Second Quarter 2011 Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

> Prepared for National Grid USA, Hicksville, New York July 2011

Second Quarter 2011 Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

> Prepared for National Grid USA 175 East Old Country Road Hicksville, New York 11801

> > July 2011

Project Number: 138893.316.020

Associates 110 Commerce Drive Allendale, New Jersey 07401

Table of Contents

i
ii
ii
1-1
1-1
2-1
3-1
3-1
3-1
3-2
4-1
REF-1

Appendices

Appendix A	Field Sampling Data Sheets
Appendix B	Laboratory Reports (CD-ROM)
Appendix C	Data Usability Summary Report
Appendix D	Electronic Data Deliverable (CD-ROM)

List of Tables

Table 1. Water Elevation and NAPL Monitoring Data

- Table 2. Groundwater Analysis Results
- Table 3. Summary of Historical BTEX Concentrations
- Table 4. Summary of Historical PAH Concentrations

List of Figures

Figure 1. Water Table Contour Map

Section 1 Introduction

Brown and Caldwell Associates (BC) is pleased to submit this report containing the data deliverables related to the Second Quarter 2011 groundwater monitoring event conducted at the Patchogue Former Manufactured Gas Plant (MGP) Site (hereinafter referred to as the "Site"). The groundwater monitoring event and the preparation of this deliverable are part of the routine groundwater monitoring program being conducted at the Site. This report represents the second quarterly monitoring event for 2011 (Second Quarter 2011). This report has been prepared for submittal to the New York State Department of Environmental Conservation (NYSDEC) and includes the following:

- Brief description of the scope of the field activities;
- Table summarizing results of the water level measurements and the gauging in monitoring wells for the presence of non-aqueous phase liquids (NAPL) (Table 1);
- Tables summarizing the analytical results of groundwater samples including a comparison to applicable groundwater quality criteria (Table 2);
- Comparison of data from this monitoring period to data from previous periods (Tables 3 and 4);
- Brief discussion of the groundwater quality data;
- Potentiometric surface map depicting generalized direction of groundwater flow based on water level data from shallow wells and deep wells (Figure 1);
- Field Sampling Data Sheets (Appendix A);
- Laboratory Data Report (Appendix B); and
- Data Usability Summary Report (Appendix C).
- Electronic Data Deliverable (Appendix D).

1.1 Background

A total of eight groundwater monitoring events have been conducted at the Site since March 2008. These eight events include two monitoring events conducted as part of the Remedial Investigation (RI) in March 2008 and July 2008, four semi-annual monitoring events from March 2009 through September 2010, and two quarterly monitoring events in January 2011 and April 2011. The April 2011 event is the subject of this report. Up until the March 2010 monitoring event, the concentrations and areal distribution of constituents in groundwater had been fairly consistent. Site-related dissolved-phase constituents (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], and polycyclic aromatic hydrocarbons [PAH]) were found to be present in a limited area near the center of the Site. These concentrations did not extend downgradient to the wells closer to the Patchogue River. However, during the March 2010 and September 2010 monitoring events, detections of BTEX and PAH compounds were more widely distributed than during previous events. It was surmised that this change was the result of a temporary dewatering operation at a construction project across the river from the Site being conducted at the wastewater treatment facility (WWTF). Based on the understanding of Site conditions, it was anticipated

that when the dewatering operations had ceased, concentrations in groundwater would re-equilibrate with steady-state (i.e., pre-dewatering) groundwater flow conditions, and eventually return to levels similar to those prior to dewatering. To assess this, National Grid increased the frequency of the groundwater monitoring from semi-annually to quarterly. The April 2011 monitoring event, descried herein, is the second quarterly monitoring event.

Section 2 Scope of Work

Field activities for the groundwater monitoring event were conducted by BC on April 7 and 8, 2011. On April 7, 2011, prior to conducting groundwater sampling, depth-to-water measurements and NAPL gauging were conducted on the 14 monitoring wells associated with the Site. Locations of the 14 monitoring wells are depicted on Figure 1.

Groundwater samples were collected from 12 monitoring wells on April 7 and 8, 2011. Wells MW-5 and MW-6 were not sampled this quarter due to presence of NAPL in these wells as observed during the NAPL gauging activities. The standard protocol is that if NAPL is observed in a well during gauging or sampling, groundwater samples are not submitted for laboratory analyses. Groundwater sampling was conducted using low-flow purging and sampling techniques in accordance with USEPA (July 1996, Revised January 2010) protocol. Samples were submitted an analytical laboratory and analyzed for: (BTEX and methyl tertiary butyl ether (MTBE) using USEPA SW-846 Method 8260B; and PAHs using USEPA SW-846 Method 8270C. The groundwater samples were also analyzed in the field for pH, specific conductivity, temperature, turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (see Appendix A for field data sheets).

The samples were submitted to Lancaster Laboratories, Inc. (Lancaster) located in Lancaster, Pennsylvania for analysis. Lancaster is certified (Certification No. 10670) through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP). The laboratory report from Lancaster is provided as Appendix B. The laboratory analytical data were provided to BC in electronic form by Lancaster and have been incorporated into an environmental database for the Site.

In addition to the samples described above, quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples included: trip blanks (one per cooler containing samples for BTEX analysis), a field duplicate, and an equipment blank. Also, extra sample volume was collected from one location to provide for matrix spike/matrix spike duplicate (MS/MSD) analysis. The trip blanks were analyzed for BTEX only. The other QA/QC samples were analyzed for BTEX, MTBE and PAHs.

Laboratory results for the groundwater sample analyses were forwarded to a data validator, Environmental Data Services, Inc. of Williamsburg, Virginia, for review and preparation of a Data Usability Summary Report (DUSR). The DUSR presents a summary of data usability including a discussion of qualified data. The DUSR is provided as Appendix C. As described in the DUSR, the data were considered by the validator to be valid and usable. An Electronic Data Deliverable (EDD) of the validated analytical data is provided in Appendix D.

Section 3 Results and Findings

3.1 Water Level Data

Table 1 provides the water level data from the April 7, 2011 measurements. Figure 1 illustrates the elevation contours of the water table based on these data. The contours were developed using water level data only from the shallow wells at the Site (i.e., those with screens that straddle, or are just below, the water table). The water level (hydraulic head) values for the wells screened in deeper intervals are posted on Figure 1. However, only the values from the shallow wells were used in developing the contour lines because these values more accurately represent water table elevations. The water table is relatively shallow and is typically positioned in the fill that overlies the alluvial deposits and outwash deposits. The water table contours indicate that lateral groundwater flow is from northwest to southeast across the Site toward the Patchogue River. The upward vertical hydraulic gradient, measured at the two well clusters adjacent to the river (MW-4S and D, and MW-9S and D), indicate that groundwater is discharging to the Patchogue River. In 2010, staff gauges SG-1 and SG-2 were installed in the Patchogue River and comparisons of the groundwater levels in the site monitoring wells to the river elevation as measured at the staff gauge locations indicated the groundwater elevations are higher than the river level thus providing further support to the conclusion that the groundwater discharges to the river. The general configuration of the water table contours (as shown on Figure 1), developed using the April 7, 2011 data, and the interpreted groundwater flow patterns, are consistent with those from previous rounds of water level measurements with one exception. The exception occurred during the March 2010 sampling event when the large-scale dewatering activities were being conducted on the WWTF site located east of the Site on the opposite side of the river. Operation of this dewatering system altered groundwater flow patterns and levels at the Site (see "Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event" [GEI, November 2010]).

3.2 NAPL Gauging

Table 1 presents the results of the NAPL gauging conducted during the April 2011 quarterly groundwater sampling event. NAPL was identified in the following wells during the gauging activities:

- MW-5: NAPL/tar was observed adhering to oil/water interface probe tape and sheen was observed on probe. Strong tar-like odor was associated with the observed NAPL.
- MW-6: NAPL/tar was observed adhering to oil/water interface probe. Strong tar-like odor was associated with the observed NAPL.

NAPL had been observed in these two wells on occasion during previous NAPL gauging events.

3.3 Groundwater Quality Data

Table 2 provides the results of the laboratory analyses of the groundwater samples collected during the Second Quarter 2011 and a comparison of the data to the New York State Class GA groundwater quality criteria (i.e., standards from the 6 NYCRR Part 703 Standards and guidance values from the Division of Water Technical and Operational Guidance Series [TOGS] 1.1.1). Tables that compare total BTEX and total PAH concentrations from this sampling event to previous sampling events are provided as Tables 5 and 6, respectively.

As described above, during water level monitoring and gauging activities, NAPL was identified in two of the 14 monitoring wells, MW-5 and MW-6. Therefore, these two wells were not sampled. Groundwater samples were collected from the remaining 12 monitoring wells and submitted for analysis. BTEX compounds, MTBE and PAH compounds were either not detected or detected at concentrations below the Class GA groundwater quality criteria in the 12 monitoring wells sampled during the Second Quarter 2011 (April 2011) event.

Section 4 Conclusions

NAPL was identified in two of the 14 monitoring wells, MW-5 and MW-6, as in previous monitoring events. Both MW-5 and MW-6 are located in the center of the Site in the area of former MGP operations. BTEX compounds, MTBE and PAH compounds were either not detected or detected at concentrations below the Class GA groundwater quality criteria in groundwater samples from the remaining 12 monitoring wells which were sampled during the April 2011 event, indicating there are no dissolved-phase impacts in groundwater extending from the area where NAPL has been identified.

During the second quarter 2011, and the previous quarter (first quarter 2011), the concentrations of BTEX and PAHs in the shallow groundwater, and the areal distribution of these concentrations, are similar to those from monitoring events which occurred prior to March 2010. This indicates that concentrations of chemical constituents in groundwater have decreased and have nearly re-equilibrated with the steady-state groundwater flow conditions that existed prior to the operation of the large-scale temporary construction dewatering system that affected the results of the March and September 2010 monitoring events, as anticipated. Quarterly monitoring will continue to confirm these conditions.

References

- Brown and Caldwell. First Quarter 2011 Groundwater Monitoring Report, Patchogue Former MGP Site Site ID No. 1-52-182, Patchogue, New York.
- GEI, November 2010. Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event, Patchogue Former MGP Site, Town of Brookhaven, Suffolk County, Long Island, New York, Site ID No. 1-52-182.
- USEPA, July 1996; Revised January 2010. Low-Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

Tables

TABLE 1 WATER ELEVATIONS AND NAPL MONITORING DATA APRIL 2011 PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

							<u>4/7/2011</u>
	Top of Casing	Screened	Depth to	Water	Depth to	Total Depth	
Well ID	Elevation	Interval	Water	Elevation	NAPL	of Well	Remarks
	(ft., NAVD)	(ft., BGS)	(ft., BTOC)	(ft., NAVD)	(ft., BTOC)	(ft., BGS)	
MW-1	11.23	7-12	5.91	5.32	ND	16.2	
MW-2S	8.97	5-10	4.55	4.42	ND	14.05	
MW-2D	8.23	20-25	3.88	4.35	ND	26.2	
MW-3	5.39	5-10	2.51	2.88	ND	10.48	
MW-4S	7.74	5-10	5.07	2.67	ND	12.1	
MW-4D	7.57	20-25	4.88	2.69	ND	26.5	
MW-5	7.93	5-15	4.17	3.76	(1)	16.65	NAPL/tar was observed adhering to oil/water interface probe tape and sheen was observed on probe; strong tar-like odor was associated with the observed NAPL.
MW-6	8.08	5-20	3.82	4.26	(1)	21.8	NAPL/tar was observed adhering to oil/water interface probe; strong tar-like odor was associated with the observed NAPL.
MW-7S	8.21	4-9	4.54	3.67	ND	12.4	
MW-7D	8.09	20-25	4.40	3.69	ND	27.9	
MW-8S	4.86	4-9	0.99	3.87	ND	9.8	
MW-8D	4.77	20-25	0.85	3.92	ND	25.1	
MW-9S	4.47	4-9	1.54	2.93	ND	10.23	
MW-9D	4.66	20-25	1.56	3.10	ND	23.15	
SG-1	5.23	NA	NM			NA	
SG-2	5.16	NA	NM			NA	

Notes:

NAVD - North American Vertical Datum

BGS - Below Ground Surface

BTOC - Below Top of Casing

NAPL - Non-aqueous phase liquid

NA - Not applicable

NM - Not measured

(1) - - NAPL was not detected with oil/water interface probe, however, upon removal of the probe, NAPL blebs with a tar-like odor were observed on the end of the probe or on measuring tape.

Brown AND Caldwell

 $\label{eq:alpha} P:\label{eq:alpha} P:\label{alpha} P:\label$

		undwater Criteria								
	TOGS 1.1.1	NYS Part 703	Loc ID	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-7S
Constituent	Guidance	Standard	Units Date	4/7/2011	4/8/2011	4/8/2011	4/7/2011	4/8/2011	4/8/2011	4/8/2011
Volitile Organic Compounds										
BTEX										
Benzene	NE	1	µg/L	0.5 U						
Toluene	NE	5	µg/L	0.7 U						
Ethylbenzene	NE	5	µg/L	0.8 U						
m&p-Xylenes	NE	5	µg/L	0.8 U						
o-Xylene	NE	5	µg/L	0.8 U						
Xylenes, Total	NE	NE	µg/L	0.8 U						
Total BTEX	NE	NE	µg/L	ND						
Other VOCs										
Methyl Tertiary Butyl Ether	10	NE	µg/L	0.5 U						
Semi-Volatile Organic Compound	ls (SVOCs)									
Polycyclic Aromatic Hydrocarbon	s (PAHs)									
Acenaphthene	20	NE	µg/L	1 U	1 U	1 U	4 J	1 U	1 J	1 U
Acenaphthylene	NE	NE	µg/L	1 U	1 U	1 U	1 J	1 U	9 J	1 U
Anthracene	50	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Benzo(a)anthracene	0.002	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Benzo(a)pyrene	NE	0	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Benzo(b)fluoranthene	0.002	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Benzo(g,h,i)perylene	NE	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Benzo(k)fluoranthene	0.002	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chrysene	0.002	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibenzo(a,h)anthracene	NE	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Fluoranthene	50	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Fluorene	50	NE	µg/L	1 U	1 U	1 U	1 U	1 U	4 J	1 U
Indeno(1,2,3-cd)pyrene	0.002	NE	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Brown AND Caldwell

	Class GA Grou	Indwater Criteria									
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-7S
Constituent	Guidance	Standard	Units	Date	4/7/2011	4/8/2011	4/8/2011	4/7/2011	4/8/2011	4/8/2011	4/8/2011
Naphthalene	10	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 J	1 U
Phenanthrene	50	NE	µg/L		1 U	1 U	1 U	1 U	1 U	5 J	1 U
Pyrene	50	NE	µg/L		1 U	1 U	1 U	1 J	1 U	1 U	1 U
Total PAHs	NE	NE	µg/L		ND	ND	ND	6	ND	20	ND

	Class GA Grou	Indwater Criteria								
	TOGS 1.1.1	NYS Part 703	Ŀ	oc ID	MW-7D	MW-8S	MW-8D	MW-8S DUP	MW-9S	MW-9D
Constituent	Guidance	Standard	Units I	Date	4/8/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011
Volitile Organic Compounds										
BTEX										
Benzene	NE	1	µg/L		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	NE	5	µg/L		0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
Ethylbenzene	NE	5	µg/L		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
m&p-Xylenes	NE	5	µg/L		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
o-Xylene	NE	5	µg/L		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Xylenes, Total	NE	NE	µg/L		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Total BTEX	NE	NE	µg/L		ND	ND	ND	ND	ND	ND
Other VOCs										
Methyl Tertiary Butyl Ether	10	NE	µg/L		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5
Semi-Volatile Organic Compour	ıds (SVOCs)									
Polycyclic Aromatic Hydrocarbo	ns (PAHs)									
Acenaphthene	20	NE	µg/L		1 U	1 U	1 U	1 U	4 J	1 U
Acenaphthylene	NE	NE	µg/L		1 U	1 U	1 U	1 U	3 J	1 U
Anthracene	50	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Benzo(a)anthracene	0.002	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Benzo(a)pyrene	NE	0	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Benzo(b)fluoranthene	0.002	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Benzo(g,h,i)perylene	NE	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Benzo(k)fluoranthene	0.002	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Chrysene	0.002	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Dibenzo(a,h)anthracene	NE	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Fluoranthene	50	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Fluorene	50	NE	µg/L		1 U	1 U	1 U	1 U	2 J	1 U
Indeno(1,2,3-cd)pyrene	0.002	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U

Brown AND Caldwell

	Class GA Grou	ndwater Criteria								
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-7D	MW-8S	MW-8D	MW-8S DUP	MW-9S	MW-9D
Constituent	Guidance	Standard	Units	Date	4/8/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011	4/7/2011
Naphthalene	10	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Phenanthrene	50	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Pyrene	50	NE	µg/L		1 U	1 U	1 U	1 U	1 U	1 U
Total PAHs	NE	NE	µg/L		ND	ND	ND	ND	9	ND

Notes:

J - Estimated concentration. The result is below the practical quantitation limit but above the method detection limit. U - The analyte was analyzed for, but was not detected.

µg/L - micrograms per liter

ND - Not detected.

NE - Not established.

Boxed concentrations are above New York State Class GA Groundwater Standards or Guidance values.

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

	Total BTEX Concentrations (µg/L) Sampling Date											
	Total Depth	20	08	2	009	2	010	2011				
Well ID	(ft., bgs)	March	July	March	September	March	September	January	April	Min	Max	Mean
MW-1	16.2	0	NS	0	0	0	0	1.7	0	0	1.7	0.24
MW-2S	14.05	0	0	0	0	0	0	0	0	0	0	0
MW-2D	26.2	0	0	0	0	0	0	0	0	0	0	0
MW-3	10.48	0	0	0	0	0	0	0	0	0	0	0
MW-4S	12.1	3.4	0	0	0	0	0	0	0	0	3.4	0.43
MW-4D	26.5	0	0	0	0	0	0	0	0	0	0	0
MW-5	16.65	1016	678	975	1257	637	NS	NS	NS	637	1257	913
MW-6	21.8	57.3	0	0	1	2	0	NS	NS	0	57.3	10
MW-7S	12.4	NS	0	0	0	0	0	0	0	0	0	0
MW-7D	27.9	NS	0	1	0	9	0	0	0	0	9	1.4
MW-8S	9.8	NS	0	0	0	0	0	0	0	0	0	0
MW-8D	25.1	NS	0	0	0	0	0	0	0	0	0	0
MW-9S	10.23	NS	0	0	0	0	27	1	0	0	27	4
MW-9D	23.15	NS	0	0	0	0	0	0	0	0	0	0

Notes:

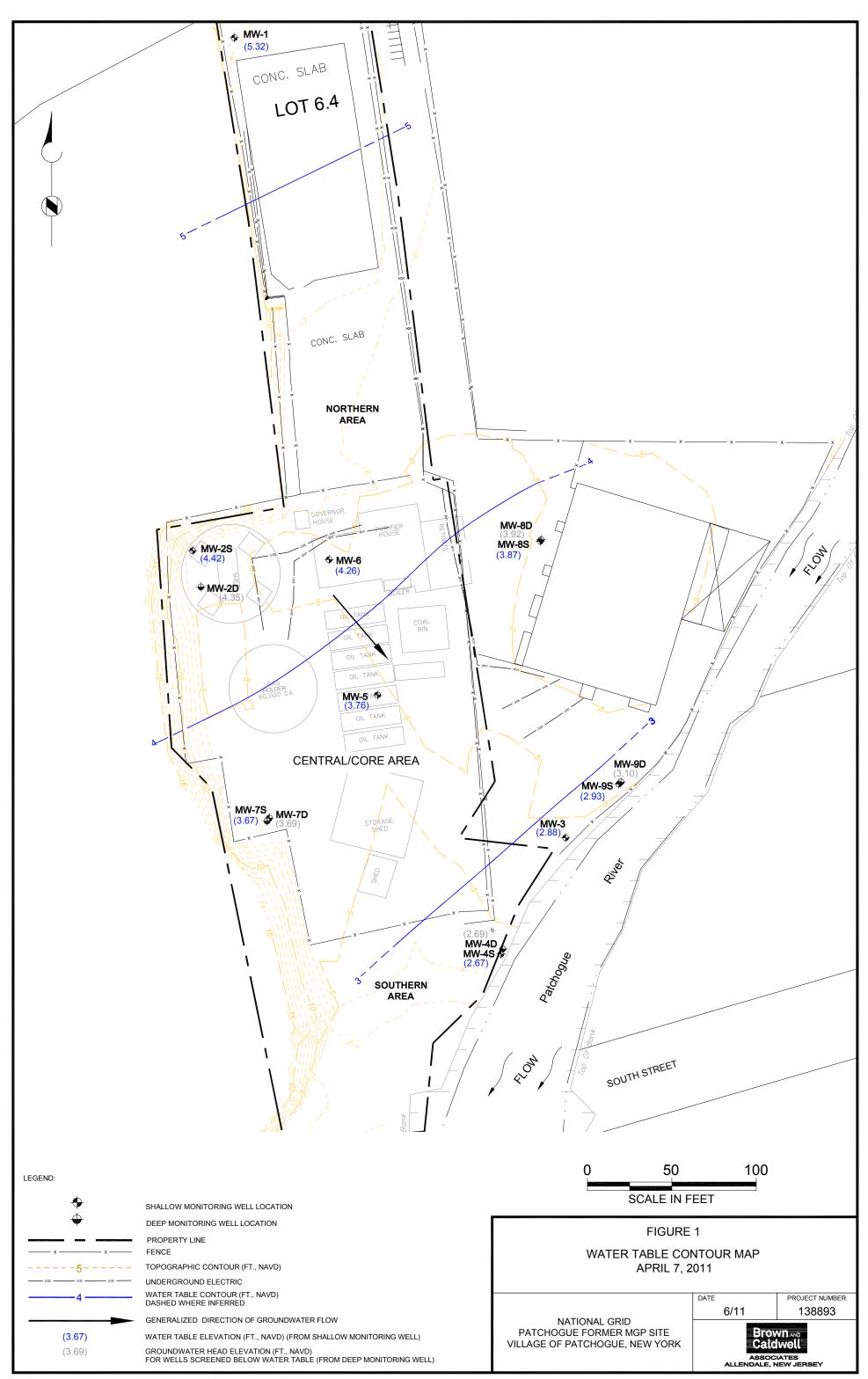
BTEX - Benzene, toluene, ethylbenzene and xylene isomers

µg/L - micrograms per liter

NS - Not sampled.

TABLE 4 SUMMARY OF HISTORICAL PAH CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

	Total PAH Concentrations (μg/L) Sampling Date											
	Total Depth	20	008	2	009	2	010	2011				
Well ID	(ft., bgs)	March	July	March	September	March	September	January	April	Min	Max	Mean
MW-1	16.2	0	NS	0	0	0	0	22	0	0	22	3.1
MW-2S	14.05	0	0.7	0	0	0	0	0	0	0	0.7	0.09
MW-2D	26.2	0	0	0	0	0	0	0	0	0	0	0
MW-3	10.48	0.76	0	0	0	0	128	17	6	0	128	19
MW-4S	12.1	0.6	7.96	0	0	0	0	0	0	0	8	1.1
MW-4D	26.5	4.28	0	0	0	39	6	12	20	0	39	10
MW-5	16.65	1773.9	1798.7	2730	3373	2390	NS	NS	NS	1774	3373	2413
MW-6	21.8	214.18	154.2	0	1	17	14	NS	NS	0	214.18	67
MW-7S	12.4	NS	0	0	0	0	0	0	0	0	0	0
MW-7D	27.9	NS	0.47	0	0	0	0	0	0	0	0.5	0.07
MW-8S	9.8	NS	0	0	0	22	11	6	0	0	22	5.6
MW-8D	25.1	NS	0	0	0	0	0	0	0	0	0	0
MW-9S	10.23	NS	12.01	0	0	2	396	42	9	0	396	66
MW-9D	23.15	NS	0	0	0	0	0	5	0	0	5	0.71


Notes:

PAH - Polycyclic aromatic hydrocarbons µg/L - micrograms per liter NS - Not sampled.

Figures

P:\DRAFTING\NATIONAL_GRID\PATCHOGUE\2-SHEETS\B-GEOTECHNICAL\FIGURE-1 (APRIL 7, 2011).DWG 06/23/2011 01:30:48PM By:rjames XREFS: Rev_Basemap_1-12-11 Layout: Layout1

Appendix A: Field Sampling Data Sheets

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: MM - ZD Sample I.D.: (if different from well no.)
Project: Pastale gue Personnel: J COM	Date: <u> </u>
WELL DATA: Casing Diameter:	Well <u>></u> It ing Other: s well clean to bottom? (not bent or corroded) Yes No heaved) Yes No NA Is Inner Casing Intact? Yes No
PURGE DATA: METHOD: D Bailer, Size: \Bradder Pum	p
MATERIALS: Fump/Bailer: Image: Constraint of the stain less Steel MATERIALS: Fump/Bailer: Image: Constraint of the stain less Steel Image: Constraint of the stain less Steel Image: Constraint of the stain less Steel Pumping Rate: Image: Constraint of the stain less Steel Pumping Rate: Image: Constraint of the stain less Steel Was well Evacuated? Image: Constraint of the staint o	Tubing/Bope: Teflon® Polyethylene Polypropylene Polypropylene Other: Number of Well Volumes Removed: IMA Off-Site Pield Cleaned
SAMPLING DATA: METHOD:	2" Submersible Pump
	Jel: Omega Meter S/N. Omega Omega

BROWN AND CALD WELL

Project Na Personne Purge/Sa	ame: l: mple Dept	Putelie 	+ 000 ~ 2	- e	Pro W W Sar	oject Numb ell ID: nple ID:	er:	-2.5	-
Actual Time	рН	Temp (°C)	ORP (mV)	Cond イチン	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
905	5.03	12-77	174	0.636	0.00	0			
908	5.01	12,74	172	0.640	1.00	0	3-97	200	
911	5.02	13,75	170	0.631	6.00	0			
914	5.04	12,75	169	0.638	.43	0			
717	0.05	K.76	166	0.638	2.85	0			
920	5.05	13.83	165	0.630		0		200	
7 23	5.05	13.91	100	0.639	2.33	0	<i>el</i>		
926 929	500		jag	0.639	1.79	00	e1.01	=	
9 3L	5.05	14.01 14.02	163	0.646	1.52	0		200	
9 35	5.06	14.02	162	0.642	1.07	0		200	
	2100			0.010	$\Lambda \overline{\Lambda}$				
			\$		$\partial (\alpha)$	940			
				Ò	-				
			_				$\left \right $		
						- 1 - 7			
							/		
						/			
									·····
_									
				$\angle $					
			-						
							· · · · · · · · · · · · · · · · · · ·		
	-								
]	$ \rightarrow +$							
	\neg								
	$\overline{}$								

	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Project: Patchogue Personnel:	Sample I.D.: (if different from well no.) Date: <u>4/8/11</u> Time: <u>8</u> Weather: <u>COB</u>
WELL DATA: Casing Diameter: Stainless Steel SPSteel Pro- Intake Diameter: Stainless Steel Galv. Steel DEPTH TO : Static Water Level: ft Bottom of Well DATUM: Dop of Protective Casing DTop of Well Casing CONDITION: Is Well clearly labeled? DYes Proo Is well Is Prot. Casing/Surface Mount in Good Cond.? (m Does Weep Hole adequately drain well head? D Is Concrete Pad Intact? (not cracked or frost heav Is Padlock Functional? Pres D No D NA Is Inner Casing Properly Capped and Vented?	P Teflon® □ Other: > PVC □ Teflon® □ Open rock : 27 ft □ Other: I clean to bottom? - BYes □ No ot bent or corroded) - BYes □ No PYes □ No red) BPYes □ No Is Inner Casing Intact?====Yes □ No
METHOD. Centrifugal Pump Peristaltic Pump MATERIALS Pump Bailer: MATERIALS Pump Bailer: Pumping Rate: Pumping Rate: Pumping	2" Submersible Pump 2" Submersible Pump 4" Submersible Pump Teflon® TubingAcope: Volume Pumped: Volume Pumped: Teflon® Cother: Cother:
SAMPLING DATA: METHOD:	bmersible Pump □ 4" Submersible Pump
Metals samples field filtered? Yes No Method: APPEARANCE: Image: Clear Turbid Color: Image: Clear Turbid Color: Image: Clear Turbid Color: Image: Clear	Contains Immiscible Liquid Horra Meter S/N: 16000000000000000000000000000000000000

$B\ R\ O\ W\ N \quad \text{and} \ C\ A\ L\ D\ W\ E\ L\ L \ .$

Project Name: Project Number: Personnel:									
Personnel: Well ID:							_		
Purge/Sar	nple Dept	h:	~ 24		Sar	mple ID:			
									····
Actual		Temp	ORP	Cond	DO	Turbidity	DTW	Pumping Rate	
Time	рН	(°C)	(mV)	(us/cu)	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
1				(704	(Comments
812	5.92	1024	12	0.396	9.31	141			
815	5.84	10.34	 41	0.355	0.00	142			
	5.69	11.17	58	0.357			4.45		· · · · · · · · · · · · · · · · · · ·
811	5.68	11.33	[[]	0.358	0.00	258 277	9.9	100	
818 821 824	5.68			0.35%		221		1.000	
84	5.71	11.53	63	0.354	0.00	179			
3 4 9 30	5.71	11.65	66	0.354	0.00	161			
933	5.72	11.73	10B	0.360	0.00	149		100	
936	5.70	11.109	3ĩ	0.362	0.00	124			
8 39	5.69	11.75		0.561		84.7			
842	5.69	11.82	74 70	0.359	0,06	73,1			
) QY			
10			13	hnl	ed (·		/
			· · · ·						
								/	·
								/	
							17		
						. 1	HY		
						16	X		
						JV			
						2			
				/	\sim				
				\sim					
24									
	/					_			

BROWN AND CALDWELL Allendale, NJ Office	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA Well Number: Sample LD: (f different from well no.)
	Sample I.D.: (if different from well no.) Date: <u>4/8/11</u> Time: <u>7.29</u> Weather: <u>Sunny</u>
WELL DATA: Casing Diameter: Stainless Steel PSteel Intake Diameter: Stainless Steel Galv. Steel DEPTH TO : Static Water Level: <u>4.56</u> ft BATUM: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Yes Is Prot. Casing/Surface Mount in Good Cond.? (n Does Weep Hole adequately drain well head? The set of th	/ /C □ Teflon® □ Other: /2 PVC □ Teflon® □ Open rock : <u>(2.</u> ft □ Other: clean to bottom? /2 PYes □ No ot bent or corroded) 2 Yes □ No Yes □ No Yes □ No Is Inner Casing Intact? _ P Yes □ No
Centrifugal Pump Peristaltic Pump MATERIALS: Rump/Bailer: Pumping Rate:	nber of Well Volumes Removed:
SAMPLING DATA: METHOD:	
Metals samples field filtered? Yes No Method: APPEARANCE: Image: Clear Turbid Color: Image: Clear Turbid Color: Image: Clear Image: Clea	Contains Immiscible Liquid <u>Houba</u> Meter S/N: <u>22</u> <u>Meter S/N: <u>22</u> <u>Temperature:</u></u>

BROWN AND CALDWELL

Project Name:	Pasteliogue	Project Number:
Personnel:	No con	Well ID: 110-75
Purge/Sample Depth:	~10	Sample ID:

Actual		Temp	ORP	Cond	DO	Turbidity	DTW	Pumping Rate	
Time	рН	(°C)	(mV)	(14/2)	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
729	5.47	7.80	146	0.770	11.00	826		200	l
732	5.63	8.01	133	0.777	9.50	AIZ A		200	
735	6.01	B.II.	93	0.775	7.31	813 891	4.59		
738	6.11	A.25	ÎÝ	0.774	5.66	932			anothed tontac
741	6.24	R.07	-22	0.748	0.00	219		100	
744	6.27	8.15	-29	0.757	0.00	219 217		1 /	
7 47	6.30	8.17	-39	0.751	0.00	200	4.60		
7 50	6.33	8.30	-49	0.750	0.00	175			
7 53	6.35	8.39	-52	0.748	0.00	151		100	
7 56	636	8.44	-55	0.745	0.00	132			
7 59	6.37	8.50	-57	0.713	0.00	101			
L				ben	000	(a)	වියුත		
				0					
	8								
							L_,		
						1α	\parallel		
ļ							2		
									· · · ·
ļ									
					····/				
				Λ					
				/	/				
L									
									1
			/						
					<u></u>				
			<u>/</u>					1	
		/							
		/						· · · · · · · · · · · · · · · · · · ·	
	— <u> </u>								
							· · ·		
						··· = ·			
	, _			L					L

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Aliendale, NJ Office	Well Number: MU-95 Sample I.D.: (if different from well no.)
Project: Parthogue Personnel:	Date: <u>H ->///</u> Time: <u>1629</u> Weather: <u>Classe</u> Air Temp.: <u>30°</u>
DEPTH TO : Static Water Level: <u>[·54</u> ft Bottom of Well DATUM: Dop of Protective Casing Dop of Well Casing CONDITION: Is Well clearly labeled? Yes PNo Is well Is Prot. Casing/Surface Mount in Good Cond.? (n Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost heav Is Padlock Functional? Properly Capped and Vented? D	☑PVC □ Teflon® □ Open rock I:/Oft □ Other: □ Other: Iclean to bottom? ②PYes I clean to bottom? ②PYes □ No ot bent or corroded) ③PYes □ No Yes □ No Yes □ No Yes □ No □ No Is Inner Casing Intact? ✓③PYes □ No
PURGE DATA: METHOD: Image: Constraint of the second secon	2" Submersible Pump □ 4" Submersible Pump p □ Inertial Lift Pump □ Other:
Image: Constraint of the state of the s	mber of Well Volumes Removed:
SAMPLING DATA: METHOD:	
Metals samples field filtered? Yes No Method: APPEARANCE: Image: Clear Turbid Color: Image: Color: FIELD DETERMINATIONS: pH: <u>5.97</u> Meter Model: Meter Model: Temperature: <u>12.11</u> Spec. Cond.: <u>13.063</u> Meter Model: ORP: 97 DO: <u>0.00</u> Turbidity: <u>9</u> DUP : No Yes Name:	Contains Immiscible Liquid Meter S/N: Meter S/N: Meter S/N: Temperature:

BROWN AND CALDWELL

Project Name: Pateliesul	Project Number:
Personnel:	Well ID:
Purge/Sample Depth:9	Sample ID:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					T					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		рН			Cond (~\$<_)				Pumping Rate (mL/min)	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.20	C 22	11.00	-7	1 323					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.32			0.752	0-06			2 .	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.31			6.708	0.00	-5-0		100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.699			1.28		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 38		12.05	-53	0.656	0.00				ensie hell
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.00				,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			11.41		6.581	0,00	603	1.59		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5,78	1.62	- 69	0.590	0.00	333	,	200	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 50	5.83	11.01	- 73	0.631	0.00	251			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 53	5.81	11.93	- %3_	0.682	0.00	130			
1057 5.92 12.11 -97 0.1497 0.00 98.7		5.90			0.607	1.00				
	10 55			-97	0.1.97		98.7			
						¥				
					× ×		Orch la	1700		
							and G	,,,		
						1				
		· · · · ·								
	i									
								$\cdot \uparrow$		······
					<u> </u>				(J	
							L			
							\int			
	1					\sim				
					1					
						<u> </u>				· · ·
					/					
							· · · · · · · · · · · · · · · · · · ·			
			/							
			\vdash							
		-								

B R O W N A N D C A L D W E L L	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA Well Number: MW - 9D
Project: Parelogul Personnel: not con	Sample I.D.: (if different from well no.) Date: <u>9/7/11</u> Time: <u>1596</u> Weather: <u>526</u>
WELL DATA: Casing Diameter: D Stainless Steel	PVC □ Teflon® □ Other: el / =+PVC □ Teflon® □ Open rock ell:ft □ Other: ell clean to bottom? _/EPYes □ No (not bent or corroded) □ PYes □ No ② Yes □ No aved) □ PYes □ No Is Inner Casing Intact?EPYes □ No ② Yes □ No
Image: Construction of the construc	2" Submersible Pump 4" Submersible Pump Inertial Lift Pump Other: Tubing/Rope: Polyethylene Polypropylene Other: umber of Well Volumes Removed: MASite Site Site
SAMPLING DATA: METHOD: Delister, Size: Method: Delister, Size: Method: Delister, Size: Method: Delister, Size:	Submersible Pump
General Statuless Steel SAMPLING EQUIPMENT: □ Dedicated □ Prepared Metals samples field filtered? □ Yes ∕ □ No Method APPEARANCE: ✓ Clear □ Turbid □ Color: FIELD DETERMINATIONS: pH: <u>√.9.7</u> Meter Model	Off-Site Field Cleaned d: Contains Immiscible Liquid

BROWNANDCALDWELL

Project Na Personnel Purge/Sar	ame:	Parteno	ne		Pr	oject Numb	er:	R.	-
Personnel	li molo Doni		· Can		VV	ell ID:	Mu-	10	<u> </u>
PurgerSar	npie Depi	.m	61	<i>.</i>	Sai	npie ID:			_
Actual		Temp	ORP	Cond	DO	Turbidity	DTW	Pumping Rate	
Time	рН	(°C)	(mV)	(~)()	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
1546	4.64	13.72	143	0.355	0.55	179			· · · ·
1549	4.64	13.81	142	0.395	0.61	181		200	
15 52	4.65	13.95	141	0.394	0.74	203	1.64		
1555	4.71	14.09	135	0.311	063	301			
1553	4.75	14.41	124	0.400	0.51	301 444			
1601	4,73	14.51	119	0.399	0.00	393			
1604	y,72	14.56	116	0,398	0.00	341			
16.07	4.74	iu. 73	ilu –	0.396	0.00	341 2 3 1	1.66	200	
1010	4.75	14.74	112	0.346	0.00	198			
1613	4.44	14,75	113	0.396	0,00	inĭ			
1616	4.14	14.6	13	0.346	60.0	95			/
	•		- 1		- d (a 17	0		
			- ^>	inte		∞ $[b]$			/
				0					·
							1		
						. /	$N \ge 1$		
			_				\checkmark		
						Why?			
						X``			
					\simeq				
				$\underline{\mathcal{Y}}$					
	,								
									····· <u>·</u> ·····
				3					

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: MW - 3 Sample I.D.: MW - 3 (if different from well no.)
Project: Patchogue GNSarphy Personnel: COMINU	Date: <u>4711</u> Time: <u>79,**8</u> Weather: <u>1900</u> Air Temp.: <u>405</u>
WELL DATA: 2" Stainless Steel Steel ZP' Intake Diameter: 2" Stainless Steel Galv. Steel DEPTH TO : Stainless Steel Galv. Steel DATUM: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Yes No Is Prot. Casing/Surface Mount in Good Cond.? (n Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost hear Is Padlock Functional? Yes No Soft hear Is Inner Casing Properly Capped and Vented? Volume OF WATER: Standing in well: Mathematical Standing in well:	TPVC □ Teflon® □ Open rock .://O_ft □ Other: I clean to bottom? Yes □ No ot bent or corroded) □ Yes Y No Yes □ No yed) □ Yes YaNo Is Inner Casing Intact? ØYes □ No
	2" Submersible Pump
MATERIALS: Rump Bailer: D Teflon® MATERIALS: Rump Bailer: D Stainless Steel PVC Other: Pumping Rate: <u>300</u> <u>wc</u> Elapsed Time: <u>30</u> <u>mc</u> Was well Evacuated? D Yes A No Nu	Inertial Lift Pump Other: Tubing/Rope: Folyethylene Polypropylene Other: Volume Pumped: Volumes Removed: Site Su_Field Cleaned
SAMPLING DATA: METHOD:	bmersible Pump
MATERIALS: Pump/Bailer: Teflon® SAMPLING EQUIPMENT: Dedicated Prepared O Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color:	Tubind/Rope:

Project Name:	atchique on Sampling	Project Number:	138913
Personnel:	COMINIL	Well ID:	MW-3
Purge/Sample Depth	: <u>""</u> "	Sample ID:	MW-3

	[· · ·									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				ORP	Cond	DO	Turbidity	DTW	Pumping Rate	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	рН	(°C)	(mV)	(nsn)	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ILLUE.	E.HU	11 76	a	0.505	127	342	2.67	2504.11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14:51	5.13		17	0.510			and	annin-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.14	1170	10	6.510		28,5		—	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14:57	SIL			0.509	0.00	24.3	2.62	300min	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15:00	5.00		20	0.518	0.00				-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								· · · · ·		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			11.07			h.aŭ				
$\frac{1}{2}$	15 15	5.50		ib	0.522		4-10	2.64		-
Durlid a 1525	15:18	5131	12.11	17	0.592	0.00	4.0	-		
							1			
					An	Alt	A TA	122	5	
						1		$ \rightarrow $		
							- 35 - j			
								f-i	1	
								1-2+1		
			· · · · ·			Sec. 1		$\parallel \eta \succ$	·	
					r r			V		
									~~	
					$\vdash \land$	/				
					<u> </u>					
						<u> </u>				
				/						
				29						
		/								
		·								
					1					

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Allendale, NJ Office	Well Number: MW - 25 Sample I.D.: MW - 25 (if different from well no.)
	Date: <u>4410</u> Time: <u>448</u> Weather: <u>Pt Uses</u> Air Temp.: <u>48</u>
WELL DATA: Casing Diameter: Image: Steel	□ PVC □ Teflon® □ Open rock □ Other: □ Other: □ clean to bottom? □ Yes □ No ot bent or corroded) ∅ Yes □ No Yes □ No red) ♀ Yes □ No Is Inner Casing Intact? ∅ Yes □ No Yes □ No
	2" Submersible Pump 4" Submersible Pump 5 Inertial Lift Pump Other:
MATERIALS: Pump/Bailer: Teflon® Stainless Steel PVC Dumping Rate: 20000000 Pumping Rate: 2000000 Pumping Rate: 20000000 Pumping Rate: 20000000 Pumping Rate: 2000000000000000000000000000000000000	Tubing/Rope: Teflon® Tubing/Rope: Polyethylene Polypropylene Other: Nolume Pumped: 5 90 Nolume Pumped:
SAMPLING DATA: METHOD: Bailer, Size:	
Temperature: 12.09/2 Spec. Cond.: 0.55/2 Meter Model: 0 ORP: 12.4 DO: 0.00 Turbidity: 0 DUP: 100 12.00 Turbidity: 0 0 MS/MSD: 20 No 12 Yes Name: 0 Field Lab Results: 20 20 NA pH: 00: 00: I certify that this sample was collected and handled in accordance with applicable regiments 0 1 1	Contains Immiscible Liquid Lov ba V. 22 Meter S/N: by ba V - 22 Meter S/N: Temperature:

$B\ R\ O\ W\ N\quad a\ n\ b\ C\ A\ L\ D\ W\ E\ L\ L$

Project Name: DAtchogue GWSampling	Project Number: 138893
Personnel:(AMINLL U	Well ID:Mいーント
Purge/Sample Depth: 1 665	Sample ID:

Actual Time	pН	Temp (℃)	ORP (mV)	Cond (with)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
9:48	5.17	12.17	164	0.608	a.83	0.D	4.57	20anum	-
9:51	5.18	12.54	160	0.600	0.86	0.0	_	1	1
9.54	5.17	12 59	159	0.593	0.74	6.0	~		National Academic Science
9:57	5-22	12.69	154	0.566	0.00	6.0	471	-	
10:00	5,24	12.68	154	0.564		0.D			
10:03	0.25	12.67	153	0.559	0.00	0.04	-		
10:05	5.20	13.19	152	8.558 0.558	0.00	0.0	<u> </u>	200 m/n	
10:09	5.27	12.00		0.558	0.00	B.O			
10.12	6,30	12 82	152	0.555	0-00	0.0		-	<u> </u>
10:15	5.30	12.60	153		000		4.75	<u> </u>	`
10:18	5,31	12.977	152	0.556	0.0D	0.0	~	-	3
10:20	San	$\mathcal{Q}\mathcal{Q}$	MW-	25	collec	tel			
		0				-			
	·								
	·								
	\vdash								
 					-				
			\rightarrow						
						<u> </u>			
							\sim		
						$\overline{}$	I X		
[$ O_{1} $	
							$\langle \neg \neg \rangle$		
								\mathbf{N}	
								<u> </u>	
			1.						
				2					
├ ───┤									
<u> </u>									

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: 2007-85 Sample I.D.: (if different from well no.)
Project: Patchacue Personnel: Mor ATM	Date: <u>4</u> 711, Time: <u>1044</u> Weather: <u>Claudy</u> Air Temp.: <u>40</u>
DEPTH TO : Static Water Level: <u>0.99</u> ft Bottom of Well DATUM: CONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond.? (n Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost hear Is Padlock Functional? Source Pade and Vented? Source Pade Intact? (Determine the source of t	Dev C □ Teflon® □ Open rock I: <u>(/)</u> ft □ Other: I clean to bottom? → Der Yes □ No to bent or corroded)→ Der Yes □ No Yes □ No ved) Der Yes □ No Is inner Casing Intact? → Der S □ No
PURGE DATA:	2" Submersible Pump
	Tubing/Rope: Teflon® Polyethylene Polypropylene Other: Other: mber of Well Volumes Removed: A Site Field Cleaned
SAMPLING DATA: METHOD:	ubmersible Pump
MATERIALS: Fump/Bailer: □ Teflon® SAMPLING EQUIPMENT: □ Dedicated □ Prepared O Metais samples field filtered? □ Yes □ No Method APPEARANCE: //□ Clear □ Turbid □ Color:	Contains Immiscible Liquid Meter S/N: Meter S/N: Temperature:

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: <u>Putchorque</u> Personnel: <u>w + afre</u> Purge/Sample Depth: <u>~(a</u> Sample ID: _____

Actual TimeTemp pHORP (°C)Cond (mV)DO (mV)Turbidity (mg/L)DTW (NTU)Pumping Rate (mL/min)Cond (mg/L)DO (mg/L)Turbidity (NTU)DTW (ft)Pumping Rate (mL/min)Co	A
Time pH (°C) (mV) (ベジニー) (mg/L) (NTU) (ft) (mL/min) Co	
	milents
1144 4.95 11.31 136 0.606 9.60 197	
1047 4.18 11.28 124 0.606 9.33 1.67 200 1050 5.00 11.26 8.3 0.601 8.37 128	
1053 5.01 11.29 58 0.604 7.69 128 121	
1053 5.01 11.29 58 0.604 7.69 128 121 1056 5.08 11.35 41 0.605 6.92 142	N.
102 Σ 10 10 10 10 10 10 10 122	
105 5.21 11060 - 0.606 5.00 119, 1.22	
108 5.21 11.62 -4 0.611 4.77 100	
1 14 5.28 11.65 -12 0.612 4.10 90	
Sur led @ 11/5	
Dup 040711 John her	
	_

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: 400 -85 Sample I.D.: (if different from well no.)
Project: fortelisque Personnel: - GM	Date: <u>//7///</u> Time: <u>// 32</u> Weather: <u>Clock</u> Air Temp.: <u>40°</u>
DEPTH TO : Static Water Level: <u>○ 89</u> ft Bottom of Well Casing DATUM: Top of Protective Casing Is Well clearly labeled? Is Well Clearly labeled? Is well Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? <u>1</u> Is Concrete Pad Intact? (not cracked or frost hea Is Padlock Functional? <u>1</u> Yes INO INA Is Inner Casing Properly Capped and Vented? <u>1</u> Padlock Properly Capped and Vented? <u>1</u> Padlock Properly Capped and Vented? Is Inner Casing Properly Capped and Vented? Padlock Properly Capped and Vented? Is Inner Casing Properly Capped and Vented? Is Inner Casing Properly Capped and Vented? Is Padlock Properly Capped and Vented? Is Inner Casing Properly Capped and Vented? Inner Casing Properly Capped and Vented? <t< th=""><th> ✓ EPPVC □ Teflon® □ Open rock □ Other: □ Other: □ Other: □ I clean to bottom? 2 Yes □ No not bent or corroded) 1 Yes □ No PYes □ No ved) 2 Yes □ No Is Inner Casing Intact? - PYes □ No PYes □ No </th></t<>	 ✓ EPPVC □ Teflon® □ Open rock □ Other: □ Other: □ Other: □ I clean to bottom? 2 Yes □ No not bent or corroded) 1 Yes □ No PYes □ No ved) 2 Yes □ No Is Inner Casing Intact? - PYes □ No PYes □ No
	10 be purged: 2" Submersible Pump □ 4" Submersible Pump p □ Inertial Lift Pump □ Other:
MATERIALS: Pump/Bailer: 2 Stainless Steel PVC Pumping Rate: 200 ML DOther: Pumping Rate: 200 ML Elapsed Time: 30 ML N	Tubing/Rope: Teflon® Tubing/Rope: Polyethylene Polypropylene Other: Volume Pumped: Zgel mber of Well Volumes Removed:
SAMPLING DATA: METHOD:	ubmersible Pump 🛛 4" Submersible Pump ial Lift Pump 🖵 Other:
MATERIALS: Pump Bailer: □ Teflon® SAMPLING EQUIPMENT: □ Dedicated □ Prepared O Metals samples field filtered? □ Yes No Method APPEARANCE: Image: Clear □ Turbid □ Color: FIELD DETERMINATIONS: pH: <u>4.866</u> Meter Model: 0 ORP: Image: Clear □ Turbid Color: ORP: Image: Clear □ Turbid: Image: Clear MS/MSD: Image: Clear □ Turbid: Image: Clear MS/MSD: Image: Clear □ Image: Clear □ Field Lab Results: Image: Clear □ Image: Clear □ Image: Clear □ Yes Name: Clear □ □ Image: Clear □ Yes Name: Clear □ □	Contains Immiscible Liquid Meter S/N: Meter S/N:
I certify that this sample was collected and handled in accordance with applicable res	

Project Name:	Patchoscie	_ Project Number:	_
Personnel:	mern	Well ID: <u>http://www.est</u>	_
Purge/Sample	Depth:23	Sample ID:	_

			1						
Actual		Temp	ORP	Cond	DO	Turbidity	DTW	Pumping Rate	
Time	рН	(°C)	(mV)	(~~5/2)	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
	P.1	()	(,		((((10))	(14)	(Commonito
1/32	5245	12.12	67	0.538	2.09	280			
1135		12.60	67 72	0.544		240			
11 38	5.23 4. <i>1</i> 9	12-99	73	0,502	0.00	290	1.18	200	
1141	4.93	13.36	75	0.543 0.547	0.00	256	1,410	an	
11 44	4.93	13.54	77	0.547		194			
11 44 11 47	4.93	13.61	79	0.547	0.00	152			
1150	4.40	13.72	82	0.545	0.00	125			· · · · · · · · · · · ·
11 53	4.81	13.80	83	0.543	0.00	108	1.19	200	
11 54	4.80	13.92	86	0.541	0.00	97-7			
	4.86	13.82	86 87	0.540	0.00	99.3			
11 59 12 M	4. 86 4. 86	13.26	<i>6</i> 8	0.539	0,00	99.3 81.5			
<u>^</u>				7					
				fer	-0.6	d	a 1	205	
			/	0				10	/
							<i>i I</i>		
							$\Pi \Lambda$		
						t 1	$T \ge T$		
						, 17	\mathcal{V}		
					ŀ				
:					Ŭ Ŭ	b.K			
Ű.			/						
			/						
		/							
	/								
	1					1			
	1								
	<u> </u>								
							,		

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: MW-1 Sample I.D.: MW-1 (if different from well no.)
Project: Patchogue GWSanpling Personnel: COM/NLL	Date: <u>4711</u> Time: <u>13'.57</u> Weather: <u>CLAUAY</u> Air Temp.: <u>40</u>
WELL DATA: Casing Diameter:	V2 PVC Teflon® Open rock ft Other: I clean to bottom? 29 Yes No to bent or corroded) 24 Yes No Yes No Yes No /ed) 24 Yes No / Is Inner Casing Intact? 24 Yes No Yes No
	2" Submersible Pump
MATERIALS: Rump/Bailer: Teflon® Stainless Steel PVC Other: Fumping Rate: 100 multiwe Dumping Rate: 100 multiwe Dumpi	Volume Pumped: 1.5 yr 1 Wolume Semoved: NH
SAMPLING DATA: METHOD: □ Bailer, Size:	
Temperature: 9.47 Spec. Cond.: 1.11 Meter Model: ORP: -57 DO: 0.00 Turbidity: 93 DUP : OS No Yes Name: 93 MS/MSD : ON OYes Name: 00: 00: 00: Field Lab Results: ON/A pH: 00: 00: 00: 00: I certify that this sample was pollected and handled in accordance with applicable results: DO: 00: 00: 00:	Contains Immiscible Liquid

Project Name: Patchoque GW	Sampling Project Numbe	r: 138813
Personnel: COWLNUL	Well ID:	MW 1
Purge/Sample Depth:13'	Sample ID:	mw-1

Actual		Temp	ORP	Cond	DO	Turbidity	DTW	Pumping Rate	
Time	рН	(°C)	(m∨)	(mstan)	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
13:57	5.55	10.46	Bar	1.42	0.80	437.0	,30	1.00 million	
1400	8.11	10.07	17	1.69	N.DD	490.0 270.0 320.0	-		<i>✓</i>
14.03	5.76	949	-12	1.50	0.00 0.00	270.0	-		
14:00	5.69	9.93	-23	1.61	0.00	3200	-	-	
14:09	5.12	9.81	-37	1.68	0.00	2970	632	150mll-	
14:12-	5.74	9.83	-39	1.60	0.00	2970		-	
14.15	5.13	9.90	-42	.109	0.00	261.0)	-	
14:18	5.15	9.93	-49	1.70	0.05	172.0	635	round	
14:21	5.84	9,97	- 53	1.70	0.00	159.0	1	1	
14:24	15.82 15.82	9.97	- 65	1.70	0.00	159.0	1	1	
14:27	5,93	9.97	~ 57	141	0.00	92.0)	
14-30	С С	ann	e Co	Ilet	ell				
•									
				2					
				A 1					
<u> </u>									
<u> </u>									
<u> </u>								20	
├								8	
l									
L I									

CALDWELL Allendale, NJ Office Well Number: Jumu's grampel: LD: grampel: LD: <th>BROWNAND</th> <th>LOW-FLOW GROUNDWATER SAMPLING FIELD DATA</th>	BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Personnel: Weathef: Claudy Air Temp: 4/2 WELL DATA: Casing Diameter:	Allendale, NJ Office	Well Number: MUC-US Sample I.D.: (if different from well no.)
Casing Diameter:		Date: <u>4/9///</u> Time: <u>1/16</u> Weather: <u>Cloudy</u> Air Temp.: <u>40</u>
METHOD: Bailer, Size: APBiadder Pump 2" Submersible Pump 4" Submersible Pump MATERIALS: Pump/Bailer: Teflon® Teflon® Teflon® MATERIALS: Pump/Bailer: Teflon® Polyethylene Polyethylene Pumping Rate: 200 ///////////////////////////////////	Casing Diameter: Distainless Steel CarSteel Intake Diameter: Distainless Steel CarSteel Intake Diameter: Distainless Steel CarSteel Intake Diameter: Distainless Steel Intake Diameter: Distainless Distai	el @PPVC
Pumping Rate: 200 Image: Elapsed Time: 0 Mumber of Well Volume Pumped: 9 Was well Evacuated? Yes No Number of Well Volumes Removed:	METHOD: Bailer, Size: Biller, Size	mp I Inertial Lift Pump Other: Tubing/Rope: A Polyethylene Polypropylene
METHOD: Bailer, Size: Balder Pump 2" Submersible Pump 4" Submersible Pump MATERIALS: Pump/Bailer: Teflon® Teflon® Teflon® MATERIALS: Pump/Bailer: Teflon® Teflon® Polyethylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site P Field Cleaned Metals samples field filtered? Yes No Method: Polyethylene APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: pH: 0.101 Meter Model: Meter S/N: 0.222 ORP: DO: 0.001 Turbidity: 0.31 Meter S/N: 0.222 DUP : No Yes Name: Meter Model: Nother S/N: 0.222 MS/MSD : No Yes Name: Temperature: 1.43 Meter S/N: 0.222 MS/MSD : No Yes Name: Temperature: Temperature: 1.43 Field Lab Results: TN/A pH: DO: Temperature: Temperature: 1.43 MS/MSD : No	Pumping Rate: <u>200 m</u> Elapsed Time: <u>50 m</u> Was well Evacuated? D Yes P No N	Volume Pumped: <u>4</u> goO umber of Well Volumes Removed: <u>KA</u>
Stainless Steel Polyethylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Yes No Method: APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: pH: 0.341 Meter Model: Meter S/N: 0.222 ORP: Spec. Cond.: 0.341 Meter Model: Meter S/N: 0.222 ORP: DO: 0.001 Turbidity: 9/-3 Meter S/N: 0.222 DUP : No Yes Name: Name: 1.43 Meter S/N: 0.222 MS/MSD: No Yes Name: 1.43 Temperature: 1.43 1.43 Field Lab Results: TN/A pH: DO: Temperature: 1.43 1.44 1.44 1.44 I certify that this sample was collected apd handled in accordance with applicable regulatory and project protocols. 1.44 1.44 1.44 1.44	METHOD: D Bailer, Size: Bladder Pump D 2" S	Submersible Pump
	SAMPLING EQUIPMENT: Dedicated Prepared Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: pH: 0.107 Meter Model: Temperature: 11.12 Spec. Cond.: 0.344 Meter Model: ORP: \$1 0 Yes Name:	Off-Site Prield Cleaned d: Contains Immiscible Liquid Contains Immiscible Liquid Meter S/N: Meter S/N:

Project Name:	Patalasce	Project Number:
Personnel:	in + com	Well ID: Murrs
Purge/Sample Depth	:10	Sample ID:

Actual Time	pН	Temp (°C)	ORP (mV)	Cond (***/)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
1116		1000							
	5.40	10.95	189	0.411	9.53	-5.0			
1/22	5.50	10.79 11.08	<i>183</i> 178	0.419	0.00	-5.0	abel a	200	
1125	5.50	10.88	168	0.418	0.00	-5-0		200	appiel toube
1/ 28	5.58	10.00	155	0.417	3.11	801			
11 31	5.61	10.98	193	1.413	0.00	737			
1/ 34	5.60	11.00	145	0.41	0.00	668		200	
11 37	5.70	11.39	142	0.401	8.00	688		100	
1 90	5.71	11,35	137	0.903	2.11	593			
11 43	5.79	11.33	130	p. 401	4136	529		· · · · · · ·	
11 46	5183	11. 31	ÎÎÎ	0.402	0.00	411			
1149	5.94	11.29	103	0.403	0.00	330			
11 52	5.95	1.28	101	1.403	0.00	317.			
11 55	5.94	1.29	100	0.403	0.00	.309			
11 58	5.94	11.28	.92	0.402	0.00	281		4	
1201	6.97	11-102	101	0.416	0.00				
12.04	6.01	11.32	<u>4</u> 1	n.411	0.00	250 152			
17.07	10:04	11.25	85	0.401	1.00	119			
1210	6.07	11-18	91	OBAG	0.00	91.3			
	- Tel								
ж				· 0		21	Δ	15	
ļ		3.5		120	~ 10	as (2 12	~~	
			250		<u> </u>				
					· · · · · ·				·
<u> </u>									
									· · · · · · · · · · · · · · · · · · ·
									· · · · · · · · · · · · · · · · · · ·
							1 N		
· · · · · · · · · · · · · · · · · · ·							X		
									· · · · · · · · · · · · · · · · · · ·
					·····				├────
					-				
	[1		I					

>

Project Na	ame:	putch	regul		Pr	oject Numb ell ID: nple ID:	er:		_
Personne		jh.	+ cm	•	W	ell ID:	_pw	-40	<u> </u>
Purge/Sa	mple Depi	th:	~ 20		Sar	nple ID:		<u> </u>	_
					<u> </u>		1		
Actual		Temp	ORP	Cond	DO	Turbidity	DTW	Pumping Rate	
Time	рН	(°C)	(mV)	(15/2)	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
				171	Ì́́́	. ,			
Turtial	5.47	13.44	182	0.452	0.00	79.2			
Tuitial 15	5.55	13.44	187 182	0.491	5.94	0.0	<u> </u>		
2nd	5.50	13.90	154	0.515	4.74	0.0			
200	5.62	13.95	112	0.511	0.00	0.0			
2nd 3rd Fixal	5.86	14.07	103	0.519	0.48	18.8	<u> </u>		·····
							1		
							1		
		1							
				Î					· · · · · · · · · · · · · · · · · · ·
			3						
· · · · · · · · · · · · · · · · · · ·								-	
				(S)				1	
								30	
							i		25
	10:								
									· · · · · · · · · · · · · · · · · · ·
						-			
									=
			_						
				<u>.</u>					
									*
			_						
									······································

Appendix B: Laboratory Reports (CD-ROM)

Appendix C: Data Usability Summary Report

ENVIRONMENTAL Data Services, Inc.

DATA USABILITY SUMMARY REPORT PATCHOGUE, NEY YORK

Client:	Brown and Caldwell, Allendale, New Jersey
SDG:	PCH07
Laboratory:	Lancaster Laboratories, Lancaster, Pennsylvania
Site:	Patchogue, New York
Date:	June 7, 2011

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-8S GRAB WATER	6254493	Water
2	DUP040711 GRAB WATER	6254494	Water
3	MW-8D GRAB WATER	6254495	Water
4	FB040711 GRAB WATER	6254496	Water
5	MW-1 GRAB WATER	6254497	Water
6	MW-3 GRAB WATER	6254498	Water
6MS	MW-3 GRAB WATERMS	6254499MS	Water
6MSD	MW-3 GRAB WATERMSD	6254500MSD	Water
7	MW-9D GRAB WATER	6254501	Water
8	MW-9S GRAB WATER	6254502	Water
9	MW-7S GRAB WATER	6254503	Water
10	MW-7D GRAB WATER	6254504	Water
11	MW-2D GRAB WATER	6254505	Water
12	MW-2S GRAB WATER	6254506	Water
13	MW-4S GRAB WATER	6254507	Water
14	MW-4D GRAB WATER	6254508	Water
15	TB040811 WATER	6254509	Water

A Data Usability Summary Review was performed on the analytical data for thirteen water samples, one aqueous trip blank sample, and one aqueous field blank sample collected April 7-8, 2011 by Brown and Caldwell at the Patchogue, New York Site. The samples were analyzed under Environmental Protection Agency (USEPA) *"Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".*

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
VOC (BTEX)	USEPA SW-846 Method 8260B
SVOC (PAH)	USEPA SW-846 Method 8270C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

• SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;

- SOP Number HW-22, Revision 4, August 2008: Validating Semivolatile Organic Compounds by SW-846 Method 8270D;
- and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed:

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Duplicate (LCS/LCSD) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes. Data were qualified for the following deficiencies.

• Five PAH compounds were qualified as estimated in one sample due to a high surrogate recovery.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (BTEX)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD).

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB040711	None- ND	-	-	-	-
TB040811	None- ND	-	-	-	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and average RRF criteria were met.

Continuing Calibration

• All %D and RRF criteria were met.

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

		VOC		
Compound	MW-8S	DUP040711	RPD	Qualifier
	ug/L	ug/L		
None	ND	ND	-	-

Polynuclear Aromatic Hydrocarbons (PAH)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

Surrogate Spike Recoveries

• The following table presents surrogate percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

Sample ID	Surrogate	%R	Qualifier
14	Nitrobenzene-d5	116%	J

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD).

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

<u>Field Blanks</u>

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB040711	None- ND	-	-	-	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

All %RSD and average RRF criteria were met. ٠

Continuing Calibration

All %D and RRF criteria were met.

Compound Quantitation

All criteria were met.

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria. •

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

РАН					
Compound	MW-8S	DUP040711	RPD	Qualifier	
_	ug/L	ug/L			
None	ND	ND	-	-	

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

anghleaver Dated: 6/8/11

Nancy Weaver Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Sample Description: MW-8S Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 11:15 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

8S--- SDG#: PCH07-01

Page 1 of 1

LLI	Sample	#	WW	6254493
LLI	Group	#	124	1414
Acco	ount	#	092	86

Analysis Report

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a)anthracene	56-55-3	N.D.	1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111034AA	04/13/2011 23:09	Kevin A Sposito	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111034AA	04/13/2011 23:09	Kevin A Sposito	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 09:22	Brian K Graham	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCHE7 8811

617/11

Sample Description: DUP040711 Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

FD407 SDG#: PCH07-02FD

Page 1 of 1

LLI	Sample	#	WW	6254494
LLI	Group	#	124	1414
Acco	ount	#	092	86

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/1	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	1	1
07805	Benzo(b) fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

LAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
L0903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111034AA	04/13/2011 23:37	Kevin A Sposito	1
)1163	GC/MS VOA Water Prep	SW-846 5030B	1	P111034AA	04/13/2011 23:37	Kevin A Sposito	1
)7805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 09:47	Brian K Graham	1
)7807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8812

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 617/11

Sample Description: MW-8D Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 12:05 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

3D--- SDG#: PCH07-03

Page 1 of 1

LLI	Sample	#	WW	6254495
LLI	Group	#	124	1414
Acco	ount	#	092	86

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
3C/MS	Volatiles SW-8	346 8260B	ug/1	ug/1	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Eth	her 1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	· 1
GC/MS	Semivolatiles SW-8	346 8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	1	1
07.805	Benzo(a)pyrene	50-32-8	N.D.	1	1
07805	Benzo(b) fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111034AA	04/14/2011 00:04	Kevin A Sposito	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111034AA	04/14/2011 00:04	Kevin A Sposito	l
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 10:12	Brian K Graham	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8813

1/2/11

Page 1 of 1

LLI	Sample	#	WW	6254496
LLI	Group	#	124	1414
Acco	ount	#	092	86

Sample Description: FB040711 Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 14:10 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

SDG#: PCH07-04FB FB407

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
70 /20			ug/1	ug/l	
•		16 8260B	-		
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ethe		N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-8	46 8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a)anthracene	56-55-3	N.D.	1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111034AA	04/14/2011 00:32	Kevin A Sposito	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111034AA	04/14/2011 00:32	Kevin A Sposito	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 10:36	Brian K Graham	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8814

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

WW 6/2/11

TTT 0

Sample Description: MW-1 Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 14:30 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---1- SDG#: PCH07-05

1-	ш	1.17.7	6254497

Page 1 of 1

Titit	Sampie	Ħ	WW 023449/
LLI	Group	#	1241414
Acco	ount	#	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles S	W-846	8260B	ug/l	ug/l	
10903	Benzene		71-43-2	N.D.	0.5	1
10903	Ethylbenzene		100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.5	1
10903	Toluene		108-88-3	N.D.	0.7	1
10903	m+p-Xylene		179601-23-1	N.D.	0.8	1
10903	o-Xylene		95-47-6	N.D.	0.8	1
10903	Xylene (Total)		1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles S	W-846	8270C	ug/1	ug/1	
07805	Acenaphthene		83-32-9	N.D.	1	1
07805	Acenaphthylene		208-96-8	N.D.	1	1
07805	Anthracene		120-12-7	N.D.	1	1
07805	Benzo(a)anthracene		56-55-3	N.D.	1	1
07805	Benzo(a) pyrene		50-32-8	N.D.	1	1
07805	Benzo(b) fluoranthene		205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene		191-24-2	N.D.	1	1
07805	Benzo(k)fluoranthene		207-08-9	N.D.	1	1
07805	Chrysene		218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene		53-70-3	N.D.	1	· 1
07805	Fluoranthene		206-44-0	N.D.	1	1
07805	Fluorene		86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	e	193-39-5	N.D.	1	1
07805	Naphthalene		91-20-3	N.D.	1	1
07805	Phenanthrene		85-01-8	N.D.	1	1
07805	Pyrene		129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 12:17	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 12:17	Emily R Styer	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 11:22	Chad A Moline	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH07 0015

Sample Description: MW-3 Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 15:25 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---3- SDG#: PCH07-06BKG

LLI Sample # WW 6254498 LLI Group # 1241414 Account # 09286

Page 1 of 1

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

No Persived

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7 `	N.D.	0.8	1
			<i>/-</i>	<i>(</i> -	
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	4 J	1	1
07805	Acenaphthylene	208-96-8	1 J	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a)anthracene	56-55-3	N.D.	1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	1 J	1	1
				•	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

SO.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111034AA	04/14/2011 01:27	Kevin A Sposito	1
)1163	GC/MS VOA Water Prep	SW-846 5030B	1	P111034AA	04/14/2011 01:27	Kevin A Sposito	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 08:07	Brian K Graham	1
)7807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH07 8016

Jens (12/1)

Sample Description: MW-9D Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 16:20 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---9D SDG#: PCH07-07

LLI Sample # WW 6254501 LLI Group # 1241414

Page 1 of 1

LLI Group	#	1241414
Account	#	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/1	ug/l	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a)anthracene	56-55-3	N.D.	1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1 .

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111034AA	04/14/2011 02:51	Kevin A Sposito	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111034AA	04/14/2011 02:51	Kevin A Sposito	1
07805	PAHs in Water by GC/MS	SW-846 B270C	1	11103WAL026	04/15/2011 11:46	Chad A Moline	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8819

(W) 6/7/11

Account

Sample Description: MW-9S Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/07/2011 17:00 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---9S SDG#: PCH07-08

LLI	Sample	#	WW 6254502
LLI	Group	#	1241414

09286

Page 1 of 1

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

An Persived

CAT No.	Analysis Name	CAS Number	As Received Result	AB Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/1	
07805	Acenaphthene	83-32-9	4 J	1	1
07805	Acenaphthylene	208-96-8	3 J	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	2 J	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 12:45	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 12:45	Emily R Styer	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 12:11	Chad A Moline	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8828

lus 6/2/4

Sample Description: MW-7S Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/08/2011 08:00 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---7S SDG#: PCH07-09

Page 1 of 1

LLI	Sample	#	WW 6254503
\mathbf{LLI}	Group	#	1241414
Acco	ount	#	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
3C/MS	Volatiles S	W-846	8260B	ug/l	ug/1		
10903	Benzene		71-43-2	N.D.	0.5	1	
10903	Ethylbenzene		100-41-4	N.D.	0.8	1	
10903	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.5	1	
10903	Toluene		108-88-3	N.D.	0.7	. 1	
10903	m+p-Xylene		179601-23-1	N.D.	0.8	1	
10903	o-Xylene		95-47-6	N.D.	0.8	1	
10903	Xylene (Total)		1330-20-7	N.D.	0.8	l	~
3C/MS	Semivolatiles S	W-846	8270C	ug/1	ug/l		
07805	Acenaphthene		83-32-9	N.D.	1	1	
07805	Acenaphthylene		208-96-8	N.D.	1	1	
07805	Anthracene		120-12-7	N.D.	1	1	
07805	Benzo(a) anthracene		56-55-3	N.D.	1	1	
07805	Benzo(a) pyrene		50-32-8	N.D.	1	1	
07805	Benzo(b) fluoranthene		205-99-2	N.D.	1	1	
07805	Benzo(g,h,i)perylene		191-24-2	N.D.	1	1	
07805	Benzo(k) fluoranthene	-	207-08-9	N.D.	1	1	
07805	Chrysene		218-01-9	N.D.	1	1	
07805	Dibenz(a, h) anthracene		53-70-3	N.D.	1	1	
07805	Fluoranthene		206-44-0	N.D.	1	1	
07805	Fluorene		86-73-7	N.D.	1	1	
07805	Indeno(1,2,3-cd)pyren	e	193-39-5	N.D.	1	1	
07805	Naphthalene		91-20-3	N.D.	1	1	
07805	Phenanthrene		85-01-8	N.D.	1	1	
07805	Pyrene		129-00-0	N.D.	1	1	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 13:13	Emily R Styer	1
)1163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 13:13	Emily R Styer	1
)7805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 12:36	Chad A Moline	1
37807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8821

lw 6/2/11

3ample Description: MW-7D Grab Water COC# 259281 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/08/2011 08:45 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---7D SDG#: PCH07-10

LLI Sample # WW 6254504 LLI Group # 1241414

0

Page 1 of 1

	"	
LLI Grou	up #	1241414
Account	#	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	5 8260B	ug/l	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
C/MS	Semivolatiles SW-84	5 8270C	ug/1	ug/1	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
7805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	1	1
7805	Benzo(b) fluoranthene	205-99-2	N.D.	1	1
7805	Benzo(q,h,i)perylene	191-24-2	N.D.	1	1
7805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
7805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
7805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
7805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

САТ Яс.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 13:40	Emily R Styer	1
J1163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 13:40	Emily R Styer	1
37805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 13:01	Chad A Moline	1
37807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8922

64/11

Sample Description: MW-2D Grab Water COC# 259282 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/08/2011 09:40 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---2D SDG#: PCH07-11

LLI Sample # WW 6254505 LLI Group # 1241414 Account # 09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

As Received

CAT No.	Analysis Name	CAS Number	As Received Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-84	6 8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	1	1
07805	Benzo(b) fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

LAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 14:08	Emily R Styer	1
)1163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 14:08	Emily R Styer	1
)7805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 13:26	Chad A Moline	1
)7807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH07 9023

Lancaster Laboratories, Inc. 2425 New Holland Pike PO 80x 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

11

Page 1 of 1

Analysis Report

Lancaster Laboratories

Sample Description: MW-2S Grab Water COC# 259282 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/08/2011 10:20 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---25 SDG#: PCH07-12

~

LLI Sample # WW 6254506 LLI Group # 1241414 Account

As Received

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/1	ug/1	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	1	1
07805	Benzo(b) fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

сат Но.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 14:36	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 14:36	Emily R Styer	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 13:51	Chad A Moline	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH07 0024

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

WW 6/2/11

Analysis Report

Page 1 of 1

09286

D 2 1 ... b 2

12

Sample Description: MW-4S Grab Water COC# 259282 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/08/2011 12:15 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---4S SDG#: PCH07-13

LLI Sample # WW 6254507

3

Page 1 of 1

LLI Group # 1241414 Account # 09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

As Received

CAT No.	Analysis Name	CAS Number	As Received Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	46 8260B	ug/l	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Eth	er 1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-8	46 8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	1	1
07805	Acenaphthylene	208-96-8	N.D.	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	l	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	N.D.	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	N.D.	1	1
07805	Phenanthrene	85-01-8	N.D.	1	1
07805	Pyrene	129-00-0	N.D.	1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 15:04	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 15:04	Emily R Styer	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 14:15	Chad A Moline	1
07807	BNA Water Extraction	SW-846 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freeburn	1

PCH87 8825

fw 617(11

Sample Description: MW-4D Grab Water COC# 259282 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/08/2011 12:00 by CJM

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---4D SDG#: PCH07-14

LLI Sample # WW 6254508 LLI Group # 1241414

14

Page 1 of 1

Account # 09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/1	ug/l	
07805	Acenaphthene	83-32-9	1 11	1	1
07805	Acenaphthylene	208-96-8	َعَ عَلَ	1	1
07805	Anthracene	120-12-7	N.D.	1	1
07805	Benzo(a)anthracene	56-55-3	N.D.	1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	1	1
07805	Chrysene	218-01-9	N.D.	1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	1	1
07805	Fluoranthene	206-44-0	N.D.	1	1
07805	Fluorene	86-73-7	4 J jr	1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1	1
07805	Naphthalene	91-20-3	1 7 7	1	1
07805	Phenanthrene	85-01-8	5 7/	1	1
07805	Pyrene	129-00-0	N.D.	1	1
semi hold	ogate recoveries are outside of volatile analysis. The analysis time and the surrogate recover rted is from the initial extra	sis was repeated or eries are within the	utside of the required he limits. The data		

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	P111052AA	04/15/2011 15:32	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P111052AA	04/15/2011 15:32	Emily R Styer Chad A Moline PC	und nanc
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11103WAL026	04/15/2011 14:40	Chad A Moline	H87 8026
07807	BNA Water Extraction	SW-B46 3510C	1	11103WAL026	04/14/2011 08:00	Kerrie A Freebur	n 1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 IW 617111

Sample Description: TB040811 Water COC# 259282 Patchogue, NY

Project Name: Patchogue, NY

Collected: 04/08/2011

Submitted: 04/09/2011 09:30 Reported: 04/21/2011 09:52

---TB SDG#: PCH07-15TB*

Page 1 of i

5

LLI	Sample	#	WW	62	54509
LLI	Group	#	124	14	14
Acco	ount	#	092	86	

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles S	5W-846	8260B	ug/1	ug/1	
10903	Benzene		71-43-2	N.D.	0.5	1
10903	Ethylbenzene		100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.5	1
10903	Toluene		108-88-3	N.D.	0.7	1
10903	m+p-Xylene		179601-23-1	N.D.	0.8	1
10903	o-Xylene		95-47-6	N.D.	0.8	1
10903	Xylene (Total)		1330-20-7	N.D.	0.8	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT Analysis Name No.	Method	Trial# Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903 UST VOCs 8260 (Water)	SW-846 8260B	1 P111052AA	04/15/2011 15:59	Emily R Styer	1
)1163 GC/MS VOA Water Prep	SW-846 5030B	1 P111052AA	04/15/2011 15:59	Emily R Styer	1

NW 6/21

Appendix D: Electronic Data Deliverable (CD-ROM)

