Fourth Quarter 2011 Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

Prepared for National Grid USA, Hicksville, New York February 2012

Fourth Quarter 2011 Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

Prepared for National Grid USA 175 East Old Country Road Hicksville, New York 11801

February 2012

Project Number: 138893.316.040

Associates 110 Commerce Drive Allendale, New Jersey 07401

Table of Contents

Appe	endices	i
List o	of Tables	ii
List o	of Figures	ii
1. Ir	ntroduction	1-1
1	L.1 Background	1-1
2. S	Scope of Work	2-1
3. R	Results and Findings	3-1
3	3.1 Water Level Data	3-1
3	3.2 NAPL Gauging	3-1
3	3.3 Groundwater Quality Data	3-1
4. S	Summary and Conclusions	4-1
Refer	rences	REF-1

Appendices

Appendix A	Field Sampling Data Sheets
Appendix B	Laboratory Reports (CD-ROM)
Appendix C	Data Usability Summary Report
Appendix D	Electronic Data Deliverable (CD-ROM)

List of Tables

Table 1. Water Elevation and NAPL Monitoring Data

- Table 2. Groundwater Analysis Results
- Table 3. Summary of Historical BTEX Concentrations
- Table 4. Summary of Historical PAH Concentrations

List of Figures

Figure 1. Water Table Contour Map

Section 1 Introduction

Brown and Caldwell Associates (BC) is pleased to submit this report containing the data deliverables related to the Fourth Quarter 2011 groundwater monitoring event conducted at the Patchogue Former Manufactured Gas Plant (MGP) Site (hereinafter referred to as the "Site"). The groundwater monitoring event and the preparation of this deliverable are part of the routine groundwater monitoring program being conducted at the Site. This report has been prepared for submittal to the New York State Department of Environmental Conservation (NYSDEC) and includes the following:

- Description of the scope of the field activities, methods and procedures;
- Table summarizing results of the water level measurements and the gauging in monitoring wells for the presence of non-aqueous phase liquids (NAPL) (Table 1);
- Table summarizing the analytical results of groundwater samples including a comparison to applicable groundwater quality criteria (Table 2);
- Comparison of data from this monitoring period to data from previous periods (Tables 3 and 4);
- Discussion of the results and findings from the groundwater monitoring data;
- Potentiometric surface map depicting generalized direction of groundwater flow based on groundwater elevation data from wells and surface water elevation data from staff gauges in the Patchogue River (Figure 1);
- Field Sampling Data Sheets (Appendix A);
- Laboratory Data Report (Appendix B);
- Data Usability Summary Report (Appendix C); and
- Electronic Data Deliverable (Appendix D).

1.1 Background

A total of ten groundwater monitoring events have been conducted at the Site since March 2008. These ten events include: two monitoring events conducted as part of the Remedial Investigation (RI) in March 2008 and July 2008; four semi-annual monitoring events conducted between March 2009 and September 2010: and four guarterly monitoring events in January 2011, April 2011, August 2011 and November 2011. The November 2011 event is the subject of this report. Up until the March 2010 monitoring event, the concentrations and areal distribution of constituents in groundwater had been fairly consistent. Site-related dissolved-phase constituents (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], and polycyclic aromatic hydrocarbons [PAH]) were detected at concentrations above the Class GA groundwater quality criteria (i.e., standards from the 6 NYCRR Part 703 Standards and guidance values from the Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1) in a limited area near the center of the Site. These elevated concentrations did not extend downgradient to the wells closer to the Patchogue River. However, during the March 2010 and September 2010 monitoring events, detections of BTEX and PAH compounds were more widely distributed than during previous events. It was surmised that this change was the result of a temporary dewatering operation at a construction project at the wastewater treatment facility (WWTF) across the river from the Site. Based on the understanding of Site conditions, it was anticipated that when the dewatering operations had

Brown AND Caldwell

ceased, concentrations in groundwater would re-equilibrate with steady-state (i.e., pre-dewatering) groundwater flow conditions, and eventually return to levels similar to those prior to dewatering. To confirm this, National Grid increased the frequency of the groundwater monitoring from semi-annually to quarterly. The November 2011 monitoring event, described herein, is the fourth quarterly monitoring event.

Section 2 Scope of Work

Field activities for the groundwater monitoring event were conducted by BC on November 16 and 17, 2011. On November 16, 2011, prior to conducting groundwater sampling, depth-to-water measurements and NAPL gauging were conducted on the 14 monitoring wells associated with the Site. The level of the Patchogue River was also measured at the two staff gauges. Locations of the 14 monitoring wells and staff gauges are depicted on Figure 1.

Groundwater samples were collected from 12 monitoring wells on November 16 and 17, 2011. Wells MW-5 and MW-6 were not sampled this quarter due to presence of NAPL in these wells as observed during the NAPL gauging activities. The standard protocol is that if NAPL is observed in a well during gauging or sampling, groundwater samples are not submitted for laboratory analyses. Groundwater samples were submitted for laboratory analyses. Groundwater (July 1996, Revised January 2010) protocol. Samples were submitted to an analytical laboratory (Lancaster Laboratories, Inc.) and analyzed for: BTEX and methyl tertiary butyl ether (MTBE) using USEPA SW-846 Method 8260B; and PAHs, using USEPA SW-846 Method 8270C. The groundwater samples were also analyzed in the field for pH, specific conductivity, temperature, turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (see Appendix A for field data sheets).

The samples were submitted for the above-described laboratory analyses to Lancaster Laboratories, Inc. (Lancaster) located in Lancaster, Pennsylvania. Lancaster is certified (Certification No. 10670) through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP). The laboratory report from Lancaster is provided as Appendix B. The laboratory analytical data were provided to BC in electronic form by Lancaster and have been incorporated into an environmental database for the Site.

In addition to the samples described above, quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples included: trip blanks (one per cooler containing samples for BTEX and MTBE analysis), a field duplicate, and an equipment blank. Also, extra sample volume was collected from one location to provide for matrix spike/matrix spike duplicate (MS/MSD) analysis. The trip blanks were analyzed for BTEX and MTBE only. The other QA/QC samples were analyzed for BTEX, MTBE and PAHs.

Laboratory results for the groundwater sample analyses were forwarded to a data validator, Environmental Data Services, Inc. of Williamsburg, Virginia, for review and preparation of a Data Usability Summary Report (DUSR). The DUSR presents a summary of data usability including a discussion of qualified data. The DUSR is provided as Appendix C. As described in the DUSR, the data were considered by the validator to be valid and usable. An Electronic Data Deliverable (EDD) of the validated analytical data is provided in Appendix D.

Section 3 Results and Findings

3.1 Water Level Data

Table 1 provides the water level data from the November 16, 2011 measurements. Figure 1 illustrates the elevation contours of the water table based on these data. The contours were developed using water level data only from the shallow wells at the Site (i.e., those with screens that straddle, or are just below, the water table) and the surface water staff gauges in the Patchogue River. The groundwater elevation (hydraulic head) values for the wells screened in deeper intervals are posted on Figure 1, however, only the values from the shallow wells and staff gauges were used in developing the contour lines because these values more representative of water table elevations. The water table is relatively shallow and is typically positioned in the fill that overlies the alluvial deposits and outwash deposits. The water table contours indicate that lateral groundwater flow is from northwest to southeast across the Site toward the Patchogue River. A comparison of the groundwater levels in the site monitoring wells to river elevations, as measured at the staff gauge locations, shows that groundwater elevations are higher than the river level indicating that the groundwater discharges to the river. The upward vertical hydraulic gradient measured at a well cluster adjacent to the river, MW-4S and D, further supports this conclusion (Note that typically, groundwater elevation data from well cluster MW-9S and D also show an upward gradient. However, at the time of the water level measurements, there was an obstruction in MW-9D which prevented water level measurements at the time. The obstruction was later removed prior to groundwater sampling). The general configuration of the water table contours (as shown on Figure 1), developed using the November 16, 2011 data, and the interpreted groundwater flow patterns, are consistent with those from previous rounds of water level measurements with one exception. The exception occurred during the March 2010 sampling event when the large-scale dewatering activities were being conducted on the WWTF site located east of the Site on the opposite side of the river (see discussion in Section 1.1). Operation of this dewatering system altered groundwater flow patterns and levels at the Site (see "Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event" [GEI. November 2010]).

3.2 NAPL Gauging

Table 1 presents the results of the NAPL gauging conducted during the November 2011 quarterly groundwater sampling event. NAPL was identified in the following wells during the gauging activities:

- MW-5: Brown-black DNAPL on last 0.1 ft of threaded rod, moderate tar-like odor.
- MW-6: Black NAPL blebs on bottom 0.1 ft of threaded rod, slight tar-like odor.

NAPL had been observed in these two wells on occasion during previous NAPL gauging events.

3.3 Groundwater Quality Data

Table 2 provides the results of the laboratory analyses of the groundwater samples collected during the Fourth Quarter 2011 and a comparison of the data to the New York State Class GA groundwater quality criteria, i.e., standards from the 6 NYCRR Part 703 Standards and guidance values from the Division of

Brown AND Caldwell

Water Technical and Operational Guidance Series (TOGS) 1.1.1. Tables that compare total BTEX and total PAH concentrations from this sampling event to previous sampling events are provided as Tables 3 and 4, respectively.

As described above, during water level monitoring and gauging activities, NAPL was identified in two of the 14 monitoring wells, MW-5 and MW-6; these two wells are located in the central part of the Site in the area of former MGP operations. Therefore, these two wells were not sampled. Groundwater samples were collected from the remaining 12 monitoring wells and submitted for analysis. BTEX compounds were not detected in groundwater samples from any of these wells. MTBE was detected only at MW-8S, at an estimated concentration below the quantitation limit of the analysis and below the Class GA groundwater quality criteria. At most locations, PAH compounds were either not detected or were detected at concentrations below the Class GA groundwater quality criteria. However, in samples collected from wells MW-2D, MW-3, MW-9S, and MW-9D, one or more PAH compounds were detected at low concentrations (i.e., slightly above the laboratory method detection limit), but above the Class GA groundwater quality criteria during the Fourth Quarter 2011 (August 2011) event. These results are similar to those from the previous monitoring event conducted in August 2011. In general, the PAH concentrations measured at these locations are not dissimilar from data from previous quarters. Of note, however, is that the method detection limits achieved by the laboratory for the analyzed constituents during this quarter and the previous quarter (August 2011) were substantially less than during the first two quarterly sampling events of 2011 (January and April 2011) and thus, the low-level concentrations that were measured this guarter, if present during the previous guarters, would not have been previously detected. The six PAH compounds that were identified at concentrations above the Class GA groundwater quality criteria-benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene-have very low aqueous solubilities, are not readily mobile in groundwater, and are unlikely to have migrated from the on-site source area. The criteria that were exceeded for five of these six PAHs are unpromulgated guidance values rather than Part 703 standards, while the criteria for the sixth PAH, benzo(a)pyrene, is a Part 703 standard. The standard for benzo(a)pyrene was exceeded in samples from three wells, MW-3, MW-9S, and MW-9D, all at concentrations below the method quantitation limit. The guidance value for the six PAHs, 0.002 μ g/L, is nearly two orders of magnitude below the method detection limit, and the standard for benzo(a)pyrene is "non-detect". Therefore, any detection of these compounds in groundwater will result in an exceedance. The concentrations of these constituents will be further evaluated through continued quarterly groundwater monitoring.

Section 4 Summary and Conclusions

NAPL was identified in two of the 14 monitoring wells, MW-5 and MW-6 during the Fourth Quarter 2011 (November 2011), as in previous monitoring events. Both MW-5 and MW-6 are located in the center of the Site in the area of former MGP operations. No BTEX compounds were detected during the analysis of groundwater samples collected from the twelve other monitoring wells during this monitoring event. MTBE was detected in the sample from one well, MW-8S, with an estimated concentration below the quantitation limit and below the Class GA groundwater quality criteria. At eight of the twelve wells, PAH compounds were either not detected or were detected at concentrations below the Class GA groundwater quality criteria. However, in samples collected from wells MW-2D, MW-3, MW-9S, and MW-9D, one or more PAH compounds were detected at low concentrations (i.e., slightly above the method detection limit), but above the Class GA groundwater quality criteria. Of the locations with a criteria exceedance, three locations have an exceedance of a Part 703 Standard; the other exceedances identified are exceedances of unpromulgated guidance values. The criteria for these compounds are extremely low, approximately two orders of magnitude below the laboratory method detection limit. These findings are consistent with those of the previous monitoring event (August 2011). The detection of these constituents during this event and the previous event may be a result of the decrease in the method detection limits achieved by the laboratory relative to previous monitoring periods in January and April 2011. The six PAH compounds that were identified at concentrations above the Class GA groundwater quality criteria have very low aqueous solubilities, are not readily mobile in groundwater. and are unlikely to have migrated from the on-site source area. This will be further evaluated through subsequent quarterly monitoring events.

During the fourth quarter 2011, and the previous three quarters (first, second and third quarter 2011), the concentrations of BTEX and PAHs in the shallow groundwater and the areal distribution of these concentrations are similar to those from monitoring events which occurred prior to March 2010. This indicates that concentrations of chemical constituents in groundwater have decreased and have generally re-equilibrated with the steady-state groundwater flow conditions that existed prior to the operation of the large-scale temporary construction dewatering system (see Section 1.1) that affected the results of the March and September 2010 monitoring events, as anticipated. Quarterly monitoring will continue in order to confirm these conditions.

References

- GEI, November 2010. Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event, Patchogue Former MGP Site, Town of Brookhaven, Suffolk County, Long Island, New York, Site ID No. 1-52-182.
- USEPA, July 1996; Revised January 2010. Low-Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

Tables

TABLE 1 WATER ELEVATIONS AND NAPL MONITORING DATA NOVEMBER 2011 PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

						<u>11/16/2011</u>
Well ID	Top of Casing Elevation (ft., NAVD)	Depth to Water (ft., BTOC)	Water Elevation (ft., NAVD)	Depth to NAPL (ft., BTOC)	Total Depth of Well (ft., BGS)	Remarks
MW-1	11.23	5.50	5.73	ND	16.2	
MW-2S	8.97	4.11	4.86	ND	14.05	
MW-2D	8.23	3.47	4.76	ND	26.2	
MW-3	5.39	1.86	3.53	ND	10.48	
MW-4S	7.74	4.45	3.29	ND	12.1	
MW-4D	7.57	4.24	3.33	ND	26.5	
MW-5	7.93	3.67	4.26	16.55	16.65	Sheen on top of water column. Brown-black DNAPL on last 0.1ft of threaded rod, moderate tar-like odor.
MW-6	8.08	3.37	4.71	21.7	21.8	Black NAPL blebs on bottom 0.1ft of threaded rod, slight tar- like odor.
MW-7S	8.21	4.08	4.13	ND	12.4	
MW-7D	8.09	3.94	4.15	ND	27.9	
MW-8S	4.86	0.41	4.45	ND	9.8	
MW-8D	4.77	0.35	4.42	ND	25.1	
MW-9S	4.47	0.62	3.85	ND	10.23	
MW-9D	4.66	NM	NA	ND	23.15	Obstruction in well at time of measurement. Obstruction removed prior to sampling.
SG-1	5.23	2.53	2.70		NA	
SG-2	5.16	2.19	2.97		NA	

Notes:

NAVD - North American Vertical Datum BGS - Below Ground Surface BTOC - Below Top of Casing NAPL - Non-aqueous phase liquid NA - Not applicable NM - Not measured

Brown AND Caldwell

		ndwater Criteria									
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-1	MW-2S	MW-2D	MW-3	MW-3 DUP	MW-4S	MW-4D
Constituent	Guidance	Standard	Units	Date	11/16/2011	11/17/2011	11/17/2011	11/16/2011	11/16/2011	11/17/2011	11/17/2011
Volatile Organic Compounds											
BTEX											
Benzene	NE	1	µg/L		0.5 U						
Toluene	NE	5	µg/L		0.7 U						
Ethylbenzene	NE	5	µg/L		0.8 U						
m&p-Xylenes	NE	5	µg/L		0.8 U						
o-Xylene	NE	5	µg/L		0.8 U						
Xylenes, Total	NE	NE	µg/L		0.8 U						
Total BTEX	NE	NE	µg/L		ND						
Other VOCs											
Methyl Tertiary Butyl Ether	10	NE	µg/L		0.5 U	0.5 L					
Semi-Volatile Organic Compo	ounds (SVOCs)										
Polycyclic Aromatic Hydrocar	bons (PAHs)										
Acenaphthene	20	NE	µg/L		0.1 U	0.1 U	0.1 U	0.9	1	0.1 U	0.1 U
Acenaphthylene	NE	NE	µg/L		0.1 U	0.1 U	0.1 U	0.7	0.9	0.2 J	0.1 U
Anthracene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	0.2 J	0.3 J	0.1 U	0.1 U
Benzo(a)anthracene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 J	0.1 J	0.1 U	0.1 U
Benzo(a)pyrene	NE	0	µg/L		0.1 U	0.1 U	0.1 U	0.2 J	0.1 U	0.1 U	0.1 U
Benzo(b)fluoranthene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 J	0.2 J	0.1 U	0.1 U	0.1 U
Benzo(g,h,i)perylene	NE	NE	µg/L		0.1 U	0.1 U	0.1 U	1	0.1 U	0.1 U	0.1 U
Benzo(k)fluoranthene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1	0.1 U	0.1 U	0.1 U
Chrysene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 U	0.2 J	0.1 J	0.1 U	0.1 U
Dibenzo(a,h)anthracene	NE	NE	µg/L		0.1 U	0.1 U	0.1 U	0.2 J	0.1 U	0.1 U	0.1 U
Fluoranthene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	3	3	0.1 U	0.1 U
Fluorene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.1 J	0.1 U	0.1 U
Indeno(1,2,3-cd)pyrene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 U	0.5 J	0.1 U	0.1 U	0.1 U

Brown AND Caldwell

	Class GA Groui	ndwater Criteria									
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-1	MW-2S	MW-2D	MW-3	MW-3 DUP	MW-4S	MW-4D
Constituent	Guidance	Standard	Units	Date	11/16/2011	11/17/2011	11/17/2011	11/16/2011	11/16/2011	11/17/2011	11/17/2011
Naphthalene	10	NE	µg/L		0.1 U	0.1 U	0.1 J	0.1 U	0.1 U	0.1 J	0.1 U
Phenanthrene	50	NE	µg/L		0.1 U						
Pyrene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	3	3	0.1 J	0.1 U
Total PAHs	NE	NE	µg/L		ND	ND	0.2	10	8.5	0.4	ND

	Class GA Grou	ndwater Criteria								
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
Constituent	Guidance	Standard	Units	Date	11/17/2011	11/17/2011	11/16/2011	11/16/2011	11/17/2011	11/17/2011
Volatile Organic Compounds										
BTEX										
Benzene	NE	1	µg/L		0.5 U					
Toluene	NE	5	µg/L		0.7 U					
Ethylbenzene	NE	5	µg/L		0.8 U					
m&p-Xylenes	NE	5	µg/L		0.8 U					
o-Xylene	NE	5	µg/L		0.8 U					
Xylenes, Total	NE	NE	µg/L		0.8 U					
Total BTEX	NE	NE	µg/L		ND	ND	ND	ND	ND	ND
Other VOCs										
Methyl Tertiary Butyl Ether	10	NE	µg/L		0.5 U	0.5 U	0.5 J	0.5 U	0.5 U	0.5 l
Semi-Volatile Organic Comp	ounds (SVOCs)									
Polycyclic Aromatic Hydroca	rbons (PAHs)									
Acenaphthene	20	NE	µg/L		0.1 U	0.1 U	0.5 J	0.1 U	3	0.1 U
Acenaphthylene	NE	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.9	0.1 J
Anthracene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.1 J	0.2 J
Benzo(a)anthracene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.3 J	0.2 J
Benzo(a)pyrene	NE	0	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.2 J	0.2 J
Benzo(b)fluoranthene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.3 J	0.3 J
Benzo(g,h,i)perylene	NE	NE	µg/L		0.1 U	0.1 U	0.1 U	0.2 J	0.2 J	0.2 J
Benzo(k)fluoranthene	0.002	NE	µg/L		0.1 U	0.2 J				
Chrysene	0.002	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.3 J	0.3 J
Dibenzo(a,h)anthracene	NE	NE	µg/L		0.1 U					
Fluoranthene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.7	0.4 J
Fluorene	50	NE	µg/L		0.1 U	0.1 U	0.1 J	0.1 U	0.3 J	0.2 J
Indeno(1,2,3-cd)pyrene	0.002	NE	µg/L		0.1 U	0.1 J				

Brown AND Caldwell

	Class GA Groui	ndwater Criteria								
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
Constituent	Guidance	Standard	Units	Date	11/17/2011	11/17/2011	11/16/2011	11/16/2011	11/17/2011	11/17/2011
Naphthalene	10	NE	µg/L		0.1 U	0.1 U	0.2 J	0.1 U	0.1 U	0.1 U
Phenanthrene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	0.2 J	0.4 J
Pyrene	50	NE	µg/L		0.1 U	0.1 U	0.1 U	0.1 U	1	0.6
Total PAHs	NE	NE	µg/L		ND	ND	0.8	0.2	8	3.4

Notes:

J - Estimated concentration. The result is below the practical quantitation limit but above the method detection limit.

U - The analyte was analyzed for, but was not detected.

 $\mu g/L$ - micrograms per liter

ND - Not detected.

NE - Not established.

Boxed concentrations are above New York State Class GA Groundwater Standards or Guidance values.

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

							Total BTEX	Concentratio	ons (µg/L)					
							S	ampling Date	;					
	Total Depth	20	08	2	009	2010		2011						
Well ID	(ft., bgs)	March	July	March	September	March	September	January	April	August	November	Min	Max	Mean
MW-1	16.2	0	NS	0	0	0	0	1.7	0	0	0	0	1.7	0.19
MW-2S	14.05	0	0	0	0	0	0	0	0	0	0	0	0	0
MW-2D	26.2	0	0	0	0	0	0	0	0	0	0	0	0	0
MW-3	10.48	0	0	0	0	0	0	0	0	0	0	0	0	0
MW-4S	12.1	3.4	0	0	0	0	0	0	0	0	0	0	3.4	0.34
MW-4D	26.5	0	0	0	0	0	0	0	0	0	0	0	0	0
MW-5	16.65	1016	678	975	1257	637	NS	NS	NS	NS	NS	637	1257	913
MW-6	21.8	57	0	0	1	2	0	NS	NS	NS	NS	0	57	10
MW-7S	12.4	NS	0	0	0	0	0	0	0	0	0	0	0	0
MW-7D	27.9	NS	0	1	0	9	0	0	0	0	0	0	9	1.1
MW-8S	9.8	NS	0	0	0	0	0	0	0	0	0	0	0	0
MW-8D	25.1	NS	0	0	0	0	0	0	0	0	0	0	0	0
MW-9S	10.23	NS	0	0	0	0	27	1	0	0	0	0	27	3.1
MW-9D	23.15	NS	0	0	0	0	0	0	0	0	0	0	0	0

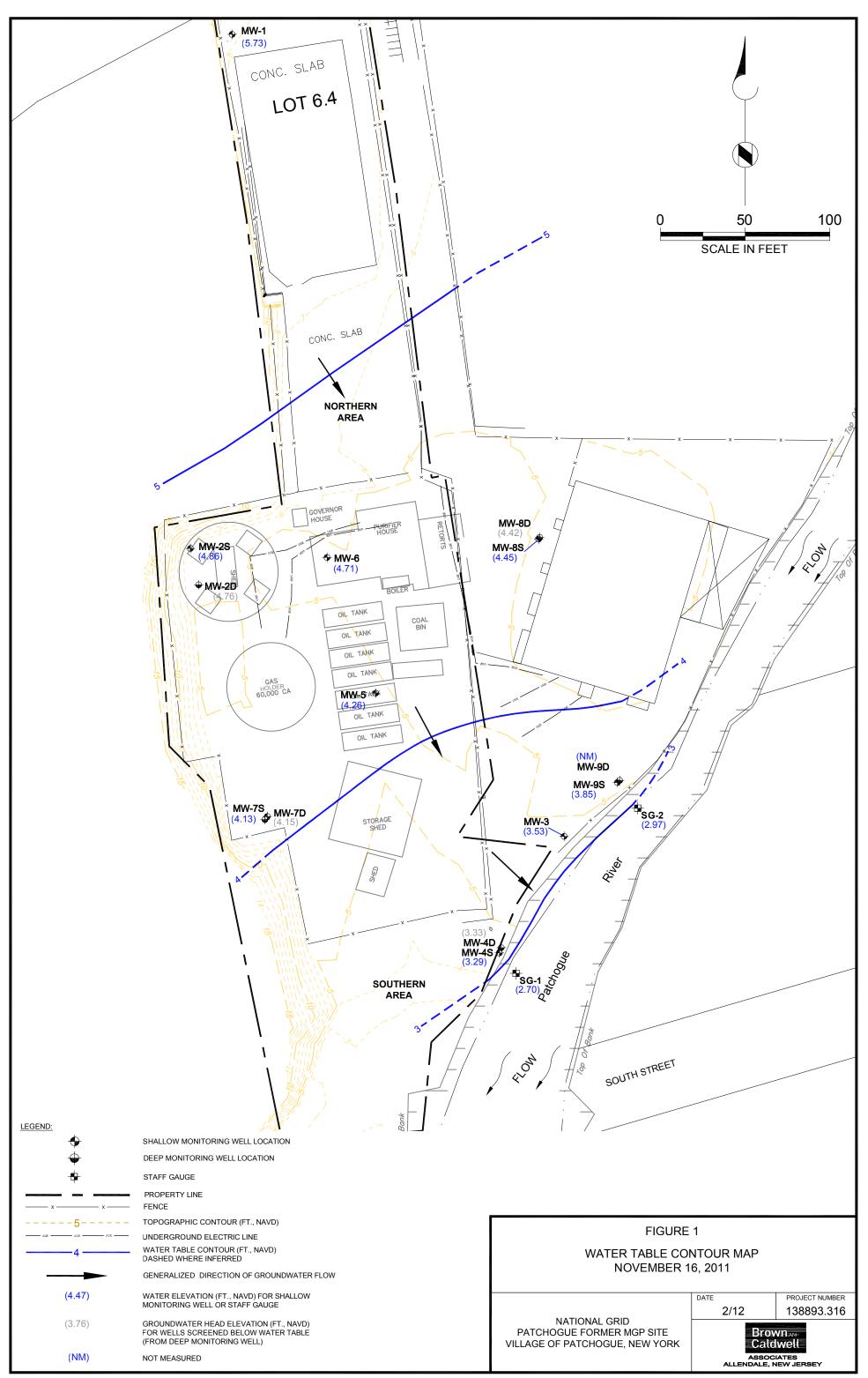
Notes:

BTEX - Benzene, toluene, ethylbenzene and xylene isomers

μg/L - micrograms per liter NS - Not sampled.

TABLE 4 SUMMARY OF HISTORICAL PAH CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

							Total PAH	Concentratio	ns (µg/L)					
							S	ampling Date	;					
	Total Depth	20	008	2009		2010		2011						
Well ID	(ft., bgs)	March	July	March	September	March	September	January	April	August	November	Min	Max	Mean
MW-1	16.2	0	NS	0	0	0	0	22	0	0	0	0	22	2.4
MW-2S	14.05	0	0.7	0	0	0	0	0	0	0	0	0	0.7	0.07
MW-2D	26.2	0	0	0	0	0	0	0	0	0.1	0.2	0	0.2	0.03
MW-3	10.48	0.76	0	0	0	0	128	17	6	14	10	0	128	17.6
MW-4S	12.1	0.6	8.0	0	0	0	0	0	0	0.1	0.4	0	8.0	0.91
MW-4D	26.5	4.3	0	0	0	39	6	12	20	0	0	0	39	8.1
MW-5	16.65	1774	1799	2730	3373	2390	NS	NS	NS	NS	NS	1774	3373	2413
MW-6	21.8	214	154	0	1	17	14	NS	NS	NS	NS	0	214	67
MW-7S	12.4	NS	0	0	0	0	0	0	0	0	0	0	0	0
MW-7D	27.9	NS	0.47	0	0	0	0	0	0	0	0	0	0.5	0.05
MW-8S	9.8	NS	0	0	0	22	11	6	0	0.4	0.8	0	22	4.5
MW-8D	25.1	NS	0	0	0	0	0	0	0	0	0.2	0	0.2	0.02
MW-9S	10.23	NS	12.0	0	0	2	396	42	9	16	8	0	396	54
MW-9D	23.15	NS	0	0	0	0	0	5	0	1.2	3.4	0	5	1.1


Notes:

PAH - Polycyclic aromatic hydrocarbons µg/L - micrograms per liter NS - Not sampled.

Figures

P:\DRAFTING\NATIONAL_GRID\PATCHOGUE\QUARTERLY-GW-CONTOUR-MAP\NOVEMBER-16-2011\FIGURE 1.DWG 02/14/2012 08:34:57AM By:rjames XREFS: Rev_Basemap_1-12-11 Layout: Layout1

Appendix A: Field Sampling Sheets

BROWN AND CALDWELL	Allendale, NJ Office		(If different from well no.)
Project: Patchoyac Personnel: BAS CRM		Date: <u>+1/16//1</u> Ti Weather: <u>cloudy</u>	ime: <u>10 49</u> Air Temp.: <u>50 5</u>
Is Prot. Casing/Sur Does Weep Hole a Is Concrete Pad In Is Padlock Function Is Inner Casing Pro	<u>∴ ∽</u> ft Bottom of We sing [™] Top of Well Casing led? [™] Yes □ No Is we face Mount in Good Cond.? (dequately drain well head? [™] tact? (nøt cracked or frost hea nal? [™] Yes □ No □ NA operly Capped and Vented? E	II:ft □ Other: II clean to bottom? □ Y pot bent or corroded) □ I Yes □ No Ived) ☑ Yes □ No Is Inner Casing Intact I Yes □ No	res □ No Yes □ No t? □ Yes □ No
	re: 12 Bladder Pump 1 ugal Pump D Peristaltic Pum	2" Submersible Pump	4" Submersible Pump
MATERIALS: Pump/Bailer:	Teflon® Stainless Steel PVC Other: Elapsed Time: <u>30 min</u>	Tubing/Rope: Volume Pumped: <u>2.6</u> umber of Well Volumes Re	□ Teflon® ☑ Polyethylene □ Polypropylene □ Other: ga/_ prmoved:
SAMPLING DATA: METHOD: Dailer, Size:		ubmersible Pump □ 4" S	ubmersible Pump
U U	Teflon® Stainless Steel Dedicated Image: Prepared 0 Image: Prepared 0	d: Contains Immis <u>Horiba</u> 4-22 Mi	cible Liquid
ORP: <u>► / ℓ</u> DUP: E No □ Yes Nar	DO: 1.16 Turbidity: me:	<u>0.0</u> <u>15δ)</u> Temperature:	

Project Name: Patchogue	Project Number:
Personnel: <u>BAS</u> CRM	Well ID: M~~/
Purge/Sample Depth: 12 Ft	Sample ID:

Actual Time	рН	Temp (⁰C)	ORP (mV)	Cond	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
1			(((1)))	(ms/cm)	(119/2)	(1110)	(ity)	(millionini)	Commenta
16:48	5.77	16.29	184	1.34	799	11.5	5.50	250	1
0:51	5,91	16.56	69	1.40	3.62	61.7	5.52		
0154	598	16.71	29	1.41	2,35	0.0		1 M	
10.57	6.00	16.91	19	1.40	2.15	0.0	1 - C - 1 - 1	A DEC	
11:00	6.02	16.96	10	1.41	1.84	0.0			
11:03	6.04	17.01	4	1.41	1.61	0 0			
11:06	6.05	17.03	-0	1.91	1.50	00	5.57		
11.09	6.08	17.07	-4	1.41	1,33	0.0			a support
1:12	6.08	17.13	-6	1.41	126	0.0			17 m 20
1:15	6.09	17.12	-8	1.42	120	0.0			
11.18	6.38	17.14	-10	1.42	1.16	0.0	and the second		
1:25	Sample	collected							and the second
	Jamme	LOUILITCO							
	-								
	$\overline{}$								
-				·					
				1					12 E.
· · · · ·			and the second of						
	1		2.21.7.1.2						
			1.4				WP		
								1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	
					×	4			
								and and	
					1.		110 I 111		 19841 (1944)
			- 1 - I - I					and the state of the	
							[
				1	<u> </u>				
	1			1					<u> </u>
	<u> </u>			1				·	<u>_</u>
	l			+	<u> </u>		<u> </u>		

B R O W N AND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: Sample I.D.: ハル~25 (if different from well no.)
Project: Patchogue Personnel: 1345 CRM	Date: 12:16 Time: 12:16 Weather:
WELL DATA: Casing Diameter: 6 Intake Diameter: 2 Stainless Steel Galv. Steel DEPTH TO : Stait Water Level: 4.01 Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Yes Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost head is Padlock Functional? Is Inner Casing Properly Capped and Vented? Volume OF WATER:	E PVC □ Teflon® □ Open rock II: <u>/6</u> ft □ Other: II clean to bottom?
PURGE DATA: METHOD: Bailer, Size: Bladder Pump Dentrifugal Pump Peristaltic Pum Teflon® MATERIALS: Fump/Bailer: PVC Other: Pumping Rate: 2.5 c. m. Area	2" Submersible Pump 4" Submersible Pump p Inertial Lift Pump Other: Tubing/Rope: Polyethylene Polypropylene Other: Volume Pumped: 2.5 gg/ umber of Well Volumes Removed:
SAMPLING DATA: METHOD: □ Bailer, Size: Ø Bladder Pump □ Syringe Sampler □ Peristaltic Pump □	
MATERIALS: Rump/Bailer: □ Teflon® Image: Stain Stain Image: Stain Stain Image: Stain Stain SAMPLING EQUIPMENT: □ Dedicated □ Prepared C Metals samples field filtered? □ Yes Image: No Method APPEARANCE: Image: Clear □ Turbid □ Color:	d: □ Contains Immiscible Liquid <i>Hor, ba U</i> - 7, 2 Meter S/N: Meter S/N:
MS/MSD : Ves Name: Field Lab Results: VA pH: DO: I certify that this sample was collected and handled in accordance with applicable re Signature: Promovinad_Labit-field_Data_Sheetativel_info_Sheet.doc	Temperature: egulatory and project protocols. Date:

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Nam	ie: _ P.	Hchoque.	1 1 1 0 LL18	F
Personnel:	BAS	crim		<u>ا</u>
Purge/Samp	le Dept	:h: <u>8f</u>		_ S

Project Number: ______ Well ID: ____<u>NW-25</u> Sample ID: _____

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						i				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		рН								Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:16	571	1243	779	.(1)	114	110	401	750	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				277	592	6,17	00	1.41	250	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 22	5.1J	13 06	171		47				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:25	5.72	13 91	7 2 7			0.0			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						4.16 W 44		401		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17:21		the second s	721		4 28	0.0	1.00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17134				1261					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				775						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					551	3.90		HAR	1	
12:50 Sample collected				201		2 97		1.00		
		5.12	14 00	7 47	<u> </u>	2 97		100 B		
			11,00	2.95		3.01	0.0		LINES I	
	12.50	Jumple	Co IICOICO							
								-		
	2-1-1					· · · · · ·				
	1.1		<u></u>							A CONTRACTOR OFFICE
	18									
		<u> </u>								
					32					0.0000000000000000000000000000000000000
						\leftarrow				
						27				
		<u> </u>		-		25	- 11 - 21	1 1 1 1		
	<u> </u>						×			
							<u> </u>			
	ļ							<u></u>		
							0		-A-A-C	
	_		<u> </u>			+		$ \longrightarrow $		
			 		 					
			 	 				<u> </u>		
				<u> </u>		<u> </u>				
	·		ļ		 			ļ	$ \longrightarrow$	
		<u> </u>								<u> </u>
			ļ					ļ		<u> </u>
								ļ		

B R O W N A N D C A L D W E L L	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWEEL Allendale, NJ Office	Well Number: Sample I.D.: ルルーこの (if different from well no.)
Project: Perchase Nehrond Grad Personnel: CRM BAS	Date: 11/17/11 Time: 12:1/2 Weather: Claute Air Temp.: 49
WELL DATA: Casing Diameter:	bd PVC □ Teflon® □ Open rock II:ft □ Other: II clean to bottom? ⁽¹) Yes □ No to the tor corroded) ⁽² Yes □ No (Yes □ No ved) ⁽¹) Yes □ No Is Inner Casing Intact? □ Yes □ No I Yes □ No
	2 <u>2" Subr</u> ærsible Pump
□ Teflon® MATERIALS: Pump/Bailer: Ø Ø Stainless Steel □ PVC □ Other: Pumping Rate: 160 Elapsed Time: 100 Was well Evacuated? □ Yes PURGING EQUIPMENT: □ Dedicated □	Volume Pumped:
SAMPLING DATA: METHOD: □ Bailer, Size: XBladder Pump □ Syringe Sampler □ Peristaltic Pump □ Inert	
MATERIALS: Pump/Bailer: Teflon® Stainless Steel Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared C Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color:	Image: Contains Immiscible Liquid Horib(V-22 Meter S/N: Image: Contains Immiscible Liquid Meter S/N: Image: Contains Immiscible Liquid Meter S/N: Image: Contains Immiscible Liquid Immisciter Immisc

Project Name:	Patchique	1 Nchra	Grid	Project N
Personnel:	CRM	BAS		Well ID:
Purge/Sample [Depth:	22 AL		Sample ID

Project Nun	nber:
Well ID:	MU-2D
Sample ID:	MU-2D

			r					r i	
Actual Time	pН	Temp (°C)	ORP (mV)	Cond (~5/cm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
12:12	6.76	128	190	0.48	12.08	4	3.60		
12:15	6.11	12 9	235	Q.418	10.88	2	5,00	1	
IZIS	5,56	127	260	0.09	9.82	5	Contraction of the	the second s	
12:21	5,30	13.8	281	0,54	9.10	9	3,52		
12:20	5.18	13.8	286	0.60	8.82	12	1.4		
12:27	6.11	13-7	290	0.65	8.52	16			
12:30	5.01	13.7	293	0.65	8.33	15			
12:35	5.07	137	296	0.66	- 9.99	12	-		
12:36	6.03	13.8	298	0.69	7.84	d		, ·	
12:42	5.03	157	300	0.90	7.78		1		
5					<u> / · / ≏</u>				
	= 101 I				<u> </u>				
				a. 1.21 h-	- 40		- 1 . I		
	\searrow					h-			
			•						
	1.00								
		1.1						u .	
									ilian Eddine
T						· · · · ·			
ř					$\overline{\mathbf{x}}$				
1						<u> </u>	1		
					· · ·				
		[
			-						
							\rightarrow		
							1		
	<u> </u>		1	 		<u> </u>	†	\top	
		1							
L	ļ				<u> </u>				
	_	ļ	<u> </u>	ļ	 				/
L	<u> </u>	L				L .			

	BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
	CALDWELL Allendale, NJ Office	Well Number: MW-3 (if different from well no.)
	Project: Philippe Personnel: CAM BAS	Date: $1/16/11$ Time: 13.20 Weather: 167^{2} Air Temp.: 67^{2}
	WELL DATA: Casing Diameter:	VC ロ Teflon® ロ Other: I ´ ´ PVC ロ Teflon® ロ Open rock II:ft ロ Other: II clean to bottom? ロ Yes
,	VOLUME OF WATER: Standing in well:	
	PURGE DATA:	□ 2" Submersible Pump □ 4" Submersible Pump np □ Inertial Lift Pump □ Other:
1	Image: Constraint of the second system Image: Constraint of the second system MATERIALS: Pump/Bailer: Image: Constraint of the second system MATERIALS: Pump/Bailer: Image: Constraint of the second system Pumping Rate: Image: Constraint of the second system Image: Constraint of the second system Pumping Rate: Image: Constraint of the second system Image: Constraint of the second system Was well Evacuated? Image: Constraint of the second system Image: Constraint of the second system PURGING EQUIPMENT: Image: Constraint of the second system Image: Constraint of the second system	Tubing/Rope: Tubing/Rope: Volume Pumped: Tubing/Rope: Tubing/Rope: Teflon® Polyethylene Other: Other: Teflon® Polypropylene Other: Site Tothon® Polypropylene Tubing/Rope: Teflon® Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Polypropylene Tubing/Rope: Polypropylene Tubing/Rope: Polypropylene Dubing/Rope: Polypropylene Polypropylene Dubing/Rope: Polypropylene Polypropylene Dubing/Rope: Polypropylene Polypropyl
	SAMPLING DATA: METHOD:	ubmersible Pump
	MATERIALS: Pump/Bailer: □ Teflon® SAMPLING EQUIPMENT: □ Dedicated □ Prepared O Metals samples field filtered? □ Yes No Method APPEARANCE: ☑ Clear □ Turbid □ Color:	d: Contains Immiscible Liquid Contains Immiscible Liquid U-22 Meter S/N: Meter S/N: D.O Temperature:

Project Name: Puthouse	Project Numbe
Personnel: CRM DA-S	Well ID:
Purge/Sample Depth:6 M	Sample ID:

Project Numb	er:	
Well ID:	MW-2	
Sample ID:	MUZZ	

Actual Time	рН	Temp (°C)	ORP (mV)	Cond (ns/cm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
12:45	6.09	19.03 14.06	91	0,775	5,00	0.0	1,80	200 milin	
12:48	6,09 6.06	14.06	68	NSR	4,41	0,0		the grade in the St	
12:61	6.04 6.03	14.11	64	0,900	3.47	0,0			
12:57	6.02	14.17	39	(2,900	3,10	0.0	1.50	210 allan	
12:00	602	14.21	34	0,812	2.44	0,0			
13:03	[0:0]	14,21	39	6.874	2.32	00			
13:06	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$	14.25	27	0,910	7,16	00			
13:12	6.01	14.26	26	0,913	1.91	NO	19		
13:15	6.01	14.28	16 16	0q17	1.96	0.0	a nataon	1-	
				Carrier 1					
\frown						1.1			
\vdash		Sama		12 12	120				
		Jony			/				
				[
1	11		a und a				form Pri	l- Secolute	 21/16 26 5
	- Mertadea		\square						
									2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		<u> </u>			*				
				KC			1		
						201			
					\rightarrow	17			
	<u> </u>			940		\leftarrow			
1	ļ			· · · · · · · · · · · · · · · · · · ·	10 04	5	• • • • • • •		
· · · · · · · · · · · · · · · · · · ·			and a case						
			<u> </u>				\mid		
		+				1	-2	\times	
		+							\rightarrow
		<u> </u>							
				1					

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: Sample I.D.: ハッンリタ (f different from well no.)
Project: ^{Patchogue} Personnel: BAS (RM)	Date: $11/17/11$ Time: 8416 Weather: cl_{exdy} Air Temp.: $5c$
WELL DATA: Casing Diameter: Intake Diameter: Intake Diameter: Stainless Steel Galv. Steel DEPTH TO : Staic Water Level: DATUM: Top of Protective Casing CONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost head Is Padlock Functional? Is Inner Casing Properly Capped and Vented?	☑ PVC □ Teflon® □ Open rock I:ft □ Other: II clean to bottom? ☑ Yes □ No not bent or corroded) ☑ Yes □ No Yes □ No ○ Yes □ No ○
VOLUME OF WATER: Standing in well: N/A	To be purged: _ <u>// //A</u>
	2" Submersible Pump 4" Submersible Pump Inertial Lift Pump Other:
□ Teflon® MATERIALS: Pump/Bailer: □ Stainless Steel □ PVC □ Other: Pumping Rate: 250 mL/min Was well Evacuated? □ Yes ☑ No Nu PURGING EQUIPMENT: □ Dedicated □ Prepared Off-	Tubing/Rope: Teflon® Polyethylene Polypropylene Other: Other: Imber of Well Volumes Removed:
SAMPLING DATA: METHOD: □ Bailer, Size: □ Syringe Sampler □ Peristaltic Pump □ Inert	
MATERIALS: Rump/Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared C Metals samples field filtered? Yes Ø No Method	Tubing/Rope:
APPEARANCE: Clear Turbid Color:	Contains Immiscible Liquid h ₀₋ .'6 _a μ.2τ Meter S/N: Meter S/N:
I certify that this sample was collected and handled in accordance with applicable re	gulatory and project protocols.
Signature: P:*Office*Field_Lab\Field_Data_Sheets\Well_into_Sheet.doc	Date:

Project Name: Patche and	Project Number:
Personnel: BAS CRM	Well ID: Mw-45
Purge/Sample Depth: <u>7 fg</u>	Sample ID:

Actual Time	pН	Temp (°C)	ORP (mV)	Cond (mis/cm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
8-16	5.99	12.92	79	,569	9.21	74.6	42.45	250	
6 49	5.85	13.18	84	1694	5,98	879	frank in the	CONTRACTOR -	
8 52	5 83	14.14	97	633	5.17	804			
8 55	5 82	14.48	107	, 616	6.47	0.0	1.2		
959	5.82	14.55	111	,622	5.59	0.0	4.54		
9 01	5.42	14.64	114	.616	4.66	0.0			
9 04	5.83	14 76	118	,615	3.89	0.0			
907	5.83	14.77	118	.627	4.11	0.0			Charles Strander
9 10	5, 4, 2	14.83	119	.631	3.76	0.0			500 million (500
913	5.81	14 79	120	,630	3.83	0.0			
916	5.81	14.88	121	. 621	3.81	0. U -			
920	sample	culler		1.725-0010					
			C. #-						
									and Management Da
		110							h meffine my
					The second	areas in		1.40 I I I I I I I I I I I I I I I I I I I	Not have called in
						-			
		\sim							
1.53									
		1 Y U					- 110 T		
		1.24					1		
		(8)				100 N No.		2 2 2 2	
							-		
		-			<u>├``</u>				
						<hr/>			
		-			1				in in the
		-						2	N
				a da la					and the second second
	1			е		Action 1.			
						· · · · · · · · · · · · · · · · · · ·			
		1					1		· · · · · · · · · · · · · · · · · · ·
			1	1	1				
			1	 					
	<u>†</u>			1	1			-	
·				1			1	1	
	<u> </u>	<u> </u>	<u> · · · · · · · · · · · · · · · · · · ·</u>	1	1		<u> </u>		
—	 	l				ł	+		

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: MU-4D Sample I.D.: MU-4D (if different from well no.)
Project: National Grian - Philodesc Personnel: CRIM BAS	Date: <u>///7//)</u> Time: <u>- 9 - 0 - 7</u> Weather: <u>Clucky</u> Air Temp.: <u>60</u>
WELL DATA:	,
Casing Diameter: 🛛 Stainless Steel 🗅 Steel 🖗	PVC Teflon® C Other:
Intake Diameter:	eel 29 PVC Teflon® D Open rock
	Well:ft
DATUM: Dop of Protective Casing 20 Top of Well Casin CONDITION: Is Well clearly labeled? DopYes D No Is	well clean to bottom?
CONDITION: Is Well clearly labeled? DYes D No Is Is Prot. Casing/Surface Mount in Good Cond.	? (not bent or corroded) 🖾 Yes 🗆 No
Does Weep Hole adequately drain well head?	? ASIYes □ No
Is Concrete Pad Intact? (not cracked or frost h	neaved) Li Yes La No A Is Inner Casing Intact? Da Yes La No
Is Inner Casing Properly Capped and Vented	
VOLUME OF WATER: Standing in well:	
PURGE DATA:	2" Submersible Pump 🛛 4" Submersible Pump
METHOD: Dentrifugal Pump Pristaltic P	Pump D Inertial Lift Pump D Other:
□ Teflon®	□ Teflon®
	Tubing/Rope: 🎾 Polyethylene
	Polypropylene
□ Other:	□ Other:
Pumping Rate: Elapsed Time:	Volume Pumped:
Was well Evacuated? Q Yes No PURGING EQUIPMENT: C Dedicated Prepared C	Number of Well Volumes Removed:
SAMPLING DATA:	
METHOD: A Bailer, Size: Bladder Pump 2 Syringe Sampler D Peristaltic Pump 1 Ir	" Submersible Pump
MATERIALS: Pump/Bailer: A Teflon®	Tubing/Rope: 📮 Teflon®
	□ Polyethylene
SAMPLING EQUIPMENT: 20 Dedicated Dependence Metals samples field filtered? Devices 24 No Met	ed Off-Site Field Cleaned bed:
APPEARANCE: A Clear Turbid Color:	Contains Immiscible Liquid
FIELD DETERMINATIONS: pH: Meter Mod	$-\tau$
	lel: I favila U-Z) Meter S/N:
ORP: DO: Turbidity: _	
DUP : 🗹 No 🗆 Yes Name:	
MS/MSD: 12 No Yes Name:	
Field Lab Results: ON/A pH: DO:	Temperature:
I certify that this sample was collected and handled in accordance with applicab Signature:	Date: 1///7///
P://Office//Field_Lab/Field_Data_Sheets/Well_Into_Sheet.doc	

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: <u><u>P</u>cha Personnel: <u>(RM</u> Purge/Sample Depth:</u>

NUMANGra Petchenne ~101FL

138893 Project Number: Well ID: (1/2-4) Sample ID: (1/2-4)

Actual Time	рН	Temp (°C)	ORP (mV)	Cond (m ^c /cm)	DO (mg/L)	Turbidity (NTU)	DTŴ (ft)	Pumping Rate (mL/min)	Comments
9:04	5.Q 5.53 5.65	14.5 14.5 14.4	236 243 240	0.68 0.68 0.68	5.26 4.39 3.96	42 6 24	4/20 4,23 4,24		
		3bell	vəl	MP	Pryc	Com	del-		
		9:45	Ser	rple	with	Bai	lev		
				2	· · · · · · · · · · · · · · · · · · ·				
									······································
	<u> </u>					*			

 BROWN AND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: Sample I.D.: MW-75 (If different from well no.)
Project: Pothogic Personnel: MAS CRA	Date: <u>[///7//]</u> Time: <u>16 > 3</u> Weather: <u>(10009</u> Air Temp.: <u>49</u>
WELL DATA: Casing Diameter: 2 Intake Diameter: 2 Stainless Steel Galv. Steel DEPTH TO : Stainless Steel Stainless Steel Galv. Steel DEPTH TO : Stainless Steel DATUM: Top of Protective Casing ONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost head Is Padlock Functional? Is Inner Casing Properly Capped and Vented? VOLUME OF WATER: Standing in well:	II:4ft □ Other: II clean to bottom?
	2" Submersible Pump 4" Submersible Pump Inertial Lift Pump Other:
	☐ Teflon® Tubing/Rope: ♀ Polyethylene ☐ Polypropylene ☐ Other:
Pumping Rate: 20 ml/min Elapsed Time: 30 ml	Volume Pumped: <u>7 ga /</u> mber of Well Volumes Removed:
SAMPLING DATA: METHOD: □ Bailer, Size: \$ Bailer, Size:	ubmersible Pump
MATERIALS: Pump/Bailer: D Teflon®	Tubing/Rope: ☐ Teflon® ,∑ Polyethylene
SAMPLING EQUIPMENT: Dedicated Prepared C Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color:	Off-Site 🔟 Field Cleaned
MS/MSD : Vo Ves Name: Field Lab Results: VN/A pH: DO: I certify that this sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with applicable resident of the sample was collected and handled in accordance with ap	Temperature: gulatory and project protocols, Date: ///////
P:/*Officel/*Field_Laburield_Uala_Sheets/Well_Inito_Sheet.doc	

Project Name:	Patchage,	Notrel	Grid	Pro
Personnel:	CRM	BAS		We
Purge/Sample	Depth:	7Ft		Sam

Project Num	iber:
Well ID:	
Sample ID:	MW-75

Actual Time	pН	Temp (°C) J2_3	ORP (mV)	Cond (n. ^s /t)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
10:33 70:36 70:39	6.02 6.20 6.13	14.0 13.1 13.2	-87 -112 -112	0.72	6.85 3.96 3.58	140 89 78	4.16		
10:42 10:45 10:45	6.72	13.2 13:4 13:4 13:5	-114 -116 -121 -129	0.72 0.72 0.72	339	69 55 47 30			
10:54 10:57 11:00 11:03	6.59 6.59 6.59 6.59	13,6 13,6 13,6 13,6	-135 -137 -138 -141	0.71 0.71 0.71 0.71	3.05	25 25 27 18			
	19,198		Sampl		11:17			N.	
				>					1 2 19-124
					>				
							Ý	/5	
					,				

WELL DATA: Casing Diameter:	B R O W N A N D	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Personnet: @AS C.R.M Weather:(audy		Well Number: _{ハ い} ー フ <i>D</i> Sample I.D.: (if different from well no.)
Casing Diameter:	Project: Putchogue Personnel: BAS CRM	Date: 11/17/11 Time: 10:35 Weather: Air Temp.: 50:5
PURGE DATA: METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump MATERIALS: Pump/Bailer: Teflon® Inertial Lift Pump Other: Polyethylene MATERIALS: Pump/Bailer: Teflon® Teflon® Polyethylene Polyethylene PVC Other: Other: Other: Polyethylene Polyethylene Pumping Rate: 150 ml/mh Elapsed Time: 30 ml/mh Volume Pumped: 1.5 gal Purging Rate: 150 ml/mh Elapsed Time: 30 ml/mh Volume Pumped: 1.5 gal Purging Rate: 150 ml/mh Elapsed Time: 30 ml/mh Volume Pumped: 1.5 gal Purging Rate: 150 ml/mh Elapsed Time: 30 ml/mh Volume Pumped: 1.5 gal Purging Rate: 1 Yes No Number of Well Volumes Removed:	Casing Diameter: □ Stainless Steel □ Steinless Steel □ Steinless Steel □ Galv. Steel Intake Diameter: □ Stainless Steel □ Galv. Steel DEPTH TO : Static Water Level: 3 % ft Bottom of Well DATUM: □ Top of Protective Casing □ Top of Well Casing CONDITION: Is Well clearly labeled? □ Yes □ No Is well Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? □ Is Concrete Pad Intact? (not cracked or frost heat is Padlock Functional? □ Yes □ No □ NA Is Inner Casing Properly Capped and Vented? □	II: <u>25</u> _ft □ Other: II clean to bottom? □ Yes ☑ No for bent or corroded) ☑ Yes □ No f Yes □ No ved) □ Yes □ No Is Inner Casing Intact? ☑ Yes □ No I Yes □ No
PURGING EQUIPMENT: Dedicated Prepared Off-Site I Field Cleaned SAMPLING DATA: METHOD: Bailer, Size: I Bladder Pump 2" Submersible Pump 4" Submersible Pump METHOD: Bailer, Size: I Bladder Pump 2" Submersible Pump 4" Submersible Pump MATERIALS: Pump/Bailer: I Teflon® Tubing/Rope: I Teflon® MATERIALS: Pump/Bailer: I Dedicated Prepared Off-Site I Teflon® SAMPLING EQUIPMENT: Dedicated Prepared Off-Site I Teflon® Metals samples field filtered? Yes No Method: APPEARANCE: I Clear Turbid Color: I Contains Immiscible Liquid FIELD DETERMINATIONS: pH: 5.61 Meter Model: Hor: Meter S/N: ORP: 170 Do: 2.46 Turbidity: 0.0 O DUP: I No Yes Name: Temperature: Temperature: Temperature: Temperature: Temperature: MS/MSD : No Yes Name: Do: Temperature: Temperature: Temperature: Temperature:	PURGE DATA: METHOD: Bailer, Size: Centrifugal Pump Peristaltic Pump MATERIALS: Fump/Bailer: PVC Other:	2" Submersible Pump 4" Submersible Pump p Inertial Lift Pump Other: Tubing/Rope: Polyethylene Polypropylene Other:
Stainless Steel Polyethylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Yes No Method:	SAMPLING DATA: METHOD:	ubmersible Pump
i certity that this sample was collected and handled in accordance with applicable regulatory and project protocols.	SAMPLING EQUIPMENT: Dedicated Prepared C Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: pH: 5.6 (Meter Model: Meter Model: ORP: 170 DO: 1.46 Turbidity: DUP: Mo Yes Name:	Polyethylene Field Cleaned Contains Immiscible Liquid Horiba U-27 Meter S/N: Temperature: Temperature:

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Putcho	gac
Personnel: <u><u><u>R</u>AS</u></u>	GRM
Purge/Sample Depth:	22 44

Project Number: ______ Well ID: _<u>ハレーフ 0</u> Sample ID: _____

			-0-011-0		1.000				
Actual Time	pН	Temp (ºC)	ORP (mV)	Cond (m 5/cm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
10:35	6.16	12.54	195	,463	6.78	105	3.89	150	
10:38	5.65	13.32	187	, 521	5.01	138	0.00	1.5.	
10-41	5.63	13,92	175	, 575	3.80				
10:44	5.64	14,01	190	.600	3.39	0.0			
10:47	5.64	14.13	164	,619	2.96	0.0	anan I		
10:50	5.64	14.22	162	,628	2.73	0.0			
10:53	5.64	14.26	161	,632	2.58	0.0	3.89		
10:56	5.64	14.28	161	.636	2,47	0.0			
10'59	5.63	14.26	163	.628	2,50	0.0			
11 02	5.62	14.33	165	,619	2.47	0.0			<u> </u>
11,05	5.62	14.37	167	.614	2.46	0.0			
11:08	5.61	14.40	170	.612	2,46	0.0			
11:15	sample	collected							
							1		
1									
	-			1					
	- 1971		tin 1						- Unit was
	- Carl 18	Acres 1				Line Line		10 m	
			S. 3		<u> </u>	1			
	·								
	<u> </u>		ļ				2.1.12		
		ļ							
	<u></u>								
							\vdash	L	
		<u> </u>	<u> </u>	<u> </u>	1	<u> </u>			
		<u> </u>			1		1		
	1		1	1			1		
		1	1			<u> </u>			
					1		1	1	
									<u></u>

B R O W N A N D	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
 CALDWELL Allendale, NJ Office	Well Number: Sample I.D.: $M W - g S$ (if different from well no.)
Project: Patchogne Personnel: BAS CRM	Date: 1/16/11 Time: 14:23 Weather:
WELL DATA:	
Casing Diameter: 4 Image: Steel Ste	VC 🔎 Teflon® 🛛 Other:
Intake Diameter: 2	PVC Teflon® D Open rock
DEPTH TO : Static Water Level: b . 41 ft Bottom of Wel	l: <u>9</u> ft
DATUM: Dop of Protective Casing Dop of Well Casing CONDITION: Is Well clearly labeled? Dop of Well Casing Well Clearly labeled?	Other:
CONDITION: Is Well clearly labeled? Yes No Is well Is Prot. Casing/Surface Mount in Good Cond.? (n	
Does Weep Hole adequately drain well head?	
Is Concrete Pad Intact? (not cracked or frost hear	ved) 🗹 Yes 🖸 No
Is Padlock Functional? D Yes D No D NA	Is Inner Casing Intact? De Yes De No
Is Inner Casing Properly Capped and Vented? ビ	IYes INO
VOLUME OF WATER: Standing in well: <u><i>V</i>/</u> <u>A</u>	To be purged: <u>// //A</u>
PURGE DATA:	
METHOD: Bailer, Size: METHOD:	2" Submersible Pump 🖸 4" Submersible Pump
Gentrifugal Pump Geristaltic Pum	p 🛛 Inertial Lift Pump 🗅 Other:
MATERIALS: Pump/Bailer: D Stainless Steel	Tabing/Rope: Polyethylene Polypropylene
PVC Other:	
Pumping Rate: 300 ft/min Elapsed Time: 39 ft/min Was well Evacuated? I Yes No Nu	mber of Well Volumes Removed:
PURGING EQUIPMENT: Dedicated Prepared Off-S	Site L Field Cleaned
SAMPLING DATA:	
METHOD: D Bailer, Size: @'Bladder Pump D 2" Su	ubmersible Pump 🗇 4" Submersible Pump
Syringe Sampler Peristaltic Pump Inert	ial Lift Pump 🗅 Other:
MATERIALS: Pumo/Bailer: 4 / Teflon®	Tubind/Rope: D Teflon®
MATERIALS: Pump/Bailer: D Teflon®	Tubing/Rope:
SAMPLING EQUIPMENT: Dedicated Prepared C	off-Site
Metals samples field filtered? Q Yes No Method	
APPEARANCE: Clear Color:	Contains Immiscible Liquid
	Horiba U-ZZ Meter S/N:
Temperature: 16.0 Spec. Cond.: 98 Meter Model: ORP: ~90 DO: 390 Turbidity: 10	Meter S/N:
DUP: IN DYES Name:	
MS/MSD : Vo Yes Name:	
Field Lab Results: D/A pH: DO:	Temperature:
I certify that this sample was collected and handled in accordance with applicable re	
 Signature:	Date:

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Patcheaue	Pr
Personnel: BAS CRM	W
Purge/Sample Depth: 7 44.	Sai

Project Number: _____ Well ID: ____<u>Mw~ %s</u> Sample ID: _____

								T	
Actual Time	рН	Temp (°C)	ORP (mV)	Cond (DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
14:23	6.08	15.8	-27	, 85	6.68	+ 990	, 41		
14126	5.98	15.91	-36	,86	5.48	+990	,		
14:29	6.01	15.9	-48	.97	4.89	+ 490	1.4.7.5		
14132	6.05	16.0	-54	.87	4.73	+990			
14135	6.13	16.0	-54 -63	. 88	4.49	700			
14:38	6.20	16.0	-71	.89	4.31	460	_		
14:41	6.24	16.0	- 73	,88	4.24	400			
14144	626	16.0	-90	.88	4,12	270			
14:47	6.28	16.0	-91	.88	4.06	220			
141 50	6.30	16.0	-84	. 88	4.02	210			
14:53	6.31	16.0	-95	.88	3.99	180			
14:56	6.30	16 1	-87	,88	3.95	140			
14:59	6.31	16.0	-87	.88	3.92	120		-	
15:02	6,31	160	-90	,88	3.90	110			
15:05	sample	Colle	cted					-	
· · · · · ·								1.0	
<u> </u>									
$ \rightarrow $	100						100 and 100 and 100		
				-					
				14.5			Sec. Sec. To		
								P	
			21 CD 10 T			Decision in			e i "do" "duro:
						1	20.00		
	=						1.00 26		
		-					1.1		1
								-0	
				mutture f					
					win ee a		1 1 1 1 1		
			-						
					ļ	<u></u>			
	ļ			 	ļ	ļ			
	ļ								
		ļ		<u> </u>	1	<u> </u>		<u> </u>]	<u> </u>
L	 	ļ	 	<u> </u>					<u> </u>
	 			<u> </u>					<u>_</u>
L	<u> </u>	1		L	<u> </u>	<u> </u>	I		L

Å	BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
	CALDWELL Allendale, NJ Office	Well Number: Sample I.D.: MW~&) (If different from well no.)
	Project: Patchague Personnel: CRM BAS	Date: 11/16/11 Time: 14, 20 Weather: 12 52112 Air Temp.: 520
	DEPTH TO : Static Water Level: ().50 ft Bottom of Well DATUM: Top of Protective Casing A Top of Well Casing CONDITION: Is Well clearly labeled? Yes No Is we Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? I Is Concrete Pad Intact? (not cracked or frost hea Is Padlock Functional? Yes No NA Is Inner Casing Properly Capped and Vented?	
	VOLUME OF WATER: Standing in well:	To be purged:
		2" Submersible Pump
		Tubing/Rope: Tubing/Rope: Polyethylene Polypropylene Other: Wher of Well Volumes Removed: Site Site Site Field Cleaned
	SAMPLING DATA: METHOD: □ Bailer, Size:XBladder Pump □ 2" So □ Syringe Sampler □ Peristaltic Pump □ Inert	
	MATERIALS: Pump/Bailer:	Tubing/Rope: ☐ Teflon® Ø Polyethylene Mf-Site Ø Field Cleaned
	APPEARANCE: Diana Clear Turbid Color: FIELD DETERMINATIONS: pH: 5/6/6 Meter Model: Temperature: 16.00 Spec. Cond.: 0.60 ORP: 170 Do: 170	Contains Immiscible Liquid Itunbe U-22 Meter S/N: Itunbe U-22 Meter S/N:
	DUP: 1 No Yes Name: MS/MSD: 1 No Yes Name: Field Lab Results: 1 Yes Name: I certify that this sample was collected and handled in accordance with applicable resignature: DO: Promovered Labifield Data SheetsWell Into Sheet.doe No	Temperature: gulatory and project protocols, Date://///////////////////////////////

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Purchase	Project Number:
Personnel: CRIM DAS	Well ID: MU-SD
Purge/Sample Depth:22FL	Sample ID: MV-8D

Actual Time	pН	Temp (⁰C)	ORP (mV)	Cond (~5/cm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
14:20 14:23	5.61	15.71	137	0.434 0.482	1.96 1.86 -	00	0.35	160	
14:26 19:29 19:32	557	15.67 15.65 15.63	137 138 140	0.548 0.578 0.699	1.71 1.5X 1.99	0.0 0.0 0.0			
14:35 14:38 14:41	5,56	15.67 15.63 15.63	14) 147 199	71.610 0.620 0.607	1.59 1.27		0.37		
19:09 19:97 19:50	555	15.61 15.65 15.65	105 106 147	0.574 0.572 0.680	1.23 1.18 1.15	0.0	0.38		
	So	mptet	d	14:5	5,				
			A	e K					
				Z		2			
						2			

	B R O W N A N D	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
	CALDWELL Allendale, NJ Office	Well Number: Sample I.D.: パシー 95 (if different from well no.)
	Project: Patchogae Personnel: BAS CRM	Date: IV/17/11 Time: 7 : / 15 Weather:
	WELL DATA: Casing Diameter: ⁶ ¹ ² ¹ ¹ ² ¹	I:ft □ Other: I clean to bottom? □ Yes ☑ No iot bent or corroded) ☑ Yes □ No Yes □ No ved) □ Yes ☑ No Is Inner Casing Intact? ☑ Yes □ No I Yes □ No
	PURGE DATA: METHOD: Bailer, Size: Gentrifugal Pump Gentrifugal Gentrifu	1 2" Submersible Pump 4" Submersible Pump p Inertial Lift Pump Other: Teflon® Tubing/Rope:
	Pumping Rate: Elapsed Time: Was well Evacuated? Q Yes V No Nu PURGING EQUIPMENT: D Dedicated Q Prepared Off-S	mber of Well Volumes Removed:
l	SAMPLING DATA: METHOD: □ Bailer, Size: □ Syringe Sampler □ Peristaltic Pump □ Inert	ial Lift Pump 🗅 Other:
	MATERIALS: Pump/Bailer:	Tubing/Rope: Teflon® Polyethylene Field Cleaned
	APPEARANCE: Clear Clear Clear Clear Clear	Contains Immiscible Liquid
	MS/MSD: D No DYes Name: Field Lab Results: DN/A pH: DO: i certify that this sample was collected and handled in accordance with applicable re Signature:	Temperature: gulatory and project protocols. Date:///////

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Partchage	Project Number:
Personnel: BAS CRM	Well ID: <u>MW - 95</u>
Purge/Sample Depth: 7 Fk	Sample ID:

Actual Time	pН	Temp (°C)	ORP (mV)	Cond (ms/cm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
7:17	5.86	13.26	136	,097	8.59	417	, 82	250	
7:20	5.86	13.84	113	,128	7.41	287		940 mil 1 1 1	
7:23	5.86	14.10	55	1157	6.57	132			
7:26	5.87	14.17	42	.222	5.84	0.0	,90		•
7.29	5.91	14.51	7	351	4.30	0.0			
7:32	5.98	14.69	-14	,426	3,65	00		- 3-60	
7:35	6.02	14.79	-26	,460	3.15	0.0			
7:38	6.04	14.82	-30	. 477	2.89	0.0		100	
7:41	6.05	14.85	-35	.495	2.64	0.0			
7:44	6.06	14.84	-37	.514	4.68	0.0			
7:47	6.07	14.86	-39	,527	4,77	0.0			
7:50	Sample	collected					ļ		
1							11		
			- 20	milet	d	7:50	h		
			00	par			ľ		<u></u>
		<u> </u>							
<u> </u>		\geq					<u> </u>		
			-						
					2				
· · · · ·								· · · · ·	
			-		1900 - 1900				1
						\sim			
		1						Di companya di	
		1						14	
	1								
				-					
									×
									L

-		
	B R O W N A N D	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
	CALDWELL Allendale, NJ Office	Well Number: Sample I.D.: MW-95 (if different from well no.)
	Project: Valuat Grid Patchage Personnel: CRIM BAS	Date:
	WELL DATA: Casing Diameter: 2 □ Stainless Steel □ Steel (2) P' Intake Diameter: 2 □ Stainless Steel □ Galv. Steel DEPTH TO : Static Water Level: 0.36 ft Bottom of Well DATUM: □ Top of Protective Casing ☑ Top of Well Casing CONDITION: Is Well clearly labeled? □ Yes ☑ No Is well Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? □ Is Concrete Pad Intact? (not cracked or frost heals Is Padlock Functional? □ Yes ☑ No NA Is Inner Casing Properly Capped and Vented? □ Yes ☑ No □ NA	VC Teflon® Other: PVC Teflon® Open rock I: 9_ft Other: II clean to bottom? Yes S No It clean to corroded) Yes S No I Yes M No Ved) Yes S No Is Inner Casing Intact? M Yes No I Yes M No
	VOLUME OF WATER: Standing in well:	To be purged:
		2" Submersible Pump 4" Submersible Pump p Inertial Lift Pump Other:
	ロ Teflon® MATERIALS: Pump/Bailer: 超 Stainless Steel ロ PVC	Polypropylene
	□ Other: Pumping Rate: <u>i 6() ↓//µ</u> Elapsed Time: <u>30</u> Was well Evacuated? □ Yes ♀ No Nu PURGING EQUIPMENT: □ Dedicated □ Prepared Off-3	mber of Well Volumes Removed:
	SAMPLING DATA: METHOD: □ Bailer, Size: □ Bildder Pump 2" St Syringe Sampler □ Peristaltic Pump □	
	MATERIALS: Pump/Bailer: □ Teflon® 與 Stainless Steel	Tubing/Rope:
	SAMPLING EQUIPMENT: Dedicated Prepared O Metals samples field filtered? Yes No Method APPEARANCE: Image: Clear Turbid Color: Image: Color: FIELD DETERMINATIONS: pH: 6./O Meter Model: Temperature: /// Spec. Cond.: 0.0 Meter Model: ORP: /// DO: 7.28 Turbidity: /// DUP : Image: No Yes Name: Image: No Yes Name: Field Lab Results: Image: NA pH: DO: Image: DO: Image: Name: Image:	Dff-Site Diff-Site Contains Immiscible Liquid Ifon 1 Ifon 2 Meter S/N: Iton 5 Orbita Temperature:
	P:\"Unicer\"Field_LabrField_Data_Sneets\vvel_Inio_Sneet.oec	

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Na Personne Purge/Sa	l:(HS 22 67		W	oject Numb ell ID: nple ID:	90-9D MW-0		-
Actual Time	рН	Temp (°C)	ORP (mV)	Cond (gm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
1:19	7:10	13.6	54	0.11	11.93	140	0.86		
711	6.95	13.9	57	0.10	1179	140			
7:20	6.85	14.	62	0.10 -	11.32	150			
7:23	6-72	14.3	60	0.12	10.74	180			
7:26	6.68	14.2	61	().16	9.84	220	0.87	In the second second	
7:29	6.56	14.1	70	0.16	9.53	230	, í		
7:32	G.92	14.1	83	0.18	9.15	220			
7:35	6.27	191	94	0.27	8.46	200	0.89		
7:38	6.20	14,7	99	0.27	7.96	160			

7:29	(2.68	1414	61. 70	0.15	9.81	240	0.8/		
1:29	6.56	14,2	10,	0.16	9,53	$\frac{740}{230}$			
7:32	6.92 6.27	14.1	83 94 99	0.18	9.15	40	0.00		е в. 1.1
1:35	6.21	797	40	0.A	8.46	200 160	0.89		
7:38	6.20	14,1	99	0.29	7.96	IKU			
1:41	6.14	14.]	104	0.39	7.54	170			
1:44	6.10	14.1	107	0.60	1.14	160			
	1								
		400.000							
								(s. 1	
		1		7:6	(· · · ·
	50	ingle	d	7:5	5				
		7,707				<u> </u>			
~									
$\overline{}$									
				1					
						<u> </u>			
								W.	
					~				
									
									· · · · · · · · · · · · · · · · · · ·
		ļ	0			-			
			<u> </u>				1.8		
		ļ	ļ	\leq					11/2
			ļ	I I					
								100	And the second second
						$I \times$		1	
						1			and a month
			1						
	1								
							-		
		1	<u> </u>						L
				+			+		
			<u>├</u>				-		
	<u> </u>	<u> </u>	ł				-		
			I						

Appendix B: Laboratory Reports (CD-ROM)

Appendix C: Data Usability Summary Report

DATA USABILITY SUMMARY REPORT PATCHOGUE, NEY YORK

Client:	Brown and Caldwell, Allendale, New Jersey
SDG:	PCH09
Laboratory:	Lancaster Laboratories, Lancaster, Pennsylvania
Site:	Patchogue, New York
Date:	January 12, 2012

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-1	6477561	Water
1MS	MW-1MS	6477562MS	Water
1MSD	MW-1MSD	6477563MSD	Water
2	MW-3	6477564	Water
3	MW-8D	6477565	Water
4	MW-8S	6477566	Water
5	DUP-111611	6477567	Water
6	MW-9S	6477568	Water
7	MW-9D	6477569	Water
8	MW-4S	6477570	Water
9	MW-4D	6477571	Water
10	FB-111711	6477572	Water
11	MW-7S	6477573	Water
12	MW-7D	6477574	Water
13	MW-2D	6477575	Water
14	MW-2S	6477576	Water
15	TRIPBLANK	6477577	Water

A Data Usability Summary Review was performed on the analytical data for thirteen water samples, one aqueous field blank sample, and one aqueous trip blank sample collected November 16-17, 2011 by Brown and Caldwell at the Patchogue, New York Site. The samples were analyzed under Environmental Protection Agency (USEPA) *"Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions"*.

Specific method references are as follows:

<u>Analysis</u>	Method References
VOC (BTEX and MTBE)	USEPA SW-846 Method 8260B
SVOC (PAH)	USEPA SW-846 Method 8270C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

• SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;

- SOP Number HW-22, Revision 4, August 2008: Validating Semivolatile Organic Compounds by SW-846 Method 8270D;
- and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed:

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Duplicate (LCS/LCSD) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes. Data were not qualified.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (BTEX and MTBE)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD).

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB-111711	None- ND	-	-	-	-
TRIPBLANK	None- ND	-	-	-	_

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and average RRF criteria were met.

Continuing Calibration

• All %D and RRF criteria were met.

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

VOC							
Compound	MW-3	DUP111611	RPD	Qualifier			
	ug/L	ug/L					
None	-	-	-	-			

Semivolatile Organics Compounds (PAH)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD).

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

<u>Field Blanks</u>

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB111711	None- ND	-	-	-	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and average RRF criteria were met.

Continuing Calibration

All %D and RRF criteria were met.

Compound Quantitation

All criteria were met.

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria. •

Field Duplicate Sample Precision

Field duplicate results are summarized below. For a high RPD >50% for water samples, • results are considered estimated and qualified (J). A high %RPD may indicate a potential bias due to poor laboratory instrument precision.

РАН							
Compound	MW-3	DUP111611	RPD	Qualifier			
	ug/L	ug/L					
Acenaphthene	0.9	1.0	11%	None			
Acenaphthylene	0.7	0.9	25%	None			
Anthracene	0.2	0.3	67%*	None			
Benzo(a)anthracene	0.1	0.1	0%	None			
Benzo(a)pyrene	0.2	ND	NC	-			
Benzo(b)fluoranthene	0.2	ND	NC	-			
Benzo(g,h,i)perylene	1.0	ND	NC	-			
Benzo(k)fluoranthene	0.1	ND	NC	-			
Chrysene	0.2	0.1	67%*	None			
Dibenz(a,h)anthracene	0.2	ND	NC	-			
Fluoranthene	3.0	3.0	0%	None			
Fluorene	ND	0.1	NC	1			
Indeno(1,2,3-cd)pyrene	0.5	ND	NC	-			
Pyrene	3.0	3.0	0%	None			

* - Since concentrations are so close to detection limit, no action was required

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

ancy Maver Dated: 1/16/12 Nancy Weaver Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Sample	Description:	MW-1	Grab	Water
_		COC:	27173	0
		Patcl	hogue,	NY

Project Name: Patchogue, NY

Collected: 11/16/2011 11:25 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT01 SDG#: PCH09-01BKG

Page 1 of 1

LLI	Sample	#	WW 6477561	
LLI	Group	#	1277546	
Acc	ount	Ħ	09286	

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

An Pacainad

CAT No.	Analysis Name	CAS Mumber	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10903	Benzene	71-43-2	N.D.	0.5	1	
10903	Ethylbenzene	100-41-4	N.D.	0.8	1	
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	
10903	Toluene	108-88-3	N.D.	0.7	1	
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1	
10903	o-Xylene	95-47-6	N.D.	0.8	1	
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1	
	•					
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/l		
07805	Acenaphthene	83-32-9	N.D.	0.1	1	
07805	Acenaphthylene	208-96-8	N.D.	0.1	1	
07805	Anthracene	120-12-7	N.D.	0.1	1	
07805	Benzo(a)anthracene	56-55-3	N.D.	0.1	1 .	
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1	1	
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1	
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	1	
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	1	
07805	Chrysene	218-01-9	N.D.	0.1	1	
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	1	
07805	Fluoranthene	206-44-0	N.D.	0.1	1	
07805	Fluorene	86-73-7	N.D.	. 0.1	1	
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1	
07805	Naphthalene	91-20-3	N.D.	0.1	1	
07805	Phenanthrene	85-01-8	N.D.	0.1	1	
07805	Pyrene	129-00-0	N.D.	0.1	1	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Apalysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/28/2011 22:52	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/28/2011 22:52	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 12:52	Matthew S Woods	1
0780 7	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH89 0818

ew 1112/12

Sample Description: MW-3 Grab Water COC: 271730 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/16/2011 13:20 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT03 SDG#: PCH09-02

2

Page 1 of 1

LLI	Sample	#	WW	6477564
LLI	Group	#	127	7546
Acco	ount	#	092	86

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

. . . .

CAT No.	Analysis Name		CAS Number	As Rec Result		As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW	-846 8	3260B	ug/1		ug/l	
10903	Benzene		71-43-2	N.D.		0.5	1
10903	Ethylbenzene		100-41-4	N.D.		0.8	1
10903	Methyl Tertiary Butyl E	ther	1634-04-4	N.D.		0.5	1
10903	Toluene		108-88-3	N.D.		0.7	1
10903	m+p-Xylene		179601-23-1	N.D.		0.8	1
10903	o-Xylene		95-47-6	N.D.		0.8	1
10903	Xylene (Total)		1330-20-7	N.D.		0.8	1
GC/MS	Semivolatiles SW	-846 8	3270C	ug/1		ug/l	
07805	Acenaphthene		83-32-9	0.9		0.1	1
07805	Acenaphthylene		208-96-8	0.7		0.1	1
07805	Anthracene		120-12-7	0.2	J	0.1	1
07805	Benzo(a) anthracene		56-55-3	0.1	J	0.1	1
07805	Benzo(a) pyrene		50-32-8	0.2	J	0.1	1
07805	Benzo(b) fluoranthene		205-99-2	0.2	J	0.1	1
07805	Benzo(g, h, i) perylene		191-24-2	1		0.1	I
07805	Benzo(k) fluoranthene		207-08-9	0.1	J	0.1	1
07805	Chrysene		218-01-9	0.2	J	0.1	l
07805	Dibenz (a, h) anthracen	e	53-70-3	0.2	J	0.1	1
07805	Fluoranthene		206-44-0	3		0.1	1
07805	Fluorene		86-73-7	N.D.		0.1	2
07805	Indeno(1,2,3-cd)pyre	ne	193-39-5	0.5	J	0.1	1
07805	Naphthalene		91-20-3	N.D.		0.1	1
07805	Phenanthrene		85-01-8	N.D.		0.1	1
07805	Pyrene		129-00-0	3		0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/28/2011 23:54	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/28/2011 23:54	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 14:04	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH63 6013

Sample	Description:	MW-8D Grab Water
		COC: 271730
		Patchogue, NY

Project Name:	Patchogue,	NY
---------------	------------	----

Collected: 11/16/2011 14:55 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT8D SDG#: PCH09-03

Page 1 of 1

LLI	Sample	#	WW	6477565
LLI	Group	#	127	7546
Acco	ount	#	092	86

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

As Received

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/1	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	1
07805	Acenaphthylene	20B-96-8	N.D.	0.1	1
07805	Anthracene	120-12-7	N.D.	0.1	1
07805	Benzo (a) anthracene	56-55-3	N.D.	0.1	1
07805	Benzo (a) pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	0.2 J	0.1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	N.D.	0.1	1
07805	Dibenz(a, h) anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	N.D.	0.1	1
07805	Fluorene	86-73-7	N.D.	0.1	l
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	N.D.	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	l
07805	Pyrene	129-00-0	N.D.	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 00:15	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 00:15	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	5W-846 8270C	1	11325WAK026	12/05/2011 14:28	Matthew 5 Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH89 8814

Sample	Description:	MW-85	Grab	Water
		coc:	27173	0
		Patch	logue,	NY

Project Name: Patchogue, NY

Collected: 11/16/2011 15:05 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT8S SDG#: PCH09-04

4

Page 1 of 1

LLI	Sample	#	WW 64775	66
LLI	Group	Ħ	1277546	
Acco	ount	#	09286	

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Rece Result	ived	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l		ug/l	
10903	Benzene	71-43-2	N.D.		0.5	1
10903	Ethylbenzene	100-41-4	N.D.		0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	0,5	J	0.5	1
10903	Toluene	108-88-3	·N.D.		0.7	1
10903	m+p-Xylene	179601-23-1	N.D.		0.8	1
10903	o-Xylene	95-47-6	N.D.		0.8	1
10903	Xylene (Total)	1330-20-7	N.D.		0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/l		ug/1	
07805	Acenaphthene	83-32-9	0.5	J	0.1	1
07805	Acenaphthylene	208-96-8	N.D.		0.1	1
07805	Anthracene	120-12-7	N.D.		0.1	1
07805	Benzo(a) anthracene	56-55-3	N.D.		0.1	1
07805	Benzo(a)pyrene	50-32-8	N.D.		0.1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.		0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.		0.1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.		0.1	1
07805	Chrysene	218-01-9	N.D.		0.1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.		0.1	1
07805	Fluoranthene	206-44-0	N.D.		0.1	1
07805	Fluorene	86-73-7	0.1	J	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.		0.1	1
07805	Naphthalene	91-20-3	0.2	J	0.1	1
07805	Phenanthrene	85-01-8	N.D.		0.1	1
07805	Pyrene	129-00-0	N.D.		0.1	ī

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 00:36	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 00:36	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 14:52	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	l

PCH89 6815

UN 1/12/12

Sample Description: DUP-111611 Grab Water COC: 271730 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/16/2011 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PATFD SDG#: PCH09-05FD

LLI Sample # WW 6477567 LLI Group # 1277546 Account # 09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/1	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ethe	r 1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-84	6 8270C	ug/1	ug/l	
07805	Acenaphthene	83-32-9	1	0.1	1
07805	Acenaphthylene	208-96-8	0.9	0.1	1
07805	Anthracene	120-12-7	0.3 J	0.1	1
07805	Benzo(a) anthracene	56-55-3	0.1 J	0.1	l
07805	Benzo(a) pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	l
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	l
07805	Chrysene	218-01-9	0.1 J	0.1	1
07805	Dibenz(a, h)anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	3	0.1	1
07805	Fluorene	86-73-7	0.1 J	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	N.D.	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
07805	Pyrene	129-00-0	3	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Pactor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 00:56	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 00:56	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 15:16	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	l

PCH89 8816

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

_

5

Page 1 of 1

Sample Description: MW-9S Grab Water COC: 271730 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 07:50 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT9S SDG#: PCH09-06

LLI Sample # WW 6477568

D

Page 1 of 1

LLI Group	#	1277546
Account	Ħ	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No,	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	l
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	3	0.1	1
07805	Acenaphthylene	208-96-8	0.9	0.1	1
07805	Anthracene	120-12-7	0.1 J	0.1	1
07805	Benzo(a) anthracene	56-55-3	0.3 J	0.1	1
07805	Benzo (a) pyrene	50-32-8	0.2 J	0.1	1
07805	Benzo(b) fluoranthene	205-99-2	0.3 J	0.1	l
07805	Benzo(g,h,i)perylene	191-24-2	0.2 J	0.1	l
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	0.3 J	0.1	1
07805	Dibenz(a, h) anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	0.7	0.1	1
07805	Fluorene	86-73-7	0.3 J	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	l
07805	Naphthalene	91-20-3	N.D.	0.1	1
07805	Phenanthrene	85-01-8	0.2 J	0.1	1
07805	Pyrene	129-00-0	1	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 01:17	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	¥113322AA	11/29/2011 01:17	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 15:40	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH69 6617

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

au) (112/12

Sample	Description:	MW-9D Grab Water
		COC: 271730
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 07:55 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT9D SDG#: PCH09-07

Page 1 of 1

LLI	Sample	#	WW	6477569
LLI	Group	#	127	7546
Acco	ount	#	092	286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name		CAS Number	As Recei Result	ved	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l		ug/1	
10903	Benzene		71-43-2	N.D.		0.5	1
10903	Ethylbenzene		100-41-4	N.D.		0.8	1
10903	Methyl Tertiary But	yl Ether	1634-04-4	N.D.		0.5	1
10903	Toluene		108-88-3	N.D.		0.7	1
10903	m+p-Xylene		179601-23-1	N.D.		0.8	1
10903	o-Xylene		95-47-6	N.D.		0.8	1
10903	Xylene (Total)		1330-20-7	N.D.		0.8	1
GC/MS	Semivolatiles	SW-846	8270C	ug/l		ug/l	
07805	Acenaphthene		83-32-9	N.D.		0.1	1
07805	Acenaphthylene		208-96-8	0.1	J	0.1	1
07805	Anthracene		120-12-7	0.2	J	0.1	1
07805	Benzo(a) anthracer	18	56-55-3	0.2	J	0.1	1
07805	Benzo(a) pyrene		50-32-8	0.2	J	0.1	1
07805	Benzo(b) fluoranth	lene	205-99-2	0.3	J	0.1	1
07805	Benzo(g,h,i)pery]	lene	191-24-2	0.2	J	0.1	1
07805	Benzo(k) fluoranth		207-08-9	0.2	J	0.1	1
07805	Chrysene		218-01-9	0.3	J	0.1	1
07805	Dibenz(a,h)anthrace	ene	53-70-3	N.D.		0.1	1
07805	Fluoranthene		205-44-0	0.4	J	0.1	1
07805	Fluorene		86-73-7	0.2	J	0.1	1
07805	Indeno(1,2,3-cd)	yrene	193-39-5	0.1	J	0.1	1
07805	Naphthalene	-	91-20-3	N.D.		0.1	1
07805	Phenanthrene		85-01-8	0.4	J	0.1	1
07805	Pyrene		129-00-0	0.6	-	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time	_	Factor
10903	UST VOCs 0260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 01:37	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 01:37	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 16:04	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH09 3018

hw 1/12/12

Sample Description: MW-45 Grab Water COC: 271730 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 09:20 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT4S SDG#: PCH09-08

Page 1 of 1

LLI Sample	#	WW 6477570
LLI Group	#	1277546
Account	#	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8 '	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.B	1
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/1	
07805	Acenaphthene	83-32-9	N.D.	0.1	1
07805	Acenaphthylene	208-96-8	0.2 J	0.1	1
07805	Anthracene	120-12-7	N.D.	0.1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	0.1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b) fluoranthene	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	N.D.	0.1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	Q.1	l
07805	Fluoranthene	206-44-0	N.D.	0.1	1
07805	Fluorene	86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	0.1 J	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
07805	Pyrene	129-00-0	0.1 J	0.1	1

General Sample Comments

State of New York Certification No. 10670

-

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 01:58	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 01:58	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 16:29	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	l	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	l

PCH89 8019

1/12/12

C

Page 1 of 1

Sample Description: MW-4D Grab Water COC: 271730 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 09:45 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT4D SDG#: PCH09-09

LLI Sample # WW 6477571 LLI Group # 1277546 Account # 09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/1	ug/1	
07805	Acenaphthene	83-32-9	N.D.	0.1	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	1
07805	Anthracene	120-12-7	N.D.	0.1	1
07805	Benzo(a) anthracene	56-55-3	N.D.	0.1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	N.D.	0.1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	N.D.	0.1	1
07805	Fluorene	86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	N.D.	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
07805	Pyrene	129-00-0	N.D.	0.1	l

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysia Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 02:19	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 02:19	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 16:53	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH89 8828

1/12/12

Sample Description: FB-111711 Grab Water COC: 271730 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 10:00 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PATFB SDG#: PCH09-10FB

10

Page 1 of 1

LLI	Sample	#	WW 6477572
LLI	Group	#	1277546
Acco	ount	#	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

As Received

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10903	Benzene	71-43-2	N.D.	0.5	1	
10903	Ethylbenzene	100-41-4	N.D.	0.8	l	
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	
10903	Toluene	108-88-3	N.D.	0.7	1	
10903	m+p-Xylene	179601-23-1	N.D.	0.8	l	
10903	o-Xylene	95-47-6	N.D.	0.8	1	
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1	
GC/MS	Semivolatiles SW-846	8270C	ug/1	ug/l		
07805	Acenaphthene	83-32-9	N.D.	0.1	1	
07805	Acenaphthylene	208-96-8	N.D.	0.1	1	
07805	Anthracene	120-12-7	N.D.	0.1	1	
07605	Benzo(a) anthracene	56-55-3	N.D.	0.1	1	
07805	Benzo(a) pyrene	50-32-8	N.D.	0.1	1	
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1	
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	1	
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	1	
07805	Chrysene	218-01-9	N.D.	0.1	1	
07805	Dibenz(a,h)anthracene	53-70-3	N.D	0.1	1	
07805	Fluoranthene	206-44-0	N.D.	0.1	1	
07805	Fluorene	86-73-7	N.D.	0.1	1	
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1	
07805	Naphthalene	91-20-3	N.D.	0.1	1	
07805	Phenanthrene	85-01-0	N.D.	0.1	1	
07805	Pyrene	129-00-0	N.D.	0.1	1	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Nethod	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA Ü	11/29/2011 02:39	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 02:39	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 17:16	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH09 0821

nw 1112/12

Sample Description: MW-7S Grab Water COC: 192824 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 11:10 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT7S SDG#: PCH09-11

Page 1 of 1

LLI Sample	#	WW 6477573
LLI Group	#	1277546
Account	Ħ	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/1	ug/l	
10903	Benzene		71-43-2	N.D.	0.5	1
10903	Ethylbenzene		100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Buty	1 Ether	1634-04-4	N.D.	0.5	1
10903	Toluene		108-88-3	N.D.	0.7	1
10903	m+p-Xylene		179601-23-1	N.D.	0.8	1
10903	o-Xylene		95-47-6	N.D.	0.8	1
10903	Xylene (Total)		1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles	SW-846	8270C	ug/1	ug/l	
07805	Acenaphthene		83-32-9	N.D.	0.1	1
07805	Acenaphthylene		208-96-8	N.D.	0.1	1
07805	Anthracene		120-12-7	N.D.	0.1	1
07805	Benzo(a)anthracene		56-55-3	N.D.	0.1	1
07805	Benzo(a)pyrene		50-32-8	N.D.	0.1	1
07805	Benzo(b) fluoranthene	•	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylene	1	191-24-2	N.D.	0.1	1
07805	Benzo(k)fluoranthene	:	207-08-9	N.D.	0.1	1
07805	Chrysene		218-01-9	N.D.	0.1	1
07805	Dibenz(a,h)anthracen	le	53-70-3	N.D.	0.1	1
07805	Fluoranthene		206-44-0	N.D.	0.1	1
07805	Fluorene		86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyre	ene	193-39-5	N.D.	0.1	1
07805	Naphthalene		91-20-3	N.D.	0.1	1
	Phenanthrene		85-01-8	N.D.	0.1	1
07805	Filenanciitene					

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	¥113322AA	11/29/2011 03:00	Frank A Valla, Jr	I
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 03:00	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 17:41	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH89 8822

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

MJ 1/12/12

Sample Description: MW-7D Grab Water COC: 192824 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 11:15 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT7D SDG#: PCH09-12

12

Page 1 of 1

LLI Sa	umple	#	WW	6477574
LLI G	oup	#	127	7546 ·
Accour	ıt	#	092	86

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/1	ug/1	
10903	Benzene		71-43-2	N.D.	0.5	1
10903	Ethylbenzene		100-41-4	N.D.	0.8	1
10903	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene		108-88-3	N.D.	0.7	1
10903	m+p-Xylene		179601-23-1	N.D.	0.8	1
10903	o-Xylene		95-47-6	N.D.	0.8	1
10903	Xylene (Total)		1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles	SW-846	8270C	ug/1	ug/1	
07805	Acenaphthene		83-32-9	N.D.	0.1	1
07805	Acenaphthylene		208-96-8	N.D.	0.1	1
07805	Anthracene		120-12-7	N.D.	0.1	1
07805	Benzo(a)anthracene		56-55-3	N.D.	0.1	1
07805	Benzo(a)pyrene		50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthen	e	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylen	e	191-24-2	N.D.	0.1	1
07805	Benzo(k) fluoranthen	ė	207-08-9	N.D.	0.1	1
07805	Chrysene		218-01-9	N.D.	0.1	l
07805	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.1	I
07805	Fluoranthene		206-44-0	N.D.	0.1	1.
07805	Fluorene		86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyr	ené	193-39-5	N.D.	0.1	1
07805	Naphthalene		91-20-3	N.D.	0.1	1
07805	Phenanthrene		85-01-8	N.D.	0.1	1
07805	Pyrene		129-00-0	N.D.	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	¥113322AA	11/29/2011 03:20	Frank A Valla, Jr	I
01163	GC/MS VOA Water Prep	SW-046 5030B	1	Y113322AA	11/29/2011 03:20	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 18:04	Matthew S Woods	1
07807	BNA Water Extraction	5W-846 3510C	l	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	l

PCH09 8623

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

_- · .

1/12/12

Sample	Description:	MW-2D Grab Water
		COC: 192824
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 12:45 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT2D SDG#: PCH09-13

13

Page 1 of 1

LLI	Sample	#	WW	6477575
LLI	Group	#	127	7546
Acco	ount	#	092	86

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/1	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
3C/MS	Semivolatiles SW-846	8270C.	ug/1	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	1
07805	Anthracene	120-12-7	N.D.	0.1	l
07805	Benzo(a) anthracene	56-55-3	N.D.	0.1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b) fluoranthene	205-99-2	0.1 J	0.1	1
07805	Benzo(g, h, i) pervlene	191-24-2	N.D.	0.1	1
07805	Benzo(k) fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	N.D.	0.1	ī
07805	Dibenz(a,h) anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	205-44-0	N.D.	0.1	1
07805	Fluorene	86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	0.1 J	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
07805	Pyrene	129-00-0	N.D.	0.1	1
samp	o(b)fluoranthene and benzo(k) le analysis conditions. The esents the combined total of	result reported fo			

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 03:41	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 03:41	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 18:28	Matthew 5 Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH89 0824

hw 1/12/12

Sample	Description:	MW-2S Grab Water
-		COC: 192824
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/17/2011 12:50 by CM

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PAT2S SDG#: PCH09-14

14

Page 1 of 1

LLI	Sample	ŧ	WW 6477576
LLI	Group	#	1277546
Acco	ount	#	09286

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/1	
10903	Benzené	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1.
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-846	8270C	ug/1	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	l
07805	Anthracene	120-12-7	N.D.	0.1	l
07805	Benzo(a) anthracene	56-55-3	N.D.	0.1	1
07805	Benzo(a) pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i) perylene	191-24-2	N.D.	0.1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	N.D.	0.1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	N.D.	0.1	1
07805	Fluorene	86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	l
07805	Naphthalene	91-20-3	N.D.	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
07805	Pyrene	129-00-0	N.D.	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

nw 112/12

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10903	UST VOCs 8260 (Water)	SW-846 8260B	1	Y113322AA	11/29/2011 04:02	Frank A Valla, Jr	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y113322AA	11/29/2011 04:02	Frank A Valla, Jr	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	11325WAK026	12/05/2011 18:52	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	11325WAK026	11/22/2011 09:30	Kerrie A Freeburn	1

PCH69 8825

Sample Description: Trip Blank Water COC: 192824 Patchogue, NY

Project Name: Patchogue, NY

Collected: 11/16/2011

Submitted: 11/19/2011 09:50 Reported: 12/08/2011 11:57

PATTB SDG#: PCH09-15TB*

Brown & Caldwell 110 Commerce Drive Allendale NJ 07401

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Ethylbenzene	100-41-4	N.D.	0.8	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	I
10903	Toluene	108-88-3	N.D.	0.7	1
10903	m+p-Xylene	179601-23-1	N.D.	0.8	1
10903	o-Xylene	95-47-6	N.D.	0.8	1
10903	Xylene (Total)	1330-20-7	N.D.	0.8	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	UST VOCs 8260 (Water) GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	-	Y113322AA Y113322AA	11/29/2011 04:22 11/29/2011 04:22	Frank A Valla, Jr Frank A Valla, Jr	

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

hed 1/12/12 15

Page 1 of 1

LLI	Sample	#	WW 6477577
LLI	Group	#	1277546
Account			09286

Appendix D: Electronic Data Deliverable (CD-ROM)

