

Site Characterization Report AMW Materials Testing Site (1-52-189) North Amityville, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C., and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

> May 2008 Revision: FINAL EA Project No. 14368.06

Site Characterization Report AMW Materials Testing Site (1-52-189) North Amityville, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

Christopher Canonica, P.E., Program Manager
EA Engineering, P.C.

Dames C. Hayward
James Hayward, P.E., Project Manager

Date

EA Engineering, P.C.

May 2008 Revision: FINAL EA Project No. 14368.06

Page 1 of 4 May 2008

CONTENTS

	-	F FIGU F TABI	IRES	Page
1.	INT	RODU	CTION	1
	1.1 1.2 1.3	Object	t Backgroundtivest Organization	1
2.	SITI	E BAC	KGROUND	3
	2.1 2.2		ocation and Facility Description	
		2.2.1 2.2.2	Geology and Hydrogeology Topography	
	2.3	Site H	istory	4
		2.3.1 2.3.2	Operational/Disposal History	
3.	FIEI	LD AC	TIVITIES	6
	3.1	Surfac	ee and Subsurface Soil	7
	3.2	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Background Soil Samples	8 9 10
	3.2	3.2.1 3.2.2	Soil Sampling from Dry Wells	10
	3.3	Groun	dwater	12
		3.3.1 3.3.2 3.3.3 3.3.4	Monitoring Well Installation	12 12

		3.3.5	Ground	water Profiling	15
	3.5	Decor Invest	ntaminati tigative D	Samplingon Procedureserived Waste	16 17
4.	RES	SULTS			18
	4.1	Envir	onmental	Samples	18
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8	Soil Sam Subsurfa Soil Sam Soil Sam Soil Sam Groundw 4.1.8.1 4.1.8.2 4.1.8.3 Groundw	pling from On-Site Soil Stockpiles ce Soil Sampling at Monitoring Well Locations pling from Cesspool pling from Excavated Pit pling from Dry Wells pling from Recharge Basin vater Monitoring Well Sampling Groundwater Gauging March 2007 Sampling Event Groundwater Sampling November 2007 vater Profiling or Sampling	
			•		
5.	DA	ΓA SU	MMARY	AND USABILITY REPORT	26
AF AF	PPEN PPEN	DIX B	: PHOTO: : MONI' LOGS	RICAL SITE BACKGROUND INFORMATION OGRAPH LOG FORING WELL CONSTRUCTION DIAGRAMS/SOI FORING WELL PURGING/SAMPLING FORMS	L BORING
				APOR LOGS	
AF	PEN	DIX F	: FIELD	SURVEY DATA	

May 2008

LIST OF FIGURES

Number	<u>Title</u>
1	Site location.
2	Site layout.
3	Site feature and stockpile soil sample locations.
4	Site background soil sampling locations.
5	Soil boring, monitoring well, groundwater profile, and soil vapor locations.
6	Dry well soil sampling locations (March 2007).
7	Recharge basin soil sampling locations (March 2007).
8A	Potentiometric surface (March 2007).
8B	Potentiometric surface (November 2007).
9A	Soil sampling chromium results.
9B	Soil sampling chromium results for recharge basin.
10A	Groundwater chromium and PCE results.
10B	Groundwater chromium results.

Revision: FINAL Page 4 of 4 May 2008

LIST OF TABLES

<u>Number</u>	<u>Title</u>
1	Laboratory analytical results for site background soil samples.
2	Laboratory analytical results for on-site soil stockpiles (23 January 2007)
3	Laboratory analytical results for subsurface soil samples collected at new monitoring wells locations (January 2007).
4	Laboratory analytical results for samples collected from dry wells, excavated pit, and cesspool.
5	Laboratory analytical results for sediment samples collected from recharge basin (March 2007).
6A	Laboratory analytical results for groundwater samples collected from monitoring wells (March 2007).
6B	Laboratory analytical results for groundwater samples collected from monitoring wells (November 2007).
7	Laboratory analytical results for groundwater profile point samples (March 2007).
8	Laboratory analytical results for soil vapor samples (November 2007).

EA Project No.: 14368.06 Revision: FINAL Page 1 of 26 May 2008

1. INTRODUCTION

1.1 PROJECT BACKGROUND

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C., and its affiliate EA Science and Technology, to perform a site characterization at the AMW Materials Testing site in the Hamlet of North Amityville, Suffolk County, New York (Figure 1).

The site characterization was conducted under the NYSDEC State Superfund Standby Contract (Work Assignment No. D004438-6). The Work Plan¹, which described the work activities performed at the site, was submitted on 14 November 2006 to the NYSDEC. The field activities for the site characterization were performed from 23 to 25 January 2007, from 3 to 8 March 2007 and from 27 to 28 November 2007.

1.2 OBJECTIVES

The goals of this site characterization were to evaluate site conditions on the property and at stormwater structures near the site. The site characterization was completed in accordance with NYSDEC Division of Environmental Remediation Draft DER-10 Technical Guidance for Site Investigation and Remediation, dated December 2002. The following tasks were completed as part of the site characterization:

- Stockpile evaluation
- Evaluation of on-site media including soil and groundwater
- Evaluation of stormwater structures
- Site surveying.

Details of each field activity are provided in subsequent sections of this report.

1.3 REPORT ORGANIZATION

This report presents a summary of the January, March, and November 2007 field activities and analytical results. A brief description of the site background, including site history, physical characteristics of the site, and historical data, is presented in Section 2. A summary of field activities completed in January, March, and November 2007 are provided in Section 3. Data associated with the performance of field activities is presented in Section 4. Lastly, a brief overview of data validation activities associated with the laboratory analytical data is provided in Section 5.

¹ EA Engineering, P.C. and Its Affiliate EA Science and Technology. 2006. Final Work Plan for a Site Characterization at AMW Materials Testing Site (1-52-189), North Amityville, New York. November.

EA Project No.: 14368.06

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Revision: FINAL Page 2 of 26 May 2008

The following are provided as appendixes:

- Appendix A: Historical site background information
- Appendix B: Photograph log
- Appendix C: Monitoring well construction diagrams/soil borings
- Appendix D: Monitoring well purging/sampling forms
- Appendix E: Soil vapor logs
 Appendix F: Field survey data.

EA Project No.: 14368.06 Revision: FINAL Page 3 of 26 May 2008

2. SITE BACKGROUND

This section provides a summary of the site background, including site history, physical characteristics of the site, and historical data.

2.1 SITE LOCATION AND FACILITY DESCRIPTION

The AMW Materials Testing site is located at 666 Albany Avenue in the Hamlet of North Amityville, Suffolk County, New York (Figure 2). The site covers approximately 0.46 acres, and portions of a masonry building are located on the property. An excavation pit is present along the west side of the site (including remnants of a catch basin within the pit). The remaining portions of the site are mainly covered by vegetation, debris, and a stockpile of impacted soil (Figure 3). A fence is located along the property boundary and the gate utilized to access the site is locked.

The surrounding area is predominantly zoned commercial to the east and residential to the west. The site is bordered to the north by a commercial property, to the east by Albany Avenue and a vacant wooded lot, and to the south and west by residential properties.

2.2 PHYSICAL CHARACTERISTICS OF STUDY AREA

2.2.1 Geology and Hydrogeology

The primary geologic/hydrogeologic unit present at the site is the Pleistocene upper glacial aquifer. This formation is the uppermost water-bearing unit in this portion of Long Island. The upper glacial aquifer is approximately 80-ft thick at the site, and is comprised of glacial outwash – fine to course sand and gravel (Jensen 1974). A review of site boring logs indicates that locally, the upper glacial aquifer is predominantly a homogeneous medium to coarse sand with a gravel component. The upper glacial aquifer is moderately to highly permeable. This unit's hydraulic conductivity has been estimated to be as much as 200 ft/day (Jensen 1974). Groundwater occurs in this unit in unconfined conditions. Groundwater flow within the upper glacial aquifer is towards the south and southeast (Olcott 1995). The water table elevation at the site ranges from 35 to 40 ft above mean sea level (AMSL) (approximately 13-15 ft below ground surface [bgs]).

Underlying the upper glacial aquifer is the Gardeners Clay unit, a marine deposit consisting of clay and silt with some interbedded sand and gravel. The Gardeners clay is approximately 50-ft thick at the Site. The Gardeners Clay is underlain by the Magothy Aquifer. Locally, the Magothy Aquifer is upwards of 900-ft thick and consists of fine to coarse sand with interstitial clay and silt.

2.2.2 TOPOGRAPHY

The topography is generally flat, with a slight slope to the south (Figure 1). The area is heavily developed and thus the natural topography has been altered to assist in drainage. It is believed

EA Project No.: 14368.06 Revision: FINAL Page 4 of 26

May 2008

EA Engineering, P.C. and Its Affiliate EA Science and Technology

surface water run-off flows into nearby dry wells and catch basins which in turn discharge to the recharge basin located south of the site (Figure 2).

Presumed surface water flow from the site is towards nearby dry wells located northeast of the site along Albany Avenue and towards dry wells located at the adjacent property north of the site. Historically, a component of surface water flow at the site likely discharged to three catch basins located within the site boundary. The locations of catch basins and dry wells in proximity to the site are shown in Figure 3, Figure 6, and Appendix A, Figure A-1.

2.3 SITE HISTORY

2.3.1 Operational/Disposal History

The facility was utilized as a metal refinishing company that served the aircraft industry. An inventory of known chemicals consisted of 40 gallons of tetrachloroethene (PCE), 50 pounds (lbs) of chromic acid, 1,000 gal chromic acid tank reportedly with 12 ounces of chromium per gallon, a 1,000 gal alodine anodize 1200S tank, and 140 gal of methyl ethyl ketone (MEK). A facility plan is included in Appendix A, Figure A-1.

On 9 October 2000 a fire destroyed the entire structure causing the chemicals to be released to the environment. An estimated 1,800,000 gal of water was utilized to extinguish the fire. The chemicals present onsite at the time of the fire were mobilized by the water utilized by the fire department, which ran offsite and impacted the stormwater structures in the vicinity of the site (Appendix A, Figure A-2). Impacted water flowed north towards approximately 14 dry wells located along Albany Avenue (and within the adjacent properties), as well as south along Albany Avenue towards a stormwater drain located near New Highway; the stormwater drain then discharged to a recharge basin located approximately 1,000 ft south of the site at the intersection of New Highway (CPL Tony Casamento Highway) and Albany Avenue as shown in Figure 2, and Figure A3a and A3b in the Appendix.

NYSDEC spill response was contacted by the fire department and requested to respond immediately. Spill response assigned spill number 0008040 to the release. Environmental samples were collected on 9 October 2000 by Suffolk County Environmental Laboratory from locations where fire control water was observed. Six surface water samples were collected adjacent to the site along Albany Avenue and one surface water sample and one soil sample were collected at the recharge basin located approximately 1,000 ft to the south. Laboratory results indicated elevated concentrations of chromium, MEK, PCE, and 1,1,1-Trichloroethane (TCA) in soil and water samples, which are provided in Appendix A, Tables A-1 and A-2.

Soil samples from dry wells located in the vicinity of the site located on Albany Avenue and the adjacent properties detected elevated levels of chromium, PCE, MEK, and TCA. Figure A-2 provided in Appendix A illustrates the locations of the dry wells. Soil sample results for chromium, MEK, PCE, and TCA are provided in Appendix A, Table A-3.

Page 5 of 26 May 2008

2.3.2 Remedial History

Initial activities at the site included the construction of earthen berms to control fire water. As a result of the earthen berms a substantial amount of ponded water was treated by the sewage treatment plant once approval was received to direct water to the sanitary system. On 9 October and 10 October 2000, water was pumped out of the off-site dry well structures that received runoff water from site activities.

The Suffolk County Department of Health participated in the environmental investigation activities after the fire. Five monitoring wells (MW-01 through MW-05) were installed to assess the impacts of the release on the groundwater quality as detailed below:

- MW-01 was installed downgradient of the site
- MW-02 was located upgradient of the site at the intersection of Seabro Avenue and Albany Avenue
- MW-03, MW-04, and MW-05 were located downgradient of the recharge basin.

The depth to groundwater had been documented to be approximately 18 ft bgs and assumed to flow to the south. Groundwater sample results for chromium, MEK, PCE, and TCA are provided in Appendix A, Table A-4.

Spill response efforts were able to remediate most of the wastes from the stormwater structures in the vicinity of the site. Confirmation samples from the remediated dry wells indicated residual soil contamination in five of the dry wells. Soil sample results for chromium, MEK, PCE, and TCA are provided in Appendix A, Table A-5.

Samples were collected from the recharge basin to evaluate the soil conditions. Laboratory results indicated that elevated levels of chromium were detected in the surface soils. Soil sample results for chromium, MEK, PCE, and TCA are provided in Appendix A, Table A-6. Historical documents regarding site remediation activities did not indicate that the impacted soils in the vicinity of the recharge basin were excavated.

Approximately 1,200 to 1,300 tons of impacted soil were excavated and are currently stockpiled and covered at the site (Figure 3). The majority of the stockpiled soil is from an on-site excavation located adjacent to the former vapor degreaser. Historical analytical results and the limits of the excavation are unavailable.

EA Project No.: 14368.06 Revision: FINAL Page 6 of 26 May 2008

3. FIELD ACTIVITIES

This section outlines and presents the overall approach of the field investigation activities that were performed to meet the stated objectives of the site characterization. EA's approach for implementing the field investigation included sampling activities designed to confirm the presence or absence of contaminants of concern (COCs) attributable to past operational and/or storage activities at the site, and to quantify the concentrations of potential COCs through laboratory analysis. Environmental matrices including soil, sediment, soil vapor, and groundwater were sampled during the site investigation. All environmental samples were analyzed by an Environmental Laboratory Analytical Program-certified laboratory.

The field investigation program was performed during January to November 2007 and included the following activities:

January 2007

- *Stockpile Soil Sampling* Soil sampling of on-site soil stockpiles was completed in order to assess of soil disposal options.
- Soil Borings/Monitoring Well Installation One upgradient (MW-09) and three on-site (MW-06, MW-07, and MW-08) soil borings were installed. Soil samples were collected from intervals above the water table. An additional soil sample was collected from MW-08 from below the water table where evidence of contamination was observed. Monitoring wells were subsequently installed at each soil boring location.

March 2007

- *Groundwater Sampling* Groundwater samples were collected at eight well locations (four newly installed wells and four existing wells).
- *Groundwater Profiling* Groundwater samples were collected at two temporary groundwater profiling locations.
- **Soil Sampling** —At the request of NYSDEC, additional soil samples were collected from the excavation pit and from a cesspool discovered during performance of the January 2007 field work.
- Soil Sampling from dry wells and recharge basin—Soil samples were collected from six selected dry wells; seven samples were collected from the recharge basin.
- *Site Survey* A site survey was conducted by a professional land surveyor following the completion of the sampling activities. The survey included the locations of monitoring wells MW-02 through MW-09 and dry wells. Remaining sample locations were located using a portable global positioning system (GPS) device.

Page 7 of 26 May 2008

November 2007

- *Groundwater Sampling* Groundwater samples were collected at five well locations, three on-site and two upgradient off-site wells.
- **Soil Vapor Sampling**—Collection of two on-site soil gas vapor samples, one duplicate and one ambient air sample.
- **Background Soil Sampling**—Collection of five background soil samples to obtain site background standards.

Prior to commencement of drilling and sampling activities, the driller for this Work Assignment (Land Air Water Environmental Services, Inc.) contacted Dig Safe New York to request that utilities be marked out within the work area.

Field activities followed the approach described in the Site Characterization Work Plan previously prepared for the site. Minor adjustments were made to the original Work Plan approach following consultation with and approval by the NYSDEC site representative, as listed below:

- At the request of the NYSDEC, a soil sample was collected from a cesspool discovered onsite during performance of the January 2007 field work.
- At the request of the NYSDEC, three soil samples were collected from the bottom of the excavation pit located in the northwest corner of the site due to the size of the excavation.
- At the request of the NYSDEC, soil from dry wells DW-11 and DW-12 were sampled in lieu of sample collection from the on-site storm-water structures which could not be located.
- No groundwater sample was collected from MW-01, since it could not be located.

Copies of the field notebook are provided under separate cover. Photographs taken during performance of field work are presented in Appendix B.

3.1 SURFACE AND SUBSURFACE SOIL

3.1.1 Background Soil Samples

On 26 November 2007, five background soil samples were collected and analyzed for metals by EPA Method 6010, to determine shallow site background soil concentrations. Two soil samples were located on properties adjacent to the site, and one sample was collected adjacent to the impacted recharge basin, and two samples were collected downgradient from the impacted recharge basin (Figure 4). Each soil sample was collected at 1-ft bgs. Soil samples were collected using a stainless steel hand auger and other stainless steel sampling equipment. Decontamination

May 2008

of non-dedicated equipment and tools used to collect samples for laboratory analysis was completed in accordance with the procedures described in Section 6 of the Field Activities Plan (FAP).

3.1.2 Soil Sampling from On-Site Soil Stockpiles

During the January 2007 field work, the dimensions of each soil pile were measured as summarized below:

- Stockpile #1: 67 ft x 14 ft x 3.5 ft
- Stockpile #2: 35 ft x 33 ft x 4.5 ft
- Stockpile #3: 51 ft x 21 ft x 4.5 ft
- Stockpile #4: 51 ft x 34 ft x 5 ft

The quantity of soils stockpiled at the site was estimated to be approximately 1,200 to 1,300 tons. Due to the anticipated volume of material and the number of stockpiles present at the site, a total of five composite soil samples were collected (Figure 3).

Soil samples were collected using a stainless steel hand auger and other stainless steel sampling equipment. Decontamination of non-dedicated equipment and tools used to collect samples for laboratory analysis was completed in accordance with the procedures described in Section 6 of the FAP. Soil samples were collected from a depth of approximately 3 ft below the surface of the stockpiles to properly evaluate the constituents. Grab samples were collected from each of the five sample points (1-52-189-SS01, 1-52-189-SS02, 1-52-189-SS03, 1-52-189-SS04E and 1-52-189-SS04W). The soil samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOC) using EPA Method 8260B. Composite soil samples were collected from each of the five sample areas and analyzed for Toxicity Characteristic Leaching Procedure (EPA Method 1311), pesticides (EPA Method 8081A), polychlorinated biphenyls (PCBs) (EPA Method 8082), semivolatile organic compounds (SVOCs) (EPA Method 8270C), metals (including hexavalent chromium) (EPA Method 7000), and Resource Conservation and Recovery Act characteristics, ignitability (ASTM E 501-84), reactivity (EPA Method 9010 and 9030), corrosivity (EPA Method 9040), and moisture content (ASTM D 2216).

3.1.3 Subsurface Soil Sampling at Monitoring Well Locations

Between 24-25 January 2007, four soil borings (MW-06 through MW-09) were installed using 4½-in inner diameter hollow-stem augers driven by a Mobile B-61 drill rig or Geoprobe Model 6610DT with hollow stem auger capabilities. The soil boring locations are illustrated on Figure 5. Subsurface soil samples were collected at boring MW-07 using decontaminated 2-in. diameter, 2.5-ft-long, continuous-drive, split-spoon samplers, which were advanced with the augers during drilling. A decontaminated 2-in. diameter, 4-ft long continuous drive macrocore sampler was utilized for collecting soil samples at borings MW-06 and MW-08. Continuous split spoons were not performed at MW-09, which is located off-site at an upgradient location. Soil characteristics of each sample along with any other pertinent information were logged in accordance with American Society for Testing and Materials D-2488-85. Boring logs are provided in Appendix C.

Page 9 of 26 May 2008

A sample of soil from each interval was retained in a laboratory-cleaned glass jar for container headspace photoionization detector (PID) readings. At each boring location, soil samples collected from immediately above the groundwater interface were submitted for laboratory analysis. Additionally, because visual contamination was observed and elevated PID headspace readings were noted at soil boring location MW-08 from 17.5 to 20.0 ft bgs, the NYSDEC requested that a soil sample be collected from this interval and submitted for laboratory analysis. Soil samples were analyzed for VOCs by EPA Method 8260B, SVOCs by EPA Method 8270C, pesticides/PCBs by EPA Methods 8081A/8082, and metals by EPA Method ILM05.0. The table below provides detailed information for each boring location:

		SOIL SAMPLE COLL	ECTION DAT	A (JANUARY 2007	7)
Soil Boring	Location		Soil Sample Depth Interval (ft		
Location	Description	Soil Sample ID	bgs)	Sample Analysis	Soil Sampling Rationale
MW-06	Adjacent to excavation pit	1-52-189-SB06- 12.5-15	12.5 – 15.0	VOC, SVOC, Pesticides/ PCBs and Metal	To assess impacts to soil from former vapor degreaser
MW-07	Northeast corner of site	1-52-189-SB07-11- 13 MS/MSD	11.0 – 13.0	VOC, SVOC, Pesticides/ PCBs and Metal	To assess impacts to soil at an up-gradient but on-site location
MW-08	Downgradient	1-52-189-SB08-10- 14.5 (Duplicate 1- 52-189-SB09-10- 12)	10.0 – 14.5	VOC, SVOC, Pesticides/ PCBs and Metal	To assess impacts to soil from former anodizing tank area
		1-52-189-SB08- 17.5-20	17.5 – 20.0	VOC, SVOC, Pesticides/ PCBs and Metal	Evidence of contaminated soils below water table
MW-09	Upgradient	No Sample Collected	NA	NA	NA

Soil sample collection for each specific sampling interval was completed in accordance with Section 4 of the FAP. Quality assurance/quality control samples were collected at the frequency detailed in the Quality Assurance Project Plan (QAPP) Addendum, Table 1. Decontamination of non-dedicated equipment and tools used to collect samples for laboratory analysis was completed in accordance with the procedures described in Section 6 of the FAP.

3.1.4 Soil Sampling from Cesspool

During the January 2007 field work, a cesspool was discovered in the northeast corner of the site (Figure 3), as identified in a figure obtained from the building department. At the request of the NYSDEC, a soil sample was collected from the soil within the cesspool. The soil sample was collected from 4-ft below the top of the pile just above a change in soil texture (i.e., possibly just above native soils). The soil sample was collected using a stainless steel decontaminated hand auger with extension rods. The soil sample, 1-52-189-CP-01, was analyzed for VOCs by EPA Method 8260B and metals by EPA Method ILM05.0.

Page 10 of 26 May 2008

3.1.5 Soil Sampling from Excavated Pit

A large open pit approximately 10-ft deep was observed during the January 2007 field work in the northwest corner of the site (Figure 3). It is believed that this pit was excavated during the remedial activities completed after the October 2000 fire. At the request of NYSDEC, three soil samples were collected from the pit (1-52-189-PT-01 through 1-52-189-PT-03) due to the size of the excavation. Soil samples were collected from the bottom of the pit approximately 9 to 10-in below the base of the pit. Soil sample 1-52-189-PT-03 was collected from just east of what appeared to be the former location of a catch basin structure. All three soil samples were analyzed for VOCs by EPA Method 8260B and metals by EPA Method ILM05.0.

3.2 STRUCTURE SAMPLING

3.2.1 Soil Sampling from Dry Wells

Soil samples were collected from six dry wells, identified as DW-01, DW-02, DW-07, DW-11, DW-12, and DW-14, to determine the concentration of VOCs and metals present. The soil within dry well DW-13 could not be sampled due to a sealed grate. Soil within DW-11 and DW-12 was sampled in lieu of collecting samples from the on-site storm drains which either could not be located or no longer existed. One soil sample was collected from each dry well. Figure 6 shows the location of the dry wells in the vicinity of the site. The table below provides specific information for each dry well that was sampled from 5 to 7 March 2007:

	DRY WELL SAMPLE COLLECTION DATA (MARCH 2007)							
Dry Wells ID	Depth to Bottom of Structure (ft below rim)	Approximate Sediment Thickness (in)	Material Description	Height of Standing Water Above Base (ft)	Sample ID	Sample Analysis	Sample Date	
DW-01	7.5	12	Black sludge underlain by sand	3.5	1-52-189-	VOC,	5 MAR	
			and gravel and organic matter		DW-01	Metals	2007	
DW-02	7.5	12	Black sludge underlain by sand	3.5	1-52-189-	VOC,	5 MAR	
			and gravel and organic matter		DW-02	Metals	2007	
DW-07	7.5	6	Sand and gravel and organic matter	DRY	1-52-189-	VOC,	7 MAR	
					DW-07	Metals	2007	
DW-11	12.5	6	Black sludge	7.5	1-52-189-	VOC,	6 MAR	
					DW-11	Metals	2007	
DW-12	15.5	6-12	Black sludge	10.0	1-52-189-	VOC,	6 MAR	
					DW-12	Metals	2007	
DW-14	7.5	12	Black sludge underlain by Sand	3.5	1-52-189-	VOC,	5 MAR	
			and gravel and organic matter		DW-14	Metals	2007	

Soil samples were collected using a decontaminated stainless steel or nalgene container attached to extension rods. Since there was a small quantity of soil in each dry well, the samples were collected by dragging the container along the bottom of the structure. All soil samples collected from the dry wells were analyzed for VOCs by EPA Method 8260B and metals by EPA Method ILM05.0.

May 2008

Decontamination of non-dedicated equipment and tools used to collect samples for laboratory analysis was completed in accordance with the procedures described in Section 6 of the FAP.

3.2.2 Soil Sampling from Recharge Basin

Seven soil samples were collected on 6 March 2007 from locations within the recharge basin to determine the concentration of VOCs and metals present. Figure 7 shows the location of the recharge basin and associated soil sample locations. Samples were collected from approximately 1.0-1.5 ft. bgs. The table below provides specific information on the recharge basin sampling effort:

RECHARO	GE BASIN SA	MPLE COL	LECTION DATA (MARCH 2007)
Sample ID	Sample Depth (ft bgs)	Sample Analysis	Material Description
1-52-189-SED-01	1.0-1.5	VOC, Metals, Cr+6	~6 in. of organic matter underlain by tan course sand and fine to course gravel
1-52-189- SED -02	1.0-1.5	VOC, Metals, Cr+6	~6 in. of organic matter underlain by tan course sand and fine to course gravel
1-52-189- SED -03	1.0-1.5	VOC, Metals, Cr+6	~6 in. of organic matter underlain by tan course sand and fine to course gravel
1-52-189- SED -04	1.0-1.5	VOC, Metals, Cr+6	~6 in. of organic matter underlain by tan course sand and fine to course gravel
1-52-189- SED -05	1.0-1.5	VOC, Metals, Cr+6	~6 in. of organic matter underlain by tan course sand and fine to course gravel
1-52-189- SED -06	1.0-1.5	VOC, Metals, Cr+6	~6 in. of organic matter underlain by tan course sand and fine to course gravel with slight iron staining
1-52-189- SED -07 and duplicate (1-52-189- SED -08)	1.0-1.5	VOC, Metals, Cr+6	~6 in. of organic matter underlain by tan course sand and fine to course gravel

All soil samples were analyzed for VOCs by EPA Method 8260B, metals by EPA Method ILM05.0, and hexavalent chromium by EPA Method 7196A. A surface water sample was not collected since there was no standing water in the basin at the time of sampling. It is noted however, that during reconnaissance of the area on 5 March 2007, there was approximately 1 ft of standing water in the basin (presumably residual storm-water run-off from a rain event which occurred on 3 March 2007).

Soil samples were collected using a decontaminated stainless steel hand auger and other stainless steel sampling equipment. Decontamination of non-dedicated equipment and tools used to collect samples for laboratory analysis was completed in accordance with the procedures described in Section 6 of the FAP.

EA Project No.: 14368.06 Revision: FINAL Page 12 of 26 May 2008

3.3 GROUNDWATER

3.3.1 Monitoring Well Installation

Following subsurface soil sampling, monitoring wells were installed at each soil boring location (MW-06, MW-07, MW-08 and MW-09). Monitoring well locations are shown on Figure 5. Monitoring well construction diagrams are presented in Appendix C. Each well was screened to intersect the groundwater interface. Each monitoring well was constructed with a 10-ft length of 2-in. inner diameter threaded Schedule 40 polyvinyl chloride flush-joint casing with a 10-ft machine slotted 0.010-in. well screen. The annulus around the well screen was backfilled with No. 1 Morie sand up to 2 ft above the well screen. A bentonite seal was placed above the sand pack to form a minimum 2-ft seal. Cement/bentonite grout was placed to within 3 ft of the surface. Each well has a vented cap and a locking cover. Monitoring wells were completed with flush-mount protective covers. A cement pad was installed at each well to channel surface water away from the well.

3.3.2 Monitoring Well Development

The newly installed wells were developed in order to remove sediment from the well screen and to ensure that representative groundwater samples were collected. Wells were developed following the installation of each well. Each well was alternately mechanically surged and pumped clear of sediment with a submersible pump.

Water quality data (temperature, pH, specific conductivity, and turbidity) were recorded into the field log book (separate submittal). Pumping continued until these parameters stabilized (less than 0.2 pH units or a 10 percent change for the other parameters between four consecutive readings) and the turbidity did not exceed 50 nephelometric turbidity units (NTU), in accordance with Section 4.1.3 of the FAP. The purged groundwater derived from well development was managed in accordance with the procedures outlined in Section 7 of the FAP.

3.3.3 Monitoring Well Groundwater Gauging and Sampling (March 2007)

Groundwater samples were collected from the newly installed monitoring wells (MW-06, MW-07, MW-08 and MW-09) and existing monitoring wells (MW-02, MW-03, MW-04 and MW-05) from 6 to 7 March 2007. Water levels were recorded from monitoring wells on 6 March 2007, prior to the start of groundwater sampling, in order to prepare a groundwater contour map and to evaluate groundwater flow patterns. In addition, an oil/water interface probe was used to measure product thickness in the groundwater monitoring wells; however, no product was detected in the wells. The table below provides the gauging elevations at each well during the March 2007 event:

May 2008

MONITORING WELL GAUGING DATA (MARCH 2007)					
	Depth to Water (Ft		Water		
	below top of PVC	Depth to	Elevation		
Well ID	casing)	Product	(Ft MSL)		
MW-01	NA	NA	NA		
MW-02	13.89	Not Detected	39.39		
MW-03	15.12	Not Detected	35.57		
MW-04	15.09	Not Detected	35.45		
MW-05	15.34	Not Detected	35.38		
MW-06	15.55	Not Detected	39.11		
MW-07	14.88	Not Detected	39.01		
MW-08	14.45	Not Detected	38.64		
MW-09	13.44	Not Detected	40.90		

Note: NA = MW-01 was not gauged during the sampling event because it could not be located.

Groundwater samples were analyzed for VOCs by EPA Method 8260B, SVOCs by EPA Method 8270C, pesticides by EPA Method 8081A, PCBs by EPA Method 8082, metals by EPA Method ILM05.0, and hexavalent chromium by EPA Method 7196A.

Purge water was discharged to the ground surface away from the well. Purge water from MW-09 was transported to and discharged onto the site. All sampling equipment (i.e. polyethylene bailers) was dedicated to each monitoring well; therefore, no decontamination was completed.

Groundwater samples were collected in accordance with section 4.1.3 of the FAP. Groundwater samples were collected at monitoring wells using certified clean (by the manufacturer) 1.5-in. outer diameter, weighted polyethylene bailers. Field measurements of water quality parameters, including temperature, pH, conductivity, and turbidity, were monitored and recorded during purging. Approximately five well volumes were removed from each well. Water quality parameters were measured for each well volume of water removed using a Horiba® Model U-22 water quality meter. The water quality meter was calibrated in accordance with the manufacturer's specifications prior to use. Calibration data were recorded in the field notebook (Appendix B). Water quality parameters were recorded on the Field Record of Gauging, Purging, and Sampling forms provided in Appendix D. Purged groundwater did not exhibit evidence of contamination. Laboratory analyses performed on the groundwater samples are outlined in the following table:

SUMMARY OF LABORATORY ANALYSES FOR GROUNDWATER SAMPLES (MARCH 2007)							
		(1/11/11/	Analysis				
Well ID	Sample ID	VOC	SVOC	Metals	Pest/PCB	Cr +6	
MW-01	Not Sampled	NA	NA	NA	NA	NA	
MW-02	1-52-189-GW-02	X		X		X	
MW-03	1-52-189-GW-03	X		X			
MW-04	1-52-189-GW-04	X		X		X	
MW-05	1-52-189-GW-05	X		X			
MW-06	1-52-189-GW-06	X	X	X	X	X	
MW-07	1-52-189-GW-07	X	X	X	X	X	
MW-08	1-52-189-GW-08	X	X	X	X	X	
MW-09	1-52-189-GW-09	X		X			
MW-10*	1-52-189-GW-DP	X	X	X	X	X	
*MW-10 is	the ID assigned to th	e duplica	te sample w	which was co	ollected from	MW-06.	

3.3.4 Monitoring Well Groundwater Gauging and Sampling (November 2007)

Groundwater samples were collected from monitoring wells MW-02, MW-06, MW-07, MW-08 and MW-09 on 28 November 2007. Water levels were recorded from monitoring wells MW-02, MW-06, MW-07, MW-08, and MW-09 on 27 November 2007, prior to the start of groundwater sampling, in order to prepare a groundwater contour map and to evaluate groundwater flow patterns. In addition, an oil/water interface probe was used to measure product thickness in the groundwater monitoring wells; however, no product was detected in the wells. The table below provides the gauging elevations at each well during the November 2007 event:

MONITORING WELL GAUGING DATA (NOVEMBER 2007)						
	Depth to Water (Ft below top of PVC	Depth to	Water Elevation (Ft			
Well ID	casing)	Product	MSL)			
MW-01	NA	NA	NA			
MW-02	16.10	Not Detected	36.92			
MW-03	17.30	Not Detected	33.10			
MW-04	17.27	Not Detected	33.09			
MW-05	17.49	Not Detected	33.05			
MW-06	17.79	Not Detected	36.28			
MW-07	17.12	Not Detected	36.33			
MW-08	16.72	Not Detected	36.06			
MW-09	15.62	Not Detected	37.87			
Note: NA =	Note: NA = MW-01 was not gauged during the sampling event because it					

During the November 2007 sampling event, groundwater samples were analyzed for VOCs by EPA Method 8260B, total and dissolved metals by EPA Method 6010, and hexavalent chromium by EPA Method 7196A. Sampling was completed using low flow sampling procedures in accordance with EPA Region II low-flow protocols, dated March 1998. Groundwater samples

could not be located.

May 2008

were analyzed for VOC's, total metals, dissolved metals, and hexavalent chromium. Purge water was discharged to the ground surface away from the well. Purge water from MW-02 and MW-09 was transported to and discharged onto the site. All sampling equipment (i.e. polyethylene tubing) was dedicated to each monitoring well; therefore, no decontamination was completed.

Field measurements of water quality parameters, including temperature, pH, conductivity, and turbidity, were monitored and recorded during purging. Water quality parameters were measured at three minute intervals using a Horiba® Model U-22 water quality meter. The monitoring well was purged until all parameters stabilized (Appendix D). The water quality meter was calibrated in accordance with the manufacturer's specifications prior to use. Water quality parameters were recorded on the Field Record of Gauging, Purging, and Sampling forms provided in Appendix D. Purged groundwater did not exhibit evidence of contamination. Laboratory analyses performed on the groundwater samples are outlined in the following table:

SUMMAR	SUMMARY OF LABORATORY ANALYSES FOR GROUNDWATER SAMPLES (NOVEMBER 2007)						
			A	Analysis			
				Dissolved			
Well ID	Sample ID	VOC	Total Metals	Metals	Cr +6		
MW-01	MW-01	NA	NA	NA	NA		
MW-02	MW-02	X	X	X	X		
MW-03	MW-03	NA	NA	NA	NA		
MW-04	MW-04	NA	NA	NA	NA		
MW-05	MW-05	NA	NA	NA	NA		
MW-06	MW-06	X	X	X	X		
MW-07	MW-07	X	X	X	X		
MW-08	MW-08	X	X	X	X		
MW-09	MW-09	X	X	X	X		
Duplicate	From MW-07	X	X	X	X		
Note: NA =	Not analyzed.						

3.3.5 Groundwater Profiling

Groundwater quality at the site was additionally assessed by vertically profiling the groundwater column at two locations. At each location, a temporary sampling point was installed via direct-push methods to obtain groundwater samples from discrete sampling intervals. The location of the temporary sampling points is shown on Figure 5. Groundwater samples were collected at 10 ft intervals from the groundwater interface (approximately 20 ft below ground surface [bgs]) to an approximate depth of 70 ft bgs. Groundwater samples were analyzed for VOCs by EPA Method 8260B. Additionally, groundwater samples that were collected from the deepest sampling interval at each profile point were analyzed for metals by EPA Method ILM05.0 and hexavalent chromium by EPA Method 7196A. Direct-push groundwater sampling was accomplished using a Geoprobe Model 6610DT track rig. This method involved the use of a Screen Point 15 Groundwater Sampler which was pushed under hydraulic pressure to the selected sample depth without boring a

May 2008

pilot hole. Direct-push groundwater profiling locations were backfilled as necessary with bentonite chips to seal the borehole. Sampling information is provided in the following table:

SUMMARY OF LABORATORY ANALYSES FOR SAMPLES FROM							
TEMPORARY GROUNDWATER PROFILING POINTS (MARCH 2007)							
Location	Sampling Interval						
ID	Sample ID	(ft bgs)	Analysis				
GP-1	1-52-189-GP-01-19-23	19 – 23	VOC				
	1-52-189-GP-01-29-33	29 - 33	VOC				
	1-52-189-GP-01-39-43	39 - 43	VOC				
	1-52-189-GP-01-49-53	49 - 53	VOC				
	1-52-189-GP-01-59-63	59 – 63	VOC				
	1-52-189-GP-01-69-73	69 - 73	VOC, metals, Cr +6				
GP-2	1-52-189-GP-02-19-23	19 - 23	VOC				
	1-52-189-GP-02-29-33	29 - 33	VOC				
	1-52-189-GP-02-39-43	39 - 43	VOC				
	1-52-189-GP-02-49-53	49 - 53	VOC				
	1-52-189-GP-02-59-63	59 – 63	VOC				
	1-52-189-GP-02-69-73	69 - 73	VOC, metals, Cr +6				
	1-52-189-GP-02-79-83*	69-73	VOC, metals, Cr ⁺⁶				
* 1-52-189-0	GP-02-79-83 is the ID assig	ned to the duplicate s	sample which was				

^{* 1-52-189-}GP-02-79-83 is the ID assigned to the duplicate sample which was collected from 1-52-189-GP-02-69-73.

3.4 SOIL GAS VAPOR SAMPLING

On 27 November 2007 two soil vapor points were installed at the site, one beneath the slab foundation that remains from the building that was at the site (SV01) and one from the western property boundary which borders the adjacent residential properties (SV02) (Figure 5). Soil vapor points were installed using a 2-in. diameter hand soil sampler to the desired depth. Once the sampling depth was reached, the 6-in. stainless steel sampling screen was attached to a dedicated section of 0.25-in. diameter Teflon tubing and placed in the open bore hole. The borehole was then backfilled with glass beads to a minimum of 6 in. above the screened interval. Granular bentonite was then used to backfill to the ground surface; hydrating concurrently with placement (Appendix E). The soil vapor points were allowed to set for a minimum 24 hours before sample collection commenced

3.5 DECONTAMINATION PROCEDURES

Decontamination of equipment and personnel was performed for safety and health precautions, to avoid cross-contamination of samples subjected to chemical analysis, and to limit the migration of contaminants off-site and between work areas on the site.

Drilling and sampling equipment was initially decontaminated at the pre-designated decontamination area. Final decontamination of drill rigs was also conducted at the decontamination area prior to departing the site.

EA Project No.: 14368.06 Revision: FINAL Page 17 of 26

May 2008

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Equipment used to advance and sample borings (ie. macrocore and hand augers) were decontaminated prior to use and between each boring location. This equipment included the drill rig, drill rods, hollow-stem augers, and split-spoon samplers. Cleaning consisted of scraping and scrubbing to remove encrusted materials followed by a steam wash. Decontamination of equipment was conducted in accordance with Section 6 of the FAP and all decontamination fluids were managed in accordance with Section 7 of the FAP.

Decontamination procedures for reusable sampling equipment were completed in accordance with Section 6 of the FAP.

3.6 INVESTIGATIVE-DERIVED WASTE

Investigative-derived waste at the site was addressed in accordance with Section 7 of the FAP. Liquids generated during well development and purging and decontamination activities were discharged to an unpaved area on the site. Soils from drilling operations were disposed of on-site. Personal protective equipment, trash and debris was placed in a trash dumpster and disposed of by a local garbage hauler.

3.7 SITE SURVEYING

Site surveying was performed by YEC, Inc. of Valley Cottage, New York, a licensed New York State surveyor and included surveying of monitoring well locations, and dry wells where sediment samples were collected. Other sampling locations including recharge basin sediment samples and excavation pit soil samples were located by EA personnel using a Trimble GPS Pro XRS (a high precision global positioning system unit). Field data associated with surveying of the sampling locations is provided in Appendix F.

A detailed site plan utilizing recent aerial photography to depict general site features (i.e., buildings, roadways, utility poles, fences, addresses, etc.) within the vicinity of the site was developed. The base map was used to accurately plot all sampling locations including soil borings, monitoring wells, and all other sample locations.

EA Project No.: 14368.06 Revision: FINAL Page 18 of 26 May 2008

4. RESULTS

The following section presents the analytical results of the media sampled during the field investigation. Summary tables for the analytical data are provided in Tables 1 through 8. Copies of laboratory data (i.e., Form Is) for the various media will be provided as a separate submittal to the NYSDEC.

Laboratory data for soil samples were compared to the NYSDEC Part 375 unrestricted use soil cleanup objectives; if no objective was listed in Part 375, the results were compared to the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) No. 4046. Metals results were compared to the highest site background soil sample concentrations. Laboratory data for groundwater samples were compared to NYSDEC Ambient Water Quality Standards (AWQS) for Class GA waters.

4.1 ENVIRONMENTAL SAMPLES

Continents of Concern for this effort were established based on October 2000 sampling results. The focus of this site characterization report is on chromium, hexavalent chromium, TCA, MEK, and PCE. Samples were also analyzed for a number of metals, VOCs and SVOCs. Soil sample results for total chromium, tri-valent chromium, and hexavalent chromium were compared to Part 375 unrestricted use soil cleanup objectives. Part 375 states that the soil cleanup objective for the specific compound is considered to be met if the analysis for the total species of this contaminant is below the specific soil cleanup objective. In other words, if the analysis for total chromium is less than the concentration of one of the specific valences of chromium (trivalent [30 mg/kg] or hexavalent [1 mg/kg]) then the soil cleanup objective is met for that species. When evaluating the samples that were analyzed for total chromium alone, the TAGM soil cleanup objective (in this case the highest background concentration for chromium) was used.

The soil sample results for TCA, MEK, and PCE were compared to the Part 375 unrestricted use soil cleanup objectives of 0.68 mg/kg, 0.12 mg/kg, and 1.3 mg/kg respectively.

4.1.1 Background Soil Samples

Five background soil samples were collected and analyzed for metals using EPA Method 6010 to determine TAGM 4046 site background concentrations. The highest recorded concentration was used as the standard to compare all soil samples, with the exception of lead. The highest concentration of lead was recorded at a concentration of 860 ppm. When compared to other background samples (next highest background 44 ppm), unrestricted use (63 ppm), restricted use residential (400 ppm) and typical range for New York (10 to 50 ppm) the background sample of 860 ppm was significantly higher. This sample result was considered to be an anomaly and was disregarded. Table 1 summarizes the background soil sampling data.

EA Project No.: 14368.06 Revision: FINAL Page 19 of 26 May 2008

4.1.2 Soil Sampling from On-Site Soil Stockpiles

Five composite samples were collected from the soil stockpiled on-site. The samples were comprised of individual grab samples for a particular area of each stockpile. Grab samples were collected from each of the five sample areas for VOC analysis. Composite soil samples were collected from each of the five sample areas and analyzed for Toxicity Characteristic Leaching Procedure (TCLP), PCBs, SVOCs, metals (including hexavalent chromium), and Resource Conservation and Recovery Act characteristics (ignitability, reactivity, corrosivity, and moisture content). Each sample was collected from a depth of approximately 3 ft below the surface of the stockpile.

Analytical results for TCLP did not exhibit hazardous levels of contamination within the stockpile samples.

Concentrations of two SVOCs slightly exceeded the corresponding NYSDEC Part 375 guidance value (unrestricted use) for sample 1-52-189-SS-04E (benzo(b)fluoranthene, 1.2 mg/kg and indeno(1, 2, 3-cd)pyrene, 0.66 mg/kg). The Part 375 unrestricted soil cleanup objectives for these compounds are 1 mg/kg and 0.5 mg/kg respectively. None of the remaining results exceeded Part 375 or TAGM guidelines. A complete summary of analytical results for the soil stockpiles can be found in Table 2.

Concentrations of trivalent and hexavalent chromium exceeded the Part 375 unrestricted use soil cleanup objective of 30 mg/kg and 1 mg/kg respectively in two samples 1-52-189-SS-04E (34.6 mg/kg and 2 mg/kg) and 1-52-189-SS-04W (77.1 mg/kg and 4.9 mg/kg). No concentrations of other metals were detected over the TAGM cleanup objectives. These results indicate that there is a potential on-site source for chromium and hexavalent chromium. In addition, the results indicate that the bulk of the total chromium on site consists of the trivalent species of chromium.

4.1.3 Subsurface Soil Sampling at Monitoring Well Locations

Three soil boring locations (MW-06 through MW-08) were sampled from the interval immediately above the groundwater interface during installation of new monitoring wells. MW-09 was not sampled and sample SB09-10-12 is actually a duplicate sample collected from SB08-10-14.5. These samples were analyzed for VOCs, SVOCs, pesticides/PCBs, and metals. Additionally, potential impacts were observed at soil boring location MW-08 from 17.5 to 20 ft bgs. At the request of the NYSDEC, soils from this interval were also submitted for analysis for VOCs, SVOCs, Pesticides/PCBs, and metals.

None of the analytical results for subsurface soil samples were above NYSDEC Part 375 (unrestricted use) or TAGM guidelines for VOCs, SVOCs, pesticides, or PCBs.

Concentrations of iron ranged from 2,130 mg/kg (1-52-189-SB07) to 12,400 mg/kg (1-52-189-SB06). A complete summary of analytical results for subsurface soil can be found in Table 3.

EA Project No.: 14368.06 Revision: FINAL Page 20 of 26 May 2008

The concentrations of metals in on-site soil samples are consistent with the off-site background surface soil results.

4.1.4 Soil Sampling from Cesspool

At the request of the NYSDEC, a soil sample was collected from within the cesspool discovered during the January 2007 field event in the northeast corner of the site. The soil sample, 1-52-189-CP-01, was collected from 4-ft below the top of the pile just above a change in soil texture, and was analyzed for VOCs and metals. The bottom of the cesspool was not reached during sampling activities. A complete summary of analytical results for the cesspool sample can be found in Table 4.

None of the VOC results were above NYSDEC Part 375 (unrestricted use) or TAGM guidelines.

Total Chromium was reported in the sample at a concentration of 6.8 mg/kg; however, the value is below the corresponding TAGM guideline value of 15 mg/kg (site background). There is no evidence of on-site impacts to soil found in this structure.

4.1.5 Soil Sampling from Excavated Pit

At the request of NYSDEC, three soil samples were collected from the excavation pit observed in the northwest corner of the site. Soil samples were collected from the bottom of the pit approximately 9-10 in. below ground surface. Each sample was analyzed for VOCs and metals and compared to Part 375 and TAGM soil guidance values. A complete summary of analytical results for the excavated pit samples can be found in Table 4.

The concentration of methylene chloride (0.13 mg/kg) exceeded the NYSDEC Part 375 guideline for unrestricted use of 0.05 mg/kg for sample 1-52-189-PT02. No other VOCs exceeded Part 375 or TAGM guideline values for the pit samples.

Concentrations of total chromium exceeded the corresponding TAGM site background guideline of 15 mg/kg in excavation pit samples 1-52-189-PT-02 and 1-52-189-PT-03 at concentrations of 103 mg/kg and 17.3 mg/kg, respectively. The data from sample 1-52-189-PT-02 coupled with the data from the soil stockpiles (Section 4.1.2), suggest that the chromium concentration is potentially related to site activities. Concentrations of cadmium, copper, lead, nickel and zinc in sample 1-52-189-PT02 (6 mg/kg, 159 mg/kg, 142 mg/kg, 35 mg/kg, and 1130 mg/kg, respectively) exceeded the corresponding NYSDEC Part 375 guideline for unrestricted use and TAGM standards. Copper, lead, and zinc concentrations are above site background TAGM concentrations suggesting that their concentrations are potentially related to site activities.

Page 21 of 26 May 2008

4.1.6 Soil Sampling from Dry Wells

Soil samples were collected from six dry wells, identified as DW-01, DW-02, DW-07, DW-11, DW-12, and DW-14. Each sample was analyzed for VOCs and metals. A complete summary of analytical results for the dry well samples can be found in Table 4.

Concentrations of acetone were slightly above NYSDEC Part 375 guidelines of 0.05 mg/kg for unrestricted use for samples DW-02 (0.092 J mg/kg), DW-11 (0.16 J mg/kg), DW-12 (0.098 mg/kg), and DW-14 (0.088 mg/kg). No other VOCs exceeded Part 375 or TAGM guideline values for the soil samples.

Concentrations of total chromium in the soil samples, ranged from 12 mg/kg (1-52-189-DW01) to 104 mg/kg (1-52-189-DW02). The total chromium concentrations in five of the six samples (DW-02, DW-07, DW-11, DW-12, and DW-14) are above the site surface soil background concentration of 15 mg/kg. The five dry wells are located off-site and were impacted during the October 2000 event as indicated in Appendix A, and Figures A-2 and A-3A. The data would suggest that chromium levels within the dry wells are above background levels and is potentially due to the October 2000 event, which impacted these stormwater structures. The site background data and dry well data suggest that residual chromium contamination is present.

Concentrations of iron exceeded the corresponding TAGM value in sample 1-52-189-DW-02 at 25,200 mg/kg. Concentrations of several other metals (i.e., barium, cadmium, lead, copper, nickel, and zinc) exceeded the Part 375 guidelines at 1-52-189-DW02 and 1-52-189-DW11. Concentrations of copper were above the Part 375 and TAGM standards in sample 1-52-189-DW-07. These analytes are not prevalent in the on-site soil samples. Due to the nature and location of the dry wells, the origin of these exceedences may be a result of the October 2000 event or from another source located at an adjacent property or from vehicular traffic.

4.1.7 Soil Sampling from Recharge Basin

Seven soil samples were collected from locations within the recharge basin. Each sample was analyzed for VOCs, metals, and hexavalent chromium.

None of the analytical results for the soil samples exceeded NYSDEC Part 375 (unrestricted use) or TAGM guidelines for VOCs.

Total chromium exceeded the corresponding TAGM site background guideline of 15 mg/kg at sample locations 1-52-189-SED04 (19.6 mg/kg) and 1-52-189-SED07 (15.2 mg/kg). Hexavalent chromium was not detected above the sample reporting limit. Therefore, the tri-chromium values are equal to the total chromium values, which are below the NYCRR Part 375 (a) unrestricted use cleanup objectives of 30 mg/kg.

Page 22 of 26 May 2008

None of the other metals analyzed during this field effort were above either the applicable TAGM or Part 375 guidance values. A complete summary of analytical results for the recharge basin sediment samples can be found in Table 5.

4.1.8 Groundwater Monitoring Well Sampling

4.1.8.1 Groundwater Gauging

Two groundwater monitoring events were completed at AMW Materials testing site, the initial on 6-7 March 2007 and confirmatory samples on 27 November 2007. During the March sampling event, water elevations ranged from 33.05 ft AMSL at well MW-05 to 37.87 ft AMSL at well MW-09. During the November 2007 sampling event, water elevations ranged from 35.38 ft AMSL at well MW-05, to 40.90 ft AMSL at well MW-09. Groundwater flow direction is generally in a south, southeasterly direction. The hydraulic gradient for both events is approximately 0.0025. Potentionmetric surface maps are included as Figures 8A and 8B.

4.1.8.2 March 2007 Sampling Event

Groundwater samples were collected from the newly installed monitoring wells (MW-06 through MW-09) and existing monitoring wells (MW-02 through MW-05) from 6 to 7 March 2007. The onsite monitoring wells (MW-06, MW-07, and MW-08) were analyzed for VOCs, SVOCs, pesticides/PCBs, metals, and hexavalent chromium. Wells MW-02 and MW-04 were analyzed for VOCs, metals, and hexavalent chromium. Wells MW-03, MW-05, and MW-09 were analyzed for VOCs and metals. A complete summary of analytical results for the groundwater monitoring well samples can be found in Table 6A.

The concentration of one VOC (tetrachloroethene) exceeded the NYSDEC Ambient Water Quality Standard AWQS of 5 μ g/L in wells MW-06 (29 μ g/L), MW-08 (64 μ g/L), and MW-10 (25 μ g/L) (MW-10 is the duplicate sample collected from MW-06). Concentrations of one SVOC (bis[2-Ethylhexyl]phthalate) slightly exceeded Ambient Water Quality Standard (AWQS) of 5 μ g/L guidelines at MW-06 and MW-10. The data suggests that the VOC impacts are from on-site sources and appear to be localized.

During the March 2007 sampling event, monitoring wells were purged using disposable polyethylene bailers. As a result of purging with bailers, the turbidity of the some of the samples exceeded the 50 NTU threshold. Acidification of turbid groundwater samples during sampling may, at times, create false positives or erroneously elevated concentrations of certain metals (e.g. iron, aluminum, magnesium, chromium, etc.).

Concentrations of total chromium exceeded the NYSDEC AWQS guideline of 50 μ g/l in wells MW-02 (88.8 μ g/l), MW-06 (115 μ g/l), MW-07 (93.8 μ g/l), and MW-08 (260 μ g/l) (wells MW-06, MW-07 and MW-08 are on-site wells). Hexavalent chromium was detected in MW-07 (69 μ g/l) and MW-08 (59 μ g/l), above the corresponding AWQS guideline for hexavalent chromium of 50 μ g/l. The highest total chromium concentrations were detected at monitoring wells MW-02,

Page 23 of 26 May 2008

MW-06, MW-07, and MW-08, which are located on site or near dry wells that were impacted by runoff water from the October 2000 event.

Concentrations of aluminum and iron exceeded the AWQS guideline (100 µg/l and 300 µg/l respectively) in each groundwater sample. Manganese was detected in wells MW-02, MW-06, MW-07, MW-08 and MW-09 over the AWQS guidelines (300 µg/l). Concentrations of sodium were detected over the AWQS guidelines (20,000 µg/l) in wells MW-03, MW-04 and MW-05. Iron, aluminum, and magnesium concentrations were widespread and appear to be naturally occurring. Concentrations of sodium seem to be limited to the recharge basin. Their location adjacent to roadways suggests that road salt may be contributing to impacts in this area.

Concentrations of lead also exceeded the AWOS guideline of 25 µg/l in MW-08 (35 J µg/L) and MW-09 (29.6J µg/L). MW-08 is an on-site well and MW-09 is an upgradient off-site well. This suggests that there are two potential low-level sources of lead in this area.

The low-level concentrations of chromium appear to be associated with on-site activities. The data suggests that groundwater impacts are localized to the site. Wells MW-06, MW-07, and MW-08 are on-site and have the highest concentrations of total chromium. The on-site chromium concentrations appear to be affected by turbidity (generally the concentrations increased as turbidity increases).

No PCBs were detected in any of the monitoring well groundwater samples. The concentration of one pesticide (chlordane) exceeded the corresponding AWQS guideline at MW-07. Chlordane is a pesticide that has been utilized in crops, lawns, gardens, and also as an ant killer. Chlordane is not a chemical typically utilized in the metal plating industry and is most likely originating from offsite.

Upon reviewing the data, it was determined that the elevated concentrations of metals, could be in part related to the high turbidity readings observed during sample collection. As a result of the high readings, it was determined that a second round of groundwater samples would be collected using low-flow sampling procedures to minimize turbidity. The second round of sampling was completed in November 2007 and is discussed below.

4.1.8.3 Groundwater Sampling – November 2007

Confirmatory groundwater samples were collected on 28 November 2007 from groundwater wells MW-02, MW-06, MW-07, MW-08 and MW-09. Sampling was completed using low-flow sampling procedures in accordance with EPA Region II low flow protocols, dated March 1998. Groundwater samples were analyzed for VOCs, total metals, dissolved metals and hexavalent chromium. A complete summary of analytical results for the groundwater monitoring well samples can be found in Table 6B.

The concentration of one VOC (tetrachloroethene) exceeded the NYSDEC AWQS guideline of 5μg/L in well MW-08 (14 μg/L). The change in concentration may be the results of seasonal

EA Project No.: 14368.06 Revision: FINAL Page 24 of 26 May 2008

groundwater fluctuations, which changed approximately 2 ft from the March and November sampling events.

Total aluminum was detected in MW-06 (230 µg/L) over the NYSDEC AWQS of 100 µg/L.

During the March 2007 event concentrations of total chromium exceeded the NYSDEC AWQS in wells MW-02, MW-06, MW-07, and MW-08. During the November 2007 sampling event, concentrations of total chromium ranged from a low of 12 μ g/L in MW-06 to a high of 47 μ g/L in MW-07, all below the NYSDEC AWQS standard of 50 μ g/L.

Concentrations of hexavalent chromium exceeded the NYSDEC AWQS guideline of 50 μ g/L in well MW-07 (53 μ g/L). Hexavalent chromium was detected below the AWQS guideline in well MW-08 (47 μ g/L), and the duplicate sample collected from MW-7 (44 μ g/L). The hexavalent chromium concentrations were similar to those in the March 2007 sampling event. Total chromium was detected in each well with the exception of MW-09, ranging from 11 μ g/L in MW-06 to 48 μ g/L in MW-08. The concentrations are below the NYSDEC AWQS standard of 50 μ g/L.

As previously discussed, acidification of turbid groundwater samples during sampling may, at times, create false positives or erroneously elevated concentrations of certain metals (e.g. iron, aluminum, magnesium, chromium, etc).

During the March 2007 sampling event the turbidity readings were generally above the 50 NTU threshold. Concentrations of several metals (Aluminum, total chromium, hexavalent chromium, iron, lead, manganese, and sodium) were detected above their respective AWQS standard. When compared to the November 2007 sampling event, which utilized low-flow sampling procedures, (resulting in turbidity readings below 50 NTU), only two analytes were detected above AWQS standards (aluminum in two samples and hexavalent chromium in one sample). No exceedances of AWQS standards for dissolved metals were observed in the November 2007 filtered samples, as presented in Table 6B.

4.1.9 Groundwater Profiling

Groundwater quality at the site was further assessed by vertically profiling the groundwater column at two locations. GP-01 was completed northeast and upgradient of the site in the vicinity of multiple dry well structures that were impacted during the October 2000 event. GP-02 was completed south of and dowgradient from the site (Figure 5). At each location, a temporary sampling point was installed to obtain groundwater samples from discrete sampling intervals. Groundwater samples were collected every 10 ft from the groundwater interface (approximately 20 ft bgs) to an approximate depth of 70 ft bgs. Groundwater samples were analyzed for VOCs. Additionally, groundwater samples that were collected from the deepest sampling interval at each profile point were analyzed for metals and hexavalent chromium. The groundwater samples were compared to NYSDEC AWQS for Class GA waters. A complete summary of analytical results for the groundwater profiling samples can be found in Table 7.

EA Project No.: 14368.06 Revision: FINAL Page 25 of 26

May 2008

EA Engineering, P.C. and Its Affiliate EA Science and Technology

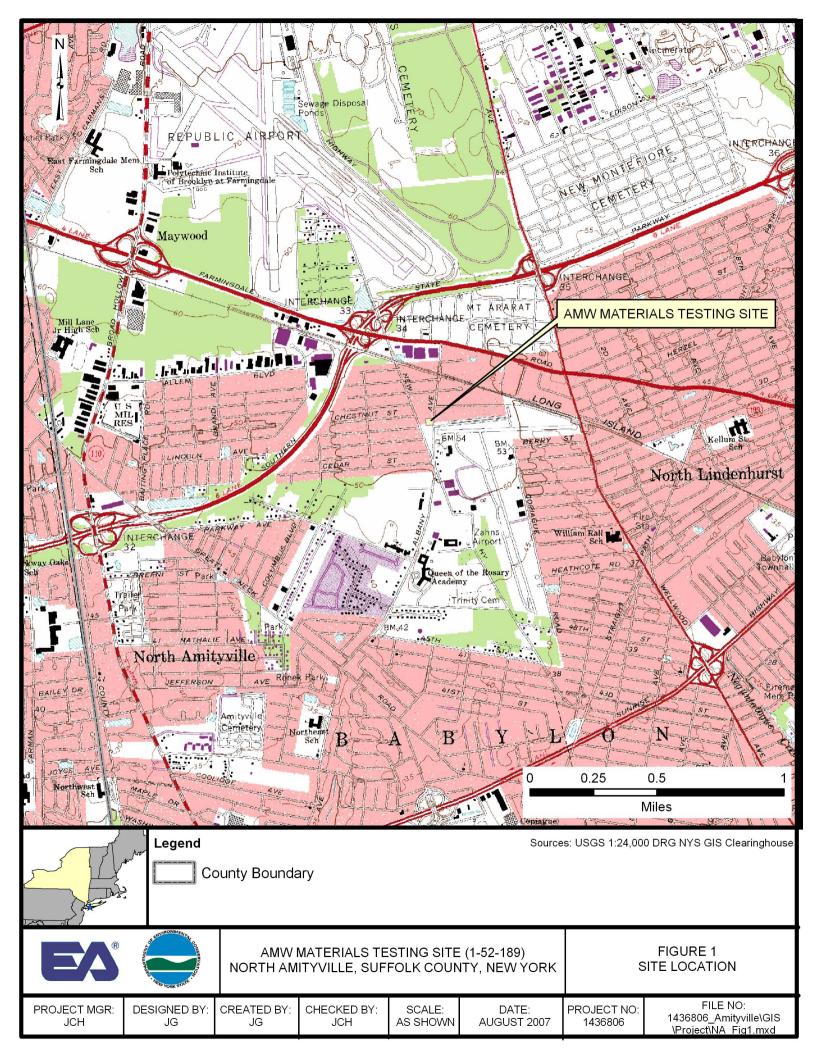
Concentrations of four VOCs (1,1-dichloroethane, cis-1,2-dichloroethene, tetrachloroethene, and methyl-t-butyl ether) exceeded AWQS guidelines in the groundwater sample collected from 69 to 73 ft bgs at GP-01. None of the VOCs detected at GP-02 exceeded the AWQS guidelines. This suggests a potential upgradient or crossgradient source of VOCs.

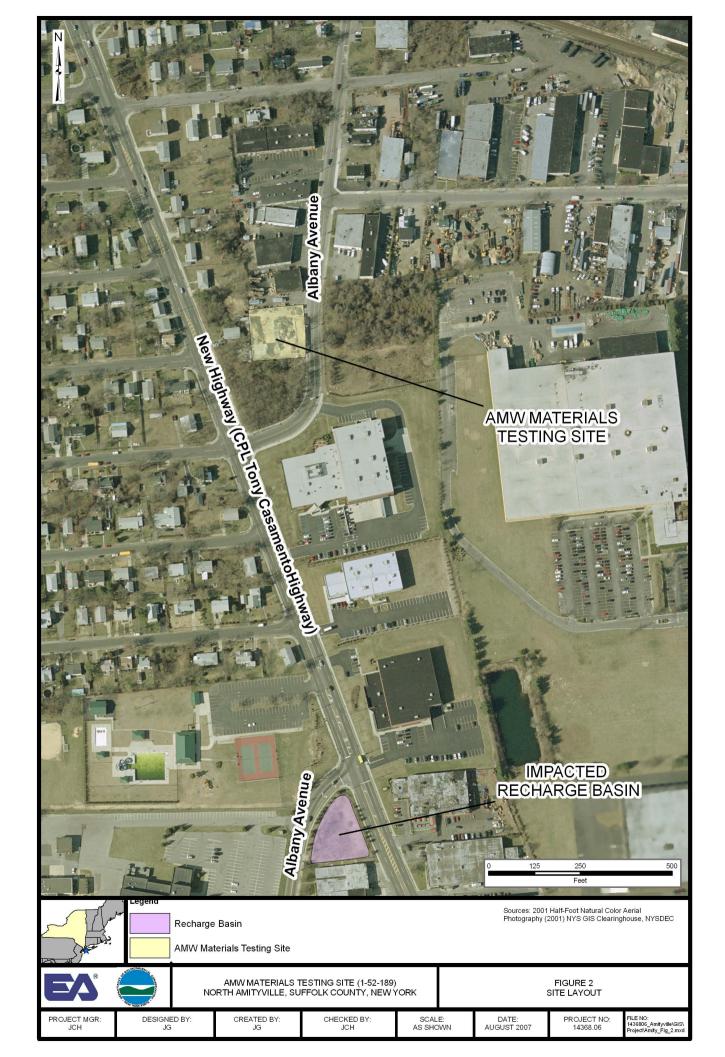
Concentrations of total chromium exceeded AWQS standards ($50 \mu g/l$) in samples obtained from both the off-site geoprobe location GP-01 ($1,390 J \mu g/L$) and the on-site location GP-02 ($385 \mu g/L$). The concentration of hexavalent chromium detected in GP-01 (69-73 ft bgs) ($63 \mu g/L$) also exceeded the corresponding AWQS standard of $50 \mu g/l$. Hexavalent chromium was not detected in the sample obtained from on-site GP-02. This suggests that there is a potential off-site source of hexavalent chromium. Several metals including aluminum, antimony, copper, iron, lead, manganese, nickel, selenium, sodium, and zinc were detected in upgradient sample point GP-01 over their individual AWQS guidelines. Aluminum, iron, and manganese were detected in on-site sample point GP-02 at concentrations above AWQS guidelines.

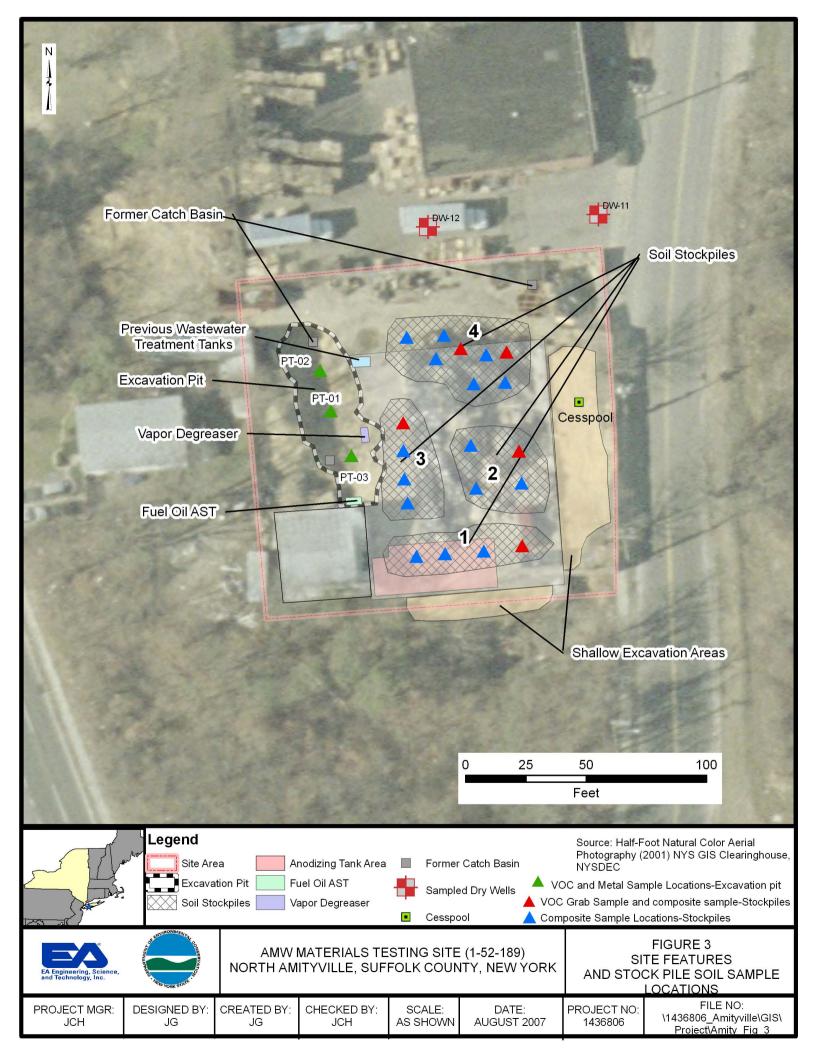
The concentration of the metals most likely was impacted by high turbidity levels in these sample points (999 NTU at GP-1 and 999 NTU at GP-2). The total chromium concentrations were an order of magnitude above those detected in the on-site wells during the March 2007 sampling event. However, based on the limited data set (two points) and the lack of filtered analysis, the overall effect of turbidity on these samples is difficult to determine.

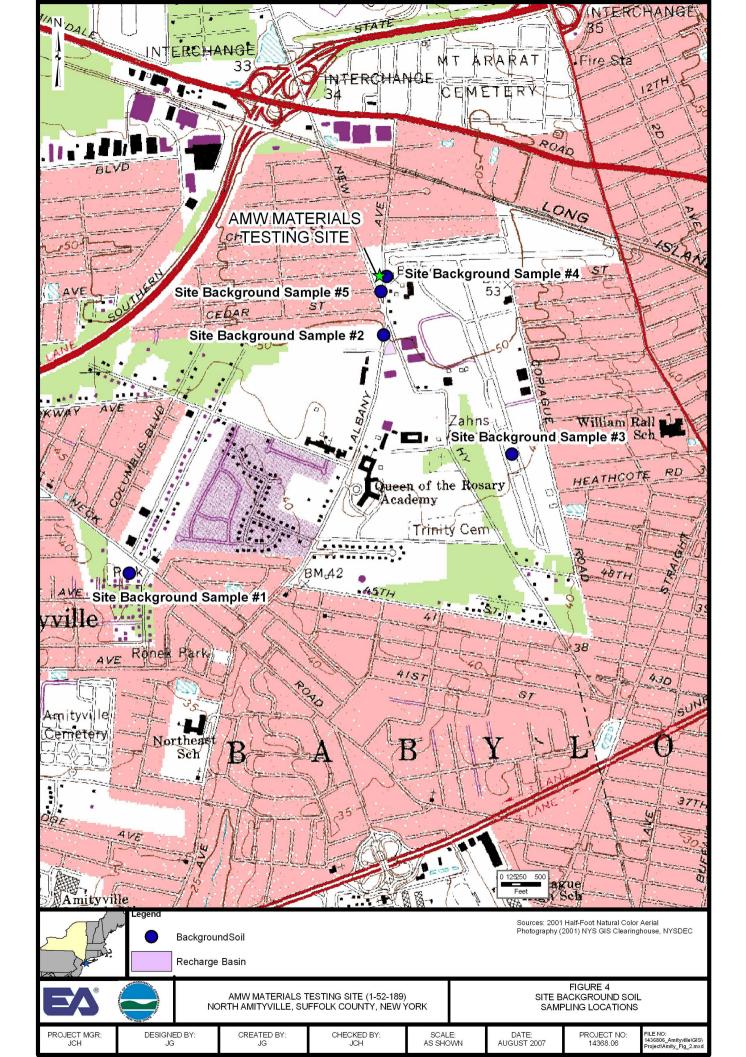
4.1.10 Soil Vapor Sampling

On 28 November 2007 two soil gas, one ambient air, and one duplicate (SV-01) were sampled over a 2 hour period and sent to the laboratory for analysis of VOCs by EPA Method TO-15. Soil vapor samples were collected in accordance with New York State Department of Health protocols provided in the Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Soil vapor sampling locations are shown on Figure 5. Analytical data is summarized in Table 8.


EA Project No.: 14368.06 Revision: FINAL


EA Engineering, P.C. and Its Affiliate EA Science and Technology


Page 26 of 26 May 2008


5. DATA SUMMARY AND USABILITY REPORT

A NYSDEC-approved independent qualified data validator, Chemworld Environmental, Inc., reviewed all the analytical laboratory data for this Work Assignment collected in January, March, and November 2007. In addition, Chemworld conducted a usability analysis and developed a Data Usability Summary Report (DUSR), which was submitted to the NYSDEC as a separate deliverable. The DUSR determined that this data is usable and should not be rejected or further qualified.

Groundwater Profile Point

Monitoring Well/Soil Boring

AMW MATERIALS TESTING SITE (1-52-189) NORTH AMITYVILLE, SUFFOLK COUNTY, NEW YORK

FIGURE 5 SOIL BORING, MONITORING WELL GROUNDWATER PROFILE AND SOIL VAPOR LOCATIONS

PROJECT MGR: JCH

DESIGNED BY:

CREATED BY:

CHECKED BY: JCH

SCALE: AS SHOWN

DATE: AUGUST 2007

Soil Vapor Sample Location

PROJECT NO: 1436806

FILE NO: \1436806_Amityville\GIS\ Project\Amity_Fig_4.mxd

Dry Well

AMW Materials Testing Site

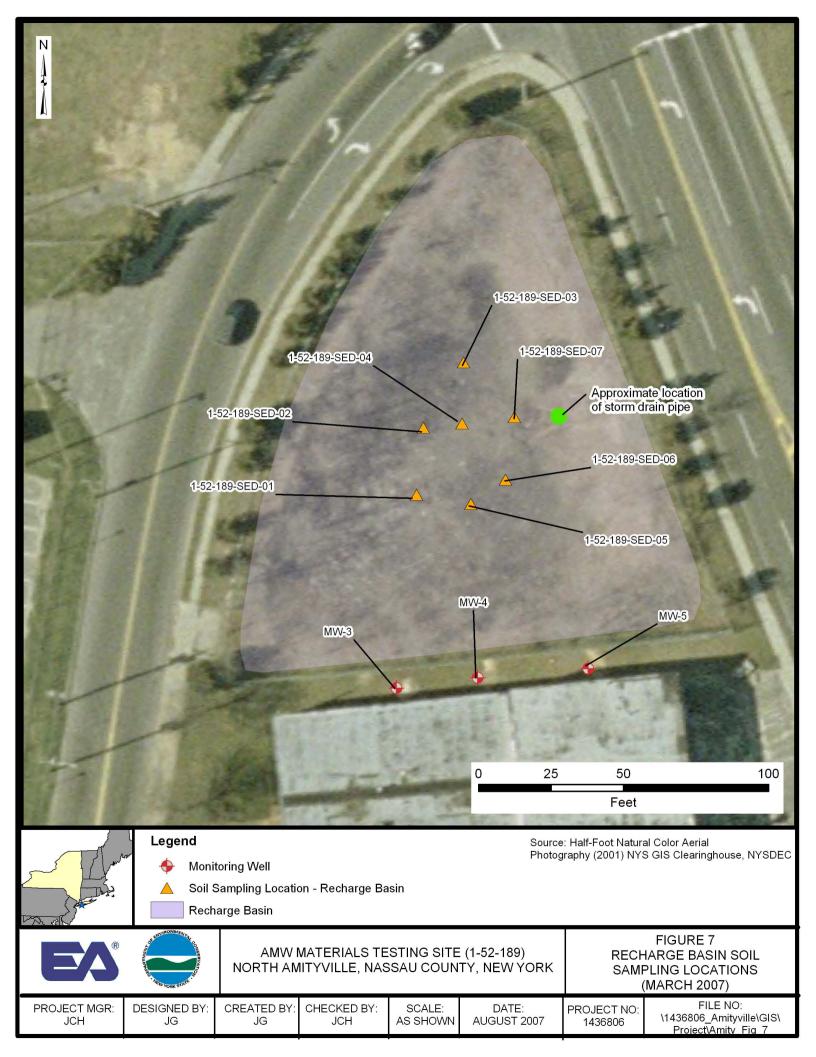
Photography (2001) NYS GIS Clearinghouse, NYSDEC

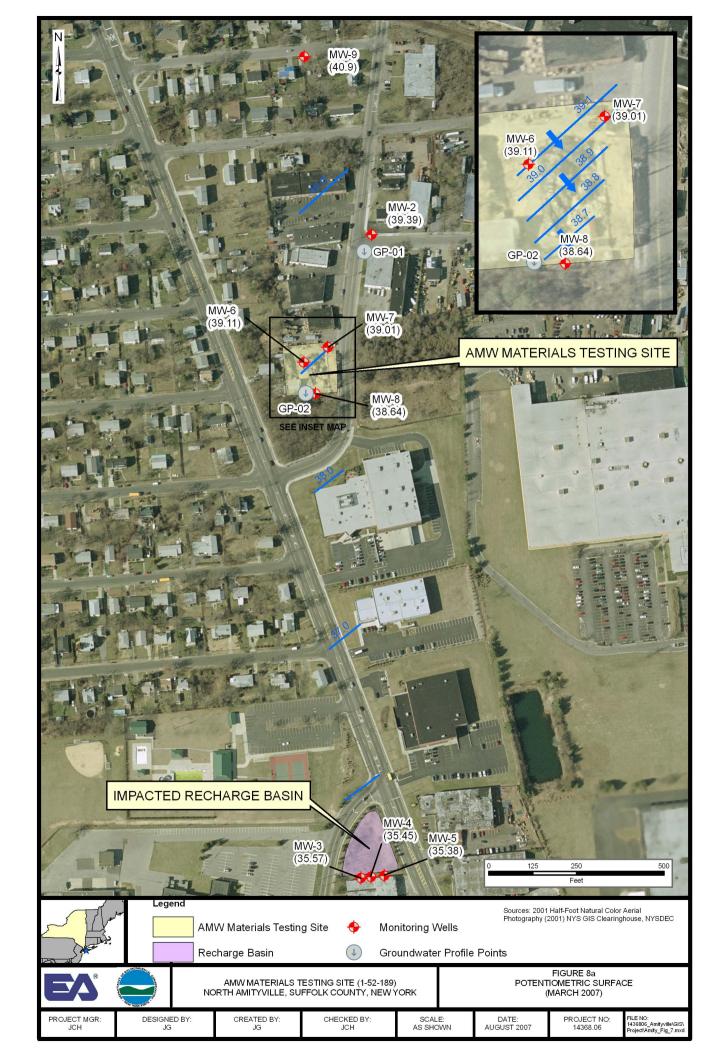
AMW MATERIALS TESTING SITE (1-52-189) NORTH AMITYVILLE, SUFFOLK COUNTY, NEW YORK

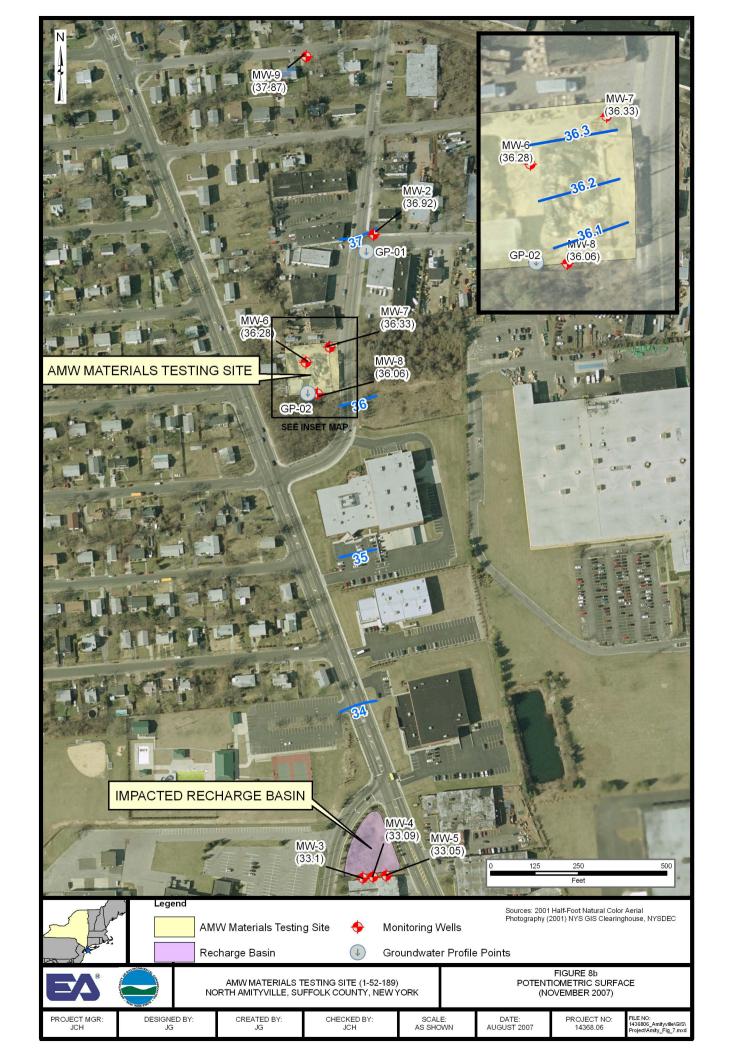
FIGURE 6 DRY WELL SOIL SAMPLING LOCATIONS (MARCH 2007)

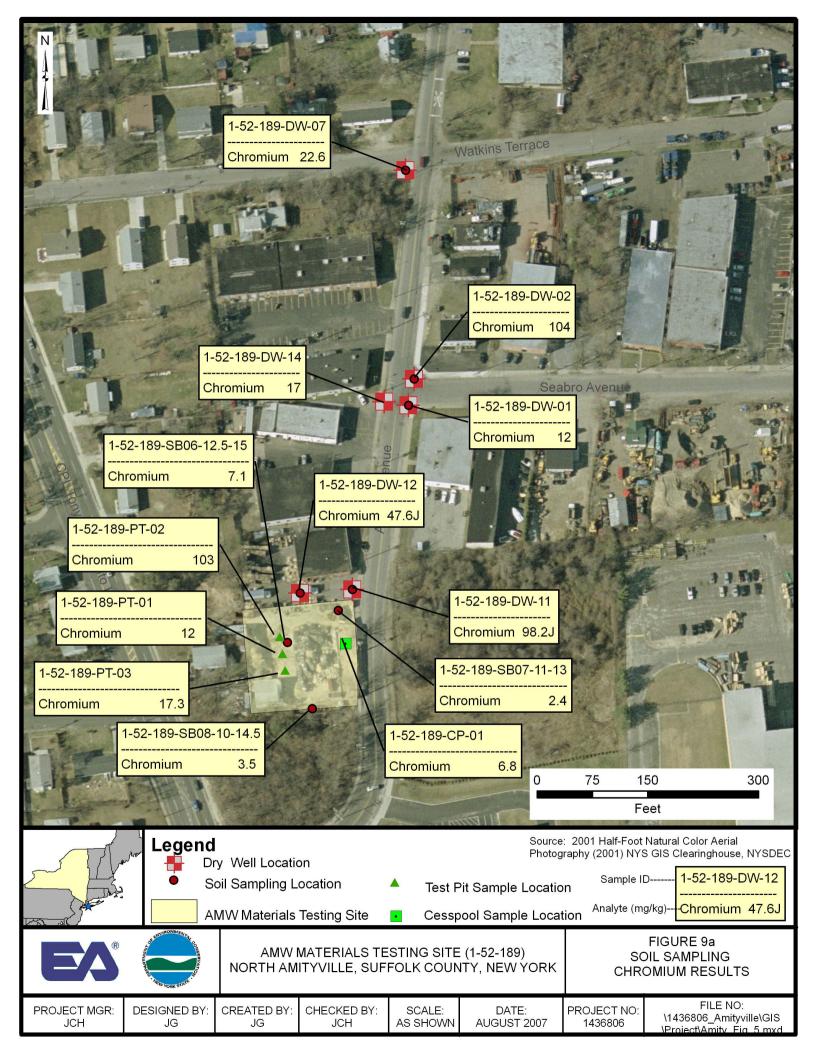
PROJECT MGR: JCH

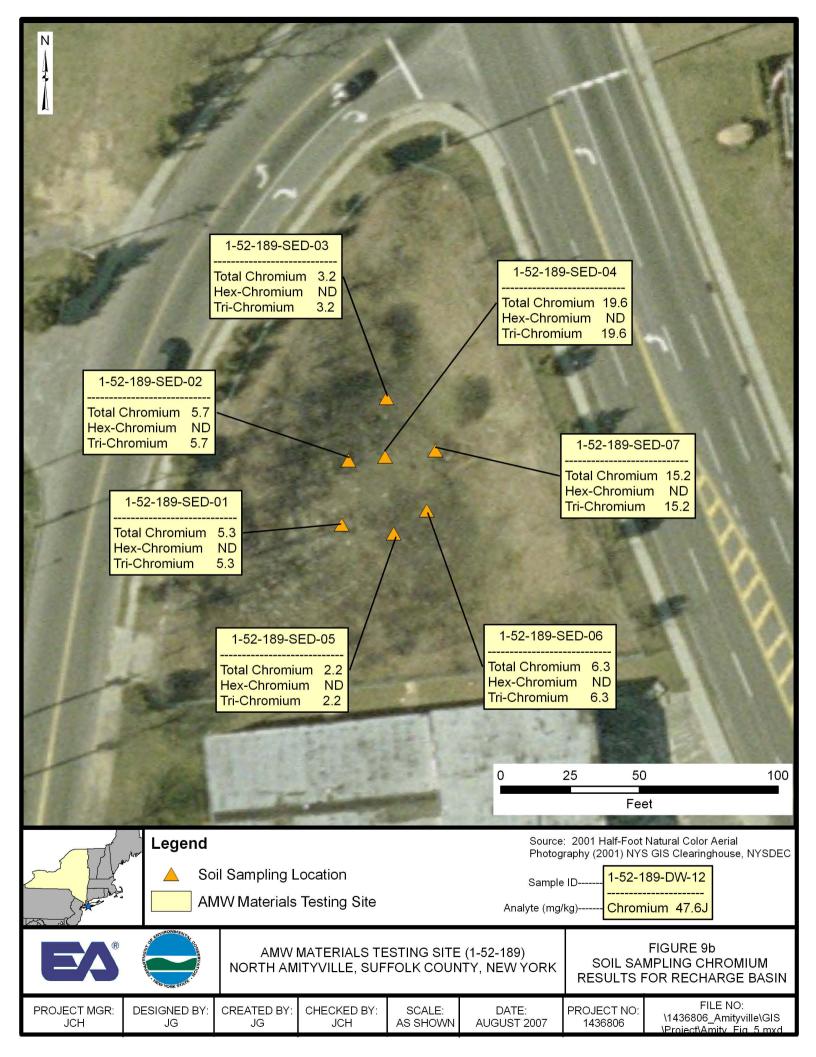
DESIGNED BY: JG

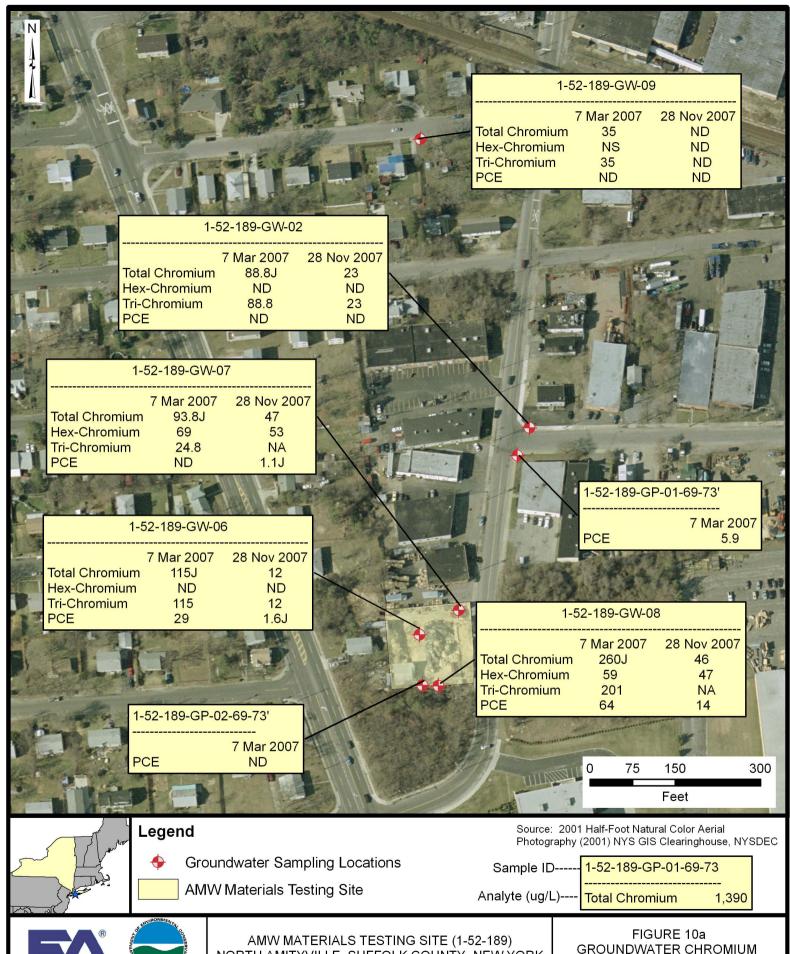

CREATED BY: JG

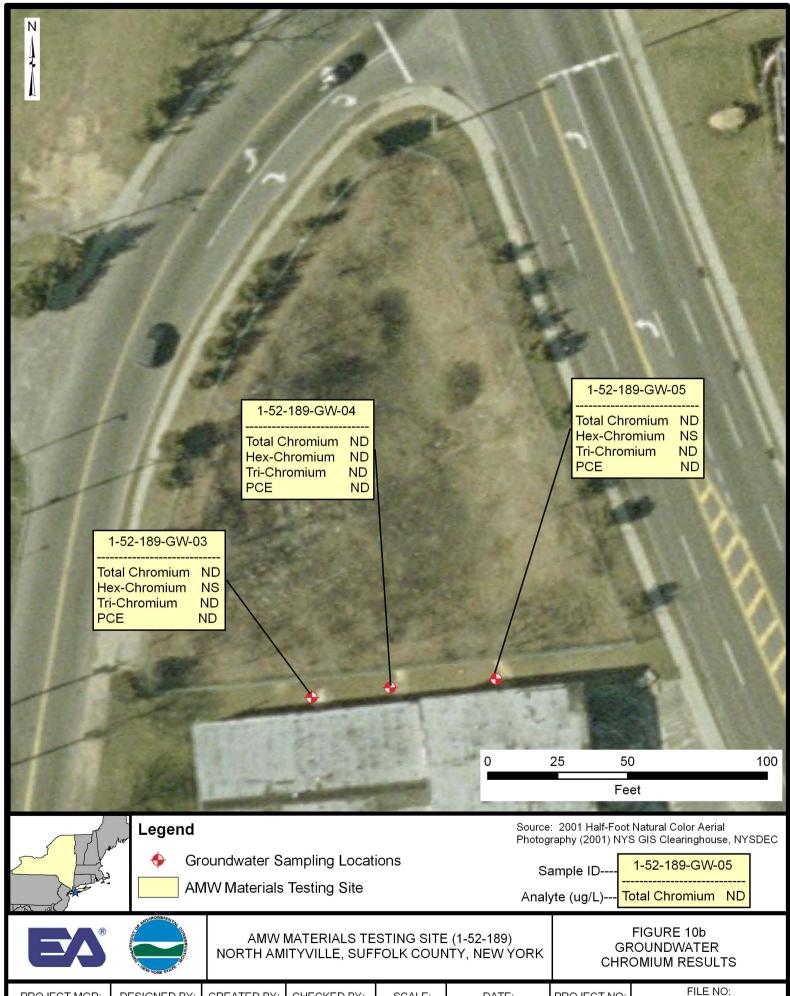

CHECKED BY: JCH


SCALE: AS SHOWN


DATE: AUGUST 2007 PROJECT NO: 1436806


FILE NO: \1436806_Amityville\GIS \Project\Amity Fig 5.mxd





NORTH AMITYVILLE, SUFFOLK COUNTY, NEW YORK

GROUNDWATER CHROMIUM AND PCE RESULTS

FILE NO: PROJECT MGR: DESIGNED BY: CREATED BY: CHECKED BY: SCALE: PROJECT NO: DATE: \1436806_Amityville\GIS AS SHOWN AUGUST 2007 **JCH** JG **JCH** 1436806 JG \Project\Amity_Fig_5.mxd

FILE NO: PROJECT MGR: DESIGNED BY: CREATED BY: CHECKED BY: SCALE: PROJECT NO: DATE: \1436806_Amityville\GIS JCH AS SHOWN AUGUST 2007 1436806 **JCH** JG JG \Project\Amity Fig 5.mxd

LABORARTORY ANALYTICAL RESULTS FOR SITE BACKGROUND SOIL SAMPLES AMW MATERIALS TESTING NORTH AMITYVILLE, NEW YORK

SITE NO. 1-52-189

Parameter List	Background Soil 1				Background Soil 5
		EPA METHOD	6010B/7471A (mg/	Kg)	
Mercury (a)	0.55	0.09 U	0.099 U	0.098 U	0.1 U
Aluminum	5200	4600	4100	6400	10000
Antimony	2.2 U	2.2 U	2.4 U	24	2.4 U
Arsenic	2.9	2.7	4.1	5.1	4.2
Barium	22	17	17	290	29
Beryllium	0.67 U	0.65 U	0.71 U	0.71 U	0.73 U
Cadmium	0.67 U	0.65 U	0.71 U	0.71 U	0.73 U
Calcium	4800	1100 U	1200 U	1200 U	1800
Chromium	7.7	6.7	12	15	14
Cobalt	2.8 U	2.7 U	3 U	2.9 U	3 U
Copper	11	9.6	16	35	51
Iron	7300	7000	7000	18000	13000
Lead	33	35	32	860 ^(B)	44
Magnesium	3000	780	630	590 U	1400
Manganese	70	110	66	77	83
Nickel	5.6 U	5.4 U	6 U	16	6.9
Potassium	560 U	540 U	600 U	590 U	610 U
Selenium	2 U	1.9 U	2.1 U	2.1 U	2.2 U
Silver	1.7 U	1.6 U	1.8 U	1.8 U	1.8 U
Sodium	280 U	270 U	300 U	290 U	300 U
Thallium	1.3 U	1.3 U	1.4 U	1.4 U	1.5 U
Vanadium	14	11	12	18	20
Zinc	99	34	44	140	68

NOTE: EPA = Environmental Protection Agency

NYSDEC = New State Department of Environmental Conservation

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

(a) = Analyzed by EPA Method 7471A

(B) = Sample result is order of magnitude higher then other background samples for lead. This sample was considered an anomaly, and therefore not used as a background standards.

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc. Only parameters that had at least one detection from the data set are shown.

Bold indicates value to be used as TAGM 4046 soil cleanup objective in other soil summary tables.

TABLE 2 LABORATORY ANALYTICAL RESULTS FOR ON-SITE SOIL STOCKPILES (23 JANUARY 2007) AMW MATERIALS TESTING NORTH AMITVILLE, NEW YORK SITE NO. 1-52-189

Parameter List	1-52-189-SS-01	1-52-189-SS-02	1-52-189-SS-03	1-52-189-SS-04E	1-52-189-SS-04W	NYCRR Part 375 Unrestricted Use Cleanup Objectives	TAGM 4046 soil cleanup objectives
		Target Compour	d List (TCL) by EP	A Method 8260B (m	g/kg)		
Acetone	0.025 J	0.019 J	0.023 J	0.024 J	0.023 J	0.05	
Tetrachloroethene	0.0053 U	0.002 J	0.0052 U	0.0012 J	0.0053 U	0.7	
1,1,2-trichloro-1,2,2-trifluoroethane	0.0029 J	0.0037 J	0.0042 J	0.0026 J	0.0053 U	-	6
	•	Target Compour	d List (TCL) by EP	A Method 8270C (m	g/kg)		
Anthracene	0.35 U		0.35 U	0.089 J	0.047 J	100	
Benzo[a]anthracene	0.35 U	0.35 U	0.35 U	0.61	0.37	1	
Dibenzo[a,h]anthracene	0.35 U		0.35 U	0.19 J	0.12 J	0.33	
Chrysene	0.35 U	0.35 U	0.35 U	0.69	0.43	1	
Benzo[b]fluoranthene	0.35 U	0.047 J	0.053 J	1.2	0.78	1	
Benzo[k]fluoranthene	0.35 U	0.35 U	0.35 U	0.35 J	0.21 J	0.8	
Fluoranthene	0.35 U	0.048 J	0.05 J	0.92	0.60	100	
Benzo[g.h.i]pervlene	0.35 U		0.041 J	0.85	0.54	100	
Phenanthrene	0.35 U		0.35 U	0.19 J	0.19 J	100	
Bis(2-Ethylhexyl)phthalate	0.35 U		0.35 U	0.15 J	0.15 J		50
	0.35 U		0.33 U	0.11 3	0.16 J	1	30
Benzo[a]pyrene		0.000	0.000	0.0.	0.00		
Indeno[1,2,3-cd]pyrene	0.35 U		0.35 U	0.66	0.45	0.5	
Pyrene	0.35 U	0.0.0	0.048 J	0.94	0.61	100	
		Target Compound	List (TCL) by EPA	Method ILM05.2 (r	ng/kg)		
Aluminum	3,770 J	3,340 J	2,850 J	3,200 J	3,050 J	-	10000*
Antimony	6.4 U	6 U	6.2 U	1.6 J	0.81 J	-	24*
Barium	14.1 J		9 J	10.2 J	13.6 J	350	290*
Bervllium	0.21 J		0.15 J	0.16 J	0.18 J	7.2	0.16
Cadmium	0.3 J	0.10	0.32 J	0.81	1.3	2.5	1
Calcium	1.040	816	1,000	1.230	1.960	-	4.800*
Chromium	1,040	15	1,000	36.5	82	-	15*
							15**
Hex-Chromium ^(a)	1.1 U		1.0 U	2.0	4.9	1	
Tri-Chromium	16	15	16	34.6	77.1	30	
Cobalt	1.5 J	1.4 J	1.3 J	1.8 J	1.5 J	-	30
Copper	6.3	5.5	5.3	8.1	14.5	50	51*
Iron	5,410	6,050	3,870	5,290	5,130	-	18000*
Lead	6 J	6 J	4.5 J	10.6 J	28.7 J	63	44*
Magnesium	861	681	853	1.000	1,160	-	3.000*
Manganese	107	96	69	91.7	81	1,600	110*
Nickel	4.4	4.3	3.5 J	5	6	30	16*
Potassium	239 J		178 J	173 J	219 J	-	NS
Selenium	239 J		3.6 U	0.51 J	3.7 U	4	2
			3.6 U		3./ U	2	NS 2
Silver				0.00	21.4 *		
Sodium	23.9 J		20.5 J	20.1 J	31.4 J	-	NS
Thallium	2.7 U		2.6 U	2.6 U	2.6 U	-	NS
Vanadium	8	7	6	7.1	8	-	150
Zinc	14.2	15	11	23.8	37	109	140*
		Target Com	pound List (TCL) by	EPA Method 8081	A		
Chlordane	0.0053 U	0.013	0.0052 U	0.012	0.021	0.094	

Chlordane

NOTE: EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulations

J = Estimated value.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

* = Site background concentration from Table 1.

(a) = Sample analyzed by EPA Method 7196 A

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYCRR Part 375 or TAGM 4046

TABLE 2 LABORATORY ANALYTICAL RESULTS FOR ON-SITE SOIL STOCKPILES (23 JANUARY 2007) AMW MATERIALS TESTING NORTH AMITVILLE, NEW YORK SITE NO. 1-52-189

Parameter List	1-52-189-SS-01	1-52-189-SS-02	1-52-189-SS-03	1-52-189-SS-04E	1-52-189-SS-04W	No Cleanup Objectives for Hazar Waste Characterization	dous
		RCRA	Hazardous Waste C	haracterization			
% Solids	94	95	96	96	95		
Cyanide (Reactive) mg/kg	ND	ND	ND	ND	ND		
Cr (Hexavalent) mg/kg	ND	ND	ND	2	4.9		
Ignitability	NEG	NEG	NEG	NEG	NEG		
pН	8.3	8.2	8	8.1	7.9		
Sulfide (Reactive) mg/kg	ND	ND	ND	ND	ND		

NOTE: EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulations

ND = Non-detect.
NEG = Negative.
RCRA = Resources Conservation and Recovery Act

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYCRR Part 375 or TAGM 4046.

Parameter List	1-52-189-SS-01	1-52-189-SS-02	1-52-189-SS-03	1-52-189-SS-04E	1-52-189-SS-04W	TCLP Criteria(a) (mg/L)			
	Toxic	ity Characteristic	Leaching Procedure	by EPA Method 82	60B (mg/L)				
2-Butanone (methyl ethyl ketone)	0.019	0.005 U	0.017	0.005 U	0.005 U	200			
Chloroform	0.0055	0.0054	0.0052	0.0055	0.006	6			
Tetrachloroethene	0.0011 J	0.0033 J	0.005 U	0.005 U	0.0013 J	0.7			
Toxicity Characteristic Leaching Procedure by EPA Method 6010B/7470A									
Barium (TCLP)	0.460 J	0.370 J	0.36 J	0.39 J	0.410 J	100			

IOTE: (a) Toxicity Characteristic Leaching Procedure (TCLP) Criteria provided by U.S. Environmental Protection Agency, amended 2006.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulations

= Estimated value.

= The analyte was analyzed for, but was not detected above the sample reporting limit.

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYCRR Part 375 or TAGM 4046.

LABORATORY ANALYITICAL RESULTS FOR SUBSURFACE SOIL SAMPLES COLLECTED AT NEW MONITORING WELL LOCATIONS (JANUARY 2007) AMW MATERIALS TESTING NORHT AMITYVILLE, NEW YORK SITE NO. 1-52-189

Parameter List	1-52-189-SB06-12.5-15 (1/25/2007)	1-52-189-SB07-11-13 (1/24/2007)	1-52-189-SB08-10-14.5 (1/25/2007)	1-52-189-SB08-17.5-20 (1/25/2007)	1-52-189-SB09-10-12 (1/25/2007)*	NYCRR Part 375 Unrestricted Use Cleanup Objectives	TAGM 4046 soil cleanup objectives
	<u> </u>		EPA Method 8260B (mg	/kg)			
Acetone	0.023 J	0.021 J	0.025 J	0.036 J	0.024 J	0.05	
1,1,2-trichloro-1,2,2-trifluoroethane	0.0032 J	0.0013 J	0.0021 J	0.0023 J	0.0036 J		6
			EPA Method ILM05.2 (m	ig/kg)			
Aluminum	1370 J	938 J	796 J	769 J	1720 J		10000**
Antimony	6.2 UN	6.1 UN	6.2 UN	7 UN	6.2 U		24**
Arsenic	1 U	1 U	1 U	1.2 U	1 U	13	5.1**
Barium	4.3 J	5.3 J	4.9 J	8.8 J	8.9 J	350	290**
Beryllium	0.36 J	0.11 J	0.099 J	0.082 J	0.19 J	7.2	0.16
Cadmium	0.36 Ј	0.044 J	0.047 J	0.048 J	0.52 U	2.5	1
Calcium	68.9 J	42.5 J	34.3 J	47 J	56.7 J		4,800**
Chromium	7.1	2.4	3.5	4.2	3.7		15**
Cobalt	0.7 J	0.68 J	0.78 J	0.95 J	1.2 J		30
Copper	24.8	2.9	4	2.9	5.5	50	51**
Iron	12400	2130	2600	2500	4280		18000**
Lead	1.5 J	1.2 J	0.93 J	3.5 J	1.1 J	63	44**
Magnesium	332 Ј	253 J	152 J	167 J	498 J		3,000**
Manganese	55.8	63.5	168	124	291	1600	110**
Mercury	0.1 U	0.1 U	0.1 U	0.12 U	0.1 U	0.18	0.55**
Nickel	3.5 J	1.5 J	1.9 J	1.6 J	3.2 J	30	16**
Potassium	208 J	237 J	77.3 J	75.2 J	163 J		NSB
Selenium	0.66 J	3.6 U	3.6 U	4.1 U	3.6 U	3.9	2
Silver	1 U	1 U	1 U	1.2 U	1 U	2	NSB
Sodium	14.7 J	15.7 J	12.7 J	17.6 J	10.8 J		NSB
Thallium	2.6 U	2.6 U	2.6 U	2.9 U	2.6 U		NSB
Vanadium	14.6	2.6 J	2.5 J	2.8 J	6.2		150
Zinc	9.8	5.6 J	4.6 J	5.9 J	8.1	109	140**

NOTE: EPA = Environmental Protection Agency

NYSDEC = New State Department of Environmental Conservation

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

J = Estimated value, concentration below laboratory reporting limit.

* = Duplicate soil sample collected from 1-52-189-SB08-10-14.5

** = Site background concentration from Table 1

NSB = No site background concentrations detected

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYSDEC Part 375 Cleanup Objectives (Unrestricted Use)

LABORATORY ANALYTICAL RESULTS FOR SAMPLES COLLECTED FROM DRY WELLS, EXCAVATED PIT, AND CESSPOOL (MARCH 2007)

AMW MATERIALS TESTING NORTH AMITVILLE, NEW YORK SITE NO. 1-52-189

Parameter List	1-52-189-DW-01 (3/5/2007)	1-52-189-DW-02 (3/5/2007)	1-52-189-DW-07 (3/7/2007)	1-52-189-DW-11 (3/6/2007)	1-52-189-DW-12 (3/6/2007)	NYCRR Part 375 Unrestricted Use Cleanup Objectives	TAGM 4046 soil cleanup objectives
		I	EPA Method 8260B	(mg/kg)			
Acetone	0.048 J	0.092 J	0.037 U	0.16 J	0.098	0.05	
2-Butanone (MEK)	0.013 U	0.046	0.0075 U	0.053 U	0.01 U	0.12	
Carbon disulfide	0.0018 J	0.0031 J	0.0075 U	0.0092 J	0.0068	-	2.7
Ethylbenzene	0.012	0.0021 U	0.0015 U	0.0053 U	0.0012 U	1	
Methylene chloride	0.0063 U	0.01 U	0.0075 U	0.026 U	0.0058 U	0.05	
Tetrachloroethene	0.0063 U	0.01 U	0.0075 U	0.026 U	0.0058 U	1.3	
Toluene	0.025	0.029	0.006	0.022	0.016	0.7	
1,1,2-trichloro-1,2,2-trifluoroe	0.0034 J	0.0047 J	0.0075 U	0.013 J	0.0058 U	-	6
m&p-Xylenes	0.0017	0.0021 U	0.003 U	0.0053 U	0.0012 U	0.26	
						NYCRR Part 375 Unrestricted Use	TAGM 4046
	1-52-189-DW-14	1-52-189-PT-01	1-52-189-PT-02	1-52-189-PT-03	1-52-189-CP-01	Cleanup	soil cleanup
Parameter List	(3/5/2007)	(3/5/2007)	(3/6/2007)	(3/6/2007)	(3/8/2007)	Objectives	objectives
		I	EPA Method 8260B	(mg/kg)		<u> </u>	
Acetone	0.088	0.026 U	0 U	0.027 U	0.027 U	0.05	
2-Butanone (MEK)	0.0013 U	0.0053 U	0.048 U	0.011 U	0.0054 U	-	-
Carbon disulfide	0.0018 J	0.0053 U	0.024 U	0.0054 U	0.0054 U	-	2.7
Ethylbenzene	0.0013 U	0.0011 U	0.0048 U	0.0011 U	0.0011 U	1	
Methylene chloride	0.0066 U	0.0053 U	0.13	0.0054 U	0.0054 U	0.05	
Tetrachloroethene	0.0066 U	0.0016 J	0.024 U	0.0054 U	0.0013 J	1.3	
Toluene	0.003	0.003	0.011	0.002	0.0026	0.7	
1,1,2-trichloro-1,2,2-trifluoroe	0.0066 U	0.0025 J	0.018 J	0.0032 J	0.0054 U	-	6
m&p-Xylenes	0.0013 U	0.0021 U	0.0048 U	0.0011 U	0.0022 U	0.26	

LABORATORY ANALYTICAL RESULTS FOR SAMPLES COLLECTED FROM DRY WELLS, EXCAVATED PIT, AND CESSPOOL (MARCH 2007)

AMW MATERIALS TESTING NORTH AMITVILLE, NEW YORK SITE NO. 1-52-189

Parameter List	1-52-189-DW-01 (3/5/2007)	1-52-189-DW-02 (3/5/2007)	1-52-189-DW-07 (3/7/2007)	1-52-189-DW-11 (3/6/2007)	1-52-189-DW-12 (3/6/2007)	NYCRR Part 375 Unrestricted Use Cleanup Objectives	TAGM 4046 soil cleanup objectives
Tarameter Eist	(3/3/2007)		PA Method ILM05.		(3/6/2007)	Objectives	objectives
Aluminum	2,500	13,300	4880	8660	8,920	-	10000 *
Antimony	1.6 J	14 ј	1.5 J	8.3 J	0.98 J	-	24 *
Arsenic	0.96 J	3.6	2.8	8.7	2.4	13	5.1 *
Barium	45.6	440	68.9	114	26.8	350	290 *
Beryllium	0.13 J	0.71 J	0.19 J	0.27 J	0.4 J	7.2	0.16
Cadmium	0.49 J	4	0.84	6.1	0.53 J	2.5	1
Calcium	11,800	30,100	11,700	39,600	10,200	-	4,800 *
Chromium	12	104	22.6	98.2 J	47.6 J	-	15 *
Cobalt	2.5 J	8.4 J	3.4 J	8.1 J	3.5 J	-	30
Copper	43.5	249	57.7	158	11.1	50	51*
Iron	6,440 J	25,200 J	9280	13100	11,300	-	18000 *
Lead	25.6 J	170 J	51.1 J	195 J	15.2 J	63	44 *
Magnesium	6,470	16,200	5,080	22,400	6,950	-	3,000 *
Manganese	64.2	252	149	125	127	1600	110 *
Mercury	0.13 U	0.18 J	0.015 U	0.53 U	0.12 U	0.18	0.55 *
Nickel	6.7	38.5	11.8	31.8	7.6	30	16 *
Potassium	232 J	1,130	649 J	808 J	403 J	-	NS
Selenium	0.95 J	2.7	0.99 J	18 U	0.99 J	3.9	2
Silver	1.3 U	2.1 U	1.5 U	1.5 J	1.2 U	2	NS
Sodium	202 J	411 J	1,090	846 J	50 J	-	NS
Thallium	3.2 U	5 U	4 U	13 U	3 U	-	NS
Vanadium	18.3	82.5	26.7	52.1	18.7	-	150
Zinc	164 J	918 J	288	1490	30.2	109	140 *

LABORATORY ANALYTICAL RESULTS FOR SAMPLES COLLECTED FROM DRY WELLS, EXCAVATED PIT, AND CESSPOOL (MARCH 2007)

AMW MATERIALS TESTING NORTH AMITVILLE, NEW YORK SITE NO. 1-52-189

Parameter List	(3/5/2007) (3/5/2007) (3/6/2007)			1-52-189-PT-03 (3/6/2007)	1-52-189-CP-01 (3/8/2007)	NYCRR Part 375 Unrestricted Use Cleanup Objectives	TAGM 4046 soil cleanup objectives
		EI	PA Method ILM05.				
Aluminum	2,260	2,610	8,750	4,910	6140	-	10000 *
Antimony	1.2 J	6.3 U	7.3 J	6.5 U	6.5 U	-	24 *
Arsenic	1.3 U	0.82 J	10.9	1.4	2.6	13	5.1 *
Barium	36.1	9.1 J	86.3 J	15.3 J	18.6 J	350	290 *
Beryllium	0.16 J	0.14 J	0.33 J	0.2 J	0.21 J	7.2	0.16
Cadmium	1 J	0.16 J	6	0.38 J	0.05 J	2.5	1
Calcium	8,280	11,600	34,900	704	2670	-	4,800 *
Chromium	17	12	103 J	17.3 J	6.8	-	15 *
Cobalt	2.1 J	1.1 J	7.5 J	2.6 J	1.8 J	-	30
Copper	41.2	3.7 J	159	6.1	7.00	50	51*
Iron	7040 J	4090 J	13400	6950	9410	-	18000 *
Lead	19.2 J	4.9 NJ	142 J	8 J	13.8 J	63	44 *
Magnesium	4630	6830	19300	819	1150	-	3,000 *
Manganese	67	68	125	113	78.9	1600	110 *
Mercury	0.13 U	0.11 U	0.48 U	0.11 U	0.11 U	0.18	0.55 *
Nickel	8	3 J	35	11	4.4	30	16 *
Potassium	209 J	188 J	821 J	228 J	191 J	-	NS
Selenium	0.68 J	0.52 J	1.7 J	0.73 J	0.98 J	3.9	2
Silver	1.30 U	1.1 U	1.4 J	1.1 U	0.08 J	2	NS
Sodium	162 J	26.9 J	896 J	17.1 J	59.8 J	-	NS
Thallium	3.3 U	2.6 U	12 U	2.7 U	2.7 U	-	NS
Vanadium	27.1	8.3	52	8.7	12	-	150
Zinc	184 J	9.5 J	1130	19.4	14.9	109	140 *

NOTE: EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulations

J = Estimated value.

= The analyte was analyzed for, but was not detected above the sample reporting limit.

= Site background concentration from Table 1

NS = No Site background concentration detected

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYCRR Part 375 or TAGM 4046.

LABORATORY ANALYTICAL RESULTS FOR SEDIMENT SAMPLES COLLECTED FROM RECHARGE BASIN (MARCH 2007) AMW MATERIALS TESTING NORTH AMITVILLE, NEW YORK SITE NO. 1-52-189

Parameter List	1-52-189-SED-01 (3/6/2007)	1-52-189-SED-02 (3/6/2007)	1-52-189-SED-03 (3/6/2007)	1-52-189-SED-04 (3/6/2007) EPA Method 82	₹ 0 0/	1-52-189-SED-06 (3/6/2007)	1-52-189-SED-07 (3/6/2007)	1-52-189-SED-08 (3/6/2007)*	NYCRR Part 375 (a) Unrestricted Use Cleanup Objectives	TAGM 4046 soil cleanup objectives
Acetone	0.029 UJ	0.029 UJ	0.028 UJ	0.032 UJ	0.027 UJ	0.017 J	0.031 U		0.05	
Toluene 1.1.2-trichloro-1.2.2-trifluoroethane	0.01 0.0025 J	0.0049 0.003 J	0.0046 0.0026 J	0.0096 0.0032 J	0.011 0.0033 J	0.0067 0.002 J	0.0012 U 0.0043 J		0.7	
1,1,2-tricnioro-1,2,2-triffuoroeuiane	0.0025 J	U.UU3 J				U.UU2 J	U.UU43 J		-	6
	1000	2200		PA Method ILM05.		2570	1000	1510	1	10000**
Aluminum	1800	2280	1060	2650	1370	2570	1800	1640	-	10000**
Antimony	6.9 UJ	6.9 UJ	6.8 UJ	1 J	6.6 UJ	6.5 UJ	0.84 J	0.8 JN		24**
Arsenic	0.66 J	1.1 U	1.1 U	0.64 J	1.1 U	0.65 J	1.1 J	0.92 J	13	5.1**
Barium	5.7 J 0.12 J	6.4 J 0.11 J	2.9 J 0.039 J	20.6 J 0.14 J	3.4 J 0.074 J	5.7 J 0.17 J	10.8 J 0.073 J	12.5 J 0.077 J	350 7.2	290** 0.16
Beryllium Cadmium	0.12 J 0.064 J	0.11 J 0.045 J	0.039 J 0.57 U	0.14 J 0.18 J	0.074 J 0.55 U	0.17 J 0.54 U	0.073 J 0.078 J	0.0// J 0.1 J	2.5	0.10
Calcium	0.064 J 157 J	0.045 J 225 J	0.57 U	710	0.55 U 105 J	0.54 U 164 J	6470	2550	2.3	4.800**
Chromium	5.3	5.7	3.2	19.6	2.2	6.3	15.2	17.8	-	15**
Hex-Chromium (a)	1.1 U		1.1 U	1.3 U					,	15
Tri-Chromium	5.3	1.1 U 5.7	3.2	1.3 U	1.1 U 2.2	1.1 U 6.3	1.2 U 15.2	1.2 U 17.8	30	-
Cobalt	0.86 J	0.81 J	0.28 J	19.6 1.4 J	0.88 J	0.3 1.4 J	15.2 1 I	0.81 J	30	30
Copper	6.6 J	5.8 J	2.6 J	20.4	3 I	5.8 J	14.8	15.2	50	51**
Iron	3310 J	2990 J	1360 J	6820 J	2210 J	4580 J	7290 J	5670	30	18000**
Lead	9.98 J	9.1 J	5.6 J	32.2 NJ	3.6 NJ	7.6 J	15.8 NJ	16.7 N	63	44**
Magnesium	282 J	341 J	159 J	459 J	214 J	375 J	4020	1380	-	3.000**
Manganese	18.7	19.2	7.6	49.9	17.5	24.2	49.2	32.1	1600	110**
Nickel	3 Ј	3 Ј	1.5 J	7	1.9 J	3.4 J	5.9	0.12 U	30	16**
Potassium	103 J	110 J	45 J	162 Ј	73 Ј	135 Ј	137 ј	148 J	-	NS
Selenium	0.55 J	0.39 Ј	4 U	0.97 ј	0.39 ј	0.72 ј	1.1 ј	1.0 J	3.9	2
Silver	1.1 U	1.1 U	1.1 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U	2	NS
Sodium	70.9 J	76.9 J	160 J	125 Ј	55.5 J	108 J	331 Ј	288 J	-	NS
Thallium	2.9 U	2.9 U	2.8 U	3.2 U	2.7 U	2.7 U	3.1 U	3.0 U	-	NS
Vanadium	5.6 J	5.5 J	2.6 J	11.7	3.1 J	6.1	9	12.8	-	150
Zinc	37.9 J	36.3 J	16.3 J	131 J	13.1 J	24.1 J	94	106 E	109	140**

NOTE: EPA = Environmental Protection Agency

NYSDEC = New State Department of Environmental Conservation

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

= Estimated value, concentration below laboratory reporting limit.

N = Tentatively identified with an approximate quantity.

NS = No site background concentration detected

(a) = Analyzed by EPA Method 7196A

= Duplicate sample collected from 1-52-189-SED-07

* = Site background concentration from Table 1

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYSDEC Part 375 Cleanup Objectives (Unrestricted Use)

TABLE 6A

LABORATORY ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES COLLECTED FROM MONITORING WELLS (MARCH 2007) AMW MATERIALS TESTING NORTH AMITYVILLE, NEW YORK

SI	LE I	NO.	1-52-	189

Parameter List	1-52-189-GW-02 (3/7/2007)	1-52-189-GW-03 (3/6/2007)	1-52-189-GW-04 (3/6/2007)	1-52-189-GW-05 (3/6/2007)	1-52-189-GW-06 (3/7/2007)	1-52-189-GW- 07 (3/7/2007)	1-52-189-GW-08 (3/7/2007)	1-52-189-GW-09 (3/6/2007)	1-52-189-GW-10 (3/7/2007)*	NYSDEC Ambien Water Quality Standard and Guidance Values (ppb)
				EPA Me	thod 8260B (µ;	g/L)				
Tetrachloroethene	1 U	1 U	1 U	1 U		1 U	64	1 U	25	5 (s)
				EPA Me	thod 8270C (μ	g/L)				
bis(2-Ethylhexyl)phthalate	NS	NS	NS	NS	5.2	2.7	3.8	NS	5.9	5
, , , , , , , , , , , , , , , , , , , ,				EPA Met	hod ILM05.2 ()	ıg/L)				
Aluminum	15,900 J	3,780	697	226	13,300 J	6,860 J	24,300 J	24,900	22,600 J	100
Arsenic	10 U	10 U	60 U	10 U	10 U	10 U	9.7 J	6.1 J	6 J	25
Barium	127 J	73.4 J	173 J	56.1 J	179 J	35.3 J	334	124 J	251	1,000
Beryllium	1.7 J	0.33 J	5 U	5 U	1.3 J	0.78 J	2.4 J	2.2 J	2.2 J	3
Cadmium	0.82 J	5 U	0.9 J	0.95 J	5 U	0.51 J	5 U	5 U	5 U	5
Calcium	12,300	20,900	60,700	42,700	19,600	22,800	19,400	8,780	20,000	
Chromium	88.8 J	10 U	10 U	10 U	115 J	93.8 J	260 J	35	169 J	50
Chromium, Hexavalent (a)	25 U	NS	25 U	NS	25 U	69	59	NS	25 U	50
Chromium, Tri	88.8	ND	ND	ND	115	24.8	201	35	169	
Cobalt	16.3 J	2.6 J	1.4 J	0.75 J	12.4 J	6.7 J	25.9 J	17.6 J	21.2 J	
Copper	29	11.4 J	5.5 J	6.8 J	27.3	20 J	44	46	37	200
Iron	23,800	4,540	993	387	18,000	9,360	31,900	34,400	30,500	300
Lead	20.2 J	3.8 J	10 U	10 U	15.4 J	9.4 J	35 J	29.6 J	24.8 J	25
Magnesium	5,690	4,100 J	7,870	5,880	6,090	5,340	6,410	5,000 J	7,580	35,000
Manganese	1,650 J	253	82.9	99.7	1,210 J	963 J	3,870 J	1,430	2,070 J	300
Nickel	21.8 J	4.3 J	1.5 J	40 U	16.5 J	10.3 J	30.1 J	32.8 J	27.6 J	100
Potassium	3,720 J	2,530 J	4,690 J	2,170 J	4,360 J	4,000 J	4,750 J	3,770 J	5,390	
Selenium	35 U	6.3 J	35 U	35 U	10					
Sodium	18,700	27,400	159,000	77,500	8,340	9,330	9,310	12,000	8,560	20,000
Vanadium	29.2 J	7.5 J	6 J	4 J	24.5 J	12.6 J	39.4 J	44.5 J	40.3 J	
Zinc	61.4 J	15.5 J	32.7 J	18.6 J	53.5 J	42.3	78.2 J	77.2	83.1 J	2,000
				EPA Me	thod 8081A (μ	,				
Chlordane	NS	NS	NS	NS	0.01 U	0.21	0.01 U	NS	0.01 U	0.05
p,p'-DDE	NS	NS	NS	NS	0.01 U	0.019	0.01 U	NS	0.01 U	0.2

: EPA = Environmental Protection Agency NYSDEC = New State Department of Environmental Conservation

NYSDEC = New State Department of Environmental Conservation

NS = No sample collected.

J = Estimated value, concentration below laboratory reporting limi

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

(s) = Value is listed as a standard value.

(a) = analyzed by EPA Method 7196.6

* = Duplicate sample collected from MW-0t

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYSDEC AWQS.

TABLE 6B

LABORATORY ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES COLLECTED FROM MONITORING WELLS (NOVEMBER 2007)

AMW MATERIALS TESTING NORTH AMITYVILLE, NEW YORK SITE NO. 1-52-189

Parameter List					MW-0	•	,					ite	NYSDEC Ambient Water Quality Standard (ppb)
Methylene chloride	2.1	J	2.2	J	4.2	J	4.5	J	3.4	J	3.3	J	5
Tetrachloroethene	5	UJ	1.6	J	1.1	J	14	J	5	UJ	5	UJ	5
		I	OTAL I	ME	TALS by	EP	A METH	IOD	6010 (u	g/L)			
Mercury (a)	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.7
Aluminum	180	U	230		180	U	180	U	160	J	180	U	100
Antimony	12	U	12	U	12	U	12	U	12	U	12	U	3
Arsenic	7.5	U	7.5	U	7.5	U	7.5	U	7.5	U	7.5	U	25
Barium	19	J	75	J	4.7	J	68	J	19	J	4.8	J	1,000
Beryllium	4	U	4	U	4	U	4	U	4	U	4	U	3 (g)
Cadmium	3.5	U	3.5	U	3.5	U	3.5	U	3.5	U	3.5	U	5
Calcium	13,000		17,000		24,000		15,000		9,000		25,000		
Chromium	23		12		47		46		10	U	47		50
Chromium, Hexavalent (b)	25	U	25	U	53		47		25	U	44		50
Chromium, Tri	23		12		NA		NA		NA		3		
Cobalt	20	U	20	U	20	U	20	U	20	U	20	U	
Copper	26		18	J	23	J	21	J	22	J	28		200
Iron	100	U	270		100	U	80	J	210		100	U	300
Lead	4	U	4	U	4	U	4	U	4	U	4	U	25
Magnesium	3,500	J	3,500	J	5,300		3,100	J	1,700	J	5,300		35,000
Manganese	15	U	26		15	U	12	J	10	J	15	U	300
Nickel	40	U	40	U	40	U	1.3	J	40	U	40	U	100
Potassium	1,700	J	1,700	J	2,500	J	2,100	J	1,300	J	2,500	J	
Selenium	35	U	35	U	35	U	35	U	35	U	35	U	10
Silver	10	U	10	U	10	U	10	U	10	U	10	U	50
Sodium	12,000		6,400		11,000		7,200		9,600		11,000		20,000
Thallium	10	U	10	U	10	U	10	U	10	U	10	U	0.5
Vanadium	50	U	50	U	2.4	J	50	U	50	U	2.6	J	
Zinc	13	J	7.2	J	8.6	J	4.9	J	4.7	J	8.6	J	2,000

TABLE 6B

LABORATORY ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES COLLECTED FROM MONITORING WELLS (NOVEMBER 2007)

AMW MATERIALS TESTING NORTH AMITYVILLE, NEW YORK SITE NO. 1-52-189

											Blind Duplica		NYSDEC Ambient Water Quality
Parameter List	MW-02		MW-0	_	MW-0	_	MW-0		MW-0	_	#2*		Standard (ppb)
	DISSOLVED METALS by EPA METHOD 6010 (ug/L)												
Mercury	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.7
Aluminum	180	U	180	U	180	U	180	U	180	U	180	U	100
Antimony	12	U	12	U	12	U	12	U	12	U	12	U	3
Arsenic	7.5	U	7.5	U	7.5	U	7.5	U	7.5	U	5.0	J	25
Barium	18	J	72	J	3	J	68	J	18	J	3.2	J	1,000
Beryllium	4	U	4	U	4	U	4	U	4	U	4	U	3 (g)
Cadmium	3.5	U	3.5	U	3.5	U	3.5	U	3.5	U	3.5	U	5
Calcium	13,000		18,000		24,000		15,000		9,700		26,000		
Chromium	24		11		47		48		10	U	49		50
Cobalt	20	U	20	U	20	U	20	U	20	U	20	U	
Copper	3.7	J	25	U	1.8	J	1.6	J	25	U	1.9	J	200
Iron	100	U	90	J	100	U	100	U	100	U	100	U	300
Lead	4	U	4	U	4	U	4	U	4	U	4	U	25
Magnesium	3,500	J	3,600	J	5,300		3,100	J	1,800	J	5,800		35,000
Manganese	15	U	6.1	J	15	U	15	U	15	U	15	U	300
Nickel	40	U	40	U	1.3	J	40	U	40	U	40	U	100
Potassium	1,800	J	1,900	J	2,600	J	2,300	J	1,300	J	2,600	J	
Selenium	35	U	35	U	35	U	35	U	35	U	35	U	10
Silver	10	U	10	U	10	U	10	U	10	U	10	U	50
Sodium	13,000		6,700		12,000		7,700		10,000		11,000	Ť	20,000
Thallium	10	U	10	U	10	U	10	U	10	U	10	U	0.5
Vanadium	1.7	J	2.3	J	2.8	J	50	U	2.3	J	4.4	J	
Zinc	5.2	J	8.2	J	7.6	J	4.9	J	3.4	J	6.5	J	2,000

NOTE: EPA = Environmental Protection Agency

NYSDEC = New State Department of Environmental Conservation

NS = No sample collected.

J = Estimated value, concentration below laboratory reporting limit.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

UJ = The compound was analyzed for, but not detected. The sample quantitation limit is an estimated quantity due to variance from quality control limits.

NA = A trivalent chromium value could not be calculated using the reported values for total and hexavalent chromium.

Two separate sample bottles were collected and two separate EPA analysis Methods were utilized to report

Hexavalent and total chromium

(g) = Value is listed as a guidance value.

(a) = Analyzed by EPA Method 7470A

(b) = Analyzed by EPA Method 3500

* = Duplicate sample collected from MW-07

All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYSDEC AWQS.

LABORATORY ANALYTICAL RESULTS FOR GROUNDWATER PROFILE POINT SAMPLES (MARCH 2007) AMW MATERIALS TESTING NORTH AMITYVILLE, NEW YORK SITE NO. 1-51-189

Parameter List	1-52-189-GP-01- 19-23 (3/7/2007)	1-52-189-GP-01-29- 33 (3/7/2007)	1-52-189-GP-01- 39-43 (3/7/2007)	1-52-189-GP-01- 49-53 (3/7/2007)	1-52-189-GP-01- 59-63 (3/7/2007)	1-52-189-GP-01-69- 73 (3/7/2007)	-1-52-189-GP-02-19 23 (3/8/2007)	Ambient Water Quality Standard and Guidance Values (ppb)	
T at affected Elist	19-23 (3/1/2001)		,	PA Method 8260B (. ,	13 (3/1/2001)	23 (3/8/2007)	(PP6)	
1.1-Dichloroethane	1 U	- 1	1 U	1 U	1 U	7.1	5 U	5	
1,2,4 Trichlorobenzene	1 U	1 U	1 U	1 U	1	1 U	5 U	5	
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U	7	5 U	5	
Methyl-t-butyl ether	1 U	1 U	1 U	1 U	1.7	19	1 U	10 ^(a)	
Tetrachloroethene	1 U	1 U	1 U	1 U	1.1	5.9	5 U	5	
Trichloroethene	1 U	1 U	1 U	1 U	1	4.1	1 U	5	
Vinyl chloride	1 U	1 U	1 U	1 U	1 U	1.2	5 U	2	
Target Compound List (TCL) by EPA Method ILM05.2 / 7196A (µg/L)									
Aluminum						27,000 J		100	
Antimony						28.2 J		3	
Arsenic						15.8 J		25	
Barium						326		1,000	
Beryllium						2.6 J		3	
Cadmium						5 U		5	
Calcium						31,800			
Total Chromium						1,390 J		50	
Chromium, Hexavalent (b)						63		50	
Chromium, Tri						1,327			
Cobalt						37 J			
Copper						413		200	
Iron						174,000		300	
Lead						62 J		25	
Magnesium						11,400		35,000	
Manganese						3,700 J		300	
Mercury						0.16 J		0.7	
Nickel						429		100	
Potassium						8,610			
Selenium						14.4 J		10	
Sodium						20,800		20,000	
Vanadium						70.5			
Zinc						2,480 J		2,000	

LABORATORY ANALYTICAL RESULTS FOR GROUNDWATER PROFILE POINT SAMPLES (MARCH 2007) AMW MATERIALS TESTING NORTH AMITYVILLE, NEW YORK SITE NO. 1-51-189

Parameter List	1-52-189-GP-02- 29-33 (3/8/2007)	1-52-189-GP-02- 39-43 (3/8/2007)	1-52-189-GP-02- 49-53 (3/8/2007)	1-52-189-GP-02-	1-52-189-GP-02-	1-52-189-GP-02- 79-83 (3/8/2007)*	NYSDEC Ambient Water Quality Standard and Guidance Values (ppb)
T at affecter List	29-33 (3/8/2007)	. ,	Carget Compound L	59-63 (3/8/2007) ist (TCL) by EPA N	69-73 (3/8/2007) Jethod 8260B (ug/I	. ,	values (ppb)
1.1-Dichloroethane	5 U	5 U	5 U	5 U	1.6 J	1.5 J	5
1,2,4 Trichlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5
Methyl-t-butyl ether	1 U	1 U	1 U	1 U	3.2	3.3	10 ^(a)
Tetrachloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5
Trichloroethene	5 U	5 U	5 U	5 U	2.4 J	2.7 J	5
Vinyl chloride	5 U	5 U	5 U	5 U	5 U	5 U	2
		Target	Compound List (T	CL) by EPA Metho	d ILM05.2 / 7196A	(μg/L)	
Aluminum		_			7,500	10,800	100
Antimony					60 U	9.2 J	3
Arsenic					10 U	10 U	25
Barium					110 J	148 J	1,000
Beryllium					0.77 J	1.1 J	3
Cadmium					1.2 J	1.7 J	5
Calcium					11,400 J	11,900	
Total Chromium (b)					284	385	50
Chromium, Hexavalent					25 U	25 U	50
Chromium, Tri					284	385	
Cobalt					9.5 J	12.8 J	
Copper					74.4 J	107	200
Iron					42,500	58,800	300
Lead					8.2 J	13.1 J	25
Magnesium					4,140 J	4,760 J	35,000
Manganese					1,500	1,810	300
Mercury					0.2 U	0.2 U	0.7
Nickel					87.7	113	100
Potassium					4,000 J	4,700 J	
Selenium					35 U	6.6 J	10
Sodium					18,700	19,200	20,000
Vanadium					21.2 J	29.1 J	
Zinc					559	776	2,000

NOTE: EPA = Environmental Protection Agency

NYSDEC = New York State Department of Environmental Conservation

- J = Estimated value.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- (a) =April 2000 addendum to June 1998 division of water technical and operational guidance series (TOGS) NO. 1.1.1
- (b) = Analyzed by EPA Method 7196A
 - = Sample 1-52-189-GP-02-79-83 is the duplicate sample collected from 1-52-189-GP-02-69-73

The concentration of the metals most likely was impacted by high turbidity levels in these sample points (999 NTU at GP-1 and 999 NTU at GP-2).

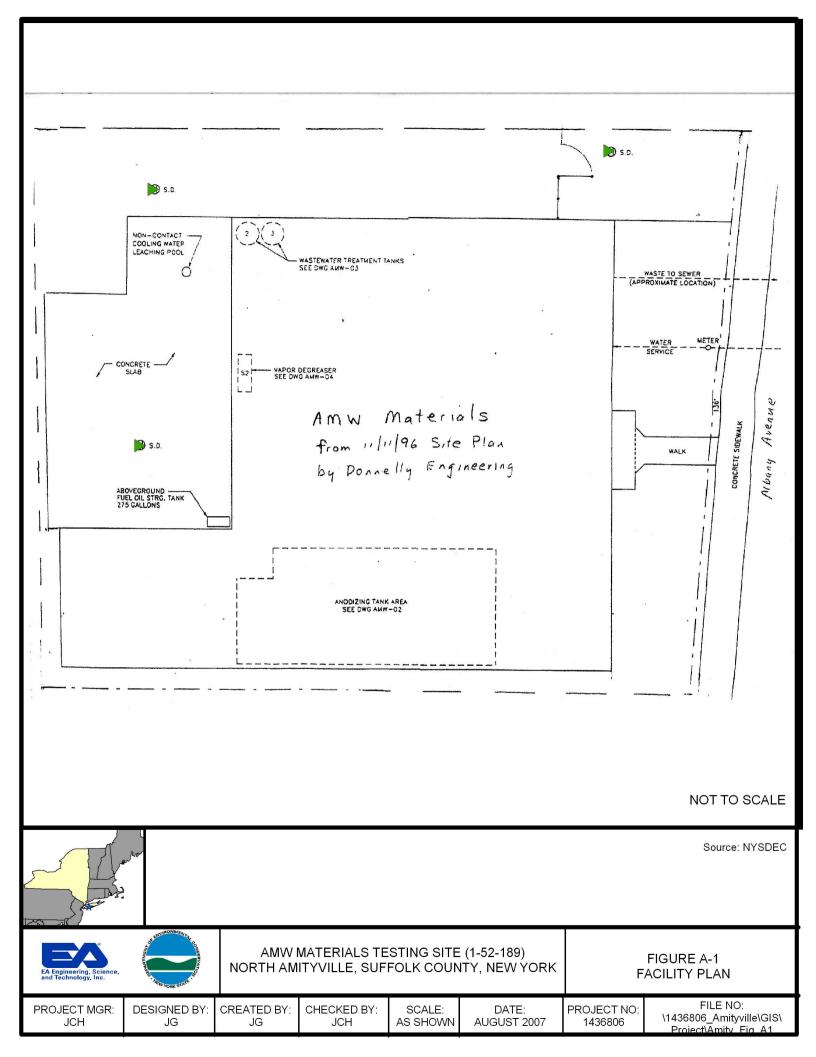
All analytical data results provided by Hampton-Clarke Veritech. Data validation completed by Chemworld, Inc.

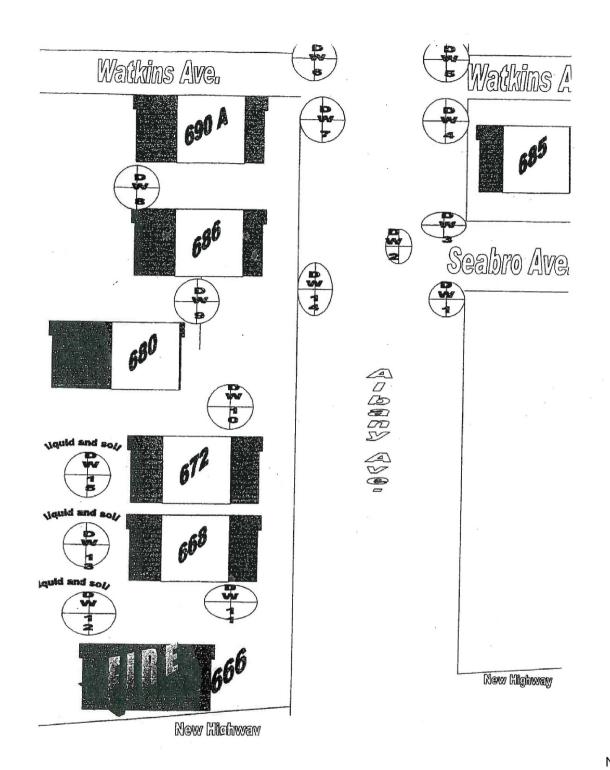
Only parameters that had at least one detection from the data set are shown.

Bold values indicate that the analyte was detected above the NYSDEC AWQS...

TABLE 8 LABORATORY ANALYTICAL RESULTS FOR SOIL VAPOR SAMPLES (NOVEMBER 2007) AMW MATERIALS TESTING NORTH AMITYVILLE, NEW YORK

SITE NO. 1-52-189


Parameter	SV-01	SV-02	AMBIENT AIR	DUPLICATE (A)
Volatile Or	ganics by EPA Me	thod TO-15 (ug/m3)		
ACETONE	170 J	69	27	89
BENZENE	110 J	33	1.2	42
BENZYL CHLORIDE	0.52 U	0.52 U	0.52 U	0.52 U
BROMODICHLOROMETHANE	0.66 U	0.66 U	0.66 U	0.66 U
BROMOFORM	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
BROMOMETHANE	0.38 U	0.38 U	0.38 U	0.38 U
1,3-BUTADIENE	0.22 U	0.22 U	0.22 U	0.22 U
2-BUTANONE (MEK)	7.3 J	4.4 J	1.8 J	9.4 J
CARBON DISULFIDE	3.2 U	3.2 U	1.6 U	3.2 U
CARBON TETRACHLORIDE	0.62 U	0.62 U	0.69	0.62 U
CHLOROBENZENE	0.46 U	0.46 U	0.46 U	0.46 U
DIBROMOCHLOROMETHANE	0.86 U	0.86 U	0.85 U	0.86 U
CHLOROETHANE	0.26 U	0.26 U	0.26 U	0.26 U
CHLOROFORM	3.3 J	0.48 U	0.48 U	3.1
CHLOROMETHANE	1.5 J	0.2 U	1.4	1.4
CYCLOHEXANE	16 J	6.5	0.34 U	2
1,2-DIBROMOETHANE (ETHYLENE DIBROM	0.76 U	0.76 U	0.76 U	0.76 U
1,2-DICHLOROBENZENE	0.6 U	0.6 U	0.6 U	0.6 U
1,3-DICHLOROBENZENE	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ
1,4-DICHLOROBENZENE	0.6 UJ	0.6 UJ	0.6 UJ	0.96 J
DICHLORODIFLUOROMETHANE (CFC-12)	3.3 J	3.8	3.6	3.1
1,1-DICHLOROETHANE	0.4 U	0.4 U	0.4 U	0.4 U
1,2-DICHLOROETHANE	0.4 U	0.4 U	0.4 U	0.4 U
1,1-DICHLOROETHENE	0.4 U	0.4 U 0.4 UJ	0.39 U	0.4 U
CIS-1,2-DICHLOROETHLENE TRANS-1,2-DICHLOROETHENE	0.63 J 0.4 U	0.4 UJ 0.4 U	0.39 UJ 0.39 U	0.63 J 0.4 U
1,2-DICHLOROPROPANE	0.4 U	0.4 U	0.39 U 0.46 U	0.4 U
CIS-1,3-DICHLOROPROPENE	0.44 U	0.44 U	0.46 U	0.46 U
TRANS-1,3-DICHLOROPROPENE	0.44 U	0.44 U	0.45 U	0.44 U
1,2-DICHLOROTETRAFLUOROETHANE	0.44 U	0.44 U	0.43 U	0.44 U
ETHANOL	120 J	110 J	72 J	64 J
ETHYL ACETATE	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ
ETHYLBENZENE	76 J	47	0.48	37
4-ETHYL TOLUENE	11 J	5.3	0.49 U	8.4
N-HEPTANE	60 J	25	0.41 U	14
HEXACHLOROBUTADIENE	4.3 U	4.3 U	2.2 U	4.3 U
HEXANE	94 J	35	1.9	16
2-HEXANONE	0.4 UJ	0.4 UJ	0.41 UJ	0.4 UJ
ISOPROPYL ALCOHOL	75 J	37	2.1	7.6
METHYL TERT BUTYL ETHER (MTBE)	0.36 U	0.36 U	0.36 U	0.36 U
METHYLENE CHLORIDE	3 J	1.1	1.6	9
4-METHYL-2-PENTANONE	0.4 UJ	0.4 U	0.41 UJ	0.9 J
PROPYLENE (PROPENE)	0.69 U	0.69 U	0.35 U	0.69 U
STYRENE	0.43 J	0.42 U	0.43 U	0.51
1,1,2,2-TETRACHLOROETHANE	0.68 U	0.68 U	0.68 U	0.68 U
TETRACHLOROETHENE	290 J	180	0.67 U	1200
TETRAHYDROFURAN	0.59 UJ	0.59 UJ	0.3 UJ	0.59 J
TOLUENE	420 J	200	3.5	270
1,2,4-TRICHLOROBENZENE	0.74 UJ	0.74 UJ	0.74 UJ	0.74 UJ
1,1,1-TRICHLOROETHANE	29 J	0.87	0.54 U	28
1,1,2-TRICHLOROETHANE	0.54 U	0.54 U	0.54 U	0.54 U
TRICHLOROETHENE	6.1 J	0.54 U	0.53 U	8.3
TRICHLOROFLUOROMETHANE (CFC-11)	1.5 J	3.5	1.5	1.2
TRICHLOROTRIFLUOROETHANE	0.76 U	0.76 U	0.77	0.76 U
1,2,4-TRIMETHYLBENZENE	31 J	13	0.49 U	28
1,3,5-TRIMETHYLBENZENE	8.7 J	3.9	0.49 U	9.4
VINYL ACETATE	9.4 J	4.3 J	0.85 J	2.1 J
VINYL CHLORIDE	NR	0.26 U	0.25 U	0.26 U
XYLENES, M-P	260 J	160	1.8	130
O-XYLENE	85 J	52	0.52	36
NAPHTHALENE	1.3 U	1.3 U	0.64 U	1.3 U


(A) The duplicate sample was collected from SV01
Note: EPA = U.S. Environmental Protection Agency

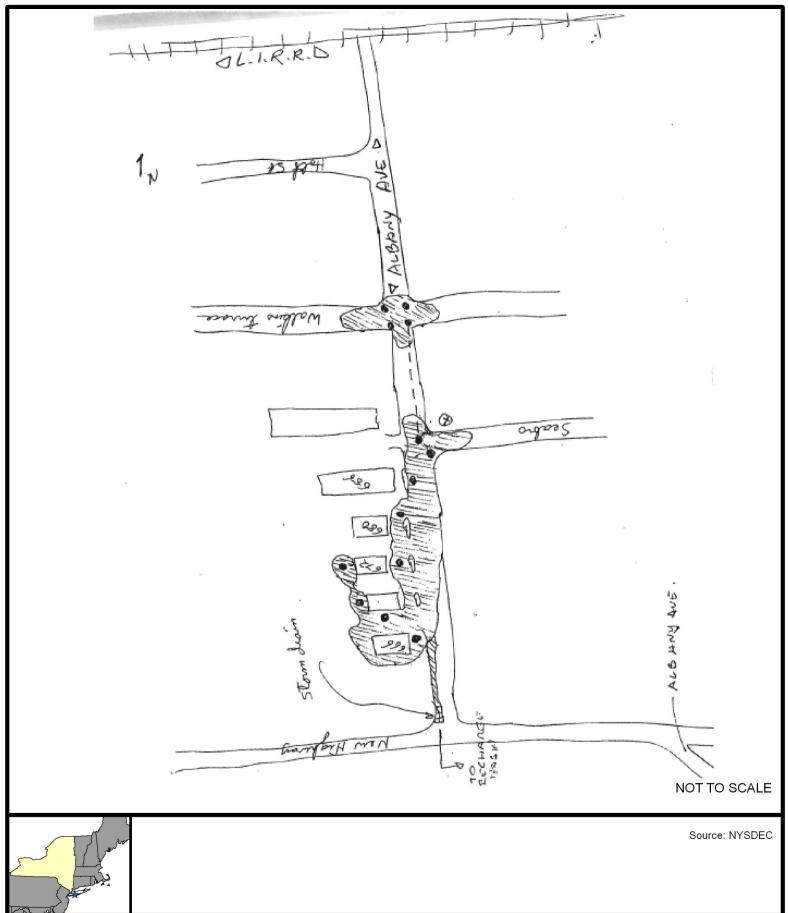
= The associated numerical value is an estimated quanity

NR = Not Reported
U = Analyzed but not reported at concentration above reporting limit. Sample quantitation limits as shown as (<_U)

Appendix A Historical Site Background Information

NOT TO SCALE

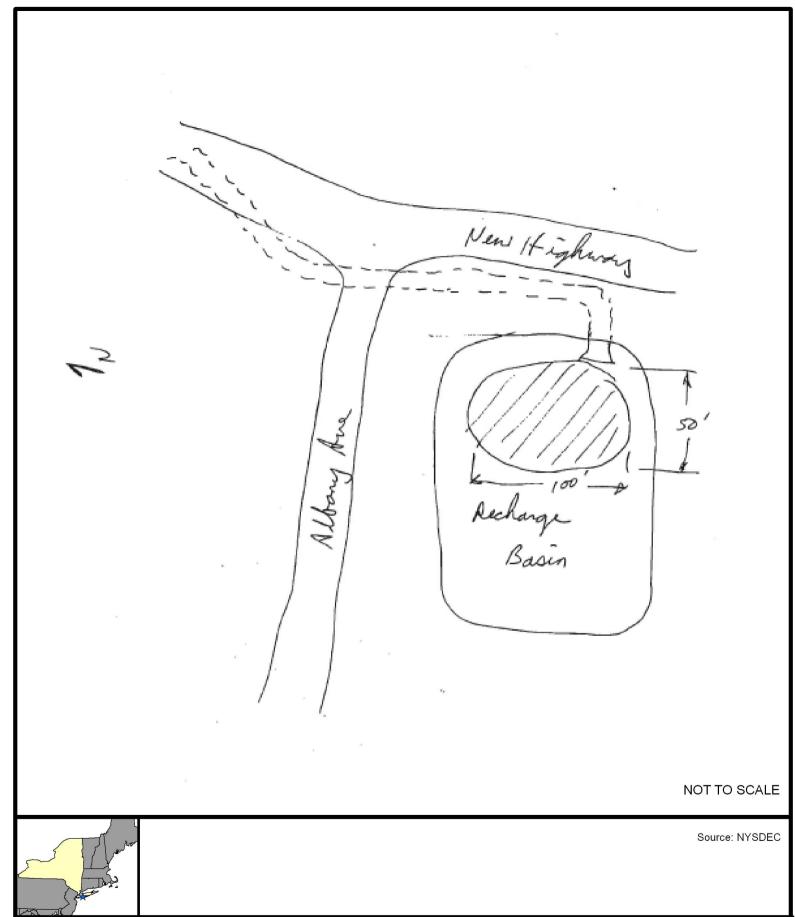
Source: NYSDEC



AMW MATERIALS TESTING SITE (1-52-189)
NORTH AMITYVILLE, SUFFOLK COUNTY, NEW YORK

FIGURE A-2 HISTORICAL DRY WELL SEDIMENT SAMPLING LOCATIONS

PROJECT MGR: JCH DESIGNED BY: JG CREATED BY: JG CHECKED BY: JCH SCALE: AS SHOWN DATE: AUGUST 2007 PROJECT NO: 1436806 FILE NO: \1436806_Amityville\GIS\ Project\Amity_Fig_A2



AMW MATERIALS TESTING SITE (1-52-189)
NORTH AMITYVILLE, SUFFOLK COUNTY, NEW YORK

FIGURE A-3a
FIELD SKETCH OF WATER
FROM THE SITE TO
STORMWATER STRUCTURES

PROJECT MGR: JCH DESIGNED BY: JG CREATED BY: JG CHECKED BY: JCH SCALE: AS SHOWN DATE: AUGUST 2007 PROJECT NO: 1436806 FILE NO: \1436806_Amityville\GIS\ Project\Amity_Fig_A3

AMW MATERIALS TESTING SITE (1-52-189) NORTH AMITYVILLE, SUFFOLK COUNTY, NEW YORK FIGURE A-3b FIELD SKETCH OF WATER FROM THE SITE TO STORMWATER STRUCTURES

PROJECT MGR: DESIGNE JCH JG

DESIGNED BY: JG CREATED BY: JG CHECKED BY: JCH SCALE: AS SHOWN DATE: AUGUST 2007 PROJECT NO: 1436806 FILE NO: \1436806_Amityville\GIS\ Project\Amity_Fig_A4

TABLE A-1 SURFACE WATER SAMPLE RESULTS (9 OCTOBER 2000)

Location	Chromium (ppb)	MEK (ppb)	PCE (ppb)	TCA (ppb)
SE Corner of Seabro Ave. & Albany Ave.	98,000	210,000	3,200	2,200
Puddle Formed by Fire Hose	165,000	170,000	1,600	3,400
In Front of 666 Albany Ave.	3,100	5,000	50	100
From Rubble Pile	21,000	800,000	-	75
Storm Drain Puddle at Albany Ave. & New Hwy.	17,000	360,000	180	450
Watkins Ter. & Albany Ave.	101,000	95,000	3,200	68
Recharge Basin	4,500	2,800	40	-

TABLE A-2 SOIL SAMPLE RESULTS (9 OCTOBER 2000)

	Chromium	MEK	PCE	TCA
Location	(ppm)	(ppm)	(ppm)	(ppm)
Recharge Basin	NA	1.8	1.4	-

TABLE A-3 SOIL SAMPLE RESULTS FROM DRY WELLS (10 OCTOBER 2000)

	Chromium	MEK	PCE	TCA
Location	(ppm)	(ppm)	(ppm)	(ppm)
DW1	2,124	13.9	16.7	1.4
DW2	1,012	9.9	18.5	2.0
DW3	1,223	43.0	11.9	5.9
DW4	16.4	4.2	0.1	0.02
DW5	40.3	16.1	1.7	0.1
DW6	25.7	12.8	0.1	0.1
DW7	183	24.2	16.9	0.5
DW8	15.5	-	0.3	0.1
DW9	367	9.6	0.3	0.03
DW10	121	0.4	0.5	0.04
DW11	340	3.2	1.8	0.1
DW12	1,522	20.7	6.3	0.2
DW13	66.3	3.4	0.2	-
DW14	596	0.7	20.9	2.1
DW15	95.7	1.7	0.9	-

TABLE A-4 GROUNDWATER SAMPLE RESULTS FROM MONITORING WELLS (NOVEMBER 2000)

Location	Chromium (ppb)	MEK (ppb)	PCE (ppb)	TCA (ppb)
MW1	230	ND	ND	ND
MW2	2,980	1,388	ND	ND
MW3	ND	ND	ND	ND
MW4	ND	227	5	ND
MW5	ND	19	6	ND

TABLE A-5 SOIL SAMPLE RESULTS FROM DRY WELLS (25-27 OCTOBER 2000)

	Chromium	MEK	PCE	TCA
Location	(ppm)	(ppm)	(ppm)	(ppm)
DW1	21.7	ND	1.4	0.2
DW2	88.8	0.01	0.5	0.04
DW3	2.87	ND	ND	ND
DW4	8.08	ND	0.1	0.01
DW5	ND	ND	ND	ND
DW6	8.97	ND	0.05	ND
DW7	12.7	ND	0.01	ND
DW8	3.23	ND	ND	ND
DW9	1.92	ND	ND	ND
DW10	3.21	ND	0.1	ND
DW11	2.02	ND	0.1	ND
D W 12	5.12	ND	ND	ND
D W 13	51.9	ND	3.5	0.03
D W 14	174	ND	4.3	0.4

TABLE A-6 SOIL SAMPLE RESULTS FROM RECHARGE BASIN (26 OCTOBER 2000)

	Chromium	MEK	PCE	TCA
Location	(ppm)	(ppm)	(ppm)	(ppm)
RC 1-2"	146	ND	0.01	ND
RC2-2'	3.28	ND	ND	ND
RC3-S	72.1	ND	ND	ND
RC4-2'	3.26	ND	ND	ND
RC5-4'	18.1	ND	ND	ND
RC6-S	153	ND	ND	ND
RC7-1'	21.8	ND	0.02	ND

Appendix B
Photograph Log

Photograph Log AMW Materials Testing Site (1-52-189) North Amityville, New York

Photo 1: Panoramic view of site, looking southeast at excavation pit and stock-piled soil.

Photo 2: Close up of cesspool manway, observed in excavation pit.

Appendix C

Monitoring Well Construction Diagrams/Soil Boring Logs

FIELD BORING LOG FORM

		REAL	7		. D.C		Job. No.	Client:	New York State Department of		ation:	
				eering			14368.06	<u> </u>	Environmental Conservation	-	Amityville, NY	
· ·		EA S	cien	ce and	Lechn	ology	Drilling Method: Hand dig and Geoprobe 66DT 4 and 1/4" H.S.A.				ng Number: W-6	
		LOG OF SO	OII B	OPING			Sampling N	Nothod:	Hydraulic Push 5' length 2" diam.	IVI	VV-0	
Coordii		LUG OF SC		508109.360	66 / X6349	901.07448	Sampling IV	nemou:	Macrocore Macrocore	Sheet	Sheet 1 of 2	
	ice Eleva	tion:		54.0		701.07 110			Macrocore	Dri	lling	
	ice Dievu	_		Top of			Water Lev.		15.36 ft	Start	Finish	
							Date		1/25/2007			
							Time		15:25	1/25/2007 7:39	1/25/2007 10:00	
							Surface Cor	nditions	Concrete Pad			
Blow	Feet	Wall Diam		PID	Depth	TICCC						
Counts (140-lb)	Drvn/Ft. Recvrd	Well Diag	rain	(ppm) HNu	in Feet	USCS Log	SOIL D	FSCRIP	TION			
, ,	Recviu			IIIVu	0	Log	JOIL D	Lockii	11014			
							Brown fine to	coarse sand, li	ttle silt, trace of fine to coarse gravel, moist			
				1.4	1							
				1.4								
				1.5	2		Tan brown silt	, some fine to	coarse sand, trace of fine gravel, moist			
					2		Т	11:	tl - C	-:		
				2.4	3		ran medium-c	oarse sand, iit	tle fine gravel, trace coarse gravel (rounded), m	DIST		
					4	SW	46 in. tan medi	ium-coarse sar	nd, little fine gravel (rounded), dry to moist			
	5/4.8								, , ,			
				1.1	5							
					6							
					7							
				1.0	,							
					8							
					9							
	5/3.4				10	CYLY	40.1		That are the state of the state			
				1.2	10	SW	40 in. tan medi	ium-coarse sar	nd, little fine gravel (rounded), dry to moist			
					11							
				1.1	12							
					13							
					14							
	5/3.6				14							
	7 0.0			0.1	15		20 in. tan coars	se sand, some	fine gravel, little medium sand, wet			
				0.1					-			
					16		5 in. tan fine to	medium sand	d, little fine to coarse gravel (rounded), wet			
					17							
				0.1	17							
					18							
		N			19							
								3				
	5 /				20	GW	1		coarse sand, trace medium sand, wet			
	5/-						NOTE: Macroo	core jammed ii	n barrel - no recovery data obtained			

Logged by:	James Gatherer	Date:	1/25/07
Drilling Contractor:	L.A.W.E	Driller:	Kevin McGoury

R							Job. No. Client: New York State Department of			Location:		
EA Engineering, P.C.							14368.06		Environmental Conserva	ntion	Albany Ave. Amityville, N	
EA Science and Technology						y	Drilling Method: Hand dig and Geoprobe 66DT		66DT	Soil Boring Number:		
83							4 and 1/4" H.S.A.			MW-6		
LOG OF SOIL BORING							Sampling Method: Hydraulic Push 5' length 2" diam.			Sheet 2 of 2		
Coordinates: Y4508109.36066 / X634901.07448									Macrocore			
Reference Elevation: 54.07'											Drilling	
							Water Lev.		15.36 ft		Start	Finish
							Date		1/25/2007		4 (25 (2005 5.20	1 /25 /2005 10 00
							Time Surface Cor	ditions	15:25 Concrete Pad		1/25/2007 7:39	1/25/2007 10:00
								iditions	Concrete Fau			
Blow Feet Counts Drvn/Ft. Well Diag				in USCS								
/	Recvrd		HNu	Feet		og	SOIL D	ESCRI	PTION			
		7	0.1	21		Ü						
		\sim	0.1									
				22								
				23	-							
		7		24								
	5/0			24								
	0,0			25		ЕОВ	End of Boring	at 25'				
				-								
					\vdash							
					$\vdash \vdash$							
					$\vdash \vdash$							
												_
				<u> </u>								
Logged	Logged by: James Gatherer Date: 1/25/07											

Logged by.	James Gatherer	Bute.	1/25/07
Drilling Contractor:	L.A.W.E	Driller:	Kevin McGoury

R							Job. No. Client: New York State Department of Location:			ation:		
EA Engineering, P.C.							14368.06		Environmental Conservation	Albany Ave. Amityville, NY		
EA Science and Technology						ology	Drilling Me	ethod:	B-61 mobile 4 and 1/4" inner diam	Soil Boring Number:		
LA Science and Technology						8)	H.S.A. MW-7			0		
LOG OF SOIL BORING							Sampling Method: 140lh Hammer 2-in Split Spoon					
Coordinates: Y 4508122.49727 / X 634922.08513							Sampling Method.			Sheet 1 of 2		
Referen	nce Eleva	tion:		53.45	5"					Drilling		
Referen	nce Descr	ription:		Top of	PVC		Water Lev.		14.69 ft.	Start	Finish	
		-					Date		1/25/2007			
							Time		7:03	1/24/07 11:41	1/24/07 14:33	
							Surface Con	nditions	Asphalt			
Blow	Inches	TAT 11 TO:		PID	Depth	****						
Counts (140-lb)	Driven/	Well Dia	gram	(ppm)	in	USCS	SOIL DESCRIPTION					
(110 10)	Recvrd		*	HNu	Feet	Log		1 1				
				1.3	0	SW	Brown-grey fi	ne-coarse sanc	d, little fine gravel (rounded), little silt, asphalt, chu	inks, dry-moist		
					1	311	Tan medium-	coarse sand lit	ttle fine gravel (rounded), trace silt, moist			
					1							
	1			4.0	2		Tan-orange medium-coarse sand, little fine gravel, trace silt, moist Orange medium-coarse sand, trace fine gravel, dry-moist					
				4.8								
				0.4	3							
	24/13			0.4								
	7 86 4 SW					SW	13 in. tan medium-coarse sand, trace fine gravel (rounded) dry-moist, med dense					
12												
19	24 /45				5							
19	24/17						47.			,		
11 17				6.5	6		17 in. tan med	ium-coarse sai	nd, little fine gravel (rounded), dry-moist, mediun	n dense		
14					7							
22	24/16				<i>'</i>							
13					8		16 in, light tan	n medium-coar	rse sand, little fine-coarse gravel, top 3-in iron stair	ned , dry-moist, medium	ı dense	
16				1.1								
18					9							
18	24/19											
7				2.3	10	SW	19 in. light tan	n medium-coar	rse sand, little fine-coarse gravel, dry-moist, mediu	m dense		
12												
13 15	24/42				11							
_	24/13				12	CIAI	10: 1:1	1.	1 Pod. 6. 1	12 1		
7			-	4.4	12	SW	13 in. light tan	n meaium-coar	rse sand, little fine-coarse gravel, moist, shoe wet, i	nedium dense		
9					13							
13	24/13											
9				2.0	14	SW	13 in. light tan	fine gravel, li	ttle medium-coarse sand, trace coarse gravel (rour	nded), wet, medium den	se	
11				2.0								
13					15							
	24/16											
13	4 1			3.1	16	SW	16 in. light tan	n medium-coar	rse sand, little fine gravel (rounded), wet, medium	dense		
13	4 1	\ \ \ \ \			17		 					
24					1/		-					
15		\ \ \ \			18	SW	20 in light tan	medium-coar	rse sand, little fine gravel (rounded), wet, medium	dense		
17		\		2.3		311	g.n. tar	carani coai	and fine fire (tourded), we, menum			
21					19							
22	24/18											
7					20	GW	18 in. light tan	fine gravel, so	ome medium-coarse sand, trace coarse gravel (rou	nded), wet	·	
8												
Logged by: James Gatherer Date: 1/24/07												
						-	-		<u> </u>			
Drilling Contractor:				L.	.A.W.E		_	Driller:	Kevin McGoury			

	R						Job. No.	Client:	New York State Dep	artment of	Loca	ition:
(C)		EA E	ngineeri	ing, P.	.C.		14368.06		Environmental Cons			Amityville, NY
n 1			cience a			logv	Drilling Me	ethod:	B-61 mobile 4 and 1/	'4" inner diam		g Number:
						6)			H.S.A.		M	
		LOG OF SO	IL BORII	NG			Sampling N	Method:	140lb Hammer 2-in S	Split Spoon		
Coordi	nates:		Y 4508122		X 63492	2.08513				r r	Sheet	2 of 2
	nce Eleva	ition:		53.45"							Dri	lling
Referen	nce Desci	ription:	To	of PVC	:		Water Lev.		14.69 ft.		Start	Finish
		-					Date		1/25/2007			
							Time		7:03		1/24/07 11:41	1/24/07 14:33
							Surface Co	nditions	Asphalt			
Blow	Inches		PID		epth							
Counts	Driven/	Well Diagr	am (ppr	n) i	in	USCS	COLL	ECODI	DELON			
(140-lb)	Recvrd		ΗNι	_	eet	Log	SOIL D	ESCRI.	PTION			
7			2.	6 21		GW						
8												
7 7	4			22		EOB	End of boring	at 22 ft.				
	4			-		4						
	ł			-		1	1					
-	1		-			+	-					
	1					+						
				_								
	1					+						
	1					1						
	1											
				-		+						
				-		+						
	1		<u> </u>	-		+	-					
	1			\vdash		+	1					
	1			+		+						
	1					1						
	1											
	1											
	1											
									<u> </u>	<u> </u>	·	
	1											
					ļ_							
	1											
				<u> </u>		-						
	4			_		+	-					
	-			\vdash		+						
	1		-	-		+	1					
	1			\vdash		+						
ļ .							1					
Logged	by:		Ja	mes Ga	atherei	•		Date:	1/24/07			

Driller:

Kevin McGoury

Drilling Contractor:

L.A.W.E

		R EA Eng	gineering	r P.C		Job. No. 14368.06	Client:	New York State Department of		ation:					
2			_					Environmental Conservation		Amityville, NY					
		EA Scie	ence and	Tecnn	ology	Drilling Me	thod:	Hand dig to 5'		ig Number:					
		LOC OF COIL	DODING			C1: N	f - (1 1-	Geoprobe 66DR 4 and 1'4" H.S.A.	IVI	W-8					
Coordi	natoe	LOG OF SOIL	Y 4508081.995		1011 28137	Sampling M	tetnoa:	Hydraulic Push 5' 2-in Macrocore	Sheet	1 of 2					
	nce Eleva		52.7		1911.20137				Dr	illing					
	nce Descr		Top of			Water Lev.		14.27	Start	Finish					
reserves	ice Deser		-1			Date		1/25/2007	Juli	1111011					
						Time		15:20	1/25/07 12:25	1/25/07 14:10					
						Surface Cor	nditions	Grass							
Blow	Inches		PID	Depth											
Counts (140-lb)	Driven/	Well Diagran	41 /	in	USCS	COIL D	ECCDII	DTION							
(140-10)	Recvrd		HNu	Feet	Log	SOIL D			1 1 1						
			0.5	0	SM	Brown-grey fir	ne-coarse san	d, little fine gravel (rounded), little silt, asphalt, o	hunks, dry-moist						
				1	Sivi	Tan medium-c	oarse sand 1	ittle fine gravel (rounded) trace silt moist							
			1.1		SW	meaname	an medium-coarse sand, little fine gravel (rounded), trace silt, moist								
]		0.2	2		Tan-orange me	edium-coarse	sand, little fine gravel, trace silt, moist							
			0.2		SW										
				3		Orange mediu	m-coarse san	d, trace fine gravel, dry-moist							
				1		12: 1			1						
	60/44		0.2	4		13 in. tan medi	ium-coarse s	and, trace fine gravel (rounded) dry-moist, med	aense						
	00/44			5											
			0.7		SW										
			6.5	6		17 in. tan medi	ium-coarse sa	and, little fine gravel (rounded), dry-moist, medi	ım dense						
			6.5												
			0.5	7											
				0		16: 1:111	1:	Lind C							
			1.1	8		16 in. light tan	medium-coa	urse sand, little fine-coarse gravel, top 3-in iron st	ned , dry-moist, medium dense						
	1			9											
	60/47														
			0.4	10		19 in. light tan	medium-coa	rse sand, little fine-coarse gravel, dry-moist, med	ium dense						
			0.4		SW										
				11		<u> </u>									
	-			12		12 in 1:-1-++	modium -	was and little fine seems	modium dor						
				12		13 m. ngm tan	пешип-соа	rse sand, little fine-coarse gravel, moist, shoe we	, memam dense						
	1			13		1									
]	17	0												
]	\sim		14		13 in. light tan	fine gravel, l	ittle medium-coarse sand, trace coarse gravel (ro	unded), wet, medium dense						
	60/45														
			0.2	15	GP										
<u> </u>		\sim		16	SW	16 in light ton	modium coo	rse sand, little fine gravel (rounded), wet, mediu	m dansa						
				10	344	10 III. IIgitt tan	тешин-соа	nse sand, inde tine graver (rounded), wet, mediu	in dense						
			2.	17											
	1	1 7	36												
		\sim		18		20 in. light tan	medium-coa	rse sand, little fine gravel (rounded), wet, mediu	m dense	-					
	.														
	(0/25	\sim		19		 									
	60/25	\sim		20	CIAI	25 in light t	modium c	rea cand little fine gravel wat							
	1	\sim	0.8	20	SW	∠5-iii iignt tan	meuium-coa	rse sand, little fine gravel, wet							

Logged by:	James Gatherer	Date:	1/24/07
Drilling Contractor:	L.A.W.E	Driller:	Kevin McGoury

R								Job. No.	Client:	New York State Dep	partment of	Loca	ition:
		EA E	ngin	eering	, P.C.			14368.06		Environmental Cons		Albany Ave. A	Amityville, NY
y (C	_/_			ce and		olo	gy	Drilling Me	thod:	Hand dig to 5'			g Number:
							0,7			Geoprobe 66DR 4 ar	nd 1'4" H.S.A.		W-8
		LOG OF SO	OIL BO	ORING				Sampling N	lethod:	Hydraulic Push 5' 2-		Choot	2 of 2
Coordi	nates:		Y 45	508081.995	682 / Z 63	4911.	28137					Sneet	2 01 2
	nce Eleva			52.7									lling
Referen	nce Descr	ription:		Top of	PVC			Water Lev.		14.27		Start	Finish
								Date		1/25/2007		1 /05 /05 10 05	1 /05 /07 14 10
								Time Surface Co	ditions	15:20		1/25/07 12:25	1/25/07 14:10
DI.	Inches	l	ı	PID	Depth			Surface Col	iditions	Grass			
Blow Counts	Driven/	Well Diag		(ppm)	in		USCS						
(140-lb)	Recvrd			HNu	Feet		Log	SOIL D	ESCRIF	TION			
					21								
	1			0.5									
				1.1	22								
		7											
				0.2	23								
	ł				24								
	ł				24								
	l				25		EOB	End of boring	at 25 ft.				
	1												
	1												
]												
	ł												
	l												
	1												
	1												
	ł												
	ł												
	i												
	1												
	ł												
]												
<u> </u>													
-	ł				-								
-	ł												
					<u> </u>								
Logged	bv.			Iamo	s Gathe	ror			Date:	1/24/07			

Driller:

Kevin McGoury

Drilling Contractor:

L.A.W.E

		R				Job. No. Client: New York State Department of		Loca	Location:				
- 3		EA Engir	neering	g, P.C.		14368.06		Environmental Conservation	Albany Ave.	Amityville, NY			
0 1		EA Scien	ce and	Techn	ology	Drilling Me	ethod:	B-61 Mobile 4 and 1/4" inner diam.	Soil Borin	g Number:			
V.					03			H.S.A.		W-9			
		LOG OF SOIL B	ORING			Sampling N	Method:	140lb hammer 2-in. split spoon	Choot	1 of 2			
Coordi	nates:	Y	4508374.65	53 / Z 6349	01.47481				Sneet	1 01 2			
Referen	nce Eleva	tion:	53.4	19					Dri	lling			
Referen	nce Descr	ription:	Top of	PVC		Water Lev.		13.25	Start	Finish			
						Date		1/25/2007		. / . /			
						Time	1:::	14:00	1/24/07 8:08	1/24/07 10:07			
	To also a		PID	Depth		Surface Co	namons	Grass					
Blow Counts	Inches Driven/	Well Diagram	(ppm)	in	USCS								
(140-lb)	Recvrd	vven Diagram	HNu	Feet	Log	SOIL D	ESCRII	PTION					
	recviu		11110	0	Log	Topsoil	Lociti	11011					
	1					- open							
				1		Mottled light	grey very fine	e sand, some silt/iron stained fine-coarse sand, some	fine gravel, moist				
					SM								
	1			2									
						<u> </u>							
 	-			3	-	1							
	-			4									
	24/17			4									
7	21/17			5		4 in. mottled l	ight grev very	y fine sand, some silt/iron stained fine-coarse sand,	some fine gravel, moist				
15			0.2		SW		3 in. light tan medium-coarse sand, little fine gravel, moist						
19				6				-					
22													
				7									
				_									
	24/12			8									
7	24/12			0	SW	12:- 1:-1:	1:						
14	1		0.3	9	300	12 III. IIgiit tai	i ineurum-coa	rse sand, little fine-coarse gravel (rounded quartz),	ngnt non stanting, moist				
17	1			10									
19													
				11									
ļ				12									
 				10	CT1:	TAT	12.6						
 	1			13	GW	Water table @	13 IT.						
	1			14	SW	20 in, light tan	n medium-coa	urse sand, little fine-coarse gravel (rounded), light ire	on staining, wet				
6	24/20		0.4		511	_o ngin tan	caram-coa	graver (touridea), right no					
8	, ==			15									
8		\sim											
]			16									
ļ													
 				17									
1	1			10	_	 							
1	24/15			18	-	1							
- 5				19	SW	15 in, light tan	n medium-coa	urse sand, some fine-coarse gravel (rounded), wet					
5	-1		0.2					, , come and games (rounded), wet					
8	-1	\sim		20	SW								
9													
Logged	by:		Jame	es Gather	er		Date:	1/24/07					

- 00 7	Junies Gutnerer		1/21/01
Drilling Contractor:	L.A.W.E	Driller:	Kevin McGoury

®						Job. No.	Client:	New York State De	partment of	Loca	ntion:		
- (EA E	ngine	ering,	, P.C.			14368.06		Environmental Cor		Albany Ave. A	Amityville, NY
p 1			cience			olo	gv	Drilling Me	thod:	B-61 Mobile 4 and 1	1/4" inner diam.		g Number:
							05			H.S.A.	,		N-9
		LOG OF SO	OIL BO	RING				Sampling M	lethod:	140lb hammer 2-in.	split spoon	Choot	2 of 2
Coordii		_	Y 450	08374.653	3 / Z 6349	901.47	7481						
	ce Eleva			53.49									lling
Referen	ce Desci	ription:		Top of I	PVC			Water Lev.		14.27		Start	Finish
								Date		1/25/2007		1 /25 /07 12:25	1 /05 /07 14:10
								Time Surface Cor	ditions	15:20 Grass		1/25/07 12:25	1/25/07 14:10
Blow	Inches		P	PID	Depth			Surface Cor	iditions	Grass			
Counts	Driven/	Well Diag	_	ppm)	in		USCS						
	Recvrd	Ŭ		∃Nu	Feet		Log	SOIL D	ESCRIP	TION			
8					21		SW						
9													
					22		EOB	End of boring	@ 22 ft.				
			-										
			-										
			-										
			<u> </u>										
			-										
			-										
			H										
			⊢			\square							
						\vdash							
			⊢			\vdash							
						H							
			f										
			L										
Logged	by:	-		James	Gather	rer		-	Date:	1/24/07			

Driller:

Kevin McGoury

Drilling Contractor:

L.A.W.E

Appendix D Monitoring Well Purging/Sampling Forms

Well I.D.:			EA Person	noli		Client:					
well i.D.:	MW02		Joe Von Ud			NYSDEC	Ammityville				
Location:	1111102		Well Condi			Weather:	Ammilyviiie				
Ammityville,	NY		Good			Troumon.	Cloudy 45				
Sounding N			Gauge Dat	e:		Measurement R					
Water level			Jungo 2 m	27-Nov-07		PVC					
Stick Up/Do			Gauge Tim			Well Diameter (in):					
•	Down			1500)	`	2 Inches				
Purge Date	:				Purge Tim	ie:	1102	То	1126		
	28-Nov-07							24 Minutes			
Purge Meth					Field Tech	nician:					
	Peristalic Pur	np					Joe Von Uderitz				
				We	II Volume	!					
A. Well Dep	oth (ft):		D. Well Vo	lume (ft):		Depth/Height of	Top of PVC:				
	29.86			0.1632			29.86				
B. Depth to			E. Well Vol	lume (gal) C*l	•	Pump Type:					
	16.10			2.245632		Peristalic Pump					
C. Liquid D	epth (ft) (A-B)):	F. Five We	II Volumes (g	, , ,	Pump Designat	ion:				
	13.76			11.22816	1						
				Water Qua	lity Para	meters					
Time	DTW	Volume	Rate	pH	ORP	Temperature	Conductivity	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)		
1105	16.12	0.6	0.2	5.83	154	15.06	0.239	7.09	14		
1103	16.12	1.2	0.2	5.69	160	15.95	0.632	6.76	1		
1111	16.12	1.8	0.2	5.73	159	16.19	0.862	6.65	0		
1114	16.12	2.4	0.2	5.78	159	16.27	0.946	6.52	1		
1117	16.12	3.0	0.2	5.86	158	16.32	0.900	6.14	1		
1120	16.12	3.6	0.2	5.77	161	16.17	0.900	6.13	1		
1123	16.12	4.2	0.2	5.77	158	16.20	0.900	6.09	1		
1126	16.12	4.8	0.2	5.77	158	16.20	0.900	6.02	1		
T-1-1 0		5 d (1	!	4.0		O 1' T'		4.4	20		
	tity of Water I	Removed (L		4.8 JAV	-	Sampling Time: QA/QC Sample			30 one		
Samplers:)ato:				_	•					
Sampling D	ait.		28-Nov-07 Sample Type: Groundwa						uwaltı		
COMMENT	S AND OBSE	RVATIONS:		Water had n	o turbidity a	and was visibly free	of sediment				
COMMENT	0712 0202			vator nau n	o turbidity, a	ind was visibly nee	Or Scannent				

						T					
Well I.D.:			EA Person			Client:					
	MW06		Joe Von Ud			NYSDEC	Ammityville				
Location:			Well Cond	ition:		Weather:	0				
Ammityville,			Good				Cloudy 45				
Sounding N			Gauge Dat			Measurement F					
Water level				27-Nov-07		PVC					
Stick Up/Do			Gauge Tim			Well Diameter (in):					
	Down			1505			2 Inches				
Purge Date					Purge Tim	no:	813	То	834		
Furge Date	28-Nov-07				ruige iiii	ie.	013	21 Minutes			
Purge Meth					Field Tech	nnician:					
	Peristalic Pur	np					Joe Von Uderitz				
					II Volume	ļ					
A. Well Dep	oth (ft):		D. Well Vo	lume (ft):		Depth/Height o	f Top of PVC:				
	23.09			0.1632	!		23.09				
B. Depth to	Water (ft):		E. Well Vo	lume (gal) C*l	D):	Pump Type:					
	17.79			0.86496	1	Peristalic Pump					
C. Liquid D	epth (ft) (A-B)):	F. Five We	II Volumes (g	, , ,	Pump Designation	tion:				
	5.30			4.3248							
				Water Qua	ality Para	meters					
Time	DTW	Volume	Rate	Hq	ORP	Temperature	Conductivity	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)		
816	17.82	0.6	0.2	5.71	158	15.84	1.86	4.2	13		
819	17.82	1.2	0.2	5.60	162	15.98	2.47	3.96	37		
822	17.82	1.8	0.2	5.55	166	16.05	2.72	3.83	25		
825	17.82	2.4	0.2	5.51	170	16.05	2.82	3.70	23		
828	17.82	3.0	0.2	5.51	173	16.02	2.81	3.65	24		
831	17.82	3.6	0.2	5.51	173	16.05	2.78	3.72	31		
834	17.82	4.2	0.2	5.51	175	16.17	2.71	3.62	26		
Total Ouan	tity of Water I	Domoved (I	itoro\.	4.2		Sampling Time		ρ	40		
Samplers:	tity of water i	Kellioveu (L		JAV	_	QA/QC Sample			/MSD		
Sampling D)ato:			Nov-07	-	Sample Type:			ndwater		
Jamping L	aic.		20-1	1404-01	-	cample Type.		Giodi	iawatoi		
COMMENT	S AND OBSE	RVATIONS:		Water had no	o turbidity, a	and was visibly free	e of sediment				

Well I.D.:			EA Person	nel:		Client:					
	MW07		Joe Von Ud			NYSDEC	Ammityville				
Location:			Well Cond	ition:		Weather:	,				
Ammityville,	, NY		Good				Cloudy 45				
Sounding N	Method:		Gauge Dat	e:		Measurement R	ef:				
Water level				27-Nov-07		PVC					
Stick Up/Do	own (ft):		Gauge Tim	ie:		Well Diameter (i	in):				
	Down			1510)		2 Inches				
					In		700		7.1		
Purge Date	28-Nov-07				Purge Tim	ie:	723	To 21 Minutes	744		
Purge Meth					Field Tech	nician:					
J	Peristalic Pur	np					Joe Von Uderitz				
		•									
				We	II Volume	!					
A. Well Dep	oth (ft):		D. Well Vo	lume (ft):		Depth/Height of	Top of PVC:				
	22.08			0.1632			22.08				
B. Depth to	Water (ft):		E. Well Vol	lume (gal) C*	•	Pump Type:					
	17.12			0.809472			Peristalic Pump				
C. Liquid D	epth (ft) (A-B) 4.96):	F. Five We	II Volumes (g 4.04736		Pump Designat	ion:				
	4.30		<u> </u>	4.047 30)	<u> </u>					
				Water Qua	ality Para	meters					
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)		
726	17.18	0.6	0.2	6.8	149	16.32	1.46	4.93	4		
729	17.18	1.2	0.2	6.61	149	16.49	1.76	4.91	7		
732	17.18	1.8	0.2	6.28	150	16.70	2.18	4.82	1		
735	17.18	2.4	0.2	6.04	152	16.84	2.46	4.80	1		
738	17.18	3.0	0.2	6	153	16.89	2.49	4.77	1		
741	17.18	3.6	0.2	5.89	155	16.92	2.68	4.73	1		
744	17.18	4.2	0.2	5.86	157	16.94	2.74	4.70	1		
									<u> </u>		
Total Ouan	tity of Water	Pomovod (Li	tore).	4.2		Sampling Time:		7	45		
Гotal Quantity of Water Removed (L Samplers:		,	4.2 JAV	-	QA/QC Sample	-		licate			
•			Nov-07	_	Sample Type:	-		ndwater			
Sampling Date:			201		-	Jumpio Type.	-	Oloui			
COMMENT	S AND OBSE	RVATIONS:		Water had n	o turbidity, a	and was visibly free	of sediment				

Well I.D.:			EA Person			Client:				
	MW08		Joe Von Ud			NYSDEC	Ammityville			
Location:			Well Condi	ition:		Weather:				
Ammityville,	NY		Good				Cloudy 45			
Sounding N	/lethod:		Gauge Dat	e:		Measurement F	Ref:			
Water level	Meter			27-Nov-07			PVC			
Stick Up/Do	own (ft):		Gauge Tim	ie:		Well Diameter	(in):			
	Down			1515						
1										
Purge Date	:				Purge Tim	e:	922	To	943	
	28-Nov-07							21 Minutes		
Purge Meth					Field Tech	nician:				
	Peristalic Pur	mp					Joe Von Uderitz			
				\A/-	U. V I					
					I Volume					
A. Well Dep	` '		D. Well Vo			Depth/Height o	•			
D. Davida (a	23.07		E 14/-1111/-1	0.1632		D T	23.07			
B. Depth to	` ,		E. Well voi	ume (gal) C*I	•	Pump Type:				
C Limited D	16.72	١.	E Eive We	1.03632		Peristalic Pump Pump Designation:				
C. Liquia D	epth (ft) (A-B 6.35):	F. Five we	II Volumes (g 5.1816	, , ,	Pump Designa	tion:			
<u> </u>	0.55			5.1010						
				Water Qua	lity Para	meters				
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)	
925	16.74	0.6	0.2	5.44	163	14.67	0.90	4.79	155	
928	16.74	1.2	0.2	5.43	167	14.83	1.37	4.61	58	
931	16.74	1.8	0.2	5.45	172	14.88	1.53	4.44	23	
934	16.74	2.4	0.2	5.44	182	14.91	1.56	4.40	16	
937	16.74	3.0	0.2	5.44	182	14.93	1.58	4.36	12	
940	16.74	3.6	0.2	5.43	185	14.86	1.62	4.41	11	
943	16.74	4.2	0.2	5.40	190	14.82	1.68	4.46	13	
								_		
	tity of Water	Removed (L	,	4.2	_	Sampling Time			45	
Samplers:				JAV	-	QA/QC Sample	!		one	
Sampling D	Date:		28-1	Nov-07	=	Sample Type:		Grour	ndwater	
COMPACNIT	C AND CDC=	DVATIONS		\\// =: ==:==:::	and an alternative to the					
	S AND OBSE		المال المال		<u> </u>	ng, wasn't sure if I			ng up	
the well and	causing a littl	e turbidity. V	vell cleared t	ip quickly and	was no long	ger turbid and was	visibility free of se	eaiment.		

1										
Well I.D.:			EA Person			Client:				
	MW09		Joe Von Ud			NYSDEC	Ammityville			
Location:			Well Condi	ition:		Weather:				
Ammityville,			Good			1	Cloudy 45			
Sounding N			Gauge Dat			Measurement F				
Water level				27-Nov-07			PVC			
Stick Up/Do			Gauge Tim			Well Diameter	•			
	Down			1520		<u> </u>	2 Inches			
Purge Date	<u> </u>				Purge Tim	0:	1017	То	1038	
i uige Date	28-Nov-07				li uige iiiii	21 Minutes	1030			
Purge Meth					Field Tech	nician:				
	Peristalic Pur	mp					Joe Von Uderitz			
					I Volume					
A. Well Dep			D. Well Vo			Depth/Height o	•			
B. Depth to	22.10 Water (ft):		E Wall Val	0.1632 ume (gal) C*I		Pump Type:	22.1			
b. Deptil to	15.62		E. Well Voi	1.057536	,	Pump Type: Peristalic Pump				
C. Liquid D	epth (ft) (A-B) :	F. Five We	II Volumes (g		Pump Designation:				
Jon 2.194.1.1.2	6.48	,.		5.28768		l amp 200.g.u				
				Water Qua	ılity Paraı	meters				
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)	
1020	15.65	0.6	0.2	5.79	163	14.67	0.90	3.31	91	
1023	15.65	1.2	0.2	5.82	163	15.02	2.31	2.94	58	
1026	15.65	1.8	0.2	5.82	163	15.04	2.38	3.00	55	
1029	15.65	2.4	0.2	5.82	163	15.09	2.43	3.01	56	
1032	15.65	3.0	0.2	5.86	162	15.16	2.31	3.04	46	
1035	15.65	3.6	0.2	5.83	162	15.18	2.33	3.10	44	
1038	15.65	4.2	0.2	5.79	163	15.18	2.34	3.10	41	
T				4.0		o :: -:		4.0	240	
	tity of Water	Removed (L		4.2 JAV	•	Sampling Time			040	
Samplers:	Note:			Nov-07	-	QA/QC Sample	,		one ndwater	
Sampling D	oate:		20-1	NOV-07	-	Sample Type:		Glour	idwater	
COMMENT	S AND OBSE	DVATIONS:		Wall had a al	light turbidy	when it started an	mping, was was v	ricibly from of	f	
			hid prior to a		igni turbidy	when it started pu	inping, was was v	isibiy ilee Ol	1	
scullicit di	iu was no iong	jei visibily tul	urbid prior to sampling							

Well I.D.:	10100		EA Person			Client:	A			
	MW03		Joe Von Ud			NYSDEC	Ammityville			
Location:			Well Condi	tion:		Weather:	.			
Ammityville,			Good				Cloudy 45			
Sounding N			Gauge Date	e:		Measurement Ref:				
Water level				27-Nov-07						
Stick Up/Do			Gauge Tim			Well Diameter (
	Down			1525			2 Inches			
Purge Date	:				Purge Time	e:		То		
	Well Not Sam	npled								
Purge Meth	od:				Field Tech	nician:				
,							Joe Von Uderitz			
				Wel	I Volume					
A. Well Dep	oth (ft):		D. Well Vol	ume (ft):		Depth/Height of	Top of PVC:			
	30.08			0.1632			30.08			
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*l	D):	Pump Type:				
	17.30			2.085696						
							ion:			
12.78 10.										
				Water Qua	ality Parar	neters				
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)	
<u> </u>	•					•	•		<u> </u>	
Total Quan	tity of Water	Removed (L	iters):			Sampling Time:				
Samplers:	-		J	IAV	_	QA/QC Sample	•			
Sampling D	ate:				=	Sample Type:	•	Grour	ndwater	
					=		•			
COMMENT	S AND OBSE	RVATIONS:								

Well I.D.:			EA Person		Client:				
	MW04		Joe Von Ud			NYSDEC	Ammityville		
Location:			Well Condi	tion:		Weather:	.		
Ammityville			Good				Cloudy 45		
Sounding I			Gauge Date			Measurement R			
Water level				27-Nov-07			PVC		
Stick Up/D	` '		Gauge Tim			Well Diameter (i	-		
	Down			1530			2 Inches		
·									
Purge Date					Purge Tim	e:		То	
	Well Not San	npled							
Purge Meth	nod:				Field Tech	nician:			
							Joe Von Uderitz		
·									
				Wel	I Volume				
A. Well De	oth (ft):		D. Well Vol	ume (ft):		Depth/Height of	Top of PVC:		
	30.16			0.1632			30.16		
B. Depth to						Pump Type:			
C. Liquid Depth (ft) (A-B): F. Five Well Volum						Pump Designat	ion:		
12.89 10.5									
				Water Qua					
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)
Total Ouen	tity of Water	Damayad (I				Sampling Time:			
Samplers:	ility of water	Kelliovea (L		AV	-	QA/QC Sample			
Sampling [Date:				-	Sample Type:	•	Groun	ndwater
Camping L	Juio.				-	cample Type.	•	0.001	
COMMENT	S AND OBSE	RVATIONS.							
	- / 020 L								

Well I.D.:			EA Person			Client:				
_	MW05		Joe Von Ud			NYSDEC	Ammityville			
Location:			Well Condi	tion:		Weather:				
Ammityville,			Good				Cloudy 45			
Sounding M			Gauge Date			Measurement R				
Water level I				27-Nov-07			PVC			
Stick Up/Do			Gauge Tim			Well Diameter (i	-			
	Down			1530			2 Inches			
					,					
Purge Date:					Purge Tim	e:		То		
	Well Not Sam	npled								
Purge Meth	od:				Field Tech	nician:				
							Joe Von Uderitz			
				147.1	11/-1					
			T		I Volume					
A. Well Dep			D. Well Vol			Depth/Height of	-			
D D 41.4	29.78		- 14/ 111/ 1	0.1632		_	29.78			
B. Depth to	water (ft): 17.49		E. Well Vol	ume (gal) C*I 2.005728		Pump Type:				
C. Liquid De	epth (ft) (A-B):	F. Five Wel				ion:			
_	12.29			10.02864						
				Water Qua	lity Parar	neters				
Time	DTW	Volume	Rate pH ORP			Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(mS/cm)	(mg/L)	(ntu)	
T-1-1 0		D 1 (1)	· · · · · · · · · · · · · · · · · · ·			O				
Samplers:	tity of Water I	Removea (L		JAV	-	Sampling Time: QA/QC Sample	•			
	ata.			JA V	-	-	•	Croun	dwater	
Sampling D	ale:				-	Sample Type:		Giour	iuwatei	
COMMENTS	S AND OBSE	RVATIONS:								
JOHNERIN	J AND ODGE									

Well I.D.: EA Personnel: Client: MW-2 James Gatherer NYSDEC Location: Well Condition: Weather: AMW Materials Testing Good Light snow, cold Sounding Method: Gauge Date: Measurement Ref: 7-Mar-07 Top of Casing Stick Up/Down (ft): Gauge Time: Well Diameter (in): 7:50 2 in.					
Location: Well Condition: Weather: AMW Materials Testing Good Light snow, cold Sounding Method: Gauge Date: Measurement Ref: 7-Mar-07 Top of Casing Stick Up/Down (ft): Gauge Time: Well Diameter (in):					
AMW Materials Testing Good Light snow, cold Sounding Method: Gauge Date: 7-Mar-07 Top of Casing Stick Up/Down (ft): Gauge Time: Well Diameter (in):					
Sounding Method: Gauge Date: 7-Mar-07 Top of Casing Stick Up/Down (ft): Gauge Time: Well Diameter (in):					
7-Mar-07 Top of Casing Stick Up/Down (ft): Gauge Time: Well Diameter (in):					
Stick Up/Down (ft): Gauge Time: Well Diameter (in):					
' ' ' '					
7:50 2 in.					
Purge Date: Purge Time:					
7-Mar-07 7:50					
Purge Method: Field Technician:					
Bailer James Gatherer					
Well Volume					
A. Well Depth (ft): D. Well Volume (ft): Depth/Height of Top of F	PVC:				
29.95 0.17					
B. Depth to Water (ft): E. Well Volume (gal) C*D): Pump Type:					
13.93 2.7					
C. Liquid Depth (ft) (A-B): F. Five Well Volumes (gal) (E3): Pump Designation:					
16.02					
Water Quality Parameters					
Time DTW Volume Rate pH ORP Temp Cond	DO	Turbidity			
(hrs) (ft btoc) (liters) (Lpm) (pH units) (mV) (°C) (mS/cm)	(ug/L)	(ntu)			
750 13.93 0 -					
754 13.93 2.7 - 5.92 232 8.42 0.301	7.38	>999			
802 13.93 5.4 - 6.11 224 10.58 0.31	6.17	>999			
807 13.93 8.1 - 6.12 227 10.92 0.324	6.23	>999			
815 13.93 10.8 - 6.08 237 11.41 0.302	6.78	886			
820 13.93 13.5 - 6.22 237 11.30 0.309	6.74	731			
	4000				
	1320				
· · · · · · · · · · · · · · · · · · ·	1320				
Samplers: James Gatherer Split Sample With:					
Samplers: James Gatherer Split Sample With:	GW				

Well I.D.:			EA Person	nol:		Client:					
MW-3			James Gath			NYSDEC					
Location:			Well Condi			Weather:					
AMW Mater	ials Testing		Good	dion.		Sunny, cold	Ī				
Sounding I			Gauge Date	e:		Measurem					
Journaling .			6-Mar-07	.		Top of Casi					
Stick Up/De	own (ft):		Gauge Tim	e:		Well Diame					
			10:15			2 in.	,				
<u> </u>											
Purge Date	:				Purge Tim	ne:					
6-Mar-07					10:15						
Purge Meth	nod:		Field Technician:								
Bailer				James Gatherer							
				Well V	olume/						
A. Well De	oth (ft):		D. Well Vol	ume (ft):		Depth/Heig	ht of Top of	PVC:			
30.18	3		0.17	7							
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*	D):	Pump Type	e:				
15.24			2.5								
_	epth (ft) (A-B	3):	F. Five Wel	ll Volumes (g	jal) (E3):	3): Pump Designation:					
14.94			12.7	7							
<u> </u>											
			Water Quality Parameters								
Time	DTW	Volume	Rate	pН	ORP	Temp	Cond	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(ug/L)	(ntu)		
1015	15.24	0	-	ļ							
1020	15.25	2.5	-	4.96	252	9.98	0.781	7.25	190		
1026	15.25	5	-	5.74	262	11.72	0.53	7.35	315		
1032	15.25	7.2	-	6.00	254	12.67	0.494	7.28	387		
1038 1043	15.25 15.25	10 12.7	-	6.07 6.05	277 286	11.33 11.16	0.478 0.493	7.30 7.43	315 311		
1043	15.25	12.1	 	0.05	200	11.16	0.493	7.43	311		
				+							
Total Quan	tity of Water	Removed (gal):	12.7	_	Sampling 7	Γime:	1305			
Samplers:			James Gath	nerer	<u>-</u>	Split Samp	le With:				
			3/6/2007								
Sampling L					_						
	S AND OBSE				=	8260B, Metal					

MW-4 Location: AMW Materials Testing Good Sunny, cold Sounding Method: Gauge Date: 6-Mar-07 Stick Up/Down (ft): Purge Date: 6-Mar-07 Purge Method: Measurement Ref: Top of Casing Well Diameter (in): 2 in. Purge Time: 10:49 Purge Method: Field Technician:	Well I.D.:			IFA Daraan	mal.		Client:					
Location: Well Condition: Good Sunny, cold												
AMW Materials Testing Good Sunny, cold												
Sounding Method: Gauge Date: 6-Mar-07 Top of Casing		ials Testina			uon.			1				
Stick Up/Down (ft): Gauge Time: Well Diameter (in): 2 in.					۵۰							
Stick Up/Down (ft): Gauge Time: 10:49 Volume Volume	Souriaing i	netriou.		_	G.							
10:49	Stick Un/De	own (ft):			e:		_	_				
Purge Date: 6-Mar-07	onon opio	().		_				,.				
10:49 Field Technician: James Gatherer James Gatherer James Gatherer James Gatherer James	<u> </u>											
Field Technician: James Gatherer	Purge Date	:				Purge Tim	ne:					
Sampler James Gatherer James Gathe	6-Mar-07					10:49						
Well Volume	Purge Meth	od:										
Depth (ft): Depth (ft): Depth (ft): Depth (ft):	Bailer					James Gat	therer					
Depth (ft): Depth (ft): Depth (ft): Depth (ft):												
Sampling Date: Samp					Well V	/olume						
B. Depth to Water (ft):	A. Well De	oth (ft):		D. Well Vol	ume (ft):		Depth/Heig	tht of Top of	PVC:			
Total Quantity of Water Removed (gal): 2.5												
F. Five Well Volumes (gal) (E3): Pump Designation: 14.96 12.7	-				,	D):	Pump Type	e :				
Total Quantity of Water Removed (gal): 12.7 Sampling Date: 12.7 Sampler System 12.7 12.7 12.7 Sampling Date: 12.7 12.7 12.7 Sampler System 12.87 12.7 12.7												
Time DTW Volume Rate pH ORP Temp Cond (mS/cm) (ug/L) (ntu)	_		3):			gal) (E3):	Pump Designation:					
Time (hrs) DTW (ft btoc) Volume (liters) Rate (Lpm) pH (pH units) ORP (mV) Temp (°C) Cond (mS/cm) DO (ug/L) Turbidity (ntu) 1049 15.22 0 - 6.18 298 8.38 0.97 8.26 82 1053 15.23 2.5 - 6.14 286 7.83 1.33 8.15 36 1104 15.23 5 - 6.02 286 7.79 1.34 8.08 32 1110 15.23 10 - 6.03 291 8.04 1.36 7.89 31 1115 15.23 12.7 - 6.1 288 7.57 1.39 7.9 31 1115 15.23 12.7 - 6.1 288 7.57 1.39 7.9 31 Total Quantity of Water Removed (gal): 12.7 Sampling Time: Split Sample With: Sample Type: GW	14.90			12.7								
Time (hrs) DTW (ft btoc) Volume (liters) Rate (Lpm) pH (pH units) ORP (mV) Temp (°C) Cond (mS/cm) DO (ug/L) Turbidity (ntu) 1049 15.22 0 - 6.18 298 8.38 0.97 8.26 82 1053 15.23 2.5 - 6.14 286 7.83 1.33 8.15 36 1104 15.23 5 - 6.02 286 7.79 1.34 8.08 32 1110 15.23 10 - 6.03 291 8.04 1.36 7.89 31 1115 15.23 12.7 - 6.1 288 7.57 1.39 7.9 31 1115 15.23 12.7 - 6.1 288 7.57 1.39 7.9 31 Total Quantity of Water Removed (gal): 12.7 Sampling Time: Split Sample With: Sample Type: GW				W	ater Qualit	v Parame	eters					
(hrs) (ft btoc) (liters) (Lpm) (pH units) (mV) (°C) (mS/cm) (ug/L) (ntu) 1049 15.22 0 - 6.18 298 8.38 0.97 8.26 82 1058 15.23 5 - 6.14 286 7.83 1.33 8.15 36 1104 15.23 7.2 - 6.02 286 7.79 1.34 8.08 32 1110 15.23 10 - 6.03 291 8.04 1.36 7.89 31 1115 15.23 12.7 - 6.1 288 7.57 1.39 7.9 31 Total Quantity of Water Removed (gal): 12.7 Sampling Time: Split Sample With: Sample Type: GW	Time	DTW	Volume					Cond	DO	Turbidity		
1049					1 -	_			_	_		
1058	1049	15.22	0	-								
1104	1053	15.23	2.5	-	6.18	298	8.38	0.97	8.26	82		
1110	1058	15.23	5	-	6.14	286	7.83	1.33	8.15	36		
1115	1104	15.23	7.2	-	6.02	286	7.79	1.34	8.08	32		
Total Quantity of Water Removed (gal): 12.7 Samplers: James Gatherer Split Sample With: Sample Type: GW	1110	15.23	10	-	6.03	291	8.04	1.36	7.89	31		
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW	1115	15.23	12.7	-	6.1	288	7.57	1.39	7.9	31		
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW												
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW												
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW												
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW												
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW												
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW												
Samplers: James Gatherer Split Sample With: Sampling Date: 3/6/2007 Sample Type: GW	Total Quan	tity of Water	Removed (gal):	12.7		Sampling ⁻	Γime:	1257			
Sampling Date: 3/6/2007 Sample Type: GW		,				_						
	-	Date:				_			GW			
COMMENTS AND OBSERVATIONS: 1-52-189-GW-04 VOC 8260B, Metals ILM05.0, Cr+6 7196A	. •					_		-				
	COMMENT	S AND OBSE	RVATIONS	:	1-52-189-G	W-04 VOC	8260B Metals	s II M05.0. Ci	+6 7196A			

Well I.D.:	EA Personnel:		Client:	
MW-5	James Gatherer		NYSDEC	
Location:	Well Condition:		Weather:	
AMW Materials Testing	Good		Sunny, cold	
Sounding Method:	Gauge Date:		Measurement Ref:	
	6-Mar-07		Top of Casing	
Stick Up/Down (ft):	Gauge Time:		Well Diameter (in):	
	11:18		2 in.	
Purge Date:		Purge Tim	ne:	
6-Mar-07		11:18		
Purge Method:		Field Tech	nnician:	
Bailer		James Ga	therer	
	We	II Volume		

	Well Volume									
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:								
29.87	0.17									
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:								
15.47	2.4									
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:								
14.4	12.2									

			Wa	ter Quality	/ Paramet	ers			
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp (°C)	Cond (mS/cm)	DO (ug/L)	Turbidity (ntu)
1118	15.47	0	-						
1122	15.48	2.5	-	6.45	262	8.16	0.95	7.87	8
1129	15.48	5	•	6.71	282	7.42	0.91	7.9.	23
1135	15.48	7.5	-	6.73	277	8.04	0.9	6.75	22
1140	15.48	10	-	6.72	267	6.82	0.9	6.56	19
1145	15.48	12.5	-	6.77	257	7.25	0.9	6.53	17

Total Quantity of Water Removed (jal):	12.5	Sampling Time:	1251	
Samplers:	James Gath	erer	Split Sample With:		
Sampling Date:	3/6/2007		Sample Type:	GW	
COMMENTS AND OBSERVATIONS	:	1-52-189-GW-	05 VOC 8260B, Metals ILM05.0		

Well I.D.:			EA Person	nel:		Client:			
MW-6			James Gath			NYSDEC			
Location:			Well Condi			Weather:			
AMW Mater	ials Testing		Good			Sunny, cold	l		
Sounding I	Method:		Gauge Date	e:		Measurem	ent Ref:		
			7-Mar-07			Top of Cas	ng		
Stick Up/Do	own (ft):		Gauge Tim	e:		Well Diame	eter (in):		
			11:20			2 in.			
Purge Date	·:				Purge Tim	ie:			
6-Mar-07	•				11:20				
Purge Meth	nod:				Field Tech	nician:			
Bailer					James Gat	therer			
I -									
					olume				
A. Well Dep 23.06			D. Well Vol			Depth/Heig	tht of Top of	PVC:	
B. Depth to			0.17	ume (gal) C*	D)·	Pump Type	.		
15.54			1.28		<i>υ</i>).	Fullip Type	.		
	epth (ft) (A-E	3):		l Volumes (g	jal) (E3):	Pump Des	gnation:		
7.52	2		6.4						
1									
		_	Wa	ater Qualit	y Parame	eters			
Time	DTW	Volume	Rate	pН	ORP	Temp	Cond	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(ug/L)	(ntu)
1120	15.54	0	-						
1125	15.54	1.3	-	5.92	135	11.04	0.302	3.57	>999
1131 1135	15.54 15.54	2.6 3.9	-	5.87	170 194	11.73 12	0.287 0.285	4.92 5.06	>999 >999
1139	15.54	5.2	-	5.90 5.86	211	12.51	0.265	5.00	>999
1145	15.54	6.4	_	5.88	222	12.03	0.278	4.73	>999
						12.00			
Total Quan	tity of Water	Removed (ual).	6.4		Sampling ¹	Γime·	1345	
Samplers:	tity of Water	itellioved (James Gath	-	-	Split Samp		1040	
Sampling D	Date:		3/6/2007		-	Sample Ty		GW	
					-		•		
COMMENT	S AND OBSE	ERVATIONS	5 :			VOC 8260B, I		.0, Cr+6 719	6A,
				SVOC 8270	C. Pest/PC	B 8081A/8082	2		

Well I.D.:			EA Person	nel:		Client:			
MW-7			James Gath			NYSDEC			
Location:			Well Condi			Weather:			
AMW Mater	ials Testing		Good			Light snow,	cold		
Sounding N	/lethod:		Gauge Date	9:		Measureme	ent Ref:		
			7-Mar-07			Top of Casi	ng		
Stick Up/Do	own (ft):		Gauge Tim	e:		Well Diame	eter (in):		
			9:00			2 in.			
Purge Date	<u> </u>				Purge Tim	e:			
7-Mar-07	•				9:00				
Purge Meth	od:				Field Tech	nician:			
Bailer					James Gat	herer			
-									
			-		olume				
A. Well Dep 22.078			D. Well Vol 0.17	` '		Depth/Heig	ht of Top of	PVC:	
B. Depth to				ume (gal) C*	D).	Pump Type	٠.		
14.91	` '		1.22		- /·				
	epth (ft) (A-E	3):	F. Five Wel	l Volumes (g	al) (E3):	Pump Desi	gnation:		
7.17			6.1						
				ater Quality		ters			
Time	DTW	Volume	Rate	pH	ORP	Temp	Cond	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(ug/L)	(ntu)
900	14.91	0	-	F 00	252	10.54	0.070	C 1C	. 000
905 908	14.91 14.91	1.2 2.4	-	5.96 5.96	252 255	12.54 13.05	0.372 0.340	6.16 6.22	>999 >999
	14.91	3.6	_	5.80	257	12.49	0.361	5.85	>999
910							0.00.		
910 913	14.91	4.8	-	5.77	259	12.27	0.362	6.28	>999
		4.8 6.1	-	5.77 5.79	259 264	12.27 12.03	0.362 0.348	6.28 6.87	>999
913	14.91							.	
913	14.91							.	
913	14.91							.	
913	14.91							.	
913	14.91							.	
913	14.91								
913 921	14.91	6.1	-			12.03	0.348		
913 921	14.91	6.1	-	6.1			0.348	6.87	
913 921 Total Quant	14.91 14.91	6.1	gal):	6.1		12.03 Sampling 1	0.348	6.87	
913 921 Total Quant Samplers: Sampling D	14.91 14.91	6.1 Removed (gal): James Gath 3/7/2007	5.79 6.1	264	12.03 Sampling To Split Samp	0.348 Fime: le With: pe:	1300 GW	>999

Well I.D.:			EA Personnel:			Client:					
MW-8			James Gatherer			NYSDEC					
Location:			Well Condition:			Weather:					
AMW Mater	terials Testing Good Light snow, cold										
Sounding M	/lethod:		Gauge Date	e:		Measurem	ent Ref:				
			7-Mar-07	'-Mar-07			ng eter (in):				
Stick Up/Do	own (ft):		Gauge Tim	e:							
			10:40			2 in.					
I					T						
Purge Date	:				Purge Tim	e:					
7-Mar-07					10:40						
Purge Meth Bailer	ioa:				Field Tech James Gat						
Dallel					James Gat	nerei					
				Wall V	/olume						
A 14/- II D	4. (6)		In wallyar		olulle	Ina.nu.:	.l. (T	- DVO			
A. Well Dep			D. Well Vol	. ,		Depth/Height of Top of PVC:					
23.07 B. Depth to				0.17 E. Well Volume (gal) C*D):			· ·				
14.47			1.5			Fullip Type	Pump Type:				
	epth (ft) (A-B	3):		F. Five Well Volumes (gal) (E3):			Pump Designation:				
8.6		,	7.5				, p = 1.1.3				
<u> </u>											
			Wa	ater Qualit	y Parame	ters					
Time	DTW	Volume	Rate	pН	ORP	Temp	Cond	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(ug/L)	(ntu)		
1040	14.47	0	-								
1043	14.47	1.5	-	5.62	265	11.56	0.3	5.33	>999		
1048	14.47	3	-	5.66	254	12.4	0.012	5.53	>999		
1051	14.47	4.5	-	5.68	261	12.44	0.286	4.93	>999		
1055	14.47	6	-	5.65	266	12.27	0.205	4.76	>999		
1100	14.47	7.5	-	5.65	270	12.23	0.023	4.65	>999		
								 	+		
								+	+		
								+	+		
									 		
								1	†		
			· L	<u> </u>			· ·				
Total Quan	tity of Water	Removed (gal):	7.5		Sampling 1	Γime:	1430			
Samplers:			James Gath	nerer	_	Split Samp	le With:				
Sampling D	ate:		3/7/2007		- -	Sample Ty	pe:	GW			
COMMENT	S AND OBSE	RVATIONS	:			3260B, Metals B 8081A/8082		+6 7196A,			
				J. J J J J L I U	_ ,		-				

Well I.D.:			EA Person	nol						
MW-9			James Gatherer			Client: NYSDEC				
Location:			Well Condition:			Weather:				
AMW Mater	ials Testing		Good			Sunny, cold	I			
Sounding I			Gauge Date	٠.		Measureme				
Counting	victiiou.		7-Mar-07	••		Top of Casi				
Stick Up/De	own (ft):					Well Diame				
,	(/ .		13:27			2 in.				
1			•			•				
Purge Date):				Purge Time	e:				
6-Mar-07					13:27					
Purge Meth	nod:				Field Techi	nician:				
Bailer					James Gath	nerer				
				Well V	olume					
A. Well Dep	oth (ft):		D. Well Vol	ume (ft):		Depth/Heig	ht of Top of	PVC:		
22.11			0.17	7						
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*	D):	Pump Type) :			
13.5			1.46							
	epth (ft) (A-B):	F. Five Well Volumes (gal) (E3):			Pump Designation:				
8.61			7.3							
1			\A/-							
	1 1			1	y Paramet		T		I =	
Time	DTW (ft btoo)	Volume	Rate	pН	ORP	Temp	Cond	DO (v.m/l.)	Turbidity	
(hrs)	(ft btoc)	(liters)	Rate (Lpm)	1			Cond (mS/cm)	DO (ug/L)	Turbidity (ntu)	
(hrs) 1327	(ft btoc) 13.50	(liters)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp (°C)	(mS/cm)	(ug/L)	(ntu)	
(hrs) 1327 1330	(ft btoc) 13.50 13.5	(liters) 0 1.5	Rate (Lpm)	pH (pH units) 6.68	ORP (mV)	Temp (°C)	(mS/cm) 0.241	(ug/L) 7.61	(ntu) >999	
(hrs) 1327 1330 1335	(ft btoc) 13.50 13.5 13.5	0 1.5 3	Rate (Lpm)	pH (pH units) 6.68 6.03	ORP (mV) 251 242	Temp (°C) 9.1 11.02	0.241 0.202	7.61 7.2	(ntu) >999 >999	
(hrs) 1327 1330 1335 1340	(ft btoc) 13.50 13.5 13.5 13.5	0 1.5 3 4.5	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16	ORP (mV) 251 242 252	Temp (°C) 9.1 11.02 13.15	0.241 0.202 0.193	7.61 7.2 6.83	(ntu) >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73	0.241 0.202 0.193 0.199	7.61 7.2 6.83 6.52	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340	(ft btoc) 13.50 13.5 13.5 13.5	0 1.5 3 4.5	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16	ORP (mV) 251 242 252	Temp (°C) 9.1 11.02 13.15	0.241 0.202 0.193	7.61 7.2 6.83	(ntu) >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73	0.241 0.202 0.193 0.199	7.61 7.2 6.83 6.52	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73	0.241 0.202 0.193 0.199	7.61 7.2 6.83 6.52	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73	0.241 0.202 0.193 0.199	7.61 7.2 6.83 6.52	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73	0.241 0.202 0.193 0.199	7.61 7.2 6.83 6.52	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73	0.241 0.202 0.193 0.199	7.61 7.2 6.83 6.52	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345 1350	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6 7.5	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09 6.08	ORP (mV) 251 242 252 266	9.1 11.02 13.15 12.73 12.76	(mS/cm) 0.241 0.202 0.193 0.199 0.196	7.61 7.2 6.83 6.52 6.69	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345 1350 Total Quan	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5	0 1.5 3 4.5 6 7.5	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09 6.08	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73 12.76	(mS/cm) 0.241 0.202 0.193 0.199 0.196	7.61 7.2 6.83 6.52	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345 1350 Total Quan Samplers:	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5 tity of Water	0 1.5 3 4.5 6 7.5	Rate (Lpm) James Gath	pH (pH units) 6.68 6.03 6.16 6.09 6.08	ORP (mV) 251 242 252 266	9.1 11.02 13.15 12.73 12.76 Sampling T	(mS/cm) 0.241 0.202 0.193 0.199 0.196 Fime: le With:	7.61 7.2 6.83 6.52 6.69	>999 >999 >999 >999 >999	
(hrs) 1327 1330 1335 1340 1345 1350 Total Quan	(ft btoc) 13.50 13.5 13.5 13.5 13.5 13.5 tity of Water	0 1.5 3 4.5 6 7.5	Rate (Lpm)	pH (pH units) 6.68 6.03 6.16 6.09 6.08	ORP (mV) 251 242 252 266	Temp (°C) 9.1 11.02 13.15 12.73 12.76	(mS/cm) 0.241 0.202 0.193 0.199 0.196	7.61 7.2 6.83 6.52 6.69	>999 >999 >999 >999 >999	

Appendix E
Soil Vapor Logs

	R	Science & Technology			Project #: Project Name:	1436806 NYSDEC: AMW Materials Testing		
		6712 Brooklawn Pa	arkway, Suite 104		Location:	Ammityville, New York		
		Syracuse, NY 1321	1		Project Manager:	Jim Hayward		
Sample Location	Information:			_	_			
Site ID Number: 1-52	2-189				Sampler(s):	Joe Von Uderitz		
PID Meter Used (Mo	del, Serial #) :□	ppbRAE			Soil Vapor I.D. No.:	SV01		
SUMMA Canist	er Record:	11.1				<u> </u>		
	SOIL VAI	POR POINT		DUPLICATE SAMPLE (IF COLLECTED)				
Flow Regulator No.:	3205			Flow Regulator No.:	3183			
Canister Serial No.:	3771			Canister Serial No.:	3757			
Start Date/Time:	11/28/2007	714		Start Date/Time:	11/28/2007	714		
Start Pressure: (inches Hg)	27			Start Pressure: (inches Hg)	26			
Stop Date/Time:	11/28/2007	843		Stop Date/Time:	11.28/07	757		
Stop Pressure: (inches Hg)	4			Stop Pressure: (inches Hg)	4			
Sample ID: An	mmityville-1-52	-189-SV01		Sample ID: 1-5	52-189-Duplicate	e #1		
	chieved in enclosure for	r 99.	.1	Depth to sample poir	nt:	14-inches		
Tracer Gas Test:			-					
Tracer Gas test resul	t (% of Helium):	0	ı	Nearest Groundwate	r Elevation:	17.5-ft Below Ground Surface		
Noticeable Odor?		Non	ne	Additional info: Soil Vapor Construction Details Screen 8-inhes to 14-inches				
Purge Volume PID R	leading (ppb)	0		Glass Beads 6-inches to 14-inches Bentonite 0-6-inches				
Duplicate Sample?		Ye	es					
Outdoor Ambient Te	emperature:	45	5					
Wind Direction:		5-Wes	sterly					
Comments:		I						
Concrete slab wa	s approximately 3-	inches thick. From 3	3 to 14-inches was	a light brown me	dium sand with ov	ral cobbles.		
	11			0				
SV01 was located	l in the center of the	e existing concrete s	lab					
II .								

		EA Engineering and Its Affiliate EA Science & Technology		Project #:	1436806
		6712 Brooklawn Parkway, Suite 104		Project Name:	NYSDEC: AMW Materials Testing
÷ -		· · · · · · · · · · · · · · · · · · ·		Location:	Ammityville, New York
		Syracuse, NY 13211		Project Manager:	Jim Hayward
Sample Location	Information:		T.	1	<u> </u>
Site ID Number: 1-52	-189			Sampler(s):	Joe Von Uderitz
PID Meter Used (Mo	del, Serial #) :□	ppbRAE		Soil Vapor I.D. No.:	SV02
SUMMA Canisto	er Record:				
	SOIL VAI	POR POINT		DUPLICATE SAME	PLE (IF COLLECTED)
Flow Regulator No.:	3186		Flow Regulator No.:		
Canister Serial No.:	3881		Canister Serial No.:		
Start Date/Time:	11/28/2007	716	Start Date/Time:		
Start Pressure: (inches Hg)	30		Start Pressure: (inches Hg)		
((
Stop Date/Time:	11/28/2007	913	Stop Date/Time:		<u> </u>
Stop Pressure: (inches Hg)	3.5		Stop Pressure: (inches Hg)		
Other Sampling		·l 98.7	Depth to sample poin	t:	4.5-feet
	chieved in enclosure for	98.7	Depth to sample poin	t:	4.5-feet
		0	Nearest Groundwate	Elevation:	17.5-ft Below Ground Surface
Tracer Gas test result	(% of Helium):				
Noticeable Odor?		None	Additional info: Soil Screen 4-ft to 4.5 ft	Vapor Construction De	tails
Purge Volume PID R	eading (ppb)	0	Glass Beads 3.5-ft to 0-3.5-ft	4.5-ft	Bentonite
Duplicate Sample?		None			
Outdoor Ambient Te	emperature:	45			
Wind Direction:		5-Westerly			
Comments:					
0-1 topsoil and ov	val cobbles				
		94 96 M. 111			
1-4.5 Light brow	n ugnt tine sand w	ith silt. Many cobbles			
SV02 was located	l on the western fer	nce line approximately 15 feet northw	est of the sturcure	onsite.	
Sampler Signatur	re: Joe Von Uderitz				

		EA Engineering and Its	ring and Its Affiliate EA			1436806	
		Science & Technology			Project Name:	NYSDEC: AMW Materials Testing	
		6712 Brooklawn Parkway, Suite 104			Location:	Ammityville, New York	
		Syracuse, NY 13211			Project Manager:	Jim Hayward	
Sample Location	Information:						
Site ID Number: 1-52-	189				Sampler(s):	Joe Von Uderitz	
PID Meter Used (Mod	lel, Serial #) :□	ppbRAE			Soil Vapor I.D. No.:	Ambient Air	
SUMMA Caniste	r Record:						
	SOIL VAI	OR POINT			DUPLICATE SAM	PLE (IF COLLECTED)	
Flow Regulator No.:	3201			Flow Regulator No.:			
Canister Serial No.:	1336			Canister Serial No.:			
Start Date/Time:	11/28/2007	712		Start Date/Time:			
Start Pressure: (inches Hg)	30			Start Pressure: (inches Hg)			
Stop Date/Time:	11/28/2007	840		Stop Date/Time:			
Stop Pressure: (inches Hg)	5			Stop Pressure: (inches Hg)			
•	•	189-Ambient Air		Sample ID:			
Other Sampling		NTA NTA		Double to complete the	t.		
Helium percentage ac Tracer Gas Test:	hieved in enclosure for	NA NA		Depth to sample poir	it:		
Tracer Gas test result	(% of Helium):	NA		Nearest Groundwate	r Elevation:		
Noticeable Odor?		NA		Additional info:		Į.	
Purge Volume PID Re	eading (ppb)	NA		-			
Duplicate Sample?		NA					
Outdoor Ambient Ter	mperature:	45					
Wind Direction:		5-Westerly					
Commonte							
Comments:							
Summa Canister	was set up in cente	r of the site ontop of a st	ock pile				
Sampler Signatur	e: Joo Von Uderitz						

Appendix F
Field Survey Data

Survey Coordinates AMW Materials Testing Site (1-52-189) North Ammityville, New York

DESC	Y SPLONGIS	X_SPLONGIS	Y_UTM18N_N	X UTM18N N	ELEV	TOP OF PVC	TOP_OF_CAS	TYPE
BLDG COR		1149879.42191	4507658.10638		0.00000			Structure
BLDG COR		1150019.99828	4507662.45724		51.07855			Structure
CESSPOOL	199548.71340	1149856.64616	4508107.55606	634925.43676	53.14280			Dry Well
1-52-189-CP-01	199548.71340	1149856.64616	4508107.55606	634925.43676				Soil Sampling Location - Dry Well
CLF COR	198085.56997	1149860.52111	4507661.70679		0.00000			
CLF COR		1150038.58666			51.11050			Structure
DW-01		1149944.67143		634951.13127	52.43421			
DW-11	199626.44257	1149865.56805		634927.88565	53.57648			Catch Basin
DW-12		1149794.63981	4508129.70522		52.99707			Catch Basin
DW-14 DW-02	199880.30937 199910.64233	1149912.09450 1149952.61999	4508208.79292 4508218.17874	634941.18518	52.46826 52.44227			Catch Basin Catch Basin
DW-02	199910.04233			634955.58854	52.44227			Catch Basin
DW-03		1149944.21472	4508304.31454		52.46219			Catch Basin
1-52-189-DW-01		1149944.67143	4508207.31815		44.93421			
1-52-189-DW-02	199910.64233	1149952.61999			44.94227			Sediment Sampling Location - Catch Basin
1-52-189-DW-07		1149944.21472	4508304.31454		44.96219			Sediment Sampling Location - Catch Basin
1-52-189-DW-11	199626.44257	1149865.56805	4508131.27347	634927.88565	41.07648			Sediment Sampling Location - Catch Basin
1-52-189-DW-12	199622.10021	1149794.63981	4508129.70522	634906.28633	37.49707			Sediment Sampling Location - Catch Basin
1-52-189-DW-14	199880.30937	1149912.09450	4508208.79292	634941.18518	44.96826			Sediment Sampling Location - Catch Basin
GP-01		1149952.28236			53.22182			Groundwater Profile Point
1-52-189-GP-01-69-73		1149952.28236						Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-01-59-63		1149952.28236						Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-01-49-53		1149952.28236	4508205.36074					Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-01-39-43 1-52-189-GP-01-29-33		1149952.28236 1149952.28236						Groundwater Sampling Location - Groundwater Profile Point Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-01-29-33 1-52-189-GP-01-19-23		1149952.28236	4508205.36074					Groundwater Sampling Location - Groundwater Profile Point Groundwater Sampling Location - Groundwater Profile Point
GP-02		1149780.99720	4508205.36074		53.17219			Groundwater Profile Point
1-52-189-GP-02-69-73		1149780.99720	4508082.34896					Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-02-59-63		1149780.99720	4508082.34896					Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-02-49-53	199466.85819	1149780.99720	4508082.34896					Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-02-39-43	199466.85819	1149780.99720	4508082.34896	634902.66768				Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-02-29-33	199466.85819	1149780.99720	4508082.34896	634902.66768				Groundwater Sampling Location - Groundwater Profile Point
1-52-189-GP-02-19-23		1149780.99720	4508082.34896	634902.66768				Groundwater Sampling Location - Groundwater Profile Point
GPS PK 101		1149881.79000			54.01000			Survey Point
GPS PK 102	200479.58000			634971.48023	54.56000			Survey Point
MAG NAIL		1149732.69233		634888.99912	52.90000			Survey Point
MW-2	199916.76322	1149974.16569			53.28000	53.02000		Monitoring Well
1-52-189-GW-02		1149974.16569	4508220.11834					Groundwater Sampling Location - Monitoring Well
1-52-189-GW-03 1-52-189-GW-04	198087.77175	1149923.21293 1149951.32366	4507661.61616 4507662.69475					Groundwater Sampling Location - Monitoring Well Groundwater Sampling Location - Monitoring Well
1-52-189-GW-05		1149989.49854	4507663.67411					Groundwater Sampling Location - Monitoring Well
1-52-189-GW-06		1149776.77851	4508109.36066					Groundwater Sampling Location - Monitoring Well
1-52-189-GW-07	199597.86909							Groundwater Sampling Location - Monitoring Well
1-52-189-GW-08	199465.37736		4508081.99582					Groundwater Sampling Location - Monitoring Well
1-52-189-GW-09	200426.00002	1149787.98990		634901.47481				Groundwater Sampling Location - Monitoring Well
MW-3	198084.55480	1149923.21293	4507661.61616	634950.79448	50.69000	50.40000	50.69000	Monitoring Well
MW-4	198087.77175	1149951.32366	4507662.69475	634959.34923	50.54000	50.36000	50.54000	Monitoring Well
MW-5	198090.55325	1149989.49854	4507663.67411		50.72000	50.54000		Monitoring Well
MW-6	199555.54369	1149776.77851	4508109.36066		54.66000	54.07000		Monitoring Well
1-52-189-SB-06-12.5-15		1149776.77851	4508109.36066					Subsurface Soil Sampling Location - Monitoring Well
MW-7	199597.86909	1149846.20836		634922.08513	53.89000	53.45000	53.89000	Monitoring Well
1-52-189-SB-07-11-13	199597.86909	1149846.20836		634922.08513		 50 70000		Subsurface Soil Sampling Location - Monitoring Well
MW-8 1-52-189-SB-08-10-14.5		1149809.24408 1149809.24408			53.09000	52.78000		Monitoring Well Subsurface Soil Sampling Location - Monitoring Well
1-52-189-SB-08-17.5-20								Subsurface Soil Sampling Location - Monitoring Well Subsurface Soil Sampling Location - Monitoring Well
1-52-189-SB-09-10-12			4508081.99582					Subsurface Soil Sampling Location - Monitoring Well
MW-9		1149787.98990			54.34000	53.49000		Monitoring Well
SPIKE			4508051.84474					Survey Point
SPIKE			4507665.44548					Survey Point
SPIKE		1149768.72029			53.96000			Survey Point
1-52-189-SED-01			4507681.96000					Sediment Sampling Location - Recharge Basin
1-52-189-SED-02			4507689.02000					Sediment Sampling Location - Recharge Basin
1-52-189-SED-03			4507695.89000					Sediment Sampling Location - Recharge Basin
1-52-189-SED-04			4507689.43000					Sediment Sampling Location - Recharge Basin
1-52-189-SED-05			4507680.98000					Sediment Sampling Location - Recharge Basin
1-52-189-SED-06			4507683.54000					Sediment Sampling Location - Recharge Basin
1-52-189-SED-07			4507690.13000					Sediment Sampling Location - Recharge Basin
1-52-189-PT-01			4508108.14000					Soil Sampling Location - Excavation Pit
1-52-189-PT -02 1-52-189-PT -03			4508110.98000 4508100.66000					Soil Sampling Location - Excavation Pit Soil Sampling Location - Excavation Pit
TopCulvert			4507690.71000					Structure
ropoulvert			-501050.1 1000	JJ-JU1.12000				Otraotaro