Second Half 2016 Semi-Annual Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

> Prepared for National Grid USA Hicksville, New York March 2017

Second Half 2016 Semi-Annual Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

> Prepared for National Grid USA 175 East Old Country Road Hicksville, New York 11801

> > March 2017

Project Number: 149322.730.004

Brown and Caldwell Associates 2 Park Way, Suite 2A Upper Saddle River, New Jersey 07458

Table of Contents

App	opendices	i
Lis	st of Tables	ii
	st of Figures	
	Introduction	
	1.1 Background	
	Scope of Work	
3.	Results and Findings	
	3.1 Water Level Data	
	3.2 NAPL Gauging	
	3.3 Groundwater Quality Data	
4.	Summary and Conclusions	
5.	References	

Appendices

Appendix AField Sampling SheetsAppendix BLaboratory Data Report (CD-ROM)Appendix CData Usability Summary Report (DUSR)Appendix DElectronic Data Deliverable (CD-ROM)

List of Tables

- Table 1. Water Elevation and NAPL Monitoring Data
- Table 2. Groundwater Analysis Results
- Table 3. Summary of Historical BTEX Concentrations
- Table 4. Summary of Historical PAH Concentrations

List of Figures

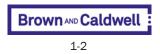
Figure 1. Water Table Elevation Contour Map - December 27, 2016

Section 1 Introduction

This Semi-Annual Groundwater Monitoring Report documents the implementation and summarizes the results of the groundwater monitoring activities conducted during the second half of 2016 at the Patchogue Former Manufactured Gas Plant (MGP) Site (hereinafter referred to as the "Site"). The groundwater monitoring activities included the performance of the water level measurements, non-aqueous phase liquid (NAPL) gauging and groundwater sampling.

The groundwater monitoring event and the preparation of this report are part of the routine groundwater monitoring program being conducted at the Site. This report has been prepared for submittal to the New York State Department of Environmental Conservation (NYSDEC) and includes the following:

- Description of the scope of the field activities, methods and procedures;
- Table summarizing the results of the water level measurements and the gauging of the monitoring wells and piezometers for the presence of NAPL (see Table 1);
- Table summarizing the analytical results for the groundwater samples obtained during the second half 2016 monitoring event including a comparison to the applicable groundwater quality criteria (see Table 2);
- Comparison of data from this monitoring period to data from historical monitoring events (Tables 3 and 4);
- Discussion of the results and findings from the groundwater monitoring data;
- A water table elevation contour map depicting the generalized direction of groundwater flow based on groundwater elevation data obtained from monitoring wells and piezometers, as well as surface water elevation data obtained from staff gauges installed in the Patchogue River (Figure 1);
- Field Sampling Data Sheets (Appendix A);
- Laboratory Data Report (Appendix B);
- Data Usability Summary Report (Appendix C); and
- Electronic Data Deliverable (Appendix D).


1.1 Background

Groundwater monitoring events have been conducted at the Site since March 2008 including two monitoring events conducted as part of the Remedial Investigation (RI) in March 2008 and July 2008. The groundwater monitoring event conducted in December 2016 is the subject of this report. The results of previous monitoring events have had fairly consistent concentrations and areal distribution of constituents in groundwater. Prior to the March 2010 groundwater monitoring event, site-related dissolved phase constituents [e.g., benzene, toluene, ethylbenzene, xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs)] were detected at concentrations above the Class GA groundwater quality criteria [i.e., standards from the 6 NYCRR Part 703 Standards and guidance values from the Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1] in a limited area near the center of the Site. These elevated concentrations did not extend downgradient to the wells closer to the Patchogue River. However, during the March 2010 and September 2010 monitoring events, detections of BTEX and PAH compounds were more widely distributed than during previous events. It was surmised that this change was the result of a temporary dewatering operation at a construction project conducted by

the Village of Patchogue at their wastewater treatment facility (WWTF) directly across the river from the Site. Based on the understanding of Site conditions, it was anticipated that when the dewatering operations had ceased, concentrations in groundwater would re-equilibrate with steady-state (i.e., pre-dewatering) groundwater flow conditions, and eventually return to levels similar to those prior to dewatering. To confirm this, National Grid increased the frequency of the groundwater monitoring from semi-annually to quarterly. The subsequent six quarterly monitoring events documented the return of groundwater flow and groundwater quality to conditions consistent with those prior to the dewatering operations.

Based on this finding, in a May 24, 2012 email, National Grid proposed to the NYSDEC that the frequency of groundwater sampling and analysis return to a semi-annual basis with the schedule for water level monitoring and NAPL gauging remaining on a quarterly basis. NYSDEC agreed with this proposal. Collection of water level data remained on a quarterly schedule to provide additional water level data from the piezometers that had been installed in the first half of 2012 in support of the Pre-Remedial Design Investigation. Subsequently, in an October 8, 2013 letter to the NYSDEC, National Grid proposed that that the frequency of all components of the groundwater monitoring program (i.e., water level measurements, NAPL gauging and groundwater sampling) be returned to the semi-annual schedule. This proposal was made because the data from the water level measurements and NAPL gauging, including data from the newer piezometers, continued to indicate very consistent findings from quarter to quarter and confirmed the understanding of groundwater flow conditions and NAPL occurrence at the Site. The NYSDEC concurred with this proposal in a December 9, 2013 email.

Section 2 Scope of Work

Field activities for the second half 2016 groundwater monitoring were conducted by Brown and Caldwell Associates (BC) between December 27 and 29, 2016. The activities conducted during this monitoring event are described below. Locations of the monitoring wells, piezometers and staff gauges referenced below are depicted on Figure 1.

Prior to groundwater sampling, water level measurements and NAPL gauging were performed in the piezometers and monitoring wells associated with the Site. The level of the Patchogue River was measured at the two staff gauges (SG-1 and SG-2). Water level measurements and NAPL gauging were made using an electronic oil/water interface probe, and measured to the nearest 0.01 foot. At the locations where NAPL was detected using the oil/water interface probe, a 3-foot long threaded rod attached to a nylon mason line was lowered into the monitoring well or piezometer to confirm the presence of the NAPL. The threaded rod was lowered to the bottom of the monitoring well to measure the approximate thickness of the NAPL accumulation.

Groundwater sampling was conducted at ten monitoring wells following the water level and NAPL gauging activities. MW-5 was not sampled during this monitoring period due to the presence of NAPL observed in the well during NAPL gauging activities. The presence of NAPL in MW-5 is consistent with observations during previous gauging activities. The standard protocol is that if NAPL is observed in a well during gauging or sampling, groundwater samples are not submitted for laboratory analyses. Additionally, monitoring well MW-6 was not sampled during this monitoring period as the sampling crew could not locate the well and monitoring well. The surface completion for MW-6 is relatively low to the ground surface and the field crew was unable to locate the well due to matted down overgrown vegetation in the general area of MW-6. Noteworthy is that NAPL is routinely observed in MW-6 and, therefore, the well is typically not sampled during the semi-annual sampling events. Groundwater sampling was conducted using low flow purging and sampling techniques in accordance with the United States Environmental Protection Agency (USEPA) protocol (USEPA, July 1996, Revised January 2010). Samples were submitted to Aqua Pro-Tech Laboratories (APL) located in Fairfield, New Jersey. APL is certified (Certification No. 11634) through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP).

The groundwater samples were analyzed for: BTEX compounds and methyl tertiary-butyl ether (MTBE) using SW-846 Method 8260B; and PAHs using USEPA SW-846 Method 8270C. The selective ion monitoring (SIM) component of the 8270 analysis (used to obtain the required detection limits for certain PAH compounds) was inadvertently included for the following semi-volatile organic compounds (SVOCs): hexachlorobenzene, hexachlorobutadiene, and n-nitroso-dimethylamine. Although these compounds are not related to MGP impacts, they are reported herein because they were included in the analysis. The groundwater samples were also analyzed in the field for pH, specific conductivity, temperature, turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (see Appendix A for field data sheets).

The laboratory report from APL is provided in Appendix B. Laboratory analytical data were provided to BC in electronic form by APL and have been incorporated into the environmental database maintained by BC for the Site.

In addition to the samples described above, quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples included: trip blanks (one per cooler containing samples for BTEX and MTBE analysis), a field duplicate, and an equipment blank. Also, extra sample volume was collected from one location to provide for matrix spike/matrix spike duplicate (MS/MSD) analysis. The trip blanks were analyzed for BTEX and MTBE only. The other QA/QC samples were analyzed for BTEX, MTBE, and PAHs.

Laboratory results for the groundwater sample analyses were forwarded to a data validator, Environmental Data Services, Inc. of Newport News, Virginia, for review and preparation of a Data Usability Summary Report (DUSR). The DUSR presents a summary of data usability including a discussion of qualified data. The DUSR is provided as Appendix C. As described in the DUSR, the data were considered by the validator to be valid and usable. An Electronic Data Deliverable (EDD) of the validated analytical data, prepared in accordance with NYSDEC requirements, is provided in Appendix D.

Section 3 Results and Findings

3.1 Water Level Data

Table 1 provides the water level data and calculated water elevations from the December 2016 measurements. Figure 1 illustrates the elevation contours of the water table based on these data. The contours were developed using water level elevation data from the shallow monitoring wells and shallow piezometers at the Site (i.e., those with screens that straddle, or are just below, the water table) and the two surface water staff gauges in the Patchogue River. The water level elevations used for contouring are representative of water table elevations at the Site. The groundwater elevation (hydraulic head) values for the wells and piezometers screened in deeper intervals are also posted for reference on Figure 1. The water table is relatively shallow and is typically positioned in the fill that overlies the native alluvial deposits and outwash deposits. The water table contours indicate that lateral groundwater flow is from northwest to southeast across the Site toward the Patchogue River. Comparisons of the groundwater elevations in the monitoring wells to the river elevation, as measured at staff gauges SG-1 and SG-2, demonstrate that groundwater elevations are higher than the river level indicating that groundwater is discharging to the Patchogue River. The upward vertical hydraulic gradient measured at well pairs adjacent to the river (well pairs MW-4S and MW-4D, and MW-9S and MW-9D) is indicative of a discharge area and provides further support to the conclusion that groundwater is discharging to the Patchogue River. The general configuration of the water table contours, developed using the December 2016 data, and the interpreted groundwater flow patterns are consistent with those from previous rounds of water level measurements with one exception. The exception occurred during the March 2010 sampling event when the large-scale dewatering activities were being conducted on the WWTF site located east of the Site on the opposite side of the river (see discussion in Section 1.1). Operation of this dewatering system temporarily altered groundwater flow patterns and levels at the Site (see "Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event" [GEI, November 2010]).

3.2 NAPL Gauging

Table 1 presents the results of the NAPL gauging conducted in the monitoring wells and piezometers associated with the Site during the December 2016 groundwater monitoring event. NAPL was identified in the following wells/piezometers during the gauging activities:

- **MW-5:** Reddish, amber colored NAPL with strong mothball-like odor on the lower 0.34 feet of the threaded rod.
- **PZ-3A:** Black silt with slight odor and sheen/NAPL blebs at base of threaded rod.

NAPL has been observed in MW-5 and PZ-3A during previous gauging events. As discussed in Section 2, although not part of the second half 2016 groundwater monitoring because it could not be located, NAPL is also typically observed in MW-6 during the routine gauging activities.

3.3 Groundwater Quality Data

Table 2 provides the results of the laboratory analyses of the groundwater samples collected during the December 2016 monitoring event and a comparison of the data to the New York State Class GA groundwater quality criteria. Comparisons of total BTEX and total PAH concentrations from this sampling event to previous sampling events are provided as Tables 3 and 4, respectively.

As previously stated, NAPL was identified in one of the 12 monitoring wells (MW-5) associated with the Site. MW-5 is located in the central part of the Site in the area of former MGP operations (refer to Figure 1). As discussed in Section 2, because MW-5 contained NAPL and MW-6 could not be located, groundwater samples were not collected from these wells. Groundwater samples were collected from the remaining ten monitoring wells and submitted to the laboratory for analysis.

The constituent concentrations in groundwater samples collected during the December 2016 monitoring event were consistent with those measured during previous monitoring events. No MTBE or BTEX compounds were detected at any of the ten monitoring wells sampled during the December 2016 monitoring event.

PAH compounds were not detected at six of the ten monitoring wells that were sampled during the December 2016 monitoring event. However, in samples collected from monitoring wells MW-3, MW-4, MW-9S, and MW-9D, PAH compounds were detected at low concentrations (i.e., slightly above the laboratory method detection limit) above the Class GA groundwater quality criteria during the December 2016 monitoring event. The PAH compounds that were identified in the groundwater samples from these sampling locations at concentrations above the Class GA groundwater quality criteria include one or more of the following four compounds: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and benzo(k)fluoranthene. These PAH compounds have very low aqueous solubilities, are not readily mobile in groundwater, and are unlikely to have migrated from the on-site source area. The criteria that were exceeded for three of these four PAHs are unpromulgated guidance values rather than Part 703 standards. The criteria for the fourth PAH, benzo(a)pyrene, is a Part 703 standard. The guidance value for the other PAHs, 0.002 µg/L, is nearly two orders of magnitude below the method detection limit; the standard for benzo(a)pyrene is "non-detect". Therefore, any detection of these compounds in groundwater will result in an exceedance. The detection of these constituents is likely related to the disturbance of fine or colloid sized particles during purging or sampling activities. These particles are derived from within the well or the soil adjacent to the well that become suspended into the water column of the well as a result of disturbance during purging and sampling activities.

As indicated on the chain-of-custodies that accompanied the samples (refer to laboratory report provided in Appendix B), PAHs were the only constituents requested for analysis associated with the Method 8270 analysis for SVOCs. However, as discussed in Section 2, the laboratory inadvertently analyzed the samples for a few other SVOCs for this sampling event. Specifically, the laboratory also analyzed the samples for hexachlorobenzene, hexachlorobutadiene, and n-Nitroso-dimethylamine. Low-level detections of hexachlorobenzene were measured in the sample from MW-4D and the duplicate sample collected from MW-9S at concentrations slightly above its Part 703 standard of $0.04 \mu g/L$. Hexachlorobenzene is not considered to be associated with former MGP operations and thus, is not considered to be site-related. Rather, the detections of hexachlorobenzene is a component of fungicides and can be a byproduct in the production of chlorinated solvents (and an impurity). It can also be associated with fly ash and paper production processes. Hexachlorobenzene is known to have a very low aqueous solubility, is not readily mobile in groundwater, and is unlikely to have migrated from the on-site source area.

Section 4 Summary and Conclusions

As noted in previous monitoring events, NAPL was identified in one monitoring well (MW-5) and one piezometer (PZ-3A) during the December 2016 event. MW-5 and PZ-3A are located in the center of the Site in the area of former MGP operations where NAPL has been identified in the soil.

No MTBE or BTEX compounds were detected at any of the monitoring wells sampled during the December 2016 monitoring event.

PAH compounds were not detected at six of the ten monitoring wells sampled during the December 2016 monitoring event. At MW-3, MW-4, MW-9S, and MW-9D, one or more PAH compounds were detected at low concentrations (i.e., slightly above the laboratory method detection limit) above the Class GA groundwater quality criteria during the December 2016 monitoring event. The detected PAH compounds have very low aqueous solubilities, are not readily mobile in groundwater and are unlikely to have migrated from the onsite source area. In addition, the criteria that were exceeded for three of the four detected PAHs are unpromulgated guidance values rather than Part 703 standards. The criteria for these compounds are extremely low, approximately two orders of magnitude below the laboratory method detection limit. Therefore, any detection of these compounds in groundwater will result in an exceedance. This will continue to be evaluated through subsequent semi-annual monitoring events. As discussed in Section 3.3, the detections of hexachlorobenzene in samples collected from MW-4D and MW-9S are not considered to be related to the former MGP operations conducted at the Site.

No dissolved phase impacts are identified in groundwater samples collected at monitoring well locations positioned downgradient of the MGP-impacts identified in the soil in the area of former MGP operations. Monitoring will continue in order to confirm these conditions.

Section 5 **References**

- Brown and Caldwell Associates, December 2012, Construction Completion Report Utility Corridor Work Plan Implementation, Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- GEI, November 2010. Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event, Patchogue Former MGP Site, Town of Brookhaven, Suffolk County, Long Island, New York, Site ID No. 1-52-182.
- USEPA, July 1996; Revised January 2010. Low-Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

Tables

TABLE 1 WATER ELEVATIONS AND NAPL MONITORING DATA SECOND HALF 2016 PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

			12/27	<u>/2016</u>		
Location ID	Top of Casing Elevation ^(a)	Depth to Water	Water Elevation	Depth to NAPL	Total Depth of Well	Remarks
	(ft., NAVD)	(ft., BTOC)	(ft., NAVD)	(ft., BTOC)	(ft., BGS)	
MW-1	11.47	5.97	5.50	NI	15.22	
MW-3	5.56	2.42	3.14	NI	10.40	
MW-4S	7.97	5.24	2.73	NI	12.29	
MW-4D	7.79	4.96	2.83	NI	26.69	
MW-5	8.66	4.69	3.97	10.16	10.50	0.34' of reddish amber NAPL at base of threaded rod, strong mothball- like odor.
MW-6	5.03					Unable to locate well.
MW-7S	8.45	4.81	3.64	NI	12.46	
MW-7D	8.31	4.45	3.86	NI	27.17	
MW-8S	5.08	0.90	4.18	NI	9.95	
MW-8D	4.98	0.84	4.14	NI	25.16	
MW-9S	4.47	1.62	2.85	NI	10.23	
MW-9D	4.66	1.53	3.13	NI	22.98	
SG-1	5.23	4.13	1.10	NI	NA	
SG-2	5.17	3.90	1.27	NI	NA	
PZ-1A	8.05	3.75	4.30	NI	10.05	
PZ-1B	8.91	4.87	4.04	NI	22.50	
PZ-2A	8.77	4.49	4.28	NI	8.08	
PZ-2B	8.29	4.03	4.26	NI	18.05	Slight, mothball-like odor on threaded rod.
PZ-3A	8.78	4.89	3.89	8.91	9.33	0.42° of black silt with slight odor and sheen/NAPL blebs at base of threaded rod.
PZ-3B	8.90	5.27	3.63	NI	21.90	
PZ-4A	4.79	1.82	2.97	NI	4.90	

<u>Notes:</u> NAVD - North American Vertical Datum

ft. - Feet

BGS - Below Ground Surface

BTOC - Below Top of Casing

NAPL - Non-Aqueous Phase Liquid NA - Not Applicable

NI - NAPL Not Indicated by Oil/Water Interface Probe

(a) - Monitoring wells resurveyed on 7/3/12 following utility corridor construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)". Above ground casing at MW-5 was lowered during utility corridor construction activities and was resurveyed in September 2015.

TABLE 2 GROUNDWATER ANALYSIS RESULTS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

	Class GA Grou	ndwater Criteria	Loc ID	MW-1	MW-3	MW-4D	MW-4S	MW-7D
Constituent	T0GS 1.1.1		Comple Data	12/29/2016	12/27/2016	12/28/2016	12/28/2016	12/28/2016
	Guidance	NYS Part 703 Standard	Sample Date Units					
Volatile Organic Compounds (VOCs		Stanuaru	Units					
BTEX	/							
Benzene	NE	1	µg/L	1.00 U	1.00 U	1.00 U	1.00 U	1.00 ሀ
Ethylbenzene	NE	5	μg/L	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U 1.00 U
Xylenes, m & p	NE	5	με/L	1.00 U	1.00 U	1.00 U	1.00 U	1.00
1,2-Dimethylbenzene (o-Xylene)	NE	5	μg/L	1.00 U	1.00 U	1.00 U	1.00 U	1.00
Toluene	NE	5	με/L	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U 1.00 U
Xylenes, total	NE	5	μg/L	1.00 U	1.00 U	1.00 U	1.00 U	1.00 0
Total BTEX	NE	NE	μg/L μg/L	1.00 U ND	1.00 U ND	1.00 U ND	1.00 U ND	1.00 ND
TOTAL BLEX	INE	NE	μg/ L	ND	ND	ND	ND	שא
Other VOCs								
tert-Butyl methyl ether (MTBE)	10	NE	µg/L	2.00 U	2.00 U	2.00 U	2.00 U	2.00 l
tert-Butyl alcohol	NE	NE	µg/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 l
Semi-Volatile Organic Compounds	(SVOCs)							
Polycyclic Aromatic Hydrocarbons (• •							
Acenaphthene	20	NE	µg/L	2.13 U	2.20 U	2.13 U	2.17 U	2.00
Acenaphthylene	NE	NE	µg/L	2.13 U	2.20 U	2.13 U	2.17 U	2.00
Anthracene	50	NE	µg/L	2.13 U	2.20 UJ	2.13 U	2.17 U	2.00
Benzo(a)anthracene	0.002	NE	µg/L	0.021 U	0.024	0.024	0.022 U	0.020
Benzo(a)pyrene	NE	0	µg/L	0.021 U	0.022 U	0.022	0.022 U	0.020
Benzo(b)fluoranthene	0.002	NE	μg/L	0.021 U	0.022 U	0.021 U	0.022 U	0.020
Benzo(g,h,i)perylene	NE	NE	µg/L	2.13 U	2.20 UJ	2.13 U	2.17 U	2.00
Benzo(k)fluoranthene	0.002	NE	µg/L	0.021 U	0.022 U	0.022	0.022 U	0.020 L
Chrysene	0.002	NE	μg/L	2.13 U	2.20 UJ	2.13 U	2.17 U	2.00
Dibenz(a,h)anthracene	NE	NE	µg/L	0.021 U	0.022 U	0.021 U	0.022 U	0.020
Fluoranthene	50	NE	μg/L	2.13 U	2.20 U	2.13 U	2.17 U	2.00
Fluorene	50	NE	µg/L	2.13 U	2.20 U	2.13 U	2.17 U	2.00
Indeno(1,2,3-c,d)pyrene	0.002	NE	μg/L	0.021 U	0.022 U	0.021 U	0.022 U	0.020
Naphthalene	10	NE	μg/L	2.13 U	2.20 U	2.13 U	2.17 U	2.00
Phenanthrene	50	NE	μg/L	2.13 U	2.20 UJ	2.13 U	2.17 U	2.00
Pyrene	50	NE	μg/L	2.13 U	2.20 U	2.13 U	2.17 U	2.00
Total PAHs	NE	NE	μg/L	ND	0.024	0.07	ND	ND
Other SVOCs								
Hexachlorobenzene	NE	0.04	µg/L	0.021 U	0.022 U	0.044	0.022 U	0.020
Hexachlorobutadiene	NE	0.5	μg/L	0.021 U	0.022 U	0.044 0.021 U	0.022 U	0.020
n-Nitroso-dimethylamine	NE	NE	με/ L	0.106 U	0.022 U 0.110 U	0.021 U 0.106 U	0.022 U 0.109 U	0.020 0

TABLE 2 **GROUNDWATER ANALYSIS RESULTS** PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

	Class GA Grou	ndwater Criteria	Loc ID	MW-7S 12/28/2016	MW-8D 12/28/2016	MW-8S 12/28/2016	MW-9D 12/27/2016	MW-9S 12/27/2016	MW-9S (DUP) 12/27/2016
Constituent	TOGS 1.1.1	NYS Part 703	Sample Date			12/20/2010			10, 21, 2010
	Guidance	Standard	Units						
Volatile Organic Compounds (VOCs)	<i>)</i>								
BTEX									
Benzene	NE	1	µg/L	1.00 U					
Ethylbenzene	NE	5	µg/L	1.00 U	1.00 l				
Xylenes, m & p	NE	5	µg/L	1.00 U					
1,2-Dimethylbenzene (o-Xylene)	NE	5	µg/L	1.00 U					
Toluene	NE	5	µg/L	1.00 U					
Xylenes, total	NE	5	µg/L	1.00 U					
Total BTEX	NE	NE	µg/L	ND	ND	ND	ND	ND	ND
Other VOCs									
tert-Butyl methyl ether (MTBE)	10	NE	µg/L	2.00 U	2.00				
tert-Butyl alcohol	NE	NE	µg/L	10.0 U					
Semi-Volatile Organic Compounds	(SVOCs)								
Polycyclic Aromatic Hydrocarbons (I	PAHs)								
Acenaphthene	20	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22
Acenaphthylene	NE	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22 l
Anthracene	50	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22 l
Benzo(a)anthracene	0.002	NE	µg/L	0.020 U	0.020 U	0.020 U	0.021 U	0.058	0.057
Benzo(a)pyrene	NE	0	µg/L	0.020 U	0.020 U	0.020 U	0.028	0.035	0.042
Benzo(b)fluoranthene	0.002	NE	µg/L	0.020 U	0.020 U	0.020 U	0.021 J	0.024 U	0.019 J
Benzo(g,h,i)perylene	NE	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22 l
Benzo(k)fluoranthene	0.002	NE	µg/L	0.020 U	0.020 U	0.020 U	0.025	0.023 J	0.032
Chrysene	0.002	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22 L
Dibenz(a,h)anthracene	NE	NE	µg/L	0.020 U	0.020 U	0.020 U	0.021 U	0.024 U	0.022 L
Fluoranthene	50	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22 l
Fluorene	50	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22 l
Indeno(1,2,3-c,d)pyrene	0.002	NE	µg/L	0.020 U	0.020 U	0.020 U	0.021 U	0.024 U	0.022 L
Naphthalene	10	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	2.22 U
Phenanthrene	50	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.44 U	0.65 l
Pyrene	50	NE	µg/L	2.00 U	2.00 U	2.00 U	2.08 U	2.83	3.13 J
Total PAHs	NE	NE	µg/L	ND	ND	ND	0.074 J	2.95 J	5.50 J
Other SVOCs									
Hexachlorobenzene	NE	0.04	µg/L	0.020 U	0.020 U	0.020 U	0.021 U	0.024 U	0.048
Hexachlorobutadiene	NE	0.5	µg/L	0.020 U	0.020 U	0.020 U	0.021 U	0.024 U	0.022 U
n-Nitroso-dimethylamine	NE	NE	µg/L	0.100 U	0.100 U	0.100 U	0.104 U	0.122 U	0.111 l

Notes: J - Estimated concentration. The result is below the practical quantitation limit but above the method detection limit.

U - The analyte was analyzed for, but was not detected. $\mu g/L$ - micrograms per liter ND - Not detected.

NE - Not established.

Boxed concentrations are above New York State Class GA Groundwater Quality Criteria (Standards or Guidance values).

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

							Total BTEX C	Concentratio	ons (µg/L) ^{(a})					
Sampling Date							Mo	onitoring W	ell						
	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D	PZ-4A
Mar-08	0	0	0	0	3.4	0	1016	57	NS	NS	NS	NS	NS	NS	NI
Jul-08	NS	0	0	0	0	0	678	0	0	0	0	0	0	0	NI
Mar-09	0	0	0	0	0	0	975	0	0	1	0	0	0	0	NI
Sep-09	0	0	0	0	0	0	1257	1	0	0	0	0	0	0	NI
Mar-10	0	0	0	0	0	0	637	2	0	9	0	0	0	0	NI
Sep-10	0	0	0	0	0	0	NS	0	0	0	0	0	27	0	NI
Jan-11	1.7	0	0	0	0	0	NS	NS	0	0	0	0	1	0	NI
Apr-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Aug-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Nov-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Feb-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
May-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0	NI
Nov-12	0	(b)	(a)	0	12	0	NS	NS	1	0	0	0	NS	NS	NI
Jun-13	0	^(b)	^(b)	0	0.8	0	NS	NS	0.7	0	0	0	0	NS	NI
Dec-13	0	(b)	(b)	NS	0	0	NS	NS	0.8	0	0	0	NS	NS	NI
Jun-14	0	(b)	(b)	0	0	0	NS	NS	0.8	0	0	0	NS	NS	0
Dec-14	0	(b)	(b)	0	0	0	NS	NS	1.3	0	0	0	0	0	NS
Jun-15	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0	NS
Dec-15	0	^(b)	(b)	0	0	0	NS	NS	0.5	0	0	0	0	0	NS
Jun-16	0	^(b)	(b)	0	0	0	NS	NS	0	0	0	0	0	0	NS
Dec-16	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0	NS
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	637.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	1.7	0.0	0.0	0.0	12.0	0.0	1257.0	57.3	1.3	9.0	0.0	0.0	27.0	0.0	0.0
Mean	0.1	0.0	0.0	0.0	0.8	0.0	912.6	10.1	0.3	0.5	0.0	0.0	1.6	0.0	0.0

Notes:

BTEX - Benzene, toluene, ethylbenzene and xylene isomers

µg/L - micrograms per liter

NS - Not sampled.

NI - Piezometer not installed at time of sampling.

(a) - To calculate Total BTEX concentration, a value of zero is used for non-detect values.

(b) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion

Report, Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)".

TABLE 4 SUMMARY OF HISTORICAL PAH CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

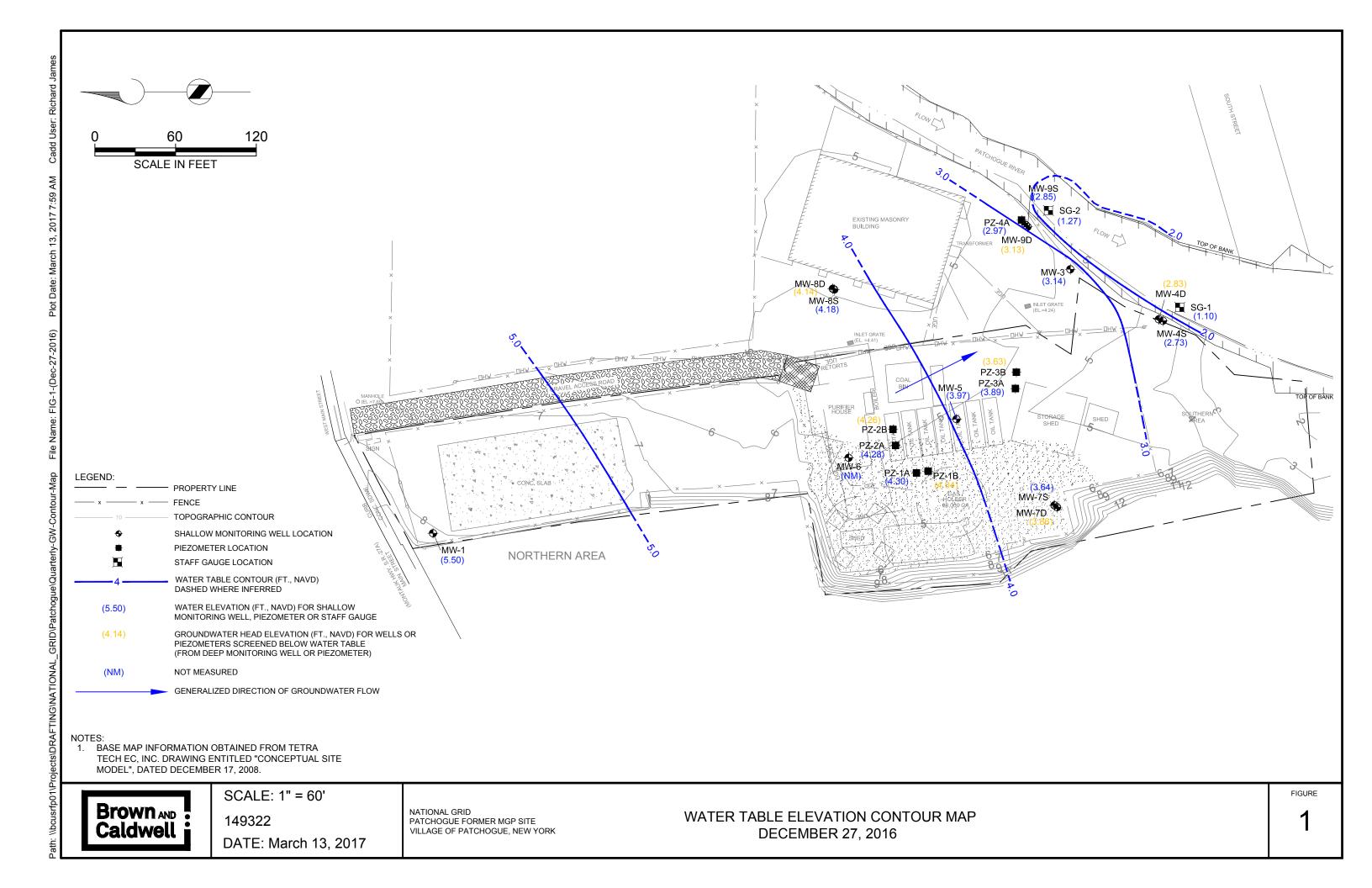
							Total PAH C	oncentration	is (µg/L) ^(a)						
Sampling Date	Monitoring Well														
l l	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D	PZ-4A
Mar-08	0	0	0	0.76	0.6	4.3	1774	214	NS	NS	NS	NS	NS	NS	NI
Jul-08	NS	0.7	0	0	8.0	0	1799	154	0	0.47	0	0	12.0	0	NI
Mar-09	0	0	0	0	0	0	2730	0	0	0	0	0	0	0	NI
Sep-09	0	0	0	0	0	0	3373	1	0	0	0	0	0	0	NI
Mar-10	0	0	0	0	0	39	2390	17	0	0	22	0	2	0	NI
Sep-10	0	0	0	128	0	6	NS	14	0	0	11	0	396	0	NI
Jan-11	22	0	0	17	0	12	NS	NS	0	0	6	0	42	5	NI
Apr-11	0	0	0	6	0	20	NS	NS	0	0	0	0	9	0	NI
Aug-11	0	0	0.1	14	0.1	0	NS	NS	0	0	0.4	0	16	1.2	NI
Nov-11	0	0	0.2	10	0.4	0	NS	NS	0	0	0.8	0.2	8	3.4	NI
Feb-12	0.2	0	0	6	0.6	4	NS	NS	0.1	0	0.6	0	5	2.9	NI
May-12	0.4	0.1	0.6	5	0	5.8	NS	NS	0.1	0.3	1	0	6	2.8	NI
Nov-12	0.1	^(b)	^(b)	5.6	0.4	11.7	NS	NS	2.5	2.6	0.8	1.2	NS	NS	NI
Jun-13	0.8	^(b)	(b)	NS	0.3	3.7	NS	NS	1.3	0.4	0.4	0.6	2	NS	NI
Dec-13	0	^(b)	^(b)	NS	0	2.5	NS	NS	0.8	0.4	0.3	0	NS	NS	NI
Jun-14	0	^(b)	^(b)	2.2	0.9	0	NS	NS	0.8	0.3	0.2	0	NS	NS	0.3
Dec-14	0.1	^(b)	^(b)	1.2	0.4	0	NS	NS	3	0	0.1	0	21.4	0.3	NS
Jun-15	0	^(b)	^(b)	1.1	0.9	0	NS	NS	0.9	0	0.3	0	10.4	0.3	NS
Dec-15	0	^(b)	(b)	0	0	0	NS	NS	0.9	0	0	0	3.9	0	NS
Jun-16	0	(b)	(b)	1.9	0.8	0	NS	NS	2.5	0	0	0	5.9	0	NS
Dec-16	0	(b)	(b)	0.02	0	0.1	NS	NS	0	0	0	0	5.5	0.07	NS
Min	0.0	0.0	0.0	0.0	0.0	0.0	1773.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
Max	22.0	0.7	0.6	128.0	8.0	39.0	3373.0	214.2	3.0	2.6	22.0	1.2	396.0	5.0	0.3
Mean	1.2	0.1	0.1	10.5	0.6	5.2	2413.1	66.7	0.6	0.2	2.2	0.1	32.1	1.0	0.3

Notes:

PAH - Polycyclic aromatic hydrocarbons

µg/L - micrograms per liter

NS - Not sampled.


NI - Piezometer not installed at time of sampling.

(a) - To calculate Total PAH concentration, a value of zero is used for non-detect values.

(b) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)".

Figures

Appendix A: Field Sampling Data Sheets

Brown AND .	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Caldwell Upper Saddle River, NJ Offi	Well Number: MW- Sample I.D.: MW-1-20/6/229 (If different from well no.)
Project: NG-Patchogue Personnel: TJP, JAT	Date: 17/13/16 Time: 806 Weather: Claudy Air Temp.: 37%
Intake Diameter: DEPTH TO : Static Water Level: DATUM: Top of Protective Casing CONDITION: Is Well clearly labeled? Static Water Level: CONDITION: SWell clearly labeled? Static Water Level: Static Water Level:	Is well clean to bottom?
VOLUME OF WATER: Standing in well:	To be purged:
	mp 🛛 2" Submersible Pump 🗔 4" Submersible Pump c Pump 🖵 Inertial Lift Pump 🗅 Other:
MATERIALS: Pump Bailer: Teflon® Stainless Steel PVC Other: Pumping Rate: Yes No PURGING EQUIPMENT: Dedicated Prepared	Tubing Rope: Teflon® Polyethylene Polypropylene Other: Other: Number of Well Volumes Removed: Other: Off-Site Field Cleaned
SAMPLING DATA: METHOD: Bailer, Size: 1.15 " Bladder Pump D Syringe Sampler D Peristaltic Pump D	2" Submersible Pump
	ared Off-Site Field Cleaned
APPEARANCE: Clear	Contains Immiscible Liquid
DUP : No D Yes Name: MS/MSD : No D Yes Name:	
I certify that this sample was collected and handled in accordance with application	12 lagle
Signature: MM MM	Date: [[[9]]]b

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

	ject Name: Client: Personnel: ple Depth:	V a T	Patch or JAJ	jue Grid		Proj	ect Number: Date: Well ID: Sample ID:	12/29/1 MW-1	6 20161229
Actual Time	рН	Certi Temp (°C)	fied Para Cond (^m , m)	meters DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
\$09 \$12 \$15 \$14 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$22 \$23 \$	6.01 6.03 6.05 6.06 6.04 6.07 6.08 6.08 6.08 6.08 6.08 6.07 5.08 6.07	7.03 9.57 8.19 8.23 8.23 8.23 8.24 9.25 9.24 9.24 9.24 9.24 9.24 9.14 8.99 12 M	, 3 , 5 , 5 , 7 7 7 7 7 7 7 7 7 7	9,49 5.92 2,89 2.48 7.31 2.14 2.11 2.10 2.00 2.02 7.78 61729 01729	49.2 73.1 12.1 120 117 93.8 76.8 74.1 59.5 51.6 44.4 	-46 -51 -55 -56 -59 -60 -60 -61 -62			
Instrumen N Ca	f Sample: L Data: Manufactur Serial libration D	er/Model: No. Unit: ate/Time:	839 Houz	the second value of the se	52	Serial No.		Jun MAX 018	Junj

Are low-flow parameters subject to field lab certification?
Yes Vo (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Caldwell j Upper Saddle River, NJ Office	Well Number: MW-7D Sample I.D.: MW-7D-2016 (L 28
Project: NG - Patchogue Personnel: TJP, JAT	Date: 12/28/16 Time: 1408 Weather: Partiz Cody Air Temp.: 38
DEPTH TO : Static Water Level: <u>MSI</u> ft Bottom of We DATUM: Dop of Protective Casing Dop of Well Casing CONDITION: Is Well clearly labeled? Does Use Is Prot. Casing/Surface Mount in Good Cond.? (In Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost head Is Padlock Functional? Does Use In No NA Is Inner Casing Properly Capped and Vented? D	Image: PVC Teflon® Open rock Il: 1 1 Il: 1 1
VOLUME OF WATER: Standing in well:	To be purged:
PURGE DATA: METHOD: Image: Contribution of the second sec	2" Submersible Pump
MATERIALS: Pump/Bailer: Teflon® MATERIALS: Pump/Bailer: Teflon® Stainless Steel PVC Other: Pumping Rate: 3/5775 Was well Evacuated? Yes 2 No PURGING EQUIPMENT: Dedicated Prepared Off-	Tubing/Rope: Teflon® Polyethylene Polypropylene Other: Other: Imber of Well Volumes Removed: Site Site Field Cleaned
SAMPLING DATA: METHOD: □ Bailer, Size: 1.35 ☐ Bladder Pump □ 2" S □ Syringe Sampler □ Peristaltic Pump □ Iner	ubmersible Pump □ 4" Submersible Pump ial Lift Pump □ Other:
MATERIALS: Pump/Bailer: D/ Teflon® D Stainless Steel SAMPLING EQUIPMENT: D Dedicated D Prepared C Metals samples field filtered? D/ Yes D No Method	Dff-Site Field Cleaned
	Contains Immiscible Liquid neter data.
I certify that this sample was collected and handled in accordance with applicable re Signature:	

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	NG-Patchogue	Project Number:		
Client:	National Brid	Date:	12/28/16	
Personnel:	TJP JAT	Well ID:	MW-70	
Purge/Sample Depth:	23''	Sample ID:	MW-70-20161228	

		Cert	ified Para	neters			1		
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate	
Time	рН	(°C)	(m) (m)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
1408	6.64	11.26	0.618	3.06	146	68	4.53		
1411	6.34	11.40	0.07	2.98	128	87 124			
1414	5.91	<u>11.96</u>	0.719	2.19	143				
1417	5.94	11.96	0.755	2,16	148	125			
423	5.22	- 12 11	0757	1.90		136			
1476	574	12.16	0,765	1.25	43	37-	4.58		Emply Horiba
1429	5.72	12 40	0.771	1.81	03	139			- poppy - nering
1432	5.71	12.47	0.771	1.79	98.4	141			
435	5.67	12.45	0.773	1,72	69.4	148	4.56		
438	5.65	12.45	0.774	1.68	54.0	155	•		
1441	5.64	12.43	0.775	1.68	47.5	157		1.50	
444	San	ملا	<u>Mu/-71</u>	1-2010	128				
								A	
					-				
		2							
Certified S		ormation	11	in a				1	2
	Sample:		1	144		Analyst S	Signature:	for	the
	t Data: Ianufactur	orModel	11 .	1 11	~~			0	
IV	าลเบเลงไปไ		Hh (ika V-	26				

Are low-flow parameters subject to field lab certification?
Yes Vo (not required for CERCLA sites or sites outside of NJ)

Serial No. Handheld:

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

HOV2MYSY

Serial No. Unit:

Calibration Date/Time:

MAX 018X

Brown AND			ROUNDWATER
Caldwell	Upper Saddle River, NJ Office	Well Number: MW-75 Sample I.D.: MW-75-20	(if different from well no.)
Project: NG-Patchogue Personnel: TTP, TAT		Date: <u>12/28//6</u> Time Weather: <u>P6/+1</u> -	e: 1323 Claudy Air Temp.: 38
Intake Diameter: 21 DEPTH TO : Static Water Le DATUM: Dop of Protectiv CONDITION: Is Well clearly Is Prot. Casir Does Weep I Is Concrete F Is Padlock Fu Is Inner Casir	□ Stainless Steel □ Steel □ □ Stainless Steel □ Galv. Steel avel:ft Bottom of W ve Casing □ Top of Well Casing y labeled? □ Yes □ No Is w ng/Surface Mount in Good Cond.? Hole adequately drain well head? Pad Intact? (nor cracked or frost he unctional? □ Yes □ No □ NA ng Properly Capped and Vented? Padelas is well	el QPVC Teflon® Op /ell:ft Other: ell clean to bottom? Uses (not bent or corroded) Yes Yes No haved) Yes ONo Is Inner Casing Intact? Yes No	No No /
	Standing in well:	To be purged:	
PURGE DATA: METHOD:	er, Size: 1.75 " Bladder Pump Centrifugal Pump D Peristaltic Pu	2" Submersible Pump mp Inertial Lift Pump 0	4" Submersible Pump Other:
	Teflon® Stainless Steel PVC Other: Elapsed Time: 30 m Yes No No N Dedicated Prepared Of	Volume Pumped: <u>76-</u> lumber of Well Volumes Remains F-Site P Field Cleaned	oved:
SAMPLING DATA: METHOD: Description Bailer, Siz	re: 175" TBladder Pump D 2" 3 mpler D Peristaltic Pump D Ine	Submersible Pump □ 4" Sub rtial Lift Pump □ Other:	mersible Pump
MATERIALS: Pupp/Bailer: SAMPLING EQUIPMENT: Metals samples field filtered?	 Teflon® Stainless Steel Dedicated Prepared Yes No 		Teflon® Polyethylene
APPEARANCE: C C FIELD DETERMINATIONS: DUP : No C Yes	Clear de Turbid D Color: See attached form for field para Name:	 Contains Immiscib meter data. 	le Liquid
MS/MSD : W No Yes	Name:		
I certify that this sample was collected a	and handled in accordance with applicable	regulatory and project protocols.	
Signature:	And 1"	Date: 1428/16	

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	NG-Patchesine	Project Number:	
Client:	National Stick	Date:	12/28/16
Personnel:	TJP. TAT	Well ID:	MW-75
Purge/Sample Depth:_	81	Sample ID:	MW-75-20161228

Actual Time PH Temp (°C) Cond (°C) (°g/L) DO (°g/L) Turbidity (NTU) ORP (mV) DTW (°ft) Pumping Rate (mL/min) Comments 1372 $6,442$ $9,74$ $0,7447$ $2,55$ 179 -103 250 1376 $6,442$ $9,74$ $0,7447$ $2,55$ 179 -103 250 1372 $6,542$ $9,742$ $0,7437$ $2,487$ 117 -118 -103 250 1337 $6,555$ $9,430$ 0.7577 $2,18$ $90,55$ -172 -103 250 1332 $6,555$ $9,640$ 0.7573 $2,03$ $63,27$ -172 -126 -173 -178 <			Cert	ified Para	meters					
TimepH(°C) $(\frac{h}{2})$ (mg/L) (NTU) (mV) (ft) (mL/min) Comments1523 $(.412)$ 9.20 0.444 2.55 179 -103 250 1376 6.42 9.74 0.748 2.48 168 -105 4.80 1376 6.44 9.74 0.748 2.48 168 -105 4.80 1372 6.52 9.44 0.748 2.48 168 -105 4.80 1332 6.52 9.45 0.757 2.18 90.5 -177 -172 1335 6.55 9.63 0.757 2.19 90.5 -172 -172 1338 6.55 9.64 0.757 2.03 68.9 -116 4.81 1344 0.55 9.64 0.7574 1.96 63.3 -178 1344 6.55 9.86 0.7574 1.96 63.3 -178 1344 6.59 9.86 0.7574 1.83 40.7 -133 4.872 1350 6.59 9.87 0.7574 1.83 38.0 -133 -133 1353 6.57 9.86 0.7574 1.83 38.0 -133	Actual		Temp		DO	Turbidity	ORP	DTW	Pumping Rate	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	pН	(°C)	(35)	(mg/L)		(mV)	(ft)		Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				icm		. ,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1523	6.42	9.20	0.747	2.55	179	-103	- S	250	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1376	6.42	9.7.4		2.48			480		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.49		0.751	2.18	117-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1332	6.52	9.52	0.757	2.18		-177			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.55			2.05	72.4	-126			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.55				- MAIL		4.81		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.55			1.96		and the set			
1350 6.59 9.88 0.754 1.83 38.0 -133 1353 657 9.86 0.752 2.19 34.1 -355		6.56						•		
1353 657 9.86 0.752 2.19 34.1 -355				0.754		40.7		4.82		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						38.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1.86			34.1	-355			
Image: stateImage: state </td <td>1376</td> <td>Same</td> <td><u>k</u> mn</td> <td>1-75-7</td> <td>016 122</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>	1376	Same	<u>k</u> mn	1-75-7	016 122	<u> </u>				
Image: series of the series										
Image: series of the series										
Image: Section of the section of th										
Image: second										
Image: second										
									·	
				~						
			_							
		_								
						_				
Certified Sample Information:	Certified S	ample inf	ormation						0	
Time of Sample: 1356 Analyst Signature:							Analyst S	Signature:	1	1- 1
			pro	0					yn y	par _
Instrument Data: Manufacturer/Model: Hack U-52 Serial No. Unit: Hov2 MY53 Serial No. Handheld: MAX 0(8 X)	Manufacturer/Model: Hack U-57									
Serial No. Unit: Hov 2 M V 57 Serial No. Handheld: MAX 018 X1		Serial	No. Unit:	Hov7	MYD		Serial No. H	landheld:	MAXOL	8×1
Calibration Date/Time:	Cal	ibration D	ate/Time:					61	the second	

Are low-flow parameters subject to field lab certification? D Yes Vo (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell Upper Saddle River, NJ Office	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA Well Number: MW-3 Sample I.D.: MW-3-2016/227 (If different from well no.)
Project: Patchogue Personnel: TJP, JAT	Date: 12/27/16 Time: 441357 Weather: Barthy Cloud, Air Temp.: 53°
WELL DATA: 6 ¹¹ Stainless Steel Steel F Intake Diameter: 5 ¹¹ Stainless Steel Galv. Steel Galv. Steel DEPTH TO : Static Water Level: 7.42 ft Bottom of Well Casing DATUM: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Yes No Is well Is Prot. Casing/Surface Mount in Good Cond.? (In Does Weep Hole adequately drain well head?) Is Concrete Pad Intact? (not cracked or frop theat Is Padlock Functional? Yes No NA Is Inner Casing Properly Capped and Vented? VOLUME OF WATER: Standing in well:	PVC Teflon® Cother: PVC Teflon® Open rock ell: 0.40ft Other: ell clean to bottom? Offes No not bent or corroded) Yes No A Yes O No aved) Yes No Is Inner Casing Intact? Yes No
PURGE DATA:	2* Submersible Pump
MATERIALS: Pump/Bailer: Teflon® Stainless Steel PVC Other: Pumping Rate: <u>315 mC/map</u> Was well Evacuated? Yes Wo PURGING EQUIPMENT: Dedicated Prepared Off-	umber of Well Volumes Removed:
SAMPLING DATA: METHOD:	
MATERIALS: Pump/Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared C Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field param	d: Contains Immiscible Liquid
DUP: No DYes Name: MS/MSD: D No DYYes Name: <u>MW-3-7016</u> 122	7
I certify that this sample was collected and handled in accordance with applicable re Signature:	egulatory and project protocols. Date: 12/27//6

N

14

225 1

Brown AND Caldwell

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	Patchoque	Project Number:	
Client:	National bourd	Date:	12/17/16
Personnel:	TJP. JAT	Well ID:	MW-3-70
Purge/Sample Depth:	6	Sample ID:	MW-3-20161227

		Cert	ified Para	meters					
Actual Time	рН	Temp (°C)	Cond (^M / _{CM})	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
1357	6.85	15.11	1,22	9.61	89.5	2		315 MUMM	
1400	6.56	12.53	1.2.1	8.33	37.9	4	2.47		
1403	6.51	17,46	1.20	7.87	25.0	9	-		
1406	6.44	12.54	1.20	7.34	14.3	14			
1409	6.43	1231	1.19	6.88	9.6	15	Ţ.		
1417	6.41	12.30	1.19	6.76	\$-0	15			
1415	6.40	12.28	1.19	6.30		1.2	2.48		
1418	6.40	12.24	1.19	6.00	5.6	6			
1411	6.74	12.26	1.19	5.65	49	-2_			
1424	6.36	12.27	1.19	5.26	-5.1	-1			
145b	6.36 Sama	12.26 , MW.	1.18	3.61	4.5	-17-			
1750	Samp	, www.	~ 1016	1277					
					-				
						-			
								Bee	
				· · · ·					
			-						
						,			
				×					
Time of Instrument	Certified Sample Information: Time of Sample: 1450 Instrument Data: Analyst Signature: Jul Quit Manufacturer/Model: Hr.ba U-SZ Serial No. Unit: Hovimys? Serial No. Handheld:								
		No. Unit:	Hovi	MYSS	V La	Serial No. I	-landheld:	MAX018×1	

Are low-flow parameters subject to field lab certification? 🗆 Yes 🗵 No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Calibration Date/Time:

Brown AND Caldwell Upper Saddle River, NJ Office	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA Well Number MW-4S Sample LD MW-4S-2016 12 23
Project TJP, JAING-Patchogue Personnel: TJP, JAJ	Date: 12/28/16 Time: 930 Weather: Air Temp.: 38
WELL DATA: Casing Diameter: 6 ⁽¹⁾ □ Stainless Steel □ Steel □ P Intake Diameter. 2 ¹¹ □ Stainless Steel □ Galv. Steel DEPTH TO : Static Water Level: <u>5.15</u> ft Bottom of Well DATUM □ Top of Protective Casing □ Top of Well Casing CONDITION Is Well clearly labeled? □ Yes □ No Is we Is Prot Casing/Surface Mount in Good Cond.? (n Does Weep Hole adequately drain well head? 0 Is Concrete Pad Intact? (no cracked or frost head Is Padlock Functional? 0 Yes □ No □ NA Is Inner Casing Properly Capped and Vented?	VC Teflon® Tother: PVC Teflon® Open rock In 29 ft Other: I clean to bottom? Yes No No Ves No Ves No Ves No Ves No Ves No Ves No
 VOLUME OF WATER: Standing in well:	To be purged
METHOD: METHOD: MATERIALS: Purmping Rate Bailer, Size Centrifugal Pump Teflon Teflon Stainless Steel PVC Other. Purping Rate Purping Rate	Tubing Rope Teflon® Polyethylene Polypropylene Other Other Volume Pumped: S GAL Imber of Well Volumes Removed: Semoved:
SAMPLING DATA: METHOD I Bailer, Size 1,75" Bladder Pump I 2" S Syringe Sampler I Peristaltic Pump I Inert	ubmersible Pump 14" Submersible Pump
MATERIALS: Pump Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared C Metals samples field filtered Y Yes No Method APPEARANCE: Clear Turbid Color FIELD DETERMINATIONS: See attached form for field param	Contains Immiscible Liquid
DUP : Image: Constraint of the second seco	
I certify that this sample was collected and handled in accordance with applicable re Signature:	Bulatory and project protocols Date 12/23//6

2 Park Way Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax (201) 236 1507

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: NG-Patchorne	Project Number:	
Client: National Brid	Date:	12/28/16
Personnel: TTP, TA-T	Well ID:	Mu1-45
Purge/Sample Depth: 91	Sample ID:	MW-45-20161228

			ified Para						
Actual		Тетр	Cond	DO	Turbidity	ORP	DTW	Pumping Rate	
Time	ρH	(°C)	(m S)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
			cm						
930	5.88	7.41	0.700	3.08	203	-25		190	
933	6.10	8.47	0.703	217	111	-66			
936	6.23	6.88	0.702	2.07	66.5	-90	5.35		
939	6.25	8.97	0.702	2.04	53.5	-74			
942	6.32	9.46	0.705	199	37.0	-103			
945	6.35	9.39	0.706	196	28.6	-108			
948	6.36	942	0.706	1.95	25.5	-108	5.36		
951	6.36	939	0.707	1.95	76.7	-109			
954	640	9.52	0.704	190	19.3	-117			
957	6:41	9.59	0.710	1,89	18,2	-113			
1000	6,42	957	0.711	1,88	18.1	-112			
1003	Samp	e pour	1-45-20	161228					
	/								
		·							
Results and succession						And a local division of the			
Certified S								()	1
	f Sample		003			Analyst	Signalure	pul	hi
Instrumen			11		-			0	y
N		rer/Model	toru	12MY 5	L			1000	
0		No Unit	HOV	12MYS	1	Serial No	Flandheld	MAT 018	XI
Ca	bration D	rate/Time							
					-				

Are low-flow parameters subject to field lab certification? • Yes M No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Revision 2.1: 10, 20/14

Brown AND Caldwell	Upper Saddle River, NJ Office	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA Well Number: MW-40 Sample I.D. MW-40-2061228
Project NG - Patchogue Personnel TJP, JAJ		Date: 12/28/16 Time: 845 Weather: Cloudy Air Temp: 37
DEPTH TO : Static Water Le DATUM: Top of Protectiv CONDITION: Is Well clearl Is Prot Casir Does Weep I Is Concrete F Is Padlock Fu Is Inner Casi	vel: Solom of Weil Casing y labeled? Solom of Weil Casing of Context of Weil Casing and Intact? (not cracked or frost heat unctional? Yes No NA ing Property Capped and Vented?	PVC □ Teflon ③ □ Open rock □ Other: □ Other: □ clean to bottom? □ Yes □ No Yes □ No Yes □ No Is Inner Casing Intact? □ Yes □ No Yes □ No
PURGE DATA:		To be purged:
METHOD Bail	er, Size: 👫 🛛 🖉 Bladder Pump 🕻 Centrifugal Pump 🖸 Peristaltic Pun	2" Submersible Pump
Was well Evacuated?	Teflon® Stainless Steel PVC Other. HAN Elapsed Time: 30 m/r Yes No Nu Dedicated Prepared Off-	Volume Pumped: 15 644 Imber of Well Volumes Removed: Site Pield Cleaned
SAMPLING DATA: METHOD.	re:137" Bladder Pump 🗆 2" S mpler 🗆 Peristaltic Pump 🗆 Iner	ubmersible Pump □ 4" Submersible Pump tial Lift Pump □ Other:
MATERIALS: Cump/Bailer: SAMPLING EQUIPMENT: Metals samples field filtered?/	☐ Teflon® S Stainless Steel ☐ Dedicated ☐ Prepared (☐ Yes ☐ No Method	Off-Site Field Cleaned
APPEARANCE: FIELD DETERMINATIONS DUP: MS/MSD: No Yes No Yes	See allached form for field parar	Contains Immiscible Liquid
I certify that this sample was collected Signature	and handled in accordance with applicable m	Date:12/28///6
0	y u	and the second s

2 Park Way, Upper Saddle River, NJ 07458 Phone (201) 574-4700 Fax (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Pro Purge/Sar	oject Name: Client: Personnel: mple Depth:		- Patch. Mail 6 , JAT			Proj	iect Number: Date: Well ID: Sampte ID:	12/28/16 MW-40	0161228
Actual Time 8:45 8:48 8:51 8:57 900 903 905 900 903 900 903 900 903 905 900 903 900 903 900 903 900 903 900 903 900 903 900 903 900 903 905 900 903 900 903 900 903 900 903 900 903 900 903 900 903 900 903 900 903 900 903 900 903	pH <u>550</u> <u>548</u> <u>548</u> <u>548</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>542</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>544</u> <u>5444</u> <u>5446</u> <u>5446</u> <u>5446</u> <u>5446</u> <u>54466</u> <u>54466666667</u>	Temp (°C) 7-03 8-55 9-39 9-39 9-48 9-46 9-53 9-59 9-59 9-59 9-59 9-59 9-59 9-59	ified Para Cond ("5	meters DO (mg/L) 10.74 7.59 3.63 3.39 2.96 2.52 2.50 7.44 2.41 2.31 2.41 2.31 2.17 1.6118 0 0 0 0 0 0 0 0 0 0 0 0 0	Turbidity (NTU) 7.3 11.6 29.3 29.9 25.4 19.4 17.9 14.9 14.9 14.5 17.9 14.1	ORP (mV) 220 221 227 228 230 234 235 235 235 235 737 137	DTW (ft) 5.04 5.04 5.04 5.06	Pumping Rate (mL/min)	
Instrument M	Sample: Data: lanufacture	er/Model No. Unit:	918	ika U- zmy	<u>51</u>	Analyst S Serial No. 1	Signature _	Just Jr MAX 018	× 4

Are low-flow parameters subject to field lab certification?
Yes No (not required for CERCLA sites or sites outside of NJ)
If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell Upper Saddle River, NJ Office	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA Well Number: MW-95 Sample I.D.: MW-95-70141727
Project: NG - Patchogue Personnel: TSP, JAT	Date: 12/27/16 Time: 1500 Weather: Air Temp.: 53 °F-
WELL DATA: Casing Diameter: 6 1 Stainless Steel Steel F Intake Diameter: 2 1 Stainless Steel Galv. Steel Galv. Steel DEPTH TO : Stait Water Level: 1.61 ft Bottom of Well Casing DATUM: Top of Protective Casing Top of Well Casing Steel 9 No Is well CONDITION: Is Well clearly labeled? Yes No Is well Steel 1 1 Steel 1 1 1 Steel 1 <td>PVC □ Teflon® □ Open rock ell: 0.23 ft Other: Il clean to bottom? 0 es □ No to bottom? 0 Yes □ No Yes □ No Yes □ No Yes □ No Is Inner Casing Intact? 2 Yes □ No</td>	PVC □ Teflon® □ Open rock ell: 0.23 ft Other: Il clean to bottom? 0 es □ No to bottom? 0 Yes □ No Yes □ No Yes □ No Yes □ No Is Inner Casing Intact? 2 Yes □ No
VOLUME OF WATER: Standing in well:	To be purged:
PURGE DATA: METHOD: Image: Construction of the second sec	2" Submersible Pump
MATERIALS: Rump/Bailer: Teflon® Stainless Steel PVC Other: Was well Evacuated? Yes No PURGING EQUIPMENT: Dedicated Prepared Off-	Imber of Well Volumes Removed:
SAMPLING DATA: METHOD:	ubmersible Pump
MATERIALS: Pump Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared (Metals samples field filtered? Ves No Method	
	Contains Immiscible Liquid neter data.
I certify that this sample was collected and handled in accordance with applicable re Signature:	egulatory and project protocols. Date: <u>12.117.116</u>

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	NG-Patcheque	Project Number:	2 (22) (20) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
Client:	Natural Gall	Date:	12/127/16
Personnel:	TJP. TAT	Well ID:	MW-95
Purge/Sample Depth:	St 6'	Sample ID:	MW-95-20161227

		Cert	ified Para	meters							
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate			
Time	pН	(°C)	(nsm)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments		
			CM					(=			
1500	6.49	11.48	0.896	3.08	316	-43					
1503	6.29	11.44	0.885	238	80	-93	1.75				
1506	6.28	11.45	0.879	2.37	141	-95	I.				
1509	6.28	11.64	0-838	7.29	122	-107					
1517	6.77	11.65	0.836	229	102	-108					
1515	6.2.8	11.68	01830	2.28	91.3	-110					
1518	6.19	11 80	0.793	2.24	59.9	-116	1.75				
1571	6.30	11.86	0.789	274	46.7	-117					
157.4	6,30	11.87	8,788	2.13	48.0	-117			·		
1527	6.31	12.00	0.764	272	30.2	-172					
1530	6:30	12.04	0.754	2.20	25,8	-127					
10 33	Suno	C MV	-95-20	16127							
	r			·							
		4									
				-							
							9				
								-			
								· · · ·			
Certified S		ormation						1 .	1		
	Sample:		153	3	Analyst S	Signature:	had .	17			
Instrument Data:											
M		er/Model:	Hor.	ha U-5	1						
_		No. Unit:	HOVZ	MY S8		Serial No. H	landheld:	MAXOI8XI			
Cal	ibration D	ate/Time:					N 257				

Are low-flow parameters subject to field lab certification? 🗆 Yes 🗹 No (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell	Upper Saddle River, NJ Office	LOW-FLOW GROUNDWATEI SAMPLING FIELD DATA Well Number: MW-9D Sample I.D.: MW-9D-70/6 1217	
Project: NG - Patchogn Personnel: TJP. TAT	e	Date: 12/12/16 Time: 1552 Weather: Clear Air Temp.:	
WELL DATA: Casing Diameter: 6/1 Intake Diameter: 2 ¹⁴ DEPTH TO : Static Water L DATUM: 1 Top of Protect CONDITION: Is Well clear Is Prot. Casi Does Weep Is Concrete Is Padlock F	evel: 1.53 ft Bottom of W ive Casing Top of Well Casing ly labeled? Top of Well Casing ng/Surface Mount in Good Cond.? Hole adequately drain well head? Pad Intact? (not cracked or frost he	PVC Teflon® Cother: I CPVC Teflon® Copen rock ell: Other: I Cother: I clean to bottom? Cores I No no bent or corroded) Yes No Yes I No aved) O Yes I No Is inner Casing Intact? Yes I No	
	Standing in well:		
PURGE DATA: METHOD: DBai	ler, Size: 1.75" S Bladder Pump Centrifugal Pump C Peristaltic Pu	2" Submersible Pump	ıp
	PVC Other: Elapsed Time:	umber of Well Volumes Removed:	-
SAMPLING DATA: METHOD: Dailer, Si	1	Submersible Pump D 4" Submersible Pump	
MATERIALS: Pump Bailer: SAMPLING EQUIPMENT: Metals samples field filtered?	 Teflon® Stainless Steel Dedicated Prepared Yes No 		
APPEARANCE: C FIELD DETERMINATIONS: DUP : No C Yes MS/MSD : No C Yes	Clear D Turbid D Color: See attached form for field para Name: Name:	Contains Immiscible Liquid meter data.	
Signature:	and handled in accordance with applicable r	egulatory and project protocols. 12/27//6	

Brown AND Caldwell

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: NG - Patchogne Client: Matural 6Ad Personnel: TPP, TAT Purge/Sample Depth: 17'				Project Number: Date: 12/77//6 Well ID: 12/77//6 Sample ID: 12/77//6 Sample ID: 12/77/					
		A. 1				_	-		
Actual Time	рН	Temp (°C)	fied Paral Cond ()	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
1557 1555 1555 1601 1604 1604 1604 1607 1610 1610 1610 1619 1672 1675	6.51 5.50 5.35 5.10 5.02 4.92 4.94 4.94 4.90 4.90 4.90 4.90 4.90 4.90	12,57 13,11 13,15 13,76 13,77 13,31 13,35 1,	0.354 0.502 0.509 0.519 0.520 0.525 0.525 0.527 0.527 0.528 -910-20 	3.35 2.37 2.30 2.18 2.17 2.09 2.09 2.09 2.09 2.05 2.05 2.05 2.05 2.05	285 293 747 176 170 125 43,3 68.8 45.6 40.8 33.5	51 110 179 209 211 223 240 251 251 255 255 			
Instrumen M Ca	f Sample: t Data: Manufactur Serial libration D	rer/Model: No. Unit: hate/Time:	140 140		1	Serial No.		Jan p MAX 018 A sites or sites out:	× 3×

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND Caldwell	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA Well Number: MW-85
Upper Saddle River, NJ Office	Sample I.D.: MW-85-20161218 different from well no.)
Project: NG-Patchogue Personnel: TJP, JAJ	Date: 12/28/16 Time: 1108 Weather: forth Cloudy Air Temp.: 38
WELL DATA: 6 // Intake Diameter: 1 Stainless Steel Steel Intake Diameter: Intake Diameter: 2 // Intake Diameter: 2 // Intake Diameter: Intake Diameter:	el PVC Teflon® Dopen rock Vell: 9.15 ft vell clean to bottom? Yes No (not bent or corroded) Yes No vers No eaved) Yes No vers No vers No vers No vers No vers No vers No
VOLUME OF WATER: Standing in well:	To be purged:
Centrifugal Pump Deristaltic Pu	2" Submersible Pump 4" Submersible Pump mp Inertial Lift Pump Other:
MATERIALS: Pump Bailer: Teflon® Stainless Steel PVC Other: Pumping Rate: 250 mU Was well Evacuated? Yes No PURGING EQUIPMENT: Dedicated Prepared Off	Tubini/Rope: Teflon® Polyethylene Polypropylene Other: Number of Well Volumes Removed: f-Site Field Cleaned
SAMPLING DATA: METHOD: Desiler, Size: Bailer, Size: Bladder Pump D 2"S Syringe Sampler D Peristaltic Pump D Ine	Submersible Pump 🗅 4" Submersible Pump
MATERIALS: Wind/Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Metals samples field filtered? Dedicated No Method	
APPEARANCE: Clear Clurbid Color: FIELD DETERMINATIONS: See attached form for field para DUP: Vo Clear Name:	Contains Immiscible Liquid
MS/MSD : Yes Name:	
Signature:	

Brown AND Caldwell

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	N.G-Patchoya,	Project Number:	
Client:	National Grid	Date:	17/28/16
Personnel:	TTP: TAT	Well ID:	MW-85
Purge/Sample Depth:	6 /	Sample ID:	MW~85-20161228

	Certified Parameters								
Actual Time	pН	Temp (°C)	Cond	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
	pH 5.90 5.93 5.94 6.01 6.03 6.03 6.03 6.05 6.05 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.04 6.05 6.05 6.04 6.05 6.05 6.04 6.05 6.04 6.05 6.05 6.05 6.04 6.05 6.04 6.05 6.05 6.05 6.04 6.05 6.	(°C) 11.39 11.32 11.90 11.95 11.95 11.95 12.16 12.19 12.76 12.76 12.79 12.40	() 0.723 0.725 0.756	(mg/L) 3. <i>U</i> 2.34 2.15 1.87 1.87 1.95 1.95 1.95 1.95 1.95 1.97 1.71 1.60					
Instrument	f Sample: t Data: Ianulactur	formation rer/Model:	1141	by U-S	2	Analyst Sprigt No. 1	Signature:	Jung MAX-019×	22

Are low-flow parameters subject to field lab certification?
Yes No (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Calibration Date/Time:

Brown AND .		LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Caldwell	Upper Saddle River, NJ Office	Well Number: MW-80 Sample I.D.: MW-80 - 2016 1228
Project: TTP, JAP No Personnel: TJP, JAT	Patchogue	Date: 12/78/16 Time: 1024 Weather: Closed Air Temp.: 38
WELL DATA: Casing Diameter: 6 '' Intake Diameter: 7 '' DEPTH TO : Static Water L DATUM: 1 Top of Protect CONDITION: Is Well clean Is Prot. Casi Does Weep Is Concrete Is Padlock F	evel: 0.71 ft Bottom of W ive Casing Top of Well Casing ly labeled? Tyes Top No Is w ng/Surface Mount in Good Cond.? Hole adequately drain well head? Pad Intact? (not cracked or frost ne	ell 2016ft Other: ell clean to bottom? Ses I No not bent or corroded) Yes I No Yes I No aved) Yes I No is Inner Casing Intact? Yes I No
VOLUME OF WATER:	Standing in well:	To be purged:
PURGE DATA: METHOD:	ler, Size: <u>1.35</u> " Bladder Pump Centrifugal Pump Deristaltic Put	2" Submersible Pump 1 4" Submersible Pump np Inertial Lift Pump Other:
Was well Evacuated?	Teflon® Stainless Steel PVC Other:	umber of Well Volumes Removed:
SAMPLING DATA: METHOD: Deailer, Si Syringe Sa	ze: 1.35 " avB ladder Pump	iubmersible Pump
MATERIALS: Pump Bailer: SAMPLING EQUIPMENT: Metals samples field filtered?	□ Teflon® □ Stainless Steel □ Dedicated □ Prepared □ Yes □ No Metho	
	Clear	Contains Immiscible Liquid neter data.
t certify that this sample was collected	and handled in accordance with applicable r	17 1-11
Signature:	In	Date:

Brown AND Caldwell

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	NG - Patchogue	Project Number:	
Client:	National Grid	Date:	12/28/16
Personnel:	TTP. TAT	Well ID:	MW-8n
Purge/Sample Depth:	21/	Sample ID:	MW-80-2016 1228

	Certified Parameters								
Actual Time	рН	Temp (°C)	Cond (m)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
1024	6.36	12.13	0.337	4:87	23.3	. 81 .	9 M		
1077	6.09	12.84	0.460	2.78	38.7	114	0.37		
1030	6.07	12.87	0.467	2.76	38.8	116			
1033	6.05	12.90	0.469	2.70	40.3	118			
1036	6.00	12.99	0,494	2.52	39.3	128	0.90		ę c
1039	5.95	13.09	0,498	2.31	36.3	138	'		
1042	594	13.11	0.497	2.79	37.6	139	8 0 0		
1045	5.89	13.09	0.510	2.17	33.1	150	0,90		
1051	5.87	12.15	0.516	207	25.9	157			
1054	5.86	12.13		2.04	744	161 2	1		· · · · · · · · · · · · · · · · · · ·
1057	Se n		h/-80-			101			
		1			A			1	· · · · · · · · · · · · · · · · · · ·
						-	J. V.		
<u> </u>									
 									
				9		v			
Time of	Certified Sample Information: Time of Sample:					Analyst S	Signature:	Jul J MAX018,	mj
N		er/Model:	Hori	L. U.5	2			A	and a second
C-2		No. Unit:	How	6. U.S		Serial No. I	-landheld:	MAX 018>	4

Are low-flow parameters subject to field lab certification? I Yes INo (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Calibration Date/Time:

Appendix B: Laboratory Reports (CD-ROM)

Appendix C: Data Usability Summary Report (DUSR)

DATA USABILITY SUMMARY REPORT NATIONAL GRID, PATCHOGUE, NEW YORK

Client:	Brown and Caldwell, Upper Saddle River, New Jersey
SDG:	6120841
Laboratory:	Aqua Pro-Tech Laboratories, Fairfield, New Jersey
Site:	National Grid, Patchogue, New York
Date:	February 23, 2017
	-

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-3-20161227	6120841-01	Water
1MS	MW-3-20161227MS	6120841-01MS	Water
1MSD	MW-3-20161227MSD	6120841-01MSD	Water
2	MW-9S-20161227	6120841-02	Water
3	MW-9D-20161227	6120841-03	Water
4	DUP-20161227	6120841-04	Water
5	FB-20161227	6120841-05	Water
6	MW-4D-20161228	6120841-06	Water
7	MW-4S-20161228	6120841-07	Water
7MS**	MW-4S-20161228MS	6120841-07MS	Water
7MSD**	MW-4S-20161228MSD	6120841-07MSD	Water
8	MW-8D-20161228	6120841-08	Water
9	MW-8S-20161228	6120841-09	Water
10	MW-7S-20161228	6120841-10	Water
11	MW-7D-20161228	6120841-11	Water
12	FB-20161228	6120841-12	Water
13	MW-1-20161228	6120841-13	Water
14*	TRIP BLANK_20161229	6120841-14	Water

* - VOC only ** - PAH by 8270C only

A Data Usability Summary Review was performed on the analytical data for eleven water samples, two aqueous field blank samples, and one aqueous trip blank sample collected on December 27-29, 2016 by Brown and Caldwell at the National Grid, Patchogue, New York Site. The samples were analyzed under Environmental Protection Agency (USEPA) *'Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions''*.

Specific method references are as follows:

<u>Analysis</u>	Method References
VOC (BTEX, MTBE & TBA)	USEPA SW-846 Method 8260B
SVOC (PAH)	USEPA SW-846 Method 8270C
SVOC (PAH)	USEPA SW-846 Method 8270C SIM

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 4, September 2014: Validating Volatile Organic Compounds by SW-846 Method 8260B & 8260C;
- SOP Number HW-22, Revision 4, August 2008: Validating Semivolatile Organic Compounds by SW-846 Method 8270D;
- and the reviewer's professional judgment.

The following items/criteria were reviewed:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectrometry (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

Four PAH by 8270 compounds were qualified as estimated in one sample due to low MS/MSD recoveries.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (BTEX, MTBE & tert-Butyl Alcohol)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD) except for the following.

MS/MSD Sample ID	Compound	MS %R/MSD %R/RPD	Qualifier	Affected Samples
1	tert-Butyl Alcohol	OK/145%/OK	None	Sample ND

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FB-20161227	Toluene	0.897	None	All Associated ND
FB-20161228	None - ND		275	1
TRIP BLANK_20161228	None - ND			

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and average RRF criteria were met.

Continuing Calibration

• All %D and RRF criteria were met.

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

		VOC		
Compound	MW-9S-20161227	DUP-20161227	RPD	Qualifier
	ug/L	ug/L		
None	ND	ND	e.,	·=-

Semivolatile Organic Compounds (PAH) by 8270C and 8270C SIM

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

		PAH by 8270C		
MS/MSD Sample ID	Compound MS %R/MSD %R/ RPD Qualifier			
1	Benzo(g,h,i)perylene	10%/30%/101	UJ	
Γ	Chrysene	46%/48%/OK	UJ	
	Fluoranthene	62%/69%/OK	ÚJ	
	Pyrene	58%/63%/OK	UJ	

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blanks

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB-20161227	None - ND	=	-	5	(B)
FB-20161228	None - ND	=		: .	1

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and mean RRF criteria were met.

Continuing Calibration

• All %D and RRF criteria were met.

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

	PAI	H by 8270C		
Compound	MW-9S-20161227	DUP-20161227	RPD	Qualifier
_	ug/L	ug/L		
Acenaphthene	2.83	3.13	10%	None
Pyrene	ND	0.645	NC	

	PAH I	by 8270C SIM		
Compound	MW-9S-20161227	DUP-20161227	RPD	Qualifier
	ug/L	ug/L		
Benzo(a)anthracene	0.0576	0.0567	2%	None
Benzo(a)pyrene	0.0349	0.0424	19%	
Benzo(b)fluoranthene	ND	0.0192	NC	
Benzo(k)fluoranthene	0.0233	0.0319	31%	None - <5X RL
Hexachlorobenzene	ND	0.0478	NC	None

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Manyplaver Dated: 2/24/17 Nancy Weaver

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

100 B

Volatile Organics - GC/MS - SW 846 8260B

Brown and Caldwell USR
MW-3-20161227
6120841-01
NG-Patchogue
6120841

Date Sampled:	12/27/16 14:30	Prep Date:	01/03/17 22:40	File ID:	4V25352.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analyzed:	01/03/17 23:31
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0602
		Prep Method:	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

Mi2/23/17

11.2.

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	MW-9S-20161227
Lab Sample ID:	6120841-02
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled	12/27/16 15:33	Prep Date:	01/03/17 22:40	File ID:	4V25353.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analyzed:	01/03/17 23:56
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0602
		Prep Method:	PURGE & TRAP 8000		
	Init/Final Vol:	Init/Final Vol: 5 mL / 5 mL	Init/Final Vol: 5 mL / 5 mL Prep Batch: Dilution: 1 Matrix:	Init/Final Vol: 5 mL / 5 mL Prep Batch: B7A0542	Init/Final Vol: 5 mL / 5 mL Prep Batch: B7A0542 Analyzed: Dilution: 1 Matrix: Ground Water Sequence:

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

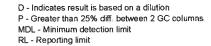
D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

New 2/23/17

4.01

J - Indicates estimated value

Volatile Organics - GC/MS - SW 846 8260B


Client:	Brown and Caldwell USR
Client Sample ID:	MW-9D-20161227
Lab Sample ID:	6120841-03
Project:	NG-Patchogue
Work Order:	6120841
work Order:	6120841

Date Sampled:	12/27/16 16:25	Prep Date:	01/03/17 22:40	File ID:	4V25354.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analyzed:	01/04/17 00:21
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0602
		Prep Method;	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

3

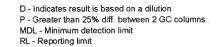
11.2

NW2/23/17

J - Indicates estimated value

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	DUP-20161227
Lab Sample ID:	6120841-04
Project:	NG-Patchogue
Work Order:	6120841


Date Sampled:	12/27/16 00:00	Prep Date:	01/03/17 22:40	File ID:	4V25355.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analyzed:	01/04/17 00:47
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0602
		Prep Method:	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

Nu 2/23/17

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

11.2

J - Indicates estimated value

Volatile Organics - GC/MS - SW 846 8260B

Client Sample ID:	FB-20161227	
Lab Sample ID:	6120841-05	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled:	12/27/16 16:45	Prep Date:	01/03/17 22:40	File ID:	4V25351.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analyzed:	01/03/17 23:05
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0602
		Prep Method:	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	0.897	0.205	1.00	J
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% dff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

~~2123/17

11.2

101 104 -1 104

J - Indicates estimated value

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	MW-4D-20161228
Lab Sample ID:	6120841-06
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 09:18	Prep Date:	01/03/17 22:40	File ID:	4V25356.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analyzed:	01/04/17 01:13
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0602
		Prep Method:	PURGE & TRAP 8000		
	Init/Final Vol:		Init/Final Vol: 5 mL / 5 mL Prep Batch: Dilution: 1 Matrix:	Init/Final Vol: 5 mL / 5 mL Prep Batch: B7A0542	Init/Final Vol:5 mL / 5 mLPrep Batch:B7A0542Analyzed:Dilution:1Matrix:Ground WaterSequence;

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

per 2/23/17

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

A D1

104 -5 104

11.2

J - Indicates estimated value

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	MW-4S-20161228
Lab Sample ID:	6120841-07
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 10:03	Prep Date:	01/03/17 22:40	File ID:	4V25357.D 01/04/17 01:38
Init/Final Vol: Dilution:	5 mL / 5 mL 1	Prep Batch: Matrix:	B7A0542 Ground Water	Analyzed: Sequence:	
		Prep Method:	PURGE & TRAP 8000	I	

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47 - 6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

w2/23/17-

4.01

J - Indicates estimated value

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	MW-8D-20161228
Lab Sample ID:	6120841-08
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 10:57	Prep Date:	01/03/17 22:40	File ID:	4V25358.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analvzed:	01/04/17 02:04
Dilution:	1	Matrix:		Sequence:	

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	υ

Lu2/23/17

ND - Indicates compound analyzed for but not detected

- P Greater than 25% diff. between 2 GC columns. MDL Minimum detection limit RL Reporting limit

q

11.2

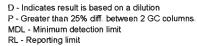
4.01

J - Indicates estimated value

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

Volatile Organics - GC/MS - SW 846 8260B


Client:	Brown and Caldwell USR
Client Sample ID:	MW-8S-20161228
Lab Sample ID:	6120841-09
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 11:41	Prep Date:	01/03/17 22:40	File ID:	4V25359.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0542	Analyzed:	01/04/17 02:29
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0602
		Prep Method:	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

Nev2/23/17

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	MW-7S-20161228
Lab Sample ID:	6120841-10
Project:	NG-Patchogue
Work Order:	6120841

- 11						
	Date Sampled	12/28/16 13:56	Prep Date:	01/05/17 22:39	File ID:	4V25407.D
	Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0921	Analyzed:	01/05/17 22:39
	Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0909
			Prep Method:	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	υ
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	υ
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

LW2/23/17

D

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-7D-20161228	
Lab Sample ID:	6120841-11	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled:	12/28/16 14:44	Prep Date:	01/05/17 23:05	File ID:	4V25408.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0921	Analyzed:	01/05/17 23:05
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0909
		Prep Method:	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	
71-43-2	Benzene	ND	0.129	1.00	U	
100-41-4	EthylBenzene	ND	0.244	1.00	U	
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U	
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U	
95-47-6	o-Xylene	ND	0.244	1.00	U	
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U	
108-88-3	Toluene	ND	0.205	1.00	U	
1330-20-7	Total Xylenes	ND	0.705	1.00	U	

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

- P Greater than 25% diff. between 2 GC columns. MDL Minimum detection limit RL Reporting limit

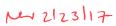
11

M 2/23/17

J - Indicates estimated value

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	FB-20161228
Lab Sample ID:	6120841-12
Project:	NG-Patchogue
Work Order:	6120841


- 11							1
	Date Sampled:	12/28/16 15:00	Prep Date:	01/06/17 00:20	File ID:	4V25411.D	
	Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0921	Analyzed:	01/06/17 00:20	
	Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0909	I
			Prep Method:	PURGE & TRAP 8000			

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	
71-43-2	Benzene	ND	0.129	1.00	U	
100-41-4	EthylBenzene	ND	0.244	1.00	U	
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U	
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U	
95-47-6	o-Xylene	ND	0.244	1.00	U	
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U	
108-88-3	Toluene	ND	0.205	1.00	U	
1330-20-7	Total Xylenes	ND	0.705	1.00	U	

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

J - Indicates estimated value

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	MW-1-20161228
Lab Sample ID:	6120841-13
Project:	NG-Patchogue
Work Order:	6120841

- 11						
	Date Sampled	12/29/16 08:39	Prep Date:	01/05/17 23:30	File ID:	4V25409.D
	Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0921	Analyzed:	01/05/17 23:30
	Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0909
			Prep Method:	PURGE & TRAP 8000		

						_
CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	
71-43-2	Benzene	ND	0.129	1.00	U	
100-41-4	EthylBenzene	ND	0.244	1.00	U	
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U	
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U	
95-47-6	o-Xylene	ND	0.244	1.00	U	
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U	
108-88-3	Toluene	ND	0.205	1.00	U	
1330-20-7	Total Xylenes	ND	0.705	1.00	U	

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% dff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit 13

NW2123117

Volatile Organics - GC/MS - SW 846 8260B

Client:	Brown and Caldwell USR
Client Sample ID:	Trip Blank_20161229
Lab Sample ID:	6120841-14
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/29/16 00:00	Prep Date:	01/05/17 23:55	File ID:	4V25410.D
Init/Final Vol:	5 mL / 5 mL	Prep Batch:	B7A0921	Analyzed:	01/05/17 23:55
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0909
		Prep Method:	PURGE & TRAP 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
71-43-2	Benzene	ND	0.129	1.00	U
100-41-4	EthylBenzene	ND	0.244	1.00	U
179601-23-1	m+p-Xylenes	ND	0.461	2.00	U
1634-04-4	Methyl tert-Butyl Ether	ND	0.596	1.00	U
95-47-6	o-Xylene	ND	0.244	1.00	U
75-65-0	tert-Butyl alcohol	ND	8.17	10.0	U
108-88-3	Toluene	ND	0.205	1.00	U
1330-20-7	Total Xylenes	ND	0.705	1.00	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

11.2

J - Indicates estimated value

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-3-20161227
Lab Sample ID:	6120841-01
Project:	NG-Patchogue
Work Order:	6120841

/03/17 10:17	File ID:	DS11667.D
7A0312	Analyzed:	01/04/17 22:39
round Water	Sequence:	S7A0614
ep Funnel MS 8000		
7 F	A0312	Analyzed: ound Water Sequence:

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.674	2.20	U
208-96-8	Acenaphthylene	ND	0.298	2.20	U
120-12-7	Anthracene	ND	0.351	2.20	U
191-24-2	Benzo(g,h,i)perylene	ND	0.544	2.20	JUJ
218-01-9	Chrysene	ND	0.474	2.20	5 45
206-44-0	Fluoranthene	ND	0.331	2.20	yus
86-73-7	Fluorene	ND	0.197	2.20	U
91-20-3	Naphthalene	ND	0.596	2.20	U
85-01-8	Phenanthrene	ND	0.508	2.20	U
129-00-0	Pyrene	ND	0.408	2.20	yur

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% dff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

NW 2/23/17

4 01

9

9.2

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-9S-20161227	
Lab Sample ID:	6120841-02	
Project:	NG-Patchogue	
Work Order:	6120841	

- 1						
	Date Sampled	12/27/16 15:33	Prep Date:	01/03/17 10:17	File ID:	DS11668.D
	Init/Final Vol:	820 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/04/17 23:05
	Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0614
			Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	2.83	0.748	2.44	
208-96-8	Acenaphthylene	ND	0.330	2.44	U
120-12-7	Anthracene	ND	0.389	2.44	U
191-24-2	Benzo(g,h,i)perylene	ND	0.604	2.44	U
218-01-9	Chrysene	ND	0.526	2.44	U
206-44-0	Fluoranthene	ND	0.367	2.44	U
86 -7 3-7	Fluorene	ND	0.218	2.44	U
91-20-3	Naphthalene	ND	0.661	2.44	U
85-01-8	Phenanthrene	ND	0.563	2.44	U
129-00-0	Pyrene	ND	0,452	2.44	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

Muz123/17

9

9.2

20 -5 204

A D1

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-9D-20161227
Lab Sample ID:	6120841-03
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/27/16 16:25	Prep Date:	01/03/17 10:17	File ID:	DS11669.D	
Init/Final Vol:	960 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/04/17 23:30	
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0614	
		Prep Method:	Sep Funnel MS 8000			

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.639	2.08	U
208-96-8	Acenaphthylene	ND	0.282	2.08	U
120-12-7	Anthracene	ND	0.332	2.08	U
191-24-2	Benzo(g,h,i)perylene	ND	0.516	2.08	U
218-01-9	Chrysene	ND	0.449	2.08	U
206-44-0	Fluoranthene	ND	0.314	2.08	U
86-73-7	Fluorene	ND	0.186	2.08	U
91-20-3	Naphthalene	ND	0.565	2.08	U
85-01-8	Phenanthrene	ND	0.481	2.08	U
129-00-0	Pyrene	ND	0.386	2.08	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

....

3

9

9.2

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	DUP-20161227
Lab Sample ID:	6120841-04
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/27/16 00:00	Prep Date:	01/03/17 10:17	File ID:	DS11670.D
Init/Final Vol:	900 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/04/17 23:56
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0614
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	3.13	0.681	2.22	
208-96-8	Acenaphthylene	ND	0.301	2.22	U
120-12-7	Anthracene	ND	0.354	2.22	U
191-24-2	Benzo(g,h,i)perylene	ND	0.550	2.22	υ
218-01-9	Chrysene	ND	0.479	2.22	U
206-44-0	Fluoranthene	ND	0.334	2.22	U
86-73-7	Fluorene	ND	0.199	2.22	U
91-20-3	Naphthalene	ND	0.602	2.22	U
85-01-8	Phenanthrene	ND	0.513	2.22	U
129-00-0	Pyrene	0.645	0.412	2.22	J

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

A DI

4

9

9.2

J - Indicates estimated value

Semivolatile Organics - GC/MS - SW 846 8270C

Work Order:	6120841	
Project:	NG-Patchogue	
Lab Sample ID:	612084 1-05	
Client Sample ID:	FB-20161227	1
Client:	Brown and Caldwell USR	

Date Sampled:	12/27/16 16:45	Prep Date:	01/03/17 10:17	File 1D:	DS11671.D
Init/Final Vol:	840 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/05/17 00:21
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0614
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.730	2.38	U
208-96-8	Acenaphthylene	ND	0.323	2.38	IJ
120-12-7	Anthracene	ND	0.380	2.38	U
191-24-2	Benzo(g,h,i)perylene	ND	0.589	2.38	U
218-01-9	Chrysene	ND	0.513	2.38	U
206-44-0	Fluoranthene	ND	0.358	2.38	U
86-73-7	Fluorene	ND	0.213	2.38	υ
91-20-3	Naphthalene	ND	0.645	2.38	U
35-01-8	Phenanthrene	ND	0.550	2.38	U
29-00-0	Pyrene	ND	0.442	2.38	U

ND - Indicates compound analyzed for but not detected

B - Indicates estimated value
 B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

Nev 2123/17

9

9.2

.... 40 -4 004

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-4D-20161228
Lab Sample ID:	6120841-06
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 09:18	Prep Date:	01/03/17 11:06	File ID:	CS14903.D
Init/Final Vol:	940 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/07/17 18:54
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A1012
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.652	2.13	U
208-96-8	Acenaphthylene	ND	0.288	2.13	U
120-12-7	Anthracene	ND	0.339	2.13	U
191-24-2	Benzo(g,h,i)perylene	ND	0.527	2.13	U
218-01-9	Chrysene	ND	0.459	2.13	U
206-44-0	Fluoranthene	ND	0.320	2.13	U
86-73-7	Fluorene	ND	0.190	2.13	U
91-20-3	Naphthalene	ND	0.577	2.13	U
85-01-8	Phenanthrene	ND	0.491	2.13	U
129-00-0	Pyrene	ND	0.395	2.13	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff; between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

NU 2/23/17

ADI

6

9

9.2.

J - Indicates estimated value

Semivolatile Organics - GC/MS - SW 846 8270C

Idwell USR
28

- 1						
	Date Sampled:	12/28/16 10:03	Prep Date:	01/03/17 11:06	File ID:	CS14904.D
	Init/Final Vol:	920 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/07/17 19:20
	Dilution:	1	Matrix:	Ground Water	Sequence:	S7A1012
			Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.666	2.17	U
208-96-8	Acenaphthylene	ND	0.295	2.17	U
120-12-7	Anthracene	ND	0.347	2.17	U
191-24-2	Benzo(g,h,i)perylene	ND	0.538	2.17	U
218-01-9	Chrysene	ND	0.468	2.17	U
206-44-0	Fluoranthene	ND	0.327	2.17	U
86-73-7	Fluorene	ND	0.195	2.17	U
91-20-3	Naphthalene	ND	0.589	2.17	U
85-01-8	Phenanthrene	ND	0.502	2.17	U
129-00-0	Pyrene	ND	0.403	2.17	U

Nº 2/23/17

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

7

9.2

9

9.2

ANALYSIS DATA SHEET

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-8D-20161228
Lab Sample ID:	6120841-08
Project:	NG-Patchogue
Work Order:	6120841
	·

Date Sampled:	12/28/16 10:57	Prep Date:	01/03/17 11:06	File ID:	CS14905.D
Init/Final Vol:	1000 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/07/17 19:46
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A1012
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.613	2.00	U
208-96-8	Acenaphthylene	ND	0.271	2.00	U
120-12-7	Anthracene	ND	0.319	2.00	U
191-24-2	Benzo(g,h,i)perylene	ND	0.495	2.00	U
218-01-9	Chrysene	ND	0.431	2.00	U
206-44-0	Fluoranthene	ND	0.301	2.00	U
86-73-7	Fluorene	ND	0.179	2.00	U
91-20-3	Naphthalene	ND	0.542	2.00	U
85-01-8	Phenanthrene	ND	0.462	2.00	U
129-00-0	Pyrene	ND	0.371	2.00	U

ND - Indicates compound analyzed for but not detected J - Indicates estimated value

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

Lev2/23/17

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-8S-20161228
Lab Sample ID:	6120841-09
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 11:41	Prep Date:	01/03/17 11:06	File ID:	CS14906.D
Init/Final Vol:	1000 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/07/17 20:12
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A1012
		Prep Method:	Sep Funnel MS 8000		

						_
CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q	9.2
83-32-9	Acenaphthene	ND	0.613	2.00	U	10
208-96-8	Acenaphthylene	ND	0.271	2.00	U	
120-12-7	Anthracene	ND	0.319	2,00	U	
191-24-2	Benzo(g,h,i)perylene	ND	0.495	2.00	U	
218-01-9	Chrysene	ND	0.431	2.00	U	
206-44-0	Fluoranthene	ND	0.301	2.00	U	
86 - 73-7	Fluorene	ND	0.179	2.00	U	
91-20-3	Naphthalene	ND	0.542	2.00	U	
85-01-8	Phenanthrene	ND	0.462	2.00	U	
129-00-0	Pyrene	ND	0.371	2.00	U	

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

NU2123/17

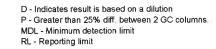
4.01

9

J - Indicates estimated value

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-7S-20161228
Lab Sample ID:	6120841-10
Project:	NG-Patchogue
Work Order:	6120841


Date Sampled:	12/28/16 13:56	Prep Date:	01/03/17 11:06	File ID:	CS14907.D
Init/Final Vol:	1000 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/07/17 20:39
Dilution:	1	Matrix:	Ground Water	Sequence	S7A1012
		Prep Method:	Sep Funnel MS 8000		

\		New York Control of the Control of t	>	· · · · · · · · · · · · · · · · · · ·	
CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.613	2.00	U
208-96-8	Acenaphthylene	ND	0.271	2.00	U
120-12-7	Anthracene	ND	0.319	2.00	U
191-24-2	Benzo(g,h,i)perylene	ND	0.495	2.00	U
218-01-9	Chrysene	ND	0.431	2.00	U
206-44-0	Fluoranthene	ND	0.301	2.00	U
86-73-7	Fluorene	ND	0.179	2.00	U
91-20-3	Naphthalene	ND	0.542	2.00	U
85-01-8	Phenanthrene	ND	0.462	2.00	U
129-00-0	Pyrene	ND	0.371	2.00	U

per 2/23/17

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

9

9.2

4.01 60 -5 004

J - Indicates estimated value

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-7D-20161228
Lab Sample ID:	6120841-11
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 14:44	Prep Date:	01/03/17 11:06	File ID:	CS14908.D
Init/Final Vol:	1000 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/07/17 21:04
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A1012
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.613	2.00	U
208-96-8	Acenaphthylene	ND	0.271	2.00	U
120-12-7	Anthracene	ND	0.319	2.00	U
191-24-2	Benzo(g,h,i)perylene	ND	0.495	2.00	U
218-01-9	Chrysene	ND	0.431	2.00	U
206-44-0	Fluoranthene	ND	0.301	2.00	ບ
86-73-7	Fluorene	ND	0.179	2.00	U
91-20-3	Naphthalene	ND	0.542	2.00	U
85-01-8	Phenanthrene	ND	0.462	2.00	U
129-00-0	Pyrene	ND	0.371	2.00	U

New 2/23/17

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit 11

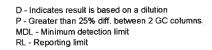
9

9.2

J - Indicates estimated value

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	FB-20161228
Lab Sample ID:	6120841-12
Project:	NG-Patchogue
Work Order:	6120841


Date Sampled	12/28/16 15:00	Prep Date:	01/04/17 10:16	File ID:	CS14909.D
Init/Final Vol:	850 mL / 1 mL	Prep Batch:	B7A0403	Analyzed:	01/07/17 21:30
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A1012
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.721	2.35	U
208-96-8	Acenaphthylene	ND	0.319	2.35	U
120-12-7	Anthracene	ND	0.375	2.35	U
191-24-2	Benzo(g,h,i)perylene	ND	0.582	2.35	U
218-01-9	Chrysene	ND	0.507	2.35	υ
206-44-0	Fluoranthene	ND	0.354	2.35	U
86-73-7	Fluorene	ND	0.211	2.35	U
91-20-3	Naphthalene	ND	0.638	2.35	U
85-01-8	Phenanthrene	ND	0.544	2.35	U
129-00-0	Pyrene	ND	0.436	2.35	U

Muzzzzli7

ND - Indicates compound analyzed for but not detected J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

9

9.2

Semivolatile Organics - GC/MS - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-1-20161228	
Lab Sample ID:	6120841-13	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled:	12/29/16 08:39	Prep Date:	01/05/17 09:33	File ID:	CS14910.D
Init/Final Vol:	940 mL / 1 mL	Prep Batch:	B7A0507	Analyzed:	01/07/17 21:57
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A1012
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
83-32-9	Acenaphthene	ND	0.652	2.13	U
208-96-8	Acenaphthylene	ND	0.288	2.13	U
120-12-7	Anthracene	ND	0.339	2.13	U
191-24-2	Benzo(g,h,i)perylene	ND	0,527	2.13	U
218-01-9	Chrysene	ND	0.459	2.13	U
206-44-0	Fluoranthene	ND	0.320	2.13	U
86-73-7	Fluorene	ND	0.190	2.13	U
91-20-3	Naphthalene	ND	0.577	2.13	U
85-01-8	Phenanthrene	ND	0.491	2.13	U
129-00-0	Pyrene	ND	0.395	2.13	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

mu2/23/17

9

9.2

70 - 5 - 00 4

ADI

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-3-20161227
Lab Sample ID:	6120841-01
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/27/16 14:30	Prep Date:	01/03/17 10:17	File ID:	BM09358.D
Init/Final Vol:	910 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/05/17 13:25
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0618
		Prep Method	Sep Funnel MS 8000		

CAS NO. COMPOL	ND	CONC. (ug	/L) MDL	RL	Q
56-55-3 Benzo(a)a	anthracene	0.0241	0.0213	0.0220	
50-32-8 Benzo(a)	byrene	ND	0.0142	0.0220	U
205-99-2 Benzo(b)	luoranthene	ND	0.0187	0.0220	U
207-08-9 Benzo(k)f	luoranthene	ND	0.0190	0.0220	U
53-70-3 Dibenzo(a	a,h)anthracene	ND	0.0213	0.0220	U
118-74-1 Hexachlo	robenzene	ND	0.0203	0.0220	U
87-68-3 Hexachlo	robutadiene	ND	0.0209	0.0220	U
193-39-5 Indeno(1,	2,3-cd)pyrene	ND	0.0207	0.0220	U
62-75-9 n-Nitroso	dimethylamine	ND	0.0214	0.110	υ

人心 2123117

J - Indicates estimated value

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff, between 2 GC columns, MDL - Minimum detection limit RL - Reporting limit

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-9S-20161227
Lab Sample ID:	6120841-02
Project:	NG-Patchogue
Work Order:	6120841

- 1						
	Date Sampled:	12/27/16 15:33	Prep Date:	01/03/17 10:17	File ID:	BM09359.D
	Init/Final Vol:	820 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/05/17 13:55
	Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0618
			Prep Method:	Sep Funnel MS 8000		

56-55-3 Benzo(a)anthracene 0.0576 0.0237 0.0244 50-32-8 Benzo(a)pyrene 0.0349 0.0157 0.0244 205-99-2 Benzo(b)fluoranthene ND 0.0207 0.0244 207-08-9 Benzo(k)fluoranthene 0.0233 0.0211 0.0244 53-70-3 Dibenzo(a,h)anthracene ND 0.0237 0.0244	CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
205-99-2 Benzo(b)fluoranthene ND 0.0207 0.0244 207-08-9 Benzo(k)fluoranthene 0.0233 0.0211 0.0244 53-70-3 Dibenzo(a,h)anthracene ND 0.0237 0.0244	56-55-3	Benzo(a)anthracene	0.0576	0.0237	0.0244	
207-08-9 Benzo(k)fluoranthene 0.0233 0.0211 0.0244 53-70-3 Dibenzo(a,h)anthracene ND 0.0237 0.0244	50-32-8	Benzo(a)pyrene	0.0349	0.0157	0.0244	
53-70-3 Dibenzo(a,h)anthracene ND 0.0237 0.0244	205-99-2	Benzo(b)fluoranthene	ND	0.0207	0.0244	U
	207-08-9	Benzo(k)fluoranthene	0.0233	0.0211	0.0244	J
	53-70-3	Dibenzo(a,h)anthracene	ND	0.0237	0.0244	υ
118-74-1 ND 0.0220 0.0244	118-74-1	Hexachlorobenzene	ND	0.0226	0.0244	U
87-68-3 Hexachlorobutadiene ND 0.0232 0.0244	87-68-3	Hexachlorobutadiene	ND	0.0232	0.0244	U
193-39-5 Indeno(1,2,3-cd)pyrene ND 0.0229 0.0244	193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0229	0.0244	U
62-75-9 n-Nitroso-dimethylamine ND 0.0238 0.122	62-75-9	n-Nitroso-dimethylamine	ND	0.0238	0.122	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

New 2123/17

J - Indicates estimated value

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-9D-20161227	
Lab Sample ID:	6120841-03	
Project:	NG-Patchogue	
Work Order:	6120841	
WORK Order:	6120841	

Date Sampled:	12/27/16 16:25	Prep Date:	01/03/17 10:17	File ID:	BM09360.D
Init/Final Vol:	960 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/05/17 14:26
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0618
		Prep Method	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0202	0.0208	U
50-32-8	Benzo(a)pyrene	0.0282	0.0134	0.0208	
205-99-2	Benzo(b)fluoranthene	0.0206	0.0177	0.0208	J
207-08-9	Benzo(k)fluoranthene	0.0247	0.0180	0.0208	
53-70-3	Dibenzo(a,h)anthracene	ND	0.0202	0.0208	U
118-74-1	Hexachlorobenzene	ND	0.0193	0.0208	U
87-68-3	Hexachlorobutadiene	ND	0.0198	0.0208	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0196	0.0208	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0203	0.104	U

ND - Indicates compound analyzed for but not detected J - Indicates estimated value

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% dff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

New 2123/17

4.07

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	DUP-20161227	
Lab Sample ID:	6120841-04	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled;	12/27/16 00:00	Prep Date:	01/03/17 10:17	File ID:	BM09361.D	
Init/Final Vol:	900 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/05/17 14:57	
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0618	
		Prep Method:	Sep Funnel MS 8000			

56-55-3 Benzo(a)anthracene 0.0567 0.0216 50-32-8 Benzo(a)pyrene 0.0424 0.0143 205-99-2 Benzo(b)fluoranthene 0.0192 0.0189 207-08-9 Benzo(k)fluoranthene 0.0319 0.0192	RL	Q
205-99-2 Benzo(b)fluoranthene 0.0192 0.0189	0.0222	
	0.0222	
207-08-9 Benzo(k)fluoranthene 0.0319 0.0192	0.0222	J
	0.0222	
53-70-3 Dibenzo(a,h)anthracene ND 0.0216	0.0222	U
118-74-1 Hexachlorobenzene 0.0478 0.0206	0.0222	
87-68-3 Hexachlorobutadiene ND 0.0211	0.0222	U
193-39-5 Indeno(1,2,3-cd)pyrene ND 0.0209	0.0222	U
62-75-9 n-Nitroso-dimethylamine ND 0.0217	0.111	U

Lev 2/23/17

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	FB-20161227
Lab Sample ID:	6120841-05
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled;	12/27/16 16:45	Prep Date:	01/03/17 10:17	File ID:	BM09362.D
Init/Final Vol;	840 mL / 1 mL	Prep Batch:	B7A0312	Analyzed:	01/05/17 15:28
Dilution:	1	Matrix:	Ground Water Sep Funnel MS 8000	Sequence	

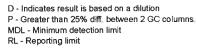
CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0231	0.0238	U
50-32-8	Benzo(a)pyrene	ND	0.0154	0.0238	U
205-99-2	Benzo(b)fluoranthene	ND	0.0202	0.0238	U
207-08-9	Benzo(k)fluoranthene	ND	0.0206	0.0238	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0231	0.0238	U
118-74-1	Hexachlorobenzene	ND	0.0220	0.0238	U
87-68-3	Hexachlorobutadiene	ND	0.0226	0.0238	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0224	0.0238	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0232	0.119	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

Semivolatile Organics - GC/MS - SIM - SW 846 8270C


Client:	Brown and Caldwell USR	
Client Sample ID:	MW-4D-20161228	
Lab Sample ID:	6120841-06	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled:	12/28/16 09:18	Prep Date:	01/03/17 11:06	File ID:	BM09363.D	
Init/Final Vol:	940 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/05/17 15:58	
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0618	
		Prep Method	Sep Funnel MS 8000			

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	0.0243	0.0206	0.0213	
50-32-8	Benzo(a)pyrene	0.0222	0.0137	0.0213	
205-99-2	Benzo(b)fluoranthene	ND	0.0181	0.0213	ບ
207-08-9	Benzo(k)fluoranthene	0.0217	0.0184	0.0213	
53-70-3	Dibenzo(a,h)anthracene	ND	0.0206	0.0213	U
118-74-1	Hexachlorobenzene	0.0440	0.0197	0.0213	
87-68-3	Hexachlorobutadiene	ND	0.0202	0.0213	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0200	0.0213	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0207	0.106	U

New 2/23/17

ND - Indicates compound analyzed for but not detected J - Indicates estimated value B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-4S-20161228
Lab Sample ID:	6120841-07
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled:	12/28/16 10:03	Prep Date:	01/03/17 11:06	File ID:	BM09364.D
Init/Final Vol:	920 mL / 1 mL	Prep Batch:	B7A0314	Analvzed:	01/05/17 16:28
Dilution:	1	Matrix:	Ground Water Sep Funnel MS 8000	,	

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0211	0.0217	U
50-32-8	Benzo(a)pyrene	ND	0.0140	0.0217	U
205-99-2	Benzo(b)fluoranthene	ND	0.0185	0.0217	U
207-08-9	Benzo(k)fluoranthene	ND	0.0188	0,0217	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0211	0.0217	U
118-74-1	Hexachlorobenzene	ND	0.0201	0.0217	U
87-68-3	Hexachlorobutadiene	ND	0.0207	0.0217	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0204	0.0217	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0212	0.109	U

ND - Indicates compound analyzed for but not detected

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

New 2123/17

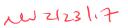
4.01

J - Indicates estimated value

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-8D-20161228	
Lab Sample ID:	6120841-08	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled:	12/28/16 10:57	Prep Date:	01/03/17 11:06	File ID:	BM09365.D
Init/Final Vol:	1000 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/05/17 16:59
Dilution:	1	Matrix:	Ground Water	Sequence	S7A0618
		Prep Method:	Sep Funnel MS 8000		


CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0194	0.0200	U
50-32-8	Benzo(a)pyrene	ND	0.0129	0.0200	U
205-99-2	Benzo(b)fluoranthene	ND	0.0170	0.0200	U
207-08-9	Benzo(k)fluoranthene	ND	0.0173	0.0200	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0194	0.0200	U
118-74-1	Hexachlorobenzene	ND	0.0185	0.0200	U
87-68-3	Hexachlorobutadiene	ND	0.0190	0.0200	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0188	0.0200	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0195	0.100	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

A DI

g

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR
Client Sample ID:	MW-8S-20161228
Lab Sample ID:	6120841-09
Project:	NG-Patchogue
Work Order:	6120841

Date Sampled: Init/Final Vol:	12/28/16 11:41 1000 mL / 1 mL	Prep Date: Prep Batch:	01/03/17 11:06 B7A0314	File ID: Analvzed:	BM09366.D 01/05/17 17:29
Dilution:	1	Matrix:	Ground Water	· · · · · · · · · · · · · · · · · · ·	
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0194	0.0200	U
50-32-8	Benzo(a)pyrene	ND	0.0129	0.0200	U
205-99-2	Benzo(b)fluoranthene	ND	0.0170	0.0200	U
207-08-9	Benzo(k)fluoranthene	ND	0.0173	0.0200	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0194	0.0200	U
118-74-1	Hexachlorobenzene	ND	0.0185	0.0200	U
87-68-3	Hexachlorobutadiene	ND	0.0190	0.0200	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0188	0.0200	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0195	0.100	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank
 E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

New 2/23/17

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-7S-20161228	
Lab Sample ID:	6120841-10	
Project:	NG-Patchogue	
Work Order:	6120841	
Work Order:	6120841	_

Date Sampled:	12/28/16 13:56	Prep Date:	01/03/17 11:06	File ID:	BM09367.D
Init/Final Vol:	1000 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/05/17 17:59
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0618
		Prep Method	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0194	0.0200	U
50-32-8	Benzo(a)pyrene	ND	0.0129	0.0200	U
205-99-2	Benzo(b)fluoranthene	ND	0.0170	0.0200	U
207-08-9	Benzo(k)fluoranthene	ND	0,0173	0.0200	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0194	0.0200	U
118-74-1	Hexachlorobenzene	ND	0.0185	0.0200	U
87-68-3	Hexachlorobutadiene	ND	0.0190	0.0200	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0188	0.0200	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0195	0.100	U

NW2/23/17

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns MDL - Minimum detection limit RL - Reporting limit

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-7D-20161228	
Lab Sample ID:	6120841-11	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled:	12/28/16 14:44	Prep Date:	01/03/17 11:06	File ID:	BM09368.D
Init/Final Vol:	1000 mL / 1 mL	Prep Batch:	B7A0314	Analyzed:	01/05/17 18:29
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0618
		Prep Method;	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0194	0.0200	U
50-32-8	Benzo(a)pyrene	ND	0.0129	0.0200	U
205-99-2	Benzo(b)fluoranthene	ND	0.0170	0.0200	U
207-08-9	Benzo(k)fluoranthene	ND	0.0173	0.0200	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0194	0.0200	U
118-74-1	Hexachlorobenzene	ND	0.0185	0.0200	U
87-68-3	Hexachlorobutadiene	ND	0.0190	0.0200	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0188	0.0200	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0195	0.100	U

Ju2/23/17

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit 11

ADI 470 -4004

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	FB-20161228	
Lab Sample ID:	6120841-12	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled	12/28/16 15:00	Prep Date:	01/04/17 10:16	File ID:	BM09396.D
Init/Final Vol:	850 mL / 1 mL	Prep Batch:	B7A0403	Analyzed:	01/06/17 20:34
Dilution:	1	Matrix:	Ground Water	Sequence:	S7A0902
		Prep Method:	Sep Funnel MS 8000		

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
		00.10. (49.2)			
56-55-3	Benzo(a)anthracene	ND	0.0228	0.0235	U
50-32-8	Benzo(a)pyrene	ND	0.0152	0.0235	U
205-99-2	Benzo(b)fluoranthene	ND	0.0200	0.0235	U
207-08-9	Benzo(k)fluoranthene	ND	0.0204	0.0235	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0228	0.0235	U
118-74-1	Hexachlorobenzene	ND	0.0218	0.0235	U
87-68-3	Hexachlorobutadiene	ND	0.0224	0.0235	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0221	0.0235	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0229	0.118	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns MDL - Minimum detection limit RL - Reporting limit

Lev 2/23/17

Semivolatile Organics - GC/MS - SIM - SW 846 8270C

Client:	Brown and Caldwell USR	
Client Sample ID:	MW-1-20161228	
Lab Sample ID:	6120841-13	
Project:	NG-Patchogue	
Work Order:	6120841	

Date Sampled:	12/29/16 08:39	Prep Date:	01/05/17 09:33	File ID:	BM09394.D
Init/Final Vol:	940 mL / 1 mL	Prep Batch:	B7A0507	Analvzed:	01/06/17 19:34
Dilution:	1	Matrix:		Sequence:	

CAS NO.	COMPOUND	CONC. (ug/L)	MDL	RL	Q
56-55-3	Benzo(a)anthracene	ND	0.0206	0.0213	U
50-32-8	Benzo(a)pyrene	ND	0.0137	0.0213	U
205-99-2	Benzo(b)fluoranthene	ND	0.0181	0.0213	U
207-08-9	Benzo(k)fluoranthene	ND	0.0184	0.0213	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.0206	0.0213	U
118-74-1	Hexachlorobenzene	ND	0.0197	0.0213	U
87-68-3	Hexachlorobutadiene	ND	0.0202	0.0213	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0200	0.0213	U
62-75-9	n-Nitroso-dimethylamine	ND	0.0207	0.106	U

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution P - Greater than 25% diff. between 2 GC columns. MDL - Minimum detection limit RL - Reporting limit

Jw2/23/17

Appendix D: Electronic Data Deliverable (CD-ROM)

