

Sarah Aldridge Project Manager Site Investigation and Remediation

September 8, 2016

Ms. Elizabeth B. Lukowski
Engineering Geologist I
New York State Department of Environmental Conservation
Division of Environmental Remediation, Remedial Bureau C, Section A
625 Broadway, 11th Floor
Albany, NY 12233-7014

Subject: First Half 2016 Semi-Annual Groundwater Monitoring Report

Patchogue Former MGP Site

Patchogue, Suffolk County, New York

Site No. 1-52-182

Dear Ms. Lukowski:

This letter serves to transmit one hard copy and one CD containing an electronic copy of the First Half 2016 Semi-Annual Groundwater Monitoring Report for the Patchogue Former Manufactured Gas Plant (MGP) located in Patchogue, Suffolk County, New York (Site No. 1-52-182).

If you should have any questions, comments or require any additional information, please do not hesitate to contact me (516-545-2586).

Sincerely,

Sarah Aldridge

Project Manager, Site Investigation and Remediation

cc: Jacquelyn Nealon, NYSDOH (1 hard copy)

Amy Juchatz, SCDHS (1 hard copy)

Ralph Milito, SCDHS (electronic copy via email)

First Half 2016
Semi-Annual Groundwater Monitoring Report
Patchogue Former MGP Site
NYSDEC Site No. 1-52-182
Village of Patchogue, Suffolk County, New York

Prepared for National Grid USA Hicksville, New York September 2016

First Half 2016 Semi-Annual Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

Prepared for National Grid USA 175 East Old Country Road Hicksville, New York 11801

September 2016

Project Number: 149322.730.004

Brown and Caldwell Associates 2 Park Way, Suite 2A Upper Saddle River, New Jersey 07458

Table of Contents

Aр	pendices		
Lis	t of Tables		i
	_		
		d	
2.	Scope of Work		2-1
3.	Results and Finding	ngs	3-1
	3.1 Water Level	el Data	3-1
	3.2 NAPL Gaugi	ging	3-1
	3.3 Groundwate	er Quality Data	3-2
		nclusions	
5.	References		5-1

Appendices

Appendix A	Field Sampling Sheets
Appendix B	Laboratory Data Report (CD-ROM)
Appendix C	Data Usability Summary Report (DUSR
Appendix D	Electronic Data Deliverable (CD-ROM)

List of Tables

- Table 1. Water Elevation and NAPL Monitoring Data
- Table 2. Groundwater Analysis Results
- Table 3. Summary of Historical BTEX Concentrations
- Table 4. Summary of Historical PAH Concentrations

List of Figures

Figure 1. Water Table Elevation Contour Map - May 31, 2016

Section 1

Introduction

This Semi-Annual Groundwater Monitoring Report documents the implementation and summarizes the results of the groundwater monitoring activities conducted during the first half of 2016 at the Patchogue Former Manufactured Gas Plant (MGP) Site (hereinafter referred to as the "Site"). The groundwater monitoring activities included the performance of the water level measurements, non-aqueous phase liquid (NAPL) gauging and groundwater sampling activities.

The groundwater monitoring event and the preparation of this report are part of the routine groundwater monitoring program being conducted at the Site. This report has been prepared for submittal to the New York State Department of Environmental Conservation (NYSDEC) and includes the following:

- Description of the scope of the field activities, methods and procedures;
- Table summarizing the results of the water level measurements and the gauging of the monitoring wells and piezometers for the presence of NAPL (see Table 1);
- Table summarizing the analytical results for the groundwater samples obtained during the first half 2016 monitoring event including a comparison to the applicable groundwater quality criteria (see Table 2);
- Comparison of data from this monitoring period to data from historical monitoring events (Tables 3 and 4);
- Discussion of the results and findings from the groundwater monitoring data;
- A water table elevation contour map depicting the generalized direction of groundwater flow based on groundwater elevation data obtained from monitoring wells and piezometers, as well as surface water elevation data obtained from staff gauges installed in the Patchogue River (Figure 1);
- Field Sampling Data Sheets (Appendix A);
- Laboratory Data Report (Appendix B);
- Data Usability Summary Report (Appendix C); and
- Electronic Data Deliverable (Appendix D).

1.1 Background

Groundwater monitoring events have been conducted at the Site since March 2008 including two monitoring events conducted as part of the Remedial Investigation (RI) in March 2008 and July 2008. The groundwater monitoring event conducted in May/June 2016 is the subject of this report. The results of previous monitoring events have had fairly consistent concentrations and areal distribution of constituents in groundwater. Prior to the March 2010 groundwater monitoring event, site-related dissolved phase constituents [e.g., benzene, toluene, ethylbenzene, xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs)] were detected at concentrations above the Class GA groundwater quality criteria [i.e., standards from the 6 NYCRR Part 703 Standards and guidance values from the Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1] in a limited area near the center of the Site. These elevated concentrations did not extend downgradient to the wells closer to the Patchogue River. However, during the March 2010 and September 2010 monitoring events, detections of BTEX and PAH compounds were more widely distributed than during previous events. It was surmised that this change was the result of a temporary dewatering operation at a construction project conducted by

the Village of Patchogue at their wastewater treatment facility (WWTF) directly across the river from the Site. Based on the understanding of Site conditions, it was anticipated that when the dewatering operations had ceased, concentrations in groundwater would re-equilibrate with steady-state (i.e., predewatering) groundwater flow conditions, and eventually return to levels similar to those prior to dewatering. To confirm this, National Grid increased the frequency of the groundwater monitoring from semi-annually to quarterly. The subsequent six quarterly monitoring events documented the return of groundwater flow and groundwater quality to conditions consistent with those prior to the dewatering operations.

Based on this finding, in a May 24, 2012 email, National Grid proposed to the NYSDEC that the frequency of groundwater sampling and analysis return to a semi-annual basis with the schedule for water level monitoring and NAPL gauging remaining on a quarterly basis. NYSDEC agreed with this proposal. Collection of water level data remained on a quarterly schedule to provide additional water level data from the piezometers that had been installed in the first half of 2012 in support of the Pre-Remedial Design Investigation. Subsequently, in an October 8, 2013 letter to the NYSDEC, National Grid proposed that that the frequency of all components of the groundwater monitoring program (i.e., water level measurements, NAPL gauging and groundwater sampling) be returned to the semi-annual schedule. This proposal was made because the data from the water level measurements and NAPL gauging, including data from the newer piezometers, continued to indicate very consistent findings from quarter to quarter and confirmed the understanding of groundwater flow conditions and NAPL occurrence at the Site. The NYSDEC concurred with this proposal in a December 9, 2013 email.

Section 2

Scope of Work

Field activities for the first half 2016 groundwater monitoring were conducted by Brown and Caldwell Associates (BC) on May 31 and June 1, 2016. The activities conducted during this monitoring event are described below. Locations of the monitoring wells, piezometers and staff gauges referenced below are depicted on Figure 1.

Prior to groundwater sampling, water level measurements and NAPL gauging was performed in the piezometers and monitoring wells associated with the Site. The level of the Patchogue River was measured at one of the two staff gauges (SG-2 was inaccessible due to a downed tree in the river during the monitoring event). Water level measurements and NAPL gauging were made using an electronic oil/water interface probe, and measured to the nearest 0.01 foot. At the locations where NAPL was detected using the oil/water interface probe, a 3-foot long threaded rod attached to a nylon mason line was lowered into the monitoring well or piezometer to confirm the presence of the NAPL. The threaded rod was lowered to the bottom of the monitoring well to measure the approximate thickness of the NAPL accumulation.

Groundwater sampling was conducted at ten monitoring wells following the water level and NAPL gauging activities. Monitoring wells MW-5 and MW-6 were not sampled during this monitoring period due to the presence of NAPL in these wells. The presence of NAPL in these wells is consistent with observations during previous gauging activities. The standard protocol is that if NAPL is observed in a well during gauging or sampling, groundwater samples are not submitted for laboratory analyses. Groundwater sampling was conducted using low flow purging and sampling techniques in accordance with the United States Environmental Protection Agency (USEPA) protocol (USEPA, July 1996, Revised January 2010). Samples were submitted to Aqua Pro-Tech Laboratories (APL) located in Fairfield, New Jersey. APL is certified (Certification No. 11634) through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP).

The groundwater samples were analyzed for: BTEX compounds and methyl tertiary-butyl ether (MTBE) using USEPA SW-846 Method 8260B; and PAHs using USEPA SW-846 Method 8270C. The groundwater samples were also analyzed in the field for pH, specific conductivity, temperature, turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (see Appendix A for field data sheets).

The laboratory report from APL is provided in Appendix B. Laboratory analytical data were provided to BC in electronic form by APL and have been incorporated into the environmental database maintained by BC for the Site.

In addition to the samples described above, quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples included: trip blanks (one per cooler containing samples for BTEX and MTBE analysis), a field duplicate, and an equipment blank. Also, extra sample volume was collected from one location to provide for matrix spike/matrix spike duplicate (MS/MSD) analysis. The trip blanks were analyzed for BTEX and MTBE only. The other QA/QC samples were analyzed for BTEX, MTBE, and PAHs.

Laboratory results for the groundwater sample analyses were forwarded to a data validator, Environmental Data Services, Inc. of Newport News, Virginia, for review and preparation of a Data Usability Summary Report (DUSR). The DUSR presents a summary of data usability including a discussion of qualified data. The DUSR is provided as Appendix C. As described in the DUSR, the data were considered by the validator to be valid and usable. An Electronic Data Deliverable (EDD) of the validated analytical data, prepared in accordance with NYSDEC requirements, is provided in Appendix D.

Section 3

Results and Findings

3.1 Water Level Data

Table 1 provides the water level data and calculated water elevations from the May 31, 2016 measurements. Figure 1 illustrates the elevation contours of the water table based on these data. The contours were developed using water level elevation data from the shallow monitoring wells and shallow piezometers at the Site (i.e., those with screens that straddle, or are just below, the water table) and one (SG-1) of the two surface water staff gauges in the Patchogue River. The surface water level was not measured at SG-2 as it was inaccessible due to a downed tree in the Patchogue River. The accessibility of SG-2 will be reevaluated during the next groundwater monitoring event (December 2016). At that time, recommendations will be made to either omit the surface water measurements at this staff gauge from future monitoring events or to install a new staff gauge at a more accessible location. The water level elevations used for contouring are representative of water table elevations at the Site. The groundwater elevation (hydraulic head) values for the wells and piezometers screened in deeper intervals are also depicted for reference on Figure 1. The water table is relatively shallow and is typically positioned in the fill that overlies the native alluvial deposits and outwash deposits. The water table contours indicate that lateral groundwater flow is from northwest to southeast across the Site toward the Patchogue River. Comparisons of the groundwater elevations in the monitoring wells to the river elevation, as measured at staff gauge SG-1, demonstrate that groundwater elevations are higher than the river level indicating that groundwater is discharging to the Patchogue River. The upward vertical hydraulic gradient measured at well pairs adjacent to the river (well pairs MW-4S and MW-4D, and MW-9S and MW-9D) is indicative of a discharge area and provides further support to the conclusion that groundwater is discharging to the Patchogue River. The general configuration of the water table contours, developed using the May 31, 2016 data, and the interpreted groundwater flow patterns are consistent with those from previous rounds of water level measurements with one exception. The exception occurred during the March 2010 sampling event when the large-scale dewatering activities were being conducted on the WWTF site located east of the Site on the opposite side of the river (see discussion in Section 1.1). Operation of this dewatering system temporarily altered groundwater flow patterns and levels at the Site (see "Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event" [GEI, November 2010]).

3.2 NAPL Gauging

Table 1 presents the results of the NAPL gauging conducted in the monitoring wells and piezometers associated with the Site during the May/June 2016 groundwater monitoring event. NAPL was identified in the following wells during the gauging activities:

- MW-5: NAPL with moth ball-like odor on the lower 0.32 feet of the threaded rod.
- **MW-6:** Sporadic NAPL blebs on the 3-foot threaded rod, however NAPL was not detected on the oil/Water interface probe.

NAPL had been observed in MW-5 and MW-6 in previous gauging events.

3.3 Groundwater Quality Data

Table 2 provides the results of the laboratory analyses of the groundwater samples collected during the May/June 2016 monitoring event and a comparison of the data to the New York State Class GA groundwater quality criteria. Comparisons of total BTEX and total PAH concentrations from this sampling event to previous sampling events are provided as Tables 3 and 4, respectively.

As previously stated, NAPL was identified in two of the 12 monitoring wells (MW-5 and MW-6) associated with the Site. These two wells are located in the central part of the Site in the area of former MGP operations (refer to Figure 1). As discussed in Section 2, because they contained NAPL, groundwater samples were not collected from MW-5 and MW-6. Groundwater samples were collected from the remaining ten monitoring wells and submitted to the laboratory for analysis.

The constituent concentrations in groundwater samples collected during the May/June 2016 monitoring event were consistent with those measured during previous monitoring events. No MTBE or BTEX compounds were detected at any of the ten monitoring wells sampled during the May/June 2016 monitoring event. PAH compounds were either not detected or were detected at concentrations below the Class GA groundwater quality criteria at all ten monitoring wells sampled during the May/June 2016 monitoring event.

Section 4

Summary and Conclusions

As noted in previous monitoring events, NAPL was identified in two of the monitoring wells, MW-5 and MW-6 during the May/June 2016 event. MW-5 and MW-6 are located in the center of the Site in the area of former MGP operations where NAPL has been identified in the soil.

No MTBE or BTEX compounds were detected at any of the monitoring wells sampled during the May/June 2016 monitoring event.

PAH compounds were either not detected or were detected at concentrations below the Class GA groundwater quality criteria at all ten monitoring wells that sampled during the May/June 2016 monitoring event. Monitoring will continue on a semi-annual basis in order to confirm these conditions.

Due to the presence of the large tree impeding access to SG-2, a new staff gauge will be installed, surveyed and monitoring during the second-half 2016 groundwater monitoring event.

Section 5

References

- Brown and Caldwell Associates, December 2012, Construction Completion Report Utility Corridor Work Plan Implementation, Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- GEI, November 2010. Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event, Patchogue Former MGP Site, Town of Brookhaven, Suffolk County, Long Island, New York, Site ID No. 1-52-182.
- USEPA, July 1996; Revised January 2010. Low-Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

First Half 2016 -	Semi-Annual	Groundwater	Monitoring R	eport

Tables

TABLE 1 WATER ELEVATIONS AND NAPL MONITORING DATA FIRST HALF 2016 PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

			<u>5/31</u>	<u>/2016</u>		
Well ID	Top of Casing Elevation ^(a)	Depth to Water	Water Elevation	Depth to NAPL	Total Depth of Well	Remarks
	(ft., NAVD)	(ft., BTOC)	(ft., NAVD)	(ft., BTOC)	(ft., BGS)	
MW-1	11.47	5.89	5.58	NI	15.19	
MW-3	5.56	2.43	3.13	NI	10.4	
MW-4S	7.97	5.17	2.80	NI	12.23	
MW-4D	7.79	4.91	2.88	NI	26.65	
MW-5	8.66	4.71	3.95	10.18	10.5	NAPL on lower 0.32' of threaded rod.
MW-6	5.03	0.57	4.46	NI	18.4	Sporadic NAPL blebs on 3-foot threaded rod. Used threaded rod due to historical NAPL detections at this well.
MW-7S	8.45	4.54	3.91	NI	12.46	
MW-7D	8.31	4.4	3.91	NI	28.2	
MW-8S	5.08	0.88	4.20			
MW-8D	4.98	0.8	4.18			
MW-9S	4.47	1.62	2.85	NI	10.22	
MW-9D	4.66	1.52	3.14	NI	22.9	
SG-1	5.23	4.16	1.07	NI		
SG-2	5.17					Could not be accessed during the June 2016 monitoring event due to a downed tree in the Patchogue River.
PZ-1A	8.05	3.7	4.35	NI	10.03	
PZ-1B	8.91	4.61	4.30	NI	22.49	
PZ-2A	8.77	4.47	4.30	NI	8.05	
PZ-2B	8.29	3.99	4.30	NI	18	
PZ-3A	8.78	4.92	3.86	NI	8.86	Slight moth ball-like odor on oil/water interface probe. Black silt with sheen on lower 0.3' of threaded rod.
PZ-3B	8.9	5.26	3.64	NI	21.21	Slight fuel-like odor on oil/water interface probe.
PZ-4A	4.79	1.73	3.06	NI	4.88	

Notes:

NAVD - North American Vertical Datum

BGS - Below Ground Surface BTOC - Below Top of Casing

NAPL - Non-aqueous phase liquid

NI - NAPL Not Indicated by Oil/Water Interface Probe

(a) - Monitoring wells resurveyed on 7/3/12 following utility corridor construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)". Above ground casing at MW-5 was lowered during utility corridor construction activities and was resurveyed in September 2015.

(--) - Not Measured

TABLE 2
GROUNDWATER ANALYSIS RESULTS
PATCHOGUE FORMER MGP SITE
PATCHOGUE, NEW YORK

	Class GA Grou	ndwater Criteria	Loc ID	MW-1	MW-3	MW-4D	MW-4S	MW-7D
Constituent	TOGS 1.1.1 Guidance	NYS Part 703 Standard	Sample Date Units	6/1/2016	6/1/2016	6/1/2016	6/1/2016	5/31/2016
Volatile Organic Compounds (VOCs)								
ВТЕХ								
Benzene	NE	1	μg/L	0.129 U				
Ethylbenzene	NE	5	μg/L	0.244 U				
Xylenes, m & p	NE	5	μg/L	0.461 U				
1,2-Dimethylbenzene (o-Xylene)	NE	5	μg/L	0.244 U				
Toluene	NE	5	μg/L	0.205 U				
Xylenes, total	NE	5	μg/L	0.705 U				
Total BTEX	NE	NE	μg/L	ND	ND	ND	ND	ND
Other VOCs								
tert-Butyl methyl ether (MTBE)	10	NE	μg/L	0.596 U				
tert-Butyl alcohol	NE	NE	μg/L	8.170 U				
Semi-Volatile Organic Compounds ((SVOCs)							
Polycyclic Aromatic Hydrocarbons (F	PAHs)							
Acenaphthene	20	NE	μg/L	0.681 U	0.652 U	0.674 U	0.613 U	0.659 U
Acenaphthylene	NE	NE	μg/L	0.301 U	0.288 U	0.298 U	0.271 U	0.291 U
Anthracene	50	NE	μg/L	0.354 U	0.339 U	0.351 U	0.319 U	0.343 U
Benzo(a)anthracene	0.002	NE	μg/L	0.524 U	0.502 U	0.519 U	0.472 U	0.508 U
Benzo(a)pyrene	NE	0	μg/L	0.390 U	0.373 U	0.386 U	0.351 U	0.377 U
Benzo(b)fluoranthene	0.002	NE	μg/L	0.470 U	0.450 U	0.465 U	0.423 U	0.455 U
Benzo(g,h,i)perylene	NE	NE	μg/L	0.550 U	0.527 U	0.544 U	0.495 U	0.532 U
Benzo(k)fluoranthene	0.002	NE	μg/L	0.481 U	0.461 U	0.476 U	0.433 U	0.466 U
Chrysene	0.002	NE	μg/L	0.479 U	0.459 U	0.474 U	0.431 U	0.463 U
Dibenz(a,h)anthracene	NE	NE	μg/L	0.446 U	0.427 U	0.441 U	0.401 U	0.431 U
Fluoranthene	50	NE	μg/L	0.334 U	0.804 J	0.331 U	0.301 U	0.324 U
Fluorene	50	NE	μg/L	0.199 U	0.190 U	0.197 U	0.179 U	0.192 U
Indeno(1,2,3-c,d)pyrene	0.002	NE	μg/L	0.477 U	0.456 U	0.471 U	0.429 U	0.461 U

TABLE 2 GROUNDWATER ANALYSIS RESULTS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

	Class GA Groui	ndwater Criteria	Loc ID	MW-1	MW-3	MW-4D	MW-4S	MW-7D
Constituent	TOGS 1.1.1	NYS Part 703	Sample Date	6/1/2016	6/1/2016	6/1/2016	6/1/2016	5/31/2016
	Guidance	Standard	Units					
Naphthalene	10	NE	μg/L	0.602 U	0.577 U	0.596 U	0.542 U	0.583 U
Phenanthrene	50	NE	μg/L	0.513 U	0.491 U	0.508 U	0.462 U	0.497 U
Pyrene	50	NE	μg/L	0.412 U	1.100 J	0.408 U	0.765 J	0.399 U
Total PAHs	NE	NE	μg/L	ND	1.904 J	ND	0.765 J	ND

TABLE 2
GROUNDWATER ANALYSIS RESULTS
PATCHOGUE FORMER MGP SITE
PATCHOGUE, NEW YORK

Ethylbenzene NE 5 µg/L 0.244 U 0.461 U 0.244 U 0.245 U 0.256 U 0.356 U	MW-9D	MW-9D	MW-8S	MW-8D	MW-7S	MW-7D DUP	Loc ID	ndwater Criteria	Class GA Groui	
Benzene NE	6/1/2016	5/31/2016	6/1/2016	6/1/2016	5/31/2016	5/31/2016				Constituent
Benzene NE)	Volatile Organic Compounds (VOCs)
Ethylbenzene NE 5 µg/L 0.244 U 0.261 U 0.461 U 0.244 U										BTEX
Xylenes, m & p NE 5	0.129 U	0.129 U	0.129 U	0.129 U	0.129 U	0.129 U	μg/L	1	NE	Benzene
1,2-Dimethylbenzene (o-Xylene) NE 5 µg/L 0.244 U 0.245 U 0.205	0.244 U	0.244 U	0.244 U	0.244 U	0.244 U	0.244 U	µg/L	5	NE	Ethylbenzene
Toluene NE 5 μg/L 0.205 U 0.705 U 0.7	0.461 U	0.461 U	0.461 U	0.461 U	0.461 U	0.461 U	μg/L	5	NE	Xylenes, m & p
Xylenes, total NE 5 μg/L 0.705 U ND	0.244 U	0.244 U	0.244 U	0.244 U	0.244 U	0.244 U	μg/L	5	NE	1,2-Dimethylbenzene (o-Xylene)
Other VOCs VERY LET Butyl methyl ether (MTBE) 10 NE μg/L 0.596 U 8.170 U 9.12 9.12	0.205 U	0.205 U	0.205 U	0.205 U	0.205 U	0.205 U	μg/L	5	NE	Toluene
Other VOCs tert-Butyl methyl ether (MTBE) 10 NE μg/L 0.596 U 8.170 U 9.170 U 9.682 U 9.692 U 9.689 U 9.692 U 9.689 U 9.692 U 9.697 U 9.697 U 9.697 U 9.697 U 9.697 U 9.3	0.705 U	0.705 U	0.705 U	0.705 U	0.705 U	0.705 U	μg/L	5	NE	Xylenes, total
tert-Butyl methyl ether (MTBE) 10 NE μg/L 0.596 U 0.597 U 0.598 U 0.594 U 0.598 U 0.599 U 0.598 U 0.599 U 0.599 U 0.599 U 0.599 U 0.599 U 0.599 U 0.399 U 0.399 U 0.399 U 0.399 U 0.399 U 0.399 U 0.475 U 0.423 U 0.423 U 0.470 U 0.481 U 0.475 U 0.475 U 0.495 U 0.556 U 0.597 U 0.481 U 0.495 U 0.481 U 0.481 U 0.495 U 0.481 U 0.4	ND	ND	ND	ND	ND	ND	μg/L	NE	NE	Total BTEX
Semi-Volatile Organic Compounds (SVOCs) Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene 20 NE μg/L 0.613 U 0.626 U 0.681 U 0.697 U 0.689 U Acenaphthylene NE NE μg/L 0.271 U 0.277 U 0.301 U 0.308 U 0.304 U Anthracene 50 NE μg/L 0.319 U 0.326 U 0.354 U 0.362 U 0.358 U Benzo(a)anthracene 0.002 NE μg/L 0.472 U 0.482 U 0.524 U 0.536 U 0.530 U Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.399 U 0.394 U Benzo(b)filuoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(k)fluoranthene 0.002 NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481										Other VOCs
Semi-Volatile Organic Compounds (SVOCs) Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene 20 NE μg/L 0.613 U 0.626 U 0.681 U 0.697 U 0.689 U Acenaphthylene NE NE μg/L 0.271 U 0.277 U 0.301 U 0.308 U 0.304 U Anthracene 50 NE μg/L 0.319 U 0.326 U 0.354 U 0.362 U 0.358 U Benzo(a)anthracene 0.002 NE μg/L 0.472 U 0.482 U 0.524 U 0.536 U 0.530 U Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.399 U 0.394 U Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(k)fluoranthene 0.002 NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U	0.596 L	0.596 U	0.596 U	0.596 U	0.596 U	0.596 U	μg/L	NE	10	tert-Butyl methyl ether (MTBE)
Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene 20 NE μg/L 0.613 U 0.626 U 0.681 U 0.697 U 0.689 U Acenaphthylene NE NE μg/L 0.271 U 0.277 U 0.301 U 0.308 U 0.304 U Anthracene 50 NE μg/L 0.319 U 0.326 U 0.354 U 0.362 U 0.358 U Benzo(a)anthracene 0.002 NE μg/L 0.472 U 0.482 U 0.524 U 0.536 U 0.530 U Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.394 U Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(k)fluoranthene NE NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	8.170 U	8.170 U	8.170 U	8.170 U	8.170 U	8.170 U	μg/L	NE	NE	tert-Butyl alcohol
Acenaphthene 20 NE μg/L 0.613 U 0.626 U 0.681 U 0.697 U 0.689 U Acenaphthylene NE NE μg/L 0.271 U 0.277 U 0.301 U 0.308 U 0.304 U Anthracene 50 NE μg/L 0.319 U 0.326 U 0.354 U 0.362 U 0.358 U Benzo(a)anthracene 0.002 NE μg/L 0.472 U 0.482 U 0.524 U 0.536 U 0.530 U Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.394 U Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.481 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U									(SVOCs)	Semi-Volatile Organic Compounds
Acenaphthylene NE NE μg/L 0.271 U 0.277 U 0.301 U 0.308 U 0.304 U Anthracene 50 NE μg/L 0.319 U 0.326 U 0.354 U 0.362 U 0.358 U Benzo(a)anthracene 0.002 NE μg/L 0.472 U 0.482 U 0.524 U 0.536 U 0.530 U Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.394 U Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(g,h,i)perylene NE NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U									PAHs)	Polycyclic Aromatic Hydrocarbons (F
Anthracene 50 NE μg/L 0.319 U 0.326 U 0.354 U 0.362 U 0.358 U Benzo(a)anthracene 0.002 NE μg/L 0.472 U 0.482 U 0.524 U 0.536 U 0.530 U Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.394 U Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(g,h,i)perylene NE NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	2.640	0.689 U	0.697 U	0.681 U	0.626 U	0.613 U	μg/L	NE	20	Acenaphthene
Benzo(a)anthracene 0.002 NE μg/L 0.472 U 0.482 U 0.524 U 0.536 U 0.530 U Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.394 U Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(g,h,i)perylene NE NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	0.285 U	0.304 U	0.308 U	0.301 U	0.277 U	0.271 U	μg/L	NE	NE	Acenaphthylene
Benzo(a)pyrene NE 0 μg/L 0.351 U 0.358 U 0.390 U 0.399 U 0.394 U Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(g,h,i)perylene NE NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	0.336 U	0.358 U	0.362 U	0.354 U	0.326 U	0.319 U	μg/L	NE	50	Anthracene
Benzo(b)fluoranthene 0.002 NE μg/L 0.423 U 0.432 U 0.470 U 0.481 U 0.475 U Benzo(g,h,i)perylene NE NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	0.497 U	0.530 U	0.536 U	0.524 U	0.482 U	0.472 U	μg/L	NE	0.002	Benzo(a)anthracene
Benzo(g,h,i)perylene NE NE μg/L 0.495 U 0.505 UJ 0.550 U 0.562 U 0.556 U Benzo(k)fluoranthene 0.002 NE μg/L 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	0.369 U	0.394 U	0.399 U	0.390 U	0.358 U	0.351 U	μg/L	0	NE	Benzo(a)pyrene
Benzo(k)fluoranthene 0.002 NE $\mu g/L$ 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	0.445 U	0.475 U	0.481 U	0.470 U	0.432 U	0.423 U	μg/L	NE	0.002	Benzo(b)fluoranthene
Benzo(k)fluoranthene 0.002 NE $\mu g/L$ 0.433 U 0.442 U 0.481 U 0.492 U 0.487 U	0.521 U	0.556 U	0.562 U	0.550 U	0.505 UJ	0.495 U	μg/L	NE	NE	Benzo(g,h,i)perylene
· · · · · · · · · · · · · · · · · · ·	0.456 U	0.487 U	0.492 U	0.481 U	0.442 U	0.433 U		NE	0.002	
Chrysene 0.002 NE $\mu g/L$ 0.431 U 0.440 U 0.479 U 0.490 U 0.484 U	0.454 U	0.484 U	0.490 U	0.479 U	0.440 U	0.431 U		NE	0.002	• •
	0.422 U	0.451 U	0.456 U	0.446 U	0.409 U	0.401 U		NE	NE	Dibenz(a,h)anthracene
	0.982 J	0.338 U	0.342 U	0.334 U	0.307 U	0.301 U		NE	50	Fluoranthene
	0.543 J	0.201 U	0.203 U	0.199 U	0.183 U	0.179 U		NE	50	
$Indeno(1,2,3-c,d) pyrene \\ 0.002 \\ NE \\ \mu g/L \\ 0.429 \\ U \\ 0.438 \\ U \\ 0.477 \\ U \\ 0.488 \\ U \\ 0.488 \\ U \\ 0.482 \\ U$	0.452 U	0.482 U	0.488 U	0.477 U	0.438 U	0.429 U		NE	0.002	Indeno(1,2,3-c,d)pyrene

TABLE 2 GROUNDWATER ANALYSIS RESULTS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

	Class GA Groui	ndwater Criteria	Loc ID	MW-7D DUP	MW-7S	MW-8D	MW-8S	MW-9D	MW-9D
Constituent	TOGS 1.1.1 Guidance	NYS Part 703 Standard	Sample Date Units	5/31/2016	5/31/2016	6/1/2016	6/1/2016	5/31/2016	6/1/2016
Naphthalene	10	NE	μg/L	0.542 U	2.530	0.602 U	0.616 U	0.609 U	0.571 U
Phenanthrene	50	NE	μg/L	0.462 U	0.471 U	0.513 U	0.525 U	0.519 U	0.715 J
Pyrene	50	NE	μg/L	0.371 U	0.379 U	0.412 U	0.422 U	0.417 U	1.550 J
Total PAHs	NE	NE	μg/L	ND	2.530	ND	ND	ND	6.430 J

Notes:

Boxed concentrations are above New York State Class GA Groundwater Quality Criteria (Standards or Guidance values). (No concentrations were above these criteria in samples collected in May/June 2016)

J - Estimated concentration. The result is below the practical quantitation limit but above the method detection limit.

U - The analyte was analyzed for, but was not detected.

μg/L - micrograms per liter

ND - Not detected.

NE - Not established.

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

							Total BTEX C	Concentratio	ons (µg/L) ^{(a})					
Sampling Date		Monitoring Well													
	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D	PZ-4A
Mar-08	0	0	0	0	3.4	0	1016	57	NS	NS	NS	NS	NS	NS	NI
Jul-08	NS	0	0	0	0	0	678	0	0	0	0	0	0	0	NI
Mar-09	0	0	0	0	0	0	975	0	0	1	0	0	0	0	NI
Sep-09	0	0	0	0	0	0	1257	1	0	0	0	0	0	0	NI
Mar-10	0	0	0	0	0	0	637	2	0	9	0	0	0	0	NI
Sep-10	0	0	0	0	0	0	NS	0	0	0	0	0	27	0	NI
Jan-11	1.7	0	0	0	0	0	NS	NS	0	0	0	0	1	0	NI
Apr-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Aug-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Nov-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Feb-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
May-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Nov-12	0	^(b)	^(a)	0	12	0	NS	NS	1	0	0	0	NS	NS	NI
Jun-13	0	^(b)	^(b)	0	0.8	0	NS	NS	0.7	0	0	0	0	NS	NI
Dec-13	0	^(b)	^(b)	NS	0	0	NS	NS	0.8	0	0	0	NS	NS	NI
Jun-14	0	^(b)	^(b)	0	0	0	NS	NS	0.8	0	0	0	NS	NS	0
Dec-14	0	^(b)	^(b)	0	0	0	NS	NS	1.3	0	0	0	0	0	NS
Jun-15	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0	NS
Dec-15	0	^(b)	^(b)	0	0	0	NS	NS	0.5	0	0	0	0	0	NS
Jun-16	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0	NS
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	637.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	1.7	0.0	0.0	0.0	12.0	0.0	1257.0	57.3	1.3	9.0	0.0	0.0	27.0	0.0	0.0
Mean	0.1	0.0	0.0	0.0	0.8	0.0	912.6	10.1	0.3	0.5	0.0	0.0	1.8	0.0	0.0

Notes:

BTEX - Benzene, toluene, ethylbenzene and xylene isomers

μg/L - micrograms per liter

NS - Not sampled.

NI - Piezometer not installed at time of sampling.

- (a) To calculate Total BTEX concentration, a value of zero is used for non-detect values.
- (b) Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion

Report, Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)".

TABLE 4
SUMMARY OF HISTORICAL PAH CONCENTRATIONS
PATCHOGUE FORMER MGP SITE
PATCHOGUE, NEW YORK

		Total PAH Concentrations (µg/L) ^(a) Monitoring Well													
Sampling Date		<u> </u>													
	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D	PZ-4A
Mar-08	0	0	0	0.76	0.6	4.3	1774	214	NS	NS	NS	NS	NS	NS	NI
Jul-08	NS	0.7	0	0	8.0	0	1799	154	0	0.47	0	0	12.0	0	NI
Mar-09	0	0	0	0	0	0	2730	0	0	0	0	0	0	0	NI
Sep-09	0	0	0	0	0	0	3373	1	0	0	0	0	0	0	NI
Mar-10	0	0	0	0	0	39	2390	17	0	0	22	0	2	0	NI
Sep-10	0	0	0	128	0	6	NS	14	0	0	11	0	396	0	NI
Jan-11	22	0	0	17	0	12	NS	NS	0	0	6	0	42	5	NI
Apr-11	0	0	0	6	0	20	NS	NS	0	0	0	0	9	0	NI
Aug-11	0	0	0.1	14	0.1	0	NS	NS	0	0	0.4	0	16	1.2	NI
Nov-11	0	0	0.2	10	0.4	0	NS	NS	0	0	0.8	0.2	8	3.4	NI
Feb-12	0.2	0	0	6	0.6	4	NS	NS	0.1	0	0.6	0	5	2.9	NI
May-12	0.4	0.1	0.6	5	0	5.8	NS	NS	0.1	0.3	1	0	6	2.8	NI
Nov-12	0.1	^(b)	^(b)	5.6	0.4	11.7	NS	NS	2.5	2.6	0.8	1.2	NS	NS	NI
Jun-13	0.8	^(b)	^(b)	NS	0.3	3.7	NS	NS	1.3	0.4	0.4	0.6	2	NS	NI
Dec-13	0	^(b)	^(b)	NS	0	2.5	NS	NS	0.8	0.4	0.3	0	NS	NS	NI
Jun-14	0	^(b)	^(b)	2.2	0.9	0	NS	NS	0.8	0.3	0.2	0	NS	NS	0.3
Dec-14	0.1	^(b)	^(b)	1.2	0.4	0	NS	NS	3	0	0.1	0	21.4	0.3	NS
Jun-15	0	^(b)	^(b)	1.1	0.9	0	NS	NS	0.9	0	0.3	0	10.4	0.3	NS
Dec-15	0	^(b)	^(b)	0	0	0	NS	NS	0.935	0	0	0	3.924	0	NS
Jun-16	0	^(b)	^(b)	1.904	0.765	0	NS	NS	2.53	0	0	0	5.887	0	NS
Min	0.0	0.0	0.0	0.0	0.0	0.0	1773.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
Max	22.0	0.7	0.6	128.0	8.0	39.0	3373.0	214.2	3.0	2.6	22.0	1.2	396.0	5.0	0.3
Mean	1.2	0.1	0.1	11.0	0.7	5.4	2413.1	66.7	0.7	0.2	2.3	0.1	33.7	1.1	0.3

Notes:

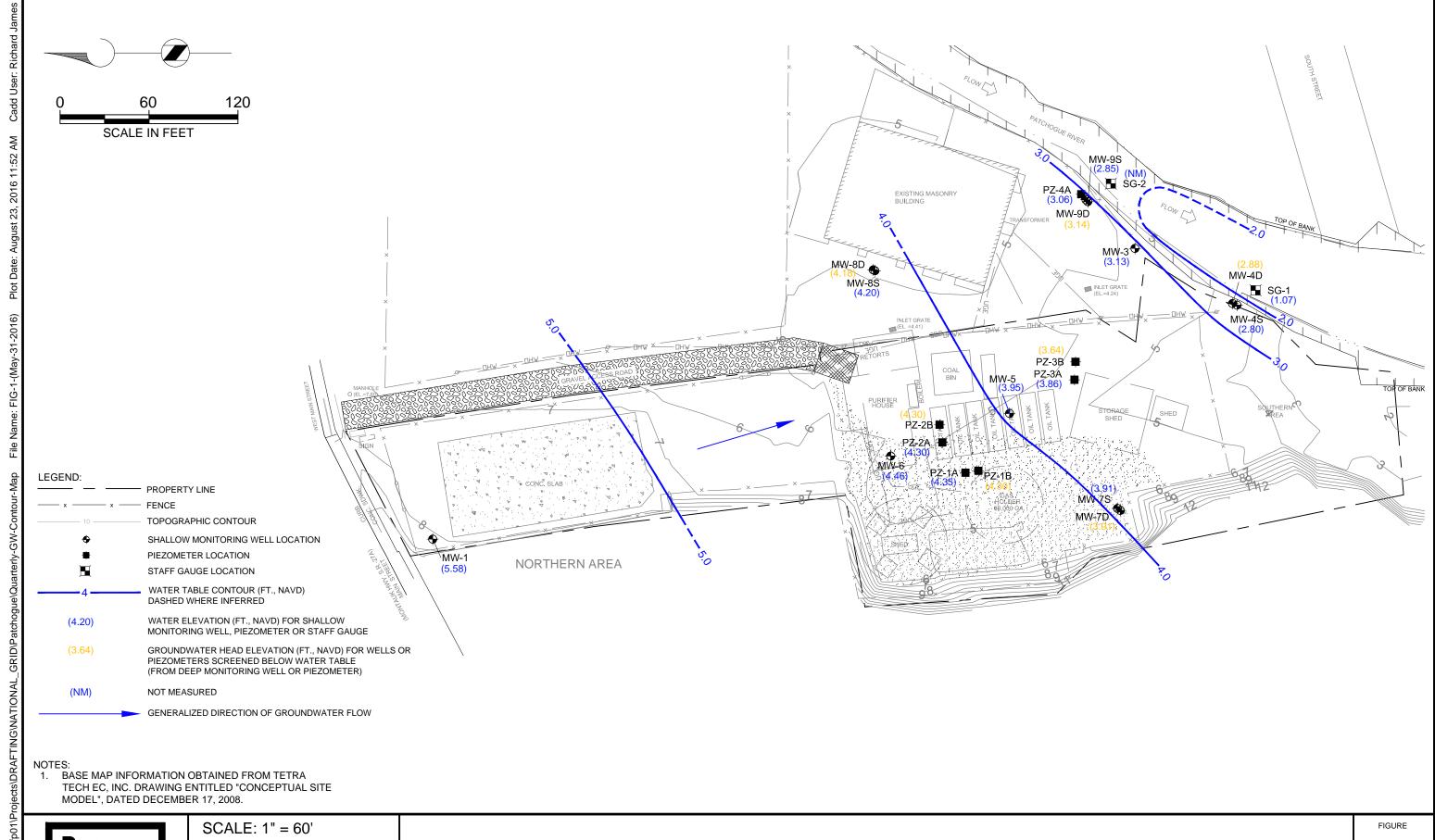
PAH - Polycyclic aromatic hydrocarbons

μg/L - micrograms per liter

NS - Not sampled.

NI - Piezometer not installed at time of sampling.

(a) - To calculate Total PAH concentration, a value of zero is used for non-detect values.


(b) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)".

First Half 2016 -	Semi-Annual	Groundwater	Monitoring	Report

Figures

1. BASE MAP INFORMAT TECH EC, INC. DRAW MODEL", DATED DEC

142128

DATE: August 23, 2016

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK WATER TABLE ELEVATION CONTOUR MAP MAY 31, 2016

Appendix A: Field Sampling Data Sheets

Brown AND Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office Sa

Well Number: MW-7S Sample I.D.: MW-7S-260537 different from As2 no)

Personnel: TIP/TMB Date: 05/31/16 Time: 1430 Weather Sunny Air Temp.: 75°
WELL DATA: Casing Diameter:
PURGE DATA: METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump Centrifugal Pump Peristaltic Pump Inertial Lift Pump Other:
MATERIALS: Pump/Bailer: Stainless Steel Tubing/Rope: Polyethylene Polypropylene Other: Pumping Rate: Yes No Number of Well Volumes Removed: PURGING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned
SAMPLING DATA: METHOD: Bailer, Size: Péladder Pump 2" Submersible Pump 4" Submersible Pump Unertial Lift Pump Other:
MATERIALS: Pump/Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Ves No Method: N/µ APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data.
DUP: D No DYes Name:

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Proj	ect Name:	NG-	Patche	DALLA		Proje	ect Number:			
	Client	- Mai	Fional.	Grid		Date: 25/31/16				
F	ersonnel:	771	PITMI	3	-	•	Well ID:	MGD-75-		
urge/Sam	ple Depth:		/	. +		•	Sample ID:	1412-75-	20141831	
						-	- 120			
		Certi	ified Para	meters				6-		
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate		
Time	pΗ	(°C)	(ms/)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments	
			/un	•						
	6.92	15.50	0.453	13.00	156	-/37	4.75	250		
441	6.78	14.11	0.459	9.17	112	-146	4.75			
	6.67	13.78	0.461	8-01	106	-151	4.78		,	
1477	6.65	13.67	17.463	6.50	65.5	-154	4.78			
450	6.62	13.56	0.463	5.78	58.2	-159	10			
453	6.60		0.464	5.05	40.7	-159	11			
456	6.57	13.38	0.463	4.54	39.2	-161	//			
15.20	6.55		0.462	3.81	42.1	-162	/1			
1502	6.52	13.12	0.478	3,34	728	-161	1'/-			
1505	6.52	13.13	0.469	2.92	32.6	-163	4.78	_ Ψ		
1508	6-52			2.65	24.0	-164		11111		
511	-Sec	mple	IVIU	o-78-	26/60	531 F	ms	MSD	collected	
		- 1								
		\rightarrow		-1-						
				171	θ					
		_			25	<i>A</i>				
					CO.	2./				
	-			-)/// /				
						X/6				
						/			• \	
									66	
				-						
									-	
Alfied C-	male les				The state of the s			1	// V/	
		ormation:	1511			Uh A I I I I		17.5	1/11/1	
	Sample:		1/11	- 4		Analyst S	Signature	(jus	14/	
strument		nath ta deter	Havi	1- 1	-52					
IVI		er/Model: _ No. Unit:	1 (0)1	ha U	-J&	Serial No. I	11	17CL	9CTN	
	Seligi	NO UNIT				Serial No. 1	"DIGDORE"		() / /-/-	

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell

Upper Saddle River, NJ Office

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MW - 71)
Sample I.D.: MW+70 - 9N/C Matter and from well no.)

Project: Pateriogne Personnel: 7mB TJP	Date: 5/3/10 Time:	1530 Air Temp.: 75°
WELL DATA: Casing Diameter: Intake Diameter: Static Water Level: DEPTH TO: Static Water Level: Top of Protective Casing CONDITION: Is Well clearly labeled? Static Water Level: Is Prot. Casing/Surface Mount in Good Cond.? (n Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost hear Is Padlock Functional? VOLUME OF WATER: Standing in well: With the Steel Steel Property Capped and Vented? Standing in well: Standing in well:	PVC Teflon® Open roll: ft Other: i clean to bottom? Yes ot bent or corroded) Yes Yes No ved) Yes No Is Inner Casing Intact?	No I No
PURGE DATA: METHOD: Bailer, Size: Centrifugal Pump Peristaltic Pum Teflon® MATERIALS: Pump/Bailer: Stainless Steel PVC Other: Pumping Rate: Pumping Rate: Yes No Nu PURGING EQUIPMENT: Dedicated Prepared Off-S	p Inertial Lift Pump I Other (ubing/Rope: 2 Volume Pumped: 3 5 9 mber of Well Volumes Removed	Teflon® Polyethylene Polypropylene Other:
SAMPLING DATA: METHOD:	off-Site Field Cleaned Contains Immiscible Lice	Teflon® Polyethylene

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Pro	ject Name: Client:		tehogn	ام الما		Proje	ect Number: Date:		11.	
	Personnel:			יקו זע		-		MW-1	FD	
Purge/San	Purge/Sample Depth:					-	Sample ID:	MW-70-2	0160231	
				-		-				
		Cert	ified Para	meters	A48				N N	
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate		
Time	pН	(°C)	(mycu)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments	
1772	272	1 00 7	100			10.0		77.		
1530	5.45	14,72	0.491	8.79	115	199	4.45	250		
1533 1534	5,100	14,57	0,496	0.54	118	188		1		
1537	5.102	14.54	0,497	-	141	171				
1542	5.37	14,53		0.14	148	147				
1545	5,60	14.77	6.500	0-46	220	192			Emptical Homba	
1548	5,19	14,77	0.502	0-13	210	180				
1551	5,34	14.13	0,503	0 09	191	160				
1557	5.41	1459	0.503	0.04	179	1 40				
1600	इ. पा	14.48	0.503	0.05	154	142			-	
14.03	5.43	14.64	0,503	0.04	130	139				
1606	5.38	14.58	0.503	0.03	1 2	139				
1609	5.38	14,54	0.504	0.02	98.9		ulie			
1612	5,35 Sau	1454	0,503	30 7	91.3	141	4.45	1 11.0521		
	3444	70	7000 -	70-04	01005	31 +	1201/-	20110531		
	-							<i>j</i> .		
			Manager Street			71 1				
			-		1	000	<u> </u>			
					The same of the sa					
					<u>)</u>	2 7				
			>		51	3117				
						- '// LP				
						1 1	1			
Certified S Time o	ample Int		1615	9		Analyst \$	Signature:	My	YR.	
Instrumen			. 0 1	AI	<u></u>	-		V	V /	
N	lanufactur		Mont	oct 17.	52	Carlat Na 1	أألما مطامعها ا	THE	POTIA	
0-	Serial No. Unit: Serial No. Handheld TUK2CTA									

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Upper Saddle River, NJ Office

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number MW-

Sample I.D.: MW-9D-20160531 hoave Project: Personnel: Weather: Air Temp : 7 **WELL DATA:** Casing Diameter: ☐ Stainless Steel ☐ Steel ☐ PVC ☐ Teflon® ☐ Other: Intake Diameter: ☐ Stainless Steel ☐ Galv. Steel ∠ZPVC ☐ Teflon® ☐ Open rock DEPTH TO: Static Water Level: 1.61 ft Bottom of Well: ft DATUM: O Top of Protective Casing Top of Well Casing Other: Is Prot. Casing/Surface Mount in Good Cond.? (not bent or corroded) Yes No Does Weep Hole adequately drain well head? Yes No Is Padlock Functional? ☐ Yes ☐ No Ø NA Is Inner Casing Intact? ☑ Yes ☐ No Is Inner Casing Properly Capped and Vented 7 Yes No TER: Standing in well: Standing in well: VOLUME OF WATER: To be purged: **PURGE DATA:** ☐ Bladder Pump ☐ 2" Submersible Pump ☐ 4" Submersible Pump □ Bailer, Size: METHOD: ☐ Centrifugal Pump ☐ Peristaltic Pump ☐ Inertial Lift Pump ☐ Other: Teflon® Teflon® Stainless Steel MATERIALS: Polyethylene **PVC** Polypropylene Other: Other: Elapsed Time: Some Volume Pumped: Yes Z No Was well Evacuated? Number of Well Volumes Removed: PURGING EQUIPMENT:

Dedicated ☐ Prepared Off-Site Field Cleaned SAMPLING DATA: METHOD: □ Syringe Sampler □ Peristaltic Pump □ Inertial Lift Pump □ Other: ☐ Teflon® MATERIALS: (Pump/Bailer: (tubing/Rope: Stainless Steel Polyethylene SAMPLING EQUIPMENT: Dedicated ☐ Prepared Off-Site -3 Field Cleaned Metals samples field filtered? ☐ Yes ☑ No Method: W/ APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS See attached form for field parameter data. DUP: P No ☐ Yes Name: MS/MSD: 2 No ☐ Yes Name: I certify that this sample was collected and bandled in accordance with applicable regulatory and project protocols Signature:

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax (201) 235-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Patchogue Client: National Cand Personnel: TWB TP Purge/Sample Depth:						Project Number: Date: 5/31 6 Well ID: MW-9D Sample ID: MW-9060531			
Actual Time	рΗ	Cert Temp (°C)	Gond	meters DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW_ (ft)	Pumping Rate (mL/min)	Comments
1648 1651 1657 1700 1703 1709 1712 1715 1716 1721	4.68 4.68 4.58 4.53 4.51 4.51 4.47 4.48 4.48	17.91 17.12 16.94 16.93 14.16 17.25 17.30 17.30 17.30 17.30		1.25 0.37 0.34 0.20 1.31 2.08 3.51 4.06 3.7 1.05 4.06 7.10 4.06 7.10 4.06 7.10 4.06 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10	380 510 138 200 230 241 308 335 306 343 188 1186 14653 147 147 147	aven .	1.59 2 keen S	rasked 1	EVEW -
instrumen I	of Sample: ot Data: Manufactur Seria	rer/Model: I No. Unit:	Hosik	× 11.	52	Analyst S	Signature:	TJCK2	MB PCTA

Are low-flow parameters subject to field lab certification?
Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number MW -85 Sample I.D.: Nw (85 - 2016 060) Upper Saddle River, NJ Office Time: 0756 Project: Personnel: Thur Air Temp.: **WELL DATA:** Casing Diameter: ☐ Stainless Steel ☐ Steel ☐ PVC ☐ Teflon® ☐ Other: Intake Diameter: ☐ Stainless Steel ☐ Galv. Steel ☐ PVC ☐ Teflon® ☐ Open rock DEPTH TO: Static Water Level: 0.95 ft Bottom of Well: DATUM: □ Top of Protective Casing □ Other: CONDITION: is Well clearly labeled? ☐ Yes ☐ No Is well clean to bottom? ☐ Yes ☐ No Is Prot. Casing/Surface Mount in Good Cond.? (not bent or corroded) 📮 Yes 🔲 No Does Weep Hole adequately drain well head? Z Yes No. Is Concrete Pad Intact? (not cracked or frost heaved) 2 Yes No Is Padlock Functional? 🗓 Yes 📵 No 💋 NA 🗡 Is Inner Casing Intact? 🖊 Yes 🔘 No Is Inner Casing Properly Capped and Vented? (1 Yes I) No. **VOLUME OF WATER:** Standing in well: To be purged: **PURGE DATA:** ☐ Bailer, Size: METHOD: ☐ Centrifugal Pump ☐ Peristaltic Pump ☐ Inertial Lift Pump ☐ Other: Teflon® MATERIALS: Pump/Bailer: 4 Stainless Steel Tubing/Rope: Polyethylene **PVC** Polypropylene Other: Other: Why Volume Pumped: 2 L Elapsed Time: Pumping Rate: 200 Was well Evacuated? Yes 🗖 No Number of Well Volumes Removed: PURGING EQUIPMENT: □ Dedicated Prepared Off-Site Field Cleaned **SAMPLING DATA:** ABladder Pump □ 2" Submersible Pump □ 4" Submersible Pump METHOD: □ Bailer, Size: □ Syringe Sampler □ 'Peristaltic Pump □ Inertial Lift Pump □ Other: _ MATERIALS: Pump Bailer: Teflon® Tubinh/Rope: Teflon® Stainless Steel Ø Polyethylene SAMPLING EQUIPMENT: □ Dedicated ■ Prepared Off-Site Field Cleaned Metals samples field filtered? ☐ Yes ☑ No Method: ☑ Clear ☐ Turbid ☐ Color: ☐ ☐ Contains Immiscible Liquid APPEARANCE: FIELD DETERMINATIONS: See attached form for field parameter data. DUP : ☐ Yes Name: ZI No ☐ Yes Name: I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols Signature: Date:

2 Park Way, Upper Saddle River, NJ 07458 Phone. (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Pro	ject Name:	Pa	telwane			Proje	ect Number:		
	Client:	No	telwane trans	Grid			Date:	6/1/1	Ce .
		This	5 T	יזכ		•	Well ID:	MW-85	70°C 01 01
Purge/San	ipie Depin:		·			, , , , , , , , , , , , , , , , , , ,	Sample ID:	1100-83	<u>-10 (0060)</u>
		Cod	ified Para	motore					
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate	
Time	pН	(°C)	(mgan)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
0756	5,45	11.,47	0.609	N 37		-7	0.15	200	
0759	5.51		6.627	0.03	_		0.25	1	Emplied Honba
0802	5.69	15.47	0.643	0.41	blel	-64 -65 -77			
0805	570	15.72	0.649	0.00	247	-85			
0811	5,76	15.13	0.652	0,00	216	-72			
0814	5,78	15.11	0.1051	0.00	145	-96			
0817	5.80	15.10	0.649	0.00	91.3	-100		 	
0823	5.81	1508	0.650	0.00	58.7	-103			
0826	5,81	15.07	0.650		4614	-105			
0829	Sain	M M	w- 88	- 201 li	0601				
						'			
							-7		
		,				111			
			•		~	100	- y		. *************************************
				1					
			,	111	110				
				<i>U</i>					
		ę							
<u> </u>									
				-					
Certified S	ample Inf	ormation		-					2192
Time o	Certified Sample Information: Time of Sample:					Analyst !	Signature	Jan	NUR
	Instrument Data: Manufacturer/Model: Horiba 11-52						•		
IX		No Unit	111071	W (/) ~		Serial No. I	Handheld:	11,KK20	CTO
Ca	ate/Time:	06/01/1	6 073	Solid Hollandid. The Company of the					

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office

Sample I.D.: MW-8D - 20160601

_	710 8 D - 20 60801
	Project: Patchogue Date: 6/1/6 Time: 0839 Personnel: The TTP Weather: 5 m Air Temp.: 720
	WELL DATA: Casing Diameter:
	PURGE DATA: METHOD: Bailer, Size: Centrifugal Pump Peristaltic Pump Inertial Lift Pump Other: Teflon® MATERIALS Pump Bailer: Pumping Rate: Pu
	SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Inertial Lift Pump Other: MATERIALS: Pump(Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Prepar

2 Park Way, Upper Saddle River, NJ 07458 Prione (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

148	793	NJ FII LOW-FLOW GROU	ELD LAB ID# JNDWATER I		т
	Project Name: Client: Personnel: Purge/Sample Depth:	Patchegue Turb J TJP Natrony Good	2	Project Number: Date: Well ID: Sample ID:	10/1/16 MW-8D MW-8D-20160601

		Cert	ified Parai	neters					
Actual		Temp		DO	Turbidity	ORP	DTW	Pumping Rate	
Time	pН	(°C)	Cond	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
	ļ	` - '	()	(5-7	(*****)	(,	(,	(
1939	5.75	16.34	0.661	1,28	363	80		200	
0842	5.50	14.00	0.462	0.25	335	107			
0845	5.55	15.71	0-663		309	100			
0848	5,69	15.40	0.6664	0,04	291	1/15			Emption Honse
0851	5,78	15.41	01084	0.69	2110	127			
0854	5,78		0.686		85	22			
0857	5,78	15.36		0.02	16	119			
0900	5.75	15.35	0.678	0.00	148	113			
00103	5.75	5.33	0.676		130				
0706	5.72	5.33	0.676		107	119			
0709		15.32	0.676	0.00	c/8.4	120			
0917	5.68		0.676	0.00	91.3	125		\ .	,
0918	500	15.72	MW-	LN - 10	4060			Y	
CALLE _	200	wpu	<u> </u>	DD D -C	(a o a o				
							-		
		-			•	1 - 1			-
						0		4	
					1 1				
						1			
				Ų					
			, ,						<u> </u>

Certified Sample Information: Time of Sample:	Analyst Signature
Instrument Data:	
Manufacturer/Model: Horiba U-52	
Serial No. Unit:	Serial No. Handheld: TSCk 2CTIA
Calibration Date/Time: 01/01/16 0 730	

Are low-flow parameters subject to field lab certification?

Yes X No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office

Well Number: MW-95

Sample I.D.:	MW	-95-	2016	(if different from	As2 no
--------------	----	------	------	--------------------	--------

	13-20160601
Project: Patchagel Personnel: THE TR	Date: 6116 Time: 6935 Weather: 544 Air Temp.: 71°
WELL DATA: Casing Diameter: Intake Diameter: DEPTH TO: Static Water Level: DATUM: Top of Protective Casing CONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond? Does Weep Hole adequately drain well head? Is Padlock Functional? Yes No NA Is Inner Casing Properly Capped and Vented?	PVC Teflon® Other: el PVC Teflon® Open rock 'elf: ft Other: ell clean to bottom? PYes No (not bent or corroded) Yes No PYes No aved) Yes No
PURGE DATA: METHOD: Bailer, Size: Centrifugal Pump Peristaltic Pur MATERIALS: Pump/Bailer: Stainless Steel PVC Other: Pumping Rate: Pumping Rate: Bailer, Size: Contribugal Pump Peristaltic Pump Contribution Bladder Pump Contribution Stainless Steel PVC Cother: Contribution Flapsed Time: 30 mm	2" Submersible Pump
SAMPLING DATA: METHOD: Bailer, Size: Bladder Pump 2" S Syringe Sampler Peristaltic Pump Iner MATERIALS: Pump/Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Metals samples field filtered? Yes No Metho APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field parameters. DUP: Discount of the parameters of the parameters of the parameters of the parameters. DUP: Discount of the parameters	Off-Site Contains Immiscible Liquid meter data.

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax. (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Pro	ject Name: Client:		tihos	up Gnd		_	ect Number: Date:	411	(le
	Personnel:		UZ -	TJP		_	Well ID:	MW-95-9	95
Purge/Sап	iple Depth:					-	Sample ID:	MW-95-9	<u>20160601</u>
				A . II		1000000		15 6 24 1 1 1 2 1	
			ified Para		Topo p. t. ptg	0.00			
Actual Time	ρН	Temp (°C)	Cond (us/co)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
0935	5.86	1656	6.563	1:51	500	-(05	1.62	250	
0938	5.88		0618	6,22	518	-122	11		
0941	5.90	15.51	0.635	0.01	500 257	-133	//		emported himber
0947	5.85	15.28	B-614	0.00	179	-133	1/		
0950	5,84	15,21	6.609	0.00	131	-135	1,		
0953	5,86	15.18	0.606	0.00	109	-137	1//		
0956	5.96	15.18	0.602	0.00 0.00	75.4	-138	17	1	
11002	5.97	15.16	0.598	0.00	40.0	-143	'/-		
1005	5.99	5.18	0,599	0.00	31.4	-144	17	V	
1008	Sam	pu.	MM.	95-	20160	601	,,,	V	
		,							
						1 7			
				/					
					777	00			
									,
					1 110				
					110				
<u> </u>								\	
			-						-
<u> </u>					The desire state and				
Time o	Certified Sample Information: Time of Sample: Analyst Signature:								
	Manufacturer/Model: Mai 1/2 1/2 1/2 1/2 Serial No. Handheld: TTCV 9 CTh								

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Calibration Date/Time: 06/01/16

Brown AND Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office Sample

Well Number: MW 3

Sample I.D.:	MW.	3- Onthe	(I different from Asil no
--------------	-----	----------	---------------------------

a tchuque Project: Personnel: Weather: Air Temp.: WELL DATA: Casing Diameter: ☐ Stainless Steel ☐ Steel ☐ PVC ☐ Teflon® ☐ Other: Intake Diameter: ☐ Stainless Steel ☐ Galv. Steel Ø PVC ☐ Teflon® ☐ Open rock DEPTH TO: Static Water Level: 2.4 | ft Bottom of Well: ft CONDITION: Is Prot. Casing/Surface Mount in Good Cond.? (not bent or corroded) 2 Yes No Does Weep Hole adequately drain well head? Yes O No Is Concrete Pad Intact? (not cracked or frost heaved) Yes No Is Padlock Functional? Q Yes Q No A NA Is Inner Casing Intact? Is Inner Casing Properly Capped and Vented? Yes No VOLUME OF WATER: Standing in well: To be purged: **PURGE DATA:** ☐ Bailer, Size: ☑ Bladder Pump ☐ 2" Submersible Pump ☐ 4" Submersible Pump METHOD: ☐ Centrifugal Pump ☐ Peristaltic Pump ☐ Inertial Lift Pump ☐ Other: Teflon® Teflon® Stainless Steel MATERIALS: Pumo/Bailer: Tubing/Rope: Polyethylene **PVC** Polypropylene Other: Other: Minuh Elapsed Time: 30 mm Volume Pumped: Pumping Rate: 200 Was well Evacuated? Yes D No Number of Well Volumes Removed: PURGING EQUIPMENT:

Dedicated ☐ Prepared Off-Site Field Cleaned SAMPLING DATA: METHOD: □ Syringe Sampler □ Peristaltic Pump □ Inertial Lift Pump □ Other: MATERIALS: Pump/Bailer: ☐ Teflon® Tubing Rope: Tellon® Stainless Steel æ Polyethylene SAMPLING EQUIPMENT: Dedicated ☐ Prepared Off-Site Field Cleaned Metals samples field filtered? ☐ Yes ☑ No Method: Ⅳ/D APPEARANCE: 🖊 Clear 🖸 Turbid 🗘 Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data. ☐ Yes Name: MS/MSD: 1 No ☐ Yes Name: I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols Signature: Date:

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax. (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

		Table 1							
		_TMB		rid P		-	ect Number: Date: Well ID:		G -3
Furge/San	ipie Deptili.						Sample 10.	Tollor 5 - 1	16060
		0-4	God Dees						
Actual Time	ρН	Temp (°C)	Cond (*Gc)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
1027 1025 1027 1031 1040 1043 1040 1043 1040 1043 1040	10.07 10.07 10.09 10.11 10	15.33 15.20 15.20 15.20 15.34 15.34	0.638	0.15 0.08 0.05 0.02 0.02 0.00	35.5 36.7 31.9 21.0 17.1 12.3 7.4 6.0 6.2 5.5 5.1	-24 -38 -50 -45 -41 -34 -17 -14 -13 -10	2.44	200	
Instrumen N	f Sample: t Data: Manufactur Serial	10	155 Horris	,	5J 730	Analyst	Signature: Handheld:	TICK20	TO

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office

Well Number: MW-45

Sample I.D.: MW-40-20160601 Patelleaue Project. 6 Time: 1108 Personnel: Weather: Air Temp.: **WELL DATA:** ☐ Stainless Steel ☐ Steel ☐ PVC ☐ Teflon® ☐ Other: Casing Diameter: Intake Diameter: ☐ StainJess Steel ☐ Galv. Steel ☐ PVC ☐ Teflon® ☐ Open rock DEPTH TO: Static Water Level: 4,91 ft Bottom of Well: ft ☐ Top of Protective Casing ☐ Top of Well Casing ☐ Other: Is Well clearly labeled? A Yes O No Is well clean to bottom? A Yes O No Is Prot. Casing/Surface Mount in Good Cond.? (not bent or corroded) Z Yes D No Does Weep Hole adequately drain well head? Yes No Is Concrete Pad Intact? (not cracked or frost heaved) 2 Yes No Is Padlock Functional? ☑Yes ☐ No ☐ NA Is Inner Casing Intact? ☑Yes ☐ No VOLUME OF WATER: Standing in well: To be purged: **PURGE DATA:** □ Bailer, Size: ____ 🗷 Bladder Pump 🖸 2" Submersible Pump 🖸 4" Submersible Pump METHOD: □ Centrifugal Pump □ Peristaltic Pump □ Inertial Lift Pump □ Other: __ Tellon® Teflon® MATERIALS Pump Bailer: Z Stainless Steel Pubing/Rope: Polyethylene PVC Polypropylene Other: Other: Pumping Rate: 200 ml min Elapsed Time: 30mh Volume Pumped: 2 ☐ Yes ☑ No Was well Evacuated? Number of Well Volumes Removed: PURGING EQUIPMENT:

Dedicated ☐ Prepared Off-Site Field Cleaned SAMPLING DATA: METHOD: ☐ Teflon® MATERIALS Pump Bailer: Tubing/Rope: Teflon® Stainless Steel 4 Polyethylene SAMPLING EQUIPMENT: edicated Prepared Off-Site

Yes No Method: Dedicated ☐ Field Cleaned Metals samples field filtered? APPEARANCE: Clear D Turbid D Color: Contains Immiscible Liquid FIELD DETERMINATIONS See attached form for field parameter data. DUP: A No ☐ Yes Name: MS/MSD: No D Yes Name: I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols Signature:

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

			2011	2011 0.1	DUNDWAI		DAIA OII		
Pro Purge/San	oject Name: Client: Personnel: nple Depth:		chogne Frank	Gred		Proj	ect Number Date Well ID Sample ID:		1D 20160601
Actual Time	рН	Cert Temp (°C)	Corid		Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
1108 1111 1117 1120 1123 1129 1132 1135 1138	5,92 5,45 5,35 5,35 5,31 5,27 5,27 5,27 5,27 5,27 5,27 5,27 5,27	18.54 18.20 17.78 17.72 17.78 17.59 17.59 17.03 17.101 17.76 11.76	0.601 0.608 0.609 0.609 0.612 0.613 0.613 0.615 0.615 0.615 0.615 0.615	0.32 0.32 0.15 0.10 0.07 0.04 0.04 0.04 0.04	5.4 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	182 166 143 161 161 161 161 161 161	4,93	700	
						uß			
				(0)					
Instrumen N	f Sample: t Data; Manufactur Serial		Hori	ba U		Analyst Serial No.	Signature:	TICK:	UB 2CTh

Are low-flow parameters subject to field lab certification?
Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office

Well Number: MW-45-20166603

708000	
Project: Fatchogue Date: 4 (10 Time: 1152 Personnel: TWB TJP Weather: 5 M Air Temp.: 75°	-
WELL DATA: Casing Diameter: Intake Diameter: Stainless Steel Steel Galv. Steel PVC Teflon® Other: Intake Diameter: Stainless Steel Galv. Steel PVC Teflon® Open rock Bottom of Well: It Bottom of	
PURGE DATA: METHOD: Bailer, Size: Centrifugal Pump Peristaltic Pump Inertial Lift Pump Other: MATERIALS: Pump Bailer: Teflon® Stainless Steel PVC Other: Pumping Rate: Pumping Rate: Volume Pumped: Was well Evacuated? Ves No Number of Well Volumes Removed: PURGING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned	THE RESIDENCE OF THE PARTY OF T
METHOD: Bailer, Size: Bladder Pump 22" Submersible Pump 34" Submersible Pump Syringe Sampler Peristaltic Pump Inertial Lift Pump Other: MATERIALS: Pump Bailer: Teflon® Inertial Lift Pump Other: Tubing Rope: Teflon® Polyethylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? No Method: Field Cleaned Metals samples field filtered? Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data. DUP: No Yes Name: MS/MSD: No Yes Name: I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols Signature: Date:	

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

	Project Name: Patchoque Client: National God Personnel: 1MG TSP Purge/Sample Depth:						ect Number Date Well ID Sample ID	Leli	(16 15 20160601
Actual Time	рΗ	Certi Temp (°C)	Cond	meters DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
1152 1155 1158 1201 1207 1210 1213 1216 1219 1222 1223	5.76 5.93 6.03 6.08 6.13 6.13 6.18 6.18 Saw	18.58 17.08 17.08 10.65 16.70 16.87 16.87 16.87 17.02 94 1	0.537 0.538 0.538 0.538 0.534 0.524 0.524 0.527 0.527 0.527	0.68	127 366 225 177 144 115 82.3 63.9 61.1 61.8 61.8	-94 -122 -137 -142 -144 -145 -146 -146 -147 201	3.21	700	
Instrumen M	f Sample: t Data: fanufactur	er/Model.	1275 Morib	a U	52	Analyst S	Signature:	Tilek	2CTA

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Caldwell	Well Number: MG-1
Upper Saddle River, NJ Office	Sample I.D.: MUD-1-20(6060 for And no)
Project: Nor-Parchogup Personnel: TTP/TMR	Date: 06/01/16 Time: 1350 Weather: Sun V Air Temp.: 72
WELL DATA: Casing Diameter: Intake Diameter: Static Water Level: DEPTH TO: Static Water Level: Static Water	PVC
Centrifugal Pump Peristaltic Pum MATERIALS: Pump/Bailer: Stainless Steel PVC Other: Pumping Rate: 190 ml/m/n Elapsed Time: 33	2" Submersible Pump
SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler: Peristaltic Pump: Iner MATERIALS Pump/Bailer: Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared (Metals samples field filtered? Ves No Method APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field parameter MS/MSD: No Yes Name: MS/MSD: I certify that this sample was collected and bundled in accordance with applicable residence.	Tubing/Rope: Teflon® Polyethylene Off-Site Field Cleaned Contains Immiscible Liquid neter data.
UV	7 7

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 **LOW-FLOW GROUNDWATER FIELD DATA SHEET**

	oject Name: Client: Personnel:	- Codi		JE July Jeonré	(0	Proj	ect Number: Date: Well ID:	0601/	8
Purge/Sar	nple Depth:						טו Sample	MW-1-2	0160601
Actual Time	рН	Certi Temp (°C)	Cond (OS/QU)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
1400 1402 1403 1403 1418 1418 1424 1427 1430 1436	5:56 5:57 5:58 5:68 5:68 5:69 5:69	25.06 23.57 23.50 23.64 23.27 23.47 24.81 24.81 25.13 25.13		1:33 0:57 0:37 1:57 3:89 3:28 2:62 2:04 1:48 1:41 1:19 1:10 2-1-	184 257 300 196 174 151 135 141 102 862 84.7 70.1	-81 -97 -87 -76 -75 -79 -83 -87 -89 -90 -91 -92 601	5.95 5.98 5.98 5.98 5.98 5.98 5.98 5.98	190 Lect	Emplical Mark
Instrumen	f Sample: I t Data: Manufactur		436	na U	52	Analyst Serial No.	Signature:	Tans Talck:	Jan A

Are low-flow parameters subject to field lab certification?

Yes X No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Calibration Date/Time:

Appendix B: Laboratory Reports (CD-ROM)

Appendix C: Data Usability Summary Report (DUSR)

DATA USABILITY SUMMARY REPORT NATIONAL GRID, PATCHOGUE, NEW YORK

Client: Brown and Caldwell, Upper Saddle River, New Jersey

SDG: 6060058

Laboratory: Aqua Pro-Tech Laboratories, Fairfield, New Jersey

Site: National Grid, Patchogue, New York

Date: August 9, 2016

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-7S-20160531	6060058-01	Water
1MS	MW-7S-20160531MS	6060058-01MS	Water
1MSD	MW-7S-20160531MSD	6060058-01MSD	Water
2	MW-7D-20160531	6060058-02	Water
3	DUP-20160531	6060058-03	Water
4	MW-9D-20160531	6060058-04	Water
5	FB-20160531	6060058-05	Water
6	MW-8S-20160601	6060058-06	Water
7	MW-8D-20160601	6060058-07	Water
8	FB-20160601	6060058-08	Water
9	MW-9S-20160601	6060058-09	Water
10	MW-3-20160601	6060058-10	Water
11	MW-4D-20160601	6060058-11	Water
12	MW-4S-20160601	6060058-12	Water
13	MW-1-20160601	6060058-13	Water
14*	TB-20160601	6060058-14	Water

^{* -} VOC only

A Data Usability Summary Review was performed on the analytical data for eleven water samples, two aqueous field blank samples, and one aqueous trip blank sample collected on May 31-June 1, 2016 by Brown and Caldwell at the National Grid, Patchogue, New York Site. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

Analysis Method References

VOC (BTEX and MTBE) USEPA SW-846 Method 8260B SVOC (PAH) USEPA SW-846 Method 8270C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 4, September 2014: Validating Volatile Organic Compounds by SW-846 Method 8260B & 8260C;
- SOP Number HW-22, Revision 4, August 2008: Validating Semivolatile Organic Compounds by SW-846 Method 8270D;
- and the reviewer's professional judgment.

The following items/criteria were reviewed:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

Benzo(g,h,i)perylene was qualified as estimated in one sample due to low MS/MSD recoveries.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (BTEX and MTBE)

Holding Times

• All samples were analyzed within 14 days for preserved water samples

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD).

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB-20160531	None - ND			-	-
FB-20160601	None - ND	7			
TB-20160601	None - ND	1			~

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and average RRF criteria were met.

Continuing Calibration

• All %D and RRF criteria were met.

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

		VOC		
Compound	MW-7D-20160531 ug/L	DUP-20160531 ug/L	RPD	Qualifier
None	ND	ND		-

Semivolatile Organic Compounds (PAH)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
1	Benzo(g,h,i)perylene	44.5%/43.4%/OK	J/UJ

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blanks

The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB-20160531	None - ND	- 42	1	1	1,00
FB-20160601	None - ND	-	L .	~	-

GC/MS Tuning

All criteria were met.

Initial Calibration

All %RSD and mean RRF criteria were met.

Continuing Calibration

All %D and RRF criteria were met.

Compound Quantitation

All criteria were met.

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable.

		PAH		
Compound	MW-7D-20160531 ug/L	DUP-20160531 ug/L	RPD	Qualifier
None	ND	ND		

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Senior Chemist

Dated: 8/10/16

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

	*	

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID:

MW-7S-20160531

Lab Sample ID:

6060058-01

Project: Work Order: **Patchogue** 6060058

Date Sampled:

05/31/16 15:11

Prep Date:

06/08/16 22:00

File ID:

4V21566.D

Init/Final Vol:

 $5 \, \text{mL} / 5 \, \text{mL}$

Prep Batch:

B6F0909

Analyzed:

06/08/16 22:00

Dilution:

Matrix:

Ground Water

Prep Method: PURGE & TRAP 8000

Sequence:

S6F1004

d			
	С	3	
		N	
		2	

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

E - Concentration exceeds highest calibration standard

J - Indicates estimated value

B - Indicates compound found in associated blank

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID:

MW-7D-20160531

Lab Sample ID: Project:

6060058-02 Patchogue

Work Order:

6060058

Date Sampled:

05/31/16 16:15

Prep Date:

06/06/16 15:39

File ID:

4V21537.D

Init/Final Vol:

 $5 \, mL / 5 \, mL$

Prep Batch:

B6F1026

Analyzed:

06/06/16 15:39

Dilution:

Matrix:

Ground Water

Sequence;

S6F1002

Prep Method: PURGE & TRAP 8000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

RL - Reporting limit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

DUP-20160531 6060058-03

Project: Work Order:

Patchogue 6060058

Date Sampled:

05/31/16 00:00

Prep Date:

06/06/16 16:05

File ID:

4V21538.D

Init/Final Vol:

 $5 \, \text{mL} / 5 \, \text{mL}$

Prep Batch:

B6F1026

Analyzed:

06/06/16 16:05

Dilution:

Matrix:

Ground Water

Prep Method: PURGE & TRAP 8000

Sequence:

S6F1002

u	
U	
U	(
U	
U	
U	
U	

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	
71-43-2	Benzene	ND	0.129	1.00	U	
100-41-4	EthylBenzene	ND	0.244	1.00	U	
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U	
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U	
95-47-6	o-Xylene	ND	0.244	1.00	U	
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U	
108-88-3	Toluene	ND	0.205	1.00	U	
1330-20-7	Total Xylenes	ND	0.705	1.00	U	

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

Volatile Organics - GC/MS - SW 846 8260B

Client: Client Sample ID: **Brown and Caldwell USR**

Lab Sample ID:

MW-9D-20160531

Project:

6060058-04 Patchogue

Work Order:

6060058

Total Xylenes

Date Sampled:

05/31/16 17:21

Prep Date:

06/06/16 16:30

File ID:

4V21539.D

Init/Final Vol:

5 mL / 5 mL

Prep Batch:

B6F1026

Analyzed:

06/06/16 16:30

1.00

U

Dilution:

1330-20-7

Matrix:

Ground Water

Sequence:

0.705

S6F1002

Prep Method: PURGE & TRAP 8000

ND

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	
71-43-2	Benzene	ND	0.129	1.00	U	
100-41-4	EthylBenzene	ND	0.244	1.00	U	
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U	
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U	
95-47-6	o-Xylene	ND	0.244	1.00	U	
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U	
108-88-3	Toluene	ND	0.205	1.00	U	

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection fimit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID:

FB-20160531

Lab Sample ID: Project:

6060058-05 **Patchogue**

Work Order:

6060058

Date Sampled

05/31/16 17:45

Prep Date:

06/06/16 16:55

File ID:

4V21540.D

Init/Final Vol:

 $5 \, mL / 5 \, mL$

Prep Batch:

B6F1026

Analyzed:

06/06/16 16:55

Dilution:

Matrix:

Ground Water

Sequence:

Prep Method: PURGE & TRAP 8000

S6F1002

CAS NO. COMPOUND CONC. (ug/L) MDL RL 71-43-2 Benzene ND 0.129 1.00 100-41-4 EthylBenzene ND 0.244 1.00 179601-23-1 m+p-Xylenes ND 0.461 2.00 1634-04-4 Methyl tert-Butyl Ether ND 0.596 1.00 95-47-6 o-Xylene ND 0.244 1.00 75-65-0 tert-Butyl alcohol ND 8.17 10.0 108-88-3 Toluene ND 0.205 1.00 1330-20-7 Total Xylenes ND 0.705 1.00						
100-41-4 EthylBenzene ND 0 244 1.00 179601-23-1 m+p-Xylenes ND 0.461 2.00 1634-04-4 Methyl tert-Butyl Ether ND 0.596 1.00 95-47-6 o-Xylene ND 0.244 1.00 75-65-0 tert-Butyl alcohol ND 8.17 10.0 108-88-3 Toluene ND 0.205 1.00	CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
179601-23-1 m+p-Xylenes ND 0.461 2.00 1634-04-4 Methyl tert-Butyl Ether ND 0.596 1.00 95-47-6 o-Xylene ND 0.244 1.00 75-65-0 tert-Butyl alcohol ND 8.17 10.0 108-88-3 Toluene ND 0.205 1.00	71-43-2	Benzene	ND	0,129	1.00	U
1634-04-4 Methyl tert-Butyl Ether ND 0.596 1.00 95-47-6 o-Xylene ND 0.244 1.00 75-65-0 tert-Butyl alcohol ND 8.17 10.0 108-88-3 Toluene ND 0.205 1.00	100-41-4	EthylBenzene	ND	0 244	1.00	U
95-47-6 o-Xylene ND 0.244 1.00 75-65-0 tert-Butyl alcohol ND 8.17 10.0 108-88-3 Toluene ND 0.205 1.00	179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
75-65-0 tert-Butyl alcohol ND 8.17 10.0 108-88-3 Toluene ND 0.205 1.00	1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
108-88-3 Toluene ND 0.205 1.00	95-47-6	o-Xylene	ND	0.244	1.00	U
	75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
1330-20-7 Total Xylenes ND 0.705 1.00	108-88-3	Toluene	ND	0.205	1.00	U
	1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

Volatile Organics - GC/MS - SW 846 8260B

Client: Client Sample ID: **Brown and Caldwell USR**

MW-8S-20160601

Lab Sample ID:

6060058-06 Patchogue

Project: Work Order:

6060058

Date Sampled:

06/01/16 08:29

Prep Date:

06/06/16 17:20

File ID:

4V21541.D

Init/Final Vol:

 $5 \, \text{mL} / 5 \, \text{mL}$

Prep Batch:

B6F1026

Analyzed:

06/06/16 17:20

Dilution:

Matrix:

Ground Water

Sequence: S6F1002

Prep Method: PURGE & TRAP 8000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	
71-43-2	Benzene	ND	0.129	1.00	U	
100-41-4	EthylBenzene	ND	0.244	1.00	U	
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U	
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U	
95-47-6	o-Xylene	ND	0.244	1.00	U	
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U	
108-88-3	Toluene	ND	0.205	1.00	U	
1330-20-7	Total Xylenes	ND	0.705	1.00	U	

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard D - Indicates result is based on a dilution

P - Greater than 25% diff_between 2 GC columns

MDL - Minimum detection limit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID:

MW-8D-20160601

Lab Sample ID: Project:

6060058-07

Work Order:

Patchogue 6060058

Date Sampled:

06/01/16 09:18

Prep Date:

06/08/16 22:25

File ID:

4V21567.D

Init/Final Vol:

 $5 \, \text{mL} / 5 \, \text{mL}$

Prep Batch:

B6F0909

Analyzed:

06/08/16 22:25

Dilution:

Matrix:

Ground Water

Sequence

S6F1004

Prep Method: PURGE & TRAP 8000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

FB-20160601 6060058-08

Project: Work Order: Patchogue 6060058

Date Sampled:

06/01/16 09:25

Prep Date:

06/09/16 14:10

File ID:

4V21583.D

Init/Final Vol:

5 mL / 5 mL

Prep Batch:

B6F0929

Analyzed:

06/09/16 14:10

Dilution:

Matrix:

Ground Water

Sequence:

Prep Method: PURGE & TRAP 8000

S6F1023

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff_between 2 GC columns

MDL - Minimum detection limit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-9S-20160601

Project:

6060058-09 Patchogue

Work Order:

6060058

Date Sampled:

06/01/16 10:08

Prep Date:

06/08/16 22:50

File ID:

4V21568.D

Init/Final Vol:

5 mL / 5 mL

Prep Batch:

B6F0909

Analyzed:

06/08/16 22:50

Dilution:

Matrix:

Ground Water

Prep Method: PURGE & TRAP 8000

Sequence:

S6F1004

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

E - Concentration exceeds highest calibration standard

J - Indicates estimated value

B - Indicates compound found in associated blank

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-3-20160601 6060058-10

Project: Work Order:

Patchogue 6060058

COMPOUND

EthylBenzene

m+p-Xylenes

tert-Butyl alcohol

Total Xylenes

Methyl tert-Butyl Ether

Benzene

o-Xylene

Toluene

Date Sampled:

06/01/16 10:55

Prep Date:

06/08/16 23:15

File ID:

4V21569.D

Init/Final Vol:

 $5 \, mL / 5 \, mL$

Prep Batch:

B6F0909

ND

ND

ND

Analyzed:

06/08/16 23:15

10.0

1.00

1.00

U

U

U

Dilution:

CAS NO.

71-43-2

100-41-4

179601-23-1

1634-04-4

95-47-6

75-65-0

108-88-3

1330-20-7

1

Matrix:

Ground Water

Sequence

S6F1004

Prep Method: PURGE & TRAP 8000

CONC. (ug/L)	MDL	RL	Q
ND	0.129	1.00	U
ND	0.244	1.00	U
ND	0.461	2.00	U
ND	0.596	1.00	U
ND	0.244	1.00	U

8.17

0.205

0.705

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

RL - Reporting limit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID:

MW-4D-20160601

Lab Sample ID:

6060058-11

Project: Work Order: Patchogue 6060058

Date Sampled:

06/01/16 11:41

Prep Date:

06/08/16 23:40

File ID:

4V21570.D

Init/Final Vol:

5 mL / 5 mL

Prep Batch:

B6F0909

Analyzed:

06/08/16 23:40

Dilution:

Matrix: Ground Water

S6F1004

Prep Method: PURGE & TRAP 8000

Sequence:

	•	
		67-
		E

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	
71-43-2	Benzene	ND	0.129	1.00	U	
100-41-4	EthylBenzene	ND	0.244	1.00	U	
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U	
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U	
95-47-6	o-Xylene	ND	0.244	1.00	U	
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U	
108-88-3	Toluene	ND	0.205	1.00	U	
1330-20-7	Total Xylenes	ND	0.705	1.00	U	

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff_between 2 GC columns

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-4S-20160601

Project:

6060058-12 **Patchogue**

Work Order:

6060058

Total Xylenes

Date Sampled:

06/01/16 12:25

Prep Date:

06/09/16 00:05

File ID:

4V21571_D

Init/Final Vol:

5 mL / 5 mL

Prep Batch:

B6F0909

Analyzed:

06/09/16 00:05

Dilution:

1330-20-7

Matrix:

Ground Water

Sequence:

0.705

S6F1004

1.00

U

Prep Method:

PURGE & TRAP 8000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U

ND

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard D - Indicates result is based on a dilution

P - Greater than 25% diff. between 2 GC columns MDL - Minimum detection limit

RL - Reporting limit

MU 8/9/16

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-1-20160601 6060058-13

Project: Work Order:

Patchogue 6060058

Date Sampled:

06/01/16 14:36

Prep Date:

06/09/16 00:31

File ID:

4V21572.D

Init/Final Vol:

5 mL / 5 mL

Prep Batch:

B6F0909

Analyzed:

06/09/16 00:31

Dilution:

Matrix: Ground Water

Prep Method: PURGE & TRAP 8000

Sequence: S6F1004

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns MDL - Minimum detection limit RL - Reporting limit

Volatile Organics - GC/MS - SW 846 8260B

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

TB-20160601 6060058-14 Patchogue

tert-Butyl alcohol

Total Xylenes

Toluene

Project: Work Order:

6060058

Date Sampled:

06/01/16 00:00

Prep Date:

06/09/16 13:44

File ID:

4V21582.D

Init/Final Vol:

5 mL / 5 mL

Prep Batch:

B6F0929

Analyzed:

06/09/16 13:44

Dilution:

Matrix:

Ground Water

8.17

0.205

0.705

75-65-0

108-88-3

1330-20-7

Prep Method: PURGE & TRAP 8000

Sequence:

ND

ND

ND

S6F1023

10.0

1.00

1.00

U

U

U

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0 244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns MDL - Minimum detection limit

Semivolatile Organics - GC/MS - SW 846 8270C

Client: Client Sample ID: **Brown and Caldwell USR**

MW-7S-20160531

Lab Sample ID: Project:

6060058-01

Work Order:

Patchogue 6060058

Date Sampled:

05/31/16 15:11

Prep Date:

06/03/16 09:31

File ID:

CS11669.D

Init/Final Vol:

980 mL / 1 mL

B6F0307

Analyzed:

06/04/16 00:34

Prep Batch:

Dilution:

Matrix:

Ground Water

Prep Method;

Sep Funnel MS 8000

S6F0703 Sequence

CAS NO.	COMPOUND	
33-32-9	Acenaphthene	

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.626	2.04	U
208-96-8	Acenaphthylene	ND	0.277	2.04	U
120-12-7	Anthracene	ND	0.326	2.04	U
56-55-3	Benzo(a)anthracene	ND	0_482	2.04	U
50-32-8	Benzo(a)pyrene	ND	0.358	2.04	U
205-99-2	Benzo(b)fluoranthene	ND	0.432	2.04	U
191-24-2	Benzo(g,h,i)perylene	ye u J	0.505	2.04	U
207-08-9	Benzo(k)fluoranthene	ND	0.442	2.04	U
218-01-9	Chrysene	ND	0.440	2.04	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.409	2.04	U
206-44-0	Fluoranthene	ND	0.307	2.04	U
86-73-7	Fluorene	ND	0.183	2.04	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.438	2.04	U
91-20-3	Naphthalene	2.53	0.553	2.04	
85-01-8	Phenanthrene	ND	0.471	2.04	U
129-00-0	Pyrene	ND	0.379	2.04	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-7D-20160531

Project: Work Order: 6060058-02 Patchogue 6060058

Date Sampled:

05/31/16 16:15

Prep Date:

06/03/16 09:31

File ID:

CS11670.D

Init/Final Vol:

930 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/04/16 01:02

Dilution:

Matrix:

Ground Water

Prep Method:

Sep Funnel MS 8000

Sequence:

S6F0703

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.659	2.15	U
208-96-8	Acenaphthylene	ND	0.291	2.15	U
120-12-7	Anthracene	ND	0.343	2.15	U
56-55-3	Benzo(a)anthracene	ND	0.508	2.15	U
50-32-8	Benzo(a)pyrene	ND	0.377	2.15	U
205-99-2	Benzo(b)fluoranthene	ND	0.455	2.15	U
191-24-2	Benzo(g,h,i)perylene	ND	0.532	2.15	U
207-08-9	Benzo(k)fluoranthene	ND	0.466	2.15	U
218-01-9	Chrysene	ND	0.463	2.15	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.431	2.15	U
206-44-0	Fluoranthene	ND	0.324	2.15	U
86-73-7	Fluorene	ND	0.192	2.15	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.461	2.15	U
91-20-3	Naphthalene	ND	0.583	2.15	U
85-01-8	Phenanthrene	ND	0.497	2.15	U
129-00-0	Pyrene	ND	0.399	2.15	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff. between 2 GC columns

MDL - Minimum detection limit

Semivolatile Organics - GC/MS - SW 846 8270C

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID: Project:

DUP-20160531 6060058-03 **Patchogue**

Work Order:

6060058

Date Sampled:

05/31/16 00:00

Prep Date:

06/03/16 09:31

File ID:

CS11671.D

Init/Final Vol:

1000 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/04/16 01:30

Dilution:

1

Matrix:

Ground Water

Prep Method

Sep Funnel MS 8000

Sequence:

S6F0703

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.613	2.00	U
208-96-8	Acenaphthylene	ND	0.271	2.00	U
120-12-7	Anthracene	ND	0.319	2.00	U
56-55-3	Benzo(a)anthracene	ND	0.472	2.00	U
50-32-8	Benzo(a)pyrene	ND	0.351	2.00	U
205-99-2	Benzo(b)fluoranthene	ND	0.423	2.00	U
191-24-2	Benzo(g,h,i)perylene	ND	0.495	2.00	U
207-08-9	Benzo(k)fluoranthene	ND	0.433	2.00	U
218-01-9	Chrysene	ND	0.431	2.00	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.401	2.00	U
206-44-0	Fluoranthene	ND	0.301	2.00	U
86-73-7	Fluorene	ND	0.179	2.00	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.429	2.00	U
91-20-3	Naphthalene	ND	0.542	2.00	U
85-01-8	Phenanthrene	ND	0.462	2.00	U
129-00-0	Pyrene	ND	0.371	2.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-9D-20160531 6060058-04

Project:

Patchogue

Work Order:

6060058

Date Sampled:

05/31/16 17:21

Prep Date:

06/03/16 09:31

File ID:

CS11672.D

Init/Final Vol:

890 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/04/16 01:58

Dilution:

1

Matrix:

Ground Water

Prep Method:

Sep Funnel MS 8000

S6F0703 Sequence:

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.689	2.25	U
208-96-8	Acenaphthylene	ND	0.304	2.25	U
120-12-7	Anthracene	ND	0.358	2.25	U
56-55-3	Benzo(a)anthracene	ND	0.530	2.25	U
50-32-8	Benzo(a)pyrene	ND	0.394	2.25	U
205-99-2	Benzo(b)fluoranthene	ND	0.475	2.25	U
191-24-2	Benzo(g,h,i)perylene	ND	0.556	2.25	U
207-08-9	Benzo(k)fluoranthene	ND	0.487	2 25	U
218-01-9	Chrysene	ND	0.484	2.25	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.451	2.25	U
206-44-0	Fluoranthene	ND	0.338	2.25	U
86-73-7	Fluorene	ND	0.201	2.25	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.482	2.25	U
91-20-3	Naphthalene	ND	0.609	2.25	U
85-01-8	Phenanthrene	ND	0.519	2.25	U
129-00-0	Pyrene	ND	0.417	2.25	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff_ between 2 GC columns

Brown and Caldwell USR

Lab Sample ID: Project:

FB-20160531 6060058-05

Work Order:

Patchogue 6060058

Date Sampled

05/31/16 17:45

Prep Date:

06/03/16 09:31

File ID:

CS11673.D

Init/Final Vol:

Prep Batch:

B6F0307

Analyzed:

06/04/16 02:26

Dilution:

960 mL / 1 mL

Matrix:

Ground Water

Sequence:

S6F0703

Prep Method:

Sep Funnel MS 8000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.639	2.08	U
208-96-8	Acenaphthylene	ND	0.282	2.08	U
120-12-7	Anthracene	ND	0.332	2.08	U
56-55-3	Benzo(a)anthracene	ND	0.492	2.08	U
50-32-8	Benzo(a)pyrene	ND	0.366	2.08	U
205-99-2	Benzo(b)fluoranthene	ND	0.441	2.08	U
191-24-2	Benzo(g,h,i)perylene	ND	0,516	2.08	U
207-08-9	Benzo(k)fluoranthene	ND	0.451	2.08	U
218-01-9	Chrysene	ND	0.449	2.08	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.418	2.08	U
206-44-0	Fluoranthene	ND	0.314	2.08	U
86-73-7	Fluorene	ND	0.186	2.08	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.447	2.08	U
91-20-3	Naphthalene	ND	0.565	2.08	U
85-01-8	Phenanthrene	ND	0.481	2.08	U
129-00-0	Pyrene	ND	0.386	2.08	U

ND - Indicates compound analyzed for but not detected

NW819116

ADI

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff_between 2 GC columns

MDL - Minimum detection limit RL - Reporting limit

Brown and Caldwell USR

Client Sample ID:

MW-8S-20160601

Lab Sample ID:

6060058-06

Project: Work Order:

Patchogue 6060058

Date Sampled:

06/01/16 08:29

Prep Date:

06/03/16 09:31

File ID:

CS11674.D

Init/Final Vol:

880 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/04/16 02:54

Dilution:

1

Matrix:

Ground Water

Prep Method:

Sep Funnel MS 8000

Sequence:

S6F0703

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.697	2.27	U
208-96-8	Acenaphthylene	ND	0.308	2.27	U
120-12-7	Anthracene	ND	0.362	2.27	U
56-55-3	Benzo(a)anthracene	ND	0.536	2.27	U
50-32-8	Benzo(a)pyrene	ND	0.399	2.27	U
205-99-2	Benzo(b)fluoranthene	ND	0.481	2.27	U
191-24-2	Benzo(g,h,i)perylene	ND	0.562	2.27	U
207-08-9	Benzo(k)fluoranthene	ND	0.492	2.27	U
218-01-9	Chrysene	ND	0.490	2.27	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.456	2.27	U
206-44-0	Fluoranthene	ND	0.342	2.27	U
86-73-7	Fluorene	ND	0.203	2.27	U
193-39 - 5	Indeno(1,2,3-cd)pyrene	ND	0 488	2.27	U
91-20-3	Naphthalene	ND	0.616	2.27	U
85-01-8	Phenanthrene	ND	0.525	2.27	U
129-00-0	Pyrene	ND	0.422	2.27	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

Client:

Brown and Caldwell USR

Client Sample ID:

MW-8D-20160601

Lab Sample ID:

6060058-07

Project: Work Order: **Patchogue** 6060058

Date Sampled:

06/01/16 09:18

Prep Date:

06/03/16 09:31

File ID:

CS11675.D

Init/Final Vol:

900 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/04/16 03:22

Dilution:

Matrix:

1

Prep Method

Ground Water Sep Funnel MS 8000 Sequence

S6F0703

100	
ĸ.	•

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.681	2.22	U
208-96-8	Acenaphthylene	ND	0.301	2.22	U
120-12-7	Anthracene	ND	0.354	2.22	U
56-55-3	Benzo(a)anthracene	ND	0.524	2.22	U
50-32-8	Benzo(a)pyrene	ND	0.390	2.22	U
205-99-2	Benzo(b)fluoranthene	ND	0.470	2.22	U
191-24-2	Benzo(g,h,i)perylene	ND	0.550	2.22	U
207-08-9	Benzo(k)fluoranthene	ND	0.481	2.22	U
218-01-9	Chrysene	ND	0.479	2.22	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.446	2.22	U
206-44-0	Fluoranthene	ND	0.334	2 22	U
86-73-7	Fluorene	ND	0.199	2.22	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.477	2.22	U
91-20-3	Naphthalene	ND	0.602	2.22	U
85-01-8	Phenanthrene	ND	0.513	2.22	U
129-00-0	Pyrene	ND	0.412	2.22	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID: Project: Work Order:

FB-20160601 6060058-08 **Patchogue** 6060058

Date Sampled:

06/01/16 09:25

Prep Date:

D6/03/16 09:31

File ID:

CS11676_D

Init/Final Vol:

930 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/04/16 03:50

Dilution:

1

Matrix:

Ground Water

Prep Method:

Sep Funnel MS 8000

Sequence:

S6F0703

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.659	2.15	U
208-96-8	Acenaphthylene	ND	0.291	2.15	U
120-12-7	Anthracene	ND	0.343	2.15	U
56-55-3	Benzo(a)anthracene	ND	0.508	2.15	U
50-32-8	Benzo(a)pyrene	ND	0.377	2.15	U
205-99-2	Benzo(b)fluoranthene	ND	0.455	2.15	U
191-24-2	Benzo(g,h,i)perylene	ND	0.532	2.15	U
207-08-9	Benzo(k)fluoranthene	ND	0.466	2.15	U
218-01-9	Chrysene	ND	0.463	2.15	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.431	2.15	U
206-44-0	Fluoranthene	ND	0.324	2.15	U
86-73-7	Fluorene	ND	0.192	2.15	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.461	2.15	U
91-20-3	Naphthalene	ND	0.583	2.15	U
85-01-8	Phenanthrene	ND	0.497	2.15	U
129-00-0	Pyrene	ND	0.399	2.15	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

Client Sample ID:

Brown and Caldwell USR

Lab Sample ID: Project:

MW-9S-20160601 6060058-09 Patchogue

Work Order:

6060058

Date Sampled:

06/01/16 10:08

Prep Date:

06/03/16 09:31

File ID:

CS11677.D

Init/Final Vol:

B6F0307

Analyzed:

06/04/16 04:18

Dilution:

950 mL / 1 mL

Prep Batch: Matrix:

1

Prep Method:

Ground Water Sep Funnel MS 8000

Sequence:

S6F0703

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	2.64	0.645	2.11	
208-96-8	Acenaphthylene	ND	0.285	2.11	U
120-12-7	Anthracene	ND	0.336	2.11	U
56-55-3	Benzo(a)anthracene	ND	0.497	2.11	U
50-32-8	Benzo(a)pyrene	ND	0.369	2.11	U
205-99-2	Benzo(b)fluoranthene	ND	0.445	2.11	U
191-24-2	Benzo(g,h,i)perylene	ND	0 521	2.11	U
207-08-9	Benzo(k)fluoranthene	ND	0.456	2.11	U
218-01-9	Chrysene	ND	0.454	2.11	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.422	2.11	U
206-44-0	Fluoranthene	0.982	0.317	2.11	J
86-73-7	Fluorene	0.543	0.188	2.11	J
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.452	2.11	U
91-20-3	Naphthalene	ND	0.571	2.11	U
85-01-8	Phenanthrene	0.715	0.486	2.11	J
129-00-0	Pyrene	1.55	0.391	2.11	J

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff between 2 GC columns

MDL - Minimum detection limit

RL - Reporting limit

401

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-3-20160601 6060058-10

Project: Work Order: Patchogue 6060058

Date Sampled:

06/01/16 10:55

Prep Date:

06/03/16 09:31

File ID:

CS11689.D

Init/Final Vol:

940 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/06/16 20:21

Dilution:

Matrix:

Ground Water

1

Sequence:

S6F0908

Prep Method: Sep Funnel MS 8000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.652	2.13	U
208-96-8	Acenaphthylene	ND	0.288	2.13	U
120-12-7	Anthracene	ND	0.339	2.13	U
56-55-3	Benzo(a)anthracene	ND	0.502	2.13	U
50-32-8	Benzo(a)pyrene	ND	0.373	2.13	U
205-99-2	Benzo(b)fluoranthene	ND	0.450	2.13	U
191-24-2	Benzo(g,h,i)perylene	ND	0.527	2.13	U
207-08-9	Benzo(k)fluoranthene	ND	0.461	2.13	U
218-01-9	Chrysene	ND	0.459	2.13	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.427	2.13	U
206-44-0	Fluoranthene	0.804	0.320	2.13	J
86-73-7	Fluorene	ND	0.190	2.13	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.456	2.13	U
91-20-3	Naphthalene	ND	0.577	2.13	U
85-01-8	Phenanthrene	ND	0.491	2.13	U
129-00-0	Pyrene	1.10	0.395	2.13	J

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff_ between 2 GC columns

Semivolatile Organics - GC/MS - SW 846 8270C

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-4D-20160601 6060058-11

Project: Work Order:

Patchogue 6060058

Date Sampled:

06/01/16 11:41

Prep Date:

06/03/16 09:31

File ID:

CS11690.D

Init/Final Vol:

910 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/06/16 20:50

Dilution:

1

Matrix:

Ground Water

Sequence:

S6F0908

rep ivietnoa:	Sep Funner	1412 9000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.674	2.20	U
208-96-8	Acenaphthylene	ND	0.298	2.20	U
120-12-7	Anthracene	ND	0.351	2.20	U
56-55-3	Benzo(a)anthracene	ND	0.519	2.20	U
50-32-8	Benzo(a)pyrene	ND	0.386	2.20	U
205-99-2	Benzo(b)fluoranthene	ND	0.465	2.20	U
191-24-2	Benzo(g,h,i)perylene	ND	0.544	2.20	U
207-08-9	Benzo(k)fluoranthene	ND	0.476	2.20	U
218-01-9	Chrysene	ND	0.474	2.20	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.441	2.20	U
206-44-0	Fluoranthene	ND	0.331	2.20	U
86-73-7	Fluorene	ND	0.197	2.20	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.471	2.20	U
91-20-3	Naphthalene	ND	0.596	2.20	U
85-01-8	Phenanthrene	ND	0.508	2.20	U
129-00-0	Pyrene	ND	0.408	2.20	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff_between 2 GC columns

Semivolatile Organics - GC/MS - SW 846 8270C

Client: **Brown and Caldwell USR**

MW-4S-20160601 Client Sample ID: Lab Sample ID: 6060058-12 Project: **Patchogue** Work Order: 6060058

Date Sampled: 06/01/16 12:25 Prep Date: 06/03/16 09:31 File ID: CS11691.D Init/Final Vol: 1000 mL / 1 mL Prep Batch: B6F0307 06/06/16 21:19 Analyzed:

Matrix: Ground Water Dilution: 1 S6F0908 Sequence:

Prep Method: Sep Funnel MS 8000

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.613	2.00	U
208-96-8	Acenaphthylene	ND	0.271	2.00	U
120-12-7	Anthracene	ND	0.319	2.00	U
56-55-3	Benzo(a)anthracene	ND	0 472	2.00	U
50-32-8	Benzo(a)pyrene	ND	0.351	2.00	U
205-99-2	Benzo(b)fluoranthene	ND	0.423	2.00	U
191-24-2	Benzo(g,h,i)perylene	ND	0.495	2.00	U
207-08-9	Benzo(k)fluoranthene	ND	0.433	2.00	U
218-01-9	Chrysene	ND	0.431	2.00	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.401	2.00	U
206-44-0	Fluoranthene	ND	0.301	2.00	U
86-73-7	Fluorene	ND	0.179	2.00	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.429	2.00	U
91-20-3	Naphthalene	ND	0.542	2.00	U
85-01-8	Phenanthrene	ND	0.462	2.00	U
129-00-0	Pyrene	0.765	0.371	2.00	J

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff. between 2 GC columns

Client:

Brown and Caldwell USR

Client Sample ID: Lab Sample ID:

MW-1-20160601 6060058-13

Project: Work Order:

Patchogue 6060058

Date Sampled:

06/01/16 14:36

Prep Date:

06/03/16 09:31

File ID:

CS11692.D

Init/Final Vol:

900 mL / 1 mL

Prep Batch:

B6F0307

Analyzed:

06/06/16 21:48

Dilution:

1

Matrix:

Ground Water

Prep Method Sep Funnel MS 8000

Sequence:

S6F0908

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.681	2.22	U
208-96-8	Acenaphthylene	ND	0.301	2.22	U
120-12-7	Anthracene	ND	0 354	2.22	U
56-55-3	Benzo(a)anthracene	ND	0.524	2.22	U
50-32-8	Benzo(a)pyrene	ND	0.390	2.22	U
205-99-2	Benzo(b)fluoranthene	ND	0.470	2.22	U
191-24-2	Benzo(g,h,i)perylene	ND	0.550	2.22	U
207-08-9	Benzo(k)fluoranthene	ND	0.481	2.22	U
218-01-9	Chrysene	ND	0.479	2.22	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.446	2.22	U
206-44-0	Fluoranthene	ND	0.334	2.22	U
86-73-7	Fluorene	ND	0.199	2.22	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.477	2.22	U
91-20-3	Naphthalene	ND	0.602	2.22	U
85-01-8	Phenanthrene	ND	0.513	2.22	U
129-00-0	Pyrene	ND	0.412	2.22	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff. between 2 GC columns

Appendix D: Electronic Data Deliverable (CD-ROM)

