13/95	B-4-1 11/13/95	B-5-1 11/13/95	B-6-1 11/13/95
PARAMETER	STINITS						
SEMILYOLATILE ORGANICS (Cont)							
	ug/Kg	26000 UJ	4500 13	410 11	04000		
bis(2-Chloroethyl)Ether	ug/Ke	26000 111	11 0057	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.4000 R	4000 C	12000 U
bis(2-Ethylbexyl)ohthalate	no/Ka	36000 111	0 000	410 0	820000 R	D 000+	12000 U
	5 MAIN 19	70000 CD	4300 U	45 J	820000 R	4000 U	12000 U
	8 v 8 n	79000 CT	4500 U	410 U	820000 R	4000 U	12000 11
	ug/kg	26000 UJ	4500 U	410 U	\$20000 R	4000 11	12000
	ug/Kg	26000 UJ	4500 U	410 U	810008	4000	0 00071
	ug/Kg	26000 UJ	4500 U	410 11	a 000078	2 200	2000
	ug/Kg	26000 UJ	4500 11	2 9 7	4 0000 A	4000 U	12000 U
Di-n-twityfphthafate	ug/Kg	26000 1JJ	4500 11		820000 K	4000	12000 U
	ue/Ke	36000 111	1200		\$20000 K	4000 U	12000 U
	up/Ke	36000 [1]	1300 0	410 U	820000 R	₩ 4000 U	12000 U
•	18/Ka	75000	4300 U	410 U	820000 R	O00 C	12000 U
in the second	10 T	(1) DOMO?	2000	410 U	820000 R	1000 A	12000 U
	8 4 An	70000	4500 U	410 U	820000 R	1000 A	12000 U
	ug/kg 	26000 UJ	4500 U	410 U	820000 R	4000 U	12000 U
	ak/gu	26000 UJ	4500 U	410 U	820000 U	4000 U	12000 13
•	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 U	12000
ine	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 11	120001
4mm¢	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 11	20021
ilorophenol	ug/Kg	66000 UJ	11000 U	O 086	200000 R	2 0096	30000
n louatri	ug/Kg	26000 UJ	4500 U	410 U	820000 R	4000 11	12000
						,	3

TABLE B-1 SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

LOCATION DATE COLLECTED		D-8 11/14/95	B-9 11/14/95	SS-1 11/13/95	SS-2 11/14/95	SS-3 11/13/9/S	SS-4 11/13/95
PARAMETER	UNITS						
INORGANICS							
Aluminum	MG/KG	NA	NA	4510	1890	2170	0360
Antimony	MG/KG	NA	VV	2.4 B	1.5 13	1.2 U	13.11
Arsenic	MG/KG	NA	NA	17.7	10.0	5.7) T
Jarium	MQ/K0	ΥN	ΥN	142	70.3	30.9 B	41.6 B
Beryflium	MG/KO	Y Y	٧X	0.23 B	0.07 B	0.03	0.02 U
Cadnium	MG/KG	ΝΑ	ΥX	0.39 B	0.41 B	0.17 B	0.30 B
Calcium	MG/KG	Ϋ́Υ	ΥX	30100	2630	1900	\$7900
Chromium	MG/KG	NA	۷X	17.6	14.0	2.5	4.2
Cobalt	MG/KG	NA A	A'N	5.5 B	3.6 13	8.1	2.3 B
Copper	MG/KG	NA	ΥN	87.1	29.9	16.8	15.2
Cyanide	MG/KG	2.3 J	l.4 J	3.9 J	1.2 J	Z GN	S CIN
Iron	MG/KG	NA	Ϋ́	39600	19200	5620	7250
peal	MG/KG	NA	AN	129	474	194	143
Magnesium	MG/KG	٧N	ΥN	11900	1550	1210	30800
Manganese	NIG/KG	NA	VΝ	232	8.06	37.6	130
Mercury	NIG/KG	٧×	NA	7.0	1.7	96.0	1.6
Nickel	MG/KG	N A	NA	15.7	10.6	3.3 B	5.3 B
Polassium	MG/KG	NA	NA	305 B	86.3 U	76.0 U	200 B
Selenium	MG/KG	NA	NA	5.2	2.8	0.84 U	0.95
Silver	MG/KG	Y Y	NA	8 1.1	0.37 U	0.40 B	0.37 U
Sodium	MG/KG	٧	N.	U 22.1	162 U	142 U	11 191
Thallium	MG/KG	Ϋ́	NA	2.4	2.0 B	. n 01	12 []
Vanadium	MG/KG	NA	NA	17.6	11.5	6.4 3	
Zinc	MG/KG	NA	X A	337	219	9.68	165
Physiologically Available Cyanide	MG/KG	NA	٧N	89 .	0.53	0.5 U	0.5 U

TABLE B-I SURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

LOCATION DATE COLLECTED		B-8 11/14/95	B-9 11/14/95	SS-1 11/13/95	SS-2 11/14/95	SS-3 11/13/95	SS-4 11/13/95
PARANIETER	UNITS						
SEMI-YOLATILE ORGANICS							
1,2-Dichlorobenzene	ug/Kg	46000 U	4100 UJ	4400 11	11 00011	11 00001	
1,2,4-Trichlorobenzene	ug/Kg	46000 U	4100 UJ	4400 11	1100011	0 00071	3800 U
1,3-Dichlorobenzene	ug/Kg	46000 U	4100 UJ	4400 11	2 0001	0 00071	3800 U
1,4-Dichlorobenzene	ug/Kg	46000 U	4100 UJ	4400 13	1 0001	0 00071	3800 U
2-Chloronaphhalene	ug/Kg	46000 U	4100 UJ	4400 U	1 0001	120001	3800 U
2-Chlorophenot	ug/Kg	46000 U	4100 UJ	4400 U	11000 11	120001	2000 0
2-Methykraphthalene	ug/Kg	7200 J	4100 UI	4400 U	3200 1	120001	0 0000
2-Methylphenol	ug/Kg	46000 U	4100 UJ	4400 U	1100011	12000 1	0 0086
2-Nitroaniline	ug/Kg	120000 U	0000 O	11000 U	29000	20000	3800 0
2-Nitrophenol	ug/Kg	46000 U	4100 UJ	4400 U	1100011	0.0007	0 0016 2000 L
2,2'-oxybis(1-Chtoropropane)	ug/Kg	46000 U	4100 U	4400 U	1100011	0.00071	3800 U
2,4-Dichlorophenal	ug/Kg	46000 U	4100 UJ	4400 U		0 00021	3800 0
2,4-Dinethylphenol	ug/Kg	46000 U	4100 UJ	4400 U		17000	3800
2,4-Dinitrophenol	ug/Kg	120000 U	U 0066	D 0001	29000	0 00071	3800 0
2,4-Dinitrololuene	ug/Kg	46000 U	4100 UJ	4400 []	1100011	11 0000	2,000
2,4,5-Trichlorophenoi	ug/Kg	120000 U	U 0066	11 00011	20000	0 0000	D 0085
2,4,6-Trichtorophenol	ug/Kg	46000 U	4100 111	4400 11	0 00067	29000 U	O 0016
2,6-Dinitrotofuene	ug/Kg	46000 U	4100 (1)	4400 11	0 0001	12000 U	3800 U
J-Nitroaniline	ug/Kg	120000 U	111 0066	1 0001	11000 0	1,2000 U	3800 U
3,3'-Dichlorobenzidino	ng/Kg	46000 U	4100 111	1000	0 00067	29000 U	0 0016
4-Bromophenyl-phenylether	ug/Kg	46000 U	4100 111	4400 0	0 00011	12000 U	3800 U
4-Chloro-3-Methylphenol	ue/Ke	46000 11	4100 111	7,000	0 00011	12000 U	3800 U
4-Chloroaniline	ue/Ko	46000 11		0.004	0 00011	12000 U	3800 U
4-Chlorophenyl-phenylether	911,611 0,7/,011	4,000 1	70.001	4400 U	D 00011	12000 U	3800 U
4. Methydolanol	מלא אלוו מלא אלווי	10000	4100 DJ	4400 U	11000 U	12000 U	3800 U
4 Missing spacetion	lig/Ag	46000 U	4100 UJ	4400 N	11000 U	12000 U	3800 13
4-Ivii Oznii ne	ug/Kg	120000 U	0006 UI	11000 U	29000 U	29000 13	11 0016
4-Nitrophenol	ug/Kg	120000 U	10 006	U 00011	29000 U	29000 U	11 0016
4,6-Dantro-2-methylphenol	ug/Kg	120000 U	IU 0099	11000 U	29000 U	29000 13	11 0016
•) } } !	

TABLE B-2 SUBSURFACE SOIL ANALYTICAL RESULTS SAG HARBOR

LOCATION DATE COLLECTED		B-1-2 11/14/95	B-7 11/14/95	B-10 11/14/95
PARAMETER	UNITS			
ВТЕХ				
Benzene	ug/Kg	31000 J	61	30
Toluene	ug/Kg	1800	, 2	20
Ethylbenzene	ug/Kg	43000 J	190	23
Xylene (total)	ug/Kg	52000 1	160	3 6
TOTAL BTEX		127800	416	14.
PAIIs				
Acenaplithene	ug/Kg	13000	1700 J	7900 1
Acenapiuhylene	ug/Kg	4900 J	4200 U	3000 J
Anthracene	ug/Kg	48000	460 J	27000 J
Benzo(a)anthracene	ug/Kg	17000	4200 U	11000 J
Beizo(a)pyrene	ug/Kg	21000	4200 U	11000 J
Benzo(b)fluoranthera	ug/Kg	10000	4200 U	5900 J
Benzo(g.h,t)perylene	ug/kg	22000	4200 U	1 1000 J
DenZo(k Jiluoranillene	ug/Kg	12000	4200 U	8100 J
Citysene	ng/Kg	25000	4200 U	15000 J
Denz(a,n)anuracene	ng/Kg	1300 J	4200 U	8400 UJ
riuoraminene	ug/Kg	26000	820 J	21000 J
Fluorene	ug/Kg	12000	610 J	6300 J
Indeno(1,2,3-cd)pyrene	ug/Kg	19000	4200 U	8100 J
Naphthalene	ug/Kg	S800 J	19000	1800 J
Prenantirene	ug/Kg	44000	2400 J	20000 J
Pyrene	ug/Kg	48000	1200 J	28000 J
TOTAL PARIS CONTRACTOR OF CONTRACTOR		329000	26190	185100

TABLE B-3 GROUNDWATER ANALYTICAL RESULTS SAG HARBOR

Location Date Sampled		MW-1 11/21/95	MW-2 11/21/95	MW-3 11/21/95	MW-4 11/21/95	MW-5 1121/95	MW-6 11/21/95
PAIGANETER	UNITS						
BTEX							
Benzene	ug/L	1200	650	UC\$		4	1
Toluene	ug/L	350 D	79.1	- 57		2900	13
Ethylbenzene	ug/L	540	2600	7 0 is	7 / 7	1400	61
Xylene (total)	ug/L	-	2100	1 050	076	2000	140
TOTAL BTEX		2720	\$429	122	864	9100	334
PAIIs							
Acenaphthene	ug/1.	430 J	240 J	1 000	- 001		,
Accuaphthylene	ug/f.	1.2		170	f 061	1096	250 J
Anthracene	ue/L	185	: 3	2 5	0 808	≂	
Denzo(a)antiracene	ug/L		3 2	2 -	:	40	800 R
Benzo(a)pyrene	ug/L	91	a 008		= •	r :	800 R
Benzo(b)fluoranthene	ng/L	~	12 12	2 5		× 6	800 R
Benzo(g,h,i)perylene	ug/L	3.3	6 J	2 5		67	0 00%
Benzo(k)fluoranthene	ug/L	=	· •	2 2	7 -	, é	2 008 2 008
Chrysene	ug/L	22	29) <u>-</u>	` =	X	× 008
Dibenz(a,h)antluacene	ug/L	500 R	800 R	D 01	7 O C	80 OO	× 500 8
Fluoranthene	ng/L	74 R	79	7.3	33	1 021	£ 0
Fluorene	ug/L	170 J	93 J	10 O	94 1	1 081	4 - 2
Indeno(1,2,3-cd)pyrene	ug/L	3 J	5 .	10 O	2 3	, ~	- 00%
Naphilialene	սց/Լ	2600 J	3800	5400 J	2400 J	9300 J	1 0021
Phenanthrene	ug/l,	300 J	200 J	D 01	110 J	630 J	101
	ng/L	97 Ј	64	1 \$	31	270 J	2 008
IOIAL FAIIS TO THE PROPERTY AND THE		4331	6246	- 5634	2933	12381	12154

TABLE B-3 GROUNDWATER ANALYTICAL RESULTS SAG HARBOR

Location Bate Sampled		MW-1 11/21/95	NIW-2 11/21/05	NIW-3 11/21/95	NIV-4	MW-S	MIW-6
						11/1/75	11/21/95
PARANIETER	UNITS						
INORGANICS							
Alunimum	ng/L	146 B	3250 J	1.777	1 605		
Autimony	ug/L	6.2 U	6.2 U	62.11	736. 73. 11	33. Ze	1 748
Arsenic	ug/L	8.4 B	11.4 B	D 477	2 6		6.2 U
Barium	ug/L	166 B	169 B	136 13	3.8 13		2.6 U
Beryllium	ug/L	0.1 U	0.14 13	0 C C C	11.10	63.4 15	53 ES
Cadmium	ng/L	0.8 U	0.8 U	3 8 0	2 2	0 1 0	0.1.0 0.3.1
Calcium	ug/L	121000	69400	2000	20,000	0.8.0	O 8:0
Cluomium	ug/L	2 U	64.1.3	2007	90767	0007.11	00999
Coball	ug/L	1.9 B	7.2 B	O = =	7 -	3.7 13	2 U
Copper	ug/L	1.7 B	21.6 B		9 ::	1.3 U	13 U
Cyanide	ug/L	20	33	<u>.</u> 2) : C	2 13	1.5 U
Iron	ug/L	20700	00291	1,500	0 00.0	D 92	D 01
Lead	ug/L	9.8	8 5 69	D0.41	21500	9390	1080
Magnesium	us/L	29800	14000	8.6	34.2 J	18.8 J	27.7 J
Manganese	- F/aii	1 156	0001	00877	17300	20100	\$020
Mercury	I/on	7 177	830 13	464 J	284 J	873 J	95.9 J
Nickel	7 Pen	2.0	4. 6	0.2 U	0.2 U	9.0	0.2 U
Polassium) <u>.</u>	13.60	13.8 U	13.8 U	15.8 U	15.8 U	15.8 U
Selenium	1 /or	2007	13300	10900	5510	7620	8480
Silver	7 / 6 m		J. E. C.	4.4 J	6.1 J	4.4 U	4.4 U
Sodium	1 A .	7 K	1.7 K	1.7 R	1.7 R	1.7 R	1.7 R
Thelling	ng/L	74000	2,1000	23700	17900	15400	11200
Vernetime	ug/L	14.8 B	17.4 B	11.6 B	20.1 B	7.3 B	18.9
	1/gn	2 B	10.2 B	1.8 33	1.2 U	1.2 U	4 14
7.17	ng/L	10.2 J	l 161	12 J	20 J	D 01	23.4 J
•							
Physiologically Available Cyanide	mg/l.	0.01 U	0.011	U 10.0	0.01 U	O.01 U	0.01 U

TABLE B-1 GROUNDWATER ANALYTICAL RESULTS SAG HARBOR

Location Date Sampled		MW-1 11/21/95	MW-2	MW-3	MW-4	MIV-S	MW-6
				114175	11/21/75	11/21/95	11/21/95
Pakanieter	UNITS						
PESTICINES							
4.4DDD	ug/L	0.1 U	0.1 U	0.1 U	0.1 J	11.10	11 40
4.4'-DDE	ng/L	0.1.0	0.1 U	0.1 UJ	0.1.0	216) = : =
4,4'-DDT	սը/Լ	0.1.0	0.1 U	0.1 UJ	0 1 O	0.1.0	
Aldrin	ug/l.	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	2 500
alpha-1311C	ug/l.	0.05 U	0.05 U	0.05 UJ	0.03 U	0.05 U	11 500
Alpha-Chlordane	ug/l.	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	2 500
Aroclor-1016	ug/L	n -	n 1	3-	n 1) T	
Aroclor 1221	ug/L	2 U	2 U	2 W	2 U	3 U) n
Aroclor-1232	u g/ L	D	n ı	3 -	n 1) n	? -
Aroclor-1242	ug/l.	חח	Ω I	33 -	ם ב	2 =	? =
Aroclor-1248	ng/L	חח	n 1	m -	חו	2 -	
Aroclor-1254	ug/L	10	0.1	70 -	n I) n	2 =
Aroclor-1260	ug/l.	10	n I	5 1	η 1	ה ה) = -
beta-bild	ug/L	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	D \$00
delta-BHC	ug/L	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	11 500
Dickin	ug/L	0.1 U	0.I U	0.1 UJ	0.1 U	0,1 U	0.1 17
Endostillan I	ng/L	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U
Endostulan II	ug/L	0.1.0	0.1 U	0.1 UJ	0.1 U	0.1 U	
Endosulian sullate	J/gn	0.1 U	0.1 U	0.1 J	0.1 U	0,1 U	0.10
Endin	ng/L	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Endrin algehyde	ng/L	0.1.0	0 I O	0.1 UJ	0.1.0	0.1 U	
Endra Kelone	ug/L	0.1.0	0.1 U	0.1 UJ	0.1 U	0.1 U	
ganuma-tstic (Lindaise)	ug/L	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
ganma-Chlordane	ug/L	0.05 U	0.05 U	0.05 UJ	0.05 U		
Heptachlor	ug/L	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	
Heptachior epoxide	ug/1.	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U
Methoxyclifor	ug/I.	0.5 U	0.5 U	0.5 UI	0.5 U	0.5 U	0.5 U
Toxaphene	ug/L	3 U	3.0	s uz	s u	2 C	

TABLE B.3 GROUNDWATER ANALYTICAL RESULTS SAG HARBOR

Location Date Sampled		M1V-1 11/21/95	MW-2 11/21/95	MW-3 11 <i>0</i> 1085	MW-4 11/21/95	MW-5 1121/95	NIW-6 11 <u>0</u> 1/95	
PARANETER	HNITS							
YOLATILEORGANICS								
1,1-Dichloroethane	ug/L	D 001	200 U	10 OS	11 001	11 000	:	
1,1-Dichloroethene	ug/L	100 U	200 U	:		0.00		
1,1,1-Trichloroethane	ug/L	D 001	200 U	\$0 CJ	1 001	2000		
1,1,2-Trichloroethane	ng/L	D 001	200 U	\$0 UJ	0 001	2002		
1,1,2,2-Tetrachlorocthane	ng/L	100 U	200 U	\$0 UJ	100 U	200 T		
1,2-Dichloroethane	ug/L	D 961	200 U	\$0 UJ	100 U	300 C		
1,4-Orthoroethene (folal)	ug/L	n 001	200 U	50 UJ	100 L	300 D		
1,7-1 Actionophopaic	ug/l.	n 001	200 U	\$0 UJ	100 U	200 U	2	
2-Isutanone	ug/L	D 001	200 U	50 UJ	100 U	200 U	2 0	
Z-FIEXMIONS	ug/L	n 90	200 U	50 UJ	100 U	200 U	2 9	
4-McInyl-Z-Penlanone	ug/L	D 001	200 U	50 UJ	100 U	200 U	2 9	
Accione	ug/L	O 001	200 U	50 UJ	D 001	200 U	9 9	
December	ug/L	D 001	200 U	50 UJ	D 001	200 U	2 9	
December	ug/L	100 U	200 U	50 UJ	D 001	200 U	2 01	
Dromomentane Cotton Dissipate	ug/L	n 901	200 U	. 50 UJ	D 001	200 U) O	
Carton Hample	ug/l.	n 001	200 U	50 UJ	100 U	200 U	2 01	
Chical and	1/8n	2 8 1	200 U	20 CJ	100 U	200 U	0 0	
Characteris	ug/L	D 001	200 U	\$0 CI	100 U	200 U) O	
Chloroform	ug/L	D 001		\$0 OX	100 U	200 U	D 01	
Chemister	ug/L	D 90	200 €	\$0 UJ	100 U	200 U	D 01	
City Constituted	ug/L	o :	200 U	30 OX	D 001	200 U	10 U	
Disconnection of the control of the	ug/L	0 0	200 U	20 CZ	O 001	200 C	D 01	
Maked and City of the	ng/L	O 00 :	200 U	\$0 U.	100 I	200 U	10 O	
Alturyland Chiloflad	ng/L	41 B	150 J	12 B	S3 B	140 B	S B	
Timester	ng/L	D 001	200 U	so ui	J 001	200 U		
i cu acmioroeurene	ng/L	100 n	700 U	50 UJ	100 U	200 U	D 01	
trans-1,3-Dichloropropene	ug/L	100 U	200 U	50 UJ	D 001	200 U	D 01	
Inchioroctivene	ոց/Լ	D 001	200 U	S0 UJ	D 001	200 U	. 2	
vinyi Ciiloride	ug/L	n 01	200 U	20 CJ	100 U	200 U	: E1	

TABLE B-3 GROUNDWATER ANALYTICAL RESULTS SAG HARBOR

Location Date Sampled		MW-1 11/21/95	MW-2 11/21/95	MW-3	MW-4	MW-5	WW-6
						11141172	66/17/11
PARAMETER	UNITS						
SEMI-YOLATILE ORGANICS							
1,2-Dichlorobenzene	ug/L	500 R	800 R	10 01	101	d 0001	£ 400
1,2,4-Trichlorobenzene	ug/L	S00 R	800 R	2 9	2 2	# 0001 # 0001	800 X
1,3-Dichlorobenzene	ug/l.	S00 R	800 K	2 2		3 000 E	800 S
1,4-Dichlorobenzene	ug/L	500 R	800 K	2 9	2 5	1000	× :
2-Chloronaphthalene	ug/L	500 R	800 K	2 9	2 2	X 9001	X 00 8
2-Chlorophenol	ug/L	300 U	800 K) D	2 5	¥ 800	× 6
2-Methymaphthatene	ug/L	S60 J	740 J	1400 1	1 029	4 000	X .
2-Methylphenal	ug/L	300 U	800 R	n 91		4000	7 000
2-Nitroanilitye	ug/L	1200 R	2000 R	25 U	2 2	4 0050	X 000
2-Nitrophenol	ng/L	200 U	800 R	3 91	2 9	4 0007	3 000 K
2,2'-oxybis(1-Chloropropane)	ng/L	300 U	D 008	2 9	2 9	1000 K	× :
2,4-Dichlorophenol	ug/L	200 U	800 R) O	2 01	0000	
2,4-Dimethylphenol	ug/L	34	800 R	10 n	i 01	4 0001	3 8
2,4-Dinitrophenol	ug/L	1200 U	2000 R	25 U	0 SZ		4 000c
2,4-Dinitrolohiene	ug/L	500 R	800 R	10 U	D 01		3 00g
2,4,3-Trichlorophenol	ug/L	1200 U	2000 R	25 U	25 U		a 000c
2,4,6. Frichlorophenol	ng/L	300 U	800 R	10 U	n 01		4 80g
2,0-Dinitrololuene	ng/L	500 R	800 R	10 U	10 U	1000 R	200
	ug/L	1200 R	2000 R	25 U	25 U	2500 R	2000 R
2,3 - Utchlorobenzidins	ug/L	500 R	800 R	10 C	10 C	1000 R	800 X
4 Called Table 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L	200 R	800 8	10 U	10 U	1000 R	800 K
4-Chiofo-3-Nichylphenol	ng/L	200 U	800 R	10 U	10 U	1000 R	800 8
4-Chiodoaniine	ng/L	200 U	800 R	D 01	10 U	1000 R	
4-Chlorophenyl-phenylether	ng/L	500 R	800 R	O 01	D 01	1000	
4-Nichylphenol	ug/L	3 J	800 R	10 U	10 U	1000 %	
4-Nutroaniline	ug/L	1200 R	2000 R	25 U	25 U	2500 R	
4-Nitrophenol	ug/l.	1200 U	2000 R	25 U	25 U	2500 R	
4,6-1Juntro-2-methytphenol	ug/L	1200 U	2000 R	25 U	25 U	2500 R	2000 R

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-7010

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Long Island Lighting Co. (LILCO) 175 East Old Country Road Hicksville, New York 11801

Dear Sir/Madam:

As mandated by Section 27-1305 of the Environmental Conservation Law (ECL), copy enclosed, the New York State Department of Environmental Conservation (NYSDEC) must maintain a registry of all inactive disposal sites suspected or known to contain hazardous wastes. The ECL also mandates that this Department notify, by certified mail, the owner of all or any part of each site or area included in the Registry of Inactive Hazardous Waste Disposal Sites.

Our records indicate that you represent the owner or part owner of the site listed below. Therefore, this letter constitutes notification of the inclusion of such site in the Registry of Inactive Hazardous Waste Disposal Sites in New York State.

DEC Site No.:

152159

Site Name:

Sag Harbor Gas Plant

Site Address:

Bridge Street, Sag Harbor, NY 11963

Site Classification: 2

Enclosed is a copy of the New York State Department of Environmental Conservation, Division of Environmental Remediation, Inactive Hazardous Waste Disposal Site Report form as it appears in the Registry and Annual Report, and an explanation of the site classifications. The Law allows the owner and/or operator of a site listed in the Registry to petition the Commissioner of the New York State Department of Environmental Conservation for deletion of such site, modification of site classification, or modification of any information regarding such site, by submitting a written statement setting forth the grounds of the petition. Such petition may be addressed to:

Mr. John P. Cahill
Commissioner
New York State Department of Environmental Conservation
50 Wolf Road
Albany, New York 12233-1010

For additional information, please contact me at (518) 457-0747.

Sincerely,

Robert L. Marino

Chief

Site Control Section

Bureau of Hazardous Site Control Division of Environmental Remediation

Enclosures

bcc: w/o Enc.

E. Barcomb

- R. Marino
- J. Swartwout
- A. Sylvester

w/Enc. (Copy of Site Report form only)

- A. Grant
- G. Anders Carlson, NYSDOH
- J. Sama
- S. Ervolina
- R. Becherer, R/1
- L. Riley, R/1

AS/srh

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-7010

John P. Cahill Commissioner

NOV 1 2 1997

Town of Southampton
Town Clerk
116 Hampton Road
Southampton, NY 11968

Dear Sir/Madam:

The Department of Environmental Conservation (DEC) maintains a Registry of sites where hazardous waste disposal has occurred. Property located at Bridge Street in the Town of Southampton and County of Suffolk and designated as Tax Map Number 0903-002-02-10 was recently added as a Class 2 in the Registry. The name and site I.D. number of this property as listed in the Registry is Sag Harbor Gas Plant, Site #152159.

The Classification Code 2 means that the site poses a significant threat to the public health or environment -- action required.

We are sending this letter to you and others who own property near the site listed above, as well as the county and town clerks. We are notifying you about these activities at this site because we believe it is important to keep you informed.

If you currently are renting or leasing your property to someone else, please share this information with them. If you no longer own the property to which this letter was sent, please provide this information to the new owner and provide this office with the name and address of the new owner so that we can correct our records.

The reason for this recent classification decision is as follows:

Discharges of coal gas wastes have impacted the surface soils and underlying groundwater. The concentrations of benzene in the groundwater indicate that leachable benzene above the Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.5 mg/l is present. High levels of toluene, ethylbenzene, xylenes and various polynuclear aromatic hydrocarbons (PAHs) are also present in the groundwater. The surface soils contain high levels of PAHs. Due to the shallow depth to groundwater and the volatility of some of the contaminants, there is the potential for vapors to enter nearby residential and commercial properties. Additionally, the area is prone to flooding. Flooding could result in migration of the surface contaminants. Soil samples

at nearby residential properties have detected PAH contamination. However, the source of this contamination has not beem established. The underlying groundwater has been used for drinking water in the past. Nearby Sag Harbor Cove could potentially receive contaminated surface runoff or groundwater discharges.

If you would like additional information about this site or the inactive hazardous waste site remedial program, call:

DEC's Inactive Hazardous Waste Site Toll-Free Information Number 1-800-342-9296 or New York State Health Department's Health Liaison Program (HeLP) 1-800-458-1158, ext. 402.

Sincerely, Waln

Robert L. Marino

Chief

Site Control Section

Bureau of Hazardous Site Control

Division of Environmental Remediation

bcc:

R. Marino

J. Swartwout

R. Becherer

J. Epstein

A. Sylvester

A. Carlson

L. Ennist

AS/srh