

Geotechnical Environmental Water Resources Ecological

Final Site Characterization Report

East Hampton Hortonsphere Site

East Hampton, New York AOC Index No.: A1-0595-08-07 Site # 152213

Submitted to: National Grid 175 East Old Country Road Hicksville, NY 11801

Submitted by: GEI Consultants, Inc. 455 Winding Brook Drive

Glastonbury, CT 06033 860-368-5300

February 2010 093000-2-1201

Jerry Zak, Project Manager

Table of Contents

Abbreviations and Acronyms			iv	
<u>E></u>	<u>kecutiv</u>	<u>e Sumr</u>	nary	vi
1	Introd	luction		1
<u></u>	11	SC OF	niectives	2
	1.2	Site D	escription	2
		1.2.1	Current Ownership and Use	2
		1.2.2	Surrounding Property Use	3
		1.2.3	Site History	3
		1.2.4	Hortonsphere Construction Methods	3
		1.2.5	Potential Site Impacts	4
	1.3	Physic	al and Environmental Setting	4
		1.3.1	Regional Geology	5
		1.3.2	Regional Hydrology	5
		1.3.3	Water Use	6
		1.3.4	Climatology	6
	1.4	Previo	us Investigations	6
<u>2.</u>	Site C	haracte	erization Scope of Work	7
	2.1	SC Fie	eld Work	7
		2.1.1	Utility Mark Out	7
		2.1.2	Air Monitoring	8
		2.1.3	Soil Sampling and Temporary Monitoring Well Installation	8
			2.1.3.1 Surface-Soil Sampling	8
			2.1.3.2 Soil Borings	9
			2.1.3.3 Temporary Monitoring Well Installation	9
		2.1.4	Groundwater Sampling	10
			2.1.4.1 Purging	10
			2.1.4.2 Sampling	11
		2.1.5	Soil Vapor Sampling	11
		2.1.6	Data Management	11
		2.1.7	Survey	11
		2.1.8	Work Plan Modifications	12
<u>3.</u>	Site G	eology	and Hydrogeology	13
	3.1	Geolo	ду	13
		3.1.1	Fill	13
		3.1.2	Sandy Silt with Gravel	13

FINAL SITE CHARACTERIZATION REPORT	
NATIONAL GRID	
EAST HAMPTON HORTONSPHERE SITE	
FEBRUARY 2010	

	3.1.3 Sand and Gravel	13
3.2	Site Hydrogeology	14
<u>4. Findi</u>	ngs	15
4.1	Surface Soil	15
4.2	Subsurface Soil	18
4.3	Groundwater	18
4.4	Soil Vapor	19
4.5	Non-Aqueous Phase Liquid (NAPL)	19
5. Quali	tative Human Health Exposure Assessment	20
5.1	Exposure Pathways	20
	5.1.1 Surface Soil	20
	5.1.2 Subsurface Soil	21
	5.1.3 Groundwater	21
	5.1.4 Soil Vapor	22
5.2	QHHEA Summary and Conclusions	22
6. Ecolo	ogical Screening	24
6.1	Overview	24
6.2	Local and Regional Ecological Research and Site Survey	24
6.3	Ecological COPCs	26
6.4	Decision Key	26
<u>7. Conc</u>	lusions and Recommendations	27
Referen	ces	30

Table of Contents (cont.)

Tables

- 1 Climatological Norms and Means MacArthur Airport, Islip, New York
- 2 Sample Collection Rationale
- 3 Groundwater Depths and Elevations
- 4 Final Groundwater Parameters
- 5 Surface Soil Analytical Results for Detected Compounds
- 6 Subsurface Soil Analytical Results for Detected Compounds
- 7 Groundwater Analytical Results for Detected Compounds
- 8 Soil Vapor Analytical Results for Detected Compounds

Figures

- 1 Site Location Map
- 2 Current Configuration and Sample Locations
- 3 Cross section A-A'
- 4 Cross section B-B'
- 5 Groundwater Contours (June 2009) and Groundwater Analytical Summary (ug/L)
- 6 Surface Soil Analytical Summary (mg/kg)
- 7 Subsurface Soil Analytical Summary (mg/kg)

Appendices

- A Work Plan Approval Letter
- B Supplemental Site Characterization Letter Work Plan
- C Site Photographs
- D Sanborn Fire Insurance Maps, USGS Topographic Maps, Aerial Photographs, Hortonsphere Construction Information
- E Review of Long Island Gas Manufacture and Distribution (1907-1950)
- F Soil Boring Logs
- G Data Usability Summary Report and Electronic Data Deliverables (Electronic Only)
- H Decision Key

H:\WPROC\Project\KEYSPAN\11 Site Characterizations\East Hampton Hortonsphere\Final SC Report\EHH Final 2-16-10.doc

Abbreviations and Acronyms

AOC	Administrative Order on Consent
APWA	American Public Works Association
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CBI	Chicago Bridge and Iron Works
CFR	Code of Federal Regulations
COPC	Contaminants Of Potential Concern
DDD	Dichlorodiphenyldichloroethane
DDE	Dichlorodiphenyldichloroethylene
DDT	Dichlorodiphenyltrichloroethane
EDR	Environmental Data Resources
EPA	United States Environmental Protection Agency
FWRIA	Fish and Wildlife Resource Impact Analysis
GEI	GEI Consultants, Inc.
GPS	Global Positioning System
HAS	Hollow-stem Auger
LILCO	Long Island Light Company
LIPA	Long Island Power Authority
LNAPL	Light Non-aqueous Phase Liquids
NAPL	Non-aqueous Phase Liquids
NAVD	North American Vertical Datum
NOAA	National Oceanographic and Atmospheric Administration
NTUs	Nepholometric Turbidity Units
NY LS	New York State-Licensed Land Surveyor
NYSASP	New York State Analytical Services Protocol
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
ORP	Oxidation/Reduction Potential
OSHA	Occupational Safety & Health Administration
PAH	Polycyclic Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyl
PEL	Permissable Exposure Limits
PCE	Tetrachloroethene
PID	Photoionization Detector
PVC	Polyvinyl chloride
QHHEA	Qualitative Human Health Exposure Assessment
Sanborn	Sanborn Fire Insurance map
SC	Site Characterization
SCGs	Standards, Criteria, and Guidelines
SCOs	New York State Soil Cleanup Objectives
SCWP	Site Characterization Work Plan

Abbreviations and Acronyms (continued)

SCWA	Suffolk County Water Authority
SSC	Supplemental Site Characterization
SSCWP	Supplemental Site Characterization Work Plan
SVOC	Semivolatile Organic Compound
TAL	Target Analyte List
USC	Utility Survey Corp
USCS	Unified Soil Classification System
USGS	United States Geological Survey
VOC	Volatile Organic Compound
6NYCRR	Title 6, Chapter 100, Part 700-705 Of The New York State Code
	Of Rules And Regulations

OTHERs

Bgs	Below Ground Surface
L	Liter
mg/kg	Milligram Per Kilogram
mL	Milliliters
Mph	Miles Per Hour
ug/L	Microgram Per Liter

Executive Summary

GEI Consultants, Inc. (GEI) prepared this Site Characterization (SC) Report to describe environmental conditions at the East Hampton Hortonsphere site on behalf of National Grid (formerly KeySpan Energy). The Site is located at the intersection of Fresno Place and Railroad Avenue (west of the intersection of Race Lane and Railroad Avenue) in the Village of East Hampton, Suffolk County, New York (Site). The Site is currently owned by the Long Island Power Authority (LIPA) and includes a Hortonsphere (an aboveground spherical gas storage vessel), compressor station, and an electrical substation. While LIPA owns the property and the electric substation facilities, National Grid under an easement from LIPA, owns and operates a gas compressor station and Hortonsphere at the Site. The current Site use (industrial) is expected to continue into the future. The Hortonsphere on Site was the subject of the investigation and of this SC report.

National Grid's predecessors formerly owned and used the Site for manufactured gas storage (though gas manufacturing never occurred there) from circa 1936 to 1943. By 1956, the Hortonsphere was used for storage of natural gas. National Grid owns and maintains a chain-link fence that surrounds and prevents access to the Hortonsphere, which continues to serve as storage for natural gas.

Field investigations were conducted in accordance with a New York State Department of Environmental Conservation (NYSDEC)-approved Site Characterization Work Plan (SCWP), and this report is consistent with guidance in the NYSDEC *Draft DER-10 Technical Guidance for Site Characterization and Remedial Investigation* dated December 25, 2002 and Title 6, Chapter 100, Part 700-705 of the New York State Code of Rules and Regulations (6NYCRR) Part 375 Soil Cleanup Objectives (NYSDEC, 2006). The investigations and reporting were conducted pursuant to an Administrative Order on Consent (AOC) and administrative settlement #A1-0595-08-07 between National Grid and the NYSDEC.

GEI evaluated Site conditions based on storage and the associated potential impacts of both natural and manufactured gas. In addition to assessing the potential for releases related to gas storage, the objectives of the SC included evaluating the potential for human exposure and the potential for any release to have an adverse effect on the ecology surrounding the Site. The evaluation included collection and laboratory analysis of surface soil, subsurface soil, groundwater, and soil vapor samples.

The findings of the SC revealed that a few organic and inorganic compounds are present at the site in surface soil and groundwater at concentrations higher than the 6NYCRR Part 375

Restricted Residential Use Soil Cleanup Objectives (the "Residential SCOs") (NYSDEC, 2006), and the NYSDEC groundwater quality standards. Some of these compounds may be related to current and historical site uses and some (such as pesticides) may be a function of past local agricultural practices. Lead was present in three surface soil samples at concentrations above the Residential SCO (400 mg/kg). Each of the three samples was located at or near the Hortonsphere structure.

Fewer compounds exceed the Restricted Industrial Use SCOs (the "Industrial SCOs"), which are the most appropriate standards given the current and future anticipated site use. Based on the restricted standards and reasonable exposure scenarios, only benzo(a)pyrene, benz(a)anthracene, and arsenic are potentially accessible in a limited number of surface soil samples.

However, benzo(a)pyrene and benz(a)anthracene were present in only one primary sample above the Industrial SCOs. A duplicate of the same sample contained benzo(a)pyrene and benz(a)anthracene at concentrations below the Residential SCOs. As such, neither compound is believed to be common or widespread, their source is believed to be coal or asphalt dust, and they are not likely to present a realistic human health risk.

Arsenic was present above the Industrial SCO (16 mg/kg) in five samples, most of which were only slightly higher than the SCO. The highest concentration of arsenic was present in surface soil below gravel cover within the fence and locked gate around the Hortonsphere structure. Access to the other sample locations requires a deliberate effort to remove surficial grass and gravel to get to the soil just below. Furthermore, based on sampling for arsenic at eight other Long Island Hortonsphere sites, arsenic is not a Hortonsphere-related compound.

Arsenic was widely used in the past forty years as a pesticide and a herbicide in agricultural and industrial settings. Other non-Hortonsphere-related compounds such as pesticides and herbicides were detected at the Site as well, below Industrial use SCOs. These compounds, like arsenic, were widely used in the past in and around Long Island.

Soil vapor samples had minor detections of volatile organic compounds (VOCs). However, most of these VOCs are not associated with gas holder operations and may be related to surrounding land uses.

Application of a NYSDEC Decision Key (to determine the need for further ecological investigation) concluded that a Fish and Wildlife Impact Assessment is unnecessary. Contaminants of Potential Concern (COPCs) above the Restricted Industrial standards at the Site are generally inaccessible (and will remain so), or are not apparently related to gas storage.

Because lead is present at concentrations above the Residential SCO at and near the Hortonsphere, the fencing around the Hortonsphere will be lengthened and upgraded and a layer of ballast will be added to the area to ensure that exposure to lead is mitigated and the Industrial scenario is formally attained. In addition, an environmental easement will be imposed and a site management plan will be developed.

1. Introduction

GEI Consultants, Inc. (GEI) conducted a Site Characterization (SC) on behalf of National Grid (formerly KeySpan Energy), to evaluate environmental conditions at the East Hampton Hortonsphere Site, located in East Hampton, Suffolk County, New York (the Site). Figure 1 provides the Site location.

The SC was performed in response to an Administrative Order on Consent (AOC) (Index No. A1-0595-08-07) issued by the New York State Department of Environmental Conservation (NYSDEC), requiring environmental assessment of former alternative gas plants and Hortonsphere locations. The AOC is a general compliance requirement; it does not presume that environmental impacts are present due to Hortonsphere-related operations.

GEI prepared a SC Work Plan (SCWP) in November 2007, which was subsequently approved by NYSDEC in a letter dated November 16, 2007, to National Grid. The approval letter is provided in Appendix A. GEI implemented the SC fieldwork in November and December 2007; soil vapor re-sampling occurred on February 4, 2008 (after the analytical laboratory reported that soil vapor samples submitted in November 2007 were not properly logged in or handled). Field activities were conducted in general accordance with the SCWP and the AOC. Deviations from the approved SCWP are noted in subsection 2.2.7 of this report. This report meets the general requirements set forth in the *NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation* (December 25, 2002).

GEI conducted a Supplemental Site Characterization (SSC) at the Site, in response to NYSDEC's October 30, 2008 comment letter requesting additional characterization of surface soils, and resampling of metals in one groundwater well (EHS-GW-01). A SSC Work Plan (SSCWP) was prepared in January 2009, approved by NYSDEC, and implemented on February 18, 2009 (Appendix B).

The remainder of Section 1 discusses the SC objectives and scope, presents a description of the Site, the current use of the Site and surrounding properties, the history of the Site and the physical and environmental setting of the Site.

Sections 2 through 6 of this report convey the methods, findings, and interpretation of the Site data obtained during implementation of the SC. Section 2 discusses the SC scope of work and methods employed during the field investigation. Section 3 discusses the site-specific geology and hydrogeology underlying the Site. Section 4 presents the data and information acquired during field investigations. Section 5 presents a Qualitative Human Health Exposure Assessment (QHHEA), and Section 6 presents a Fish and Wildlife Resources Impact Analysis (FWRIA). Section 7 summarizes key findings and conclusions.


```
FINAL SITE CHARACTERIZATION REPORT
NATIONAL GRID
EAST HAMPTON HORTONSPHERE SITE
FEBRUARY 2010
```

1.1 SC Objectives

The SC was designed to meet three objectives:

- Assess whether gas storage in the Hortonsphere resulted in the potential release of Contaminants of Potential Concern (COPCs) at the Site (these COPCs are described in detail in subsection 1.2.5, below);
- Identify the potential for human exposure to COPCs that may have been released; and,
- Evaluate whether any such releases have had an adverse affect on the surrounding ecology.

Section 2, *Site Characterization Scope of Work*, describes in detail how the SC was executed to generate the data and information necessary to meet the three objectives presented above.

1.2 Site Description

The Hortonsphere is located on approximately 1.74 acres at the intersection of Fresno Place and Railroad Avenue (west of the intersection of Railroad Avenue and Race Lane) in East Hampton. The Hortonsphere facility encompasses a small portion of the overall parcel. Most of the parcel is occupied by an electrical substation. The current parcel and relevant features are depicted in Figure 2. The Site is defined by the Hortonsphere footprint and immediately adjacent surroundings. Photographs of Site features are provided in Appendix C.

The overall parcel is bounded to the east and south by privately owned properties, fronting on Race Lane to the east and Gingerbread Lane to the south. A gravel surface is present beneath the Hortonsphere.

The current boundaries are based on a 1972 survey map (Appendix D).

1.2.1 Current Ownership and Use

The 1.74 acres parcel is currently owned by the Long Island Power Authority (LIPA). LIPA also owns and operates the adjacent electrical substation. The Hortonsphere, associated compressor buildings, and security fencing around the Hortonsphere are owned and maintained by National Grid. National Grid operates the gas facilities on the Site under an easement from LIPA. The Hortonsphere is functional and is currently used for natural gas storage. Several inches of gravel cover the ground beneath and immediately surrounding the Hortonsphere. Future site use is expected to remain as it is today.

1.2.2 Surrounding Property Use

The adjoining property use is a mixture of commercial, industrial, and residential land use. Railroad tracks and associated parking areas reside to the north of the Site. Industrial and commercial buildings and uses are adjacent to the east, west, and southern boundaries of the property.

1.2.3 Site History

The East Hampton Electric Light Company plant operated at the Site from circa 1909 until sometime after 1920, based on 1909 and 1920 Sanborn Fire Insurance (Sanborn) maps. A railroad spur for loading and unloading materials, presumably coal for electric generation, is depicted on the insurance maps; this is consistent with 1909 and 1929 maps that depict the presence of Dynamos. The 1929 Sanborn map indicates that the Site was used as an electrical substation and by the Long Island Light Company (LILCO). This use remains apparent in the 1936 and 1943 Sanborn maps.

A small gasometer (a term that was sometimes used interchangeably with "Hortonsphere") was first depicted on the 1936 Sanborn map of the Site. According to the Sanborn maps, the gasometer was present until at least 1943. No gas production facilities were depicted on the Sanborn maps. The Hortonsphere currently stores and distributes natural gas. The location of the Hortonsphere is shown on Figure 2. Appendix D provides historical documentation.

The Sanborn maps illustrate structures and equipment present at the Site over time, and they demonstrate that gas operations did not occur on the parcel east of the Site. The Sanborn maps do not provide a conclusive record of property boundaries. In fact, in some of the maps boundaries are absent. Current property boundaries (Figure 2) are based on a 1972 survey map (Appendix D).

1.2.4 Hortonsphere Construction Methods

Spherical steel tanks called "Hortonspheres" were designed by George T. Horton, to contain gas under pressure (Morgan, 1935). Horton was the president of the Chicago Bridge and Iron Works (CBI), the firm that built the first Hortonsphere in the world, in 1923 (CBI, 2008). Horton demonstrated that the amount of steel required for a spherical structure was less than that required for a cylindrical tank of the same capacity, due to the structural advantages provided by the sphere. CBI built most of the Hortonspheres on Long Island, according to National Grid archive documents and CBI.

Morgan (1935) pointed out that Hortonspheres contained no moving parts or liquid seals (Appendix D), and did not mention the use of other metals in construction of the sphere.

It did indicate that "oil" might be present in an operational Hortonsphere, and that aluminum or other paints were used for exterior protection.

Ken Petro, archivist at CBI, was contacted (2008) to inquire about the use of metals other than steel in Hortonsphere construction. Petro reported that metals other than steel were not known to be used.

A review of Long Island gas manufacture and distribution (1907-1950) is included in Appendix E. No other information on the storage volume, storage tank maintenance requirements, supply network, distribution system, or demolition records of the East Hampton Hortonsphere are available.

1.2.5 Potential Site Impacts

Past storage of both natural and manufactured gas had the potential to release associated substances/chemical compounds. Some of the compounds, depending on the type and length of exposure, may pose a risk to human and ecological health. These substances are COPCs, as follow:

- Sulfur an odorant added to natural gas. Natural gas has no inherent, detectable odor; the addition of sulfur was a safety feature that alerts natural gas users to the presence of unburned gas in air.
- Polychlorinated Biphenyls (PCBs) PCBs were formerly used in cooling, lubricating, and sealing oils sometimes associated with compressor and valve stations. As a result, some PCBs may have entered the gas distribution and storage systems including the Hortonsphere.
- Lead is sometimes found at Hortonsphere sites because leaded paint may have been used to paint and prevent rusting of metal structures.
- Polynuclear aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylenes (BTEX) are fractions of petroleum hydrocarbons that can be associated with condensate from manufactured gas and natural gas.

1.3 Physical and Environmental Setting

The Site is located at latitude 40.96637°N and longitude 72.19791°W. The topography of the Site is generally flat and it lies at an elevation of approximately 50 feet above sea level. It is approximately 1.25 miles north of the Atlantic Ocean. The following sections provide an overview of the geologic and hydrologic setting.

1.3.1 Regional Geology

Long Island is within the Atlantic Coastal Plain physiographic province. The geologic units compromising the south fork of Long Island, in order of shallowest to deepest, consist of Holocene-aged beach and marsh deposits of the Upper Glacial Aquifer, thick sequences of Pleistocene-aged glacio-fluvial deposits of the Magothy Aquifer, and Cretaceous aged shallow marine and terrestrial sediments of the Lloyd Aquifer overlying a southeastward-sloping bedrock surface (Soren, Julian and Simmons, 1985). The Raritan Clay, an aquitard (a low-conductivity layer that restricts vertical groundwater flow), separates the Magothy Aquifer from the Lloyd Aquifer. The underlying bedrock consists of relatively impermeable Precambrian-aged crystalline metamorphic and igneous rock. The bedrock surface is considered the bottom hydraulic boundary of the groundwater flow system within the study area as well as for the rest of Long Island. In the vicinity of the Site, the thickness of unconsolidated deposits overlying bedrock is approximately 1,000 feet (Busciolano, R., 2002).

1.3.2 Regional Hydrology

The saturated sands and gravels of the Upper Glacial, Magothy and Lloyd deposits form Long Island's three major aquifers. Together, these constitute Long Island's Sole Source Aquifer System, as designated by the United States Environmental Protection Agency (EPA) pursuant to Section 1424(e) of the Safe Drinking Water Act. The uppermost aquifer is the Upper Glacial aquifer, which immediately underlies the Site. Recharge for the Magothy aquifer on the south fork of Long Island occurs through the Upper Glacial aquifer. A groundwater divide exists through the south fork of Long Island, with groundwater north of the divide flowing northward (into Peconic Bay, Noyack Bay, Sag Harbor Cove, Gardiners Bay and Napeague Bay) and groundwater south of the divide flowing southward toward various local bays and inlets or directly into the Atlantic Ocean (United States Geological Survey [USGS] Water Supply Paper 2073, 1982).

Horizontal hydraulic conductivities of the Upper Glacial aquifer on the south fork are reported to range from 159 feet/day (Fetter 1971) to 350 feet/day (USGS Water Supply Paper 2073). Vertical hydraulic conductivities within the Upper Glacial aquifer can be highly variable due to the presence of silty-clayey sand units identified throughout this aquifer in certain parts of the south fork. Hydraulic conductivities in the Magothy aquifer are approximately 50 feet per day (horizontal) and 1.4 feet per day (vertical). The Raritan Clay, which separates the Magothy Aquifer from the lower Lloyd Aquifer, exhibits hydraulic conductivities of 0.01 feet per day (horizontal) and 0.001 feet per day (vertical) (N.E. McClymonds and O.L. Franke, 1972; and McClymonds and Franke, 1970). These extremely low hydraulic conductivities effectively inhibit infiltration and discharge through the Raritan Clay.

1.3.3 Water Use

According to the Suffolk County Water Authority (SCWA) Service Area map, public water is provided to the Site and surrounding area. The water supply comes from the Upper Glacial, Magothy and Lloyd aquifers (Suffolk County Water Authority, 2007). Environmental Data Resources, Inc. (EDR) radius map indicates there are no public supply wells within a one-half mile of the Site.

1.3.4 Climatology

A summary of the monthly climatologic records collected at the MacArthur Airport in Islip, New York was reviewed and is provided as Table 1. The airport is located approximately 60 miles to the southwest of the Site and its weather records are considered representative of weather conditions at the Site. The average monthly maximum temperature was 61°F and the average monthly minimum temperature was 44°F. The lowest average monthly maximum temperature was 39°F recorded for January and the highest average monthly maximum was 83°F recorded for July. The average annual precipitation (rainfall) for the area is 46.25 inches with the largest monthly precipitation of 4.76 inches, occurring in March.

Selected climatic conditions were recorded during fieldwork in November and December 2007. The average maximum temperature was 51°F and 42°F, for November and December 2007, respectively. The average minimum temperature was 35 and 28°F, for November and December 2007, respectively. Precipitation was 3.22 in November 2007 and 4.64 inches in December 2007. Average wind speed was 9 miles per hour in November 2007 and 10 miles per hour in December 2007 (mph) (Table 1).

1.4 Previous Investigations

No previous environmental investigations related to the Site are known by GEI or National Grid to have been performed.

2. Site Characterization Scope of Work

Prior to the preparation of the SCWP, GEI conducted a reconnaissance of the Site and reviewed historic information sources as follow:

- 1957, 1960, 1980, and 1994 aerial photographs;
- 1909, 1920, 1929,1936, and 1943 Sanborn maps;
- 1943, 1966, and 1976 USGS topographic maps; and,
- EDR Radius Report.

The SC objectives (subsection 1.1), the potential presence of COPCs (subsection 1.2.4), and the historic information influenced the type of environmental sampling and the number and depth of sampling locations proposed in the NYSDEC-approved SCWP.

The remainder of Section 2 describes the methods and procedures applied during Site characterization. Detailed field procedures were provided in the SCWP. Fenley & Nicol Environmental, Inc. of Deer Park, New York advanced all soil borings and installed monitoring wells. GEI provided oversight of all field activities, installed soil-gas sampling points, and collected all samples. Test America Laboratories of Shelton, Connecticut, a New York State Analytical Services Protocol (NYSASP)-certified laboratory, completed all soil and groundwater sample analyses. Alpha Woods Hole Labs of Westboro, Massachusetts completed all analysis of soil vapor samples.

2.1 SC Field Work

GEI implemented the SC fieldwork in November and December 2007; soil vapor re-sampling was conducted in February 2008; SSC fieldwork was conducted in February 2009.

2.1.1 Utility Mark Out

Prior to commencement of intrusive activities, Utility Survey Corp (USC) of New Windsor, New York conducted a site-specific underground utility mark-out under the direct supervision of GEI personnel. A magnetic induction survey was conducted to identify potential underground utilities. Detected utilities were marked in accordance with American Public Works Association (APWA) Uniform Color Code For Marking Underground Utility Lines. In addition, GEI personnel hand-cleared at each boring location to a depth of 7 feet before mechanical drilling was initiated.

2.1.2 Air Monitoring

Perimeter air monitoring (upwind and downwind of the work zone) and monitoring of air in the breathing space of the work zone was performed continuously during drilling and material handling operations. Wind direction was determined from flagging mounted on the air monitoring station. A photoionization detector (PID) was used to monitor the levels of organic vapors in the ambient air and a Mini RAMTM PM-10 particle detector was used to monitor respirable dust particles (0.1-10 micrometer range) during the fieldwork. No vapors or particulates were detected during field operations by the monitoring equipment.

2.1.3 Soil Sampling and Temporary Monitoring Well Installation

This subsection describes the methodology used to collect soil samples during the SC. Table 2 presents a sample collection rationale and summary of laboratory analyses performed for each sample.

2.1.3.1 Surface-Soil Sampling

Surface-soil sampling was conducted in accordance with the SCWP at six locations at the Site (EHS-SS-01 through EHS-SS-06, Figure 2). Four additional surface soil samples were collected 50 to 100 feet outside the fenced confines of the Hortonsphere in accordance with the SSCWP (EHS-SS-07 through EHS-SS-10, Figure 2). The additional samples were collected to provide enhanced information regarding the presence of lead, arsenic, and certain PAHs, and to evaluate whether the Site might be the source of pesticides and herbicides at private groundwater wells cross-gradient of the site, per request of the New York State Department of Health (NYSDOH). The surface-soil samples were collected from the 0- to 2-inch soil interval below the vegetative root zone.

Surface soil samples were placed directly into certified pre-cleaned containers and held in icefilled coolers until the end of the day. The samples were then shipped overnight to Test America, Inc. (the analytical subcontractor) in Shelton, Connecticut for chemical analysis.

The surface soil samples were analyzed to determine whether COPCs were present. The specific analyses follow:

- Volatile Organic Compounds (VOCs) EPA Method 8260B
- Semivolatile Organic Compounds (SVOCs) by (EPA) Method 8270C
- Target Analyte List (TAL) metals by EPA 6000/7000 series
- Sulfide by EPA Method 376.1
- Sulfate by EPA Method 300
- PCB and Pesticides by EPA Method 8082
- Herbicides by EPA Method 8151A

FINAL SITE CHARACTERIZATION REPORT NATIONAL GRID EAST HAMPTON HORTONSPHERE SITE FEBRUARY 2010

The four surface soil samples collected during the SSC were additionally analyzed for the herbicides atrazine, simazine, and metalochlor by the following methods:

- Atrazine and simazine by EPA Method 8270C
- Metalochlor by EPA Method 8081

2.1.3.2 Soil Borings

Five soil borings were advanced using GeoProbe[®] direct-push methods to gather subsurface soil samples, evaluate subsurface soil conditions, and install monitoring wells EHS-GW-01 and EHS-GW-03. Soil samples were collected using dedicated 5-foot MacroCore[®] sampling sleeves. A truck-mounted hollow-stem auger (HAS) rig was used to install wells EHS-GW-02, EHS-GW-04, and EHS-GW-05 because the GeoProbe[®] rig, while effective to depth for collection of soil samples, was not able to advance augers to well installation depths.

Each sample was screened with a PID, visual and olfactory observations were recorded, and soils were continuously logged. At sampling locations overlain by asphalt, sampling began immediately beneath the asphalt and the underlying gravel base. Soil boring logs are provided in Appendix F. Excess soil (not collected for analytical sampling) from each sample interval in each boring was sealed in "zip-lock" bags, placed in a relatively warm location, and the headspace was screened later with a PID to determine if detectable organic vapors were present. PID readings did not indicate the presence of volatile compounds.

Two soil samples were selected for chemical analysis from each of the borings. The SCWP specified that the first sample should be collected from the most apparently impacted material in the upper 5 feet of the boring. The second sample was to be collected from most apparently impacted material beyond 5 feet. However, no impacts were apparent based on PID readings, visual assessment, or olfactory detection. Therefore, the first sample in each boring was collected from the 4.0 to 5.0 foot interval. The second sample at each boring was collected approximately 2 feet above the groundwater table.

Subsurface soil samples were analyzed for the same suite of chemicals as surface soil samples (subsection 2.1.3.1, above). Analytical detail is provided in Table 2.

2.1.3.3 Temporary Monitoring Well Installation

The five soil borings were converted to temporary monitoring wells (EHS-GW-01 through EHS-GW-05). All wells were constructed with 2-inch polyvinyl chloride (PVC) 0.01-inch slotted 10-foot screens to straddle the apparent groundwater table. This configuration allowed for detection of potential light, non-aqueous phase liquids (LNAPL), such as oil. All wells screens were installed from 41 to 51 feet below ground surface (bgs). The annular space surrounding the screen was filled with No. 2 sand to 2 feet above the top of the screen.

Per National Grid request, all wells were fitted with flush-mount "road boxes" set in a concrete collar to reduce the potential that the wells could be tampered with. These wells will be abandoned when they are no longer necessary.

2.1.4 Groundwater Sampling

Groundwater samples were collected from all the temporary monitoring wells. Groundwater levels were also obtained from all five monitoring wells at low and high tide on February 4, 2008 to evaluate possible tidal influences. An additional round of groundwater elevations was recorded on June 25, 2009, to determine if the February 2008 measurement at well EHS-GW-02 was anomalous. Table 3 provides a summary of groundwater elevations. Tidal stage information was obtained from the National Oceanic and Atmospheric Administration (NOAA).

2.1.4.1 Purging

Low-flow groundwater purging and sampling was specified in the SCWP, based on the assumption that the groundwater table would be relatively shallow. However, groundwater was deeper than expected (approximately 42 feet bgs) and the peristaltic pump planned for low-flow sampling has an effective depth of 25 feet and less (it is limited by atmospheric pressure). Therefore, a Grundfos submersible pump with a variable controller was used to purge and sample four of the four wells (EHS-MW-02 through EHS-MW-05). EHS-MW-01 was sampled using a disposable bailer in February 2008 (See subsection 2.1.8), and the sample was visibly turbid. EHS-MW-01 was re-sampled on February 18, 2009 using a low-flow bladder pump to reduce turbidity and generate additional data to evaluate the difference in metals concentrations between February 2008 and February 2009. The results are discussed in subsection 4.3.

Purging rates for the Grundfos pump were held to the lowest possible discharge rate, with slight variation caused by groundwater conditions. Typical pumping rates of 550 milliliters (mL) per minute were achieved. New clean pump tubing was used at each well and disposed of after each well was sampled.

Purged groundwater was monitored for field parameters (temperature, pH, conductivity, dissolved oxygen, oxidation/reduction potential [ORP], and turbidity) to ensure that representative formation water was sampled. Flow rates and purge volumes were recorded concurrently with field parameter measurements. Wells were sampled after at least one well volume was purged and the values of measured field parameters stabilized, as described in the SCWP. If the measured field parameters did not stabilize, then the sample was collected after at least three well volumes were purged from the well. Table 4 presents the final groundwater field parameter readings and physical observations of the purge water before sample collection.

2.1.4.2 Sampling

After purging, groundwater samples were collected and placed into laboratory-preserved containers provided by Test America Labs. Groundwater samples were analyzed for the same suite of compounds as surface soil and subsurface soil samples.

Initially, the analytical laboratory missed the holding time for SVOCs in sample EHH-GW-03, and the results for this sample were rejected during data validation. However, GEI resampled the well and acceptable, validated data are included in this report.

2.1.5 Soil Vapor Sampling

Soil vapor sampling was completed at three locations at the Site (EHS-SV-01 through EHS-SV-03, Figure 2). Table 2 presents the rationale for each soil vapor point and the analysis completed for each point.

Three temporary soil vapor sampling points were installed with a 6-inch stainless steel soil gas point approximately 5 feet below grade. The borings were backfilled with sand and a 2-inch layer of bentonite paste was used to adequately seal the ground/surface interface and prevent outdoor air infiltration into the sample. A helium tracer test was also performed to assess ambient air infiltration.

Three volumes of soil vapor were purged from each point prior to sampling. Samples were collected with a 2.7-liter (L) Summa canister and analyzed for VOCs and naphthalene, according to EPA method TO-15. Samples were collected over a thirty-minute period with flow controller at a rate of approximately 0.1 L per minute.

2.1.6 Data Management

NYSASP Category B data deliverables were provided and the analytical results were validated by GEI to assess the quality and usability of the data. All data were found to be valid and usable for the purposes of this SC.

2.1.7 Survey

At the conclusion of the SC field activities, a New York State-licensed land surveyor (NY LS #050146) located the borings, well locations, soil vapor points and surface soil sample locations. The survey was conducted to A-2 standards of accuracy, with an approximate horizontal and vertical precision of ± 0.02 feet. Surveyed well elevations are included in Table 3, and surveyed contours are shown in Figure 2.

Point coordinates were referenced to the New York State Plane Coordinate System (Long Island Zone, North American Vertical Datum [NAVD] 1983) as determined by differential Global Positioning System (GPS) observations.

FINAL SITE CHARACTERIZATION REPORT NATIONAL GRID EAST HAMPTON HORTONSPHERE SITE FEBRUARY 2010

Point elevations are expressed as heights above the ellipsoid NAVD 1988. This datum is not directly related to sea level; however, the record elevations related to the tidal benchmark at Bridgeport, Connecticut (closest recording station to the Site) indicates that mean sea level has an NAVD 1988 elevation of -0.22 feet (National Oceanic and Atmospheric Administration, 2007), indicating that within the general site vicinity, the data are compatible.

The locations of the four surface soil samples collected during the SSC on February 18, 2009, were measured with a tape from known (surveyed) points.

2.1.8 Work Plan Modifications

The SC was completed substantially as specified in the SCWP. Several modifications of the scope were made that did not affect the objectives of investigation, as follows:

- GeoProbe[®] equipment was not powerful enough to support installation of 2-inch PVC at locations EHS-GW-2, EHS-GW-4, and EHS-GW-5. Therefore, a truck-mounted 4.25-inch hollow stem auger rig was used to install these wells.
- Continuous sampling was performed on all subsurface borings except EHS-GP-05, where samples were collected from 0-10 feet bgs, 15-20 feet bgs, 25-30 feet bgs, and 40-45 feet bgs. The sampling was observed and documented by field staff; four intervals were not collected due to known uniformity of the subsurface and field work deadlines.
- Soil vapor samples were collected during the initial field investigation. However, the analytical laboratory mishandled the samples and re-sampling was necessary in February 2008.
- Peristaltic pumps could not be employed because depth to groundwater was significantly deeper than expected. EHS-MW-01 was purged and sampled using a disposable bailer because it was the only other sampling equipment on hand at the time. The remaining four wells, EHS-MW-02 thru EHS-MW-05, were purged and sampled using a 2-inch Grundfos submersible pump. Groundwater samples were collected over a period of 2.5 weeks due to monitoring well installation delays and equipment failures.

During data validation, the SVOC analytical results for sample EHS-GW-03 were rejected because the holding time was missed. The well was resampled for SVOCs only (March 3, 2008) and re-submitted for proper analysis. No SVOC compounds were detected and validation procedures confirmed the results.

3. Site Geology and Hydrogeology

This section documents the site specific-geology and hydrogeology and is based on soil boring and groundwater data acquired during the SC.

3.1 Geology

Surficial geology at the Site was determined through visual inspection of soil samples collected during the field investigation. Soil was described according to the Unified Soil Classification System (USCS) at each surface sample and soil boring location. The soil borings were installed to a maximum depth of 55 feet bgs. Three stratigraphic units, in order of increasing depth, were encountered during the SC activities:

- Fill unit;
- Sand unit, with silt and gravel; and,
- Sand and gravel unit.

The observed soil strata are within the beach marsh deposit geologic unit described in Section 1.

Two geologic cross sections are presented in Figures 3 and 4 to illustrate the site geology. Detailed geologic descriptions are provided in boring logs located in Appendix F. A general description of the stratigraphic units is provided below. Subsurface soil and groundwater analytical results are also presented in Figures 3 and 4. These are discussed in Section 4.

3.1.1 Fill

Coal and ash fragments were observed within the upper 2 feet in sample points positioned near the Hortonsphere. These combustion by-products are consistent with historic site use for electrical generation (subsection 1.2.3). Fill was not present beyond 2.0 feet bgs. As such, extensive filling at the Site apparently has not occurred.

3.1.2 Sandy Silt with Gravel

Native material below fill and/or asphalt was predominantly dark brown sandy silt. This layer extends to a maximum depth of 7 feet. No indications of mottling were observed.

3.1.3 Sand and Gravel

The sand and gravel unit extends uniformly from 7 feet bgs to the base of the deepest boring (55 feet bgs).

3.2 Site Hydrogeology

Monitoring wells EHS-GW-01 through EHS-GW-05 straddle the overburden groundwater table, encountered from approximately 41 to 44 feet below grade. Survey elevations from top of casing were used to determine absolute groundwater elevations that ranged from 7.05 to 7.65 feet NAVD 1988 at high tide. Table 3 presents a summary of depths to groundwater and groundwater elevations at high and low tide, as measured on February 4, 2008 and June 25, 2009.

There is no apparent tidal influence on groundwater elevations at the site. Based on 2008 groundwater elevations, groundwater flows approximately southeast at a gradient of approximately 0.00055 feet per foot. The measurement event in June 2009 demonstrated that the low tide measurement at EHS-GW-02 in February 2008 was anomalous. A groundwater contour map using June 2009 water elevations is presented in Figure 5.

4. Findings

This section of the report presents the physical and analytical results of samples collected to characterize surface soil, subsurface soil, groundwater, and soil vapor at the Site. Analytical results (detected compounds only) are presented in Tables 4, 5, 6, 7, and 8. A summary of analytical results is presented in Figures 3, 4, 5, 6, and 7. The analytical data presented in Tables 5 through 8 include qualifiers based on the validation. Appendix G presents the data usability summary report. An electronic version of the chain-of-custody forms, data validation reports, and the validated laboratory Form I reports are also included in Appendix G.

In accordance with NYSDEC regulations, soil results were compared to Title 6, Chapter 100, Part 700-705 of the New York State Code of Rules and Regulations (6NYCRR) Part 375 Restricted Residential Use Soil Cleanup Objectives (the "Residential SCOs") and Restricted Industrial Use SCOs (the "Industrial SCOs"). In the absence of Residential SCOs, results were considered against relevant standards, criteria, and guidelines (SCGs). Comparison of COPC concentrations at the Site to both Residential and Industrial use SCOs is helpful because Site impacts can be rapidly "screened" for both land use scenarios, with final significance determined based on actual current and expected future Site use.

Sections 5 and 6, respectively, present the findings of the QHHEA and the ecological screening assessment.

4.1 Surface Soil

Surface soil analytical results are presented on Table 5 (detected compounds only) and summarized on Figure 6.

Samples EHS-SS-01 and EHS-SS-02 were collected from grassy locations outside the Hortonsphere fence. Sample EHS-SS-03 was collected from bare soil (pathway) outside the fence around the Hortonsphere. Samples EHS-SS-04, EHS-SS-05, and EHS-SS-06 were collected inside the fence, beneath the Hortonsphere. Approximately 2 inches of gravel was present beneath the Hortonsphere; the samples were collected from soil below the gravel.

Additional surface soil samples were collected during the SSC to better define the presence of lead, arsenic, and PAHs and evaluate whether the Site might be the source of pesticides and herbicides in nearby private groundwater wells. EHS-SS-07 and EHS-SS-09 were collected in the grassed area outside the fenced confines of the Hortonsphere 50 feet and 100 feet to the west near the property boundary. EHS-SS-08 and EHS-SS-10 were collected in the grassed area outside the Hortonsphere 50 feet and 100 feet to the west near the property boundary. EHS-SS-08 and EHS-SS-10 were collected in the grassed area outside the Hortonsphere 50 feet and 100 feet to the south.

No VOCs or BTEX compounds were detected in surface soil samples collected at the Site. Therefore, VOCs are not an issue.

PAH compounds were detected in all the surface-soil samples collected at the Site, though most detections were below the Residential SCOs. Total PAHs ranged from 1.158 milligrams per kilogram (mg/kg) in sample EHS-SS-06 to 139.94 mg/kg in sample EHS-SS-03.

One soil sample, EHS-SS-03, contained concentrations of several PAH compounds in excess of the Residential SCOs. Benzo(a)pyrene and dibenz(a,h)anthracene exceeded the individual SCOs for Industrial use. However, the duplicate sample of EHS-SS-03 was free of PAHs in excess of the Residential PAH standards and the concentrations of PAHs and metals were within the same low order of magnitude as in the other samples that met the Residential SCOs; total PAHs in all of these samples were less than 4.2 mg/kg. Coal and asphalt fragments, presumably from historic site operations, were observed in the upper 1 foot of soil at the Site. These may have caused the elevated concentrations of PAHs in EHS-SS-03 and the PAH detections are not regarded as evidence of a release.

Lead was detected in all ten surface soil samples ranging from 25.4 mg/kg in EHS-SS-09 to 1,220 mg/kg in EHS-SS-05. Lead concentrations in three samples (EHS-SS-03, EHS-SS-04, and EHS-SS-05), exceeded the Residential SCO of 400 mg/kg. However, lead concentrations in all samples were less than the Industrial SCO of 3,900 mg/kg. The likely lead source is the Hortonsphere structure (from paint used to inhibit rust development). However, lead is not present in Site groundwater and subsurface soil lead concentrations are minimal (non-detected or below the Residential SCOs). No visual evidence of paint flakes or chips were noted during soil sampling activities.

Chromium was detected at concentrations above the Residential SCO (22 mg/kg) in three surface soil samples (EHS-SS-03, EHS-SS-04, EHS-SS-05) at 29.1 mg/kg to 114 mg/kg. The Industrial SCO for chromium is 800 mg/kg. It was not exceeded.

Sulfate and sulfide were detected in four out of six samples. NYSDEC has not established standards for either compound. However, both are common in soils and are not generally regarded as a health risk. The concentrations do not suggest release of a sulfur-containing natural gas odorant such as Mercaptan.

PCBs did not exceed either the Residential or Industrial SCOs.

All ten surface soil samples contained detectable concentrations of arsenic. Five of the ten samples (EHH-SS-01, EHH-SS-03, EHH-SS-04, EHS-SS-05 and EHS-SS-08) exceeded the Industrial SCO of 16 mg/kg. With the exception of sample EHS-SS-05, all samples contained relatively similar arsenic concentrations with a range between 4.5 and 67.8 mg/kg.

Sample EHS-SS-05 was collected from soil below gravel directly under the Hortonsphere and contained an elevated detection of 205 mg/kg. Access to this location is restricted by fencing and a locked gate.

Arsenic concentrations at eight other Long Island historic Hortonsphere sites were reviewed to evaluate whether arsenic is apparently correlated with Hortonsphere operations. At five of the sites (Bellmore, Lynbrook, Manhassett, Pinelawn, and Riverhead) arsenic was either not detected or was detected at concentrations less than the Residential standard. At Port Jefferson, only one out of six surface soil samples contained arsenic at a concentration above the Residential SCO. Based on these results, arsenic is not a Hortonsphere-related COPC.

Minor concentrations of arsenic can be attributed to background levels. Elevated concentrations may be related to past applications of pesticides or herbicides because they are persistent compounds, widely used agriculturally and industrially.

Pesticides were detected in all of the surface soil samples. However, their concentrations were less than the Residential SCOs. Pesticides including Dichlorodiphenyltrichloroethane (DDT) and its byproducts, Dichlorodiphenyldichloroethylene (DDE) and Dichlorodiphenyldichloroethane (DDD), were widely applied on Long Island to mitigate nuisance pests during the 1940s and 1950s (Dunlap, 1981). A 1957 photograph of the area surrounding the Site indicates agriculture was the dominant land use at that time. It is likely the concentrations are residual pesticide applications on the Site or in the vicinity. Furthermore, these compounds are persistent and not directly related to Hortonsphere gas storage. Atrazine, simizine, and metalochlor were not detected in any of the four surface soil samples collected at the request of NYSDOH, demonstrating the Site is not the source of these chemicals in nearby groundwater.

Copper concentrations were detected in all ten soil samples, at concentrations below the Residential SCOs. Copper is naturally occurring and commonly found in soil, but it is also used in agriculture as a fungicide and frequently found in coal and fly ash. In addition, these copper concentrations are well within background concentrations found in northeast US soils.

Finally, the frequency and magnitude of copper detections for nine other Hortonsphere sites on Long Island (Bellmore, Riverhead, Lynbrook, Saltaire, Port Jefferson, Pinelawn, Oyster Bay, Manhasset, and Southold) were compared to evaluate the potential for similar findings or common trends. There were no apparent trends; based on these data and information regarding Hortonsphere construction, the copper source does not appear to be Hortonsphere-related. Copper at the Site is more likely related to natural, agricultural, or former coal combustion.

4.2 Subsurface Soil

Subsurface soil is defined as soil deeper than 2 inches bgs. No unusual or petroleum-like odor, staining, or sheen was observed in subsurface soil at the Site. Analytical results of the subsurface soil samples are presented on Table 6 (detected compounds only) and Figure 7.

No VOCs, SVOCs, PCBs, metals, or pesticides were detected in samples collected at the site at concentrations above the Residential SCOs. Therefore, they are not a concern.

4.3 Groundwater

Groundwater analytical results acquired during the SC are presented in Table 7 (detected compounds only). A summary of analytical results is presented in Figure 5.

Benzene was detected in EHS-MW-02 at 2.8 micrograms per liter (μ g/L), exceeding the SCG of 1 μ g/L. A duplicate sample was collected from this monitoring well with a detection of benzene at 0.79 μ g/L, below the SCG. MW-02 is located upgradient of the Site and adjacent to Railroad Avenue. Considering the fact that benzene was not detected in subsurface soils or other groundwater samples, the low concentration of benzene in this groundwater sample is most likely the result of an upgradient, off site source.

No other VOCs were detected except for the chlorinated compound tetrachloroethene (PCE), in the EHS-GW-04 sample. The concentration was less than 1 ug/L, below the SCG. PCE is a solvent-related compound.

Benzo(a)pyrene, benzo(k) flouranthene, and chrysene were present at concentrations above the associated SCGs in well EHS-GW-05. These compounds are nearly insoluable in water and as such, may have been sorbed to suspended solids in the sample.

Lead was detected in EHS-MW-01 above applicable SCGs. EHS-MW-01 was sampled using a bailer and the sample was visibly turbid. Elevated lead concentrations are likely due to suspended soils in the sample. In addition, EHS-MW-01 is the most upgradient monitoring well and as such, it characterizes groundwater quality as it enters the property. EHS-MW-01 was resampled for metals on February 18, 2009 using a bladder pump and collecting the sample only after turbidity levels were less than 50 Nepholometric Turbidity Units (NTUs). The concentrations of all metals (except sodium) were significantly reduced, to non-detected or below the SCGs; lead was not detected at EHS-MW-01 in the February 18, 2009 sample.

Two insecticides, dieldrin and 4,4,4-DDD, were detected in EHS-MW-02 at concentrations of 0.012 and 0.03 mg/kg, respectively. The dieldrin detection exceeded the SCG of 0.004 μ g/L. Insecticides are most likely related to past pesticide applications on the Site or in the vicinity (subsection 4.1).

Arsenic, thallium, and chromium were initially detected in EHS-MW-01 above applicable SCGs. EHS-MW-01 is the most up-gradient monitoring well and as such, it characterizes groundwater quality as it enters the property. The elevated metal concentrations were apparently a function of suspended solids in the sample. As described above, when EHS-MW-01 was re-sampled in February 2009 (using a bladder pump and collecting the sample when turbidity was less than 50 NTUs), metals were either not detected or detected at concentrations below applicable SCGs.

Three other metals (sodium, manganese, and iron) were detected in four of the five groundwater samples above the NYSDEC SCGs. The broad detections suggest the constituents are naturally occurring and the relative uniformity of detected concentrations supports this conclusion.

4.4 Soil Vapor

Soil vapor analytical results for detected compounds are presented on Table 8 and are representative of the conditions above the water table. The soil vapor sample locations are identified in Figure 2.

New York State currently does not have any standards, criteria or guidance values for concentrations of compounds in soil vapor and there are no databases available of background levels of volatile chemicals in soil vapor.

Analysis of soil vapor samples indicated the presence of several VOCs. Many of these compounds are not associated with gas holder operations and may be related to various surrounding land uses.

4.5 Non-Aqueous Phase Liquid (NAPL)

No visual evidence of NAPL was observed during site characterization activities.

5. Qualitative Human Health Exposure Assessment

This section evaluates the qualitative potential for exposure posed to human receptors by COPCs detected in surface soil, subsurface soil, and groundwater at the site at concentrations in excess of the NYSDEC SCOs (Residential use) (subpart 375-6) and SCGs. If the concentrations of compounds detected at the site exceed the Residential SCOs or SCGs (for groundwater) they are addressed below, regardless of potential access to the impacts or their apparent or potential source. Soil vapor is addressed even though there are no standards.

5.1 Exposure Pathways

An exposure pathway describes the means by which a potential receptor may be exposed to contaminants originating from a site. Assessment of potential exposure pathways includes the following five elements (NYSDEC, 2002):

- (1) A contaminant source
- (2) Contaminant release and transport mechanisms
- (3) A point of exposure
- (4) A route of exposure
- (5) A receptor population

The NYSDEC and NYSDOH consider an exposure pathway complete when all five elements of an exposure pathway are documented. An exposure pathway may be eliminated from further evaluation when any one of the five elements comprising an exposure pathway has not existed in the past, does not exist in the present, and will never exist in the future (NYSDEC, 2002).

5.1.1 Surface Soil

The table below lists the compounds detected in at least one surface soil sample at the Site at concentrations higher than the Residential SCOs. Compounds in bold font exceed the Industrial SCOs.

Benz[a]anthracene	Dibenz[a,h]anthracene	
Benzo[a]pyrene	Indeno[1,2,3-cd]pyrene	
Benzo[b]fluoranthene	Arsenic	
Benzo[k]fluoranthene	Lead	
Chrysene	Chromium	

For the Residential use scenarios, potentially complete surface soil exposure pathways exist via ingestion, dermal contact, and inhalation for the compounds listed above. Potential receptors include Adult and Child Visitor, Adult Commercial Worker, Adult Utility Worker, and the

Adolescent Trespasser. However, a complete pathway for trespassers and visitors is contingent upon removal of the overlying gravel and/or grass at the affected locations. As such, the potential for actual exposure is minimal.

Several PAHs are present at levels above the Residential SCOs at an isolated location outside the fence surrounding the Hortonsphere (EHS-SS-03). Benzo[a]pyrene and dibenz[a,h]anthracene exceeded the Industrial SCOs. However, concentrations of PAHs in the *duplicate* sample at this location are well below the Residential SCOs. Therefore, the presence of these COPCs in surface soils at concentrations above the Residential SCOs is not an indication that they are related to former Hortonsphere operations or are a significant site-wide concern in terms of human exposure.

Lead is above the SCOs for Residential use at three locations (EHS-SS-03, EHS-SS-04, EHS-SS-05). However, when comparing the lead levels to the Industrial Use SCOs the lead concentrations are well below the clean up objectives. The same is true for chromium at EHS-SS-03, EHS-SS-04, and EHS-SS-05.

Arsenic exceeded the Industrial Use SCOs at five locations (EHS-SS-01, EHS-SS-03, EHS-SS-04, EHS-SS-05, and EHS-SS-08). However, only sample EHS-SS-05 greatly exceeded the standard and it is within the fenced and locked area beneath the Hortonsphere, which is covered with gravel, further reducing the potential for direct contact.

The concentrations of the other metals are within typical background concentrations found in the eastern United States (Shacklette and Boerngen, 1984) and the presence of arsenic is consistent with background levels found on the South Fork of Long Island.

5.1.2 Subsurface Soil

No VOCs, SVOCs, PCBs, metals, or pesticides were detected in samples collected at the site at concentrations above the Residential SCOs. Therefore, they are not an exposure concern.

5.1.3 Groundwater

The table below lists those compounds detected in groundwater at concentrations higher than the SCGs.

Chromium
Iron
Lead
Manganese
Sodium
Thallium

Potential receptors include Adult Commercial Worker and Adult Utility Worker. However, because groundwater is so deep (approximately 40 feet) it is well beyond the depths typically accessed by commercial/industrial/utility workers installing or repairing utilities such as sewers, pipelines, and other infrastructure. Therefore, direct contact with groundwater at the Site is not a realistically complete exposure pathway for current or potential future workers.

According to the Suffolk County Water Authority Service Area Map, municipal water is provided to all users in the surrounding area. Therefore, direct contact with or ingestion of groundwater at the Site is not a complete exposure pathway for current or potential future receptors. The groundwater impacts at the site are limited in magnitude and generally at low concentrations. The potential to affect downgradient groundwater quality is minimal.

5.1.4 Soil Vapor

Table 8 presents the soil vapor analytical results for detected compounds.

Analysis of soil vapor samples revealed the presence of VOCs. Many of the VOCs detected are not associated with gas holder operations. The sources of these chemicals are unknown and may be related to various surrounding land uses.

A potentially complete exposure pathway to VOCs in soil vapor exists for utility and construction workers. However, for most VOCs, no realistic risk is present because the soil vapor concentrations are less than those typically found in ambient air. Those VOCs whose concentrations exceeded background air were detected at concentrations lower than the Occupational Safety and Health Agency's Permissible Exposure Limits, which would be applicable in the utility/construction worker scenario.

5.2 QHHEA Summary and Conclusions

There are potentially complete pathways for human exposure to the following compounds that are present in surface soil at concentrations above the Residential SCOs:

Benz[a]anthracene	Dibenz[a,h]anthracene
Benzo[a]pyrene	Indeno[1,2,3-cd]pyrene
Benzo[b]fluoranthene	Arsenic
Benzo[k]fluoranthene	Lead
Chrysene	Chromium

Bold compounds exceed both the Residential and Industrial SCOs. However, the exceeding PAHs (in one sample only – EHS-SS-03) were not in excess of the SCOs in the associated duplicate sample. They were at levels below the Residential SCOs and asphalt or coal fragments in the primary sample are believed to be the reason for the elevated PAHs.

Arsenic concentrations exceeded the Residential and Industrial SCOs in four samples. A fifth sample (EHH-SS-05) exceeded the Industrial SCO by an order of magnitude, but was detected in the sample collected from within the locked fencing around the Hortonsphere. Actual access to this location is difficult and arsenic is not typically a Hortonsphere-related compound.

Subsurface soil did not contain impacts at concentrations higher than the associated Residential SCOs.

Groundwater contained the following compounds at concentrations higher than the SCGs.

Benzene	Chromium
Benz[a]anthracene	Iron
Benzo[k]fluoranthene	Lead
Chrysene	Manganese
Dieldrin	Sodium
Arsenic	Thallium

However, the site and surroundings are supplied with potable water and depth to groundwater is approximately 40 feet, eliminating potential direct exposures. The groundwater impacts at the site are slight and unlikely to affect downgradient water quality.

Soil vapor did contain several compounds at concentrations higher than "background" outdoor air, but actual risk is minimal because of dilution/dispersion when it migrates to ambient air, and general infrequency of intrusive activities.

Based on Industrial SCOs, there is one realistically potentially complete pathway, for arsenic in surface soil. However, site conditions, site use, and the chemical properties of arsenic limits this potential pathway. The Hortonsphere area is covered with gravel and is surrounded with a chain-link fence topped with barbed-wire. The area outside the Hortonsphere is covered with grass, limiting contact with bare soil. In addition, arsenic is tightly bound to soil, limiting its exposure potential to on-site and off-site receptors.

The current and reasonably anticipated future use of this Site is industrial. It is an active industrial site with the Hortonsphere still in use and there are no current plans to remove it. This reduces the potential of workers excavating at the Site and the likelihood of contact with chemicals in the shallow sub-surface soils.

6. Ecological Screening

This section of the reports describes the Site with respect to potential ecological resources and provides the information necessary to determine if a Fish and Wildlife Impact Assessment is required.

6.1 Overview

The Site is composed of an industrial/commercial cover-type, and mowed lawn with planted trees (Edinger et al. 2002).

6.2 Local and Regional Ecological Research and Site Survey

The New York Natural Heritage Program in conjunction with the NYSDEC indicates that there are certain species and habitats/communities of concern in the vicinity of the Site, but not on the Site. These are described below.

The Piping plover (*Charadrius melodus*) [endangered] and the Least tern (*Sternula antillarum*) [threatened] are known to use habitat in the general area. However, both species have diets and mating habits, they rely directly on shoreline habitat with open sandy regions (Poole et. al. 1992). These physical characteristics do not exist at the Site. These species are not expected to occur as on-site residents, and neither was observed within the Site boundary.

The Frosted elfin (*Callophrys irus*) [a threatened butterfly] and, the Coastal barrens buckmoth (*Hemileauca maia*) [special concern] may be present in the Site vicinity. The Frosted elfin (*Callophrys irus*) requires open woods, forest edges, and specifically wild blue lupin to reproduce. The Coastal barrens buckmoth (*Hemileauca maia*) requires scrub oak-pine sand barrens, oak woods, and oak trees, and was documented by the NY Natural Heritage Group over two miles upgradient of the Site. These species and their required habitat were not observed on or adjacent to the Site.

One endangered and two threatened vascular plant species potentially occur in the vicinity of the Site. These are the Orange fringed orchid (*Platanthera ciliaris*) [endangered], the Velvet bushclover (*Lespedeza stuevei*) [threatened], and the Southern arrowwood (*Viburnum dentatum var. venosum*) [threatened].

The Orange fringed orchid requires sandy meadows with relatively moist conditions and acidic soils often found adjacent to marshes (Luer 1975). The Velvet bush-clover requires dry upland woods and barrens habitat, and was documented by the NY Natural Heritage Group as present

approximately two miles west of the Site. The Southern arrowwood requires open woodland and wet neutral to acidic soil with partial shade. This species was documented by the NYSDEC as present approximately two miles east of the Site. However, the Site does not provide habitat required for these three plant species, and they were not observed on the Site.

Four significant ecological communities occur within the 2-mile radius of the Site. Maritime dunes and maritime freshwater interdunal swales were documented by the NY Natural Heritage Program as present adjacent to the golf course at Hook Pond and Atlantic Ocean. A pitch-pine forest community is documented over 2 miles upgradient of the Site. A coastal oak-heath forest is documented as present over two miles upgradient of the Site. These communities are located beyond the commercial/residential urbanized areas adjacent to the Site.

According to the National Wetlands Inventory database (US Fish & Wildlife Service, 1994), there are palustrine forested wetlands and two palustrine fresh surface water bodies (Hook Pond and Town Pond) within two miles of the Site to the southeast (Figure 1). Title 6, Chapter 100, Part 700-705 of the 6NYCRR defines these water bodies as "C" - fresh water bodies that may be suitable for primary and secondary recreation, as well as fish propagation and survival. However, Town Pond is completely surrounded by residential/commercial structures, while Hook Pond borders a golf course, residential areas to the north/northwest, and is located within a quarter mile to the Atlantic Ocean. There is no apparent migration pathway for contaminants to move from the Site to these significant communities or to the ponds.

A field reconnaissance survey conducted in October of 2007 did not provide evidence of apparent stress on the ecology at the Site, and did not identify the presence of species of concern discussed above. Species identified within the 2-mile radius of the Site during the field reconnaissance included:

Plants:

- Clipped lawn grasses
- Poison ivy (*Toxicodendron radicans*)
- Wild grape (*Vitis spp*.)
- Sugar maple (*Acer saccharum*)
- English ivy (*Hedera helix*)
- Sassafras (Sassifras albidum)
- White pine (*Pinus strobus*)

Birds:

- Ring-billed herring gull (*Larus deliwarensis*)
- House sparrow (*Passer domesticus*)
- Song sparrow (*Melospiza melodia*)
- Pigeon (*Columba fasciata*)


```
FINAL SITE CHARACTERIZATION REPORT
NATIONAL GRID
EAST HAMPTON HORTONSPHERE SITE
FEBRUARY 2010
```

- American robin (*Turdus migratorius*)
- Mourning dove (Zenaida macroura)
- Northern mockingbird (*Mimus polyglottos*)

Mammals:

• Gray squirrel (Sciurus carolinensis)

All of these species are common throughout the northeast and are not known to face particular challenges due to any COPCs that may be Hortonsphere-related. Furthermore, none were observed living at the Site. As such, these species are transient.

6.3 Ecological COPCs

Lead was detected in surface soil at concentrations exceeding the New York State Residential SCOs, but not in exceedance of the Industrial SCOs.

However, the Site will remain an industrial area with little or no attractive ecological habitat. Therefore, potentially Hortonsphere-related lead will not pose a risk to local ecological receptors because there will be little or no point of contact for transient ecological receptors.

6.4 Decision Key

The NYSDEC's FWRIA guidance provides a decision key to determine if a site requires the performance of a FWRIA. When the site-specific information presented above is used in the Decision Key, it concludes that a FWRIA is not required for the East Hampton Hortonsphere Site, primarily because the Site does not offer particularly attractive habitat for fish or wildlife. The executed Decision Key is presented in Appendix H.

7. Conclusions and Recommendations

The SC was undertaken per the terms of NYSDEC AOC No. A1-0595-08-07 to evaluate soil, soil vapor, and groundwater at the Site and determine if gas storage operations have impacted the environment. Analytical data for these media were evaluated with respect to Residential land use standards to evaluate the potential for human health risks in the event that site access is unrestricted.

The data were also compared to Industrial land use standards because actual land use is now, and is expected to remain, industrial. This use and the associated standards are a more realistic evaluation of potential health risks. This section of the report provides conclusions based on Industrial land use because the Site is currently zoned and used industrially, and future use will remain the same.

Surface Soil

No COPCs except benzo(a)pyrene, dibenz(a,h)anthracene (in one sample), and arsenic exceeded the Industrial SCO in five surface soil samples. The two PAH detections were not replicated in a duplicate sample and are not regarded as a realistic risk. Their presence is attributed to urban conditions and general petroleum product use, not former Hortonsphere operations.

Arsenic was detected in two samples (EHS-SS-04 and EHS-SS-05) within the fenced and locked area surrounding the Hortonsphere, where access is restricted to brief entry by site workers. The other three are outside the fence, but the entire area is covered with gravel and grass and actual potential risk is regarded as low. Furthermore, while arsenic may have been used at the site or in the area as a pesticide and/or herbicide, it is not directly associated with former industrial Hortonsphere operations.

Simizine, atrazine, and metalochlor were not detected in surface soil at the site. Based on their non-detection, the Site is not the source of these chemicals in private wells off-site.

Lead was present in three surface soil samples at or near the Hortonsphere structure at concentrations above the Residential SCOs.

Subsurface Soil

No chemicals detected in subsurface soil samples exceeded the Residential use SCOs.

Groundwater

Groundwater contained the following compounds at concentrations higher than the SCGs:

Benzene	Chromium
Benz[a]anthracene	Iron
Benzo[k]fluoranthene	Manganese
Chrysene	Sodium
Dieldrin	

Lead and arsenic were originally detected in only one groundwater sample (EHS-GW-01). However, resampling the well demonstrated that the lead, arsenic, and thallium were a function of dissolved solids in the sample. Neither lead nor arsenic were present in the low turbidity water collected during re-sampling.

Benzene and dieldrin were detected in excess of the SCGs in the sample from well EHS-GW-02. These impacts are limited to this well, and their source is believed to be off-site, at an upgradient location because this well location characterizes groundwater coming onto the Site.

Wells EHS-GW-03 and EHS-GW-04 were free of detectable impacts in excess of the SCGs.

Three PAH compounds in groundwater at well EHS-GW-05 were in excess of the SCGs. Other SVOCs and one pesticide compound were present at levels below the SCGs. This well is downgradient of separate commercial properties and relatively far from the Hortonsphere. The impacts are not believed to be Hortonsphere related.

Depth to groundwater at the site is approximately 40 feet. There are no wells on site and none are known to exist in the vicinity. This depth prevents access to groundwater, so there are no complete and realistic exposure pathways. Without a pathway, there is no risk.

Soil Vapor

Soil vapor did contain several compounds at concentrations higher than NYSDOH "background" outdoor air, but these concentrations are not evidence that actual risk is present. In addition, chlorinated compounds are not related to typical Hortonsphere operations. Finally, Occupational Health & Safety Administration (OSHA) established Permissible Exposure Limit (PELs) for some of the compounds present in soil vapor at the site are much higher than the associated soil vapor concentrations. Finally, when the vapors have migrated to open air, their concentrations would be reduced by dilution and dispersion. Based on all these factors and the OSHA PELs, actual risk is regarded as unlikely.

FINAL SITE CHARACTERIZATION REPORT NATIONAL GRID EAST HAMPTON HORTONSPHERE SITE FEBRUARY 2010

Human Health

The QHHEA identified potentially complete pathways between surface soils near the Hortonsphere (that contain PAHs and arsenic at levels above the Industrial Use SCOs) and people on Site. However, Hortonsphere access is restricted by fencing and other restrictions limit the potential for contact with these soils. The Hortonsphere is currently active and there are no plans to remove it. Current use is expected to continue into the future. No significant soil disturbance is expected, and the lack of disturbance minimizes the potential for contact with soil. Potable water is supplied to the Site and surroundings by the municipality. Groundwater is far deeper (approximately 40 feet) than typical excavation depths for foundations or infrastructure. Groundwater at the Site is not used and does not pose a risk.

Ecological Health

The NYSDEC's FWRIA guidance provides a decision key that determines whether impacts are potentially present at the Site. When the decision key is executed using site-specific data, the predicted likelihood of ecological impact is so low that additional assessment is not recommended (primarily because the Site does not provide useful habitat for sensitive ecological receptors).

Final Summary and Recommendation

The findings presented in this report demonstrate that a number of organic and inorganic compounds exceed Residential SCOs or screening values for surface soil, ambient outdoor air, and groundwater. These exceedances suggest that there may be potential risk to human receptors, in a residential setting, as a function of exposure to the compounds.

However, the site is currently used for Industrial practices that are expected to continue indefinitely. Therefore, Industrial standards should be used as guidance. When site analytical results are compared with Industrial standards, only three compounds in surface soil remain as potential concerns. When the locations of the detected compounds are considered, the exposure risk is minimal.

Gas storage operations at the Site have not significantly impacted the environment and do not pose a realistic threat to potential human or ecological receptors as long as site access remains controlled and site use remains industrial. Based upon the findings of the site characterization, the fencing around the Hortonsphere will be lengthened and upgraded and the area within its confines will be covered with a layer of ballast to ensure that exposure to lead in surface soil is mitigated and the Industrial standard is formally attained. In addition, an environmental easement will be imposed and a site management plan will be developed.

References

Busciolano, R., J. Monti, Jr., and A. Chu, 1998. *Water-Table and Potentiometric-Surface Altitudes of the Upper Glacial, Magothy, and Lloyd Aquifers on Long Island, New York, in March-April, 1997, with a Summary of Hydrogeologic Conditions*. United States Geological Survey. Water-Resources Investigations Report 98-4019.

Code of Federal Regulations (CFR), Part Number 1900, Occupational Safety and Health Standards, Subpart Z, Subpart Title Toxic and Hazardous Substances, Standard Number 1910.1000 Table Z-2.

Edinger, G. J., D. J. Evans, S. Gebauer, T. G. Howard, D. M. Hunt, A. M. Olivero. 2002. DRAFT Ecological Communities of New York State: Second Edition, New York Natural Heritage Program, Albany, NY. available at: <u>http://www.dec.state.ny.us/website/dfwmr/heritage/EcolComm.htm</u>.

Environmental Data Resources, 2007, EDR Radius Report, East Hampton Hortonsphere, Barnum Avenue, East Hampton, New York, 11777. April 10.

Fetter, C. W., Jr., 1971, Water Quality and Pollution-South Fork of Long Island, New York, *Water Resources Bulletin*, Vol. 10, No. 4, p. 779-788.

GEI Consultants, Inc., 2007. *Site Characterization Work Plan, East Hampton Hortonsphere Site*. October 2007.

Kabata-Pendias, A. and H. Pendias, 1992, *Trace Elements in Soils and Plants*. P.T. Kostecki, E.J. Calabrese, eds. Lewis Publishers, Inc. Chelsea, MI.

Luer, C.A., 1975. The Natural Orchids of United States and Canada Excluding Florida. New York Botanical Garden, Bronx, N.Y. 361 pp.

Morgan, Jerome J. 1935. A Textbook of American Gas Practice, Volume 2, Distribution and Utilization of City Gas. Jerome J. Morgan. Maplewood, New Jersey.

National Oceanic and Atmospheric Administration (NOAA), National Ocean Services, Tidal Datums. <u>http://tidesandcurrents.noaa.gov</u>, accessed December 17, 2007.

National Oceanic Atmospheric Administration (NOAA) Tides and Currents Homepage, undated. 2007 Water Level Tidal Predictions. <u>http://www.co-</u>

ops.nos.noaa.gov/get_predictions.shtml?year=2007&stn=2115+Bridgeport&secstn=Port+Jeffers on+Harbor+entrance&thh=%2b0&thm=2&tlh=%2b0&tlm=1&hh=*0.98&hl=*0.98&footnote=. Accessed October 16, 2007.

N.E. McClymonds and O.L. Franke, Summary of the Hydrologic Situation on Long Island, New York, as a Guide to Water Management Alternatives: U.S. Geological Survey Professional Paper 627-F. U.S. Geological Survey, 1972. pp. 59.

N.E. McClymonds and O.L. Franke, Water Transmitting Properties of Aquifers on Long Island, New York; U.S. Geological Survey Professional Paper 627-E. U.S. Geological Survey, 1970. pp. 24.

New York State Department of Environmental Conservation (NYSDEC), 2002, Draft DER-10 Technical Guidance for Site Investigation and Remediation.

New York State Department of Environmental Conservation (NYSDEC), 2007, Environmental Site Database Search. <u>http://www.dec.ny.gov/chemical/8437.html</u>, accessed May 2007.

New York State Department of Environmental Conservation (NYSDEC), *New York State Code of Rules and Regulations*, 6NYCRR Title 6, Chapter 100, Part 700-705.

New York State Department of Environmental Conservation (NYSDEC). 2006. *Remedial Program Soil Cleanup Objectives*, Environmental Conservation Law, Chapter IV, Subpart 375-6. NYSDEC, 2001, New York State Code of Rules and Regulations, 6NYCRR Title 6, Chapter 100, Part 700-705 and Part 925.6.

New York State Department of Health (NYSDOH) 2006. *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. October 2006. Prepared by the New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation.

Petro, Ken. Chicago Bridge and Iron. Personal Communication. May 2008.

Poole, A., P. Stettenheim, and F. Gill. Eds. 1992. The Birds of North America, No 2. Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union.

Shacklette, H.T., and Boerngen, J.G., 1984. *Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States*. U.S. Geological Survey Professional Paper 1270. 105p.

Soren, Julian and Simmons, Dale L., 1985. *Thickness and Hydrogeology of Aquifers and Confining Units Below the Upper Glacial Aquifer on Long Island, New York*. United States Geological Survey. Water-Resources Investigations Report 86-4175.

Suffolk County Water Authority. http://www.scwa.com, accessed on November 30, 2007.

United States Environmental Protection Agency (USEPA), 2007, Ecological Soil Screening Levels, viewed 19 December 2007, < <u>http://www.epa.gov/ecotox/ecossl/</u>>.

United States Census Bureau, Suffolk County, New York. *State and County Quick Facts*. http://quickfacts.census.gov/qfd/states/36/36103.html. Accessed November 28, 2007.

United States Environmental Protection Agency (EPA), 1989, *Risk Assessment Guidance for Superfund, Human Health Evaluation Manual (Part A), Interim Final, Office of Emergency and Remedial Response,* EPA/540/1-89/002.

University of California, Sea Grant Extension Program. <u>http://seagrant.ucdavis.edu/CoatingPerformanceUpdate2007.pdf</u>, accessed on December 17, 2007.

U.S. Fish and Wildlife Service, 1994. National Wetlands Inventory. National Wetlands Inventory Data. St. Petersburg, Florida.

USGS Water Supply Paper, 1982. Geohydrologic appraisal of water resources of the South Fork, Long Island, New York: U.S. Geological Survey Water-Supply Paper 2073, 55 p.

Weather Channel, MacArthur Airport. <u>http://www.weather.com</u>, accessed on November 27, 2007.

Weather Underground, MacArthur Airport. <u>http://www.wunderground.com</u>, accessed on November 27, 2007.

Tables

Table 1Climatological Norms and Means - MacArthur Airport, Islip, New YorkEast Hampton Hortonsphere SiteEast Hampton, New York

Month:	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Climatic Averages for MacArthur Airport, Islip, New York													
Precipitation (inches)	4.27	3.33	4.76	4.13	3.9	3.71	2.93	4.48	3.39	3.36	3.86	4.13	46.25
Average Maximum Temperature (°F)	39	41	48	58	69	77	83	82	75	64	54	44	61
Average Minimum Temperature (°F)	23	24	31	40	49	60	66	64	57	45	36	27	44
Climatic Averages for MacArthur Airport, Islip, New York 2007													
Precipitation (inches)	4.11	2.32	4.97	6.72	1.57	2.88	6.5	2.96	1.31	1.98	3.22	4.64	
Average Temperature (°F)	36	27	39	48	61	69	74	73	67	61	43	35	
Average Maximum Temperature (°F)	43	34	47	56	71	77	81	80	76	69	51	42	
Average Minimum Temperature (°F)	29	20	29	39	50	60	66	65	58	53	35	28	
Average Wind Speed (mph)	10	12	11	11	9	9	8	7	8	9	9	10	

Notes:

All data was collected from the U.S. Weather Service weather station located at the MacArthur Airport in Islip, New York.

Climatic Averages for MacArthur Airport were obtained from http://www.weather.com, accessed on February 4, 2008.

2007 Monthly average temperature (degrees Fahrenheit) and precipitation data (inches) were obtained from Weather Underground, http://www.wunderground.com, accessed February, 4 2008.

Table 2 Sample Collection Rationale East Hampton Hortonsphere Site East Hampton, New York

			1	Number of S	Samples	0B)	ء 0C)	als 00)	EPA	A 300)	es 1A)	icides 82)	-15)	nizine 0C	llor d 8081
Sample I.D.	Sample Location	Sample Rationale	Soil	Soil Vapor	Groundwater	VOCS (EPA 826	SVOC: (EPA 827	TAL Met (6000/70	Sulfide (E 376.1)	Sulfate (EP.	Herbicid (EPA 815	PCBs/ Pest (EPA 80	VOCS (EPA TO	Atrazine Sir EPA 827	Metaloch EPA Methoo
		Subsurface Soil	Borings	and Tempo	orary Groundwa	ter Mo	nitoring l	Points							
EHS-GP-01/ EHS-GW-01	Adjacent (to the north) and upgradient of the Hortonsphere .	Soil boring and temporary groundwater sample to provide soil and groundwater information immediately upgradient of the Hortonsphere.	2	0	1	x	x	х	х	х	x	х			
EHS-GP-02/ EHS-GW-02	Adjacent (to the west) and immediately downgradient of the Hortonsphere.	Soil boring and temporary groundwater sample located immediately downgradient of the Hortonsphere to provide soil and groundwater information immediately downgradient of the Hortonsphere.	2	0	1	x	x	x	x	x	x	х			
EHS-GP-03/ EHS-GW-03	Adjacent (to the southwest) and immediately downgradient of the Hortonsphere.	Soil boring and temporary groundwater sample located immediately downgradient of the Hortonsphere to provide soil and groundwater information immediately downgradient of the Hortonsphere.	2	0	1	x	x	x	x	x	x	х			
EHS-GP-04/ EHS-GW-04	Central portion of site. Downgradient of on-site building.	Soil boring and temporary groundwater sample located adjacent to the building on site.	2	0	1	х	х	х	х	х	x	х			
EHS-GP-05/ EHS-GW-05	Southeast portion of property. Downgradient of facility.	Soil boring and temporary groundwater sample located downgradient of the east side of the property.	2	0	1	х	х	х	х	х	х	х			
			Sur	face Soil Sa	mple Locations	5									
EHS-SS-01	Located within a grassed area adjacent to the Hortonsphere.	Soil sample to evaluate surface soil conditions adjacent to the Hortonsphere.	1	0	0	х	х	х	х	х	х	х			
EHS-SS-02	Located within a grassed area adjacent to the Hortonsphere.	Soil sample to evaluate surface soil conditions adjacent to the Hortonsphere.	1	0	0	x	x	х	x	x	x	х			

Table 2 Sample Collection Rationale East Hampton Hortonsphere Site East Hampton, New York

			1	Number of S	Samples	0B)	() ()	als 00)	PA	A 300)	es 1A)	cides 32)	-15)	nizine 0C	lor 1 8081
Sample I.D.	Sample Location	Sample Rationale	Soil	Soil Vapor	Groundwater	VOCs (EPA 826	SVOCs (EPA 827(TAL Meta (6000/700	Sulfide (E 376.1)	Sulfate (EP/	Herbicid (EPA 815	PCBs/ Pesti (EPA 808	VOCs (EPA TO-	Atrazine Sin EPA 827	Metaloch EPA Methoc
EHS-SS-03	Located within a grassed area adjacent to the Hortonsphere.	Soil sample to evaluate surface soil conditions adjacent to the Hortonsphere.	1	0	0	х	х	х	х	х	х	х			
EHS-SS-04	Located beneath the Hortonsphere.	Surface soil sample to evaluate surface soil conditions beneath the Hortonsphere.	1	0	0	х	х	х	х	х	х	х			
EHS-SS-05	Located beneath the Hortonsphere.	Surface soil sample to evaluate surface soil conditions beneath the Hortonsphere.	1	0	0	х	х	х	х	х	х	х			
EHS-SS-06	Located beneath the Hortonsphere.	Surface soil sample to evaluate surface soil conditions beneath the Hortonsphere.	1	0	0	х	х	х	х	х	х	х			
EHS-SS-07	Grassy area southwest of Hortonsphere	Generate additional metals and herbicides data	1	0	0	х	х	х	х	х	х	х		х	х
EHS-SS-08	Grassy area south of Hortonsphere	Generate additional metals and herbicides data	1	0	0	х	х	х	х	х	х	х		х	х
EHS-SS-09	Grassy area southwest of Hortonsphere	Generate additional metals and herbicides data	1	0	0	х	х	х	х	х	х	х		х	Х
EHS-SS-10	Grassy area south of Hortonsphere	Generate additional metals and herbicides data	1	0	0	х	х	х	х	х	х	х		х	х
	·	•	Sc	oil Vapor Sa	mple Location										
EHS-SV-01	Located adjacent and downgradient of the Hortonsphere adjacent to adjacent off-site building.	Soil vapor sample to screen the soil vapor at the property line and nearby off-site building.	0	1	0								х		
EHS-SV-02	Located in the southeast portion of the site. Downgradient of the Hortonsphere.	Soil vapor sample to screen the soil vapor at the south end of the property.	0	1	0								х		
EHS-SV-03	Located adjacent and downgradient of the main building on site.	Soil vapor sample to screen the soil vapor in the area of the building on site.	0	1	0								х		

Notes:

Chemical analysis test methods specified are from U.S. EPA SW-846 test methods

EPA TO-15 analysis included VOCs and naphthalene

EPA stands for the Environmental Protection Agency

VOC stands for volatile organic compounds

SVOC stands for semivolatile organic compounds

RCRA stands for Resource Conservation Recovery Act

PCBs stands for Polychlorinated Biphenyls

Table 3 Groundwater Depths and Elevations East Hampton Hortonsphere Site East Hampton, New York

			_		Februar	y 4, 2008		June 25,	2009
Temporary Monitoring	Coor	dinates	Top of Casing (feet	Groundwa from TC	ater Depth C (feet)	Groun Eleva (feet N	dwater ation NAVD)	Groundwater Depth from TOC	Groundwater Elevation
Well	Y/Northing	X/Easting	NAVD)	High Tide	Low Tide	High Tide	Low Tide	(feet)	(feet NAVD)
EHS-GW-01	295774.1416	1482530.992	50.95	43.3	43.3	7.65	7.65	41.45	9.5
EHS-GW-02	295722.9404	1482508.374	50.65	43.07	43.6	7.58	7.05	41.22	9.43
EHS-GW-03	295745.4214	1482561.232	51.49	43.9	43.9	7.59	7.59	42.04	9.45
EHS-GW-04	295590.322	1482432.316	50.57	42.98	43	7.59	7.57	41.14	9.43
EHS-GW-05	295512.8214	1482581.952	49.05	41.55	41.55	7.50	7.50	39.72	9.33

Notes:

NAVD - North American Vertical Datum

TOC - Top of Casing

Table 4 Final Groundwater Parameters East Hampton Hortonsphere Site East Hampton, New York

		Depth to			Parameters									
Sample		water (ft)						Dissolved						
Location/Well		(at time of	Flow Rate	Temperature	рН	Conductivity	Turbidity	Oxygen	ORP					
ID	Date	sampling)	(mL/min)	(C)	(su)	(mS/cm)	(NTU)	(mg/L)	(mV)	Odor	Color	Sheen		
EHS-GW-01	11/29/2007	45.1	Sampl	es collected by b	ailer - re	sampled on 2/18/	2009 (see la	ast entry belo	w)	none	turbid	none		
EHS-GW-02	12/3/2007	42.93	550	14.08	6.07	0.193	20.5	9.97	97	none	clear	none		
EHS-GW-03	11/16/2007	44.95	500	12.61	4.94	0.373	122.0	10.31	124	none	clear	none		
EHS-GW-04	12/3/2007	42.83	550	14.87	6.15	0.232	33.9	7.48	118	none	clear	none		
EHS-GW-05	12/3/2007	41.42	550	15.54	5.94	0.233	40.8	7.37	112	none	clear	none		
EHS-GW-01	2/18/2008	42.3	750	13.20	5.55	0.254	13.2	9.93	207	none	clear	none		

Notes:

ml/min = milliliters per minute

NTU = nephelometric turbidity units

C = Celsius

su = standard units

mg/L = milligrams per liter

mV = millivolts

mS/cm = milliSiemens per centimeter

ft = feet

						Duplicate of				
Sample Location:	NYSDEC 375	NYSDEC 375	EHS-SS-01	FHS-SS-02	EHS-SS-03	EHS-SS-03	EHS-SS-04	EHS-SS-05	EHS-SS-06	FHS-SS-07
Sample Date:	RES		11/14/2007	11/14/2007	11/14/2007	11/1/07	11/14/2007	11/14/2007	11/14/2007	2/18/2009
BTFX (ma/ka)			11/14/2007	11/14/2007	11/14/2007	11/14/07	11/14/2007	11/14/2007	11/14/2007	2/10/2003
Total BTEX	NE	NF	ND	ND	ND	ND	ND	ND		
Other VOCs (ma/ka)										
Total VOCs	NF	NF	ND	ND	ND	ND	ND	ND	ND	ND
PAHs (mg/kg)										
Acenaphthene	100	1,000	0.4 U	0.41 U	3.3 J	0.47 UJ	0.4 U	0.39 U	0.36 U	0.32 U
Anthracene	100	1,000	0.067 J	0.41 U	6.2 J	0.47 UJ	0.089 J	0.39 U	0.36 U	0.32 U
Benz[a]anthracene	1	11	0.3 J	0.28 J	11 J	0.15 J	0.29 J	0.19 J	0.1 J	0.18 J
Benzo[a]pyrene	1	1.1	0.29 J	0.29 J	8.7 J	0.16 J	0.23 J	0.15 J	0.11 J	0.21 J
Benzo[b]fluoranthene	1	11	0.38	0.37	9.3 J	0.23 J	0.34	0.22 J	0.16 J	0.24 J
Benzo[g,h,i]perylene	100	1,000	0.29 J	0.17 J	4.2 J	0.15 J	0.13 J	0.18 J	0.092 J	0.41
Benzo[k]fluoranthene	1	110	0.13 J	0.14 J	3.6 J	0.079 J	0.11 J	0.076 J	0.062 J	0.084 J
Chrysene	1	110	0.45	0.35	11 J	0.25 J	0.44	0.27 J	0.12 J	0.26 J
Dibenz[a,h]anthracene	0.33	1.1	0.076 J	0.41 U	1.2 J	0.47 UJ	0.4 U	0.39 U	0.36 U	0.32 U
Fluoranthene	100	1,000	0.56	0.45	25 J	0.34 J	0.5	0.31 J	0.16 J	0.3 J
Fluorene	100	1,000	0.4 U	0.41 U	2.3 J	0.47 UJ	0.4 U	0.39 U	0.36 U	0.32 U
Indeno[1,2,3-cd]pyrene	0.5	11	0.29 J	0.19 J	5 J	0.17 J	0.15 J	0.17 J	0.098 J	0.4
Methylnaphthalene, 2-	NE	NE	0.4 U	0.41 U	0.94 J	0.47 UJ	0.4 U	0.39 U	0.36 U	0.32 U
Naphthalene	100	1,000	0.4 U	0.41 U	1.2 J	0.47 UJ	0.4 U	0.39 U	0.36 U	0.32 U
Phenanthrene	100	1,000	0.4	0.21 J	26 J	0.17 J	0.35	0.32	0.076 J	0.22 J
Pyrene	100	1,000	0.63	0.4	21 J	0.33 J	0.5	0.39	0.18 J	0.3 J
Total PAHs	NE	NE	3.863	2.85	139.94	2.029	3.129	1.886	1.158	2.604
Other SVOCs (mg/kg)										
Bis(2-ethylhexyl)phthalate	NE	NE	0.4 U	0.056 J	1.8 J	0.58 J	0.16 J	0.39 U	0.36 U	0.32 U
Butyl benzyl phthalate	NE	NE	0.4 U	0.41 U	4.1 U	0.47 U	0.081 J	0.39 U	0.36 U	0.32 U
Carbazole	NE	NE	0.4 U	0.41 U	2.3 J	0.47 UJ	0.4 U	0.39 U	0.36 U	0.32 U
Dibenzofuran	14	1,000	0.4 U	0.41 U	1.7 J	0.47 UJ	0.4 U	0.39 U	0.36 U	0.32 U
Methylphenol, 4-	100	1,000	0.4 U	0.41 U	4.1 UJ	0.091 J	0.4 U	0.39 U	0.36 U	0.32 U
Total SVOCs	NE	NE	3.863	2.906	145.74	2.7	3.37	1.886	1.158	2.604
PCBs (mg/kg)										
Aroclor 1254	NE	NE	0.021 U	0.021 U	0.021 UJ	0.024 U	0.045 J	0.021 U	0.019 U	0.021 U
Aroclor 1260	NE	NE	0.021 U	0.021	0.021 J	0.024 U	0.027 J	0.021 U	0.019 UJ	0.18
PCBs, Total	1	25	ND	0.021	0.021	ND	0.072	ND	ND	0.18

						Duplicate of				
Sample Location:	NYSDEC 375	NYSDEC 375	EHS-SS-01	EHS-SS-02	EHS-SS-03	EHS-SS-03	EHS-SS-04	EHS-SS-05	EHS-SS-06	EHS-SS-07
Sample Date:	RES	IND	11/14/2007	11/14/2007	11/14/2007	11/14/07	11/14/2007	11/14/2007	11/14/2007	2/18/2009
Pesticides (mg/kg)										
Alpha-BHC	0.097	6.8	0.01 U	0.01 U	0.0019 J	0.012 U	0.002 U	0.0021 U	0.0093 U	0.0021 UJ
DDD, 4,4-	2.6	180	0.0025 J	0.006 J	0.02 J	0.0046 J	0.0039 UJ	0.004 UJ	0.018 UJ	0.0041 UJ
DDE, 4,4-	1.7	120	0.085	0.046 J	0.046 J	0.085 J	0.039	0.0095	0.078	0.0094 J
DDT, 4,4-	1.8	94	0.086 J	0.13 J	0.079 J	0.086 J	0.075 J	0.025 J	0.11 J	0.016 J
Delta-BHC	100	1,000	0.01 U	0.01 U	0.0043 U	0.012 U	0.00045 J	0.0021 U	0.0093 U	0.0021 UJ
Dieldrin	0.039	2.8	0.02 U	0.02 U	0.0083 U	0.024 U	0.008 J	0.004 U	0.0062 J	0.0041 UJ
Endosulfan I	4.8	920	0.01 U	0.01 U	0.0043 U	0.012 U	0.00043 J	0.0021 U	0.0093 U	0.0021 UJ
Endosulfan sulfate	4.8	920	0.0038 U	0.02 U	0.0083 U	0.0065 J	0.0022 J	0.003 J	0.018 U	0.0041 UJ
Endrin aldehyde	NE	NE	0.02 U	0.0054 J	0.015 JN	0.024 U	0.0039 U	0.004 U	0.018 U	0.0041 U
Heptachlor epoxide	NE	NE	0.0013 J	0.01 U	0.0043 U	0.012 U	0.0012 J	0.00081 J	0.0093 U	0.0021 UJ
Total Pesticides	NE	NE	0.1748	0.1874	0.1619	0.1821	0.12628	0.03831	0.1942	0.0254
Metals (mg/kg)										
Aluminum	NE	NE	8240	4510	22400 J	8850 J	20400	9670	6290	7850
Arsenic	16	16	19.4	4.5	29.1	22.4	38.1	205	12.9	7.1
Barium	350	10,000	30.5 J	29.1 J	277 J	31 J	324	101	22.4 J	30.2
Beryllium	14	2700	2.8 U	2.8 U	1.7 J	3.1 U	2 J	2.4 J	2.3 U	0.49 J
Calcium	NE	NE	1670	2180	5450 J	1680 J	10200	5790	5730	868
Chromium	22*	800*	15.2	9.9	90.6 J	12 J	114	29.1	9.3	10.1
Cobalt	NE	NE	4 J	2.4 J	9.3 J	4.3 J	10.6 J	7.8 J	2.2 J	4.9
Copper	270	10,000	54.8	17.9	34.6	57.6	45.9	101	24.3	136
Iron	NE	NE	12000	7560	40600 J	12900 J	44400	21900	7880	11100
Lead	400	3900	40	36	928 J	43.2 J	1140	1220	103	36.6
Magnesium	NE	NE	1560 J	1030 J	1620 J	1610 J	3730 J	2500 J	3450	1470
Manganese	2,000	10,000	114	104	143	119	96.3	150	65.1	119
Mercury	0.81	5.7	0.11	0.041	0.13 J	0.046 J	0.13	0.39	0.12	0.051
Nickel	140	10,000	6.8 J	4.8 J	29.3 J	6.8 J	31.8	20.2	4.8 J	7.7
Potassium	NE	NE	434 J	396 J	1620 J	431 J	1720	631 J	252 J	322
Selenium	36	6800	14.1 U	13.8 U	3.7 J	15.6 U	4.6 J	15.8	11.4 U	12.3 U
Sodium	NE	NE	175 J	80.9 J	507 J	193 J	588 J	229 J	75.4 J	154
Vanadium	NE	NE	23.9	15.5	122 J	23.6 J	163	57.9	14.8	19.1
Zinc	2,200	10,000	50.8	56.9	166 J	46.4 J	81.9	190	29.8	32.7
Other (mg/kg)										
Acid Soluble Sulfide	NE	NE	38.1 UJ	38.1 UJ	25.5 J	50.1 UJ	20.4 J	10.9 J	32.8 U	17.5 U
Solids, Percent	NE	NE	78.8	78.7	78.4	59.9	79.9	63.3	91.6	81.7
Sulfate	NE	NE	12.3 U	39.8	14.7 U	14.6 U	12.1 U	54.1	10.9 U	12.4 U

					Duplicate of	
Sample Loca	tion: NYSDEC 375	NYSDEC 375	EHS-SS-08	EHS-SS-09	EHS-SS-09	FHS-SS-10
Sample Doca	ate: RES		2/18/2009	2/18/2009	2/18/2009	2/18/2009
BTEX (ma/ka)			2/10/2003	2/10/2003	2/10/2003	2/10/2003
Total BTEX	NF	NF	ND	ND	ND	ND
Other VOCs (ma/ka)						
Total VOCs	NE	NE	ND	ND	ND	ND
PAHs (mg/kg)					<u> </u>	
Acenaphthene	100	1,000	0.35 U	0.32 U	0.32U	0.33 U
Anthracene	100	1,000	0.35 U	0.083 J	0.32 U	0.33 U
Benz[a]anthracene	1	11	0.097 J	0.32 J	0.17 J	0.081 J
Benzo[a]pyrene	1	1.1	0.09 J	0.32 J	0.2 J	0.093 J
Benzo[b]fluoranthene	1	11	0.15 J	0.33	0.22 J	0.11 J
Benzo[g,h,i]perylene	100	1,000	0.41	0.49	0.38	0.39
Benzo[k]fluoranthene	1	110	0.35 U	0.12 J	0.084 J	0.33 U
Chrysene	1	110	0.19 J	0.35	0.21 J	0.1 J
Dibenz[a,h]anthracene	0.33	1.1	0.35 U	0.062 J	0.32 U	0.33 U
Fluoranthene	100	1,000	0.14 J	0.56	0.3 J	0.16 J
Fluorene	100	1,000	0.35 U	0.32 U	0.32 U	0.33 U
Indeno[1,2,3-cd]pyrene	0.5	11	0.39	0.49	0.38	0.37
Methylnaphthalene, 2-	NE	NE	0.35 U	0.32 U	0.32 U	0.33 U
Naphthalene	100	1,000	0.35 U	0.32 U	0.32 U	0.33 U
Phenanthrene	100	1,000	0.12 J	0.48	0.19 J	0.13 J
Pyrene	100	1,000	0.17 J	0.56	0.26	0.19 J
Total PAHs	NE	NE	1.757	4.165	2.394	1.624
Other SVOCs (mg/kg)						
Bis(2-ethylhexyl)phthalate	NE	NE	0.35 U	0.32 U	0.32 U	0.33 U
Butyl benzyl phthalate	NE	NE	0.35 U	0.32 U	0.32 U	0.33 U
Carbazole	NE	NE	0.35 U	0.32 U	0.32 U	0.33 U
Dibenzofuran	14	1,000	0.35 U	0.32 U	0.32 U	033 U
Methylphenol, 4-	100	1,000	0.32 U	0.35 U	0.32 U	0.33 U
Total SVOCs	NE	NE	1.757	4.165	2.394	1.624
PCBs (mg/kg)						
Aroclor 1254	NE	NE	0.021 U	0.021 U	0.021 U	0.021 U
Aroclor 1260	NE	NE	0.022 U	0.013 J	0.019 J	0.037
PCBs, Total	1	25	ND	0.013	0.019	0.037

					Duplicate of	
Sample Location:	NYSDEC 375	NYSDEC 375	EHS-SS-08	EHS-SS-09	EHS-SS-09	EHS-SS-10
Sample Date:	RES	IND	2/18/2009	2/18/2009	2/18/2009	2/18/2009
Pesticides (mg/kg)						
Alpha-BHC	0.097	6.8	0.0043 UJ	0.002 UJ	0.002 UJ	0.0021UJ
DDD, 4,4-	2.6	180	0.0053 J	0.0039 UJ	0.0039 UJ	0.004 UJ
DDE, 4,4-	1.7	120	0.13 J	0.018 J	0.033 J	0.049 J
DDT, 4,4-	1.8	94	0.071	0.015 J	0.031 J	0.05
Delta-BHC	100	1,000	0.0021 UJ	0.002 UJ	0.002 UJ	0.0021 UJ
Dieldrin	0.039	2.8	0.0084 UJ	0.0039 UJ	0.00093 J	0.004 UJ
Endosulfan I	4.8	920	0.0043 UJ	0.002 UJ	0.002 UJ	0.0021 UJ
Endosulfan sulfate	4.8	920	0.0084 UJ	0.0039 UJ	0.0021 J	0.004 UJ
Endrin aldehyde	NE	NE	0.0084 U	0.0039 U	0.0039 U	0.004 U
Heptachlor epoxide	NE	NE	0.043 UJ	0.002 UJ	0.0007 J	0.0021 UJ
Total Pesticides	NE	NE	0.2063	0.033	0.06703	0.099
Metals (mg/kg)						
Aluminum	NE	NE	12100	7580	6980	9700
Arsenic	16	16	67.8	12.3	8.7	14
Barium	350	10,000	83	22.8	20.8	31.6
Beryllium	14	2700	1.2 J	0.38 J	0.43 J	0.5 J
Calcium	NE	NE	2250	873	721	998
Chromium	22*	800*	18.8	9.7	8.9	10.3
Cobalt	NE	NE	4.4	3.1	3.1	2.1 J
Copper	270	10,000	89.5	24	20.2	40.8
Iron	NE	NE	19900	10500	13100	10300
Lead	400	3900	193	25.4	22.6	82.2
Magnesium	NE	NE	1220	1490	1380	1100
Manganese	2,000	10,000	125	114	124	96.6
Mercury	0.81	5.7	0.27	0.039	0.068	0.063
Nickel	140	10,000	12.2	6.2	6	5.9
Potassium	NE	NE	340	356	331	245
Selenium	36	6800	6.7 J	11.9	13.5	11.8 U
Sodium	NE	NE	114 J	262	207	235 U
Vanadium	NE	NE	34.5	17.1	16.7	17.7
Zinc	2,200	10,000	117	31.9	26.7	82.9
Other (mg/kg)			-	-	-	
Acid Soluble Sulfide	NE	NE	28.2 U	18 U	16.7 U	17.3 U
Solids, Percent	NE	NE	76.4	82.5	83.2	82.1
Sulfate	NE	NE	13.1 U	12.1 U	12 U	12.2 U

Notes:

Table presents only detected compounds.

NYSDEC 375 RES – Chapter IV, Subpart 375-6: Remedial Program Residential SCOs NYSDEC 375 IND – Chapter IV, Subpart 375-6: Remedial Program Industrial Soil Cleanup Objectives (SCOs)

NE - not established; in the absence of Residential SCOs, results were considered against relevant SCGs

ND - not detected; total concentration is listed as ND because no compounds were detected in the group

Laboratory and Validation Data Qualifiers:

J - estimated value

- JN analyte is presumptively present at an approximated quantity
- U indicates not detected to the reporting limit for organic analysis and the method detection limit for inorganic analysis
- UJ indicates not detected to the reporting limit for organic analysis and the method detection limit for inorganic analysis, the limit shown is estimated

Bolding indicates a detected result value

Yellow shading and bolding indicates that the detected result value exceeds established NYSDEC 375 RES and NYSDEC 375 IND Gray shading and bolding indicates that the detected result value exceeds established NYSDEC 375 RES

mg/kg - milligrams/kilogram or parts per million (ppm)

- BTEX benzene, toluene, ethylbenzene, and xylene
- VOCs volatile organic compounds

PAHs - polycyclic aromatic hydrocarbons

SVOCs - semivolatile organic compounds

PCBs - Polychlorinated Biphenyls

No criteria for the individual Aroclor compounds have been established, however the criterion for Total PCBs is 25 mg/kg and 1 mg/kg.

* - indicates the listed SCO is for hexavalent chromium. An SCO for total chromium has not been established.

						Duplicate of							
Sample Location:			EHS-GP-01	EHS-GP-01	EHS-GP-02	EHS-GP-02	EHS-GP-02	EHS-GP-03	EHS-GP-03	EHS-GP-04	EHS-GP-04	EHS-GP-05	EHS-GP-05
Sample Depth (ft. bos.):	NYSDEC 375	NYSDEC 375	(4-5)	(44-45)	(4-5)	(4-5)	(43-45)	(4-5)	(44-45)	(4-5)	(44-45)	(4-5)	(44-45)
Sample Date:	RES	IND	11/13/2007	11/13/2007	11/13/2007	11/13/2007	11/15/2007	11/13/2007	11/14/2007	11/13/2007	11/16/2007	11/16/2007	11/16/2007
BTEX (ma/ka)			1	1									
Toluene	100	1 000	0.0017 J	0.0011 J	0 0057 U	0.00082 J	0 0053 U	0 0072 U	0 0052 U	0 0073 U	0 0054 U	0 007 U	0 0057 U
Total BTEX	NF	NF	0.0017	0.0011	ND	0.00082	ND	ND	ND	ND	ND	ND	ND
Other VOCs (ma/ka)			10.0011	0.0011	1.15	0.00002	1.12						
Total VOCs	NE	NE	0.0017	0 0011	ND	0.00082	ND	ND	ND	ND	ND	ND	ND
PAHs (ma/ka)					1.15		1.12				1.15		
Benzlalanthracene	1	11	0 44 11	0.35 U	0.38 U	0.4311	0.34.11	0 13 J	0.3311	0.4811	0.35 U	0.4611	0.3711
Benzolalpyrene	1	11	0 44 11	0.35 U	0.38 U	0.4311	0.34 U	0.10.0	0.33 U	0.4811	0.35 U	0.4611	0.37 U
Benzo[b]fluoranthene	1	11	0.4411	0.35 []	0.38 []	0.4311	0.34 11	0.17.1	0.3311	0.10.0	0.00 0	0.4611	0.37 11
Chrysene	1	110	0.44 []	0.35 U	0.38 []	0.4311	0.34 []	0.17.0	0.33 11	0.40 0	0.35 U	0.4611	0.37 U
Fluoranthene	100	1 000	0.44]	0.35 U	0.38 []	0.4311	0.34 []	0.15 1	0.33 11	0.40 0	0.35 U	0.4611	0.37 U
Pyrene	100	1,000	0.44 U	0.35 U	0.38 11	0.4311	0.34 11	0.15.5	0.33 11	0.40 0	0.35 U	0.4611	0.37 U
Total PAHs	NE	NE				0.40 U		0.100	ND		ND	0.40 0 ND	ND
Othor SVOCs (ma/ka)						ND	ND	0.55					
Bis(2-ethylbexyl)phthalate	NE	NE	0.44.11	0 35 11	0.3811	0.4311	0 34 11	0.47.11	0 33 11	0.063.1	0 35 11	0.4611	0 37 11
	NE	NE				0.43 U		0.47 0		0.003 5		0.40 0	
PCRs (mg/kg)						ND	ND	0.00		0.005			
Total PCRs	1	25				ND	ND			ND		ND	ND
Posticidos (ma/ka)	1	25								ND		ND	
	1.8	120	0.004311	0.003511	0.003811	0.004411	0.003511	0.0010 1	0.003411	0.004711	0.003511	0.004611	0.003711
	1.0	04	0.0045.0	0.0035 U	0.0030 0	0.0044 0	0.0035 U	0.0019 J	0.0034 U	0.0047 0	0.0035 U	0.0046 U	0.0037 U
Endrin aldehyde		94 NE	0.000303	0.0035 05	0.0038 03	0.000875	0.0035 U	0.0041 J	0.0034 03	0.0047 03	0.0035 U	0.0046 U	0.0037 0
Hoptachler opeyide			0.0043.0	0.00053 0	0.0038 0	0.0044 0	0.0033 0	0.0015 5	0.0034 0	0.0047 0	0.0033 0	0.0040 0	0.0037 0
Total Posticidos			0.0022 0	0.00064 J	0.0019 0	0.0023 0		0.0024 0	0.00052 J	0.0024 U		0.0024 U	0.0019.0
Horbicidos (mg/kg)			0.00030	0.00004		0.00007	ND	0.0075	0.00032				
			0.016	0.02211	0.022.11	0.022	0.025.11	0.028.11	0.021.11	0.028.11	0.02111	0.02611	0.021.11
Motals (mg/kg)			0.010	0.023 0	0.023 0	0.022	0.025 0	0.028 0	0.0210	0.028 0	0.0210	0.020 0	0.0210
			10200	425	4420 1	14800 1	420	11000	466	14200	756	11600	506
Argenia	16	16	10300 E 1	423	4420 J	14000 J	420	2.2.1	6911	2 1	130	5 2	0011
Arsenic	250	10 000	27.2	0.40	1.9 J	2.9 J	7.50	3.2 J	0.0 U	3 J 21 1 I	90	3.3 32 E I	9.90
Bondium	14	2700	0.05 1	2.0 5	2511	21.55	1011	20.00	4 J	2611	2211	23.3 3	2.1 5
Coloium	NE	2700	0.05 J	2.10	2.3 0	714	1.9 0	2.3 U	290 1	2.0 0	2.2.0	0.05 J	2.5 0
Calcium		INE 900*	400 J	161	247 J	1771	109 0	430 J	200 J	17 0	225 0	107 J	247 U
Chiomum		000	13.4	1.0 J	0.0 J	17.7 J	2.4	14.4	1.2 J	5.1	2.1 J	13.9	1.3 J
Copper	1NE	10.000	0.3 J	0.61 J	5.1 J	5.4 J	1.90	5 J	1.7 U	5 J	0.64 J	0.2 J	2.5 U
	270	10,000	10.7	0.55 J	5 J	5.5 J	0.00 J	9.0	0.61 J	5.2 J	1.2 J	10.2	0.86 J
lood	100	1NE	16200	5.2.11	9260	13300	1240	12000	0.76.1	12900	1000	18100	1310
Lead	400	3900	11.7	5.3 U	6.1 000 I	7.6	4.7 0	11.3	0.76 J	7.4	5.6 U	6./	6.2 U
Magnesium	NE	NE	2230 J	132 J	923 J	2460 J	102 J	2220 J	126 J	2350 J	239 J	2700 J	139 J
Mangariese	2,000	10,000	195	14.2	150	115	12.1	96.7	17	96.4	25.3	190	22.6
Mercury	0.81	5.7	0.061 0	0.053 0	0.053 0	0.028	0.048 0	0.031	0.047 0	0.027	0.051 0	0.066 0	0.054 0
INICKEI Deteopium	140	10,000	0.9 J	0.53 J	4.4 J	10.7 J	U./6 J	9.3 J	0.54 J	10.4 J	1.4 J	11	0.9 J
Potassium	NE	NE	667 J	2110	325 J	391 J	189 U	395 J	1710	379 J	225 U	654 J	247 U
Soaium	NE	NE	72.3 J	25.3 J	31.4 J	54.7 J	189 U	51.1 J	1/10	54.3 J	225 U	110 J	247 U
Vanadium	NE	NE	26.2	1.7 J	11 J	25.3 J	1.6 J	21.4	1.6 J	24.7	3 J	26.3	1./ J
	2,200	10,000	25.1	∠1.1 U	12.9 J	28.5	18.9 U	40.9	17.1 U	26.8	22.5 U	26.6	24.7 U
Other (mg/kg)					1	144.0111							
Acid Soluble Sulfide	NE	NE	42.2 UJ	34.5 UJ	10.2 J	44.3 UJ	20.1 J	23.4 J	31.5 UJ	8.8 J	32.0 UJ	38.6 UJ	32.2 UJ
Solids, Percent	NE	NE	/1.1	86.9	87.4	67.7	81.1	/2.2	95.2	70.8	93.7	17.7	93.1
Suirate	NE	NE	20.5 U	10.7	11.5 U	17.8 U	10.6 U	14.2 U	10.3 U	19.9 U	10.7 U	38.1	11.4 U

Notes:

Table presents only detected compounds.

NYSDEC 375 RES – Chapter IV, Subpart 375-6: Remedial Program Residential SCOs NYSDEC 375 IND – Chapter IV, Subpart 375-6: Remedial Program Industrial Soil Cleanup Objectives (SCOs)

NE - not established; in the absence of Residential SCOs, results were considered against relevant SCGs ND - not detected; total concentration is listed as ND because no compounds were detected in the group

Laboratory and Validation Data Qualifiers:

J - estimated value

U - indicates not detected to the reporting limit for organic analysis and the method detection limit for inorganic analysis

Bolding indicates a detected result value

mg/kg - milligrams/kilogram or parts per million (ppm)

ft bgs - feet below ground surface

BTEX - benzene, toluene, ethylbenzene, and xylene

VOCs - volatile organic compounds

PAHs - polycyclic aromatic hydrocarbons

SVOCs - semivolatile organic compounds

PCBs - Polychlorinated Biphenyls

No criteria for the individual Aroclor compounds have been established; however, the criterion for Total PCBs is 25 mg/kg and 1 mg/kg.

* - indicates the listed SCO is for hexavalent chromium. An SCO for total chromium has not been established.

					Duplicate of			
Sample Location:		EHS-GW-01	EHS-GW-01	EHS-GW-02	EHS-GW-02	EHS-GW-03	EHS-GW-04	EHS-GW-05
Sample Date:	NYSDEC SCG	11/29/2007	02/18/09	12/3/2007	12/03/07	11/16/2007	12/3/2007	12/3/2007
BTEX (ug/l)								
Benzene	1	5 U	NS	2.8	0.79	5 U	5 U	5 U
Toluene	5	5 U	NS	0.23 J	0.11 J	5 U	5 U	5 U
Total BTEX	NE	ND	NS	3.03	0.9	ND	ND	ND
Other VOCs (ug/l)								
Tetrachloroethene	5	5 U	NS	5 U	5 U	5 U	0.3 J	5 U
Total VOCs	NE	ND	NS	3.03	0.9	ND	0.3	ND
PAHs (ug/l)	-		_	_	_	_	_	
Acenaphthene	20	10 U	NS	10 U	10 U	R	10 U	0.44 J
Acenaphthylene	NE	10 U	NS	10 U	10 U	R	10 U	0.39 J
Anthracene	50	10 U	NS	10 U	10 U	R	10 U	0.43 J
Benz[a]anthracene	0.002	10 U	NS	10 U	10 U	R	10 U	0.45 J
Benzo[k]fluoranthene	0.002	10 U	NS	10 U	10 U	R	10 U	0.3 J
Chrysene	0.002	10 U	NS	10 U	10 U	R	10 U	0.41 J
Fluoranthene	50	10 U	NS	10 U	10 U	R	10 U	1.4 J
Fluorene	50	10 U	NS	10 U	10 U	R	10 U	0.5 J
Methylnaphthalene,2-	NE	10 U	NS	10 U	10 U	R	10 U	0.81 J
Phenanthrene	50	10 U	NS	10 U	10 U	R	10 U	0.71 J
Pyrene	50	10 U	NS	10 U	10 U	R	10 U	0.82 J
Total PAHs	NE	ND	NS	ND	ND	ND	ND	6.66
Other SVOCs (ug/l)								
Bromophenyl phenyl ether,4-	NE	10 U	NS	10 U	10 U	R	10 U	0.39 J
Dichlorophenol,2,4-	5	10 U	NS	10 U	10 U	R	10 U	0.32 J
Diethyl phthalate	50	10 U	NS	10 U	10 U	R	10 U	0.52 J
Methylphenol, 4-	1	10 U	NS	10 U	10 U	R	10 U	0.54 J
Nitrosodiphenylamine, N-	NE	10 U	NS	10 U	10 U	R	10 U	0.55 J
Total SVOCs	NE	ND	NS	ND	ND	ND	ND	8.98

					Duplicate of						
Sample Location:		EHS-GW-01	EHS-GW-01	EHS-GW-02	EHS-GW-02	EHS-GW-03	EHS-GW-04	EHS-GW-05			
Sample Date:	NYSDEC SCG	11/29/2007	02/18/09	12/3/2007	12/03/07	11/16/2007	12/3/2007	12/3/2007			
PCBs (ug/l)											
Aroclor 1260	NE	0.5 U	NS	0.16 J	0.5 U	0.5 U	0.5 U	0.5 U			
PCBs, Total	NE	ND	NS	0.16	ND	ND	ND	ND			
Pesticides (ug/l)			T	T	1		T	1			
Chlordane, trans-	NE	0.05 U	NS	0.05 U	0.05 U	0.05 U	0.05 U	0.019 J			
DDD,4,4-	0.3	0.15 U	NS	0.03 J	0.15 U	0.15 U	0.15 U	0.15 U			
Dieldrin	0.004	0.1 U	NS	0.012 J	0.1 U	0.1 U	0.1 U	0.10 U			
Total Pesticides	NE	ND	NS	0.042	ND	ND	ND	0.019			
Total Metals (ug/l)	Total Metals (ug/l)										
Aluminum	NE	37900	500 U	160 J	200 J	89	93 J	280			
Arsenic	25	71	20 U	25 U	25 U	25 U	25 U	25 U			
Barium	1000	330	43	58 J	60 J	48 J	60 J	70 J			
Beryllium	3	2.5 J	10 U	5 U	5 U	5 U	5 U	5 U			
Calcium	NE	11800	9700	15300	15700	11100	21300	31000			
Chromium	50	300	10	8.7 J	11	3.7	6.9 J	9.7 J			
Cobalt	NE	25 J	10 U	10 U	10 U	2.5	3.6 J	10 U			
Copper	200	150	2.8 J	10 U	10 U	10 U	10 U	10 U			
Iron	300	128000	180 J	410	530	560	350	460			
Lead	25	62	30 U	10 U	10 U	10 U	10 U	10 U			
Magnesium	35000	7600	2300	3600 J	3600 J	2300 J	3100 J	5000			
Manganese	300	3300	6.2 J	520	540	790	990	970			
Nickel	100	57	5.5 J	9.5 J	13	6.1	9.8 J	11			
Potassium	NE	5100	1800	1400 J	1400 J	1800 J	2600 J	3100 J			
Sodium	20000	21400	24000	22800	23800	32700	31000	21600			
Thallium	0.5	12 J	30 U	40 U	40 U	40 U	40 U	40 U			
Vanadium	NE	110	10 U	5 U	5 U	5 U	5 U	5 U			
Zinc	2000	520	50 U	19 J	22 J	22	15 J	18 J			
Other (ug/l)		• 				• •		• •			
Sulfate	250000	13000	NS	11100	11000	19000	17900	19700			

Notes:

Table presents only detected compounds.

NYSDEC SCG - New York State Department of Environmental Conservation Standards, Criteria, and Guidelines

NE - not established

ND - not detected; total concentration is listed as ND because no compounds were detected in the group

NS - not sampled

Laboratory and Validation Data Qualifiers:

J - estimated value

U - indicates not detected to the reporting limit for organic analysis and the method detection limit for inorganic analysis

R - Rejected

Shading/bolding indicates an exceedance of established New York State ambient groundwater quality standards

Bold indicates detected result

ug/L - micrograms per liter or parts per billion (ppb)

BTEX - benzene, toluene, ethylbenzene, and xylene

VOCs - volatile organic compounds

PAHs - polycyclic aromatic hydrocarbons

SVOCs - semivolatile organic compounds

PCBs - Polychlorinated Biphenyls

Sample Location:	EHS-SV-01	EHS-SV-02	EHS-SV-03
Sample Date:	2/4/2008	2/4/2008	2/4/2008
BIEX (ug/m3)			
Benzene	1.17	0.638 U	0.638 U
Ethylbenzene	3.51	0.868 U	0.609 J
Toluene	29.3	0.446 J	2.49
Xylene, m,p-	9.16	0.457 J	2.13
Xylene, o-	3.38	0.194 J	0.745 J
Other VOCs (ug/m3)		100.0	
Acetaldehyde	11.5	26.6	10.8
Acetone	19.4	0.475 U	18.8
Butane	0.763	0.475 U	1.94 J
Butanone,2-	3.32	0.589 U	4.46
Carbon disulfide	0.572 J	0.622 U	3.97
Carbon tetrachloride	1.26 U	1.26 U	0.49 J
Chloroform	0.238 J	0.976 U	0.875 J
Chloromethane	0.173 J	0.128 J	0.105 J
Cyclohexane	0.583 J	0.688 U	0.107 J
Decane, n-	2.2 ј	1.09 J	1.55 J
Dichlorobenzene,1,3-	0.43 J	1.2 U	1.2 U
Dichlorodifluoromethane	2.33	2.36	2.35 J
Dodecane, n-	2.68 J	1.66 J	3.63 J
Ethanol	65.3	4.77	11.8
Ethyltoluene, p-	0.759 J	0.982 UJ	0.239 J
Heptane, n-	1.24	0.263 J	0.317 J
Hexane, n-	0.81	0.704 U	0.704 U
Hexanone,2-	0.819 U	2.81	0.408 J
Indan	0.373 J	0.967 U	0.162 J
Methyl-2-pentanone,4-	0.721 J	0.819 U	0.819 U
Methylene chloride	1.49	0.694 U	0.989
Naphthalene	0.377 J	0.2 J	0.239 J
Nonane	1.29	0.8 J	0.29 J
Octane, n-	1.32	0.303 J	0.345 J
Pentane	1.35	0.771	0.816
Propanol,2-	12.1	0.848	3.26
Styrene	1.75	0.851 U	0.194 J
t-Butyl alcohol	0.606 U	1.2	0.606 U
Tetrachloroethene	45	0.247 J	0.369 J
Tetramethylbenzene, 1,2,4,5-	0.222 J	1.1 U	1.1 U
Trans-1,2-dichloroethene	0.586 J	0.792 U	0.792 U
Trichloro-1,2,2-trifluoroethane, 1,1,2-	0.594 J	1.53 U	0.569 J
Trichloroethane,1,1,1-	1.09 U	0.696 J	11.4
Trichloroethene	0.292 J	1.07 U	1.07 U
Trichlorofluoromethane	2.17	1.12 U	1.19
Trimethylbenzene,1,2,3-	0.715 J	0.341 J	0.29 J
Trimethylbenzene,1,2,4-	2.4	0.482 J	0.87 J
Trimethylbenzene,1.3.5-	0.838 J	0.273 J	0.289 J
Trimethylpentane, 2.2.4-	0.843 J	0.934 U	0.245 J
Undecane, n-	1.2 J	1.48	2.11
Other (%)			
Helium	0.0165 U	0.018	0.0191 J

Notes:

ug/m³ - micrograms per cubic meter

VOCs - Volatile Organic Compounds

BTEX - Benzene, Toluene, Ethylbenzene, and Xylene (a subset of VOCs)

Bolding indicates a detected result value

U - Not detected at or above the reporting limit shown

J - Estimated value

I:\GEI\National Grid\East Hampton\EH Hortonsphere\093000\East Hampton Location Map.CDR

I:\GEI\National Grid\East Hampton\EH Hortonsphere\093000\ EHH-SCR Final Figures 2-10.dwg \Feb 17, 2010

	LEGEND:
	PROPERTY BOUNDARY (APPROXIMATE)
— — 50— —	GROUND SURFACE CONTOUR (FEET, NAVD)
	FENCE
EHS-GP-01/⊞ EHS-GW-01	GEOPROBE [®] BORING LOCATION/ TEMPORARY GROUNDWATER SAMPLING LOCATION
EHS-SV-02 〇	SOIL VAPOR SAMPLE LOCATION
EHS-SS-01 🛆	SURFACE SOIL SAMPLE LOCATION
A	CROSS SECTION LOCATION

NOTE:

LOCATIONS OF SURFACE SOIL SAMPLES EHS-SS-04, EHS-SS-05, AND EHS-SS-06 ARE BASED ON TAPED MEASUREMENTS FROM KNOWN POINTS.

SOURCES:

1. Orthophoto obtained from New York State Interactive Mapping Gateway (http://www1.nysgis.state.ny.us/MainMap.cfm) photo date: 2004, accessed 1/09/08.

 Long Island Lighting Co., Mineola, N.Y., East Hampton Substation and Gas Storage Site, Situated at East Hampton, Town of East Hampton, County of Suffolk, N.Y., Scale: 1" = 60', Date: 10-17-72.

3. Survey of existing conditions and sample locations conducted by GEI Consultants, Inc. on 12/14/07. Survey by New York state licensed land surveyor number 050146. Horizontal datum: New York State Plane coordinate system (Long Island Zone, North American Datum (NAD)83). Vertical datum: North American Vertical Datum (NAVD) 88.

CURRENT CONFIGURATION AND SAMPLE LOCATIONS

1 February 2010

I:\GEI\National Grid\East Hampton\EH Hortonsphere\093000\ EHH-SCR Final Figures 2-10.dwg \Feb 17, 2010

I:\GEI\National Grid\East Hampton\EH Hortonsphere\093000\ EHH-SCR Final Figures 2-10.dwg \Feb 17, 2010

Ξ,									
60		<u>LEGEND:</u>							
		NYSDEC 375 RES – Chapter IV, Subpart 375-6: Remedial Program Soil Cleanup Objectives (Residential SCOs)							
50		NYSDEC 375 IND – Chapter IV, Subpart 375-6: Remedial Program Soil Cleanup Objectives (Industrial SCOs)							
		NYSDEC SCG - New York State Department of Environmental Conservation Standards, Criteria, and Guidelines							
		NE	not established						
40		ND	not detected; total concentration is listed as ND because no compounds were detected in the group						
		J	estimated value						
		U	not detected						
		ft bgs	feet below ground surface						
30	(88)	mg/kg	milligrams/kilogram or parts per million (ppm)						
00	AVD	ug/L	micrograms per liter or parts per billion (ppb)						
		BTEX	benzene, toluene, ethlybenzene, and xylene						
	N (F	PAHs	polycyclic aromatic hydrocarbons						
	OL	PCBs	polychlorinated biphenols						
20	EVA	Bolding	indicates a detected result value						
20	ELI	Bolding	indicates that the detected result value exceeds established NYSDEC SCGs or SCOs						
		Blue	groundwater sample						

0	Sample Location: Sample Date:	NYSDEC SCG	EHS-GW-05 12/03/2007
	Total BTEX (ug/L)	NE	ND
	Total PAHs (ug/L)	NE	6.66
	Total PCBs (ug/L)	NE	ND
	Lead (ug/L)	25	ND

I:\GEI\National Grid\East Hampton\EH Hortonsphere\093000\ EHH-SCR Final GW Figure 1-10.dwg \Feb 17, 2010

9.

	LEGEND:					
	PROPERTY BOUNDARY (APPROXIMATE)					
×	FENCE					
EHS-GW-01	TEMPORARY MONITORING WELL LOCATION					
9.50	GROUNDWATER ELEVATION 2009 (FEET NAVD)					
40 ———	INFERRED GROUNDWATER ELEVATION CONTOUR JUNE 2009 (FEET NAVD)					
$\langle \square$	INFERRED GROUNDWATER FLOW DIRECTION					
NAVD	NORTH AMERICAN VERTICAL DATUM					
NYSDEC SCG -	New York State Department of Environmental Conservation Standards, Criteria, and Guidelines					
NE	not established					
ND	not detected; total concentration is listed as ND because no compounds were detected in the group					
NS	not sampled					
J	estimated value					
R	results rejected					
U	not detected					
ug/L	micrograms per liter or parts per billion (ppb)					
Bolding	indicates a detected result value					
Bolding	indicates that the detected result value exceeds established NYSDEC SCGs					
BTEX	benzene, toluene, ethlybenzene, and xylene					
PAHs	polycyclic aromatic hydrocarbons					
PCBs	polychlorinated biphenols					

SOURCES:

1. Orthophoto obtained from New York State Interactive Mapping Gateway (http://www1.nysgis.state.ny.us/MainMap.cfm) photo date: 2004, accessed 1/09/08.

2. Long Island Lighting Co., Mineola, N.Y., East Hampton Substation and Gas Storage Site, Situated at East Hampton, Town of East Hampton, County of Suffolk, N.Y., Scale: 1" = 60', Date: 10-17-72.

 Survey of existing conditions and sample locations conducted by GEI Consultants, Inc. on 12/14/07. Survey by New York state licensed land surveyor number 050146. Horizontal datum: New York State Plane coordinate system (Long Island Zone, North American Datum (NAD)83). Vertical datum: North American Vertical Datum (NAVD) 88.

GROUNDWATER CONTOURS (JUNE 2009) AND GROUNDWATER ANALYTICAL SUMMARY (ug/L)

D1 February 2010

													No. of Lot,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	652 11 11	Samp	le Location:		NYSDEC	EHS-SS-04	-	5	Sample Location:		NYSDEC	EHS-SS-06	5	and the second second	
A formation of the same	Sa	ample Depth (i	nches bgs)	NYSDEC	375	0.0 - 2.0	Sand Property	Sample De	pth (inches bgs):	NYSDEC	375	0.0 - 2.0		2017	
		Sa	ample Date:	375 RES		11/14/2007	- OF -		Sample Date:	375 RES		11/14/2007	and the second	1. 1.1	
		otal BTEX		NE	NE	ND	1000-0	Total BTEX	`	NE	NE	ND	And the second	and the second	
and the second s	То	otal PAHs		NE	NE	3.129		Total PAHs		NE	NE	1.158	and the Party of t		
	To	otal PCBs		1	25	0.072	and the second	Total PCBs		1	25	ND	1000	114	
there is a state of the state	Le	ad		400	3900	1140		Lead		400	3900	103	Contraction in the		
the state of the			The Acad Street			1		Statement of Street, or other	the Para	Contraction of the	1. 3				+
	Sam	ple Location:		NYSDEC	EHS-SS-01		and the second second	10000							
	Sample Depth	(inches bgs)	NYSDEC	375	0.0 - 2.0	and the second		and the second division of the second divisio	-			1	- Anter Mar		
The state of the second		Sample Date:	375 RES		11/14/2007	and the second		- non	NO T	-	and the second				111112
				NE		ALL MARKED	-	Carles .	And and a second			and the second second	Circle .		
			NE	NE	3.863	n man		Contraction of the second			San Partie	100 m 1	44		
1 has and	Total PCBs		1	25		1000	- Constant	and the second	CANE STATE		1 - 3			1	and the second
	Lead		400	3900	40		t in an		and the second	and a statement					11
States	the second second	Second and	A (3. 4)	1 m - 2		and the second		-	1	Sample	Location:		NYSDEC	EHS-SS-C	2
	and a second	A A			IE	1		EH8	Sam	ple Depth (inc	hes bgs):	VYSDEC	375	0.0 - 2.0	1
and the second s				AVENU	and the second		E.	10 10	1 Aller	Sam	ple Date:	375 RES	IND	11/14/200	7
1	1 m		ROAU	EHS-	SS-07-	EHS-SS-			Total	BTEX		NE	NE	ND	
	No. of Concerns	RAIL	and the second	1	4		\downarrow		Total	PAHs		NE	NE	2.85	-
			- and the second	AEHS-SS		L113-36-04	74		Total	PCBs		1	25	0.021	19-
Charles Surger	and the second second	and the second second					EHS	-55-05	Lead			400	3900	36	
		A sure	A	1	Section of		×			A Salaria and	9	and a second	State Street	100 11-	EP-F-
	- 10	The second		1	ALL AND	States				Sample Lo	cation	N		S-SS-05	N.T
and the second s	and the -	Partition -	1 5	1			Eno-oo		Sample	Depth (inche	s bas): NYS	SDEC	375 0	.0 - 2.0	
CONTRACTOR OF THE OWNER		and the second second	S. T.	1 1	54					Sample	Date: 375	RES	IND 11	/14/2007	The
			Sec. 1		and the	/ 1	A LAND		Total BT	EX		VE	NE	ND	T me
		1. · · · · · · · · · · · · · · · · · · ·		- /	- 52				Total PA	Hs	<u> </u>	NE	NE	1.886	1+
			T-17-	/2- 5	ALL I	Eus-33			Total PC	Bs		1	25	ND	
		- Harles -	Bard In		1	Same Provent	/		Lead		4	100	3900	1220	
				1 /		S. S. Barber				1 2 - 4	THE REAL		The last	- Total State	
		CONTRACTOR OF	5	1	AS FR	10 The 2	the l			Comula Lagot	lana	NIVO			unlights of
	1 set	a fer			EL.	S-SS-10 A	1	N -	Sample De	Sample Local	non: ne): NYSD			-20 FI	
	A Second Co.	A STATE			1 2 1				Campie De	Sample D	ate: 375 R	ES IN	JD 11/14	/2007	1/14/07
	C.L.	POWER H	IOUSE	1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		and the second	Total BTEX	(NE		E N	D	ND
	I T BEAL	1. 一年三日	11-24	10	PH AC A				Total PAHs	3	NE	N	E 139	.94	2.029
	La la Cateria	a state of the	1.0			1.50 0		1	Total PCBs	3	1	2	5 N	- 	0.021
L L	AL DRAW TO	the loss of the lo	×		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			And Distances	Lead		400	39	00 928	3 J	43.2 J
G	177	P. Salar		/	Ser .	A DECK		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Differences	11		A 100	1.3	L. B. Start	A CONTRACTOR
	Dist of the lot of			The state	123-1			C. LEWIS						and the second s	ANT COMMENTS
			Duplicate	of:		Cont.	and a state of the		Sa	mple Location		NYSDE	C EHS-SS	-08	- I
Sample Location:	NYSDEC	EHS-SS-09	EHS-SS-	09	ER.				Sample Deptl	h (inches bgs)): NYSDEC	375	0.0 - 2	.0	States of the local division of the local di
Sample Depth (inches bgs): NYS		0.0 - 2.0	0.0 - 2.0		- Law -	and the second	all the			Sample Date	3/5 RES		02/18/20	109	Street Bar
Total RTEX		UZ/10/2009	02/10/200		State -	AL ROAD						NE		-	1
			2.204		and the second	1	Barris and		Total PAHS		NE	NE	1./5/	199	and the
Total POP		4.165	2.394		-0		P	2,578,52	Total PCBs		1	25	ND 100	-	1.1
Total PCBs	1 25	0.013	0.019		50				Lead		400	3900	193	1	HUR
Lead 40	3900	25.4	22.6	and the second second			1-1					17 Ball	All States		Contraction of the local division of the loc
					130-1)	and the second	_ E/1	Sampl	e Location:		NYSDEC	EHS-SS-10	Salar T	1 +
and the second second	Sample Location:		NYSDEC	EHS-SS-07	ALC OF		198 miles	and the second	Sample Depth (in	nches bgs)	NYSDEC	375	0.0 - 2.0		
Sample D	Depth (inches bgs)	NYSDEC	375	0.0 - 2.0	1 15 mp	-			Sa	mple Date	375 RES	IND	2/18/2009	C Des C	1 A 1 A
And the second second second	Sample Date:	375 RES	IND	02/18/2009	S. 12.		all and	and been	Total BTEX		NE	NE	ND		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total BTE	X	NE	NE	ND	13. CAS	44	1	Let	Total PAHs		NE	NE	1.624		13
Total PA	ls	NE	NE	2.604				and the second	Total PCBs		1	25	0.037	The second second	100
Total PCE	Bs	1	25	0.18	Sel Sec	Stat and	-	Cittle -	Lead		400	3900	82.2		A STATE
Lead		400	3900	36.6		C AN	15	315		A 572 / 5	-				Contra La
A DESCRIPTION OF THE PARTY OF T		-	and and	10000	The street	OF STREET	State State	-	Contraction of the second	P MERCENSE	and the second second	A CALL STOR	A Real Property in the		and the second
												. 311 E ()		-rsiza H	

FINAL SITE CHARACTERIZATION REPORT EAST HAMPTON HORTONSPHERE SITE EAST HAMPTON, NEW YORK

nationalgrid

I:\GEI\National Grid\East Hampton\EH Hortonsphere\093000\ EHH-SCR Final Figures 2-10.dwg \Feb 17, 2010

LEGEND:

PROPERTY BOUNDARY (APPROXIMATE)

GROUND SURFACE CONTOUR (FEET, NAVD) FENCE

EHS-SS-01 △ SURFACE SOIL SAMPLE LOCATION

NYCRR 375 SCO RESTRICTED USE RESIDENTIAL - New York State Code of Rules and Regulations Chapter 6, Subpart 375-6 Restricted Use Residential Soil Cleanup Objectives (Residential SCOs)

NYCRR 375 SCO RESTRICTED USE INDUSTRIAL - New York State Code of Rules and Regulations (NYCRR) Chapter 6, Subpart 375-6 Restricted Use Industrial Soil Cleanup Objectives (Industrial SCOs)

NE	not established
ND	not detected; total concentration is listed as ND because no compounds were detected in the group
BOLD	indicates detected result
BOLD	indicates the result exceeds 6NYCRR Part 375 Restricted Use Residential criteria
BOLD	indicates the result exceeds 6NYCRR Part 375 Restricted Use Residential and Industrial Use criteria
mg/kg	milligrams/kilogram or parts per million (ppm)
BTEX	benzene, toluene, ethlybenzene, and xylene
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls

NOTE:

LOCATIONS OF SURFACE SOIL SAMPLES EHS-SS-04, EHS-SS-05, EHS-SS-06, EHS-SS-07, EHS-SS-08, EHS-SS-09 AND EHS-SS-10 ARE BASED ON TAPED MEASUREMENTS FROM KNOWN POINTS.

SOURCES:

1. Orthophoto obtained from New York State Interactive Mapping Gateway (http://www1.nysgis.state.ny.us/MainMap.cfm) photo date: 2004, accessed 1/09/08.

2. Long Island Lighting Co., Mineola, N.Y., East Hampton Substation and Gas Storage Site, Situated at East Hampton, Town of East Hampton, County of Suffolk, N.Y., Scale: 1" = 60', Date: 10-17-72.

 Survey of existing conditions and sample locations conducted by GEI Consultants, Inc. on 12/14/07. Survey by New York state licensed land surveyor number 050146. Horizontal datum: New York State Plane coordinate system (Long Island Zone, North American Datum (NAD)83). Vertical datum: North American Vertical Datum (NAVD) 88.

SURFACE SOIL ANALYTICAL SUMMARY (mg/kg)

01 February 2010

			No. of		L.	and!			- ANDER		Par -	No. of the second secon	No.		
	Sample Location: Sample Depth (ft bgs): Sample Date:	NYSDEC 375 RES	NYSDEC 375 IND	EHS-GP-01 (4-5) 11/13/2007	EHS-GP-01 (44-45) 11/13/2007		A-DA			-	<u></u>		5		
	Total BTEX (mg/kg)	NE	NE	0.0017	0.0011	- and the second	and and	Section of the local division of the local d	~ 22		100	all and		1	
11	Total PAHs (mg/kg)	NE	NE	ND	ND	44 million		2		1 1 1 1 1 1 1		AL CAR	THE Y	The sale of	
.84	Total PCBs (mg/kg)	1	25	ND	ND		-	A STATE	and the second s		Constant of	The The		AN .	and and the
4	Lead (mg/kg)	400	3900	11.7	ND		Charles and			ALL AND STREET		alle P	1	1	1
		20	30	RA	ILROAD	AVENU	IE	EHS-GP-0 EHS-GW		(S-GP-03/			9 / J		TE.
N/N			-	Rauk	Dunlingto of	V	EHS	5-GP-02/ 5-GW-02 P		HS-GW-03		1	1	- de	
	Sample Location: Sample Depth (ft bgs): Sample Date:	NYSDEC 375 RES	NYSDEC 375 IND	EHS-GP-02 (4-5) 11/13/2007	EHS-GP-02 (4-5) 11/13/2007	EHS-GP-02 (43-45) 11/15/2007	52	I			a.				F. t.
	Total BTEX (mg/kg)	NE	NE	ND	0.00082	ND	1	Jan K	į į	Sa	ample Location:	NYSDEC	NYSDEC	EHS-GP-03	EHS-GP-03
-	Total PAHs (mg/kg)	NE	NE	ND	ND	ND /		A HARRIST AND	i i la	Sample	Sample Date	BFS	375 IND	(4-5)	(44-45)
	Total PCBs (mg/kg)	1	25	ND	ND	ND		-		Total B	TEX (mg/kg)	NE	NE	ND	ND
	Lead (mg/kg)	400	3900	6.1	7.6	ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		Total P	AHs (mg/kg)	NE	NE	0.86	ND
11	The second second	an an An	Strate .		11 22		R. V. C.		and the second second	Total P	CBs (mg/kg)	1	25	ND	ND
	ALC: R. A. S. S.	S	Calle	POWE	R HOUSE —	EHS-GP-04/	and and the			Lead (r	na/ka)	400	3900	11.3	0.76J
	Part and a state	a	n a	11/1	PTY -	EHS-GW-04-				Loud (i					01100
		and the second	in the		Set Mar	*		ALL MARCH	1 tomat	Alta /	and a state of the	1 A	AS YE	1.4	
100	<u> </u>		Contraction of the	· ·	*	*	Constant of the local division of the	ARE CON	Charles and	C. Markins		1 4		It - Marine	
1000	O T	18 3	there .		the state	/ /	State of the local	15				A STREET	100		A CONTRACTOR
	THE T AND	11.	A STATE		51		Carl .		- Alexandre	12.					
	A			1 Martin			Service - S	and the second		013	Section 11	1. The State	A 7 50	Section .	the second second
10	A STATE OF ALL	Signed 1		States and states				- Alter		1 server	A REAL PROPERTY.	1.201	1 . A.	C. C	
	0	-		4	the Part	States .		An an			a and	- 41	10.00		
-		Sec. States		(marks		- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	A		-	- Contraction		Ž	11 5 10	1	
05		Collins 7.0	-		de le Pro						P P	Y	1 A TON		
	R R		Parties .	Car	the open		50	100 C # 1		05	P. Control	~ H	1 10 10	A CONTRACTOR	HUR
1						a ter and a		States 1	and and	alle alle the			half	1 martine	TO A PROPERTY.
					-	10 16 247 C	ALL AND	The second second				<u> </u>	the state		and the first
and it		\mathcal{M}	1		the second	S. Y Page	7-17 M	A STATE OF THE OWNER	State Area Bill	LADM		AC		and the second	
		V.Y.	1-30 6	1000		2	a to the		Contract of			2	Contraction of the	the second second second	and the second second
The state	and the second	11.14		A CONTRACTOR			A. 12-5.	a set and	and sold in some set			100	2	State of the second	and the second
100		The second second	Alt and	14	al and the			-	AL	The second	A sold	TA		· States	The second s
	Sample Location				4 FHS_CP	4		2 P	THE REAL PROPERTY AND INCOMENT		the state of the second				
	Sample Depth (ft bos	a) 375	375	(4-5)	(44-45)	- 4-		IN THE	THE OWNER OF	Sa	ample Location:	NYSDEC	NYSDEC	EHS-GP-05	EHS-GP-05
	Sample Date	e: RES	IND	11/13/200	7 11/16/200	7			1 10	Sample	Sample Date	RES	IND	(4-5)	
1	Total BTEX (mg/kg)	NE	NE	ND	ND	1 11	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	the second second	The R	Total B	TEX (ma/ka)	NF	NF	ND	
	Total PAHs (mg/kg)	NE	NE	ND	ND	Section in the	2010			Total P	AHs (ma/ka)	NF	NF	ND	ND
	Total PCBs (mg/kg)	1	25	ND	ND	and the second s	States of the		1 PLA	Total P	CBs (ma/ka)	1	25	ND	ND
1	Lead (mg/kg)	400	3900	7.4	ND	and the second second		the second second	AT AL	Lead (n	ng/kg)	400	3900	6.7	ND
	State of the second second							- 100 P	and the second						To a state of the
												FINIAL 9			

ORT EAST HAMPTON HORTONSPHERE SITE EAST HAMPTON, NEW YORK

nationalgrid

PROPERTY BOUNDARY (APPROXIMATE)

GROUND SURFACE CONTOUR (FEET, NAVD)

FENCE

EHS-GP-01/ ⊞ EHS-GW-01 [⊞] TEMPORARY MONITORING WELL LOCATION/ GEOPROBE[®] BORING LOCATION

NYCRR 375 SCO RESTRICTED USE RESIDENTIAL - New York State Code of Rules and Regulations Chapter 6, Subpart 375-6 Restricted Use Residential Soil Cleanup Objectives (Residential SCOs)

NYCRR 375 SCO RESTRICTED USE INDUSTRIAL - New York State Code of Rules and Regulations (NYCRR) Chapter 6, Subpart 375-6 Restricted Use Industrial Soil Cleanup Objectives (Industrial SCOs)

NE	not established
ND	not detected; total concentration is listed as ND because no compounds were detected in the group
BOLD	indicates detected result
BOLD	indicates the result exceeds 6NYCRR Part 375 Restricted Use Residential criteria
BOLD	indicates the result exceeds 6NYCRR Part 375 Restricted Use Residential and Industrial Use criteria
mg/kg	milligrams/kilogram or parts per million (ppm)
BTEX	benzene, toluene, ethlybenzene, and xylene
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls

SOURCES:

1. Orthophoto obtained from New York State Interactive Mapping Gateway (http://www1.nysgis.state.ny.us/MainMap.cfm) photo date: 2004, accessed 1/09/08.

2. Long Island Lighting Co., Mineola, N.Y., East Hampton Substation and Gas Storage Site, Situated at East Hampton, Town of East Hampton, County of Suffolk, N.Y., Scale: 1" = 60', Date: 10-17-72.

3. Survey of existing conditions and sample locations conducted by GEI Consultants, Inc. on 12/14/07. Survey by New York state licensed land surveyor number 050146. Horizontal datum: New York State Plane coordinate system (Long Island Zone, North American Datum (NAD)83). Vertical datum: North American Vertical Datum (NAVD) 88.

SUBSURFACE SOIL ANALYTICAL SUMMARY (mg/kg)

Appendix A

Work Plan Approval Letter

New York State Department of Environmental Conservation

Division of Environmental Remediation, Region One 50 Circle Road, SUNY @ Stony Brook, New York 11790-3409 Phone: (631) 444-0240 • FAX: (631) 444-0248 Website: www.dec.state.ny.us

November 16, 2007

Mr. Theodore O. Leissing, Jr. Manager - MGP Programs, L.I. Environmental Asset Management KeySpan Corporation 175 East Old Country Road Hicksville, NY 11801

Re: East Hampton Hortonsphere Site #1-52-213 Draft Site Characterization Work Plan; June 2007

Dear Mr. Leissing,

In a letter dated October 25, 2007, the New York State Department of Environmental Conservation (NYSDEC) provided you with comments and revisions to the referenced plan. Your response letter dated November 12, 2007 addressed the issues raised by the Department. As we discussed yesterday, the New York State Department of Health has requested that you increase the duration of soil gas sample collection from four minutes to ten minutes. Additionally, please revise the scope of work to reflect the fact that three soil gas samples will be collected rather than one.

Based upon your November 12, 2007 response letter and our discussions on November 15, 2007, the NYSDEC hereby approves the Site Characterization Work Plan. Please include these revisions in the final plan and re-submit four copies of the plan for NYSDEC distribution. If you should have any questions, please feel free to contact me at (631) 444-0246.

Sincerely,

Jantie Ascher Engineering Geologist 2 cc: C. Vasudevan W. Parish D. Miles R. Ockerby P. Punturo A. Juchatz G. Iadarola

:

Ì,

Appendix B

Supplemental Site Characterization Letter Work Plan

Theodore O. Leissing Manager, MGP Programs

national**grid**

January 23, 2009

Mr. Jamie Ascher Engineering Geologist 2 New York State Department of Environmental Conservation Division of Environmental Remediation, Region 1 Stony Brook University 50 Circle Road Stony Brook, NY 11790-3409

Re: Supplemental Site Characterization Work Plan East Hampton Hortonsphere Site Index #: AI-0595-08-07; Site #: 152213 East Hampton, New York

Dear Mr. Ascher:

National Grid is submitting for your review and approval the following work plan to conduct Supplemental Site Characterization (SSC) activities at the former East Hampton Hortonsphere Site in East Hampton, New York. The Site location is shown in Figure 1. The current conditions of the property are shown in Figure 2.

This SSC letter work plan was developed in response to New York State Department of Environmental Conservation's (NYSDEC's) October 30, 2008 comment letter that requested additional characterization to further evaluate surface soils and metals in one groundwater well (GW-01).

When the SSC work is completed and analytical data has been validated, we will generate a data summary report for your review, prior to revising the current draft SC report.

In addition, National Grid plans to discuss with NYSDEC collection of background samples in the vicinity of the East Hampton Hortonsphere Site as well as other alternative gas sites on Long Island. If the background sampling plan is finalized prior to executing this SSC Work Plan, the background sampling will coincide with the surface soil and groundwater sampling.

The remaining portion of this letter provides the proposed SSC work plan in detail.

1.0 Supplemental Site Characterization

The SSC will be conducted in accordance with the NYSDEC-approved Site Characterization Work Plan (SCWP) dated November 2007, that includes the Health and Safety Plan, Quality Assurance Project Plan, and Field Sampling Plan. The following subsections describe the proposed investigations of surface soils and groundwater.

1.1 Surface Soil Sampling

Four surface soil samples (EHS-SS-07, EHS-SS-08, EHS-SS-09, and EHS-SS-10) are proposed to further evaluate soil conditions outside the fenced confines of the Hortonsphere. The locations of the proposed surface soil samples are shown in Figure 2.
Draft Supplemental Site Characterization Work Plan East Hampton Hortonsphere Site Index #: AI-0595-08-07; Site #: 152213 East Hampton, New York Page 2

Two surface soil samples (EHS-SS-07 and EHS-SS-09) will be collected in the grassed area outside the fenced confines of the Hortonsphere 50 feet and 100 feet to the west near the property boundary. Two surface soil samples (EHS-SS-08 and EHS-SS-10) will be collected in the grassed area outside the fenced confines of the Hortonsphere 50 feet and 100 feet to the south. The approximate sample locations are shown in Figure 2. The surface soil samples will be collected with a decontaminated stainless steel trowel or dedicated disposable sampling tool from 0 to 2 inches below the vegetative root mat. The grass will be removed prior to sampling and will be replaced following the completion of sampling activities.

These samples will be analyzed as specified in the Final SC work plan and additional analyses requested in the October 30, 2008 comment letter which includes:

- Volatile organic compounds (VOCs) via Environmental Protection Agency (EPA) method 8260
- Semi-volatile organic compounds (SVOCs) via EPA method 8270
- Target analyte list (TAL) metals via (EPA 6000/ 7000 series)
- Polychlorinated biphenyls (PCBs) and pesticides via EPA method 8082
- Herbicides via EPA method 8151A
- Atrazine and simazine via EPA method 8270C and metachlor via EPA method 8081A
- Sulfide via EPA method 9034 and sulfate via EPA method 300.0
- Metals via EPA Method 6010B.

Quality assurance/quality control samples will include one blind duplicate, and one rinsate blank. The batch MS/MSD data from the laboratory will be requested in lieu of a site-specific MS/MSD.

The surface soil samples will be submitted to TestAmerica Laboratories in Shelton, Connecticut for analysis. TestAmerica is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) accredited laboratory.

The location of each sample point will be measured from known points and incorporated into the existing site base map.

1.2 Groundwater Sampling

Groundwater monitoring well GW-01 will be purged and re-sampled for metals (EPA Method 6010B). Depth to groundwater is approximately 42 feet below ground surface and a peristaltic pump used for low-flow sampling has an effective depth of 25 feet and less. As such, a bladder pump or Groundfos submersible pump will be used to collect the sample. The sample will not be collected unless turbidity is less than 50 nephelometric turbidity units (NTUs). The groundwater sample will be analyzed for total metals by EPA method 6010B. Quality assurance/quality control samples will include one trip blank.

If groundwater turbidity less than 50 NTUs cannot be achieved, an unfiltered and a filtered sample will be collected in preserved bottles. Both samples will be submitted to the laboratory.

Draft Supplemental Site Characterization Work Plan East Hampton Hortonsphere Site Index #: AI-0595-08-07; Site #: 152213 East Hampton, New York Page 3

The groundwater sample will be analyzed for total metals by EPA method 6010B. Quality assurance/quality control samples will include one trip blank.

If groundwater turbidity less than 50 NTUs cannot be achieved, an unfiltered and a filtered sample will be collected in preserved bottles. Both samples will be submitted to the laboratory. If the unfiltered sample results for metals exceed the New York State Ambient Water Quality Standard, the filtered sample will be analyzed for dissolved metals by EPA method 6010B.

A quality assurance/quality control sample will include one trip blank.

Groundwater will be collected in 55-gallon USDOT drums and disposed of at an approved disposal facility.

2.0 Schedule and Reporting

We anticipate that field work can start within approximately 3 weeks of receiving NYSDEC approval. A number of factors can affect the actual start date including the approval of this work plan, property access, and/or weather that may hamper collection of surface soil samples. National Grid will have to coordinate access with the Long Island Power Authority. The field work is expected to take approximately 1 day.

After completion of the field activities and receipt/validation of the laboratory analytical data, the existing draft SC report will be revised to include the supplemental data.

Sincerely,

Theodore Leissing Manager, MGP Programs National Grid Site Investigation & Remediation

Attachment

cc: W. Parish, NYSDEC Region 1
C. Vasudevan, NYSDEC
L. Eckhaus, NYSDEC
R. Paulsen, SCDHS
A. Juchatz, SCDEE
R. Ockerby, NYSDOH
S. Shearer, NYSDOH
J. Zak, GEI
T. Burke, GEI

HAWPROCOProject/KEYSPAN41 Site Characterizations/East Hampton Hortonsphere/Supplemental SCV/ast/Hampton-SSC4.tr_final01-23-09.doc

I:\GEI\National Grid\East Hampton\EH Hortonsphere\SSCWP\East Hampton Location Map.CDR

C:\DOCUME~1\pheriot\LOCALS~1\Temp\AcPublish_2272\ EHampton-Hortonsphere Samples.dwg \Jan 22, 2009

LEGEND:							
	PROPERTY BOUNDARY (APPROXIMATE)						
— — 50 — —	GROUND SURFACE CONTOUR (FEET, NAVD)						
	FENCE						
EHS-SS-07	PROPOSED SURFACE SOIL SAMPLE LOCATION						
EHS-GW-01⊞	PROPOSED GROUNDWATER RESAMPLING LOCATION						
EHS-GP-01/⊞ EHS-GW-01	GEOPROBE [®] BORING LOCATION/ TEMPORARY GROUNDWATER SAMPLING LOCATION						
EHS-SV-02 O	SOIL VAPOR SAMPLE LOCATION						
EHS-SS-01 🛆	SURFACE SOIL SAMPLE LOCATION						
ΑΑ	CROSS SECTION LOCATION						

NOTE:

LOCATIONS OF SURFACE SOIL SAMPLES EHS-SS-04, EHS-SS-05, AND EHS-SS-06 ARE APPROXIMATE.

SOURCES:

1. Orthophoto obtained from New York State Interactive Mapping Gateway (http://www1.nysgis.state.ny.us/MainMap.cfm) photo date: 2004, accessed 1/09/08.

2. Long Island Lighting Co., Mineola, N.Y., East Hampton Substation and Gas Storage Site, Situated at East Hampton, Town of East Hampton, County of Suffolk, N.Y., Scale: 1" = 60', Date: 10-17-72.

 Survey of existing conditions and sample locations conducted by GEI Consultants, Inc. on 12/14/07. Survey by New York state licensed land surveyor number 050146. Horizontal datum: New York State Plane coordinate system (Long Island Zone, North American Datum (NAD)83). Vertical datum: North American Vertical Datum (NAVD) 88.

EXISTING AND PROPOSED SAMPLE LOCATIONS

Project 072710-2-1105 January 2009

Figure 2

Appendix C

Site Photographs

GEI Consultants, Inc.

PHOTOGRAPHIC RECORD

Project: East Hampton Hortonsphere Site Characterization Location:: Railroad Avenue, East Hampton, NY

Photographer:K. BarberDate:5/15/07Photo No.:1Direction:SE

Comments: View of Hortonsphere from Railroad Avenue.

Photographer:	K. Barber
Date:	5/15/07
Photo No.:	2
Direction:	Е

Comments: View of Hortonsphere and chain-link fence from Railroad Avenue.

GEI Consultants, Inc.

PHOTOGRAPHIC RECORD

Project: East Hampton Hortonsphere Site Characterization Location:: Railroad Avenue, East Hampton, NY

Photographer:K. BarberDate:5/15/07Photo No.:3Direction:S

Comments: View of electrical substations along southeastern portion of the property.

Photographer:	K. Barber
Date:	5/15/07
Photo No.:	4
Direction:	Ν

Comments:

View of dirt path that transects property. View of powerhouse to the left of the photograph.

GEI Consultants, Inc.

PHOTOGRAPHIC RECORD

Project: East Hampton Hortonsphere Site Characterization Location:: Railroad Avenue, East Hampton, NY

Photographer:	K. Barber
Date:	5/15/07
Photo No.:	5
Direction:	W

Comments: Site vicinity. Photograph taken from site looking across (west) Fresno Place.

Photographer:	K. Barber
Date:	5/15/07
Photo No.:	6
Direction:	S

Comments:

Photograph taken from southwestern corner down dirt path. Photograph shows offsite restaurant in distance.

Appendix D

Sanborn Fire Insurance Maps, USGS Topographic Maps, Aerial Photographs, Hortonsphere Construction Information

"Linking Technology with Tradition"®

Sanborn® Map Report

Ship To:	Lynn Willey	4	Order Date:	4/9/2007	7	Comp	oletion	Date:	4/10/2007
GEI Consultants Inc. 455 Winding Brook Drive Glastonbury, CT 06033		tants Inc.	Inquiry #: 1898463.3s						
		g Brook Drive	P.O. #:	08901					
		y, CT 06033	Site Name: East Hampton Hortonsphere						
			Addı	ress:	Rac	e Lane	/ Railro	ad Aver	nue
Customer	Project:	NA	City/	State:	Eas	t Hamp	ton, N	Y 11937	
1081503PV	C	203-537-0751	Cros	s Street	s:				

Based on client-supplied information, fire insurance maps for the following years were identified

1909 - 1 Map 1920 - 1 Map 1929 - 1 Map 1936 - 1 Map 1943 - 1 Map

Limited Permission to Photocopy

Total Maps: 5

GEI Consultants Inc. (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information provided in this Report is not to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

USER'S GUIDE

This User's Guide provides guidelines for accessing Sanborn Map® images and for transferring them to your Word Processor.

Reading Sanborn Maps

Sanborn Maps document historical property use by displaying property information through words, abbreviations, and map symbols. The Sanborn Map Key provides information to help interpret the symbols and abbreviations used on Sanborn Maps. The Key is available from EDR's Web Site at: http://www.edrnet.com/reports/samples/key.pdf

Organization of Electronic Sanborn Image File

- Sanborn Map Report, listing years of coverage
- User's Guide
- Oldest Sanborn Map Image
- Most recent Sanborn Map Image

Navigating the Electronic Sanborn Image File

- 1. Open file on screen.
- 2. Identify TP (Target Property) on the most recent map.
- Find TP on older printed images. 3.
- Using Acrobat® Reader®, zoom to 250% in order to view more 4 clearly. (200-250% is the approximate equivalent scale of hardcopy Sanborn Maps.)
 - A. On the menu bar, click "View" and then "Zoom to..."
 - B. Or, use the magnifying tool and drag a box around the TP

Printing a Sanborn Map From the Electonic File

- EDR recommends printing images at 300 dpi (300 dpi prints faster than 600 dpi)
- To print only the TP area, cut and paste from Acrobat to your word processor application.

Acrobat Versions 6 and 7

- 1. Go to the menu bar
- 2. Click the "Select Tool"
- 3. Draw a box around the area selected
- 4. "Right click" on your mouse
- 5. Select "Copy Image to Clipboard"
- 6. Go to Word Processor such as Microsoft Word, paste and print.

Acrobat Version 5

- 1. Go to the menu bar
- 2. Click the "Graphics Select Tool"
- 3. Draw a box around the area selected
- 4. Go to "Menu"
- 5. Highlight "Edit"
- 6. Highlight "Copy"
- 7. Go to Word Processor such as Microsoft Word, paste and print.

Important Information about Email Delivery of Electronic Sanborn Map Images

- Images are grouped intro one file, up to 2MB.
- In cases where in excess of 6-7 map years are available, the file size typically exceeds 2MB. In these cases,
- you will receive multiple files, labeled as "1 of 3", "2 of 3", etc. including all available map years. Due to file size limitations, certain ISPs, including AOL, may occasionally delay or decline to deliver files. Please contact your ISP to identify their specific file size limitations.

EDR[®] Environmental

EDR Historical Topographic Map Report

East Hampton Hortonsphere Race Lane/ Railroad Avenue East Hampton, NY 11937

Inquiry Number: 1898463.4

April 10, 2007

The Standard in **Environmental Risk Management Information**

Data Resources Inc

440 Wheelers Farms Rd Milford, Connecticut 06461

Nationwide Customer Service

Telephone: Fax: Internet:

1-800-352-0050 1-800-231-6802 www.edrnet.com

EDR Historical Topographic Map Report

Environmental Data Resources, Inc.s (EDR) Historical Topographic Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topographic Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the early 1900s.

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. **NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT.** Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Historical Topographic Map

N	TARGET QUAD NAME: EAS		SITE NAME: ADDRESS:	East Hampton Hortonsphere Race Lane/ Railroad Avenue	CLIENT: CONTACT:	GEI Consultants Inc. Lynn Willey
▲	MAP YEAR: 1943	3		East Hampton, NY 11937	INQUIRY#:	1898463.4
			LAT/LONG:	40.9644 / 72.1957	RESEARCH	DATE: 04/10/2007
	SERIES: 7.5					
	SCALE: 1:25	5000				

Historical Topographic Map

	TARGET QUAD NAME: EAST MAP YEAR: 1956 SERIES: 7.5 SCALE: 1:240	T HAMPTON	SITE NAME: ADDRESS: LAT/LONG:	East Hampton Hortonsphere Race Lane/ Railroad Avenue East Hampton, NY 11937 40.9644 / 72.1957	CLIENT: CONTACT: INQUIRY#: RESEARCH I	GEI Consultants Inc. Lynn Willey 1898463.4 DATE: 04/10/2007
--	--	-----------	-------------------------------------	--	--	--

Historical Topographic Map

TARGET QUAD NAME: EAST HAMPTON MAP YEAR: 1976 PHOTOINSPECTED FROM: 1956 SERIES: 7.5 SCALE: 1:24000

Ν

SITE NAME: East Hampton Hortonsphere ADDRESS: Race Lane/ Railroad Avenue East Hampton, NY 11937 LAT/LONG: 40.9644 / 72.1957

CLIENT: GEI Consultants Inc. CONTACT: Lynn Willey INQUIRY#: 1898463.4 RESEARCH DATE: 04/10/2007

The EDR Aerial Photo Decade Package

East Hampton Hortonsphere Race Lane/ Railroad Avenue East Hampton, NY 11937

Inquiry Number: 1898463.5

April 10, 2007

The Standard in Environmental Risk Information

440 Wheelers Farms Road Milford, Connecticut 06461

Nationwide Customer Service

Telephone:1-Fax:1-Internet:wv

1-800-352-0050 1-800-231-6802 www.edrnet.com

EDR Aerial Photo Decade Package

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDRs professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Date EDR Searched Historical Sources:

Aerial Photography April 10, 2007

Target Property:

Race Lane/ Railroad Avenue East Hampton, NY 11937

<u>Year</u>	<u>Scale</u>	<u>Details</u>	<u>Source</u>
1957	Aerial Photograph. Scale: 1"=750'	Panel #: 2440072-H2/Flight Date: April 15, 1957	EDR
1960	Aerial Photograph. Scale: 1"=750'	Panel #: 2440072-H2/Flight Date: October 19, 1960	EDR
1980	Aerial Photograph. Scale: 1"=833'	Panel #: 2440072-H2/Flight Date: September 08, 1980	EDR
1994	Aerial Photograph. Scale: 1"=833'	Panel #: 2440072-H2/Flight Date: April 08, 1994	EDR

Hortonsphere Construction Information

A TEXTBOOK OF AMERICAN GAS PRACTICE

VOLUME TWO DISTRIBUTION AND UTILIZATION OF CITY GAS

By JEROME J. MORGAN, M.S., Ph.D. ASSOCIATE PROFESSOR OF CHEMICAL ENGINEERING COLUMBIA UNIVERSITY

With Advice and Suggestions From

A. E. FORSTALL, Consulting Engineer Montclair, N. J.

J. A. PERRY, United Gas Improvement Co. PHILADELPHIA, PA.

F. C. WEBER, Vice-President, The Brooklyn Union Gas Co. BROOKLYN, N. Y.

W. S. YARD, Vice-President, Pacific Gas & Electric Co. SAN FRANCISCO, CALIF.

Second Edition

Published by JEROME J. MORGAN MAPLEWOOD, N. J. 1935

STORAGE OF GAS

58

gas into the holder when the pressure on the transmission line exceeds 14 pounds and feeds back into the line when the pressure in this drops below 10 pounds. A control switch in series stops the compressor when the holder pressure reaches 60 pounds. By means of long distance gages the operation of this automatic station can be observed by the engineer in the main plant compressor room 2 miles away.

Spherical High Pressure Gas Holders. Spherical steel tanks for the storage of gas under high pressure were introduced by the Chicago Bridge and Iron Works. They were named Hortonspheres after George T. Horton, president of that firm. In a paper ⁵¹ describing them, Horton has shown that it is necessary in a cylindrical tank with hemispherical ends to make the walls of the cylindrical section twice as thick as those of the hemispherical ends in order to withstand the same pressure, and that hence the weight, W, of steel for a given storage capacity, S, is smallest when the cylindrical section is of zero length, that is, when the hemispherical ends meet forming a sphere. While it is an admitted fact that the cost of construction outside of the materials is somewhat greater for the spherical form than the cylindrical form, experience shows that in spherical tanks this increase in construction costs is considerably less than the saving in steel.

An interesting relationship is that if we assume a joint efficiency of 78.5 per cent and a working stress of 13,750 pounds per square inch for the steel, which allows a factor of safety of 4, the weight, W, in pounds of the steel in the sphere, without including the weight of the joints and supports, is equal to the storage capacity, S, in cubic feet.

W = S

Further, the storage capacity of a given sphere varies directly with the absolute pressure, and the thickness of the walls necessary to withstand the pressure also varies directly with the absolute pressure. Hence in a given size of sphere the weight of steel increases directly with storage capacity. Again, if the pressure is kept constant, the storage capacity or volume varies with the *cube* of the radius. Now the stress, and hence the thickness of the steel to withstand a given pressure, varies *directly* with the radius, and the area to be covered with steel varies with the *square* of the radius. Hence the weight of steel to withstand a given pressure in spheres of different sizes increases with the cube of the radius or of the diameter, just the same as does the volume or storage capacity at constant pressure. Therefore, if we disregard the weight of steel in the joints and supports, the amount of **steel necessary for a given storage capacity** in spherical high pressure tanks is independent of the number and diameter of the spheres. To illustrate, if we wish to store 500,000 cubic feet of gas, we might do it at 30 pounds pressure in one sphere 78 feet in diameter, in two spheres 62 feet in diameter, or in three spheres 54 feet in diameter, the volume in each of these cases being 250,000 cubic feet. The thickness of the steel necessary to withstand the 30 pound pressure would be respectively 0.64, 0.51, and 0.44 inch. We might also store 500,000 cubic feet of gas under 45 pounds pressure in one sphere 69 feet in diameter, in five spheres 40 feet in diameter, or in six spheres 37 feet in diameter. Each of these combinations gives a volume of 167,000 cubic feet. The thickness of the steel necessary in these cases to withstand the 45 pound pressure is respectively 0.85, 0.49 and 0.46 inch.

In considering the construction, 78 and 69 foot spheres with steel 0.64 and 0.85 inch thick would require butt strap joints, while the other spheres with steel from 0.44 to 0.51 inch could have lap joints. It will be found then that the weight of steel for the 500,000 cubic foot storage capacity would be about 45 per cent greater than the theoretical 500,000 pounds for the spheres which require butt strap joints and about 35 per cent greater for those with lap joints. Horton finds the maximum economy is obtained with steel of $\frac{7}{16}$ to $\frac{9}{16}$ inch in thickness. With this material the cost for a given storage in various sizes and numbers of spheres does not vary more than 10 per cent. This permits a great flexibility in the erection of these holders, allowing them to be built in sizes and numbers that best suit the conditions of the available sites and at different times to suit the need of storage capacity. These holders are also fabricated with butt welded joints which reduces the amount of steel required to approximately the theoretical figure above mentioned.⁵² For a more detailed discussion of design problems in connection with these holders reference should be made to Horton's paper ⁵¹ and to the article by Milbourne.⁵³ Figure 27 illustrates a Hortonsphere erected for the Long Island Lighting Co. at Farmingdale, New York. It is 57 feet 6 inches in diameter and is designed to store 400,000 cubic feet of gas at 60 pounds gage pressure.

These holders also have the advantage of requiring only moderate foundations. On account of their shape and the fact that gas pressure within tends to keep them spherical, slight settling of the foundations is not serious. Since there are no moving parts and no liquid seals, they require practically no attention, and their maintenance is small. These advantages, together with the fact that a sphere painted with DISTRIBUTION AND UTILIZATION OF CITY GAS

FIG. 27. Hortonsphere High Pressure Gas Holder, 57.5 feet in Diameter. (Courtesy of Chicago Bridge & Iron Works, Chicago, Ill.)

aluminum or a suitable colored paint may be easily made to harmonize with the landscape, make the Hortonsphere especially adapted to use for outlying holders in residential districts. Figure 28 shows how well one of these holders, which is 40 feet in diameter and stores 135,000 cubic feet of gas at 60 pounds pressure, blends with the surroundings.

Purging of High Pressure Holders. In the purging of high pressure holders there are no moving parts and no sealing liquids to complicate matters. The purging is therefore only a matter of replacing the gas content of a closed container. Figure 29 shows the principal **connections to be made for purging** horizontal cylindrical and spherical high pressure holders. The connections for a vertical cylindrical holder are similar to those for a spherical holder. In addition test cocks should be provided around the spherical or vertical cylindrical holder about one-third of its vertical height from the top, and at points on the top of the horizontal holder at maximum distances from the standard vent or vents. In the removal of a holder from service

STORAGE OF GAS

FIG. 28. Hortonsphere High Pressure Gas Holder, 40 feet in Diameter, Blends Well with Background. (Courtesy of Chicago Bridge & Iron Works, Chicago, Ill.)

any oil present must be drawn off and the gas pressure reduced to about 6 inches water gage before purging operations are begun. With these exceptions the principles of purging of these holders may be easily inferred from our discussion of purging low pressure holders. Exact details of operation are given in the procedure recommended by the American Gas Association ¹⁹ and this should be consulted previous to any attempt to purge such holders.

Underground Storage of Gas. Natural gas occurs, as we have already indicated,¹ stored under pressure in the pores of the so-called gas sands. These are really sedimentary rocks which have a porosity averaging from 8 to 22 per cent, although sands with a porosity up to 35 per cent are known. In its occurrence the natural gas is stored in the pores of the rock either alone under high pressures, or dissolved

61

- 28. BRAINE, J. H. Repair of leaks in sectional gas holders. A. G. A. Monthly, 9, 1927, 71-6.
- 29. EDITORIAL. Recrowning an inflated holder. Gas Journal, December 1930, 854.
- METZDORFF. Repairing the cup of a filled gas holder by welding. Gas- und Wasserfach, 74, 1931, 9; translated by L. M. Van der Pyl, Gas Age-Record, 67, 1931, 266-8.
- 31. ALRICH, H.W. Lessons learned from gas holder and other explosions. A. G. A. Monthly, 1929, 467-8 and 498.
- 32. BULLARD, J. E. Visualizing service by a graphic device. Gas Age-Record, 57, 1926, 291.
- 33. WILLIS, J. H. The M. A. N. waterless gas holder. Gas Journal, May 1930, 312-4.
- MURRAY, J. L. A new development in the waterless gas holder. Gas Age-Record, 69, 1932, 745-8; also later figures on capacity of holders in Bartlett-Hayward Company's advertisement, Idem., October 7, 1933.
- MILLER, A. S. Building the first waterless holder in America. A. G. A. Monthly, 1925, 135-7.
- 36. ANON. Construction of world's largest gas holder. A. G. A Monthly, 1929, 215-8.
- MURRAY, J. L. A new development in the waterless gas holder. Abstracts, Gas Journal, 199, 1932, 35-6, and Gas World, 96, 1932, 692-4.
- O'KEEFE, J. G. Some experiences in the operation of waterless holders. Proc. A. G. A., 1926, 1244-9; also A. G. A. Monthly, 1926, 699-702.
- 39. LECHLER, P. Sealing the piston of waterless gas holders. Gas World, May 1926, 441.
- 40. PRENTICE, F. Experiences with a waterless gas holder. Gas World, June 1930, 663-7; and Gas Journal, June 1930, 771-5.
- 41. BRUCE, H. Discussion of paper by O'Keefe (reference 38). Idem, 1248.
- 42. KLÖNNE, M. The Klönne waterless gas holder. Gas Age-Record, 67, 1931, 957-60.
- 43. ANON. Klönne gasholder for York Gas Company first in the British Isles. Gas World, August 1929, 197.
- 44. ANON. Syracuse has world's largest dry seal holder. Gas Age-Record, 69, 1932, 480-1 and 485.
- ANON. New developments in waterless holder design in Germany. Gas Age-Record, 64, 1929, 45.
 - KNAUSS, W. Neuerungen im Scheibengasbehälterbau. Gas- und Wasserfach, 72, 1929, 976-8.
 - WAGNER, R. Vorschlage f
 ür Neuerungen an Scheibengasbeh
 ältern. Gas- und Wasserfach, 72, 1929, 1001-5.
 - THAU, A. Wasserlose Gasbehälter. Idem, February 1930, 200-2.
- 46. THOMPSON AND BRIDGE. New type holder in operation. American Gas Journal, May 1922, 444.
- 47. WHITNEY, W. H. A new type of high pressure gas storage system. Gas Age-Record, 57, 1926, 185-6.
- 48. BRIDGES, A. F. Economics of pressure gas storage. A. G. A. Monthly, 1926, 761-6.
- 49. NEWS ITEM. Four pressure storage holders under construction. Gas Age-Record, 70, 1932, 201.

- 50. SPENCER, A. M. An automatically controlled high pressure holder installation. Gas Age-Record, 63, 1929, 711-2.
- 51. HORTON, G. T. High pressure gas holders. Gas Age-Record, 58, 1926, 727-9 and 732.
- 52. ANON. Gas Company uses butane as standby. Petroleum Engineer, November 1933, 21-2.
- 53. MILBOURNE, S. M. Spherical gas holders. Gas Journal, April 1929, 196-200 and 253-5.
- MEALS, S. W. Storing and measuring large quantities of gas. A. G. A. Monthly, 1929, 171-5. Underground storage of gas. American Gas Journal, March 1929, 82 and 84; and Gas Age-Record, 64, 1929, 645-6. Storing gas in earth's natural reservoirs. Idem, 65, 1930, 595-6.
- 55. ANON. Surplus in gas output stored in old wells. Gas Age-Record, 66, 1930, 811.

66

67

Appendix E

Review of Long Island Gas Manufacture and Distribution (1907-1950)

Review of Long Island Gas Manufacture and Distribution (1907 – 1950)

Submitted to:

National Grid 175 East Old County Road Hicksville, NY 11801

Submitted by:

GEI Consultants, Inc. 455 Winding Brook Drive Suite 201 Glastonbury, CT 06033 860-368-5300

April 2009 Revised October 2009

> Dennis Unites Sr. Vice President
Introduction

GEI Consultants, Inc. (GEI) has conducted a review of the history of the Long Island Lighting Company (LILCO) to provide a better understanding of the manufactured gas operations and distribution. The primary objective of the review has been to determine the location of gas manufacturing plants and, secondarily, to understand the part played by the Hortonspheres in the distribution system. GEI has reviewed previously published corporate histories, the history of the MGP operations produced by Atlantic Environmental Services, Inc., (1996), annual reports on the file in the New York State Archives, and Public Service Commission (PSC) annual reports provided by National Grid. Given the passage of time, change of companies from year to year, and older recordkeeping methodologies, research is difficult and information about each location is a function of those documents that could be located.

Since 1907, utilities in New York have been required to file annual reports with the PSC. These reports have changed in format over the years, but generally require a summary of ownership, finance, and operation of the utility for the reporting year. They include a listing of major capital equipment such as gas manufacturing plants, storage tanks and gas transmission lines. While these are company prepared reports, they were subject to audit by the public service commission.

The history of LILCO is one of financial and operational consolidation that mirrored the utility industry in the rest of the United States. The period from 1910 through 1932 saw the consolidation of many small gas and electric companies into large holding companies of national or even international scope. At the same time, gas and electric generation was moving away from a model of small operations close to the energy users to larger more centralized facilities with distribution to the centers of usage.

The Long Island Lighting Company

LILCO was incorporated on December 31, 1910 as a consolidation of Amityville Electric Light Co., Islip Electric Light Co., Northport Electric Light Co., and Sayville Electric Co.¹ All of these companies sold electricity exclusively; however, Islip used a producer gas engine for generation.² Subsequently, the company acquired by purchase or merger, the following companies listed in Table 1, below.

Table 1 Companies Acquired by The Long Island Lighting Company							
Company Year Acquired							
Babylon Electric Light Co.	1915						
Suffolk Gas & Electric Light Co.	1917						
South Shore Gas Co.*	1917						

² Carpenter, [n.d.]. p73

¹ Moody's, 1995. p. 670.

Table 1 (Continued)Companies Acquired byThe Long Island Lighting Compa	ny
Company	Year Acquired
Huntington Light & Power Co.	1919
Huntington Gas Co.*	1919
North Shore Electric Light & Power Co.	1919
Consumers Gas Co. of Long Island	1922
Riverhead Electric Light Co.	1922
Southold Lighting Co.*	1922
Suffolk Light, Heat & Power Co.	1922
Nassau Light & Power Co.	1922
Long Island Gas Corp.*	1924
Patchogue Gas Co.*	1924
Sag Harbor Electric Light & Power Co.	1924
Sea Cliff and Glen Cove Gas Co.*	1924
East Hampton Electric Light Co.	1926
Public Service Corp. of Long Island	1927
Clinton Gas Co.*	1930
Liland Corp.	1933
Queens Borough Gas & Electric Co.*	1950
Nassau & Suffolk Lighting Co.*	1950
Long Beach Gas Co., Inc.	1950
Shelter Island Light & Power Co.	1959
Patchogue Electric Light Co.	1964

* indicates companies with gas manufacturing operations.

Queens Borough Gas & Electric and Nassau & Suffolk Lighting were consolidated into LILCO in 1950; however, LILCO had controlling interest in these operating companies since 1923.

Gas Manufacture and Distribution

In the beginning of the manufactured gas era, gas was manufactured in small plants close to where it was used. Table 2 lists the original gas works that later made up the LILCO system. Over LILCO's history, these local gas manufacturing companies were consolidated into three operating companies:

Nassau & Suffolk Lighting Company, Queens Borough Gas and Electric Company, and Long Island Lighting Company. Figure 1 shows the growth of the system. The following sections provide a brief history of each of the operating companies.

Gas Plants in	Table 2 the LILCO Holding	g Company System
Gas plant	Years of Operation	Operating Company
Sag Harbor	1859-1928 ³	LILCO predecessor
Garden City	1874?1906(?)	Nassau & Suffolk predecessor
Babylon	1884-1904(?)	LILCO predecessor
Hempstead Clinton	1860-1904	Nassau & Suffolk predecessor
Hempstead Intersection Street	1904-1950s	Nassau & Suffolk
Rockaway	1880-1950s	Queens Borough Gas and Electric
Far Rockaway	1895-1904(?)	Queens Borough Gas and Electric predecessor
Huntington (Halesite)	1893-1925 ⁴	LILCO
Glen Cove	1904-1927 ⁵	LILCO
Bay Shore	1889-1970s	LILCO
Southold	1906-1921	LILCO predecessor
Clinton (East Hampton)	1904-1930	LILCO predecessor
Patchogue	1904-1914 ⁶	LILCO predecessor

⁶ PSC reports show no significant gas manufacture after 1914.

³ Last gas reported made February 1928. An auditor's note in the 1934 report indicates no manufacture after October 1932 for Huntington, Patchogue, Sag Harbor and Glen Cove.

 ⁴ Last reported gas manufacture 1925.
 ⁵ After 1926 PSC records show all gas purchased from Public Service of Long Island.

Nassau & Suffolk Lighting Company

One of the earliest manufacturers of gas in Nassau & Suffolk Counties occurred at the Clinton Street plant which was later to become part of the Nassau & Suffolk Lighting Company system. In all, three gas works operated in the company's territory. On January 23, 1860, gas was first produced in Hempstead at a plant constructed on the east side of Clinton Street, just north of Front Street.⁷ The plant operated until circa 1904 when it was apparently replaced by the plant at Intersection Street. ⁸ The Garden City gas works, the third plant, was acquired in 1906. Gas was produced only at the Hempstead Intersection Street facility after 1906 until the system was converted to natural gas in the 1950s.

In addition to gas storage at the manufactured gas plant, gas was stored at the Stewart Avenue holder station, constructed in 1929 and the Bellmore Hortonsphere, put into service in 1928.

Because of its location, Nassau & Suffolk served as a "middleman" in the LILCO system in the later years of gas manufacturing. It purchased large volumes of gas from Queens Borough Gas and Electric and sold large volumes to LILCO. Table 3 provides Nassau & Suffolk Intra-Company gas sales for selected years. Note that both Public Service Company of Long Island and Long Beach Gas Company were solely distribution companies, which only purchased gas throughout their corporate histories.

			Table 3		
	Nassau & S	Suffolk An	nual Intra Company Gas	Sales	
Year	Sold to	Volume (mmcf)*	Purchased from	Volume (mmcf)*	Gas Made at Plant (mmcf)*
1915	Public Service Corp of LI	32		None	226
	Long Beach Gas Co.	339mcf			
1920	Public Service Corp of LI	131	Southshore Gas Co.	66mcf	512
	Long Beach Gas Co.	15			
	Masapequa Gas Electric Light & Power	413mcf			
1925	Public Service Corp of LI	233	LILCO	120mcf	846
	Long Beach Gas Co.	73			
	Masapequa Gas Electric Light & Power	2			
1930	LILCO	754	LILCO	30mcf	864
			Queens Borough Gas and Electric	964	
1935	LILCO	807	Queens Borough Gas and Electric	1082	794
1940	LILCO	1380	Queens Borough Gas and Electric	1769	1003

* mmcf = million cubic feet, mcf = thousand cubic feet

⁸ Atlantic Environmental Services, Inc., 1996. P. 4-11.

⁷ Carpenter,[n.d.]. P. 4.

Queens Borough Gas and Electric Company

Queens Borough Gas and Electric was made up of a number of small companies which went through several changes of ownership prior to the formation of Queens Borough Gas and Electric in 1902. There were two plants - Rockaway and Far Rockaway.

The first works was built in Rockaway in 1880 but did not appear to begin production until 1894.⁹ A second works operated in Far Rockaway from 1895¹⁰ until some time prior to 1908. PSC records for 1908 show the existence of the Far Rockaway works but do not indicate any production. Production at these works is not noted in subsequent reports.

Off plant gas storage facilities in the Queens Borough system were the Lynbrook Holder, a water sealed holder constructed in 1904 and decommissioned in 1932¹¹ and the Inwood holder, a large water sealed holder constructed in 1924.¹²

The Rockaway plant was used as a source of gas for much of the LILCO system. From the late 1920s onward, roughly half of the gas produced was sold to affiliated companies, primarily Long Beach Gas and Nassau & Suffolk. Based on Nassau and Suffolk records, it is likely that some of this gas was further sold into the LILCO distribution system. Table 4 provides a listing of selected intra company sales. 1924 was selected as the starting date because of gaps in the available PSC records.

	Queens Boroug	Table h Gas and Ele	e 4 ectric Intra Co	mpany Sales	5
Year	Sold to	Volume (mmcf)*	Purchased from	Volume (mmcf)*	Gas Made at Plant (mmcf)*
1924		None		None	1082
1930	Nassau &Suffolk Lighting	964			2593
	Long Beach Gas Co.	188			
1935	Nassau & Suffolk Lighting	1082			2469
	Long Beach Gas Co.	156			
1940	Nassau & Suffolk Lighting	1769			3470
	Long Beach Gas Co.	177			
1945	Nassau & Suffolk Lighting	2000			3967
	Long Beach Gas Co.	236			
1945	Nassau	2000			3967

* mmcf = million cubic feet, mcf = thousand cubic feet

¹² PSC 1924.

⁹ Carpenter, [n.d.]. Pp. 37-43.

¹⁰ Carpenter, [n.d.] P 43.

¹¹ PSC 1932 auditors note.

Long Island Lighting Company

The Long Island Lighting Company (LILCO) name was used for both the overall holding company and the operating company which provided gas and electric services to the eastern part of the service area. It was of greater geographic extent than the other two holding companies and has a more complex history of consolidation.

South Shore Gas Company was the first gas holding incorporated into the LILCO holding company and operating company in 1917. This company owned plants in (West) Babylon and Bay Shore. The Babylon plant apparently had ceased general production prior to 1907 (when PSC reporting began), as the plant is shown as part of the capital equipment but no production records are provided.

A third plant, Halesite, was added to the system in 1919 when LILCO acquired the Huntington Gas Company. This plant operated until 1925. An auditor's note in the 1934 PSC report indicated that this plant and three others had ceased making gas in October of 1932. This note appears to indicate that subsequent to 1932 they were no longer used as a standby reserve.

Southold Lighting Company was acquired along with the Southold acetylene plant in 1922.

The Patchogue, Glen Cove, and Sag Harbor Plants were added to the system in 1924 with the acquisition of Patchogue Gas Company, Sea Cliff and Glen Cove Gas Company and the Long Island Gas Company respectively. In the case of Patchogue, regular gas manufacture had essentially ceased around 1914 and gas was purchased from a LILCO subsidiary. Glen Cove and Sag Harbor ceased regular manufacture within a few years of purchase. All three of these plants were the subject of the 1934 auditor's note that indicated no gas manufactured after October 1932.

The acquisition in 1930 of the Clinton Gas Company and its gasoline vaporization works in East Hampton was the final purchase of a gas plant. Operations at all of the ancillary plants had ceased by 1932. By then, all gas was either provided from the Bay Shore plant or purchased from the other operating companies.

The distribution system for the LILCO system was complex as befits the large geographic extent of the companies. Water sealed holders, at active or inactive plants, made up one part of the distribution system. The 1930 PSC report shows holders at: Bay Shore, Huntington, Sag Harbor, Patchogue and, Glen Cove.

High pressure tanks constructed between 1918 and 1928 also provided storage for the distribution system. The 1935 PSC report shows a total of 47 such tanks located in: Amityville (5), Sayville (3), Huntington (10), Patchogue (7), Northport (3), Southampton (3), Sag Harbor (3), Hicksville (5), and Glen Cove (8). These holders were horizontal cylinders. One point of potential confusion is that several of these storage sites, which have no history of gas manufacture, are shown on some Sanborn maps as "Electric and Gas Plants" (see for example, Amityville).

Hortonspheres also provided high pressure storage. Nine of these were constructed and incorporated in the system between 1927 and 1931. The 1935 PSC report shows the following: Farmingdale (1927), Huntington (1928), Patchogue (1927), Port Jefferson (1930), East Hampton (1930), Sag Harbor (1931), Glen Cove (1927), Manhasset (1929), and Oyster Bay (1930).

During the earlier years, LILCO was a small net exporter of gas (Table 5), selling to Patchogue Gas and Nassau & Suffolk Lighting. After 1930, its exports were limited, and some years more gas was imported than was produced at Bay Shore. In 1935 there was an inter company purchase as a relatively small amount of gas was purchased from Nassau and Queens Gas Company, A Consolidated Edison subsidiary.

			Table 5		
	-	LILCO In	tra Company Sales		
Date	Sold to	Volume	Purchased from	Volume	Gas Made at
		(mmcf)*		(mmcf)*	plants (mmcf)*
1915		None		None	None
1920	Patchogue Gas Co.	30		None	169 Bay Shore
					17 Huntington
	Nassau & Suffolk Lighting Co.	77mcf			
1025	Datchogue Cas Co	F.0			364 Bay Shore
1925	Patchogue Gas Co.	50			31 Huntington
	Nassau & Suffolk	103 mcf			
	Lighting CO.	-			
1930	Patchogue Gas Co.	32			882 Bay Shore
	Nassau & Suffolk	21 mcf	Nassau & Suffolk	E12	
	Lighting Co.	STIIC	Lighting Co.	515	
1025			Nassau & Suffolk	0.07	000 Day Chara
1935			Lighting Co.	807	888 Bay Shore
			New York and	11Cmcf	
			Queens Gas co.	TTOULCI	
1040			Nassau & Suffolk	1200	1254 Day Chara
1940			Lighting Co.	1380	1254 Bay Shore
1045			Nassau & Suffolk	1511	2011 Day Shara
1945			Lighting Co.	1211	ZUIT Bay Shore

* mmcf = one million cubic feet, mcf = one thousand cubic feet

Conclusions

The history of LILCO was one of consolidation of gas companies and smaller plants. Based on a review of the PSC records, thirteen gas plants were identified as operating in the early 1900s. By 1930, these had been reduced to three main plants: Rockaway, Hempstead Intersection Street, and Bay Shore. The Hortonspheres were part of the distribution system and, except for Glen Cove, Sag Harbor, Patchogue and Huntington, they were built away from existing gas plants.

Figure 2 provides a layout of the entire system at the maximum extent of gas manufacturing in 1950. The Riverhead gas cracking facility apparently began production in 1948. The figure does not depict the

Review of Long Island Gas Manufacture and Distribution April 2009 – Revised October 2009

Glenwood gas cracking facility which was constructed by 1949, perhaps because it did not actually go on-line until sometime in 1951.

As to the source of gas for any particular Hortonsphere, one can assume that most of the time the gas would have been supplied by that operating company's base load plant.

That is, Hempstead would have supplied Bellmore, and Bay Shore would have supplied the rest. However, considering the intra company sales and purchase and the internal links of the distribution system, any Hortonsphere could have been supplied by any plant.

The approach used has a number of limitations. The archives do not have records for all of the companies that ultimately were merged or acquired by the LILCO holding company. Saltaire did not appear in any of the PSC reports. The information about each location is also limited. While the Hortonspheres are identified in the capital equipment lists, there is not any other information provided about the Hortonsphere locations. These limitations notwithstanding, the available information provides a better insight into the history and operation of the system.

References

Moody's, Public Utility Manual. Volume 1, Moody's Investors Service, Inc. New York, New York, , 1995, p. 670.

Carpenter, James W, 1960., *Lighting Long Island*, Hicksville, New York, Long Island Lighting Company..

Atlantic, June 26,1996. Historic Review of MGP Plants on Long Island, Final Report, Atlantic Environmental Services, Colchester CT.

Twenty Five Years of the Long Island Lighting System 1911-1936, By The Long Island Lighting System, 1936, p. 17

H:\WPROC\Project\KEYSPAN\11 Site Characterizations\PSC Research\Lilco history Oct 09.docx

II/CEI/National Crid/11 Sitae DSC Recearch/I II CO DSC Figurae dwa

Appendix F

Soil Boring Logs

ſ		K	~	GEI C	consultants.	Inc.	CLIENT:	KeySpan	BORING LOG				
			\sum	455 V	Vinding Bro	ok Ro	pad PROJEC	T NAME: East Hampton SC	RACE				
	GE		Ð	(860)	368-5300	0003	СІТҮ/ST	ATE: East Hampton, New York	1 of 3 EHS-GP-01				
	<u>UE</u>	Cons	ultants				GEI PRO	DJECT NUMBER: 072710-2-1102					
	GROUND	SURF	ACE E		TION (FT)	:	51.2	29 LOCATION: North of Horton	sphere				
	NORTHIN	IG:	29577	74.141	6 EAS	TING	i: <u>148253</u>	0.992 TOTAL DEPTH (FT): _55.00					
	DRILLED	BY:	Fenle	y & Ni	col Enviro	onme	ental, Inc. / Kev	vin Kegel DATUM VERT. / HORZ.:					
	LOGGED	BY:	Micha	el Wil	liams & C	hris	Berotti	DATE START / END:11/13/2	2007 - 11/13/2007				
				Geop		~~							
	WATERI	EVEL	DEPT	H2 (FI): <u>¥</u> 44	.00							
			SAM	PLE IN	NFO	4							
	DEPTH	TYPF				AT,		SOIL / BEI	DROCK				
	FT.	and	PEN		PID (ppm)	TR	ID	DESCRIF	PTION				
		NO.			(ppiii)	S							
ŀ	— 0		70			N 14.		0 - 1 Topsoil and grass HAND CLEARED)				
	_		1.0			· // · · ·		0 - 1 Topson and grass, HAND OLEANEL	·.				
	_							1 - 7 SANDY SILT (ML); ~75% silt, ~20%	fine sand, ~5% gravel, max. size 1.5				
	_							chips. HAND CLEARED.	I to 2 feet bgs dark brown with coal				
	_												
	-				0		EHS-GP-01						
	- 5				-		(4-5)						
	Ŭ												
	-												
	_												
		S-1	3.0	56				7 - 10 WIDELY GRADED SAND (SW); ~	85% sand; ~5% fine to coarse gravel,				
	_							10 % lines, max. size 1.25 in., dry, brown	r to light brown, loose.				
	_												
					0	٠. ٠. ٠.							
ŀ	- 10	S-2	5.0	50		***		10 - 15 WIDELY GRADED SAND (SW);	~80% sand; ~15% fine to coarse				
8	_					· · · · ·		gravel, ~5% fines, max. size 1 in., dry, ligh	nt brown, loose.				
/29/0													
1 1	-												
S.GD	_												
ANT:													
JLT/	-												
ISNC	- 15	<u> </u>	_		^				000/ conduloused _ 50/ first				
U C		5-3	5.0	38	U			coarse gravel, ~5% fines, max_size 0.75	~90% sana; layerea, ~5% fine to in drv. brown to light brown loose				
J GE	_								,,,				
Ъ.	_												
OGS													
JG L	_												
JRIN	_												
CBC	~~												
S NC	- 20	S-4	5.0	31				20 - 25 WIDELY GRADED SAND WITH	GRAVEL (SW); ~70% sand; ~25%				
IPTC	_							fine to coarse gravel, ~5% fines, max. size	e 1 in., dry, light brown, loose.				
HAN													
AST	_												
ш С	_												
ЙГО													
SING						`							
BOF	DENI - DENI												
ITAL	REC = REC	OVERY L	ENGTH	OF SAM	JAIVIPLER O		ле ваккес ppm IN.	= INCHES PER INILLION NLO = NAPHIHALENE LI PLO = PETROLEUM LIKE	ODOR OLO = ORGANIC LIKE ODOR				
MEN	PID = PHO HEA	TOIONIZ/ DSPACE	ATION E)	ETECT	OR READING	G (JAR	FT.	= FEET TLO = TAR LIKE ODOR CLO = CHEMICAL LIKE O	SLO = SULFUR LIKE ODOR DOR MLO = MUSTY LIKE ODOR				
SON								ALO = ASPHALT LIKE OD	DOR				
INVIE													
ш													

		K	~	GEI C	onsultants.	Inc.	CLIENT	KevSpan			BORING LOG
))	455 V	/inding Bro	ok Roa	ad PROJEC	T NAME: East Ham	pton SC	_	
1	$\frown \Gamma$		٧	(860)	368-5300	06033	CITY/ST	ATE: East Hampton,	New York	PAGE	EHS-GP-01
	JE	Cons	ultants	()			GEI PRO	JECT NUMBER: 0727	10-2-1102	2013	
			SAM	PLE IN	IFO		•			· · · · ·	
						₹	ANALYZED				
		TYPE	PEN	REC	PID	RA.	SAMPLE		SOIL / BEE		
	гі.	and	FT.	IN.	(ppm)	STI	ID		DESCRIP	TION	
		NO.			,						
F					0	••••					
	25				•						
	25	S-5	5.0	12		• • • •		25 - 30 WIDELY GRADED	D SAND (SW);	~85% sa	and; ~10% fine to coarse
_						•••••		gravel, ~5% fines, max. siz	ze 0.75 in., dry,	orange,	loose.
-											
-											
	~~										
	- 30	S-6	5.0	29				30 - 35 WIDELY GRADED) SAND (SW); ·	~85% sa	and; ~10% fine to coarse
_								gravel, ~5% fines, max. siz	ze 1.5 in., dry, ta	an, loose	э.
-											
_											
	- 35	S-7	5.0	38		****		35 - 40 WIDELY GRADED	SAND (SW);	~90% sa	and; layered, ~5% fine to
								coarse gravel, ~5% fines, i	max. size 2 in.,	dry, tan	to orange, loose.
-											
o –					•	•••••					
167					U						
_	- 40	S-8	5.0	29				40 - 45 WIDELY GRADED	SAND WITH	GRAVE	L (SW); ~70% sand; ~25%
								fine to coarse gravel, ~5%	fines, max. size	e 1.5 in.,	, wet, tan, loose; wet at 44'
								bgs.			
3					0						
₽₽											
Z							(44-45)				
פ ס	- 45	S-9	5.0	21			(++ +0)	45 - 50 WIDELY GRADED	SAND (SW);	~85% sa	and; ~10% fine to coarse
2								gravel, ~5% fines, max. siz	ze 1.5 in., wet, l	orown to	tan, loose.
2											
20											
ם ر											
						•••••					
- 1					-						
≥ E					U						
0	- 50	S-10	5.0	0		°~~~°		50 - 55 NO RECOVERY.			
4											
3											
<u>s</u>	IOTES:										
P P	EN = PEN	ETRATIO	N LENG	TH OF S	SAMPLER O	R CORI	E BARREL ppm	= PARTS PER MILLION NLO =	NAPHTHALENE LI	KE ODOR	CrLO= CREOSOTE LIKE ODOR
R	EC = REC ID = PHO	OVERY L	ENGTH	OF SAM	APLE OR READING	i (JAR	IN. FT	= INCHES PLO =	PETROLEUM LIKE	ODOR	OLO = ORGANIC LIKE ODOR SLO = SULFUR LIKE ODOR
IN N	HEA	DSPACE)			(CLO =	CHEMICAL LIKE O	DOR	MLO = MUSTY LIKE ODOR
2 2								ALO =	ASPHALT LIKE OD	NOK	

	K	~	GEI C	Consultants	Inc		CLIENT	KeySpan			BORING LOG
		$\neg))$	455 V	Vinding Bro	ok Ro	bad		T NAME: Fa	st Hampton SC		
CF		رك	Glast	onbury, CT	0603	33	CITV/ST	ATE: East Har	noton New York	PAGE	FHS-GP-01
(¬+			(000)	300-3300		I	CEI DD/		072740 2 4402	3 of 3	
	Cons	ultants					GEIFRO		072710-2-1102		
		SAM	PLE IN	NFO	-						
DEPTH					١È.	ANA	LYZED		SOIL / BEE	ROCK	
FT.	IYPE	PEN	REC	PID	2	SA	MPLE		DESCRIP	TION	
	NO	FT.	IN.	(ppm)	ST		ID				
	110.										
-											
_											
- 55								Bottom of borobolo	at 55 0 foot		
								Bollom of porenoie			
4											
5											
) j											
<u> </u>											
1											
<u>,</u>											
3											
í.											
2											
ź											
2											
Ď											
2											
NOTES:											
PEN = PEN	ETRATIO	N LENG	TH OF	SAMPLER OF	R COF	RE BAR	REL ppm	1 = PARTS PER MILLION	NLO = NAPHTHALENE LI	KE ODOR	CrLO= CREOSOTE LIKE ODOR
REC = REC	OVERY L	ENGTH	OF SAM	MPLE			IN.	= INCHES	PLO = PETROLEUM LIKE	ODOR	
PID = PHO HFA		ation E)	DE LECT(UK KEADING) (JAR	t i	Fſ.	= FEEI	LO = LAR LIKE ODOR CLO = CHEMICAL LIKE O	DOR	SLO = SULFUR LIKE ODOR MLO = MUSTY LIKE ODOR
	2CL	,							ALO = ASPHALT LIKE OD	OR	
i											

		K	~	GEI C	Consultants	Inc.	CLIENT:	KevSpa	n				BORING LOG	
		$(\langle c \rangle$))	455 W	Vinding Bro	ok Ro	PROJEC	T NAME:	Eas	st Hampton S	SC			
	$C \Gamma$		٧	(860)	368-5300	0603	CITY/ST	ATE:	East Han	npton, New Y	′ork	PAGE	EHS-GP-02	
	JC	Cons	ultants	()			GEI PRC	JECT NU	MBER:	072710-2-1	1102	1 01 3		
	GROUND) SURF	ACE E	LEVA	TION (FT)	:	50.9	93	LOCATIO	N: Southw	est of H	ortonsp	here	
	NORTHIN	NG:	29572	22.940	4 EAS	TING	: 148250	8.374	TOTAL D	EPTH (FT):	55.00	•		
	DRILLED	BY:	Fenle	y & Nic	col Envire	onme	ental, Inc. / Key	vin Kegel	DATUM V	'ERT. / HORZ	<u>.</u> :			
	LOGGED) BY: _	Micha	iel Wil	liams & C	Chris	Berotti		DATE ST	ART / END:	11/15/2	007 - 11	/15/2007	
	DRILLIN	G DETA	ILS:	Geop	orobe									
	WATER	LEVEL	DEPT	IS (FT	'): <u>¥</u> 44	.00								
Γ														
	DEPTH	TVDE				Ŧ	ANALYZED			S	OIL / BED	ROCK		
	FT.	and	PEN	REC	PID	R R	ID			l	DESCRIF	TION		
		NO.	F1.	IN.	(ppm)	S S								
F	- 0					1.11/2.		0 05 1	and and			-ח		
						$\overline{\mathbf{X}}$		0-0.51	coal and as	h. HAND CLE	EARED.	<u>-</u> D.		
	•		7.0			11 Ň		1 - 7 SA	NDY SILT	(ML); ~75% s	silt, ~20%	fine san	id, ~5% gravel, max. size 1.5	
	-							in., dry, o	dark brown	to light brown	n, loose, l	HAND C	LEARED.	
	-													
	-													
					0		EHS-GP-02							
	- 5						(4-3)							
	_													
	-	S-1	3.0	40		••••		7 - 10 W		ADED SAND	(SW)·~	90% san	d: ~5% fine to coarse gravel	
			0.0					~5% fine	es, max. siz	2e 1.5 in., dry,	light bro	wn to tar	n, loose.	
						$\mathbf{\tilde{\mathbf{c}}}$					U U			
_	-													
					0.9									
	- 10	S-2	5.0	40		***		10 - 15 \	NIDELY G	RADED SAN	D (SW); ·	~85% sa	ind; ~10% fine to coarse	
•	-							gravel, ~	5% fines, r	max. size 0.7	5 in., dry,	tan, rust	colored layering throughout,	
7210								loose.						
-	-													
<u>פר</u>	-													
	-				10									
Dev	15				1.0	**** ****								
3	- 15	S-3	5.0	38				15 - 20 \	NIDELY G	RADED SAN	D (SW); ·	~85% sa	ind; ~10% fine to coarse	
	-							gravel, ~	·5% fines, r	max. size 0.78	5 in., dry,	tan, orai	nge and light brown layering	
Ľ								unought	Jul, 1003C.					
20.05														
<u> </u>	-													
פאוו						÷								
2	-				1.1									
۔ م	- 20					<u></u>								
5		S-4	5.0	35				20 - 25 \ gravel_r	NIDELY G	RADED SAN	D (SW); [,]	~75% sa	ind; ~25% fine to coarse	
1	-							yiavei, i	110X. 512C 1.	20 iii., uiy, tai	n to oran	<i>je</i> , 100se		
	_													
P2					1.2									
ם פ	-													
2 C	_													
	NOTES:													
Ĭ	REC = REC	OVERY L	ENGTH	OF SAN	VPLE	RUUP	IN.	= INCHES		PLO = PETRO	LEUM LIKE	ODOR	OLO = ORGANIC LIKE ODOR	
	PID = PHO HEA		ATION E	ETECTO	OR READING	g (Jar	FT.	= FEET		TLO = TAR LIK CLO = CHEMIO	CE ODOR CAL LIKE O	DOR	SLO = SULFUR LIKE ODOR MLO = MUSTY LIKE ODOR	
			,							ALO = ASPHAI	LT LIKE OD	OR		
2														

		K	~	GEI C	consultants.	Inc.	CLIENT	KevSpan				BORING LOG
))	455 V	Vinding Bro	ok Road	PROJEC	T NAME:	East Hampt	on SC		
	CE		Ľ	(860)	368-5300	00033	CITY/ST	ATE:	ast Hampton, Ne	w York	PAGE 2 of 3	EHS-GP-02
	UL	Cons	ultants				GEI PRO	DJECT NUME	BER: 072710	-2-1102	- 0. 0	
Γ			SAM	IPLE IN	NFO							
	DEPTH	7.05				A 14	NALYZED			SOIL / BEI	ROCK	
	FT.	and	PEN	REC	PID	R/	SAMPLE			DESCRIF	PTION	
		NO.	FT.	IN.	(ppm)	S	U					
ŀ	_											
ŀ	- 25	S-5	5.0	36		* * * * *		25 - 30 WI	DELY GRADED S	SAND WITH	GRAVE	(SW) [.] ~70% sand [.] ~25%
	_							fine to coar	se gravel, ~5% fir	nes, max. size	e 1.5 in.,	dry, orange to tan, loose.
ŀ	-					****						
	_					***						
ŀ	-				2	**** ****						
	30					****						
	50	S-6	5.0	33				30 - 35 WI	DELY GRADED S	SAND WITH	GRAVE	L (SW); ~70% sand; ~25%
ŀ	-							tine to coal	se gravel, ~5% fir	ies, max. size	e 1.25 in	., dry, tan to orange, loose.
	_											
ŀ	-					***						
	_					***						
					1.1							
ŀ	- 35	S-7	5.0	27		****		35 - 40 WI	DELY GRADED S	SAND (SW):	~85% sa	and: ~10% fine to coarse
	_							gravel, ~5%	6 fines, max. size	1.25 in., dry,	tan, loo	se.
ŀ	-											
	_					***						
<u>۵</u> ۵/	-				1.2	•ૻ.•ૻ.• •ૻ.•ૻ.•						
37/1	- 40					****						
- L	-	S-8	5.0	26		****		40 - 45 WI	DELY GRADED S se gravel ~5% fir	SAND WITH	GRAVE	L (SW); ~70% sand; ~25% wet_tan_loose: wet at 44'
0. 	-							bgs.			0 1.0	
IAN	_					•ૻ.•ૻ.• •ૻ.•ૻ.•						
Incr					1.1	****						
3	-					E	HS-GP-02					
IJ.	Z						(43-45)					
Ľ,												
20.0	- 45	S-9	5.0	24				45 - 50 WI	DELY GRADED S	SAND WITH	GRAVE	L (SW); ~70% sand; ~25%
Ď-	-					*`*`* *`*`*		fine to coar	rse gravel, ∼5% fir	nes, max. siz	e 0.75 in	., wet, tan, loose.
SING												
5 B	-					****						
ر م	-											
NO I												
121	-											
Ì	- 50	C 40	E O	24		**** ****		50 <u>55 M</u>				(SNN): ~70°/ acad: 05°/
БĂU		5-10	5.0	21		°. °.		fine to coal	rse gravel. ~5% fir	nes. max. siz	e 1.25 ir	L (SVV), ~70% sand, ~25%
2	-					••••						
2 2 2	_					••••						
ž	NOTES:											
ΑLΕ	PEN = PEN					RCORE	BARREL ppm		MILLION NLO = NA			CrLO= CREOSOTE LIKE ODOR
Z	PID = PHO	TOIONIZ	ATION E	DETECT	OR READING	(JAR	FT.	= FEET	TLO = TA	R LIKE ODOR		SLO = SULFUR LIKE ODOR
NIN	HEA	DSPACE)						CLO = CH ALO = AS	EMICAL LIKE O PHALT LIKE OE	IDUR IOR	MLO = MUSTY LIKE ODOR
Ϋ́́												
Ľ												

		K	2	GEI C	consultants.	Inc.		CLIENT	: KevSpan			BORING LOG
))	455 V	Vinding Bro	ok Ro	ad	PROJEC	CT NAME: Ea	st Hampton SC		
r			٧	Glasto (860)	368-5300	0603	33	CITY/ST	ATE: East Har	npton. New York	PAGE	EHS-GP-02
		Conc	ultante	(000)				GEI PRO	DJECT NUMBER:	072710-2-1102	3 07 3	
		Cons	CAM									
			SAIVI		NFO	₹						
DI	EPTH	TYPE				A				SOIL / BED	DROCK	
	FT.	and	PEN		PID (nnm)	۲Ľ		ID		DESCRIP	PTION	
		NO.	Г .	IN.	(ppm)	v						
-												
-												
					0.1							
	55					૾૾૾૾૾			Dettern of borohold			
									Bottom of borenoie	e at 55.0 feet.		
NC	DTES:											
PF		ETRATIO		TH OF 9		RCOR		REL nor		NLO = NAPHTHAI ENE I II		CrLO= CREOSOTE LIKE ODOR
RE	LIN							IN.	= INCHES	PLO = PETROLEUM LIKE	ODOR	OLO = ORGANIC LIKE ODOR
PID	C = REC	OVERY L	ENGIH	OF SAM								
	C = REC = PHO		ATION E	DETECT	OR READING) (JAR		FT.	= FEET	TLO = TAR LIKE ODOR		SLO = SULFUR LIKE ODOR
	C = REC = PHO HEA	OVERY L TOIONIZ DSPACE	ATION D	DETECT	OR READING	g (Jar		FT.	= FEET	TLO = TAR LIKE ODOR CLO = CHEMICAL LIKE O ALO = ASPHALT LIKE OD	DOR	SLO = SULFUR LIKE ODOR MLO = MUSTY LIKE ODOR
	C = REC = PHO HEA	OVERY L TOIONIZ DSPACE	ATION D	DETECTO	OR READING	G (JAR		FT.	= FEET	TLO = TAR LIKE ODOR CLO = CHEMICAL LIKE O ALO = ASPHALT LIKE OD	DOR DOR	SLO = SULFUR LIKE ODOR MLO = MUSTY LIKE ODOR

		K	~	GEI C	onsultants.	Inc.	CLIENT:	KeySpan	BORING LOG
			\sum	455 W	/inding Bro	ok Ro	pad PROJEC	T NAME:East Hampton SC	DACE
1	C		Ð	(860)	368-5300	0003	СІТҮ/ST	ATE: East Hampton, New York	1 of 2 EHS-GP-03
	JE	Cons	ultants				GEI PRO	DJECT NUMBER: 072710-2-1102	
G	ROUND	SURF	ACE E		TION (FT)		51.	75 LOCATION: East of Hortons	sphere
N	ORTHIN	IG:	29574	45.421	4 EAS	TING	i: <u>148256</u>	1.232 TOTAL DEPTH (FT): 50.00	
D	RILLED	BY:	Fenle	y & Ni	col Enviro	onme	ental, Inc. / Kev	vin Kegel DATUM VERT. / HORZ.:	
L	OGGED	BY:	Micha	ael Wil	liams & C	hris	Berotti	DATE START / END:11/14/2	2007 - 11/14/2007
D				Geop		75			
~			DEPT	пэ (г і). <u>¥</u> 44	./5			
			SAM	PLE IN	IFO	◄			
D	EPTH	TYPE				AT	ANALYZED SAMPLE	SOIL / BEI	DROCK
	FT.	and	PEN FT		PID (ppm)	STR	ID	DESCRI	PTION
		NO.			(ppiii)	0			
_	0					<u>x1 /y</u> .		0 - 1 Topsoil and grass HAND CLEARE)
						· ///			5.
			7.0					1 - 7 SANDY SILT (ML); ~75% silt, ~20%	fine sand, ~5% gravel, max. size 1
-								CLEARED.	agments at 1.5 bgs, loose, hand
-					0		EHS-GP-03		
	5						(4-5)		
	Ū								
-									
_									
		S-1	3.0	35				7 - 10 WIDELY GRADED SAND (SW); ~	85% sand; ~10% fine to coarse
-								gravel, ~5 % lines, max. size 0.75 lin., dry,	, light brown to tan, loose.
_									
					0.1				
	10	S-2	5.0	38		****		10 - 15 WIDELY GRADED SAND (SW);	~85% sand; layered, ~10% fine to
∞ –					-			coarse gravel, ~5% fines, max. size 2.25	in., dry, tan with orange, loose.
/29/0					0				
н Т									
S.GL						•••••			
ANT									
- LT									
SNC	15	6.2	5.0	22	0.1				$\sim 95\%$ and $\sim 10\%$ find to approx
ы		3-3	5.0	32	0.1	$\dot{}$		gravel, ~5% fines, max. size 0.75 in., dry.	, tan, loose.
- Г С								3 • • • • • • • • • • • • • • • • • • •	,
GP -						•••••			
OGG									
NG L									
ORI									
SC B	20					<u>.</u>			
NO	20	S-4	5.0	42				20 - 25 WIDELY GRADED SAND WITH	GRAVEL (SW); ~70% sand; ~25%
MPT-								ime to coarse gravel, ~5% fines, max. siz 24' bas. loose.	e ∠ m., dry, tan, brown gravel band at
HAI									
AST									
ш –									
3 LC									
N N	OTES:		1	1					
		FTRATIO		TH OF 9		RCOF			
TAT RE	EC = REC	OVERY L	ENGTH	OF SAM	APLE		IN.	= INCHES PLO = PETROLEUM LIKE	E ODOR OLO = ORGANIC LIKE ODOR
	HEA U	DSPACE	α LION Ε)	JE I ECT(JK KEADING	JAR	FT.	= FEET ILO = TAR LIKE ODOR CLO = CHEMICAL LIKE O	SLU = SULFUR LIKE ODOR DDOR MLO = MUSTY LIKE ODOR
RON								ALO = ASPHALT LIKE OI	DOR
IN									

Γ		GEL Consultants Inc. CLIEN						: KeySpan BORING LOG				
))	455 V	Vinding Bro	ok Road	PROJEC	T NAME: East	Hampton SC			
	CL		Ľ	(860)	368-5300	06033	CITY/ST	ATE: East Hamp	ton, New York	PAGE	EHS-GP-03	
	GE	Cons	ultants	. ,			GEI PRO	DJECT NUMBER:	072710-2-1102	2012		
ľ			SAM	IPLE I	NFO							
	DEDTU					I⊈ AN	ALYZED		001 / 055	DOOK		
		TYPE	PEN	REC	PID	A S	AMPLE		SOIL / BEL			
	• • •	and NO	FT.	IN.	(ppm)	ST	ID		DEGORI	non		
		110.										
F	-				0.1	••••						
	- 25					• • • •						
	_0	S-5	5.0	35	0.2			25 - 30 WIDELY GRA	ADED SAND WITH	GRAVE	L (SW); ~70% sand; ~25%	
ŀ	-							loose.	~5% intes, max. size	2.20 1	i., dry, light brown to tan,	
	-											
ŀ	-											
ŀ	-											
	- 30					••••						
	•••	S-6	5.0	36				30 - 35 WIDELY GRA	ADED SAND WITH	GRAVE	L (SW); ~70% sand; ~25%	
ŀ	-							loose.	-570 IIICS, IIIdA. 5120	5 1.20 1	i., dry, light brown to tan,	
	_											
ŀ	-											
	-											
	- 35	0.7	50			****				050/		
		5-7	5.0	32	0.2			35 - 40 WIDELY GRA	ADED SAND (SVV); ^ ax_size 1 in_drv_tan	~85% Sa 100se	and; ~10% fine to coarse	
ŀ	-							gravel, 070 miles, ma		, 10030.		
	_											
ŀ	-					· · · ·						
_	_											
29/02												
-	- 40	S-8	5.0	26		***		40 - 45 WIDELY GRA	ADED SAND WITH	GRAVE	I (SW): ~70% sand: ~25%	
פר	_							fine to coarse gravel,	~5% fines, max. size	e 0.75 ir	n., wet, light brown to tan,	
N N								loose; wet at 44.75' be	gs.			
	-											
22												
3	-											
<u>ا</u> ل	-					kii -						
Z	<u>z</u>					EF	(44-45)					
<u>ہ</u>	- 45	S-9	5.0	23	0.1	****		45 - 50 WIDELY GRA	ADED SAND WITH	GRAVE	L (SW); ~70% sand; ~25%	
Š	-							fine to coarse gravel,	~5% fines, max. size	e 1.75 in	., wet, tan, loose.	
פ N												
ž	-											
<u>כ</u>	_											
Ň					0.1							
	-											
ΗA	50											
P2	- 50							Bottom of borehole at	50.0 feet.			
ш c												
Ċ												
	NOTES											
ģ										/F 65 -		
Ā	PEN = PENI REC = REC	E I RATIO OVERY L	IN LENG	I OF SA	SAMPLER O	K CORE B	ARREL ppm IN.	= PARTS PER MILLION N = INCHES P	ILU = NAPHTHALENE LI LO = PETROLEUM LIKE	KE ODOR ODOR	CrLO= CREOSOTE LIKE ODOR OLO = ORGANIC LIKE ODOR	
IEN	PID = PHO		ATION E	DETECT	OR READING	G (JAR	FT.	= FEET TI			SLO = SULFUR LIKE ODOR	
OND	HEA	DOPACE)					A	LO = ASPHALT LIKE OD	IOR		
2												

		K	2	GELC	consultants	Inc	CLIENT	E KeySpan BORING LOG
))	455 V	/inding Bro	ok Ro	pad PROJEC	CT NAME: East Hampton SC
1	~г		٧	(860)	368-5300	0603	CITY/ST	TATE: East Hampton, New York
	JE	Cons	ultants	()			GEI PRO	OJECT NUMBER: 072710-2-1102
G	ROUNE	SURF	ACE E		TION (FT)		50.8	.89 LOCATION: Center of Site
N	ORTHIN	IG:	2955	90.322	EAS	TING	6: 148243	32.316 TOTAL DEPTH (FT): 45.00
D	RILLED	BY:	Fenle	y & Ni	col Enviro	onme	ental, Inc. / Ke	evin Kegel DATUM VERT. / HORZ.:
L	OGGED	BY:	Chris	Schar	koph & N	licha	ael Williams	DATE START / END: 11/16/2007 - 11/16/2007
D	RILLING	G DETA	ILS:	Geop	probe			
w	ATER	EVEL	DEPTI	HS (FT): <u>¥</u> 40	.00		
			SAMPLE INFO					
	EPTH	TVDE				41	ANALYZED	SOIL / BEDROCK
	FT.	and	PEN	REC	PID	LR.	ID	DESCRIPTION
		NO.	F1.	IN.	(ppm)	S		
=	0					1 1/2 ·		
								0 - T TOPSOII AND GLEARED.
_			7.0					1 - 7 SANDY SILT (ML); ~75% silt, ~20% fine sand, ~5% gravel, max. size 2.5
_								in., dry, dark brown to light brown, loose, HAND CLEARED.
_								
-					0		EHS CP 04	
	_				U		(4-5)	
	Э				0.5		. ,	
_								
_		S-1	3.0	24				7 - 10 WIDELY GRADED SAND (SW); ~90% sand; ~5% fine to coarse gravel,
-								~5% fines, max. size 0.5 in., dry, light brown to tan, loose.
_								
_	10	6.2	5.0	10	0.1			10 15 WIDELY CRADED SAND (SM/): - 959/ cond: - 109/ find to coorde
		3-2	5.0	40	0.1			gravel, ~5% fines, max. size 1 in., dry, light brown, rust and tan band, loose.
9/08								
- 1/2								
GDT								
LTS.								
TAN								
Inst								
00	15	S-3	5.0	51	0.1			15 - 20 WIDELY GRADED SAND (SW); ~85% sand; ~10% fine to coarse
-B B								gravel, ~5% fines, max. size 0.75 in., dry, tan, orange and light brown bands
Гď								
GS.C								
ĽŐ								
SING								
BOF								
lsc	20	64	E O	40	0 F			
TON		3-4	5.0	40	0.5			fine to coarse gravel, max. size 1 in., dry, brown tan and orange, loose.
AMP ∣								
Ξ L								
EAS								
90								
Ч Ц Ц								
N ORI	OTES:							
ē ⊣ PE	N = PEN	ETRATIO	N LENG	TH OF S	SAMPLER O	R COF	RE BARREL ppm	m = PARTS PER MILLION NLO = NAPHTHALENE LIKE ODOR CrLO= CREOSOTE LIKE ODOR
I RE	C = REC D = PHO	UVERY L TOIONIZ/	ENGTH.	OF SAN	/IPLE OR READING) (JAR	IN. FT.	= INCHES PLO = PETROLEUM LIKE ODOR OLO = ORGANIC LIKE ODOR . = FEET TLO = TAR LIKE ODOR SLO = SULFUR LIKE ODOR
NME	HEA	DSPACE)			,		CLO = CHEMICAL LIKE ODOR MLO = MUSTY LIKE ODOR
/IRO								ALU - AOMALI LIKE UUUK
ENV								

GE	Cons		Glaste (860)	onbury, CT 368-5300	06033	CITY/ST	ATE: East Hampton SC East Hampton, New York DJECT NUMBER: 072710-2-1102	PAGE 2 of 2	EHS-GP-04		
		SAM	IPLE IN	NFO	4	-					
DEPTH FT.	TYPE and NO.	TYPE and NO. PEN REC PID FT. IN. (ppm		PID (ppm)	STRAT	NALYZED SAMPLE ID	SOIL / BEDROCK DESCRIPTION				
- 25	S-5	5.0	26	0.7			25 - 30 WIDELY GRADED SAND WITH fine to coarse gravel, max. size 1.5 in., dr tan, loose.	GRAVE y, browr	EL (SW); ~75% sand; ~25% and orange, light brown a		
- 30	S-6	5.0	25	0.8			30 - 35 WIDELY GRADED SAND (SW); gravel, ~5% fines, max. size 1 in., dry, tar	∼85% s n with da	and; ~10% fine to coarse ark brown, loose.		
- 35	S-7	5.0	27	0.8			35 - 40 WIDELY GRADED SAND (SW); gravel, ~5% fines, max. size 1.75 in., dry, loose.	~85% s light bro	and; ~10% fine to coarse own and tan, orange band,		
⁷ 40	S-8	5.0	22	1			40 - 45 WIDELY GRADED SAND (SW); and light brown, orange band, loose, wet	~85% s at bottor	and; max. size 1.75 in., tar n.		
- 45					••••• ••••• •••••	HS-GP-04 (44-45)	Bottom of borehole at 45.0 feet.				

Г		K	~	GEL C	onsultants	Inc		KeySpan BORING LOG
		1	$\neg))$	455 W	/inding Bro	ok Ro	ad PROJEC	TNAME: Fast Hampton SC
			٧	Glasto (860)	onbury, CT 368-5300	0603		ATE: East Hampton, New York EHS-GP-05
	GE	Cons	ultants	(000)			GEI PRO	DJECT NUMBER: 072710-2-1102
Ľ								55 LOCATION: Southeast corner of Site
	NORTHIN		29551	12 821	4 FAS		· 148258	1 952 TOTAL DEPTH (FT): 45 00
		BY:	Fenle	v & Ni		onme	ental. Inc. / Key	vin Kegel DATUM VERT. / HORZ.:
	LOGGED	BY:	Chris	Schar	koph & N	licha	el Williams	DATE START / END: 11/16/2007 - 11/16/2007
	DRILLIN	G DETA	ILS:	Geop	robe			
	WATER	LEVEL	DEPT	HS (FT	'): _⊻ 44	.00		
ŀ			CAM					
			SAIVI		IFU	₹		
	DEPTH	TYPE	DEN	PEC	חוס	₹.	SAMPLE	
	гі.	and	FT.	IN.	(ppm)	STI	ID	DESCRIPTION
		NO.			,			
F	- 0							0 - 1 Asphalt, HAND CLEARED.
	_							
			7.0					1 - 7 SANDY SILT (ML); ~75% silt, ~20% fine sand, ~5% gravel, max. size 3
ŀ	-							In., dry, dark brown to light brown, loose, HAND CLEARED.
	-							
	-							
							EHS-GP-05 (4-5)	
F	- 5						(10)	
	-							
ŀ	-	S-1	30	38	15			7 - 10 WIDELY GRADED SAND (SW): ~90% sand: ~5% fine to coarse gravel
			0.0					\sim 5% fines, max. size 1 in., dry, light brown with tan, loose.
	-					$\left \begin{array}{c} \\ \\ \\ \\ \end{array} \right $		
	-							
						.		
	- 10				1.3			10 - 15 INTERVAL NOT SAMPLED.
<u>0</u> -	-							
787								
-	-							
ם פי	-							
z								
	-							
	15							
3	15	S-2	5.0	46	0.6	••••		15 - 20 WIDELY GRADED SAND (SW); ~90% sand; ~5% fine to coarse
<u>ה</u>	-							gravel, ~5% fines, max. size 0.75 in., dry, tan, orange bands, loose.
J,								
- S	-							
Ď_	-							
5 NC								
5 2	-							
ړ	- 20							
NO N								20 - 25 INTERVAL NOT SAMPLED.
Į	-							
E L	-							
PS-								
_ و	-							
ר	_							
	NOTES			I				
<u>ה</u>						D 007		
₹	PEN = PEN REC = REC	IE I RATIO OVERY L	N LENG	OF SAM	Sampler o IPLE	K COF	KE BARREL ppm IN.	= PARTS PER MILLION NLU = NAPHTHALENE LIKE ODOR CrLO= CREOSOTE LIKE ODOR = INCHES PLO = PETROLEUM LIKE ODOR OLO = ORGANIC LIKE ODOR
	PID = PHC		ATION E	DETECTO	OR READING	g (Jar	FT.	
N N	ΠEA	JOFAUE	,					ALO = ASPHALT LIKE ODOR
¥ >								
5								

<u>Ge</u>	Cons	ultants	(860)	368-5300		GEI PRO	ATE: East Hampton, New York DJECT NUMBER: 072710-2-1102	2 of 2	EHS-GP-05
		SAM	PLE IN	IFO	₹				
DEPTH FT.	TYPE and NO.	PEN FT.	rec In.	PID (ppm)	STRA	SAMPLE ID	SOIL / BE DESCRI	DROCK PTION	
- 25 - -	S-3	5.0	37				25 - 30 WIDELY GRADED SAND WITH fine to coarse gravel, ~5% fines, max. siz bands, loose.	GRAVE te 1.5 in.	L (SW); ~80% sand; ~15 , dry, brown, dark brown
- 30 -							30 - 40 INTERVAL NOT SAMPLED.		
- - - 35 -									
- 40 -	S-4	5.0	24		• • • • • • • •		40 - 45 WIDELY GRADED SAND (SW); brown, orange bands, loose, wet at 44' by	max. siz gs.	e 0.75 in., tan and light
- <u>7</u> — 45					• • • • • • • • •	EHS-GP-05 (44-45)	Bottom of borehole at 45.0 feet.		
NOTES: PEN = PEN REC = REC	IETRATIC	N LENG	TH OF SAM	SAMPLER OI //PLE	R CORE	E BARREL ppn IN.	n = PARTS PER MILLION NLO = NAPHTHALENE L = INCHES PLO = PETROLEUM LIKI		CrLO= CREOSOTE LIKE OI OLO = ORGANIC LIKE ODC

Appendix G

Data Usability Summary Report and Electronic Data Deliverables (Electronic Only)

Site:	Keyspan-East Hampton
Laboratory:	Test America, CT
Report No.:	220-3395-1
Reviewer:	Lisa McDonagh/GEI Consultants
Date:	February 4, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GP-02(4-5)	220-3395-1	VOC, SVOC, HERB
EHS-GP-01(4-5)	220-3395-2	VOC, SVOC, HERB
EHS-GP-01(44-45)	220-3395-3	VOC, SVOC, HERB
EHS-GP-03(4-5)	220-3395-4	VOC, SVOC, HERB
EHS-GP-04(4-5)	220-3395-5	VOC, SVOC, HERB
EHS-GP-XX(XX)	220-3395-6	VOC, SVOC, HERB
EHS-SS-01	220-3395-7	VOC, SVOC, HERB
EHS-SS-XX	220-3395-8	VOC, SVOC, HERB
EHS-SS-02	220-3395-9	VOC, SVOC, HERB
EHS-SS-03	220-3395-10	VOC, SVOC, HERB
EHS-SS-04	220-3395-11	VOC, SVOC, HERB
EHS-SS-05	220-3395-12	VOC, SVOC, HERB
EHS-SS-06	220-3395-13	VOC, SVOC, HERB
EHS-GP-03(44-45)	220-3395-14	VOC, SVOC, HERB
Trip Blank	220-3395-16	VOC

Associated QC Samples(s):	Field Blanks:	Trip Blank, EHS-FB-01(220-3438-1), EHS-
		FB-02(220-3438-1), Trip Blank(220-3438-1)
	Field Duplicate pair:	EHS-SS-03/EHS-SS-XX
		EHS-GP-02(4-5)/EHS-GP-XX(XX)

The above-listed soil samples were collected on November 13 and 14, 2007 and were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B, semivolatile organic compounds (SVOCs) by SW-846 method 8270C and herbicide organic compounds (HERBs) by SW-846 method 8151A. The data validation based on the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, January 2005 and the USEPA Region II Standard Operating Procedure (SOP) for the Validation of Organic Data acquired using SW-846 8260B, 8270C and 8151A, modified to accommodate the SW-846 methodologies.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes

Laboratory Job 220-3395-1, Organics, Page 1 of 12

- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification
- * All criteria were met.

All results are usable for project objectives.

Qualifications applied to the data as a result of sampling error are discussed below.

- The positive results for methylene chloride in samples EHS-GP-02(4-5), EHS-GP-01(4-5), EHS-GP-01(44-45), EHS-GP-03(4-5), EHS-GP-04(4-5), EHS-GP-XX(XX), EHS-SS-01, EHS-SS-XX, EHS-SS-02, EHS-SS-03, EHS-SS-04, EHS-SS-05, EHS-SS-06 and EHS-GP-03(44-45) were qualified as a nondetect at the reporting limit due to trip blank contamination. The results are still usable for project objectives as nondetect. These qualifications may have a minor impact on the data usability.
- The positive results for acetone in samples EHS-GP-02(4-5), EHS-GP-01(44-45), EHS-GP-03(4-5), EHS-GP-04(4-5), EHS-GP-XX(XX), EHS-SS-XX and EHS-GP-03(44-45) were qualified as a nondetect at the reporting limit due to field blank contamination. The results are still usable for project objectives as nondetect. These qualifications may have a minor impact on the data usability.
- The SVOC positive and/or nondetect results were qualified as estimated (J/UJ) due to field duplicate %RPDs which were above the required limits: acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, carbazole, chrysene, dibenz(ah)anthracene, fluoranthene, fluorene, indeno(123cd)pyrene, 2-methylnaphthalene, naphthalene, phenanthrene, pyrene and 4-methylphenol in samples EHS-SS-03 and EHS-SS-XX. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

• Potential uncertainty exists for select VOC and SVOC results, which were below the lowest calibration standard. These results were qualified as estimated (J). These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Laboratory Job 220-3395-1, Organics, Page 2 of 12

- The positive results for acetone in samples EHS-SS-02, EHS-SS-03, EHS-SS-04 and EHS-SS-05 were qualified as a nondetect at the reporting limit due to method blank contamination. The results are still usable for project objectives as nondetect. These qualifications may have a minor impact on the data usability.
- The VOC nondetect results in samples EHS-SS-01 and EHS-SS-05 were qualified as estimated (UJ) due to surrogate recoveries, which were below the control limits. The nondetect results can be used for project objectives as estimated values. These qualifications may have a minor impact on the data usability.
- The nondetect result for styrene in sample EHS-SS-06 was qualified as estimated (UJ) due to low percent recovery in the evaluation of the MS/MSD. The result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive VOC results were qualified (J) due to LCS recovery, which were above the control limits: toluene in samples EHS-GP-01(4-5), EHS-GP-01(44-45) and EHS-GP-XX(XX). The result may be biased high. The positive results can be used for project objectives as estimated values. These qualifications may have a minor impact on the data usability.
- The nondetect VOC results were qualified (UJ) due to LCS recovery, which were below the control limits: styrene in samples EHS-SS-02, EHS-SS-03, EHS-SS-04 and EHS-SS-05. The results may be biased low. The nondetect results can be used for project objectives as estimated quantitation limits. These qualifications may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYASP category B deliverables for the VOC, SVOC and HERB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the VOC, SVOC and HERB analyses.

Laboratory Job 220-3395-1, Organics, Page 3 of 12

GC/MS Tunes

All criteria were met in the VOC and SVOC analyses.

Initial and Continuing Calibrations

VOC

Compounds that did not meet criteria in the VOC calibrations are summarized in the following tables.

Instrument ID MSL Compound	IC 11/12/07	CC 11/19/07
bromomethane	X(35.3%)	
Samples Affected	Trip Blank	Trip Blank

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC); estimate (J) positive and blank-qualified (UJ) results only.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

+= Response factor (RRF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

Qualifications were not required.

SVOC and HERB

All criteria were met in the initial and continuing SVOC and HERB calibrations.

<u>Blanks</u>

VOC

Methylene chloride and acetone were detected in the method, trip and field blank samples. The presence of blank contamination indicates that false positives may exist for this compound in the associated samples. Action Levels (ALs) were established at 10x (for common contaminants) and 5x (for other compounds) the concentrations detected. The following table summarizes the AL.

Laboratory Job 220-3395-1, Organics, Page 4 of 12

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Acetone	Method Blank	EHS-SS-02 EHS-SS-03 EHS-SS-04 EHS-SS-05	5.5 ug/Kg	55 ug/Kg
Methylene chloride	Trip Blank	All samples.	2.5 ug/L	25 ug/L
Acetone Methylene chloride	Field Blank	All samples.	2.3 ug/L 1.3 ug/L	23 ug/L 13 ug/L

Sample results were qualified as follows:

- If sample concentration was < the quantitation limit (QL) and ≤ the Action Level, qualify the result as a nondetect (U) at the QL.
- If sample concentration was > the QL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the QL and > the Action Level, qualification of the data was not required.

The positive results for acetone in samples EHS-SS-02, EHS-SS-03, EHS-SS-04 and EHS-SS-05 were qualified as a nondetect at the reporting limit due to method blank contamination.

The positive results for methylene chloride in samples EHS-GP-02(4-5), EHS-GP-01(4-5), EHS-GP-01(44-45), EHS-GP-03(4-5), EHS-GP-04(4-5), EHS-GP-XX(XX), EHS-SS-01, EHS-SS-XX, EHS-SS-02, EHS-SS-03, EHS-SS-04, EHS-SS-05, EHS-SS-06 and EHS-GP-03(44-45) were qualified as a nondetect at the reporting limit due to trip blank contamination.

The positive results for acetone in samples EHS-GP-02(4-5), EHS-GP-01(44-45), EHS-GP-03(4-5), EHS-GP-04(4-5), EHS-GP-XX(XX), EHS-SS-XX and EHS-GP-03(44-45) were qualified as a nondetect at the reporting limit due to field blank contamination.

Type of Blank Action Level Compound Associated Samples Maximum Concentration Field Blank 2.3 ug/L 23 ug/L All samples 220-3395-1, 220-3404-1, Acetone 220-3406-1 and 220-3539-1. 1.3 ug/L 13 ug/L 220-3438-1 Methylene chloride 20 ug/L Field Blank All samples 220-3395-1, 220-3404-1, 2.0 ug/L Acetone 220-3406-1 and 220-3539-1. 13 ug/L 220-3438-1 1.3 ug/L Methylene chloride 3.7 ug/L 37 ug/L All samples 220-3395-1, 220-3404-1, Methylene chloride Trip Blank 220-3406-1 and 220-3539-1. 220-3438-1

The following field and trip blanks were associated with the samples:

Laboratory Job 220-3395-1, Organics, Page 5 of 12

Qualifications were not required.

SVOC and HERB

Target compounds were not detected in the SVOC and HERB method blank samples.

Surrogate Recoveries

<u>VOC</u>

The following table summarizes the surrogate recoveries that failed to meet the acceptance criteria in the VOC analyses:

Sample ID		Percent R	lecovery		Action
	Tol-d8 BFB		DCE	DBFM	
	51-137	36-133			
EHS-SS-01	49	-	-	-	Estimate (UJ) the nondetect results.
EHS-SS-05	46	26	-	-	Estimate (UJ) the nondetect results.

Within control limits
Tol-d8 – Toluene-d8
BFB – Bromofluorobenzene
DCE – 1,2-Dichloroethane-d4
DBFM - Dibromofluoromethane

SVOC and HERB

All criteria were met.

MS/MSD Results

<u>VOC</u>

MS/MSD analyses were performed on sample EHS-GP-02(4-5). All criteria were met.

MS/MSD analyses were performed on sample EHS-SS-06. The following table lists the compounds recovered outside of control limits in the VOC analyses and the resulting validation actions.

Compound	Recovery	RPD	Control Limits	Validation Actions
4	(%)	(%)		

Laboratory Job 220-3395-1, Organics, Page 6 of 12

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
Styrene	71/-	-	72-114	Estimate (UJ) the nondetect results for styrene in sample EHS-SS-06.

SVOC

MS/MSD analyses were performed on sample EHS-GP-02(4-5). The following table lists the compounds recovered outside of control limits in the SVOC analyses and the resulting validation actions.

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
2,4-dinitrophenol 4,6-dinitro-2- methylphenol	82/89 -/92	-	0-36 0-89	Validation action was not required as all results were nondetect.

MS/MSD analyses were performed on sample EHS-SS-06. The following table lists the compounds recovered outside of control limits in the SVOC analyses and the resulting validation actions.

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
2,4-dinitrophenol	59/64	÷	0-36	Validation action was not required as all results were nondetect.

<u>HERB</u>

MS/MSD analyses were performed on sample EHS-SS-06. The following table lists the compounds recovered outside of control limits in the SVOC analyses and the resulting validation actions.

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
2,4-D	-/-	43	<30	Validation action was not required as all results were nondetect.

Laboratory Job 220-3395-1, Organics, Page 7 of 12

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
2,4,5-T	-/-	50	<30	Validation action was not required as all results were nondetect.
2,4,5-TP	-/-	42	<30	Validation action was not required as all results were nondetect.

There was an MS/MSD analysis performed on sample EHS-GP-02(4-5). The laboratory failed to spike the sample with matrix spike solution. The sample was not reextracted.

LCS Results

<u>VOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
1,1,2-trichloroethane	125	70-119	Trip Blank	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.
Toluene	115	72-113	EHS-GP-01(4-5) EHS-GP-01(44-45) EHS-GP-03(4-5) EHS-GP-04(4-5) EHS-GP-XX(XX) EHS-SS-XX EHS-GP-03(44-45)	Estimate (J) the positive results for toluene in samples EHS-GP-01(4-5), EHS-GP- 01(44-45) and EHS-GP- XX(XX),
Styrene	70	72-114	EHS-SS-02 EHS-SS-03 EHS-SS-04 EHS-SS-05	Estimate (UJ) the nondetect result for styrene in samples EHS-SS-02, EHS-SS-03, EHS-SS-04 and EHS-SS-05.

<u>SVOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
2,4-dinitrophenol 4,6-dinitro-2- methylphenol	102 110	0-36 0-89	EHS-GP-02(4-5) EHS-GP-01(4-5) EHS-GP-01(44-45) EHS-GP-03(4-5) EHS-GP-04(4-5) EHS-GP-XX(XX) EHS-SS-01 EHS-SS-02 EHS-SS-03 EHS-SS-04 EHS-SS-05	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.
2,4-dinitrophenol 4,6-dinitro-2- methylphenol	79 93	0-36 0-89	EHS-SS-06 EHS-GP-03(44-45)	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.

<u>HERB</u>

All criteria were met.

Internal Standards

VOC and SVOC

All criteria were met.

Field Duplicate Results

Samples EHS-GP-02(4-5) and EHS-GP-XX(XX) were submitted as the field duplicate pair with this sample group.

<u>VOC</u>

The following table summarizes the VOC RPDs of detected analytes, all of which met criteria.

Analyte	EHS-GP-02(4-5)	EHS-GP-XX(XX)	RPD
	ug/Kg	ug/Kg	(%)
Methylene chloride	2.9	5.0	53, within 2XQL
Toluene	5.7U	0.82	150, within 2XQL.
Acetone	23U	5.6	122, within 2XQL.

NC-Not calculable

For soil results >5xQL and RPDs>50; estimate (J) results in the field duplicate pair. For soil results <5xQL; the sample and duplicate results must be within 2xQL.

SVOC

All compound results were nondetect for the SVOC field duplicate analyses. Qualifications were not required.

<u>HERB</u>

The following table summarizes the HERB RPDs of detected analytes, all of which met criteria.

Analyte	EHS-GP-02(4-5)	EHS-GP-XX(XX)	RPD
		ug/Kg	(%)
2,4,5-T	230	22	4

NC-Not calculable

For soil results >5xQL and RPDs>50; estimate (J) results in the field duplicate pair.

For soil results \leq 5xQL; the sample and duplicate results must be within 2xQL.

Samples EHS-SS-03 and EHS-SS-XX were submitted as the field duplicate pair with this sample group.

<u>VOC</u>

The following table summarizes the VOC RPDs of detected analytes, all of which met criteria.

Analyte	EHS-SS-03	EHS-SS-XX	RPD
			(%)
Acetone	11 ug/Kg	4.7 ug/Kg	80, within 2XQL
Methylene chloride	2.5 ug/Kg	2.8 ug/Kg	11

NC-Not calculable

For soil results >5xQL and RPDs>50; estimate (J) results in the field duplicate pair.

For soil results <5xQL; the sample and duplicate results must be within 2xQL.

SVOC

The following table summarizes the SVOC RPDs of detected analytes, none of the SVOC compounds met criteria. Estimate the positive and/or nondetect results (J/UJ).

Analyte	EHS-SS-03	EHS-SS-XX	RPD
, , , , , , , , , , , , , , , , , , ,	ug/Kg	ug/Kg	(%)
Acenaphthene	3300	470U	150
Anthracene	6200	470U	172
Benzo(a)anthracene	11000	150	195
Benzo(a)pyrene	8700	160	193
Benzo(b)fluoranthene	9300	230	190
Benzo(ghi)perylene	4200	150	186
Benzo(k)fluoranthene	3600	79	191
Bis(2-ethylhexyl)phthalate	1800	580	103
Carbazole	2300	470U	132
Chrysene	11000	250	191
Dibenz(ah)anthracene	1200	470U	87
Dibenzofuran	1700	470U	113
Fluoranthene	25000	340	195
Fluorene	2300	470U	132
Indeno(123cd)pyrene	5000	170	187
2-methylnaphthalene	940	470U	133
Naphthalene	1200	470U	87
Phenanthrene	26000	170	197
Pyrene	21000	330	194
4-methylphenol	4100U	91	191

NC-Not calculable

For soil results >5xQL and RPDs>50; estimate (J) results in the field duplicate pair. For soil results <5xQL; the sample and duplicate results must be within 2xQL.

Laboratory Job 220-3395-1, Organics, Page 11 of 12

<u>HERB</u>

All compound results were nondetect for the HERB field duplicate analyses. Qualifications were not required.

Quantitation Limits and Data Assessment

VOC, SVOC and HERB

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the VOC and SVOC analyses. These results were qualified as estimated (J) due to uncertainty at the low end of the calibration. Several SVOC and two HERB compound results with laboratory (J) qualifiers were above the lowest calibration standard therefore the J qualifiers were removed by the validator.

The following table lists the sample dilutions, which were performed and reported. Quantitation limits were elevated accordingly.

Sample	VOC Analysis/Dilution Reported	SVOC Analysis/Dilution Reported
EHS-SS-03	NR	Final extract volume of 1.0 ml and
		10-fold dilution performed.

NR- Dilution was not required.

Sample Quantitation and Compound Identification

VOC, SVOC and HERB

Calculations were spot-checked; no discrepancies were noted in the VOC, SVOC and HERB analyses.
Site:	Keyspan-East Hampton
Laboratory:	Test America, CT
Report No.:	220-3404-1
Reviewer:	Lisa McDonagh/GEI Consultants
Date:	February 4, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GP-04(44-45)	220-3404-1	VOC, SVOC, HERB
EHS-GP-05(4-5)	220-3404-2	VOC, SVOC, HERB
EHS-GP-05(44-45)	220-3404-3	VOC, SVOC, HERB
EHS-TB-111607	220-3404-4	VOC
EHS-GP-02(43-45)	220-3404-5	VOC, SVOC, HERB
Associated QC Samples(s):	Field Blanks:	EHS-TB-111607, EHS-FB-01(220-3438-1), EHS-FB-02(220-3438-1), Trip Blank(220- 3438-1)
	Field Duplicate pair:	None associated.

The above-listed soil samples were collected on November 15 and 16, 2007 and were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B, semivolatile organic compounds (SVOCs) by SW-846 method 8270C and herbicide organic compounds (HERBs) by SW-846 method 8151A. The data validation based on the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, January 2005 and the USEPA Region II Standard Operating Procedure (SOP) for the Validation of Organic Data acquired using SW-846 8260B, 8270C and 8151A, modified to accommodate the SW-846 methodologies.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations
 - Blanks
- Surrogate Recoveries
- * Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Control Sample (LCS) Results
- * Internal Standards
- NA Field Duplicate Results
- Quantitation Limits and Data Assessment
- * Sample Quantitation and Compound Identification

Laboratory Job 220-3404-1, Organics, Page 1 of 6

* - All criteria were met.

All results are usable for project objectives.

Qualifications applied to the data as a result of sampling error are discussed below.

- The positive results for methylene chloride in samples EHS-GP-04(44-45), EHS-GP-05(4-5), EHS-GP-05(44-45) and EHS-GP-02(43-45) were qualified as a nondetect at the reporting limit due to trip blank contamination. The results are still usable for project objectives as nondetect. These qualifications may have a minor impact on the data usability.
- The positive results for acetone in samples EHS-GP-04(44-45), EHS-GP-05(4-5), EHS-GP-05(44-45) and EHS-GP-02(43-45) were qualified as a nondetect at the reporting limit due to field blank contamination. The results are still usable for project objectives as nondetect. These qualifications may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

• Potential uncertainty exists for select VOC results, which were below the lowest calibration standard. These results were qualified as estimated (J). These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYASP category B deliverables for the VOC, SVOC and HERB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the VOC, SVOC and HERB analyses.

GC/MS Tunes

All criteria were met in the VOC and SVOC analyses.

Initial and Continuing Calibrations

VOC

Compounds that did not meet criteria in the VOC calibrations are summarized in the following tables.

Instrument ID MSL Compound	IC 11/12/07	CC 11/19/07
bromomethane	X(35.3%)	
Samples Affected	EHS-TB-111607	EHS-TB-111607

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC); estimate (J) positive and blank-qualified (UJ) results only.

- XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJ) positive and nondetect results.
- XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

+= Response factor (RRF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

Qualifications were not required.

SVOC and HERB

All criteria were met in the initial and continuing SVOC and HERB calibrations.

<u>Blanks</u>

<u>VOC</u>

Methylene chloride and acetone were detected in the trip and field blank samples. The presence of blank contamination indicates that false positives may exist for this compound in the associated samples. Action Levels (ALs) were established at 10x (for common contaminants) and 5x (for other compounds) the concentrations detected. The following table summarizes the AL.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Methylene chloride	Trip Blank	All samples.	4.3 ug/L	43 ug/L
Acetone	Field Blank	All samples.	2.3 ug/L	23 ug/L
Methylene chloride			1.3 ug/L	13 ug/L

Laboratory Job 220-3404-1, Organics, Page 3 of 6

Sample results were qualified as follows:

- If sample concentration was < the quantitation limit (QL) and ≤ the Action Level, qualify the result as a nondetect (U) at the QL.
- If sample concentration was > the QL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the QL and > the Action Level, qualification of the data was not required.

The positive results for methylene chloride in samples EHS-GP-04(44-45), EHS-GP-05(4-5), EHS-GP-05(44-45) and EHS-GP-02(43-45) were qualified as a nondetect at the reporting limit due to trip blank contamination.

The positive results for acetone in samples EHS-GP-04(44-45), EHS-GP-05(4-5), EHS-GP-05(44-45) and EHS-GP-02(43-45) were qualified as a nondetect at the reporting limit due to field blank contamination.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Acetone	Field Blank	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	2.3 ug/L	23 ug/L
Methylene chloride	220-3438-1		1.3 ug/L	13 ug/L
Acetone	Field Blank	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	2.0 ug/L	20 ug/L
Methylene chloride	220-3438-1		1.3 ug/L	13 ug/L
Methylene chloride	Trip Blank 220-3438-1	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	3.7 ug/L	37 ug/L

The following field and trip blanks were associated with the samples:

Qualifications were not required.

SVOC and HERB

Target compounds were not detected in the SVOC and HERB method blank samples.

Surrogate Recoveries

VOC, SVOC and HERB

All criteria were met.

Laboratory Job 220-3404-1, Organics, Page 4 of 6

MS/MSD Results

VOC, SVOC and HERB

Batch QC, matrix spike/matrix spike duplicate samples were submitted with the data package.

LCS Results

<u>VOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
1,1,2-trichloroethane	125	70-119	EHS-TB-111607	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.

SVOC

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
2,4-dinitrophenol	72	0-36	All samples.	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.

<u>HERB</u>

All criteria were met.

Laboratory Job 220-3404-1, Organics, Page 5 of 6

Internal Standards

VOC and SVOC

All criteria were met.

Field Duplicate Results

VOC, SVOC and HERB

Field duplicate samples were not submitted with the data package.

Quantitation Limits and Data Assessment

VOC, SVOC and HERB

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the VOC analyses. These results were qualified as estimated (J) due to uncertainty at the low end of the calibration.

Sample Quantitation and Compound Identification

VOC, SVOC and HERB

Calculations were spot-checked; no discrepancies were noted in the VOC, SVOC and HERB analyses.

Laboratory Job 220-3404-1, Organics, Page 6 of 6

Site:	Keyspan-East Hampton
Laboratory:	Test America, CT
Report No.:	220-3406-1, 220-3438-1, 220-3509-1
Reviewer:	Lisa McDonagh/GEI Consultants
Date:	February 4, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GW-03	220-3406-1	VOC, SVOC, HERB
EHS-TB-111607	220-3406-2	VOC
EHS-FB-01	220-3438-1	VOC, SVOC, HERB
EHS-FB-02	220-3438-2	VOC, SVOC, HERB
Trip Blank	220-3438-3	VOC
EHS-GW-01	220-3509-1	VOC, SVOC, HERB
EHS-TB-112907	220-3509-2	VOC
Associated QC Samples(s):	Field Blanks:	EHS-TB-111607, EHS-FB-01, EHS-FB-02 Trip Blank and EHS-TB-112907

Field Duplicate pair: None Associated.

The above-listed aqueous samples were collected on November 16, 19 and 29, 2007 and were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B, semivolatile organic compounds (SVOCs) by SW-846 method 8270C and herbicide organic compounds (HERBs) by SW-846 method 8151A. The data validation based on the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, January 2005 and the USEPA Region II Standard Operating Procedure (SOP) for the Validation of Organic Data acquired using SW-846 8260B, 8270C and 8151A, modified to accommodate the SW-846 methodologies.

The organic data were evaluated based on the following parameters:

- * Data Completeness
 - Holding Times and Sample Preservation
- * Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations
 - Blanks
- * Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- * Internal Standards
- NA Field Duplicate Results
 - Quantitation Limits and Data Assessment

Laboratory Job 220-3406-1, 220-3438-1 and 220-3509-1 Organics, Page 1 of 7

- * Sample Quantitation and Compound Identification
- * All criteria were met.

All results are usable for project objectives, with the exception of all nondetected results for SVOC sample EHS-GW-03 due to holding time nonconformance.

Qualifications were not applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select VOC results, which were below the lowest calibration standard. These results were qualified as estimated (J). These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect results for all results in SVOC sample EHS-GW-03 were qualified as rejected (R) due to holding time nonconformance. Results are not usable for project objectives.
- The positive results for acetone in samples EHS-FB-01 and EHS-FB-02 were qualified as estimated (J) due to initial calibration nonconformances. The direction of the bias cannot be determined from these nonconformances. The results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYASP category B deliverables for the VOC, SVOC and HERB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the VOC and HERB analyses.

<u>SVOC</u>

Sample EHS-GW-03 was extracted 46 days outside of the required holding time. Qualify the nondetect results as rejected (R) due to holing time nonconformance.

GC/MS Tunes

All criteria were met in the VOC and SVOC analyses.

Laboratory Job 220-3406-1, 220-3438-1 and 220-3509-1 Organics, Page 2 of 7

Initial and Continuing Calibrations

<u>VOC</u>

Compounds that did not meet criteria in the VOC calibrations are summarized in the following tables.

Instrument ID MSL Compound	IC 11/12/07	CC 11/19/07
bromomethane	X(35.3%)	
Samples Affected	EHS-GW-03 EHS-TB-111607	EHS-GW-03 EHS-TB-111607

- X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC); estimate (J) positive and blank-qualified (UJ) results only.
- XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

+= Response factor (RRF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

Qualifications were not required.

Instrument ID MSV Compound	IC 11/07/07	CC 11/23/07
acetone	X(35.4%)	
Samples Affected	EHS-FB-01 EHS-FB-02	EHS-FB-01 EHS-FB-02
	Trip Blank	Trip Blank

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC); estimate (J) positive and blank-qualified (UJ) results only.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

+= Response factor (RRF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

The positive results for acetone in samples EHS-FB-01 and EHS-FB-02 were qualified as estimated (J) due to initial calibration nonconformances.

Laboratory Job 220-3406-1, 220-3438-1 and 220-3509-1, Organics, Page 3 of 7

Compounds that did not meet criteria in the VOC calibrations are summarized in the following tables.

Instrument ID MSL Compound	IC 11/23/07	CC 12/04/07
Bromomethane	X(42.7%)	
Samples Affected	EHS-GW-01	EHS-GW-01
	EHS-TB-112907	EHS-TB-112907

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC); estimate (J) positive and blank-qualified (UJ) results only.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

+= Response factor (RRF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

Qualifications were not required.

SVOC and HERB

All criteria were met in the initial and continuing SVOC and HERB calibrations.

<u>Blanks</u>

<u>VOC</u>

Methylene chloride and acetone was detected in the trip and field blank samples. The presence of blank contamination indicates that false positives may exist for this compound in the associated samples. Action Levels (ALs) were established at 10x (for common contaminants) and 5x (for other compounds) the concentrations detected. The following table summarizes the AL.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Methylene chloride	Trip Blank	All samples.	3.3 ug/L	33 ug/L
Acetone Methylene chloride	Field Blank	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	2.3 ug/L 1.3 ug/L	23 ug/L 13 ug/L
Acetone Methylene chloride	Field Blank	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	2.0 ug/L 1.3 ug/L	20 ug/L 13 ug/L

Laboratory Job 220-3406-1, 220-3438-1 and 220-3509-1, Organics, Page 4 of 7

Methylene chloride	Trip Blank	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	3.7 ug/L	37 ug/L
Methylene chloride	Trip Blank	EHS-GW-01	2.1 ug/L	21 ug/L

Sample results were qualified as follows:

- If sample concentration was < the quantitation limit (QL) and \leq the Action Level, qualify the result as a nondetect (U) at the QL.
- If sample concentration was > the QL and < the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the QL and > the Action Level, qualification of the data was not required.

Qualifications were not required.

SVOC and HERB

Target compounds were not detected in the SVOC and HERB method blank samples.

Surrogate Recoveries

VOC, SVOC and HERB

All criteria were met.

MS/MSD Results

VOC, SVOC and HERB

220-3406-1:MS/MSD samples were not submitted with the data package.220-3438-1 and 220-3509-1:Batch MS/MSD samples were submitted with the data package.

Laboratory Job 220-3406-1, 220-3438-1 and 220-3509-1, Organics, Page 5 of 7

LCS Results

<u>VOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
1,1,2-trichloroethane	125	70-119	EHS-GW-03 EHS-TB-111607	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.

<u>SVOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
Isophorone 2-methylphenol 4-nitrophenol	107 92 60	48-106 37-88 19-55	EHS-FB-01 EHS-FB-02	Validation action was not required as all results were nondetect and therefore not affected by the potential high
Phenol	52	15 -48		bias.

<u>HERB</u>

All criteria were met.

Internal Standards

VOC and SVOC

All criteria were met.

Laboratory Job 220-3406-1, 220-3438-1 and 220-3509-1, Organics, Page 6 of 7

Field Duplicate Results

VOC, SVOC and HERB

220-3406-1, 220-3438-1 and 220-3509-1: Field duplicate samples were not submitted with the data package.

Quantitation Limits and Data Assessment

VOC, SVOC and HERB

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the VOC analyses. These results were qualified as estimated (J) by the laboratory. These results were qualified as estimated (J) due to uncertainty at the low end of the calibration. Several VOC (220-3438-1) compound results with laboratory (J) qualifiers were above the lowest calibration standard therefore the J qualifiers were removed by the validator.

Sample Quantitation and Compound Identification

VOC, SVOC and HERB

Calculations were spot-checked; no discrepancies were noted in the VOC, SVOC and HERB analyses.

Laboratory Job 220-3406-1, 220-3438-1 and 220-3509-1, Organics, Page 7 of 7

Site:	Keyspan-East Hampton
Laboratory:	Test America, CT
Report No.:	220-3539-1
Reviewer:	Lisa McDonagh/GEI Consultants
Date:	February 4, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GW-02	220-3539-1	VOC, SVOC, HERB
EHS-GW-04	220-3539-2	VOC, SVOC, HERB
EHS-GW-05	220-3539-3	VOC, SVOC, HERB
EHS-GW-XX-120307	220-3539-4	VOC, SVOC, HERB
EHS-TB-120407	220-3539-5	VOC
Associated QC Samples(s):	Field Blanks:	EHS-TB-120407, EHS-FB-01(220-3438-1), EHS-FB-02(220-3438-1), Trip Blank(220- 3438-1)
	Field Duplicate pair:	EHS-GW-02/EHS-GW-XX-120307

The above-listed aqueous samples were collected on December 3 and 4, 2007 and were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B, semivolatile organic compounds (SVOCs) by SW-846 method 8270C and herbicide organic compounds (HERBs) by SW-846 method 8151A. The data validation based on the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, January 2005 and the USEPA Region II Standard Operating Procedure (SOP) for the Validation of Organic Data acquired using SW-846 8260B, 8270C and 8151A, modified to accommodate the SW-846 methodologies.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Sample Preservation
- * Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
 - Blanks
 - Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Control Sample (LCS) Results
 - Internal Standards
 - Field Duplicate Results
 - Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Laboratory Job 220-3539-1, Organics, Page 1 of 7

* - All criteria were met.

All results are usable for project objectives.

Qualifications were not applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select VOC and SVOC results, which were below the lowest calibration standard. These results were qualified as estimated (J). These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect results for ethylbenzene and styrene in sample EHS-GW-02 were qualified as estimated (UJ) due to low percent recovery in the evaluation of the MS/MSD. The results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYASP category B deliverables for the VOC, SVOC and HERB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the VOC, SVOC and HERB analyses.

GC/MS Tunes

All criteria were met in the VOC and SVOC analyses.

Initial and Continuing Calibrations

VOC, SVOC and HERB

All criteria were met in the initial and continuing VOC, SVOC and HERB calibrations.

<u>Blanks</u>

<u>VOC</u>

Methylene chloride, acetone and 2-butanone were detected in the method and trip blank samples. The presence of blank contamination indicates that false positives may exist for this compound in the associated samples. Action Levels (ALs) were established at 10x (for common contaminants) and 5x (for other compounds) the concentrations detected. The following table summarizes the AL.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Acetone	Method Blank		2.6 ug/L	26 ug/L
2-butanone		7 m sumpros,	1.2 ug/L	12 ug/L
Methylene chloride	Trip Blank	All samples.	2.7 ug/L	27 ug/L

Sample results were qualified as follows:

- If sample concentration was < the quantitation limit (QL) and ≤ the Action Level, qualify the result as a nondetect (U) at the QL.
- If sample concentration was > the QL and < the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the QL and > the Action Level, qualification of the data was not required.

Qualifications were not required.

The following field and trip blanks were associated with the samples:

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Acetone	Field Blank	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	2.3 ug/L	23 ug/L
Methylene chloride	220-3438-1		1.3 ug/L	13 ug/L
Acetone	Field Blank	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	2.0 ug/L	20 ug/L
Methylene chloride	220-3438-1		1.3 ug/L	13 ug/L
Methylene chloride	Trip Blank 220-3438-1	All samples 220-3395-1, 220-3404-1, 220-3406-1 and 220-3539-1.	3.7 ug/L	37 ug/L

Qualifications were not required.

Laboratory Job 220-3539-1, Organics, Page 3 of 7

SVOC and HERB

Target compounds were not detected in the SVOC and HERB method blank samples.

Surrogate Recoveries

VOC and HERB

All criteria were met.

SVOC

The following table summarizes the surrogate recoveries that failed to meet the acceptance criteria in the SVOC samples:

Sample ID	Phenol-d5	2-FP	2,4,6-TBP	NBZ	2-FBP	TP-d14 10-119
EHS-GW-05						123
EHS-GW- XX-120307						120

2-FP- 2-Fluorophenol 2,4,6-TBP – 2,4,6-Tribromophenol NBZ – Nitrobenzene-d5 2-FBP – 2-Fluorobiphenyl TP-d14 – Terphenyl-d14 Qualifications were not required.

MS/MSD Results

<u>VOC</u>

MS/MSD analyses were performed on sample EHS-GW-02. The following table lists the compounds recovered outside of control limits in the VOC analyses and the resulting validation actions.

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
Ethylbenzene	69/-	-	71-115	Estimate (UJ) the nondetect results for ethylbenzene
Styrene	66/-	-	69-112	and styrene in sample EHS-GW-02.

Laboratory Job 220-3539-1, Organics, Page 4 of 7

SVOC and HERB

All criteria were met.

LCS Results

<u>VOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
Carbon disulfide	145	44-142	All samples.	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.

<u>SVOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
Bis(2-chloroethyl)ether	98	43-97	All samples.	Validation action was not required as all results were nondetect and therefore not affected by the potential high bias.

<u>HERB</u>

All criteria were met.

Laboratory Job 220-3539-1, Organics, Page 5 of 7

Internal Standards

VOC and SVOC

All criteria were met.

Field Duplicate Results

Samples EHS-GW-02 and EHS-GW-XX-120307 were submitted as the field duplicate pair with this sample group.

VOC

The following table summarizes the VOC RPDs of detected analytes, all of which met criteria.

Analyte	EHS-GW-02	EHS-GW-XX-120307	RPD
	ug/L	ug/L	(%)
Benzene	2.8 ug/L	0.79 ug/L	112, within 1XQL.
Toluene	0.23 ug/L	0.11 ug/L	70, within 1XQL.

NC-Not calculable

For aqueous results >5xQL and RPDs>50; estimate (J) results in the field duplicate pair.

For aqueous results <5xQL; the sample and duplicate results must be within 1xQL.

SVOC and HERB

All compound results were nondetect for the SVOC and HERB field duplicate analyses. Qualifications were not required.

Quantitation Limits and Data Assessment

VOC, SVOC and HERB

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the VOC and SVOC analyses. These results were qualified as estimated (J) due to uncertainty at the low end of the calibration. Some VOC compound results with laboratory (J) qualifiers were above the lowest calibration standard therefore the J qualifiers were removed by the validator.

All VOC, SVOC and HERB samples were analyzed at a 1:1 dilution.

Laboratory Job 220-3539-1, Organics, Page 6 of 7

Sample Quantitation and Compound Identification

VOC, SVOC and HERB

Calculations were spot-checked; no discrepancies were noted in the VOC, SVOC and HERB analyses.

Laboratory Job 220-3539-1, Organics, Page 7 of 7

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No.:	220-3395
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 28, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GP-02 (4-5)	220-3395-1	Pesticide, PCBs
EHS-GP-01 (4-5)	220-3395-2	Pesticide, PCBs
EHS-GP-01 (44-45)	220-3395-3	Pesticide, PCBs
EHS-GP-03 (4-5)	220-3395-4	Pesticide, PCBs
EHS-GP-04 (4-5)	220-3395-5	Pesticide, PCBs
EHS-GP-XX (XX)	220-3395-6	Pesticide, PCBs
EHS-SS-01	220-3395-7	Pesticide, PCBs
EHS-SS-XX	220-3395-8	Pesticide, PCBs
EHS-SS-02	220-3395-9	Pesticide, PCBs
EHS-SS-03	220-3395-10	Pesticide, PCBs
EHS-SS-04	220-3395-11	Pesticide, PCBs
EHS-SS-05	220-3395-12	Pesticide, PCBs
EHS-SS-06	220-3395-13	Pesticide, PCBs
EHS-GP-03 (44-45)	220-3395-14	Pesticide, PCBs
Associated QC Samples(s):	Field Blanks:	EHS-FB-01, EHS-FB-02 (reported in 220-3438)

Field Duplicate pair: EHS-SS-03/EHS-SS-XX and EHS-GP-02 (4-5)/EHS-GP-XX (XX)

The above-listed soil samples were collected on November 13 and 14, 2007 and were analyzed for pesticides by SW-846 method 8081A and polychlorinated biphenyls (PCBs) by SW-846 method 8082. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008 (October 1999) and the USEPA Region II Functional Guidelines for Evaluating Organic Analyses (March 2001), modified as necessary to accommodate the non-CLP methodology used.

The organic data were evaluated based on the following parameters:

* • Data Completeness

- Holding Times and Sample Preservation
- NA Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - GC/Electron Capture Detector (GC/ECD) Instrument Performance Checks
 - Initial and Continuing Calibrations

Laboratory Job 220-3395, Pesticides/PCBs, Page 1 of 10

- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- * Moisture Content
- NA Internal Standards
 - Field Duplicate Results
 - Quantitation Limits and Data Assessment
 - Sample Quantitation and Compound Identification
- * All criteria were met.
- NA Not applicable to the method reviewed.

All results are usable for project objectives.

Qualifications applied to the data as a result of sampling error are discussed below.

• The positive results for 4,4'-DDE in samples EHS-SS-03 and EHS-SS-XX were qualified as estimated (J) due to a high relative percent difference (RPD) in the evaluation of the field duplicate. The direction of the bias cannot be determined from this nonconformance. The results can be used for project objectives as estimated values which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select pesticide results which were below the lowest calibration standard and quantitation limit. These results were qualified as estimated (J). These results can be used for project objectives as estimated values which may have a minor impact on the data usability.
- The positive and nondetect results for all pesticides in sample EHS-SS-04 were qualified as estimated (J/UJ) due to an exceedance in holding time. The results may be biased low. The results can be used for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor impact on the data usability.
- The positive and nondetect results for 4,4'-DDT and 4,4'-DDD in all samples were estimated (J/UJ) due to continuing calibration nonconformances. The direction of the bias cannot be determined from these nonconformances. The results can be used for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor impact on the data usability.
- The positive and nondetect PCB results for sample EHS-SS-03 were qualified as estimated (J/UJ) due to low surrogate recoveries. The results may be biased low. The

Laboratory Job 220-3395, Pesticides/PCBs, Page 2 of 10

results can be used for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor impact on the data usability.

- The positive results for 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-BHC, and endrin aldehyde in sample EHS-SS-03 were qualified as estimated (J) due to high surrogate recoveries. The results may be biased high. The results can be used for project objectives as estimated values which may have a minor impact on the data usability.
- The positive and nondetect results for Aroclor 1016, Aroclor 1260, and 4,4'-DDT in sample EHS-SS-06 were qualified as estimated (J/UJ) due to low recoveries in the MS/MSD. The results may be biased low. The result can be used for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor impact on the data usability.
- The positive results for 4,4'-DDD, endrin ketone, and gamma-chlordane in sample EHS-GP-03 (4-5), gamma-chlordane, dieldrin, endosulfan II, and endosulfan sulfate in sample EHS-SS-01, gamma-chlordane and endosulfan II in sample EHS-SS-XX, heptachlor epoxide, gamma-chlordane, alpha-chlordane, and dieldrin in sample EHS-SS-02, delta-BHC, heptachlor epoxide, gamma-chlordane, endosulfan I, dieldrin, and endosulfan II in sample EHS-SS-03, gamma-chlordane, alpha-chlordane, and endosulfan II in sample EHS-SS-04, gamma-chlordane and dieldrin in sample EHS-SS-05, and 4,4'-DDD in sample EHS-SS-06 were qualified as nondetect (U) at the reporting limit due to the high dual column relative percent difference (%RPD). The result can be used for project objectives as a nondetect which may have a minor impact on the data usability.
- The positive results for heptachlor epoxide in sample EHS-GP-01 (44-45), endrin aldehyde in sample EHS-GP-03 (4-5), 4,4'-DDD in sample EHS-SS-01, endosulfan sulfate in sample EHS-SS-XX, 4,4'-DDE and 4,4'-DDD in sample EHS-SS-03, alpha-BHC and Aroclor 1260 in sample EHS-SS-03, dieldrin and endosulfan sulfate in sample EHS-SS-04, endosulfan sulfate in sample EHS-SS-05, dieldrin in sample EHS-SS-06, and heptachlor epoxide in sample EHS-GP-03 (44-45) were qualified as estimated (J) due to the high dual column relative percent differences (%RPDs). The direction of the bias cannot be determined. The results can be used for project objectives as estimated values which may have a minor impact on the data usability.
- The positive result for endrin aldehyde in sample EHS-SS-03 were qualified as presumptively present (JN) due to the dual column RPD greater than 70. The direction of the bias cannot be determined. The result can be used for project objectives as a compound which is presumptively present at an approximated quantity which may have a minor impact on the data usability.

The validation findings were based on the following information.

Laboratory Job Number 220-3395, Pesticides/PCBs, Page 3of 10

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables for the pesticide and PCB analyses.

Holding Times and Sample Preservation

<u>PCB</u>

All holding time and sample preservation criteria were met in the PCB analyses.

Pesticide

Due to poor surrogate recoveries in the initial analysis of sample EHS-SS-04, the laboratory reextracted the pesticide sample five days outside of holding time. As surrogate recoveries were acceptable in the re-extraction, those results were reported. The positive and nondetect pesticide results for sample EHS-SS-04 were estimated (J/UJ) due to the holding time exceedance.

GC/ECD Instrument Performance Checks

All criteria were met.

Initial and Continuing Calibrations

Pesticides

Compounds that did not meet criteria in the pesticide continuing calibrations are summarized in the following table.

Instrument ID HP6890-7 Compound	CC 12/03/07 14:30 CLP -pest II	CC 12/03/07 22:54 RTX-CLP	CC 12/03/07 22:54 CLP -pest II
4,4'-DDT	XX (15.1%)		
4,4'-DDD		XX (17.8%)	XX (25.1%)
Samples Affected	All samples	All samples	All samples

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC) and >20 for GC (pesticide/PCBs and herbicides); estimate (J) positive and blank-qualified (UJ) results only.

XX = Continuing calibration (CC) percent difference (%D) > 25 for GC/MS and >15 for GC; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

Laboratory Job Number 220-3395, Pesticides/PCBs, Page 4of 10

The positive and nondetect results for 4,4'-DDT and 4,4'-DDD in all samples were estimated (J/UJ) due to continuing calibration nonconformances.

<u>PCB</u>

All criteria were met.

<u>Blanks</u>

PCBs

Target compounds were not detected in the laboratory method and instrument blanks. Target compounds were not detected in the associated field samples EHS-FB-01 and EHS-FB-02, which were reported in case number 220-3438.

Pesticides

Target compounds were not detected in the pesticide method and instrument blanks.

Target compounds were detected in the field blank sample, EHS-FB-01, which was reported in case number 220-3438. The presence of blank contamination indicates that false positives may exist for this compound in the associated samples. Action Levels (ALs) were established at 5x the concentration detected. The following table summarizes the ALs.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Gamma-chlordane	EHS-FB-01	All samples	0.018 ug/L, 0.6 ug/kg	3.0 ug/kg

Sample results were qualified as follows:

- If sample concentration was < the quantitation limit (QL) and < the Action Level, qualify the result as a nondetect (U) at the QL.
- If sample concentration was > the QL and < the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the QL and > the Action Level, qualification of the data was not required.

The positive result for gamma-chlordane in sample EHS-SS-06 was qualified as nondetect (U) at the reporting limit due to field blank contamination.

Surrogate Recoveries

Pesticide

The following table lists the surrogates recovered outside of control limits and the resulting actions.

Laboratory Job Number 220-3395, Pesticides/PCBs, Page 5of 10

Sample	DCB1	DCB2	TCMX1	TCMX2	Validation actions
Soil Limits	25-159	25-159	24-154	24-154	
EHS-SS-03	329%	230%	-	-	Estimate (J) the positive results for 4,4'- DDD, 4,4'-DDE, 4,4'-DDT, alpha-BHC, and endrin aldehyde in sample EHS-SS- 03.
EHS-SS-04	200	-	-	-	Validation action was not required as the surrogate recovery was within control limits on the alternate column.
EHS-SS-06	191	-	-	-	Validation action was not required as the surrogate recovery was within control limits on the alternate column.

- Criteria met

<u>PCB</u>

The following table lists the surrogates recovered outside of control limits and the resulting actions.

Sample	DCB1	DCB2	TCMX1	TCMX2	Validation actions
Soil Limits	25-159	25-159	24-154	24-154	
EHS-SS-03	-	-	21	18	Estimate (J/UJ) the positive and nondetect PCB results for sample EHS- SS-03.
EHS-SS-04	-	16	-	12	Validation action was not required. The sample was re-extracted; as surrogate recoveries were within control limits, the re-extraction analysis was reported.

- Criteria met

MS/MSD Results

Pesticides and PCBs

MS/MSD analyses were performed on sample EHS-SS-06. The following table lists the compounds recovered outside of control limits and the resulting validation actions.

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
Aroclor 1016	MS 25	102	42-130/50	Estimate (UJ) the nondetect results for Aroclor
Aroclor 1260	MS 27	106	50-128/50	1016 and Aroclor 1260 in sample EHS-SS-06.

Laboratory Job Number 220-3395, Pesticides/PCBs, Page 6of 10

Compound	Recovery (%)	RPD (%)	Control Limits	Validation Actions
4,4'-DDT	30, 8	-	58-151/50	Estimate (J) the positive result for 4,4'-DDT in sample EHS-SS-06.

- criteria met

MS/MSD analyses were performed on sample EHS-GP-02 (4-5). All criteria were met.

LCS Results

Pesticide and PCBs

All criteria were met in the pesticide and PCB analyses.

Moisture Content

All criteria were met.

Field Duplicate Results

Samples EHS-SS-03 and EHS-SS-XX were submitted as the field duplicate pair with this sample group. The following table summarizes the RPDs of the detected analytes, which were acceptable with the exception of 4,4'-DDE. The positive results for 4,4'-DDE in samples EHS-SS-03 and EHS-SS-XX were estimated (J).

Compound	EHS-SS-03 (ug/kg)	EHS-SS-XX (ug/kg)	RPD (%)
4,4'-DDD	20	4.6	125, Within 2xQL
4,4'-DDE	46	85	59.5
4,4'-DDT	79	86	8.5
Endosulfan sulfate	8.3 U	6.5	NC, Within 2xQL
Alpha-BHC	1.9	12 U	NC, Within 2xQL
Endrin aldehyde	15	24 U	NC, Within 2xQL
Aroclor 1260	24	24 U	NC, Within 2xQL

NC - Not calculable

For soil results > 5xQL and RPDs >50; estimate (J) results in the field duplicate pair.

For soil results < 5xQL; the sample and duplicate results must be within 2xQL.

Samples EHS-GP-02 (4-5) and EHS-GP-XX (XX) were submitted as the field duplicate pair with this sample group. All results are nondetect in these samples.

Laboratory Job Number 220-3395, Pesticides/PCBs, Page 7of 10

Quantitation Limits and Data Assessment

Pesticides

Results were reported which were below the reporting limit (RL) and above the MDL in the pesticide analyses. These results were qualified as estimated (J) by the laboratory.

Due to high target compound levels, samples EHS-SS-01, EHS-SS-XX, EHS-SS-02, and EHS-SS-06 were analyzed at 5-fold dilutions and sample EHS-SS-03 was analyzed at a 2-fold dilution. Quantitation limits were elevated accordingly.

PCBs

All criteria were met.

Sample Quantitation and Compound Identification

Pesticide and PCBs

Calculations were spot-checked; no discrepancies were noted in the PCB analyses.

For sample EHS-GP-03 (4-5), gamma-chlordane was detected within the retention time windows on both columns but was reported incorrectly as nondetect on the sample reporting form. The validator edited the reporting form for sample EHS-GP-03 (4-5). This result was subsequently qualified as nondetect at the reporting limit due to high dual column difference. For sample EHS-GP-03 (44-45), heptachlor epoxide was detected within the retention time windows on both columns but was reported incorrectly as nondetect on the sample reporting form. The validator edited the reporting form for sample EHS-GP-03 (44-45).

The following table lists the dual column RPDs which were outside of control limits and the resulting actions.

Sample	Compound	RPD	Actions
		(%)	
EHS-GP-01 (44-45)	Heptachlor epoxide	29.1	Estimate (J) the positive result for heptachlor epoxide.
EHS-GP-03 (4-5)	4,4'-DDD	84.2	Results were less than the reporting limit; qualify
	Endrin ketone	123,3	the results as nondetect at the reporting limit.
	Gamma-chlordane	171.6	
EHS-GP-03 (4-5)	Endrin aldehyde	32.4	Estimate (J) the positive result for endrin aldehyde.

Sample	Compound	RPD	Actions
	· · · · · · · · · · · ·	···· (%)	· · · · · · · ·
EHS-SS-01	Gamma-chlordane	149.0	Results were less than the reporting limit; qualify
	Dieldrin	103.6	the results as nondetect at the reporting limit.
	Endosulfan II	64.7	
	Endosulfan sulfate	63.6	
EHS-SS-01	4,4'-DDD	38.8	Estimate (J) the positive result for 4,4'-DDD.
EHS-SS-XX	Gamma-chlordane	51.6	Results were less than the reporting limit; qualify
	Endosulfan II	52.6	the results as nondetect at the reporting limit.
EHS-SS-XX	Endosulfan sulfate	30.3	Estimate (J) the positive result for endosulfan sulfate.
EHS-SS-02	Heptachlor epoxide	82.3	Results were less than the reporting limit; qualify
	Gamma-chlordane	190.6	the results as nondetect at the reporting limit.
	Alpha-chlordane	74.2	
	Dieldrin	78.9	
EHS-SS-02	4,4 '-DD E	40.9	Estimate (J) the positive results for 4,4'-DDE and
	4,4'-DDD	45.2	4,4'-DDD.
EHS-SS-03	Delta-BHC	88.0	Results were less than the reporting limit; qualify
	Heptachlor epoxide	55.0	the results as nondetect at the reporting limit.
	Gamma-chlordane	169.1	
	Endosulfan I	86.9	
	Dieldrin	162.1	
	Endosulfan II	154.7	
EHS-SS-03	Alpha-BHC	41.7	Estimate (J) the positive results for alpha-BHC and
	Aroclor 1260	68.8	Aroclor 1260.
EHS-SS-03	Endrin aldehyde	82.4	Possible interference present; qualify the result for endrin aldehyde as presumptively present (JN).
EHS-SS-04	Gamma-chlordane	188.7	Results were less than the reporting limit; qualify
	Alpha-chlordane	104.8	the results as nondetect at the reporting limit.
	Endosulfan II	101.6	
EHS-SS-04	Dieldrin	52.2	Estimate (J) the positive results for dieldrin and
	Endosulfan sulfate	47.5	endosulfan sulfate.
EHS-SS-05	Gamma-chlordane	197.1	Results were less than the reporting limit; qualify
	Dieldrin	123.5	the results as nondetect at the reporting limit.
EHS-SS-05	Endosulfan sulfate	34.4	Estimate (J) the positive result for endosulfan sulfate.
EHS-GP-03 (44-45)	Heptachlor epoxide	41.1	Estimate (J) the positive result for heptachlor epoxide.

Sample	Compound	RPD (%)	Actions
EHS-SS-06	4,4'-DDD	72.1	Result was less than the reporting limit; qualify the result as nondetect at the reporting limit.
EHS-SS-06	Dieldrin	43.3	Estimate (J) the positive result for dieldrin.

For PCB %RPD >50%; If pattern is present, estimate (J) the positive result.

For Pesticide %RPDs between 25 and 70%; estimate (J) the positive result.

For Pesticide %RPDs between 70and 100%; qualify the result as presumptively present (JN).

For pesticide %RPD >50% and the result < QL; raise the value to the QL and qualify as nondetect (U).

For pesticide $\[MPD] > 100\]$ and interference is present; qualify the result as presumptively present (JN).

For pesticide $\[\] RPD > 100\[\] and interference is not present; reject (R) result. \]$

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No.:	220-3404
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 28, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GP-04 (44-45)	220-3404-1	Pesticides, PCBs
EHS-GP-05 (4-5)	220-3404-2	Pesticides, PCBs
EHS-GP-05 (44-45)	220-3404-3	Pesticides, PCBs
EHS-GP-02 (43-45)	220-3404-5	Pesticides, PCBs
Associated QC Samples(s):	Field Blanks:	EHS-FB-01, EHS-FB-02 (reported in 220- 3438)
	Field Duplicate pair:	None associated

The above-listed soil samples were collected on November 15 and 16, 2007 and were analyzed for pesticides by SW-846 method 8081A and polychlorinated biphenyls (PCBs) by SW-846 method 8082. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008 (October 1999) and the USEPA Region II Functional Guidelines for Evaluating Organic Analyses (March 2001), modified as necessary to accommodate the non-CLP methodology used.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Sample Preservation
- NA Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- GC/Electron Capture Detector (GC/ECD) Instrument Performance Checks
 - Initial and Continuing Calibrations
- * Blanks
- Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- * Moisture Content
- NA Internal Standards
- NA Field Duplicate Results
 - Quantitation Limits and Data Assessment
 - Sample Quantitation and Compound Identification
- * All criteria were met.

Laboratory Job Number 220-3404, Pesticides/PCBs, Page 1of 4

NA -- Not applicable to the method reviewed and a field duplicate pair was not associated with the sample group.

All results are usable for project objectives.

Qualifications were not applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

• The positive results for heptachlor epoxide in samples EHS-GP-05 (44-45) and EHS-GP-02 (43-45) were qualified as nondetect (U) at the reporting limit due to the high dual column relative percent differences (%RPDs). The results can be used for project objectives as nondetects which may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables for the pesticide and PCB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the pesticide and PCB analyses.

GC/ECD Instrument Performance Checks

All criteria were met.

Initial and Continuing Calibrations

Pesticides

All criteria were met in the initial and continuing calibrations.

PCB

The following table lists the Aroclor peak continuing calibration results which were outside of control limits. No validation actions were required as the Aroclor %D averages for the standards were within control limits.

Compound	Calibration Date	Instrument ID/Column	%D
Aroclor 1260-5	12/01/07 04:18	HP5890-4/CLP	18.8%
Average Aroclor 1260			7.0%

<u>Blanks</u>

Pesticide and PCBs

Target compounds were not detected in the laboratory method and instrument blanks. Target compounds were not detected in the associated field samples EHS-FB-01 and EHS-FB-02, which were reported in case number 220-3438.

Surrogate Recoveries

All criteria were met in the pesticide and PCB analyses.

MS/MSD Results

Pesticides and PCBs

MS/MSD analyses were not associated with this sample group.

LCS Results

All criteria were met in the pesticide and PCB analyses.

Moisture Content

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample group.

Quantitation Limits and Data Assessment

All criteria were met in the pesticide and PCB analyses

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted in the pesticide and PCB analyses.

Laboratory Job Number 220-3404, Pesticides/PCBs, Page 3of 4

The following table lists the dual column RPDs which were outside of control limits and the resulting actions.

Sample	Compound	RPD	Actions
		(%)	
EHS-GP-05 (44-45)	Heptachlor epoxide	93.6	Result was less than the reporting limit; qualify the result as nondetect at the reporting limit.
EHS-GP-02 (43-45)	Heptachlor epoxide	53.1	Result was less than the reporting limit; qualify the result as nondetect at the reporting limit.

For PCB %RPD >50%; If pattern is present, estimate (J) the positive result.

For Pesticide %RPDs between 25 and 70%; estimate (J) the positive result.

For Pesticide %RPDs between 70and 100%; qualify the result as presumptively present (JN).

For pesticide %RPD >50% and the result < QL; raise the value to the QL and qualify as nondetect (U).

For pesticide $\[MRPD > 100\]$ and interference is present; qualify the result as presumptively present (JN).

For pesticide $\[MPD] > 100\]$ and interference is not present; reject (R) result.

Laboratory Job Number 220-3404, Pesticides/PCBs, Page 4of 4

ų

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No.:	220-3406, 220-3438, 220-3509
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 28, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-FB-01 EHS-FB-02	220-343 8-1 220-343 8- 2	Pesticide, PCBs Pesticide, PCBs
EHS-GW-01	220-3509-1	Pesticide, PCBs
EHS-GW-03	220-3406-1	Pesticide, PCBs
Associated QC Samples(s):	Field Blanks: Field Duplicate pair:	EHS-FB-01, EHS-FB-02 None associated

The above-listed aqueous samples and field blank samples were collected on November 16, 19, and 29, 2007 and were analyzed for pesticides by SW-846 method 8081A and polychlorinated biphenyls (PCBs) by SW-846 method 8082. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008 (October 1999) and the USEPA Region II Functional Guidelines for Evaluating Organic Analyses (March 2001), modified as necessary to accommodate the non-CLP methodology used.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- Holding Times and Sample Preservation
- NA Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - GC/Electron Capture Detector (GC/ECD) Instrument Performance Checks
 - Initial and Continuing Calibrations
- * Blanks
 - Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Control Sample (LCS) Results
- NA Moisture Content
- NA Internal Standards
- NA Field Duplicate Results
 - Quantitation Limits and Data Assessment
 - Sample Quantitation and Compound Identification

Laboratory Job Number 220-3406, 220-3438, 220-3509, Pesticides/PCBs, Page 1of 5

* - All criteria were met.

NA – Not applicable to the method or matrix reviewed and a field duplicate was not associated with the sample set.

All results are usable for project objectives.

Qualifications were not applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select pesticide and PCB results which were below the lowest calibration standard and quantitation limit. These results were qualified as estimated (J). These results can be used for project objectives as estimated values which may have a minor impact on the data usability.
- The positive and nondetect results for methoxychlor, endrin aldehyde, and endrin ketone in samples EHS-GW-03, EHS-FB-01, and EHS-FB-02 and heptachlor, endrin ketone, and endrin aldehyde in sample EHS-GW-01 were estimated (J/UJ) due to continuing calibration nonconformances. The direction of the bias cannot be determined from these nonconformances. The results can be used for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor impact on the data usability.
- The positive result for gamma-chlordane in sample EHS-FB-01 was qualified as nondetect (U) at the QL due to the high dual column relative percent difference (%RPD). The direction of the bias cannot be determined. The result can be used for project objectives as a nondetect which may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables for the pesticide and PCB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the pesticide and PCB analyses.

GC/ECD Instrument Performance Checks

All criteria were met.

Laboratory Job Number 220-3406, 220-3438, 220-3509, Pesticides/PCBs, Page 2of 5
Initial and Continuing Calibrations

Pesticides

Compounds that did not meet criteria in the pesticide continuing calibrations are summarized in the following table.

Instrument ID HP6890-7 Compound	CC 11/29/07 23:02 CLP	CC 11/29/07 23:02 CLP Pesticide 2
Methoxychlor	XX (17.1%)	XX (19.6%)
Endrin aldehyde		XX (15.7%)
Endrin ketone		XX (18.9%)
Samples Affected	EHS-GW-03, EHS-FB-01, EHS-FB-02	EHS-GW-03, EHS-FB-01, EHS-FB-02

Instrument ID HP6890-7 Compound	CC 12/13/07 20:24 CLP	CC 12/13/07 20:24 CLP Pesticide 2
Heptachlor	XX (20.6%)	XX (21.3%)
Endrin aldehyde		XX (17.0%)
Endrin ketone	XX (15.7%)	
Samples Affected	EHS-GW-01	EHS-GW-01

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC) and >20 for GC (pesticide/PCBs and herbicides); estimate (J) positive and blank-qualified (UJ) results only.

XX = Continuing calibration (CC) percent difference (%D) > 25 for GC/MS and >15 for GC; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

The positive and nondetect results for methoxychlor, endrin aldehyde, and endrin ketone in samples EHS-GW-03, EHS-FB-01, and EHS-FB-02 and heptachlor, endrin ketone, and endrin aldehyde in sample EHS-GW-01 were estimated (J/UJ) due to continuing calibration nonconformances.

<u>PCB</u>

All criteria were met.

Laboratory Job Number 220-3406, 220-3438, 220-3509, Pesticides/PCBs, Page 3of 5

<u>Blanks</u>

Pesticide and PCBs

Target compounds were not detected in the laboratory method and instrument blanks. Target compounds were not detected in the associated field samples EHS-FB-01 and EHS-FB-02.

Surrogate Recoveries

All criteria were met in the pesticide and PCB analyses.

MS/MSD Results

Pesticide and PCBs

MS/MSD analyses were performed on sample EHS-GW-03. All criteria were met.

LCS Results

PCBs

All criteria were met.

Pesticides

Endrin aldehyde (111) was recovered above the control limits of 20-92 in the LCS analysis associated with sample EHS-GW-01. Validation action was not required as the result for endrin aldehyde in sample EHS-GW-01 was nondetect and therefore not affected by the potential high bias.

Field Duplicate Results

A field duplicate pair was not associated with this sample group.

Quantitation Limits and Data Assessment

Pesticides

Results were reported which were below the reporting limit (RL) and above the MDL in the pesticide analyses. These results were qualified as estimated (J) by the laboratory.

PCBs

All criteria were met.

Laboratory Job Number 220-3406, 220-3438, 220-3509, Pesticides/PCBs, Page 4of 5

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted in the pesticide and PCB analyses.

The following table lists the dual column RPDs which were outside of control limits and the resulting actions.

Sample	Compound	RPD (%)	Actions
EHS-FB-01	Gamma-chlordane	57.7	The result is less than the QL, estimate the result for gamma-chlordane as nondetect at the reporting limit.

For PCB %RPD >50%; If pattern is present, estimate (J) the positive result.

For Pesticide %RPDs between 25 and 70%; estimate (J) the positive result.

For Pesticide %RPDs between 70and 100%; qualify the result as presumptively present (JN).

For pesticide %RPD >50% and the result \leq QL; raise the value to the QL and qualify as nondetect (U).

For pesticide $\[MRPD > 100\]$ and interference is present; qualify the result as presumptively present (JN).

For pesticide %RPD > 100% and interference is not present; reject (R) result.

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No .:	220-3539
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 28, 2008

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GW-02	220-3539-1	Pesticide, PCBs
EHS-GW-04	220-3539-2	Pesticide, PCBs
EHS-GW-05	220-3539-3	Pesticide, PCBs
EHS-GW-XX-120307	220-3539-4	Pesticide, PCBs
Associated QC Samples(s):	Field Blanks:	EHS-FB-01, EHS-FB-02 (reported in 220-3438)
	Field Duplicate pair:	EHS-GW-02/EHS-GW-XX-120307

The above-listed aqueous samples were collected on December 3, 2007 and were analyzed for pesticides by SW-846 method 8081A and polychlorinated biphenyls (PCBs) by SW-846 method 8082. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008 (October 1999) and the USEPA Region II Functional Guidelines for Evaluating Organic Analyses (March 2001), modified as necessary to accommodate the non-CLP methodology used.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Sample Preservation
- NA Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- GC/Electron Capture Detector (GC/ECD) Instrument Performance Checks
 - Initial and Continuing Calibrations
- * Blanks
 - Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- * Laboratory Control Sample (LCS) Results
- NA Moisture Content
- NA Internal Standards
 - Field Duplicate Results
 - Quantitation Limits and Data Assessment
 - Sample Quantitation and Compound Identification
- * All criteria were met.

Laboratory Job Number 220-3395, Pesticides/PCBs, Page 1of 5

NA – Not applicable to the method or matrix reviewed.

All results are usable for project objectives.

Qualifications were not applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select pesticide and PCB results which were below the lowest calibration standard and quantitation limit. These results were qualified as estimated (J). These results can be used for project objectives as estimated values which may have a minor impact on the data usability.
- The positive and nondetect results for endrin aldehyde and 4,4'-DDT in all samples were estimated (J/UJ) due to continuing calibration nonconformances. The direction of the bias cannot be determined from these nonconformances. The results can be used for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor impact on the data usability.
- The positive result for dieldrin in sample EHS-GW-05 was qualified as nondetect (U) at the reporting limit due to the high dual column relative percent difference (%RPD). The result can be used for project objectives as a nondetect which may have a minor impact on the data usability.
- The positive result for 4,4'-DDD in sample EHS-GW-02 was qualified as estimated (J) due to the high dual column relative percent difference (%RPD). The direction of the bias cannot be determined. The result can be used for project objectives as an estimated value which may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables for the pesticide and PCB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the pesticide and PCB analyses.

GC/ECD Instrument Performance Checks

All criteria were met.

Laboratory Job Number 220-3395, Pesticides/PCBs, Page 20f 5

Initial and Continuing Calibrations

Pesticides

Compounds that did not meet criteria in the pesticide continuing calibrations are summarized in the following table.

Instrument ID HP6890-7 Compound	CC 12/16/07 01:16 CLP
Endrin aldehyde	XX (15.4%)
4,4'-DDT	XX (16.9%)
Samples Affected	All samples

- X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC) and >20 for GC (pesticide/PCBs and herbicides); estimate (J) positive and blank-qualified (UJ) results only.
- XX = Continuing calibration (CC) percent difference (%D) > 25 for GC/MS and >15 for GC; estimate (J/UJ) positive and nondetect results.
- XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

The positive and nondetect results for endrin aldehyde and 4,4'-DDT in all samples were estimated (J/UJ) due to continuing calibration nonconformances.

<u>PCB</u>

All criteria were met.

<u>Blanks</u>

Pesticides and PCBs

Target compounds were not detected in the laboratory method and instrument blanks. Target compounds were not detected in the associated field samples EHS-FB-01 and EHS-FB-02, which were reported in case number 220-3438.

Surrogate Recoveries

All criteria were met in the pesticide and PCB analyses.

Laboratory Job Number 220-3539, Pesticides/PCBs, Page 3of 5

MS/MSD Results

Pesticide and PCBs

MS/MSD analyses were not associated with the samples in this case number.

LCS Results

All criteria were met in the pesticide and PCB analyses.

Field Duplicate Results

Samples EHS-GW-02 and EHS-GW-XX-120307 were submitted as the field duplicate pair with this sample group. The following table summarizes the RPDs of the detected analytes, all of which were acceptable.

Compound	EHS-GW-02 (ug/L)	EHS-GW-XX-120307 (ug/L)	RPD (%)
Aroclor 1260	0.16	0.50 U	NC, Within QL
4,4'-DDD	0.030	0.15 U	NC, Within QL
Dieldrin	0.012	0.10 U	NC, Within QL

NC – Not calculable

1

For aqueous results > 5xQL and RPDs >30; estimate (J) results in the field duplicate pair. For aqueous results < 5xQL; the sample and duplicate results must be within the QL.

Quantitation Limits and Data Assessment

Pesticides and PCBs

Results were reported which were below the reporting limit (RL) and above the MDL in the pesticide analyses. These results were qualified as estimated (J) by the laboratory.

Sample Quantitation and Compound Identification

Pesticide and PCBs

Calculations were spot-checked; no discrepancies were noted in the pesticide and PCB analyses. The following table lists the dual column RPDs which were outside of control limits and the resulting actions.

Sample	Compound	RPD (%)	Actions
EHS-GW-02	4,4'-DDD	25.4	Estimate (J) the positive result for 4,4'-DDD.
EHS-GW-05	Dieldrin	71.2	Result was less than the reporting limit; qualify the result as nondetect at the reporting limit.

For PCB %RPD >50%; If pattern is present, estimate (J) the positive result.

For Pesticide %RPDs between 25 and 70%; estimate (J) the positive result.

For Pesticide %RPDs between 70and 100%; qualify the result as presumptively present (JN).

For pesticide %RPD >50% and the result < QL; raise the value to the QL and qualify as nondetect (U).

For pesticide $\[MPD] > 100\]$ and interference is present; qualify the result as presumptively present (JN).

For pesticide %RPD > 100% and interference is not present; reject (R) result.

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No.:	220-3395
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 31, 2007

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GP-02 (4-5)	220-3395-1	Metals, Sulfate, Sulfide
EHS-GP-01 (4-5)	220-3395-2	Metals, Sulfate, Sulfide
EHS-GP-01 (44-45)	220-3395-3	Metals, Sulfate, Sulfide
EHS-GP-03 (4-5)	220-3395-4	Metals, Sulfate, Sulfide
EHS-GP-04 (4-5)	220-3395-5	Metals, Sulfate, Sulfide
EHS-GP-XX (XX)	220-3395-6	Metals, Sulfate, Sulfide
EHS-SS-01	220-3395-7	Metals, Sulfate, Sulfide
EHS-SS-XX	220-3395-8	Metals, Sulfate, Sulfide
EHS-SS-02	220-3395-9	Metals, Sulfate, Sulfide
EHS-SS-03	220-3395-10	Metals, Sulfate, Sulfide
EHS-SS-04	220-3395-11	Metals, Sulfate, Sulfide
EHS-SS-05	220-3395-12	Metals, Sulfate, Sulfide
EHS-SS-06	220-3395-13	Metals, Sulfate, Sulfide
EHS-GP-03 (44-45)	220-3395-14	Metals, Sulfate, Sulfide
Associated OC Samples(s):	Field Blanks:	EHS-FB-01, EHS-FB-02 (reported in

220-3438) Field Duplicate pair: EHS-SS-03/EHS-SS-XX and EHS-GP-02 (4-5)/EHS-GP-XX (XX)

The above-listed soil samples were collected on November 13 and 14, 2007 and were analyzed for metals by SW-846 methods 6010B/7471A, sulfate by EPA method 300.0, and sulfide by EPA method 376.1. The data validation was performed in accordance with the and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540/R-04/004 (October 2004) and USEPA Region 2 Standard Operating Procedure for the Evaluation of Metals for the Contract Laboratory Program, SOP HW-2, Revision 13 (September 2005), modified as necessary to accommodate the non-CLP methodologies used.

The inorganic data were evaluated based on the following parameters:

- * Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness
- * Holding Times and Sample Preservation
- * Instrument Calibration
- * Contract Required Quantitation Limit (CRQL) Standard Recoveries

- Blank Analysis Results
- Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Results
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Field Duplicate Results
- Laboratory Control Sample (LCS) Results
- Serial Dilution Results
- Moisture Content

*

- Detection Limits Results
- Sample Quantitation Results
- * All criteria were met for this parameter.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives.

Qualifications applied to the data as a result of sampling error are discussed below.

- The positive results for aluminum, barium, calcium, chromium, iron, lead, mercury, nickel, potassium, vanadium, and zinc in samples EHS-SS-03 and EHS-SS-XX and aluminum, chromium, magnesium, and vanadium in samples EHS-GP-02 (4-5) and EHS-GP-XX (XX) were qualified as estimated (J) due to high relative percent differences (RPDs) in the evaluation of the field duplicate. The direction of the bias cannot be determined from this nonconformance. These results are usable for project objectives as estimated values which may have a minor effect on the data usability.
- The positive results for potassium in samples EHS-GP-01 (44-45) and EHS-GP-03 (44-45) were qualified as nondetect (U) at the quantitation limits due to field blank contamination. The results are usable for project objectives as nondetects which may have a minor effect on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- The positive results for sulfate in samples EHS-GP-01 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), and EHS-SS-03 were qualified as nondetect (U) at the reported values due to laboratory blank contamination. The results are usable for project objectives as nondetects which may have a minor effect on the data usability.
- The positive results for calcium in sample EHS-GP-01 (44-45), thallium in sample EHS-SS-05, and sulfate in samples EHS-GP-02 (4-5), EHS-GP-01 (44-45), EHS-GP-03 (4-5), EHS-SS-01, EHS-SS-XX, EHS-SS-04, EHS-SS-06, and EHS-GP-03 (44-45) were qualified as nondetect (U) at the quantitation limits due to laboratory blank contamination. The results are usable for project objectives as

nondetects which may have a minor effect on the data usability.

- The positive results for beryllium in samples EHS-GP-01 (4-5), EHS-SS-03, EHS-SS-04, and EHS-SS-05 and magnesium in samples EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (4-5), EHS-GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01, EHS-SS-XX, EHS-SS-02, EHS-SS-03, EHS-SS-04, EHS-SS-05, EHS-GP-03 (44-45) were qualified as estimated (J) due to recoveries in the MS analysis which were above control limits. The results may be biased high. These results are usable for project objectives as estimated values which may have a minor effect on the data usability.
- The positive and nondetect results for antimony in all samples and sulfide in samples EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (4-5), EHS-GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01, EHS-SS-XX, EHS-SS-02, EHS-SS-03, EHS-SS-04, EHS-SS-05, EHS-GP-03 (44-45) were qualified as estimated (J/UJ) due to recoveries in the MS analysis which below control limits. The results may be biased low. These results are usable for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor effect on the data usability.
- Potential uncertainty exists for the following results which were detected above the method detection limit (MDL) but below the low calibration check standard:

Arsenic:	EHS-GP-02 (4-5), EHS-GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-
	XX (XX)
Barium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01,
	EHS-SS-XX, EHS-SS-02, EHS-SS-06, EHS-GP-03 (44-45)
Beryllium:	EHS-GP-01 (4-5)
Calcium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-03 (4-5), EHS-GP-
	04 (4-5), EHS-GP-XX (XX), EHS-GP-03 (44-45)
Chromium:	EHS-GP-01 (44-45), EHS-GP-03 (44-45)
Cobalt:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01,
	EHS-SS-XX, EHS-SS-02, EHS-SS-03, EHS-SS-04, EHS-SS-05,
	EHS-SS-06
Copper:	EHS-GP-02 (4-5), EHS-GP-01 (44-45), EHS-GP-04 (4-5), EHS-
	GP-XX (XX), EHS-GP-03 (44-45)
Lead:	EHS-GP-03 (44-45)
Magnesium:	EHS-GP-02 (4-5), EHS-GP-01 (44-45), EHS-SS-02, EHS-GP-03
-	(44-45)
Nickel:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01,
	EHS-SS-XX EHS-SS-02 EHS-SS-06 EHS-GP-03 (44-45)

Potassium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-03 (4-5), EHS-GP-
	04 (4-5), EHS-GP-XX (XX), EHS-SS-01, EHS-SS-XX, EHS-SS-
	02, EHS-SS-05, EHS-SS-06
Selenium:	EHS-SS-03, EHS-SS-04
Sodium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01,
	EHS-SS-XX, EHS-SS-02, EHS-SS-03, EHS-SS-04, EHS-SS-05,
	EHS-SS-06
Vanadium:	EHS-GP-02 (4-5), EHS-GP-01 (44-45), EHS-GP-03 (44-45)
Zinc:	EHS-GP-02 (4-5)
Sulfide:	EHS-GP-02 (4-5), EHS-GP-03 (4-5), EHS-GP-04 (4-5), EHS-SS-
	03, EHS-SS-04, EHS-SS-05

These results were qualified as estimated (J) and can be used for project objectives as estimated values which may have a minor effect on the data usability.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

Instrument Calibration

All recovery criteria were met

CRQL Standard Recoveries

All recovery criteria were met.

Blank Results

Target analytes were detected at levels less than the quantitation limit in the associated laboratory instrument and method blank samples. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Calcium	Method	All samples, with the exception of EHS-SS-06	14.4 mg/kg	72 mg/kg

Thallium	Instrument	All samples, with the exception of EHS-SS-06	8.5 ug/L, 1.7 mg/kg	8.5 mg/kg
Sulfate	Instrument	All samples	0.44 mg/L, 4.4 mg/kg	22 mg/kg

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL.

If the sample result is \geq QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

The positive results for calcium in sample EHS-GP-01 (44-45), thallium in sample EHS-SS-05, and sulfate in samples EHS-GP-02 (4-5), EHS-GP-01 (44-45), EHS-GP-03 (4-5), EHS-SS-01, EHS-SS-XX, EHS-SS-04, EHS-SS-06, and EHS-GP-03 (44-45) were qualified as nondetect (U) at the reporting limit. The positive results for sulfate in samples EHS-GP-01 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), and EHS-SS-03 were qualified as nondetect (U) at the reported values due to laboratory blank contamination.

Potassium was detected in the associated field blank sample EHS-FB-01, which was reported in case number 220-3438. Target analytes were not detected in field blank sample EHS-FB-02. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Potassium	EHS-FB-01	All samples	130 ug/L, 26 mg/kg	130 mg/kg

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL.

If the sample result is \geq QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

The positive results for potassium in samples EHS-GP-01 (44-45) and EHS-GP-03 (44-45) were qualified as nondetect (U) at the reporting limit due to field blank contamination.

ICP ICS Results

Analytes were recovered within the control limits in the ICSAB sample analyses.

Positive results for chromium, manganese, and nickel were detected above the method detection limit (MDL) in the ICSA solution analysis associated with all samples with the exception of EHS-SS-06. Positive results for manganese and nickel and negative results for thallium were detected above the method detection limit (MDL) in the ICSA solution analysis associated with sample EHS-SS-06. Sample interferents levels were reviewed. Iron was present in sample EHS-SS-04 (92%) at a similar level to that of the ICSA

Sample	Analyte	Sample Result (ug/L)	Estimated Interference (ug/L)	Actions
EHS-SS-04	Chromium	430	1.8	Interference <10%; no validation action required.
	Manganese	363	7.9	Interference <10%; no validation action required.
	Nickel	120	6.5	Interference <10%; no validation action required.

solution. The following table lists the estimated interferences and resulting validation actions.

MS Results

The laboratory performed the MS analyses on samples EHS-GP-02 (4-5) and EHS-SS-06 for metals and sulfate and MS/MSD analyses on the same samples for sulfide. The following table lists the analytes which exhibited recoveries outside of the control limits of 75 - 125% and the resulting validation actions.

Analyte	MS Sample	Recovery (%)	Actions
Beryllium	EHS-GP-02 (4-5)	131	Estimate (J) the positive results for beryllium in samples EHS-GP-01 (4-5), EHS-SS-03, EHS-SS-04, and EHS-SS-05.
Magnesium	EHS-GP-02 (4-5)	148	Estimate (J) the positive results for magnesium in all samples, with the exception of EHS-SS-06, which exhibited an acceptable MS recovery for magnesium.
Thallium	EHS-GP-02 (4-5)	136	Validation action was not required as all thallium results were nondetect and therefore not affected by the potential high bias.
Sulfide	EHS-GP-02 (4-5)	63, 68	Estimate (J/UJ) the positive and nondetect results for sulfide in all samples, with the exception of EHS-SS-06, which exhibited an acceptable MS recovery for sulfide.
Antimony	EHS-GP-02 (4-5) EHS-SS-06	53 44	Estimate (J/UJ) the positive and nondetect results for antimony in all samples.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample EHS-SS-06 and EHS-GP-02 (4-5) for metals and sulfate. In lieu of a duplicate analysis, the laboratory performed matrix spike duplicates for sulfide on these samples. All criteria were met in these analyses.

Field Duplicate Results

Samples EHS-SS-03 and EHS-SS-XX were submitted as a field duplicate pair with this sample group. The following table summarizes the RPDs of the detected analytes, all of which were acceptable with the exception of aluminum, barium, calcium, chromium, iron, lead, mercury, nickel, potassium, vanadium, and zinc. The positive results for aluminum, barium, calcium, chromium, iron, lead, mercury, nickel, potassium, vanadium, and zinc in samples EHS-SS-03 and EHS-SS-XX were estimated (J).

Analyte	EHS-SS-03	EHS-SS-XX	RPD
-	(mg/kg)	(mg/kg)	(%)
Aluminum	22,400	8850	86.7
Arsenic	29.1	22.4	26.0
Barium	277	31.0	159.7
Beryllium	1.7	3.1 U	NC, Within 2xQL
Calcium	5450	1680	105.8
Chromium	90.6	12.0	153.2
Cobalt	9.3	4.3	73.5, Within 2xQL
Copper	34.6	57.6	49.9
Iron	40,600	12,900	103.6
Lead	928	43.2	182.2
Magnesium	1620	1610	0.6
Manganese	143	119	18.3
Mercury	0.13	0.046	95.4
Nickel	29.3	6.8	124.7
Potassium	1620	431	115.9
Selenium	3.7	15.6 U	NC, Within 2xQL
Sodium	507	193	89.7, Within 2xQL
Vanadium	122	23.6	135.2
Zinc	166	46.4	112.6

For soil results > 5xQL and RPDs >50; estimate (J) results in the field duplicate pair. For soil results < 5xQL; the sample and duplicate results must be within 2xQL.

Samples EHS-GP-02 (4-5) and EHS-GP-XX (XX) were also submitted as a field duplicate pair with this sample group. The following table summarizes the RPDs of the detected analytes, all of which were acceptable with the exception of aluminum, chromium, magnesium, and vanadium. The positive results for aluminum, chromium,

e e

Analyte	EHS-GP-02 (4-5) (mg/kg)	EHS-GP-XX (XX) (mg/kg)	RPD (%)
Aluminum	4420	14,800	108.0
Arsenic	1.9	2.9	41.7
Barium	16.8	21.5	24.5
Calcium	247	714	97.2, Within 2xQL
Chromium	6.8	17.7	89.0
Cobalt	5.1	5.4	5.7
Copper	5.0	5.5	9.5
Iron	9260	13,300	35.8
Lead	6.1	7.6	21.9
Magnesium	923	2460	90.9
Manganese	150	115	26.4
Mercury	0.053 U	0.028	NC, Within 2xQL
Nickel	4.4	10.7	83.4, Within 2xQL
Potassium	325	391	18.4
Sodium	31.4	54.7	54.1, Within 2xQL
Vanadium	11	25.3	78.8
Zinc	12.9	28.5	75.4, Within 2xQL
Sulfide	10.2	44.3 U	NC, Within 2xQL

magnesium, and vanadium in samples EHS-GP-02 (4-5) and EHS-GP-XX (XX) were estimated (J).

For soil results > 5xQL and RPDs >50; estimate (J) results in the field duplicate pair. For soil results < 5xQL; the sample and duplicate results must be within 2xQL.

LCS Results

All criteria were met.

Serial Dilution Results

The laboratory performed the serial dilution analyses on sample MS-GP-02 (4-5). All criteria were met.

Moisture Content

All criteria were met.

Detection Limits Results

Positive results which were above the MDL but below the reporting limit were reported by the laboratory with a "J" qualifier. These results were qualified as estimated (J) due to uncertainty at the low end of calibration. However, the low level calibration check standard analyzed was less than the laboratory reporting limit for mercury, aluminum, arsenic, beryllium, cadmium, chromium, iron, lead, manganese, selenium, silver, thallium, and zinc. The low level calibration check standard analyzed was greater than the laboratory RL for antimony, barium, calcium, cobalt, magnesium, nickel, potassium, sodium, and vanadium. As analysis of the low level standard demonstrates the accuracy at that level, results which were above the method detection limit (MDL) but below the low level calibration check standard were estimated (J) by the validator. The following results were affected:

Arsenic:	EHS-GP-02 (4-5), EHS-GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-
Barium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01,
	EHS-SS-XX, EHS-SS-02, EHS-SS-06, EHS-GP-03 (44-45)
Beryllium:	EHS-GP-01 (4-5)
Calcium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-03 (4-5), EHS-GP-
	04 (4-5), EHS-GP-XX (XX), EHS-GP-03 (44-45)
Chromium:	EHS-GP-01 (44-45), EHS-GP-03 (44-45)
Cobalt:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01,
	EHS-SS-XX, EHS-SS-02, EHS-SS-03, EHS-SS-04, EHS-SS-05,
	EHS-SS-06
Copper:	EHS-GP-02 (4-5), EHS-GP-01 (44-45), EHS-GP-04 (4-5), EHS-
	GP-XX (XX), EHS-GP-03 (44-45)
Lead:	EHS-GP-03 (44-45)
Magnesium:	EHS-GP-02 (4-5), EHS-GP-01 (44-45), EHS-SS-02, EHS-GP-03
0	(44-45)
Nickel:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01,
	EHS-SS-XX, EHS-SS-02, EHS-SS-06, EHS-GP-03 (44-45)
Potassium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-03 (4-5), EHS-GP-
	04 (4-5), EHS-GP-XX (XX), EHS-SS-01, EHS-SS-XX, EHS-SS-
	02. EHS-SS-05. EHS-SS-06
Selenium:	EHS-SS-03, EHS-SS-04
Sodium:	EHS-GP-02 (4-5), EHS-GP-01 (4-5), EHS-GP-01 (44-45), EHS-
	GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-01.
	EHS-SS-XX EHS-SS-02 EHS-SS-03 EHS-SS-04 EHS-SS-05
	EHS 55 TH, EHS 55 02, EHS 55 03, EHS 55 01, EHS 55 05,
Vanadium	EHS-GP-02 (4.5) FHS-GP-01 (44-45) FHS-GP-03 (44-45)
7 inc.	$EHS_{GP_0}(A_{-5})$
	

Sulfide: EHS-GP-02 (4-5), EHS-GP-03 (4-5), EHS-GP-04 (4-5), EHS-SS-03, EHS-SS-04, EHS-SS-05

As the following results reported were greater than the lowest calibration standard or low level calibration check standard, the validator removed the "J" qualifiers: arsenic in samples EHS-GP-01 (4-5) and EHS-SS-02, beryllium in samples EHS-SS-03, EHS-SS-04, and EHS-SS-05, lead in sample EHS-GP-02 (4-5), mercury in samples EHS-GP-03 (4-5), EHS-GP-04 (4-5), EHS-GP-XX (XX), EHS-SS-XX, and EHS-SS-02, and zinc in samples EHS-GP-01 (4-5), and EHS-GP-XX (XX),

Sample Quantitation Results

Calculations were spot-checked; no discrepancies were noted.

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No.:	220-3404
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 22, 2007

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GP-04 (44-45)	220-3404-1	Metals, Sulfate, Sulfide
EHS-GP-05 (4-5)	220-3404-2	Metals, Sulfate, Sulfide
EHS-GP-05 (44-45)	220-3404-3	Metals, Sulfate, Sulfide
EHS-GP-02 (43-45)	220-3404-5	Metals, Sulfate, Sulfide
Associated QC Samples(s):	Field Blanks:	EHS-FB-01, EHS-FB-02 (reported in
		220-3438)
	Field Duplicate pair:	None associated

The above-listed soil samples were collected on November 15 and 16, 2007 and were analyzed for metals by SW-846 methods 6010B/7471A, sulfate by EPA method 300.0, and sulfide by EPA method 376.1. The data validation was performed in accordance with the and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540/R-04/004 (October 2004) and USEPA Region 2 Standard Operating Procedure for the Evaluation of Metals for the Contract Laboratory Program, SOP HW-2, Revision 13 (September 2005), modified as necessary to accommodate the non-CLP methodologies used.

The inorganic data were evaluated based on the following parameters:

- * Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness
 - Holding Times and Sample Preservation
- Instrument Calibration
 - Contract Required Quantitation Limit (CRQL) Standard Recoveries
 - Blank Analysis Results
 - Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Results
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- NA Field Duplicate Results
 - Laboratory Control Sample (LCS) Results
- Serial Dilution Results
- Moisture Content
 - Detection Limits Results
- Sample Quantitation Results

Laboratory Job 220-3404, Inorganics, Page 1 of 6

NA- A field duplicate pair was not associated with this sample group.

* - All criteria were met for this parameter.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives.

Qualifications applied to the data as a result of sampling error are discussed below.

• The positive results for potassium in samples EHS-GP-04 (44-45), EHS-GP-05 (44-45), and EHS-GP-02 (43-45) were qualified as nondetect (U) at the quantitation limits due to field blank contamination. The results are usable for project objectives as nondetects which may have a minor effect on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- The nondetect results for sulfide in samples EHS-GP-04 (44-45), EHS-GP-05 (4-5), and EHS-GP-05 (44-45) were qualified as estimated (UJ) due to a slight exceedance in holding time. The results may be biased low. These results are usable for project objectives as nondetects with estimated quantitation limits which may have a minor effect on the data usability.
- The positive results for calcium in EHS-GP-04 (44-45), EHS-GP-05 (44-45), and EHS-GP-02 (43-45), sulfate in samples EHS-GP-04 (44-45), EHS-GP-05 (44-45), and EHS-GP-02 (43-45), and sulfide in samples EHS-GP-04 (44-45) and EHS-GP-05 (4-5) were qualified as nondetect (U) at the quantitation limits due to laboratory blank contamination. The results are usable for project objectives as nondetects which may have a minor effect on the data usability.
- The positive results for beryllium in sample EHS-GP-05 (4-5) and magnesium in all samples were qualified as estimated (J) due to recoveries in the MS analysis which were above control limits. The results may be biased high. These results are usable for project objectives as estimated values which may have a minor effect on the data usability.
- The positive and nondetect results for antimony and sulfide in all samples were qualified as estimated (J/UJ) due to recoveries in the MS analysis which below control limits. The results may be biased low. These results are usable for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor effect on the data usability.
- The nondetect results for sulfide in all samples were qualified as estimated (UJ) due to low recoveries in the LCS/LCSD analyses. The results may be biased low. These results are usable for project objectives as estimated values and nondetects

with estimated quantitation limits which may have a minor effect on the data usability.

• Potential uncertainty exists for the following results which were detected above the method detection limit (MDL) but below the low calibration check standard:

Barium:	All samples
Beryllium:	EHS-GP-05 (4-5)
Calcium:	EHS-GP-05 (4-5)
Chromium:	EHS-GP-04 (44-45), EHS-GP-05 (44-45)
Cobalt:	EHS-GP-04 (44-45), EHS-GP-05 (4-5)
Copper:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Magnesium:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Nickel:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Potassium:	EHS-GP-05 (4-5)
Sodium:	EHS-GP-05 (4-5)
Vanadium:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Sulfide:	EHS-GP-02 (43-45)

These results were qualified as estimated (J) and can be used for project objectives as estimated values which may have a minor effect on the data usability.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

The sulfide analysis took place two days outside of the holding time for samples EHS-GP-04 (44-45), EHS-GP-05 (4-5), and EHS-GP-05 (44-45). The nondetect results for sulfide in samples EHS-GP-04 (44-45), EHS-GP-05 (4-5), and EHS-GP-05 (44-45) were estimated (UJ) due to this slight exceedance.

Instrument Calibration

All recovery criteria were met

CRQL Standard Recoveries

All recovery criteria were met.

Blank Results

Target analytes were detected in the associated laboratory instrument and method blank samples. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Calcium	Method	All samples	14.4 mg/kg	72 mg/kg
Thailium	Instrument	All samples	8.5 ug/L, 1.7 mg/kg	8.5 mg/kg
Sulfide	Method	EHS-GP-04 (44-45), EHS-GP-05 (4-5), EHS- GP-05 (44-45)	23.5 mg/kg	117.5 mg/kg
Sulfate	Instrument	All samples	0.44 mg/L, 4.4 mg/kg	22 mg/kg

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL.

If the sample result is \geq QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

The positive results for calcium in EHS-GP-04 (44-45), EHS-GP-05 (44-45), and EHS-GP-02 (43-45), sulfate in samples EHS-GP-04 (44-45), EHS-GP-05 (44-45), and EHS-GP-02 (43-45), and sulfide in samples EHS-GP-04 (44-45) and EHS-GP-05 (4-5) were qualified as nondetect (U) at the reporting limits due to laboratory blank contamination.

Potassium was detected in the associated field blank sample EHS-FB-01, which was reported in case number 220-3438. Target analytes were not detected in field blank sample EHS-FB-02. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Potassium	EHS-FB-01	All samples	130 ug/L, 26 mg/kg	130 mg/kg

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL.

If the sample result is \geq QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

The positive results for potassium in samples EHS-GP-04 (44-45), EHS-GP-05 (44-45), and EHS-GP-02 (43-45) were qualified as nondetect (U) at the reporting limit.

ICP ICS Results

Analytes were recovered within the control limits in the ICSAB sample analyses.

Positive results for chromium, manganese, and nickel were detected above the method detection limit (MDL) in the ICSA solution analysis associated with all samples. Sample interferents levels were reviewed. Validation actions were not required as the sample interferents levels were less than those of the ICSA sample.

MS Results

The laboratory performed the MS analyses on samples EHS-GP-02 (4-5), which was reported in case number 220-3395, for metals, sulfate, and sulfide. The following table lists the analytes which exhibited recoveries outside of the control limits of 75 - 125% and the resulting validation actions.

Analyte	Recovery (%)	Actions
Beryllium	131	Estimate (J) the positive result for beryllium in sample EHS-GP-05 (4-5).
Magnesium	148	Estimate (J) the positive results for magnesium in all samples.
Antimony	53	Estimate (UJ) the nondetect results for antimony in all samples.
Thallium	136	Validation action was not required as all thallium results were nondetect and therefore not affected by the potential high bias.
Sulfide	63, 68	Estimate (J/UJ) the positive and nondetect results for sulfide in all samples.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample EHS-GP-02 (4-5) for metals and sulfate. In lieu of a duplicate analysis, the laboratory performed a matrix spike duplicate for sulfide on this sample. All criteria were met in these analyses.

Field Duplicate Results

A field duplicate pair was not associated with this sample group.

LCS Results

Sulfide (79, 79) was recovered below the control limits of 80-120 in the LCS and laboratory control sample duplicate (LCSD) analyses. The nondetect results for sulfide in all samples were estimated (UJ).

Serial Dilution Results

The laboratory performed the serial dilution analyses on sample EHS-GP-02 (43-45). All criteria were met.

Moisture Content

All criteria were met.

Detection Limits Results

Positive results which were above the MDL but below the reporting limit were reported by the laboratory with a "J" qualifier. These results were qualified as estimated (J) due to uncertainty at the low end of calibration. However, the low level calibration check standard analyzed was less than the laboratory reporting limit for mercury, aluminum, arsenic, beryllium, cadmium, chromium, iron, lead, manganese, selenium, silver, thallium, and zinc. The low level calibration check standard analyzed was greater than the laboratory RL for antimony, barium, calcium, cobalt, magnesium, nickel, potassium, sodium, and vanadium. As analysis of the low level standard demonstrates the accuracy at that level, results which were above the method detection limit (MDL) but below the low level calibration check standard were estimated (J) by the validator. The following results were affected:

D '	A 11 1
Barium:	All samples
Beryllium:	EHS-GP-05 (4-5)
Calcium:	EHS-GP-05 (4-5)
Chromium:	EHS-GP-04 (44-45), EHS-GP-05 (44-45)
Cobalt:	EHS-GP-04 (44-45), EHS-GP-05 (4-5)
Copper:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Magnesium:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Nickel:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Potassium:	EHS-GP-05 (4-5)
Sodium:	EHS-GP-05 (4-5)
Vanadium:	EHS-GP-04 (44-45), EHS-GP-05 (44-45), EHS-GP-02 (43-45)
Sulfide:	EHS-GP-02 (43-45)

As the following results reported were greater than the lowest calibration standard or low level calibration check standard, the validator removed the "J" qualifiers: arsenic in sample EHS-GP-05 (4-5) and chromium in sample EHS-GP-02 (43-45).

Sample Quantitation Results

Calculations were spot-checked; no discrepancies were noted.

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No.:	220-3406, 220-3438, 220-3509
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 28, 2007

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GW-03	220-3406-1	Metals, Sulfide, Sulfate
EHS-FB-01 EHS-FB-02	220-3438-1 220-3438-2	Metals, Sulfide, Sulfate Metals, Sulfide, Sulfate
EHS-GW-01	220-3509-1	Metals, Sulfide, Sulfate
Associated QC Samples(s):	Field Blanks: Field Duplicate pair:	EHS-FB-01, EHS-FB-02 None associated

The above-listed aqueous samples and field blank samples were collected on November 16, 19, and 29, 2007 and were analyzed for metals by SW-846 methods 6010B/7470A, sulfate by EPA method 300.0, and sulfide by EPA method 376.1. The data validation was performed in accordance with the and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540/R-04/004 (October 2004) and USEPA Region 2 Standard Operating Procedure for the Evaluation of Metals for the Contract Laboratory Program, SOP HW-2, Revision 13 (September 2005), modified as necessary to accommodate the non-CLP methodologies used.

The inorganic data were evaluated based on the following parameters:

- * Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
 - Holding Times and Sample Preservation
 - Instrument Calibration
- Contract Required Quantitation Limit (CRQL) Standard Recoveries
 - Blank Analysis Results
 - Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Results
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Duplicate Results
- NA Field Duplicate Results
- * Laboratory Control Sample (LCS) Results
- * Serial Dilution Results
- NA Moisture Content
 - Detection Limits Results
- Sample Quantitation Results

* - All criteria were met for this parameter.

NA- Not applicable to the matrix reviewed and a field duplicate pair was not associated with this sample group.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives.

Qualifications were not applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

• Potential uncertainty exists for the following results which were detected above the method detection limit (MDL) but below the low calibration check standard:

	THE CILL AS
Aluminum:	EHS-GW-03
Barium:	EHS-GW-03
Beryllium:	EHS-GW-01
Chromium:	EHS-GW-03
Cobalt:	EHS-GW-01, EHS-GW-03
Magnesium:	EHS-GW-03
Nickel:	EHS-GW-03
Potassium:	EHS-GW-03, EHS-FB-01
Thallium:	EHS-GW-01
Zinc:	EHS-GW-03

These results were qualified as estimated (J) and can be used for project objectives as estimated values which may have a minor effect on the data usability.

• The positive result for mercury in sample EHS-GW-01 was qualified as nondetect (U) at the quantitation limit due to laboratory blank contamination. The result is usable for project objectives as a nondetect which may have a minor effect on the data usability.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

Instrument Calibration

The recoveries for cobalt (121), chromium (114), and zinc (113) were above the control limits of 90-110 in the continuing calibration verification (CCV) sample CCV32 associated with samples EHS-FB-01 and EHS-FB-02. Validation actions were not required on this basis as the results for cobalt, chromium, and zinc were nondetect and therefore not affected by the potential high bias.

CRQL Standard Recoveries

All recovery criteria were met.

Blank Results

Analytes were detected in the associated method blank samples. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Vanadium	Instrument	EHS-GW-01	0.11 ug/L	0.55 ug/L
Mercury	Instrument	EHS-GW-01	1.2 ug/L	6.0 ug/L
Potassium	Instrument	EHS-FB-01, EHS-FB-02	140 ug/L	700 ug/L
Sulfate	Method	EHS-FB-01, EHS-FB- 02, EHS-GW-03	0.43 mg/L	2.2 mg/L

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL.

If the sample result is \geq QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

The positive result for mercury in sample EHS-GW-01 was qualified as nondetect (U) at the reporting limit due to laboratory blank contamination.

Potassium was detected in the associated field blank sample EHS-FB-01. Target analytes were not detected in field blank sample EHS-FB-02. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Potassium	EHS-FB-01	All samples	130 ug/L	650 ug/L

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL.

Laboratory Job 220-3406, 220-3509, 220-3438, Inorganics, Page 3 of 5

If the sample result is \geq QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

Validation actions were not required on this basis.

ICP ICS Results

Thallium (76%) was recovered below the control limits of 80-120 in the ICSAB sample analyses associated with samples EHS-FB-01 and EHS-FB-02. Validation actions were not required on this basis as sample interferent levels were less than those of the ICSAB.

Positive results for cadmium, cobalt, manganese, nickel, and lead and negative results for vanadium and thallium were detected above the method detection limit (MDL) in the ICSA solution analysis associated with samples EHS-FB-01 and EHS-FB-02. Positive results for cadmium, manganese, and nickel and negative results for cobalt and thallium were detected above the method detection limit (MDL) in the ICSA solution analysis associated with sample EHS-GW-01. Positive results for cadmium, chromium, manganese, and nickel and negative results for cadmium, chromium, manganese, and nickel and negative results for cobalt, thallium, and vanadium were detected above the method detection limit (MDL) in the ICSA solution analysis associated with sample EHS-GW-03. Sample interferent levels were reviewed. Validation actions were not required as the sample interferent levels were less than the ICSA solution.

MS Results

The laboratory performed the MS analyses on sample EHS-GW-01 for sulfide and sample EHS-GW-03 for metals, sulfate, and sulfate. The following table lists the analytes which exhibited recoveries outside of the control limits of 75 - 125% and the resulting validation actions.

Analyte	MS Sample	Recovery (%)	Actions
Selenium	EHS-GW-03	128	Validation action was not required as all selenium results were nondetect and therefore not affected by the potential high bias.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample EHS-GW-01 for sulfide and sample EHS-GW-03 for metals, sulfate, and sulfate. All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with these sample sets.

LCS Results

All criteria were met.

Serial Dilution Results

The laboratory performed the serial dilution analyses on samples EHS-GW-01 and EHS-GW-03. All criteria were met in these analyses.

Detection Limits Results

Positive results which were above the MDL but below the reporting limit were reported by the laboratory with a "J" qualifier. These results were qualified as estimated (J) due to uncertainty at the low end of calibration. However, the low level calibration check standard analyzed was less than the laboratory reporting limit for mercury, aluminum, arsenic, beryllium, cadmium, chromium, iron, lead, manganese, selenium, silver, thallium, and zinc. The low level calibration check standard analyzed was greater than the laboratory RL for antimony, barium, calcium, cobalt, magnesium, nickel, potassium, sodium, and vanadium. As analysis of the low level standard demonstrates the accuracy at that level, results which were above the method detection limit (MDL) but below the low level calibration check standard were estimated (J) by the validator. The following results were affected:

Aluminum:	EHS-GW-03
Barium:	EHS-GW-03
Beryllium:	EHS-GW-01
Chromium:	EHS-GW-03
Cobalt:	EHS-GW-01, EHS-GW-03
Magnesium:	EHS-GW-03
Nickel:	EHS-GW-03
Potassium:	EHS-GW-03, EHS-FB-01
Thallium:	EHS-GW-01
Zinc:	EHS-GW-03
Cobalt: Magnesium: Nickel: Potassium: Thallium: Zinc:	EHS-GW-01, EHS-GW-03 EHS-GW-03 EHS-GW-03, EHS-FB-01 EHS-GW-01 EHS-GW-03

Sample Quantitation Results

Calculations were spot-checked; no discrepancies were noted.

Site:	East Hampton Hortonsphere, East Hampton, NY
Laboratory:	Test America, Shelton, CT
Report No.:	220-3539
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	January 28, 2007

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GW-02	220-3539-1	Metals, Sulfide, Sulfate
EHS-GW-04	220-3539-2	Metals, Sulfide, Sulfate
EHS-GW-05	220-3539-3	Metals, Sulfide, Sulfate
EHS-GW-XX-120307	220-3539-4	Metals, Sulfide, Sulfate
Associated QC Samples(s):	Field Blanks:	EHS-FB-01, EHS-FB-02 (reported in
		220-3438)
	Field Duplicate pair:	EHS-GW-02/EHS-GW-XX-12030/

The above-listed aqueous samples were collected on December 3, 2007 and were analyzed for metals by SW-846 methods 6010B/7470A, sulfate by EPA method 300.0, and sulfide by EPA method 376.1. The data validation was performed in accordance with the and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540/R-04/004 (October 2004) and USEPA Region 2 Standard Operating Procedure for the Evaluation of Metals for the Contract Laboratory Program, SOP HW-2, Revision 13 (September 2005), modified as necessary to accommodate the non-CLP methodologies used.

The inorganic data were evaluated based on the following parameters:

- * Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness

*

*

- Holding Times and Sample Preservation
- * Instrument Calibration
 - Contract Required Quantitation Limit (CRQL) Standard Recoveries
 - Blank Analysis Results
 - Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Results
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Duplicate Results
- * Field Duplicate Results
- Laboratory Control Sample (LCS) Results
- Serial Dilution Results
- NA Moisture Content
 - Detection Limits Results
- * Sample Quantitation Results

* - All criteria were met for this parameter.

NA- Not applicable to the matrix reviewed.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives.

Qualifications were not applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

• Potential uncertainty exists for the following results which were detected above the method detection limit (MDL) but below the low calibration check standard:

Aluminum:	EHS-GW-02, EHS-GW-04, EHS-GW-XX-120307
Barium:	All samples
Chromium:	EHS-GW-02, EHS-GW-04, EHS-GW-05
Cobalt:	EHS-GW-04
Magnesium:	EHS-GW-02, EHS-GW-04, EHS-GW-XX-120307
Nickel:	EHS-GW-02, EHS-GW-04
Potassium:	All samples
Zinc:	All samples

These results were qualified as estimated (J) and can be used for project objectives as estimated values which may have a minor effect on the data usability.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

Instrument Calibration

All recovery criteria were met

CRQL Standard Recoveries

All recovery criteria were met.

Blank Results

Manganese was detected in the associated method blank sample. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Manganese	Method	All samples	17 ug/L	85 ug/L

Blank Actions

If the sample result is \leq QL and \leq action level; report the result as nondetect (U) at the QL. If the sample result is \geq QL and \leq action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

Validation actions were not required on this basis.

Potassium was detected in the associated field blank sample EHS-FB-01, which was reported in case number 220-3438. Target analytes were not detected in the field blank sample EHS-FB-02. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Potassium	EHS-FB-01	All samples	130 ug/L	650 ug/L

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL.

If the sample result is \geq QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \geq 2 MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

Validation actions were not required on this basis.

ICP ICS Results

Analytes were recovered within the control limits in the ICSAB sample analyses.

Positive results for cadmium, manganese, and nickel and negative results for cobalt and thallium were detected above the method detection limit (MDL) in the ICSA solution analysis associated with all samples. Sample interferent levels were reviewed. Validation actions were not required as the sample interferent levels were less than the ICSA solution.

MS Results

The laboratory performed the MS analyses on sample EHS-GW-03, which was reported in case number 220-3406, for metals, sulfate, and sulfide and also on sample EHS-GW-04 for sulfide. The following table lists the analytes which exhibited recoveries outside of the control limits of 75 - 125% and the resulting validation actions.

Analyte	MS Sample	Recovery (%)	Actions
Selenium	EHS-GW-03	128	Validation action was not required as all selenium results were nondetect and therefore not affected by the potential high bias.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample EHS-GW-03, which was reported in case number 220-3406, for metals, sulfate, and sulfide and also on sample EHS-GW-02 for sulfide. All criteria were met.

Field Duplicate Results

Samples EHS-GW-02 and EHS-GW-XX-120307 were submitted as the field duplicate pair with this sample group. The following table summarizes the RPDs of the detected analytes, all of which were acceptable.

Analyte	EHS-GW-02 (ug/L)	EHS-GW-XX-120307 (ug/L)	RPD (%)
Aluminum	160	200	22.2
Barium	58	60	3.4
Calcium	15,300	15,700	2.6
Chromium	8.7	11	23.4
Iron	410	530	25.5
Magnesium	3600	3600	0
Manganese	520	540	3.8
Nickel	9.5	13	1.9
Potassium	1400	1400	0
Sodium	22,800	23,800	4.3
Zinc	19	22	14.6
Sulfate	11.1	11.0	0.9

For aqueous results > 5xQL and RPDs >30; estimate (J) results in the field duplicate pair.

For aqueous results < 5xQL; the sample and duplicate results must be within the QL.

LCS Results

All criteria were met.

Serial Dilution Results

The laboratory performed the serial dilution analysis on sample EHS-GW-02. All criteria were met.

Detection Limits Results

Positive results which were above the MDL but below the reporting limit were reported by the laboratory with a "J" qualifier. These results were qualified as estimated (J) due to uncertainty at the low end of calibration. However, the low level calibration check standard analyzed was less than the laboratory reporting limit for mercury, aluminum, arsenic, beryllium, cadmium, chromium, iron, lead, manganese, selenium, silver, thallium, and zinc. The low level calibration check standard analyzed was greater than the laboratory RL for antimony, barium, calcium, cobalt, magnesium, nickel, potassium, sodium, and vanadium. As analysis of the low level standard demonstrates the accuracy at that level, results which were above the method detection limit (MDL) but below the low level calibration check standard were estimated (J) by the validator. The following results were affected:

Aluminum:	EHS-GW-02, EHS-GW-04, EHS-GW-XX-120307
Barium:	All samples
Chromium:	EHS-GW-02, EHS-GW-04, EHS-GW-05
Cobalt:	EHS-GW-04
Magnesium:	EHS-GW-02, EHS-GW-04, EHS-GW-XX-120307
Nickel:	EHS-GW-02, EHS-GW-04
Potassium:	All samples
Zinc:	All samples

As the following results reported were greater than the lowest calibration standard or low level calibration check standard, the validator removed the "J" qualifiers: arsenic in sample EHS-GW-05.

Sample Quantitation Results

Calculations were spot-checked; no discrepancies were noted.

Analytical Data

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID	: EHS-GP-01(4-5)				og Number. 220-0090
Lab Sample ID: Client Matrix:	220-3395-2 Solid	% Moisture:	26.0	Date Sampled: Date Received:	11/13/2007 1028 11/15/2007 1634
	8	260B Volatile Organic Co	ompounds b	y GC/MS	
Method: Preparation: Dilution: Date Analyzed:	8260B 5030B 1.0 11/20/2007 2306	Analysis Batch: 220	-11269	Instrument ID: HP Lab File ID: N6 Initial Weight/Volume Final Weight/Volume	5890/5971A GC/MS 057.D : 5 g 5 ml

Date Analyzed:11/20/20072306Date Prepared:11/20/20072306

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL.	RL.
Acetone	27	U	3.2	27
Benzene	6.8	U	0.96	6.8
Bromodichloromethane	6.8	U	0.88	6.8
Bromoform	6.8	U	2.3	6.8
Bromomethane	6.8	U	2.1	6.8
Methyl Ethyl Ketone	14	U	4.5	14
Carbon disulfide	6.8	U	0.72	6.8
Carbon tetrachloride	6.8	U	0.96	6.8
Chlorobenzene	6.8	U	1.2	6.8
Chloroethane	6.8	U	1.7	6.8
Chloroform	6.8	U	0.72	6.8
Chloromethane	6.8	U	1.4	6.8
Dibromochloromethane	6.8	U	1.4	6.8
1,1-Dichloroethane	6.8	U	0.88	6.8
1,2-Dichloroethane	6.8	U	1.5	6.8
1,1-Dichloroethene	6.8	U	1.1	6.8
1,2-Dichloropropane	6.8	U	1.3	6.8
cis-1,3-Dichloropropene	6.8	U	0.84	6.8
trans-1,3-Dichloropropene	6.8	U	1.4	6.8
Ethylbenzene	6.8	U	0.96	6.8
2-Hexanone	14	U	3.6	14
Methylene Chloride	1 27V 3.8		1.9	27
methyl isobutyl ketone	6.8	U	1.3	6.8
Styrene	6.8	U	1.7	6.8
1,1,2,2-Tetrachloroethane	6.8	U	1.4	6.8
Tetrachloroethene	6.8	U	1.0	6.8
Toluene	1.7	JVJV	0.80	6.8
1,1,1-Trichloroethane	6.8	U	0.99	6.8
1,1,2-Trichloroethane	6.8	U	1.2	6.8
Trichloroethene	6.8	U	1.3	6.8
Vinyl chloride	6.8	U	1.8	6.8
Xylenes, Total	6.8	U	3.3	6.8
cis-1,2-Dichloroethene	6.8	U	1.2	6.8
trans-1,2-Dichloroethene	6.8	U	1.3	6.8
Surrogate	%Rec		Accep	tance Limits
1,2-Dichloroethane-d4 (Surr)	96		49 -	134
4-Bromofluorobenzene	102		36 -	133
Dibromofluoromethane	94		60 -	130
Toluene-d8 (Surr)	96		51 -	137

Analytical Data

Job Number: 220-3395-1

Sdg Number: 220-3395 **Client Sample ID:** EHS-GP-01(4-5) Lab Sample ID: 220-3395-2 Date Sampled: 11/13/2007 1028 Client Matrix: Solid % Moisture: 26.0 Date Received: 11/15/2007 1634 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) 8270C Method: Analysis Batch: 220-11422 Instrument ID: HP 6890/5973 GC/MS Preparation: 3541 Prep Batch: 220-11378 Lab File ID: U2137.D Dilution: 1.0 Initial Weight/Volume: 15.05 q 11/27/2007 2050 Final Weight/Volume: Date Analyzed: 1 mL Date Prepared: 11/27/2007 0953 Injection Volume: 1 uL DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Analyte Acenaphthene 440 Ű 78 440 Acenaphthylene 440 U 85 440 Anthracene 440 U 72 440 Benzolalanthracene 440 U 65 440 440 U 57 440 Benzo[a]pyrene Benzo[b]fluoranthene U 76 440 440 U 87 Benzo[g,h,i]perylene 440 440 Benzo[k]fluoranthene 440 U 73 440 Bis(2-chloroethoxy)methane 440 U 72 440 Bis(2-chloroethyl)ether 440 U 220 440 Bis(2-ethylhexyl) phthalate 440 U 57 440 Butyl benzyl phthalate 440 U 62 440 Carbazole 440 U 76 44<u>0</u> Chrysene 440 IJ 78 440 Di-n-butyl phthalate 440 U 69 440 Di-n-octyl phthalate 440 U 70 440 4-Bromophenyl phenyl ether 440 U 72 440 440 U 440 4-Chloroaniline 59 440 77 2-Chloronaphthalene U 440 87 4-Chlorophenyl phenyl ether 440 U 440 Dibenz(a,h)anthracene 440 U 67 440 440 υ 78 440 Dibenzofuran 440 υ 440 Diethyl phthalate 110 U Dimethyl phthalate 440 78 440 U 1,2-Dichlorobenzene 440 70 440 440 U 72 440 1,3-Dichlorobenzene U 1,4-Dichlorobenzene 440 70 440 890 U 50 890 3,3'-Dichlorobenzidine U 68 2,4-Dinitrotoluene 440 440 U 2.6-Dinitrotoluene 440 180 440 U Fluoranthene 440 74 440 Fluorene 440 U 76 440 U Hexachlorobenzene 440 77 440 Hexachlorobutadiene 440 U 85 440 Hexachlorocyclopentadiene 440 U 63 440 Hexachloroethane 440 U 77 440 Indeno[1,2,3-cd]pyrene 440 U 79 440 Isophorone 440 U 91 440 2-Methylnaphthalene 440 U 82 440 Naphthalene U 440 440 68 2-Nitroaniline U 2200 2200 60 U 3-Nitroaniline 2200 63 2200 U Nitrobenzene 440 82 440 N-Nitrosodi-n-propylamine 440 U 99 440 EMM 1)108 Page 26 of 2196 12/19/2007 **TestAmerica Connecticut** N

Client: GEI Consultants, Inc.

1/18/08
Client: GEI Cor	nsultants, Inc.			Jol	Number: 220-3395-1
Client Sample ID	: EHS-GP-01(4-5)				5dg Number: 220-3395
Lab Sample ID:	220-3395-2			Date Sampled	11/13/2007 1028
Client Matrix:	Solid	% Moisture: 26.0		Date Received:	11/15/2007 1634
	8270C Semivolatile Con	pounds by Gas Chromatogra	phy/Mass Sr	ectrometry (GC	/MS)
Method:	8270C	Analysis Batch: 220-11422	Inst	rument ID: HF	2 6890/5973 GC/MS
Prenaration:	3541	Pren Batch: 220-11378	l ah		137 D
Dilution:	10	Top Baton 220 There	Initi	al Weight/Volume	x 15.05 a
Date Analyzed:	11/27/2007 2050		Fin	al Weight/Volume	s. 13.00 g
Date Analyzed.	11/27/2007 0053		i na Inio	ation Volume:	. 1 III⊑ 1 ul
Date r Tepareu.	11/2/12007 0935		nge	caon volume.	I UL
Analyte	DryWt Co	rrected: Y Result (ua/Ka)	Qualifier	MDL	RL
N-Nitrosodiphenvla	amine	440	U	80	440
Phenanthrene		440	Ŭ	73	440
Pvrene		440	Ū	65	440
1,2,4-Trichloroben	zene	440	U	71	440
4-Chloro-3-methyl	phenol	440	U	89	440
2-Chlorophenol		440	U	96	440
2-Methylphenol		440	U	70	440
4-Methylphenol		440	U	67	440
2,4-Dichloropheno	1	440	U	92	440
2,4-Dimethylpheno	bl	440	U	60	440
2,4-Dinitrophenol		2200	UK	290	2200
4,6-Dinitro-2-methy	ylphenol	2200	UK /	340	2200
2-Nitrophenol		440	U	96	440
4-Nitrophenol		2200	U	200	2200
Pentachlorophenol	I	2200	U	31	2200
Phenol		440	U	53	440
2,4,5-Trichlorophe	nol	2200	U	67	2200
2,4,6-Trichloropher	nol	440	U	65	440
Benzyl alcohol		440	U	92	440
4-Nitroaniline		890	U	67	890
2,2'-oxybis[1-chlore	opropane]	440	U	72	440
Surrogate		%Rec		Accepta	ance Limits
2-Fluorobiphenyl		68		32 - 1	31
2-Fluorophenol		68		25 - 1	13
2,4,6-Tribromophe	nol	89		24 - 1	50
Nitrobenzene-d5		62		25 - 1	20
Phenol-d5		72		27 - 1	22
Terphenyl-d14		94		35 - 1	40

TestAmerica Connecticut

Page 27 of 2196 pg $E^{M^{1/1}}_{1/18/68}$ $E^{M^{1/1}}_{1/10}$ $8 \frac{12}{19/2007}$

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID): EHS-GP-01(4-5)			
Lab Sample ID: Client Matrix:	220-3395-2 Solid	% Moisture: 26.0	Date Sampled: Date Received:	11/13/2007 1028 11/15/2007 1634
Rande of Solid State of Applements of Constraints	6010B Induc	tively Coupled Plasma - Atomi	c Emission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1528 11/19/2007 1407	Analysis Batch: 220-11308 Prep Batch: 220-11213	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	TJA Trace ICAP W112107 1.09 g 250 mL
Analyte	DryWt Correct	ed: Y Result (mg/Kg)	Qualifier MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium		$\begin{array}{c} 4.7\\ 10300\\ 5.1\\ 37.3 J \\ 0.85\\ 486 J \\ 7.8\\ 6.5 J \\ 13.4\\ 10.7\\ 18200\\ 667 J \\ 2230 J \\ 195\\ 72.3\\ 8.9 J \\ 11.7\\ 15.5\\ 15.5\\ 23.3\\ 26.2\\ 25.1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.7 155 12.4 3.1 3.1 310 7.8 3.1 4.7 7.8 93.0 310 54.3 9.3 310 54.3 9.3 310 7.8 7.8 7.8 15.5 15.5 23.3 6.2 31.0
	7471A Mercurv	in Solid or Semisolid Waste (N	Manual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0947 11/20/2007 1555	Analysis Batch: 220-11278 Prep Batch: 220-11264	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	Perkin Elmer FIMS N/A 9: 0.67 g 1: 50 mL

Analyte	D	ryWt Correct	ed: Y	Result (mg	g/Kg)	Qualifier	MDL	RL	
Mercury	and the second			0.061	1	U	0.015	0.06	1

. DB

1/2/08

1/18/08

12/19/2007

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID: Lindon Ordy Lab Sample ID: 20:3395-2 Solid % Moisture: 26.0 Date Sampled: 11/13/2007 1023 Date Sampled: 11/13/2007 1034 Date Sampled: 11/15/2007 1034 Date Sampled: 11/15/2007 1034 Date Sampled: 11/15/2007 1034 Date Sample: 10.0 Date Sample		EUS.CD	.01(4.5)				lug Number: 220 0000
Lab Sample D. Zeboor % Moisture: 26.0 Date Received: 11/15/2007 1634 Solid % Moisture: 26.0 Date Received: 11/15/2007 1634 Method: 6081A Analysis Batch: 220-11521 Instrument ID: IP 5890 with dual ECD Date Analyzed: 12/03/2007 1651 Date Repared: 10.0 Date Malyzed: 10.0 mL Injiat Weight/Volume: 30.86 g Final Weight/Volume: 30.86 g Date Prepared: 11/27/2007 1227 Distrument ID: IP SIMARY Distrument ID: IP SIMARY Analysic DryWI Corrected: Y Result (ug/Kg) Qualifier MDL RL Cloum ID: PRIMARY Addrin 2.6 U 0.47 2.6 U 0.43 2.2 U 0.35 2.2 Detabelle 4.3 U 0.42 4.3 U 0.42 4.3 Diedrin 2.2 U 0.35 2.2 U 0.35 2.2	Client Sample ID:	220-3305	5-2			Date Sampled:	11/13/2007 1028
B881A Organochlorine Pesticides by Gas Chromatography Method: 5081A Analysis Batch: 220-11521 Instrument ID: HP 5890 with dual ECD Dilution: 1.0 Date Analyzed: 12/03/2007 1651 Lab File ID: D/Strument ID: HP 5890 with dual ECD Date Analyzed: 12/03/2007 1651 Lab File ID: D/Strument ID: HP 5890 with dual ECD Date Analyzed: 12/03/2007 1651 Lab File ID: D/Strument ID: HP 5890 with dual ECD Date Analyzed: 12/03/2007 1651 Lab File ID: D/Strument ID: HP 5890 with dual ECD Date Analyzed: 12/03/2007 1651 Lab File ID: D/Strument ID: HP 5890 with dual ECD Advino 10/227 Common ID: PRIMARY Note ID: PRIMARY Advino 2.2 U 0.57 4.3 U Colsman ID: PRIMARY Advino 2.2 U 0.35 2.2 Diltorin: 1.0 Diltorin: Diltorin: Diltorin: Diltorin: Diltorin: Diltorin: Diltorin: Diltorin: Diltorin: <td< td=""><td>Client Matrix:</td><td>Solid</td><td>J-<i>2</i>-</td><td>% Moisture: 26.0</td><td></td><td>Date Received:</td><td>11/15/2007 1634</td></td<>	Client Matrix:	Solid	J- <i>2</i> -	% Moisture: 26.0		Date Received:	11/15/2007 1634
Method: 8081A Preparation: Analysis Batch: 220-11521 Preparation: Instrument ID: HP 6890 with dual ECD Lab File ID: D7507050.D Ditution: 1.0 Dista Analyzed: 12/03/2007 1651 Dista Analyzed: 0.0 militial Weight/Volume: 30.8 6 g Date Analyzed: 11/27/2007 1227 Endosity Gualifier MDL RL Aratyte DryWi Corrected: Y Result (ug/Kg) Qualifier MDL RL A(4:DDE 4.3 U 0.56 J 0.41 4.3 A(4:DDE 4.3 U 0.55 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.35 2.2 U 0.44 4.3 Diedran 2.2 U 0.14 2.2<			8081A Orga	nochlorine Pesticides by G	as Chrom	atography	
Memory District Prep Batch: 220-11392 Lab File (D:: D7507050.D Ditution: 1.0 Image: District (D:: District (D:: <td>A d - Ale - ale</td> <td>00010</td> <td>······································</td> <td>Analysis Batch: 220-1152</td> <td>1</td> <td>Instrument ID: HP</td> <td>5890 with dual ECD</td>	A d - Ale - ale	00010	······································	Analysis Batch: 220-1152	1	Instrument ID: HP	5890 with dual ECD
Preparation: 30.000 1.0 Initial WeightVolume: 30.86 g Date Analyzed: 12/03/2007 1651 Initial WeightVolume: 1.0.0 mL Date Prepared: 11/27/2007 1227 Cuttom ID: PRIMARY Analyzed: 12/03/2007 1651 0.50 4.3 UT 0.57 4.3 4.4*DDD 4.3 UT 0.57 4.3 4.3 4.3 0.41 4.3 4.4*DDT 0.56 T 0.41 4.3 4.3 0.41 4.3 Aldrin 2.6 U 0.47 2.6 4.3 2.2 0.41 4.3 Aldrin 2.2 U 0.36 2.2 2.2 0.41 4.3 2.2 0.41 4.3 2.2 2.2 0.41 4.3 2.2 2.2 0.42 4.3 2.2 </td <td>Method:</td> <td>26508</td> <td></td> <td>Pren Batch: 220-11392</td> <td></td> <td>Lab File ID: D7</td> <td>507050.D</td>	Method:	26508		Pren Batch: 220-11392		Lab File ID: D7	507050.D
Diution: 1/3	Preparation:	3550B 4 A		Top Batom E20		Initial Weight/Volume	e: 30.86 g
Date Prepared: 11/27/2007 1227 Injection Volume: 1 1 L Analyte DryWt Corracted: Y Result (ug/Kg) Qualifier MD RL Analyte DryWt Corracted: Y Result (ug/Kg) Qualifier MD RL 4,4:DDD 4.3 U 0.50 4.3 Addrin 2.6 U 0.41 4.3 Aldrin 2.6 U 0.41 4.3 Aldrin 2.6 U 0.41 4.3	Dilution:	1.0	1651			Final Weight/Volume	: 10.0 mL
Date Prepared: Th2//2007 Test Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 4,4-DDD 4.3 UT 0.57 4.3 4,4-DDT 0.56 T 0.41 4.3 Aldrin 2.6 U 0.35 2.2 beta-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.14 2.2 Endosulfan 1 4.3 U 0.22 4.3 Endosulfan sulfate 4.3 U 0.42 4.3 Endrin Ridehyde 4.3 U 0.42 4.3 Endrin Ridehyde 2.2 U 0.20 2.2 Heptachlor epoxide 2.2	Date Analyzed:	12/03/2007	1007			Injection Volume:	1 uL
Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 4.4*DDD 4.3 U 0.50 4.3 4.4*DDE 4.3 U 0.57 4.3 4.4*DDE 0.56 J 0.411 4.3 4.4*DDT 2.6 U 0.36 2.2 alpha-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.14 2.2 beta-BHC 2.2 U 0.42 4.3 beta-BHC 2.2 U 0.19 2.2 endosulfan I 4.3 U 0.42 4.3 Endosulfan I 4.3 U 0.42 4.3 garma-BHC (Lindane) 2.2 U </td <td>Date Prepared:</td> <td>11/2//2007</td> <td>1221</td> <td></td> <td></td> <td>Column ID: F</td> <td>RIMARY</td>	Date Prepared:	11/2//2007	1221			Column ID: F	RIMARY
Analyse Dry Honoreal (1995) UT 0.50 4.3 UT 0.50 4.3 4.4-DDE 4.3 U 0.57 4.3 4.4 4.4 4.3 U 0.57 4.3 4.4-DDT 0.56 T 0.41 4.3 4.3 4.4 4.3 4.4 4.3 4.3 4.4 4.3 4.4 4.3 4.4 4.3 <td></td> <td></td> <td>DavMt Con</td> <td>rected: Y. Result (ua/Ka)</td> <td>Qualifie</td> <td>er MDL</td> <td>RL</td>			DavMt Con	rected: Y. Result (ua/Ka)	Qualifie	er MDL	RL
4.4-DDD 4.3 U 0.57 4.3 4.4-DDT 0.56 U 0.41 4.3 Aldrin 2.6 U 0.47 2.6 alpha-BHC 2.2 U 0.36 2.2 beta-BHC 2.2 U 0.14 2.2 beta-BHC 2.2 U 0.14 2.2 eldta-BHC 2.2 U 0.14 2.2 endosulfan I 2.2 U 0.14 2.2 endosulfan suifate 4.3 U 0.22 4.3 Endosulfan suifate 4.3 U 0.22 4.3 Endrin aldehyde 4.3 U 0.42 4.3 Endrin aldehyde 4.3 U 0.19 4.3 gamma-BHC (Lindane) 2.2 U 0.20 2.2 gamma-BHC (Lindane) 2.2 U 0.15 2.2 Heptachlor 2.2 U 0.15 2.2 Heptachlor 2.2 U 0.14 2.2 Gamma-BHC (Lindane) 2.2 U	Analyte	متعرفية المستهدر ال	Diywicon	<u>4</u> 3	UT /	0.50	4.3
4.4-DDT 0.56 T 0.41 4.3 Aldrin 2.6 U 0.47 2.6 alpha-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.14 2.2 beta-BHC 2.2 U 0.14 2.2 beta-BHC 2.2 U 0.14 2.2 beta-BHC 2.2 U 0.42 4.3 beta-BHC 2.2 U 0.42 4.3 beta-BHC 4.3 U 0.22 4.3 Endosulfan II 4.3 U 0.22 4.3 Endosulfan sulfate 6.6 U 1.2 6.6 Endrin aldehyde 4.3 U 0.42 4.3 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachfor epoxide 2.2 U 0.16 2.2 Methoxic epoxide 2.2 U 0.14 <t< td=""><td>4,4'-DDD</td><td></td><td></td><td>4.3</td><td>Ū</td><td>0.57</td><td>4.3</td></t<>	4,4'-DDD			4.3	Ū	0.57	4.3
4.4-DT 2.6 U 0.47 2.6 alpha-BHC 2.2 U 0.36 2.2 beta-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.35 2.2 beta-BHC 2.2 U 0.14 2.2 beta-BHC 2.2 U 0.19 2.2 beta-BHC 2.2 U 0.19 2.2 beta-BHC 2.2 U 0.19 2.2 Endosulfan I 4.3 U 0.42 4.3 Endosulfan sulfate 6.6 U 1.2 6.6 Endrin aldehyde 4.3 U 0.42 4.3 Endrin ketone 2.2 U 0.20 2.2 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.15 2.2 Wethoxychlor 88 U 2.3 88 Japha-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.12 <td>4,4-DUE</td> <td></td> <td></td> <td>0.56</td> <td>J /</td> <td>0.41</td> <td>4.3</td>	4,4-DUE			0.56	J /	0.41	4.3
Autim 2.2 U 0.36 2.2 beta-BHC 2.2 U 0.35 2.2 deta-BHC 2.2 U 0.14 2.2 deta-BHC 4.3 U 0.42 4.3 Endosulfan I 4.3 U 0.22 4.3 Endosulfan II 4.3 U 0.42 4.3 Endrin Idehyde 4.3 U 0.42 4.3 Endrin Iketone 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.23 88 alpha-Chlordane 2.2 U 0.14 2.2 garma-Chlordane 2.2 U 0.14 2.2 garma-Chlordane 2.2 U 0.12 <td>4,4 - DD I</td> <td></td> <td></td> <td>2.6</td> <td>U</td> <td>0.47</td> <td>2.6</td>	4,4 - DD I			2.6	U	0.47	2.6
apprendice 2.2 U 0.35 2.2 deta-BHC 2.2 U 0.14 2.2 Dieldrin 2.2 U 0.14 2.2 Endosulfan I 2.2 U 0.19 2.2 Endosulfan II 4.3 U 0.22 4.3 Endosulfan II 4.3 U 0.22 4.3 Endosulfan II 6.6 U 1.2 6.6 Endrin 6.6 U 1.2 6.6 Endrin Atone 2.2 U 0.20 2.2 garma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.15 2.2 Heptachlor epoxide 2.2 U 0.14 2.2 Gamma-BHC (Lindane) 2.2 U 0.14 2.2 gamma-Chlordane 2.2				2.2	υ	0.36	2.2
Deta BHC 2.2 U 0.14 2.2 Dieldrin 4.3 U 0.42 4.3 Endosulfan I 2.2 U 0.19 2.2 Endosulfan II 4.3 U 0.22 4.3 Endosulfan II 4.3 U 0.22 4.3 Endosulfan sulfate 6.6 U 1.2 6.6 Endrin aldehyde 4.3 U 0.42 4.3 Endrin in aldehyde 4.3 U 0.42 4.3 Endrin in aldehyde 4.3 U 0.42 4.3 Endrin ketone 2.2 U 0.20 2.2 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachfor 2.2 U 0.14 2.2 Methoxychlor 88 U 2.3 88 Toxaphene 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.14 2.2 Surrogate %Rec Acceptance Limits 26 - 159 Dita Analyzed: 1203/2007	hoto BHC			2.2	U	0.35	2.2
Deletin 4.3 U 0.42 4.3 Endosulfan I 2.2 U 0.19 2.2 Endosulfan II 4.3 U 0.22 4.3 Endosulfan II 4.3 U 0.23 4.3 Endosulfan suifate 6.6 U 1.2 6.6 Endrin 6.6 U 1.2 6.6 Endrin aldehyde 4.3 U 0.42 4.3 Endrin ketone 4.3 U 0.19 4.3 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.20 2.2 Methoxychlor 88 U 2.3 88 Toxaphene 2.2 U 0.14 2.2 garmma-Chlordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits 26 - 159 DEB becachlorobiphenyl 94 26 - 159 24 - 154 Preparation: 350B <td< td=""><td>dolta-BHC</td><td></td><td></td><td>2.2</td><td>U</td><td>0.14</td><td>2.2</td></td<>	dolta-BHC			2.2	U	0.14	2.2
Determine 2.2 U 0.19 2.2 Endosulfan I 4.3 U 0.22 4.3 Endosulfan sulfate 6.6 U 1.2 6.6 Endrin 6.6 U 1.2 6.6 Endrin 6.6 U 0.42 4.3 Endrin aldehyde 4.3 U 0.42 4.3 Endrin ketone 2.2 U 0.20 2.2 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.23 88 Toxaphene 88 U 2.3 88 aipha-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 54 24 - 154 Preparation: 35508 Prep Batch: 220-11392 Initial Weight/Volume:	Dieldrin			4.3	U	0.42	4.3
Endosulfan II 4.3 U 0.22 4.3 Endosulfan II 4.3 U 0.23 4.3 Endosulfan sulfate 6.6 U 1.2 6.6 Endrin 6.6 U 0.42 4.3 Endrin aldehyde 4.3 U 0.42 4.3 Endrin ketone 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.15 2.2 Methoxychlor 22 U 2.3 88 DCB Decachlorobiphenyl 94 25 159 Tetrachloro-m-xylene 54 24 - 154 154 Method: 8081A Analysis Batch: 220-11521	Endosulfan I			2.2	U	0.19	2.2
Endosulfan sulfate 4.3 U 0.23 4.3 Endrin 6.6 U 1.2 6.6 Endrin aldehyde 4.3 U 0.42 4.3 Endrin aldehyde 4.3 U 0.42 4.3 Endrin ketone 4.3 U 0.42 4.3 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.23 88 Zapamna-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.15 2.2 Methoxychlor 22 U 0.14 2.2 gamma-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.14 2.2 Surrogate %Rec Acceptance Limits 26 - 159 DCB Decachlorobiphenyl 94 25 - 159 24 - 154 Preparation: 3550B Prep Batch: 220-11392 Instrument ID: HP 5890 with dual ECD </td <td>Endosulfan il</td> <td></td> <td></td> <td>4.3</td> <td>U</td> <td>0.22</td> <td>4.3</td>	Endosulfan il			4.3	U	0.22	4.3
Endrin 6.6 U 1.2 6.6 Endrin aldehyde 4.3 U 0.42 4.3 Endrin ketone 4.3 U 0.19 4.3 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.15 2.2 Methoxychlor 22 U 2.8 22 Toxaphene 88 U 2.3 88 ajpha-Chlordane 2.2 U 0.14 2.2 gamma-Chiordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 94 25 - 159 Tetrachloro-m-xylene 54 24 - 154 Method: 8081A Analysis Batch: 220-11521 Instrument ID: HP 5890 with dual ECD Lab File ID: C7507050.D Initial Weight/Volume: 30.86 g Final Weight/Volume: 1.0 Injection Volume: 1.0 Date Analyzed: 12/03/2007 1651 Kec A	Endosulfan sulfate	•		4.3	U	0.23	4.3
Endrin aldehyde 4.3 U 0.42 4.3 Endrin ketone 4.3 U 0.19 4.3 Endrin ketone 2.2 U 0.20 2.2 Beptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.15 2.2 Methoxychlor 22 U 2.8 22 Methoxychlor 2.2 U 0.14 2.2 garma-Chlordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 94 25 - 159 Tetrachloro-m-xylene 54 24 - 154 Method: 8081A Analysis Batch: 220-11392 Instrument ID: HP 5890 with dual ECD Lab File ID: C7507050.D Initial Weight/Volume: 10.0 mL Date Analyzed: 12/03/2007 1651 Endet Prep aret Date Prepared: 11/27/2007 1227 69 25 - 159 </td <td>Endrin</td> <td></td> <td></td> <td>6.6</td> <td>U</td> <td>1.2</td> <td>6.6</td>	Endrin			6.6	U	1.2	6.6
Endrin ketone 4.3 U 0.19 4.3 gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.20 2.2 Heptachlor opoxide 2.2 U 0.15 2.2 Methoxychlor 22 U 2.3 88 alpha-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 94 26 - 159 Tetrachloro-m-xylene 54 24 - 154 Method: 8081A Analysis Batch: 220-11521 Instrument ID: HP 5890 with dual ECD Lab File ID: C7507050.D Initial Weight/Volume: 30.86 g Ditution: 1.0 mL Final Weight/Volume: 10.0 mL Date Analyzed: 12/03/2007 1651 ESCONDARY Final Weight/Volume: 1 uL Column	Endrin aldehyde			4.3	U	0.42	4.3
gamma-BHC (Lindane) 2.2 U 0.20 2.2 Heptachlor 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.15 2.2 Methoxychlor 22 U 2.8 22 Toxaphene 88 U 2.3 88 alpha-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 94 25 - 159 Tetrachloro-m-xylene 54 24 - 154 Method: 8081A Analysis Batch: 220-11521 Instrument ID: HP 5890 with dual ECD Lab File ID: C7507050.D Initial Weight/Volume: 30.86 g 9 Dilution: 1.0 Date Analyzed: 12/03/2007 1651 Lab File ID: SECONDARY Date Prepared: 11/27/2007 1227 EXECONDARY Secondary Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 89 <	Endrin ketone			4.3	U	0.19	4.3
Heptachlor 2.2 U 0.20 2.2 Heptachlor epoxide 2.2 U 0.15 2.2 Methoxychlor 22 U 2.8 22 Toxaphene 2.2 U 2.3 88 aipha-Chlordane 2.2 U 0.14 2.2 garma-Chlordane 2.2 U 0.14 2.2 garma-Chlordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 94 25 - 159 Tetrachloro-m-xylene 54 24 - 154 Method: 8081A Analysis Batch: 220-11521 Preparation: 3550B Prep Batch: 220-11392 Dilution: 1.0 1.0 Date Analyzed: 12/03/2007 1651 Instrument ID: Date Prepared: 11/27/2007 1227 Ingection Volume: 1 uL Column ID: SECONDARY Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 89 25 - 159 Tetrachloro-m-xylene 53 24 - 154<	gamma-BHC (Ling	dane)		2.2	U	0.20	2.2
Heptachlor epoxide 2.2 U 0.15 2.2 Methoxychlor 22 U 2.8 22 Toxaphene 88 U 2.3 88 aipha-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.12 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 94 25 - 159 Tetrachloro-m-xylene 54 24 - 154 Method: 8081A Analysis Batch: 220-11521 Instrument ID: HP 5890 with dual ECD Lab File ID: C7507050.D Initial Weight/Volume: 30.86 g g Dilution: 1.0 Date Analyzed: 12/03/2007 1651 Initial Weight/Volume: 1 uL Date Prepared: 11/27/2007 1227 SeconDARY SeconDARY Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 89 25 - 159 DCB Decachlorobiphenyl 89 25 - 159 DCB Decachlorobiphenyl 89 25 - 159 DCB Decachlorobiphenyl 89 24 - 154	Heptachlor			2.2	U	0.20	2.2
Methoxychlor 22 U 2.8 22 Toxaphene 88 U 2.3 88 alpha-Chlordane 2.2 U 0.14 2.2 gamma-Chlordane 2.2 U 0.14 2.2 Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 94 25 - 159 Tetrachloro-m-xylene 54 24 - 154 Method: 8081A Analysis Batch: 220-11521 Instrument ID: HP 5890 with dual ECD Lab File ID: C7507050.D Initial Weight/Volume: 30.86 g Dilution: 1.0 Totae Analyzed: 12/03/2007 1651 Instrument ID: HP 5890 with dual ECD Date Analyzed: 12/03/2007 1227 Final Weight/Volume: 10.0 mL Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 89 25 - 159 DCB Decachlorobiphenyl </td <td>Heptachlor epoxic</td> <td>ie</td> <td></td> <td>2.2</td> <td>U</td> <td>0.15</td> <td>2.2</td>	Heptachlor epoxic	ie		2.2	U	0.15	2.2
Toxaphene88U2.388aipha-Chlordane2.2U0.142.2gamma-Chlordane2.2U0.122.2Surrogate%RecAcceptance LimitsDCB Decachlorobiphenyl9425 - 159Tetrachloro-m-xylene5424 - 154Method:8081AAnalysis Batch: 220-11521Instrument ID:Preparation:3550BPrep Batch: 220-11392Instrument ID:Dilution:1.01.0Initial Weight/Volume:30.86 gDate Analyzed:12/03/2007 1651Final Weight/Volume:10.0 mLDate Prepared:11/27/2007 1227SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159DCB Decachlorobiphenyl8925 - 159Column ID:SECONDARY	Methoxychlor			22	U	2.8	22
alpha-Chlordane2.2U0.142.2gamma-Chlordane2.2U0.122.2Surrogate%RecAcceptance LimitsDCB Decachlorobiphenyl9425 - 159Tetrachloro-m-xylene5424 - 154Method:8081AAnalysis Batch: 220-11521Preparation:3550BPrep Batch: 220-11392Dilution:1.01.0Date Analyzed:12/03/2007 1651Date Prepared:11/27/2007 1227Surrogate%RecMethod:8925 - 159Column ID:SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene53	Toxaphene			88	U	2.3	88
gamma-Chlordane2.2U0.122.2Surrogate%RecAcceptance LimitsDCB Decachlorobiphenyl9425 - 159Tetrachloro-m-xylene5424 - 154Method:8081AAnalysis Batch: 220-11521Instrument ID:Preparation:3550BPrep Batch: 220-11392Instrument ID:Dilution:1.01.0Initial Weight/Volume:30.86 gDate Analyzed:12/03/2007 1651Initial Weight/Volume:10.0 mLDate Prepared:11/27/2007 1227SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154	alpha-Chlordane			2.2	U	0.14	2.2
Surrogate%RecAcceptance LimitsDCB Decachlorobiphenyl9425 - 159Tetrachloro-m-xylene5424 - 154Method:8081AAnalysis Batch: 220-11521Instrument ID:Preparation:3550BPrep Batch: 220-11392Instrument ID:Dilution:1.01.0Initial Weight/Volume:Date Analyzed:12/03/2007 1651Final Weight/Volume:10.0 mLDate Prepared:11/27/2007 1227Injection Volume:1 uLColumn ID:SECONDARYSecondary25 - 159Tetrachloro-m-xylene5324 - 154	gamma-Chlordan	e		2.2	U	0.12	2.2
DCB Decachlorobiphenyl9425 - 159Tetrachloro-m-xylene5424 - 154Method:8081AAnalysis Batch: 220-11521Instrument ID:Preparation:3550BPrep Batch: 220-11392Lab File ID:Dilution:1.01.0Initial Weight/Volume:30.86 gDate Analyzed:12/03/2007 1651Final Weight/Volume:10.0 mLDate Prepared:11/27/2007 1227Injection Volume:1 uLColumn ID:SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154	Surrogate			%Rec		Accep	tance Limits
Tetrachloro-m-xylene5424 - 154Method:8081AAnalysis Batch: 220-11521Instrument ID:HP 5890 with dual ECDPreparation:3550BPrep Batch: 220-11392Lab File ID:C7507050.DDilution:1.0Initial Weight/Volume:30.86 gDate Analyzed:12/03/2007 1651Initial Weight/Volume:10.0 mLDate Prepared:11/27/2007 1227Initial Weight/Volume:1 uLColumn ID:SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154	DCB Decachlorot	piphenyl	and a second second	94		25 -	159
Method:8081AAnalysis Batch: 220-11521Instrument ID:HP 5890 with dual ECDPreparation:3550BPrep Batch: 220-11392Lab File ID:C7507050.DDilution:1.0Initial Weight/Volume:30.86 gDate Analyzed:12/03/2007 1651Initial Weight/Volume:10.0 mLDate Prepared:11/27/2007 1227Column ID:SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154	Tetrachloro-m-xyl	lene		54		24 -	154
Method.StorraPrep Batch: 220-11392Lab File ID:C7507050.DDilution:1.01.0Initial Weight/Volume:30.86 gDate Analyzed:12/03/2007 1651Final Weight/Volume:10.0 mLDate Prepared:11/27/2007 1227Column ID:SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154	Mathadi	80814		Analysis Batch: 220-1152	21	Instrument ID: H	P 5890 with dual ECD
Preparation:3550B110p But 1220 11002Dilution:1.0Date Analyzed:12/03/2007 1651Date Prepared:11/27/2007 1227Surrogate%RecColumn ID:SECONDARYSurrogate%89DCB Decachlorobiphenyl89Tetrachloro-m-xylene5324 - 154	Method:	0001A		Pren Batch: 220-11392		Lab File ID: C	7507050.D
Dilution:1.0Date Analyzed:12/03/2007 1651Date Prepared:11/27/2007 1227Surrogate%RecMarcological Decachlorobiphenyl89DCB Decachlorobiphenyl89Detarchloro-m-xylene5324 - 154	Preparation:	30000		Top Bullin and Tree		Initial Weight/Volum	ie: 30.86 g
Date Analyzed:12/03/2007 1651Injection Volume:1 uLDate Prepared:11/27/2007 1227Injection Volume:1 uLColumn ID:SECONDARYSurrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154	Dilution:	1.0	1 4054			Final Weight/Volum	e: 10.0 mL
Date Prepared: 11/2//2007 1227 Injoint of statute Column ID: SECONDARY Surrogate %Rec Acceptance Limits DCB Decachlorobiphenyl 89 25 - 159 Tetrachloro-m-xylene 53 24 - 154	Date Analyzed:	12/03/200	1651			Injection Volume:	1 uL
Surrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154	Date Prepared:	11/27/200	(1227			Column ID:	SECONDARY
Surrogate%RecAcceptance LimitsDCB Decachlorobiphenyl8925 - 159Tetrachloro-m-xylene5324 - 154							
Surrogate25 - 159DCB Decachlorobiphenyl89Tetrachloro-m-xylene5324 - 154	0			%Rec		Accep	tance Limits
Tetrachloro-m-xylene 53 24 - 154	Surroyate	hinhony		89	pyrone a conservation and a second	- 25	159
	Tetrachloro-m-xv	lene		53		24 -	154

SB 1/18/08

1/1/08

PRIMARY

Client: GEI Consultants, Ir

Client Sample ID:

Lab Sample ID:

Client Matrix:

Method:

Preparation: Dilution:

Date Analyzed:

Date Prepared:

sultants, Inc.		Job Number: 220-3395-				
EHS-GP-01(4-5)		Sd	g Number: 220-3395			
220-3395-2		Date Sampled:	11/13/2007 1028			
Solid	% Moisture: 26.0	Date Received:	11/15/2007 1634			
8082 Polyc	hlorinated Biphenyls (PCBs) by Ga	s Chromatography	n fan de fan			
8082	Analysis Batch: 220-11497	Instrument ID: HP 5	890 with dual ECD			
3550B	Prep Batch: 220-11392	Lab File ID: D466	63120.d			
1.0		Initial Weight/Volume:	30.86 g			
11/29/2007 2241		Final Weight/Volume:	10.0 mL			
11/27/2007 1227		Injection Volume:	1 uL			

Column ID:

Analvte	DrvWt Corrected: Y Result (ua/Ka)	Qualifier	MDL	RL
PCB-1016	22	U	3.7	22
PCB-1221	43	U	2.0	43
PCB-1232	22	υ	2.4	22
PCB-1242	22	U	3.9	22
PCB-1248	22	U	3.5	22
PCB-1254	22	U	1.6	22
PCB-1260	22	U	5.2	22
Surrogate	%Rec		Accep	tance Limits
Tetrachloro-m-xylene	43		24 - 1	154
DCB Decachlorobiphenyl	78		25 -	159

Ðß

Jon 12/3/162

Client Sample ID: EHS-GP-01(4-5)

GC Semivolatiles

Lot-Sample #: A7K170204-002	Work Order #:	KCH5K1AC	Matri	« so
Date Sampled: 11/13/07 10:2	B Date Received:	11/17/07		
Prep Date: 11/26/07	Analysis Date:	11/27/07		
Prep Batch #: 7330014				
Dilution Factor: 1	Initial Wgt/Vol:	50.05 g	Final	Wgt/Vol: 100 mL
% Moisture: 29	Method:	SW846 8151	A	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2,4-D	ND	110	ug/kg	51
2,4,5-TP	ND	28	ug/kg	3.1
2,4,5-T	16 \$	28	ug/kg	4.5
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2,4-Dichlorophenylacetic acid	83	(19 - 122)		

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

DB 1/18/08

Client Sample ID: EHS-GP-01(4-5)

General Chemistry

Lot-Sample #...: A7K170204-002 Work Order #...: KCH5K Date Sampled...: 11/13/07 10:28 Date Received..: 11/17/07 % Moisture....: 29

Matrix.....: SO

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	ND UJ /	42.2 tion Facto	mg/kg r: 1	SW846 9030B/9034 MDL 7.9	11/19/07	7323421
Percent Solids	71.1 Dilu	10.0 tion Facto	8 r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330568

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-GP-01(44-	45)				eug Humber: 220-0000
Lab Sample ID: Client Matrix:	220-3395-3 Solid	c	% Moisture:	6.5	Date Sampled: Date Received:	11/13/2007 1517 11/15/2007 1634
		8260B Volatile	Organic Co	mpounds by G	C/MS	
Method:	8260B	Analys	is Batch: 220	11269	Instrument ID: H	P 5890/5971A GC/MS
Preparation:	5030B				Lab File ID: N	6058.D
Dilution:	1.0				Initial Weight/Volum	le: 5 g
Date Analyzed:	11/20/2007 2331				Final Weight/Volum	e: 5 mL
Date Prepared:	11/20/2007 2331					
Analyte	Dry\	Vt Corrected: Y	Result (ug/K	g) Qualif	ier MDL	RL
Acetone		2112	°7.2	J	2.5	21
Benzene			5.3	U	0.76	5.3
Bromodichlorometh	ane		5.3	U	0.70	5.3
Bromoform			5.3	U	1.9	5.3
Bromomethane			5.3	U	1.6	5.3
Methyl Ethyl Keton	e		11	U	3.6	11
Carbon disulfide			5.3	U	0.57	5.3
Carbon tetrachlorid	e		5.3	U	0.76	5.3
Chlorobenzene			5.3	U	0.94	5.3
Chloroethane			5.3	U	1.4	5.3
Chloroform			5.3	U	0.57	5.3
Chloromethane			5.3	U	1,1	5.3
Dibromochlorometh	nane		5.3	U	1.1	5.3
1,1-Dichloroethane			5.3	U	0.70	5.3
1.2-Dichloroethane			5.3	U	1.2	5.3
1.1-Dichloroethene			5.3	U	0.84	5.3
1.2-Dichloropropan	е		5.3	Ŭ	1.0	5.3
cis-1.3-Dichloropro	pene		5.3	Ū	0.66	5.3
trans-1.3-Dichlorop	ropene		5.3	Ũ	1.1	5.3
Ethylbenzene			53	ū	0.76	53
2-Hexanone			11	ŭ	28	11
Methylene Chloride	1	200	28		1.5	21
methyl isohutyl ketr	ne	• 01V	53	ů	1.0	53
Styrene			53	Ŭ	1.4	53
1 1 2 2-Tetrachloro	ethane		5.3	ŭ	11	5.3
Tetrachloroethene	othano		53	U U	0.79	53
Toluene			11	معرار	0.63	53
1 1 1-Trichloroethe	no		53	1	0.30	5.0
1, 1, 1-Trichloroethau	ne		5.0	U	0.70	53
Trichloroetheze			53		1 1	53
Vinvl obloride			53		1.1	53
Viriyi chionue Vilonop Total			53		2.6	5.5
cie.1.2-Dichloroeth	ana		5.5	U U	2.0	5.5
trans-1,2-Dichloroe	thene		5.3	U	1.0	5.3
Surrogate			%Rec		Accep	tance Limits
1,2-Dichloroethane	-d4 (Surr)		93		49 - 1	134
4-Bromofluorobenz	ene		97		36 - 1	133
Dibromofluorometh	ane		94		60 - 1	130
Toluene-d8 (Surr)			95		51 - 1	137

Client: GEI Consultants, Inc.

Client Sample ID:

EHS-GP-01(44-45)

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID:	220-3395-3			Date Sampled:	11/13/2007	1517
Client Matrix:	Solid	% Moisture:	6.5	Date Received:	11/15/2007	1634

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-11422	Instrument ID:	HP 6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11378	Lab File ID:	U2138.D
Dilution:	1.0	ν.	Initial Weight/Volu	ume: 15.28 g
Date Analyzed:	11/27/2007 2116		Final Weight/Volu	ıme: 1 mL
Date Prepared:	11/27/2007 0953		Injection Volume:	1 uL

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Acenaphthene	350	U	61	350
Acenaphthylene	350	U	66	350
Anthracene	350	U	56	350
Benzo[a]anthracene	350	U	50	350
Benzo[a]pyrene	350	U	44	350
Benzo[b]fluoranthene	350	U	59	350
Benzo[g,h,i]perylene	350	U	68	350
Benzo[k]fluoranthene	350	U	57	350
Bis(2-chloroethoxy)methane	350	U	56	350
Bis(2-chloroethyl)ether	350	U	170	350
Bis(2-ethylhexyl) phthalate	350	U	44	350
Butyl benzyl phthalate	350	U	49	350
Carbazole	350	U	59	350
Chrysene	350	U	61	350
Di-n-butyl phthalate	350	U	53	350
Di-n-octyl phthalate	350	U	55	350
4-Bromophenyl phenyl ether	350	U	56	350
4-Chloroaniline	350	U	46	350
2-Chloronaphthalene	350	U	60	350
4-Chlorophenyl phenyl ether	350	U	68	350
Dibenz(a,h)anthracene	350	U	52	350
Dibenzofuran	350	U	61	350
Diethyl phthalate	350	U	86	350
Dimethyl phthalate	350	U	61	350
1,2-Dichlorobenzene	350	U	55	350
1,3-Dichlorobenzene	350	U	56	350
1.4-Dichlorobenzene	350	U	54	350
3,3'-Dichlorobenzidine	690	U	39	690
2,4-Dinitrotoluene	350	U	53	350
2,6-Dinitrotoluene	350	U	140	350
Fluoranthene	350	Ŭ	57	350
Fluorene	350	Ŭ	59	350
Hexachlorobenzene	350	Ū	60	350
Hexachlorobutadiene	350	Ŭ	66	350
Hexachlorocyclopentadiene	350	Ū	49	350
Hexachloroethane	350	Ŭ	60	350
Indeno[1.2.3-cd]pvrene	350	Ũ	61	350
Isophorone	350	Ŭ	71	350
2-Methylnaphthalene	350	Ŭ	64	350
Naphthalene	350	U U	53	350
2-Nitroaniline	1700	Ú	47	1700
3-Nitroaniline	1700	Ŭ	49	1700
Nitrobenzene	350	U U	64	350
N-Nitrosodi-n-propylamine	350	Ŭ	77	350
TestAmerica Connecticut	Page 28 of 21	196 B	EMMIDIS	12/19/2007
		11808	11.	

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID: 220-3395-3 Solid Date Sampled: 11/13/2007 1517 Date Received: 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-11422 Preparation: Instrument ID: HP 6890/5973 GC/MS Date Analyzed: 11/12/2007 2116 Date Analyzed: Instrument ID: HP 6890/5973 GC/MS Date Analyzed: 11/27/2007 2116 Date Analyzed: Instrument ID: HP 6890/5973 GC/MS Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 57 350 Pyrene 350 U 55 350 -Chloro-Smethylphenol 350 U 55 350 -Chlorophenol 350 U 55 350 -Chlorophenol 350 U 75 350 -Amethylphenol 350 U 75 350 -Albert hylphenol 350 U 75 350 -Albert hylphenol 350 U 72 350	Client Sample ID): EHS-GP-01(4	4-45)			Sdg Number: 220-3395
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-11422 Instrument ID: HP 6890/5973 GC/MS Preparation: 3541 Prep Batch: 220-11378 Instrument ID: HP 6890/5973 GC/MS Dilution: 1.0 Initial Weight/Volume: 1 5.28 g Date Analyzed: 11/27/2007 2116 Final Weight/Volume: 1 uL Date Analyzed: 11/27/2007 0953 Soft MDL RL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 57 350 Pyrene 350 U 55 350 1/2.4-Trichlorobenzene 350 U 55 350 2-Methylphenol 350 U 52 350 2-Methylphenol 350 U 52 350 2-Methylphenol 350 U 72 350 2-A-Dintorophenol 350 U 72 350 2-A-Dintorophenol <th>Lab Sample ID: Client Matrix:</th> <th>220-3395-3 Solid</th> <th>% Moistur</th> <th>e: 6.5</th> <th>Date Sample Date Receiv</th> <th>ed: 11/13/2007 1517 ed: 11/15/2007 1634</th>	Lab Sample ID: Client Matrix:	220-3395-3 Solid	% Moistur	e: 6.5	Date Sample Date Receiv	ed: 11/13/2007 1517 ed: 11/15/2007 1634
Method: 8270C Analysis Batch: 220-11422 Instrument ID: HP 6890/5973 GC/MS Preparation: 3541 Prep Batch: 220-11378 Lab File ID: U2138.D Date Analyzed: 11/27/2007 2116 Initial Weight/Volume: 1 s.28 g Date Analyzed: 11/27/2007 0953 V 62 350 Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 62 350 Prenenthrene 350 U 51 350 Pyrene 350 U 55 350 2.4-Trichlorobenzene 350 U 55 350 2.4-Dirichlorobenzene 350 U 75 350 2.4-Dirichlorophenol 350 U 75 350 2.4-Dirichlorophenol 350 U 75 350 2.4-Dirichlorophenol 350 U 72 350 2.4-Dirichlorophenol 1700 U 74 350 <td< td=""><td></td><td>8270C Semivolat</td><td>tile Compounds by Gas Cł</td><td>romatography/Ma</td><td>ss Spectrometry</td><td>(GC/MS)</td></td<>		8270C Semivolat	tile Compounds by Gas Cł	romatography/Ma	ss Spectrometry	(GC/MS)
Preparation: 3541 Prep Batch: 220-11378 Lab File ID: U2138_D Dilution: 1.0 Initial Weight/Volume: 1 5.28 g Date Analyzed: 11/27/2007 2116 Initial Weight/Volume: 1 mL Date Analyzed: 11/27/2007 0953 Initial Weight/Volume: 1 mL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 57 350 Pyrene 350 U 57 350 Pyrene 350 U 55 350 -Chloro-3-methylphenol 350 U 55 350 -Chloro-3-methylphenol 350 U 55 350 -Amethylphenol 350 U 52 350 -Amethylphenol 350 U 55 350 -4-Methylphenol 350 U 46 350 -4-Methylphenol 350 U 74 350 -4-Ditorbylphenol 1700 U	Method:	8270C	Analysis Batch:	220-11422	Instrument ID:	HP 6890/5973 GC/MS
Dilution: 1.0 Initial Weight/Volume: 1 mL Date Analyzed: 11/27/2007 2116 Final Weight/Volume: 1 mL Date Analyzed: 11/27/2007 0953 Initial Weight/Volume: 1 mL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 62 350 Pyrene 350 U 51 350 1,2,4-Trichlorobenzene 350 U 55 350 2-Chlorophenol 350 U 55 350 2-Adhityphenol 350 U 52 350 2.4-Dichlorophenol 350 U 52 350 2.4-Dichlorophenol 350 U 72 350 2.4-Dichlorophenol 1700 U/ 270 1700 2.4-Dichlorophenol 1700 U 160 <td< td=""><td>Preparation:</td><td>3541</td><td>Prep Batch: 220</td><td>-11378</td><td>Lab File ID:</td><td>U2138.D</td></td<>	Preparation:	3541	Prep Batch: 220	-11378	Lab File ID:	U2138.D
Date Analyzed: 11/27/2007 2116 Final Weight/Volume: 1 mL Date Prepared: 11/27/2007 0953 Injection Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 62 350 Pyrene 350 U 51 350 1,2,4-Tichlorobenzene 350 U 55 350 2-Chlorophenol 350 U 69 350 2-Chlorophenol 350 U 55 350 2-Adethylphenol 350 U 55 350 2.4-Dirothylphenol 350 U 75 350 2.4-Dirothylphenol 350 U 72 350 2.4-Dirothylphenol 350 U 72 350 2.4-Dirothylphenol 350 U 72 350 2.4-Dirothylphenol 350 U 74 350 2.4-Dirothylphenol 1700 U///270 770 700 2.4-Dirothylph	Dilution:	1.0			Initial Weight/Vol	ume: 15.28 g
Date Prepared: 11/27/2007 9953 Injection Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 62 350 Pyrene 350 U 57 350 Pyrene 350 U 55 350 -4.Chitoro-smethylphenol 350 U 55 350 2-Chitorophenol 350 U 55 350 2-Chitorophenol 350 U 55 350 2-Abitrylphenol 350 U 52 350 2.4-Dintrophenol 350 U 72 350 2.4-Dintrophenol 350 U 74 350 2.4-Dintrophenol 1700 U// 230 1700 2.4-Dintrophenol 1700 U 74 350 2.4-Dintrophenol 1700 U 46 350 2.4-Dintrophenol 1700 U 140	Date Analyzed:	11/27/2007 2116	ô		Final Weight/Vol	ume: 1 mL
Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 350 U 62 350 Phenanthrene 350 U 57 360 Pyrene 350 U 51 350 12,4-Trichlorobenzene 350 U 69 350 4-Chloro-3-methylphenol 350 U 69 350 2-Methylphenol 350 U 55 350 2-Methylphenol 350 U 52 350 2-Methylphenol 350 U 72 350 2,4-Dintorphenol 350 U 72 350 2,4-Dintrophenol 350 U 72 350 2,4-Dintrophenol 1700 U/ 230 1700 2,4-Dintrophenol 1700 U/ 270 1700 2,4-Dintrophenol 1700 U 160 1700 2,4-Dintrophenol 1700 U 160 1700	Date Prepared:	11/27/2007 0953	3		Injection Volume	: 1 ul.
N-Nitrosodiphenylamine 350 U 62 350 Phenanthrene 350 U 57 350 Pyrene 350 U 51 350 1,2,4-Trichlorobenzene 350 U 55 350 4-Chloro-3-methylphenol 350 U 69 350 2-Chlorophenol 350 U 55 350 2-Methylphenol 350 U 55 350 2-Methylphenol 350 U 52 350 2,4-Direthylphenol 350 U 52 350 2,4-Direthylphenol 350 U 72 350 2,4-Direthylphenol 350 U 74 350 2,4-Direthylphenol 1700 U// 230 1700 2,4-Direthylphenol 1700 U// 46 350 2,4-Direthylphenol 1700 U// 46 350 2,4-Dirichorophenol 1700 U 160 1700 <t< td=""><td>Analyte</td><td>D</td><td>ryWt Corrected: Y Result (u</td><td>ıg/Kg) Quali</td><td>fier MDL</td><td>RL</td></t<>	Analyte	D	ryWt Corrected: Y Result (u	ıg/Kg) Quali	fier MDL	RL
Phenanthrene 350 U 57 350 Pyrene 350 U 51 350 1,2,4-Trichlorobenzene 350 U 69 350 4-Chloro-3-methylphenol 350 U 69 350 2-Chlorophenol 350 U 75 350 2-Methylphenol 350 U 55 350 2-Methylphenol 350 U 52 350 2,4-Dirichorophenol 350 U 72 350 2,4-Dirichophenol 350 U 72 350 2,4-Dirichophenol 350 U 72 350 2,4-Dirichophenol 1700 U 230 1700 2,4-Dirichophenol 1700 U 74 350 2,4-Dirichorophenol 1700 U 74 350 2,4-Dirichorophenol 1700 U 24 1700 Pentachlorophenol 1700 U 51 350 2,4,6-Trichorophenol 350 U 51 350 2,4,6-Tricho	N-Nitrosodiphenyl	amine	350	U	62	350
Pyrene 350 U 51 350 1,2,4-Trichlorobenzene 350 U 55 350 4-Chtoro-3-methylphenol 350 U 69 350 2-Chlorophenol 350 U 75 350 2-Methylphenol 350 U 52 350 2-Methylphenol 350 U 52 350 2,4-Dichtorophenol 350 U 72 350 2,4-Dichtorophenol 350 U 72 350 2,4-Dichtorophenol 350 U 72 350 2,4-Dinitrophenol 1700 U 230 1700 4,6-Dinitro-2-methylphenol 1700 U 74 350 2,-Nitrophenol 1700 U 74 350 2,-Nitrophenol 1700 U 41 350 2,4,5-Trichlorophenol 350 U 51 350 2,4,5-Trichlorophenol 350 U 51 350	Phenanthrene		350	U	57	350
1,2,4-Trichlorobenzene 350 U 55 350 4-Chloro-3-methylphenol 350 U 69 350 2-Chlorophenol 350 U 75 350 2-Methylphenol 350 U 55 350 2-Methylphenol 350 U 52 350 2.4-Dinethylphenol 350 U 72 350 2.4-Dinethylphenol 1700 U 230 1700 2.4-Dinethylphenol 1700 U 74 350 2.4-Dinethylphenol 1700 U 160 1700 2-Nitrophenol 1700 U 24 1700 2-Nitrophenol 1700 U 24 1700 2.4,5-Trichlorophenol 350 U 53 1700 2.4,6-Trichlorophenol 350 U 56 350	Pyrene		350	U	51	350
4-Chloro-3-methylphenol 350 U 69 350 2-Chlorophenol 350 U 75 350 2-Methylphenol 350 U 52 350 2.4-Dichlorophenol 350 U 52 350 2.4-Dichlorophenol 350 U 72 350 2.4-Dichlorophenol 350 U 72 350 2.4-Dinethylphenol 350 U 72 350 2.4-Dinitrophenol 1700 U/ 230 1700 4.6-Dinitro-2-methylphenol 1700 U/ 270 1700 2.4-Dintorophenol 1700 U/ 270 1700 2.Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 41 350 2.4,5-Trichlorophenol 350 U 41 350 2.4,5-Trichlorophenol 350 U 51 350 2.4,6-Trichlorophenol 350 U 52 690 2.2'oxybis[1-chloropropane] 350 U 56 350 <td>1,2,4-Trichlorober</td> <td>nzene</td> <td>350</td> <td>U</td> <td>55</td> <td>350</td>	1,2,4-Trichlorober	nzene	350	U	55	350
2-Chlorophenol 350 U 75 350 2-Methylphenol 350 U 55 350 2-A-Dichlorophenol 350 U 52 350 2.4-Dichlorophenol 350 U 72 350 2.4-Dichlorophenol 350 U 72 350 2.4-Dichlorophenol 350 U 46 350 2.4-Dichlorophenol 1700 U 46 350 2.4-Dichlorophenol 1700 U 230 1700 4.6-Dinitro-2-methylphenol 1700 U 270 1700 2.Altrophenol 350 U 74 350 4.Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 41 350 2.4,5-Trichlorophenol 350 U 41 350 2.4,6-Trichlorophenol 350 U 51 350 2.4,6-Trichlorophenol 350 U 52 690 2.2'-oxybis[1-chloropropane] 350 U 56 350	4-Chloro-3-methyl	lphenol	350	U	69	350
2-Methylphenol 350 U 55 350 4-Methylphenol 350 U 52 350 2,4-Dichlorophenol 350 U 72 350 2,4-Dintrophenol 350 U 72 350 2,4-Dintrophenol 1700 U 46 350 2,4-Dintrophenol 1700 U 230 1700 4,6-Dintro-2-methylphenol 1700 U 74 350 2-Nitrophenol 350 U 74 350 4-Nitrophenol 1700 U 24 1700 Pentachlorophenol 1700 U 24 1700 Phenol 350 U 41 350 2,4,6-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 51 350 4-Nitroaniline 690 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70<	2-Chlorophenol		350	U	75	350
4-Methylphenol 350 U 52 350 2,4-Dichlorophenol 350 U 72 350 2,4-Dinitrophenol 350 U 72 350 2,4-Dinitrophenol 1700 U/ 46 350 2,4-Dinitrophenol 1700 U/ 230 1700 4,6-Dinitro-2-methylphenol 1700 U/ 270 1700 2-Nitrophenol 1700 U/ 74 350 4-Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 24 1700 Phenol 350 U 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 51 350 Benzyl alcohol 350 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 52 690 2,2'-oxybis[1-chloropropane] 70 32 - 131 24,6-Tribromophenol 61 25 - 113 2,4,6-Tribromophenol 61 25 - 1	2-Methylphenol		350	U	55	350
2,4-Dichlorophenol 350 U 72 350 2,4-Dimethylphenol 350 U 46 350 2,4-Dinitrophenol 1700 U 230 1700 2,4-Dinitro-2-methylphenol 1700 U 270 1700 2-Nitrophenol 350 U 74 350 4-Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 24 1700 Phenol 350 U 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 51 350 2,4,6-Trichlorophenol 350 U 72 350 Benzyl alcohol 350 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorophenol 61 25 - 113 2,46-Tribromophenol 22 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 35	4-Methylphenol		350	U	52	350
2,4-Dimethylphenol 350 U 46 350 2,4-Dinitrophenol 1700 U 230 1700 4,6-Dinitro-2-methylphenol 1700 U 270 1700 2-Nitrophenol 350 U 74 350 4-Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 24 1700 Phenol 350 U 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 53 1700 2,4,6-Trichlorophenol 350 U 51 350 2,4,6-Trichlorophenol 350 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorobiphenol 2-Fluorobiphenol 61 25 - 113 2,4,6-Tribromophenol 94 <	2,4-Dichlorophenc		350	U	72	350
2,4-Dinitrophenol 1700 U* 230 1700 4,6-Dinitro-2-methylphenol 1700 U* 270 1700 2-Nitrophenol 350 U 74 350 4-Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 24 1700 Phenol 350 U 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 41 350 2,4,6-Trichlorophenol 350 U 51 350 Benzyl alcohol 350 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 26 27 - 122 Phenol-d5 66 27 - 122 Feroheny-	2,4-Dimethylphen	ol	350	U	46	350
4,6-Dintro-2-methylphenol 1700 U// 270 1700 2-Nitrophenol 350 U 74 350 4-Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 24 1700 Phenol 350 U 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 51 350 2,4,6-Trichlorophenol 350 U 51 350 Benzyl alcohol 350 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorobiphenol 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 27 - 122 Phenol-d5 66 27 - 122 27 - 122 27 - 140	2,4-Dinitrophenol		1700	U/*	230	1700
2-Nitrophenol 350 0 74 350 4-Nitrophenol 1700 0 160 1700 Pentachlorophenol 1700 0 24 1700 Phenol 350 0 41 350 2,4,5-Trichlorophenol 1700 0 53 1700 2,4,6-Trichlorophenol 350 0 51 350 2,4,6-Trichlorophenol 350 0 51 350 Benzyl alcohol 350 0 72 350 4-Nitroaniline 690 0 52 690 2,2'-oxybis[1-chloropropane] 350 0 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 32 2-Fluorobiphenyl 61 25 - 113 32 2,4,6-Tribromophenol 94 24 - 150 35 Nitrobenzene-d5 59 25 - 120 35 Phenol-d5 66 27 - 122 27 Pathonol-d5 66 27 - 122 35	4,6-Dinitro-2-meth	iylphenol	1700	U×	* 270	1700
4-Nitrophenol 1700 0 160 1700 Pentachlorophenol 1700 U 24 1700 Phenol 350 U 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,5-Trichlorophenol 350 U 51 350 2,4,6-Trichlorophenol 350 U 51 350 Benzyl alcohol 350 U 72 350 4-Nitroaniline 690 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 32 - 131 2-Fluorobiphenol 61 25 - 113 32 - 131 2-Fluorobiphenol 94 24 - 150 35 - 120 Nitrobenzene-d5 59 25 - 120 94	2-Nitrophenol		350	U	74	350
Pentachlorophenol 1700 0 24 1700 Phenol 350 U 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 51 350 Benzyl alcohol 350 U 72 350 4-Nitroaniline 690 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Ternbenvl-d14 94 35 - 140	4-Nitrophenol		1700	U	160	1700
Prinenol 350 0 41 350 2,4,5-Trichlorophenol 1700 U 53 1700 2,4,6-Trichlorophenol 350 U 51 350 Benzyl alcohol 350 U 72 350 4-Nitroaniline 690 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	Pentachloropheno		1700	U	24	1700
2,4,5-1 richlorophenol 1700 0 53 1700 2,4,6-Trichlorophenol 350 U 51 350 Benzyl alcohol 360 U 72 350 4-Nitroaniline 690 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	Phenol	1	350	U	41	350
2,4,6-Trichlorophenol 350 0 51 350 Benzyl alcohol 350 U 72 350 4-Nitroaniline 690 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	2,4,5-1 richlorophe	enoi	1700	U	53	1700
Beinzyl alcohol 350 0 72 350 4-Nitroaniline 690 U 52 690 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	2,4,6-1 Achiorophe	enoi	350	U U	51	350
4-Nitoannine 050 0 52 050 2,2'-oxybis[1-chloropropane] 350 U 56 350 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	4 Nitroanilina		350	U	12	350
Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	4-Nitroannine	ropropopol	250	0	5Z 56	250
Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 70 32 - 131 2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	2,2-0XyDis[1-01101	loplopanej	550	U	00	300
2-Fluorophenol 61 25 - 113 2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	Surrogate	. 19 an	%Rec		Acc	ceptance Limits
2,4,6-Tribromophenol 94 24 - 150 Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	2-Fluorophenol		70 61		22 21	5_113
Nitrobenzene-d5 59 25 - 120 Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	246-Tribromonh	enol	94		24	1 - 150
Phenol-d5 66 27 - 122 Terphenyl-d14 94 35 - 140	Nitrohenzene-d5		54		2- 2/	
Terphenyl-d14 94 35 - 140	Phenol-d5		80		27	7 - 122
	Terphenvl-d14		94		34	5 - 140

Page 29 of 2196

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-01(44-45)

Lab Sample ID: Client Matrix:	220-3395-3 Solid		% Moisture: 6.5	Dat Dat	e Sampled: 11 e Received: 11	1/13/2007 1517 1/15/2007 1634
NGA (1407) MANUSARA ANG ANG ANG ANG ANG ANG ANG ANG ANG AN	6010B Indu	ctively Cou	upled Plasma - Atomic	Emission Spect	trometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1532 11/19/2007 1407	Analys Prep B	iis Batch: 220-11308 Batch: 220-11213	Instrume Lab File Initial W Final We	ent ID: ID: eight/Volume: eight/Volume:	TJA Trace ICAP W112107 1.27 g 250 mL
Analyte	DryWt Corre	cted: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium			3.2 425 8.4 2.6 J 2.1 -44.1 2.11 J 5.3 0.61 1.6 0.55 1170 -64.4 2.11 J 132 J 14.2 25.3 0.53 5.3 10.5 10.5 15.8 1.7	ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ	0.32 9.7 1.4 0.23 0.48 13.1 0.97 0.55 0.36 0.46 10.3 25.3 6.5 0.69 20.0 0.46 0.88 1.5 1.7 2.3 0.34	3.2 105 8.4 2.1 2.1 2.1 5.3 2.1 3.2 5.3 63.2 211 36.8 6.3 211 5.3 5.3 10.5 10.5 10.5 15.8 4.2 211
Zinc			21.1	U	2.3	21.1
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A Mercur 7471A 7471A 1.0 11/21/2007 0948 11/20/2007 1555	y in Solid c Analy Prep I	or Semisolid Waste (M sis Batch: 220-11278 Batch: 220-11264	anual Cold Vapo Instrum Lab Fild Initial V Final W	r Technique) eent ID: e ID: Veight/Volume: /eight/Volume:	Perkin Elmer FIMS N/A 0.61 g 50 mL
Analyte	DryWt Corre	ected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Mercury			0.053	/ U	0.013	0.053

 \mathbb{R}

٠

Non 1/2/08

1/18/08

12/19/2007

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID	: EHS-GP-01(44-45)				
Lab Sample ID: Client Matrix:	220-3395-3 Solid	% Moisture: 6.5	D D	ate Sampled: ate Received:	11/13/2007 1517 11/15/2007 1634
NEXTRONOMIC DE LO COMPLETION DE LO COMPLET	8081A O	rganochlorine Pesticides by Gas	s Chromatogra	iphy	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/03/2007 1712 11/27/2007 1227	Analysis Batch: 220-11521 Prep Batch: 220-11392	Instru Lab F Initial Final Injecti Colun	ment ID: HF ile ID: D7 Weight/Volume Weight/Volume on Volume: nn ID: F	2 5890 with dual ECD 507051.D a: 30.23 g : 10.0 mL 1 uL 2RIMARY
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan I Endosulfan sulfat Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lir Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane	DryWt (re ndane) de	Corrected: Y Result (ug/Kg) 3.5 3.5 2.1 1.8 1.8 1.8 3.5 1.8 3.5 5.3 3.5 5.3 3.5 1.8 1.8 1.8 3.5 1.8 1.8 1.8 1.8 3.5 1.8 1.8 1.8 3.5 1.8 1.8 1.8 1.8 3.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Qualifier U U U U U U U U U U U U U U U U U U U	MDL 0.40 0.46 0.33 0.38 0.29 0.29 0.11 0.34 0.16 0.18 0.18 0.18 0.94 0.34 0.15 0.16 0.16 0.15 0.16 0.16 0.12 2.2 1.9 0.12 0.097	RL 3.5 3.5 3.5 2.1 1.8 1.8 3.5 1.8 3.5 3.5 5.3 3.5 5.3 3.5 1.8 1.8 1.8 1.8 1.8 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Surrogate DCB Decachloro Tetrachloro-m-xy Method: Preparation: Dilution: Date Analyzed: Date Prepared:	biphenyl ylene 8081A 3550B 1.0 12/03/2007 1712 11/27/2007 1227	%Rec 99 79 Analysis Batch: 220-11521 Prep Batch: 220-11392	Instr Lab Initia Fina Injec Colu	Accep 25 - 24 - ument ID: H File ID: C I Weight/Volum I Weight/Volum tion Volume: umn ID:	etance Limits 159 154 IP 5890 with dual ECD 7507051.D ne: 30.23 g ne: 10.0 mL 1 uL SECONDARY
Surrogate DCB Decachlor Tetrachloro-m-x	obiphenyl	%Rec 95 78		Accer 25 - 24 -	otance Limits 159 154

1/10 12/19/2007

Client: GEI Co	nsultants, Inc.			Jo	b Number: 220-3395-1
Client Sample ID	e: EHS-GP-01(44-45)				Sdg Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-3 Solid	% Moisture: 6.5		Date Sampled: Date Received:	11/13/2007 1517 11/15/2007 1634
	8082 Polychic	prinated Biphenyls (PCBs) t	y Gas Chr	romatography	name for a subscription of the
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 11/29/2007 2258 11/27/2007 1227	Analysis Batch: 220-1149 Prep Batch: 220-11392	7	Instrument ID: Hi Lab File ID: D Initial Weight/Volume Final Weight/Volume Injection Volume: Column ID: I	P 5890 with dual ECD 4663121.d e: 30.23 g e: 10.0 mL 1 uL PRIMARY
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	DryWt Cor	rected: Y Result (ug/Kg) 18 35 18 18 18 18 18 18 18	Qualifie U U U U U U U U	er MDL 3.0 1.6 2.0 3.2 2.9 1.3 4.2	RL 18 35 18 18 18 18 18 18

Surrogate	%Rec	Acceptance Limits
Tetrachloro-m-xylene	58	24 - 154
OCB Decachlorobiphenyl	79	25 - 159

рß (118/08

Jen. 12/3/18

Client Sample ID: EHS-GP-01(44-45)

GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date:	A7K170204-003 11/13/07 15:17 11/26/07	Work Order #: Date Received: Analysis Date:	KCH5L1AC 11/17/07 11/27/07	Matrix	x SO
Prep Batch #:	7330014	······································	FO 07	m4 1	TI
Dilution Factor:	T	initial Wgt/vol:	50.07 g	Final	wgt/vol: 100 mL
<pre>% Moisture:</pre>	13	Method:	SW846 8151	A	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	MDL
2,4-D		ND	92	ug/kg	41
2,4,5-TP		ND	23	ug/kg	2.5
2,4,5-T		ND	23	ug/kg	3.7
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
2,4-Dichloropheny	lacetic acid	93	(19 - 122)		

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: EHS-GP-01(44-45)

General Chemistry

Lot-Sample #...: A7K170204-003 Work Order #...: KCH5L Matrix.....: SO Date Sampled...: 11/13/07 15:17 Date Received..: 11/17/07 % Moisture....: 13

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	ND UJ /	34.5 tion Facto	mg/kg r: 1	SW846 9030B/9034 MDL 6.4	11/19/07	7323421
Percent Solids	86.9 Dilu	10.0 tion Facto	% r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330568

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

0pm, 12100

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 **Client Sample ID:** EHS-GP-02(4-5) Lab Sample ID: 220-3395-1 Date Sampled: 11/13/2007 1317 Solid Client Matrix: % Moisture: 13.0 Date Received: 11/15/2007 1634 8260B Volatile Organic Compounds by GC/MS 8260B Analysis Batch: 220-11324 Method: Instrument ID: HP 5890/5971A GC/MS Preparation: 5030B Lab File ID: N6076.D Dilution: 1.0 Initial Weight/Volume: 5 g Date Analyzed: 11/21/2007 1309 Final Weight/Volume: 5 mL Date Prepared: 11/21/2007 1309 Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Acetone 230 0 2.7 23 -6.2 J-05 5.7 Benzene U 0.82 5.7 5.7 Bromodichloromethane U 0.75 5.7 5.7 U Bromoform 2.0 5.7Bromomethane 5.7 U 1.7 5.7 U Methyl Ethyl Ketone 11 3.9 11 Carbon disulfide U 5.7 0.61 5.7 Carbon tetrachloride U 5.7 0.82 5.7 Chlorobenzene U 5.7 1.0 5.7 U Chloroethane 5.7 1.5 5.7 Chloroform 5.7 U 0.61 5.7 U Chloromethane 5.7 1.2 5.7 Dibromochloromethane 5.7 U 1.2 5.7 1.1-Dichloroethane 5.7 U 0.75 5.7 1,2-Dichloroethane 5.7 U 1.2 5.7 1,1-Dichloroethene 5.7 U 0.91 5.7 1,2-Dichloropropane 5.7 U 1.1 5.7 cis-1,3-Dichloropropene 5.7 U 0.71 5.7 trans-1,3-Dichloropropene 5.7 U 1.2 5.7Ethylbenzene 5.7 U 0.82 5.7 2-Hexanone U 11 3.0 11 230 1 Methviene Chloride 2.9 +-1.6 23 methyl isobutyl ketone 5.7 U 1.1 5.7 Stvrene U 5.71.5 5.71,1,2,2-Tetrachloroethane IJ 5.7 1.2 57 Tetrachloroethene U 5.7 0.85 5.7 Toluene 5.7U 0.68 5.7 1.1.1-Trichloroethane 5.7 υ 0.84 5.7 1,1,2-Trichloroethane 5.7 U 1.0 5.7 Trichloroethene 5.7 U 1.1 5.7 Vinyl chloride 5.7 U 1.5 5.7 Xylenes, Total 5.7 U 2.8 5.7 cis-1,2-Dichloroethene U 5.7 1.1 5.7 trans-1,2-Dichloroethene 5.7 U 1.1 5.7 Surrogate %Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 88 49 - 134 4-Bromofluorobenzene 36 - 133 95 Dibromofluoromethane 60 - 130 91 Toluene-d8 (Surr) 92 51 - 137

DB Empos 1/18/08 12/19/2007

Analytical Data

Client: GEI Con	isultants, Inc.			l dol	Number: 220-3395-1
Client Sample ID:	EHS-GP-02(4-5)			50	g Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-1 Solid	% Moisture: 13.0		Date Sampled: Date Received:	11/13/2007 1317 11/15/2007 1634
	8270C Semivolatile Co	ompounds by Gas Chromatogra	phy/Mass	Spectrometry (GC/M	S)
Method:	8270C	Analysis Batch: 220-11422		Instrument ID: HP 6	890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11378		Lab File ID: U213	34.D
Dilution:	1.0			Initial Weight/Volume:	15.04 g
Date Analyzed:	11/27/2007 1934			Final Weight/Volume:	1 mL
Date Prepared:	11/27/2007 0953			Injection Volume:	1 uL
	•				
Analyte	DryWt (Corrected: Y Result (ug/Kg)	Qualifie	r MDL	RL
Acenaphthene		380	U	66	380
Acenaphthylene		380	U	72	380
Anthracene		380	0	55	380
Benzolajantnacen	e	380	11	55 48	380
Benzo(b)fluoranthe	ne	380	11	65	380
Benzola h.ilpervler	ne	380	U	74	380
Benzolklfluoranthe	ne	380	Ũ	62	380
Bis(2-chloroethoxy)methane	380	Ū	61	380
Bis(2-chloroethyl)e	ther	380	U	190	380
Bis(2-ethylhexyl) pl	hthalate	380	U	48	380
Butyl benzyl phthal	late	380	U	53	380
Carbazole		380	U	64	380
Chrysene		380	U	66	380
Di-n-butyl phthalate	9	380	U	58	380
UI-n-octyl phthalate	envil other	380	U 11	6U 61	380
4-Bromophenyi phe	enyi etner	380	0	51	380
2-Chloropanhthale	ne	380	11	66	380
4-Chloronhenvl nh	envl ether	380	U U	74	380
Dibenz(a.h)anthrac	cene	380	Ŭ	57	380
Dibenzofuran		380	Ŭ	66	380
Diethyl phthalate		380	U	94	380
Dimethyl phthalate		380	U	67	380
1,2-Dichlorobenzer	ne	380	U	60	380
1,3-Dichlorobenzer	ne	380	U	61	380
1,4-Dichlorobenzer	ne	380	U	59	380
3,3'-Dichlorobenzid	line	760	U	42	760
2,4-Dinitrotoluene		380	U	58	380
2,6-Dinitrotoluene		380	U	150	380
Fluorantnene		380	U H	64	380
Hevechlorobenzen	0	380	U U	65	380
Hexachlorobutadie	с ле	380	н П	72	380
Hexachlorocyclope	intadiene	380	ŭ	54	380
Hexachloroethane		380	Ŭ	66	380
Indeno[1,2,3-cd]py	rene	380	Ú	67	380
Isophorone		380	U	78	380
2-Methylnaphthale	ne	380	U	69	380
Naphthalene		380	U	58	380
2-Nitroaniline		1800	U	51	1800
3-Nitroaniline		1800	U	54	1800
Nitrobenzene		380	U	70	380
IN-NITrosodi-n-prop	yiamine	380	U	84	380
TestAmerica Con	necticut	Page 24 of 219	6	Ennlos III) 12/19/2007 8/08

Client: GEI Co	nsultants, Inc.			Job	Number: 220-3395-1
Client Sample ID	: EHS-GP-02(4-5)			Sc	ig Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-1 Solid	% Moisture: 13.0		Date Sampled: Date Received:	11/13/2007 1317 11/15/2007 1634
	8270C Semivolatile Co	mpounds by Gas Chromatogra	phy/Mass S	pectrometry (GC/N	1S)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 1.0 11/27/2007 1934 11/27/2007 0953	Analysis Batch: 220-11422 Prep Batch: 220-11378	Ins Lai Init Fin Inje	trument ID: HP 6 b File ID: U21 tial Weight/Volume: nal Weight/Volume: ection Volume:	6890/5973 GC/MS 34.D 15.04 g 1 mL 1 uL
Analyte	DryWt C	orrected: Y Result (ug/Kg)	Qualifier	MDL	RL.
N-Nitrosodiphenyla Phenanthrene Pyrene 1,2,4-Trichloroben 4-Chloro-3-methyl 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2,4-Dichlorophenol 2,4-Dinitrophenol 4,6-Dinitro-2-meth 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophe Benzyl alcohol 4-Nitroaniline 2,2'-oxybis[1-chlor	amine zene phenol l ylphenol l nol nol opropane]	380 380 380 380 380 380 380 380		68 62 55 60 76 82 60 57 78 51 250 290 81 170 27 45 57 55 78 57 61	380 380 380 380 380 380 380 380
Surrogate		%Rec		Acceptar	nce Limits
2-Fluorobiphenyl 2-Fluorophenol 2,4,6-Tribromophe Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	enol	50 46 76 44 50 80		32 - 13 25 - 11: 24 - 15(25 - 12(27 - 12) 35 - 14(1 3 0 0 2 0

Page 25 of 2196 08 Enn 1/18/08 1/10/08

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-02(4-5)

Lab Sample ID: Client Matrix:	220-3395-1 Solid		% Moisture: 13.0	Date Date	e Sampled: 11 e Received: 11	I/13/2007 1317 I/15/2007 1634
	6010B I	nductively Cou	ipled Plasma - Atomic I	Emission Spect	rometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1501 11/19/2007 1407	Analys Prep B	is Batch: 220-11308 atch: 220-11213	Instrume Lab File Initial We Final We	nt ID: ID: eight/Volume: eight/Volume:	TJA Trace ICAP W112107 1.13 g 250 mL
Analyte	DryWt Co	prrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc			3.8 4420 J 1.9 16.8 J 2.5 247 6.4 5.1 J 6.8 J 5.0 9260 325 J 923 J 150 31.4 4.4 6.1 12.7 12.7 19.1 11.0 J 12.9	U U U U U U U U U U U U U U U U U U U	$\begin{array}{c} 0.38\\ 11.7\\ 1.7\\ 0.28\\ 0.58\\ 15.8\\ 1.2\\ 0.66\\ 0.43\\ 0.56\\ 12.5\\ 30.5\\ 7.9\\ 0.84\\ 24.2\\ 0.56\\ 1.1\\ 1.8\\ 2.1\\ 2.8\\ 0.41\\ 2.8\end{array}$	3.8 127 10.2 2.5 2.5 2.5 2.5 3.8 6.4 76.3 254 44.5 7.6 254 6.4 6.4 12.7 12.7 19.1 5.1 25.4
	7471A Mer	cury in Solid c	or Semisolid Waste (Ma	nual Cold Vapo	r Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0944 11/20/2007 1555	- Analy Prep I	sis Batch: 220-11278 Batch: 220-11264	Instrum Lab File Initial W Final W	ent ID: ∋ ID: /eight/Volume: /eight/Volume:	Perkin Elmer FIMS N/A 0.65 g 50 mL
Analyte	DryWt C	orrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Mercury	and the second of	, ,,,,,,,,,, ,, ,,,,,,,,,,,,,,,,,,,,,,	0.053	U	0.013	0.053

Jan 12/19/2007

7B 1 | 8 | 08

Job Number: 220-3395-1

Client: GEI Consultants, Inc.

Client Sample ID:

Lab Sample ID: Client Matrix:

Method:

Preparation: Dilution:

Date Analyzed:

sundinto, mo.		Sdg Number: 220-33	95	
EHS-GP-02(4-5)				
220-3395-1		Date Sampled: 11/13/2007 1317		
Solid	% Moisture: 13.0	Date Received: 11/15/2007 1634		
8081A Org	anochlorine Pesticides by Ga	s Chromatography		
8081A	Analysis Batch: 220-11521	Instrument ID: HP 5890 with dual ECD		
3550B	Prep Batch: 220-11392 Lab File ID: D7507047.D			
10		Initial Weight/Volume: 30.12 g		
12/03/2007 1547		Final Weight/Volume: 10.0 mL		
11/27/2007 1227		Injection Volume: 1 uL		
11/21/2007 1221		Column ID: PRIMARY		
DrvWt Cc	prrected: Y Result (ua/Ka)	Qualifier MDL RL		
· · · · · · · · · · · · · · · · · · ·	3.8	UJ 0.44 3.8		
	3.8	U 0.50 3.8		
	3.8	し丁 2.35 3.8		

Date Prepared:	11/27/2007 1227		1	Injection Volume: Column ID:	PRIMARY
Analyte	Dr	yWt Corrected: Y Result (ug/Kg)	Qualifie	r, MDL	RL
	and the second second second	3.8	ីបារាំ	0.44	3.8
4 4'-DDE		3.8	U	0.50	3.8
4,4°-00C		3.8	ሀፓ 1	0.35	3.8
Aldrin		2.3	U	0.41	2.3
alpha-BHC		1.9	U	0.31	1.9
heta-BHC		1.9	U	0.31	1.9
delta_BHC		1.9	U	0.12	1.9
Dieldrin		3.8	U	0.37	3.8
Endosulfan I		1.9	U	0.17	1.9
Endosulfan II		3.8	U	0.19	3.8
Endosulfan sulfate	9	3.8	U	0.20	3.8
Endrin	•	5.7	U	1.0	5.7
Endrin aldehvde		3.8	U	0.37	3.8
Endrin ketone		3.8	U	0.16	3.8
gamma-BHC (Lin	dane)	1.9	U	0.17	1.9
Hentachlor	aanoy	1.9	υ	0.17	1.9
Hentachlor enoxid	1e	1.9	U	0.13	1.9
Methoxychlor		19	U	2.4	19
Toxanhene		77	U	2.0	77
ainha-Chlordane		1.9	U	0.13	1.9
gamma-Chlordan	e	1.9	υ	0.10	1.9
Surrogata		%Rec		Acc	eptance Limits
Sunugate	hinhonul	104		25	5 - 159
Tetrachloro-m-xy	lene	103		24	- 154
Method:	8081A	Analysis Batch: 220-1152	:1	Instrument ID:	HP 5890 with dual ECD
Preparation:	3550B	Prep Batch: 220-11392		Lab File ID:	C7507047.D
Dilution	1.0			Initial Weight/Vol	ume: 30.12 g
Date Analyzed	12/03/2007 154	7		Final Weight/Voli	ume: 10.0 mL
Date Bropprod:	11/27/2007 122	7		Injection Volume	: 1 uL
Date Frepareu.	11/2/12/00/ 522	•			OF CONDARY

Surrogate	%Rec	Acceptance Limits
DCB Decachlorobiphenyl	101	20-100
Tetrachloro-m-xylene	101	24 - 104

ù₿ 1118/08

Column ID:

SECONDARY

12/19/2007

24 - 154 25 - 159

DB 1/18/28

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Client: GEI Cor	nsultants, Inc.			J	b Number: 220-3395-1
Client Sample ID	EHS-GP-02(4-5)			Sdg Number: 220-3395
Lab Sample ID:	220-3395-1			Date Sampled:	11/13/2007 1317
Client Matrix:	Solid	% Moisture: 1	3.0	Date Received	: 11/15/2007 1634
ar hy fan hy friffing an hy friffing ar fan yn de f	8082 Po	lychlorinated Biphenyls (PCB	s) by Gas Chro	omatography	a ann an Marainneachan ann an 1997 ann an Annaichean an Annaicheachan an Annaicheachan an Annaicheachan an Annai
Method:	8082	Analysis Batch: 220-11	1497	Instrument ID: H	IP 5890 with dual ECD
Preparation:	3550B	Prep Batch: 220-11392	2	Lab File ID: D	4663117.d
Dilution:	1.0			Initial Weight/Volum	ne: 30.12 g
Date Analyzed:	11/29/2007 2151			Final Weight/Volum	e: 10.0 mL
Date Prepared:	11/27/2007 1227			Injection Volume:	1 uL
·				Column ID:	PRIMARY
Analyte	Dry\	Wt Corrected: Y Result (ug/Kg)	Qualifie	r MDL	RL
PCB-1016		19	Ŭ	3.2	19
PCB-1221		38	U	1.8	38
PCB-1232		19	U	2.1	19
PCB-1242		19	U	3.4	19
PCB-1248		19	U	3.1	19
PCB-1254		19	U	1.4	19
PCB-1260		19	U	4.6	19
Surrogate		%Rec		Accep	otance Limits

78

92

Den 13/10

12/19/2007

Client Sample ID: EHS-GP-02(4-5)

GC Semivolatiles

Lot-Sample #:	A7K170204-001	Work Order #:	KCH5F1AC	Matrix	SO	
Date Sampled:	11/13/07 13:17	Date Received:	11/17/07			
Prep Date:	11/26/07	Analysis Date:	11/27/07			
Prep Batch #:	7330014					
Dilution Factor:	1	Initial Wgt/Vol:	50.06 g	Final	Wgt/Vol: 100	mL
% Moisture:	13	Method:	SW846 8151	A		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	92	ug/kg	41	
2,4,5-TP		ND	23	ug/kg	2.5	
2,4,5-T		ND	23	ug/kg	3.7	
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS			
2,4~Dichloropheny	lacetic acid	82	(19 - 122)			

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: EHS-GP-02(4-5)

General Chemistry

Lot-Sample #...: A7K170204-001 Work Order #...: KCH5F Matrix.....: SO Date Sampled...: 11/13/07 13:17 Date Received..: 11/17/07 % Moisture....: 13

PARAMETER Acid-soluble sulfide	RESULT	$\frac{RL}{34.3}$	UNITS mg/kg	METHOD SW846 9030B/9034 MDL 6.4	PREPARATION- ANALYSIS DATE 11/19/07	PREP BATCH # 7323421
Percent Solids	87.4	10.0 Dilution Facto	% or: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330568

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Duplicate of EHS-GP-02 (4-5)

Client: GEI Consultants, Inc.

Client Sample ID:

EHS-GP-XX(XX)

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID:	220-3395-6			Date Sampled:	11/13/2007 0000
Client Matrix:	Solid	% Moisture:	25.9	Date Received:	11/15/2007 1634

8260B Volatile Organic Compounds by GC/MS

Method: Preparation:	8260B 5030B	Analysis Batch: 220-11269	Instrument ID: Lab File ID:	HP 5890/5 N6061.D	971A GC/MS
Dilution:	1.0		Initial Weight/Volu	ume: 5	g
Date Analyzed:	11/21/2007 0047		Final Weight/Volu	ıme: 5	mL
Date Prepared:	11/21/2007 0047				

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Acetone	270 -5.6		3.2	27
Benzene	6.7	U	0.96	6.7
Bromodichloromethane	6.7	U	0.88	6.7
Bromoform	6.7	U	2.3	6.7
Bromomethane	6.7	U	2.1	6.7
Methyl Ethyl Ketone	13	U	4.5	13
Carbon disulfide	6.7	Ŭ	0.72	6.7
Carbon tetrachloride	6.7	Ū	0.96	6.7
Chlorobenzene	6.7	ũ	1.2	6.7
Chloroethane	67	ŭ	17	67
Chloroform	67	Ü	0.72	67
Chloromethane	6.7	U U	14	6.7 [°]
Dibromochloromethane	67	Ü	1.4	67
1.1 Dichloroothane	6.7	U U	0.99	6.7
1.2 Dichloroethane	6.7	0	0.00	6.7
1,2-Dichloroethane	0.7	U	1.0	0.7
	0.7	U	1.1	0.7
1,2-Dichloropropane	0.7	U	1.3	0.7
cis-1,3-Dichloropropene	b./	U	0.84	b./
trans-1,3-Dichloropropene	6.7	U	1.4	b./
Ethylbenzene	6.7	U	0.96	6.7
2-Hexanone	13	U	3.6	13
Methylene Chloride	~7V -5.0=		1.9	27
methyl isobutyl ketone	6.7	U	1.3	6.7
Styrene	6.7	U	1.7	6.7
1,1,2,2-Tetrachloroethane	6.7	U	1.4	6.7
Tetrachloroethene	6.7	U	1.0	6.7
Toluene	0.82	JX J	0.80	6.7
1,1,1-Trichloroethane	6.7	U	0.99	6.7
1,1,2-Trichloroethane	6.7	U	1.2	6.7
Trichloroethene	6.7	U	1,3	6.7
Vinyl chloride	6.7	U	1.8	6.7
Xylenes, Total	6.7	U	3.3	6.7
cis-1,2-Dichloroethene	6.7	U	1.2	6.7
trans-1,2-Dichloroethene	6.7	U	1.3	6.7
Surrogate	%Rec		Accentance	e Limits
1.2 Dichloroothano-d4 (Surr)			10.121	5 Eanna
4 Promofluorohonzono	54		45-104	
Dibramativeramethana	91		50 - 133 60 - 420	
	90		00 - 100 64 - 407	
Toluene-do (Surr)	69		51 - 137	- 0
				DAD La la X
			ENM - 8	11(2100
TestAmerica Connecticut	Page 14 of 21	.96	1) give	12/19/2007

Client: GEI Consultants, Inc.

EHS-GP-XX(XX)

Client Sample ID:

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID:	220-3395-6			Date Sampled:	11/13/2007	0000
Client Matrix:	Solid	% Moisture:	25.9	Date Received:	11/15/2007	1634

Duplicate of EHS-GP-02(4-5)

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:	8270C 3541	Analysis Batch: 220-11422 Prep Batch: 220-11378	Instrument ID: Lab File ID:	HP 6890/5973 GC/MS U2141.D
Dilution:	1.0		Initial Weight/Volu	ume: 15.45 g
Date Analyzed:	11/27/2007 2233		Final Weight/Volu	ime: 1 mL
Date Prepared:	11/27/2007 0953		Injection Volume:	1 uL

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifi	er MDL	RL
Acenaphthene	430	U	76	430
Acenaphthylene	430	U	82	430
Anthracene	430	U	70	430
Benzo[a]anthracene	430	U	63	430
Benzo[a]pyrene	430	U	55	430
Benzo[b]fluoranthene	430	U	74	430
Benzo[g,h,i]perylene	430	U	85	430
Benzo[k]fluoranthene	430	U	71	430
Bis(2-chloroethoxy)methane	430	U	70	430
Bis(2-chloroethyl)ether	430	U	210	430
Bis(2-ethylhexyl) phthalate	430	U	55	430
Butyl benzyl phthalate	430	U	61	430
Carbazole	430	U	74	430
Chrysene	430	U	76	430
Di-n-butyl phthalate	430	U	67	430
Di-n-octyl phthalate	430	U	68	430
4-Bromophenyl phenyl ether	430	U	70	430
4-Chloroaniline	430	U	58	430
2-Chloronaphthalene	430	U	75	430
4-Chlorophenyl phenyl ether	430	U	85	430
Dibenz(a,h)anthracene	430	U	66	430
Dibenzofuran	430	U	76	430
Diethyl phthalate	430	U	110	430
Dimethyl phthalate	430	U	76	430
1,2-Dichlorobenzene	430	U	68	430
1,3-Dichlorobenzene	430	U	70	430
1,4-Dichlorobenzene	430	U	68	430
3,3'-Dichlorobenzidine	870	U	48	870
2,4-Dinitrotoluene	430	U	66	430
2,6-Dinitrotoluene	430	U	170	430
Fluoranthene	430	U	72	430
Fluorene	430	U	74	430
Hexachlorobenzene	430	U	75	430
Hexachlorobutadiene	430	U	82	430
Hexachlorocyclopentadiene	430	U	61	430
Hexachloroethane	430	U	75	430
Indeno[1,2,3-cd]pyrene	430	U	77	430
Isophorone	430	U	89	430
2-Methylnaphthalene	430	υ	79	430
Naphthalene	430	U	66	430
2-Nitroaniline	2100	U	58	2100
3-Nitroaniline	2100	U	62	2100
Nitrobenzene	430	U	80	430
N-Nitrosodi-n-propylamine	430	Ū	97	430
TestAmerica Connecticut	Page 34 of	2196	1/8/08 EMM	12/19/2007

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID	D: EHS-GP-XX(XX)				J
Lab Sample ID: Client Matrix:	220-3395-6 Solid	% Moisture: 25.9		Date Sampled: Date Received:	11/13/2007 0000 11/15/2007 1634
	8270C Semivolatile Co	mpounds by Gas Chromatogr	raphy/Mass S	pectrometry (GC/N	IS)
Method:	8270C	Analysis Batch: 220-11422	2 Ins	strument ID: HP	6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11378	La	b File ID: U21	41.D
Dilution:	1.0		Ini	tial Weight/Volume:	15.45 g
Date Analyzed:	11/27/2007 2233		Fir	nal Weight/Volume:	1 mL
Date Prepared:	11/27/2007 0953		Inj	ection Volume:	1 uL
Analyte	DryWt C	Corrected: Y Result (ug/Kg)	Qualifier	MDL.	RL.
N-Nitrosodipheny	lamine	430	U	78	430
Phenanthrene		430	Ú	71	430
Pyrene		430	U	63	430
1,2,4-Trichlorober	nzene	430	U	69	430
4-Chloro-3-methy	iphenol	430	U	86	430
2-Chlorophenol		430	U	93	430
2-Methylphenol		430	U	68	430
4-Methylphenol		430	U	65	430
2,4-Dichlorophend	ol	430	U	90	430
2,4-Dimethylphen	ol	430	U	58	430
2,4-Dinitrophenol		2100	Urr	280	2100
4,6-Dinitro-2-meth	nylphenol	2100	U	330	2100
2-Nitrophenol		430	U	93	430
4-Nitrophenol		2100	U	200	2100
Pentachlorophene	ol	2100	U	31	2100
Phenol		430	U	52	430
2,4,5-Trichlorophe	enol	2100	U	66	2100
2,4,6-Trichlorophe	enol	430	U	63	430
Benzyl alcohol		430	U	90	430
4-Nitroaniline		870	U	65	870
2,2'-oxybis[1-chlo	ropropane]	430	U	70	430
Surrogate	······································	%Rec		Acceptar	nce Limits
2-Fluorobiphenyl		73		32 - 13	1
2-Fluorophenol		73		25 - 11	3
2,4,6-Tribromoph	enol	93		24 - 15	D
Nitrobenzene-d5		66		25 - 12	U A
Phenol-d5		77		27 - 12	2
Terphenyl-d14		101		35 - 14	D

Page 35 of 2196

Duplicate 9 Et1s-GP-02 (4-5)

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-XX(XX)

Lab Sample ID: Client Matrix:	220-3395-6 Solid		% Moisture: 25.9	Date Date	Sampled: 1 Received: 1	1/13/2007 0000 1/15/2007 1634
	6010B Induc	tively Cou	pled Plasma - Atomic I	Emission Spectr	ometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1556 11/19/2007 1407	Analysi Prep Ba	s Batch: 220-11308 atch: 220-11213	Instrumer Lab File I Initial We Final We	nt ID: D: ight/Volume: ight/Volume:	TJA Trace ICAP W112107 1.12 g 250 mL
Analvte	DryWt Correc	ted: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium			4.5 14800 J 2.9 21.5 J 3.0 714 J 7.5 5.4 J 17.7 J 5.5 13300 391 J 2460 J 115 54.7 10.7 J 7.6 15.1 15.1 22.6 25.3 J 28.5		0.45 13.9 2.0 0.33 0.69 18.7 1.4 0.78 0.51 0.66 14.8 36.2 9.3 0.99 28.6 0.66 1.3 2.1 2.5 3.3 0.48 3.3	$\begin{array}{c} 4.5\\ 151\\ 12.1\\ 3.0\\ 3.0\\ 301\\ 7.5\\ 3.0\\ 4.5\\ 7.5\\ 90.4\\ 301\\ 52.7\\ 9.0\\ 301\\ 52.7\\ 9.0\\ 301\\ 7.5\\ 7.5\\ 15.1\\ 15.1\\ 15.1\\ 22.6\\ 6.0\\ 30.1\\ \end{array}$
Zinc	7471A Mercury	r in Solid o	r Semisolid Waste (Ma	nual Cold Vapor	Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0951 11/20/2007 1555	Analy: Prep f	sis Batch: 220-11278 Batch: 220-11264	Instrum Lab File Initial W Final W	ent ID: ID: /eight/Volume: eight/Volume:	Perkin Elmer FIMS N/A 0.65 g 50 mL
Analyte Mercury	DryWt Corre	cted: Y	Result (mg/Kg) 0.028	Qualifier	MDL 0.016	RL 0.062
						^

08 Nam 1/2/08

12/19/2007

Duplicate og EHS-GP-02(4-5)

Client: GEI Consultants, Inc.

.

,

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-GP-XX(XX)				
Lab Sample ID: Client Matrix:	220-3395-6 Solid	% Moisture: 25.9		Date Sampled: Date Received:	11/13/2007 0000 11/15/2007 1634
Department of the second second second			<u></u>		neuros a articles de la constant dont la contract dont de la constante de la constante de la constante de la co
	8081A Or	rganochlorine Pesticides by Gas	s Unroma	atograpny	
Method: Preparation: Dilution: Date Analyzed:	8081A 3550B 1.0 12/03/2007 1816	Analysis Batch: 220-11521 Prep Batch: 220-11392		Instrument ID: HP : Lab File ID: D75 Initial Weight/Volume: Final Weight/Volume: Iniection Volume:	07054.D 30.32 g 10.0 mL 1 uL
Date Prepared:	11/2//2007 1227			Column ID: PF	RIMARY
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor epoxid	DryWt C dane)	Corrected: Y Result (ug/Kg) 4.4 4.4 0.87 2.7 2.3 2.3 4.4 4.4 2.3 4.4 6.7 4.4 4.4 2.3 2.3 2.3 4.4 3.4 4.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	Qualifie UJ U U U U U U U U U U U U U U U U U U	m MDL 0.51 0.58 0.41 0.48 0.37 0.36 0.14 0.43 0.20 0.23 1.2 0.43 0.19 0.20 0.23 0.20 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.23 0.20	RL 4.4 4.4 2.7 2.3 2.3 2.3 2.3 4.4 2.3 4.4 4.4 6.7 4.4 4.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
Methoxychlor		89	Ŭ	2.3	89
alpha-Chlordane gamma-Chlordan	e	2.3 2.3	U U	0.15 0.12	2.3 2.3
Surrogate DCB Decachlorot Tetrachloro-m-xyl	oiphenyl Iene	%Rec 120 108		Accepta 25 - 1 24 - 1	ance Limits 59 54
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/03/2007 1816 11/27/2007 1227	Analysis Batch: 220-11521 Prep Batch: 220-11392		Instrument ID: HP Lab File ID: C7 Initial Weight/Volume Final Weight/Volume Injection Volume: Column ID: S	5890 with dual ECD 507054.D 2: 30.32 g 2: 10.0 mL 1 uL ECONDARY
Surrogate DCB Decachloro Tetrachloro-m-xy	biphenyl Ilene	%Rec 117 107		Accept 25 - 1 24 - 1	ance Limits 59 54

ÐÅ 1118/08

TestAmerica Connecticut

12/19/2007

EHS-GP-02 (4-5)

Analytical Data

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 EHS-GP-XX(XX) **Client Sample ID:** Lab Sample ID: 220-3395-6 Date Sampled: 11/13/2007 0000 **Client Matrix:** Solid % Moisture: 25.9 Date Received: 11/15/2007 1634 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography Method: 8082 Analysis Batch: 220-11497 Instrument ID: HP 5890 with dual ECD Preparation: 3550B Prep Batch: 220-11392 Lab File ID: D4663124.d Initial Weight/Volume: Dilution: 1.0 30.32 q Date Analyzed: 11/29/2007 2348 Final Weight/Volume: 10.0 mL Date Prepared: 11/27/2007 1227 Injection Volume: 1 uL Column ID: PRIMARY Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL. RL PCB-1016 23 Ű 3.8 23 PCB-1221 44 U 2.0 44 PCB-1232 23 23 U 2.5 PCB-1242 23 U 23 4.0 PCB-1248 23 23 U 3.6 23 PCB-1254 23 U 1.6 PCB-1260 23 U 5.3 23 Surrogate %Rec Acceptance Limits Tetrachloro-m-xviene 53 24 - 154 25 - 159 61 DCB Decachlorobiphenyl

12/311 14m 2311

Client Sample ID: EHS-GP-XX(XX)

GC Semivolatiles

Lot-Sample #:	A7K170204-006	Work Order #:	KCH5P1AC	Matrix	· · · · · · · · · ·	SO
Date Sampled:	11/13/07	Date Received:	11/17/07			
Prep Date:	11/26/07	Analysis Date:	11/27/07			
Prep Batch #:	7330014					
Dilution Factor:	1	Initial Wgt/Vol:	50.06 g	Final	Wgt/Vol:	100 mL
<pre>% Moisture:</pre>	32	Method:	SW846 8151	A		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	120	ug/kg	53	
2,4,5-TP		ND	30	ug/kg	3.2	
2,4,5-T		22 \$	30	ug/kg	4.7	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichloropheny	vlacetic acid	112	(19 - 122)			

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Duplicate of EHS-GP-02(4-5)

Client Sample ID: EHS-GP-XX(XX)

General Chemistry

Lot-Sample #: A7K Date Sampled: 11/3 % Moisture: 32	170204-006 13/07	Work On Date Re	der #: ceived:	KCH5P Ma 11/17/07	trix: S0	2
PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	ND UJ /	44.3 tion Facto	mg/kg r: 1	SW846 9030B/9034 MDL 8.3	11/19/07	7323421
Percent Solids	67.7 Dilu	10.0 tion Facto	% r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Jar 1/2-108

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

Client Sample ID:	EHS-GP-02 (43-45)				0	
Lab Sample ID: Client Matrix:	220-3404-5 Solid	% Moisture:	6.0	Date Sampled: Date Received:	11/15/2007 11/16/2007	1025 2100

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11324	Instrument ID:	HP 5890/5971A GC/MS
Preparation:	5030B		Lab File ID:	N6093.D
Dilution:	1.0		Initial Weight/Vol	ume: 5 g
Date Analyzed:	11/21/2007 2018		Final Weight/Vol	ume: 5 mL
Date Analyzed: Date Prepared:	11/21/2007 2018		Final weight/voit	ume: 5 m∟

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Acetone	1211	-6:9	᠆᠆᠆᠆᠆ᢖ᠊ᡸ	2.5	21
Benzene		5.3	U	0.76	5.3
Bromodichloromethane		5.3	U	0.69	5.3
Bromoform		5.3	U	1.8	5.3
Bromomethane		5.3	U	1.6	5.3
Methyl Ethyl Ketone		11	U	3.6	11
Carbon disulfide		5.3	U	0.56	5.3
Carbon tetrachloride		5.3	U	0.76	5.3
Chlorobenzene		5.3	U	0.94	5.3
Chloroethane		5.3	U	1.4	5.3
Chloroform		5.3	U	0.56	5.3
Chloromethane		5.3	U	1.1	5.3
Dibromochloromethane		5.3	U	1.1	5.3
1,1-Dichloroethane		5.3	U	0.69	5.3
1,2-Dichloroethane		5.3	U	1.1	5.3
1,1-Dichloroethene		5.3	U	0.84	5.3
1,2-Dichloropropane		5.3	U	1.0	5.3
cis-1,3-Dichloropropene		5.3	U	0.66	5.3
trans-1,3-Dichloropropene		5.3	U	1.1	5.3
Ethylbenzene		5.3	U	0.76	5.3
2-Hexanone	/	11	U	2.8	11
Methylene Chloride	210	3.1		1.5	21
methyl isobutyl ketone		5.3	U	1.0	5.3
Styrene		5.3	U	1.4	5.3
1,1,2,2-Tetrachloroethane		5.3	U	1.1	5.3
Tetrachloroethene		5.3	U	0.79	5.3
Toluene		5.3	U	0.63	5.3
1,1,1-Trichloroethane		5.3	υ	0.78	5.3
1,1,2-Trichloroethane		5.3	U	0.93	5.3
Trichloroethene		5.3	U	1.1	5.3
Vinyl chloride		5.3	U	1.4	5.3
Xylenes, Total		5.3	U	2.6	5.3
cis-1,2-Dichloroethene		5.3	U	0.98	5.3
trans-1,2-Dichloroethene		5.3	U	1.0	5.3
Surrogate		%Rec		Accept	tance Limits
1.2-Dichloroethane-d4 (Surr)	an a	96		49 - 1	134
4-Bromofiuorobenzene		68		36 - 1	133
Dibromofluoromethane		91		60 - 1	130
Toluene-d8 (Surr)		78		51 - 1	137

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

Client Sample ID:	EHS-GP	-02 (43-45)								
Lab Sample ID:	220-3404	-5				Date Sampled:	11/15/2007 1025			
Client Matrix:	Solid		% Moisture:	6.0		Date Received:	11/16/2007 2100			
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-11555 Instrument ID: HP 6890/5973 GC/MS Descention: 2564 Descention: 14477 Heithing Heithing										
Method:	8270C		Analysis Batch: 22	20-11555		Instrument ID: HP	6890/5973 GC/MS			
Preparation:	3541		Prep Batch: 220-1	1477		Lab File ID: U2	244.D			
Dilution:	1.0					Initial Weight/Volume	: 15.30 a			
Date Analyzed:	12/03/2007	1956				Final Weight/Volume	1 ml.			
Date Prepared:	11/29/2007	1810				Injection Volume:	1 ul			
bato r roparoa.	11120/2001	,				njoonon volume.	·			
Analyte		DryWt Corre	ected: Y Result (ug	/Kg)	Qualifie	r MDL	RL			
Acenaphthene			340		U	60	340			
Acenaphthylene			340		U	66	340			
Anthracene			340		U	55	340			
Benzo[a]anthracen	e		340		U	50	340			
Benzo[a]pyrene			340		U	44	340			
Benzo[b]fluoranthe	ne		340		U	59	340			
Benzo[g,h,i]peryler	ne		340		U	67	340			
Benzo[k]fluoranthe	ne		340		U	56	340			
Bis(2-chloroethoxy)methane		340		U	56	340			
Bis(2-chloroethyl)e	ther		340		U	170	340			
Bis(2-ethylhexyl) pl	hthalate		340		U	44	340			
Butyl benzyl phthal	ate		340		U	48	340			
Carbazole			340		U	59	340			
Chrysene			340		U	60	340			
Di-n-butyl phthalate	e		340		U	53	340			
Di-n-octyl phthalate	;		340		U	54	340			
4-Bromophenyl phe	enyl ether		340		U	56	340			
4-Chloroaniline			340		U	46	340			
2-Chloronaphthale	ne		340		U	60	340			
4-Chlorophenyl pho	enyl ether		340		U	68	340			
Dibenz(a,h)anthrac	ene		340		U	52	340			
Dibenzoturan			340		U	60	340			
Diethyl phthalate			340		U	85	340			
Dimethyl phthalate			340		U	61	340			
1,2-Dichlorobenzer	ne		340		U	54	340			
1,3-Dichlorobenzer	ne		340		U	55	340			
1,4-Dichlorobenzer	10		340		U	54	340			
3,3 -Dichlorobenzio	line		690		U	38	690			
2,4-Dinitrotoluene			340		U	52	340			
Z,b-Dinitrotoluene			340		U	140	340			
Fluorantnerie			340		U	57	340			
Huorene	_		340		U	59	340			
Hexachlorobenzen	e		340		0	59	340			
Hexachioropulaule	ne		340		U	00	340			
Hexachiorocyclope	maulene		340		0	49	340			
Indona[1,2,2, adjav			240		о н	00 64	240			
Indeao[1,2,3~00]py	0.00		34U 340		о П	71	340			
2 Mothulnonhtholog	20		34U 240		U H	()	340			
∠-meanymapsusalei Norbtholono	1C		34U 240		ы	00 50	340			
Naprinalene 2 Nitroanilino			34U 1700		U H	0Z 46	J40 1700			
2-Mitrophiline			1700		о П	40	1700			
Mitrobonzono			240		U H	43	340			
N-Nitrosodi o orom	Jamine		240		о П	77	340			
m-microon-e-prop;	yaanne		040		0	11	040			

TestAmerica Connecticut

Page 20 of 888 $p\beta$ $\ell r^{n^{2}}$

Client: GEI Consultants, Inc. Job Number: 220-3404-1 Sdg Number: 220-3404 EHS-GP-02 (43-45) **Client Sample ID:** Lab Sample ID: 220-3404-5 Date Sampled: 11/15/2007 1025 Client Matrix: Solid % Moisture: 6.0 Date Received: 11/16/2007 2100 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-11555 Instrument ID: HP 6890/5973 GC/MS 3541 Preparation: Prep Batch: 220-11477 Lab File ID: U2244.D Dilution: 1.0 Initial Weight/Volume: 15.30 g Date Analyzed: 12/03/2007 1956 Final Weight/Volume: 1 mL Date Prepared: 11/29/2007 1810 Injection Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 340 ΰ 62 340 Phenanthrene 340 U 57 340 Pvrene 340 U 50 340 1,2,4-Trichlorobenzene 340 U 55 340 4-Chloro-3-methylphenol 340 U 69 340 2-Chlorophenol 340 U 74 340 2-Methylphenol 340 U 54 340 4-Methylphenol 340 υ 52 340 2,4-Dichlorophenol 340 υ 71 340 2,4-Dimethylphenol 340 υ 46 340 2,4-Dinitrophenol 1700 U⊀ 230 1700 4,6-Dinitro-2-methylphenol 1700 U 270 1700 2-Nitrophenol 340 υ 74 340 4-Nitrophenol 1700 U 160 1700 Pentachlorophenol 1700 U 24 1700 U Phenol 340 41 340 U 2,4,5-Trichlorophenol 1700 52 1700 U 2,4,6-Trichlorophenol 340 50 340 U Benzyl alcohol 340 71 340 4-Nitroaniline 690 U 52 690 U 2,2'-oxybis[1-chloropropane] 340 56 340 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 72 32 - 131 2-Fluorophenol 63 25 - 113 2,4,6-Tribromophenol 78 24 - 150 Nitrobenzene-d5 64 25 - 120 Phenol-d5 65 27 - 122 Terphenyl-d14 88 35 - 140

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

Client Sample ID: EHS-GP-02 (43-45) Date Sampled: 11/15/2007 1025 220-3404-5 Lab Sample ID: 11/16/2007 2100 Date Received: % Moisture: 6.0 Client Matrix: Solid 6010B Inductively Coupled Plasma - Atomic Emission Spectrometry TJA Trace ICAP Instrument ID: Analysis Batch: 220-11308 6010B Method: W112107 Lab File ID: Prep Batch: 220-11213 3050B Preparation: 1.41 g Initial Weight/Volume: 1.0 Dilution: Final Weight/Volume: 250 mL 11/21/2007 1701 Date Analyzed: 11/19/2007 1407 Date Prepared: RL MDL Qualifier Result (mg/Kg) DryWt Corrected: Y Analyte 2.8 0.28 U 2.8 Silver 94.3 8.7 420 Aluminum 7.5 U 1.3 7.5 Arsenic 1.9 0.21 3.5 T Barium 1.9 U 0.43 1.9 Beryllium 189 مل 11.7 45:7 1999 Calcium 4.7 U 0.87 4.7 Cadmium 1.9 0.49 U 1.9 Cobalt 0.32 2.8 ş 2.4 Chromium J 0.42 4.7 0.88 Copper 56.6 9.2 1240 Iron 189 22.6 1890 Ⴛ -58-2 Potassium 33.0 5.8 102 5 / Magnesium 0.625.7 12.1 Manganese 189 U 17.9 189 Sodium 4.7 T 0.42 0.76 Nickel 4.7 0.79 U 4.7 Lead 9.4 UT 1.3 9.4 Antimony 9.4 U 1.5 9.4 Selenium 14.1 2.1 U 14.1 Thallium 3.8 T 0.30 1.6 Vanadium 18.9 18.9 U 2.1 Zinc 7471A Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique) Perkin Elmer FIMS Instrument ID: Analysis Batch: 220-11359 7471A Method: Lab File ID: N/A Prep Batch: 220-11309 7471A Preparation: 0.66 g Initial Weight/Volume: 1.0 Dilution: Final Weight/Volume: 50 mL 11/26/2007 1438 Date Analyzed: 11/23/2007 1041 Date Prepared:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
,	-	0.048		0.012	0.048	11-
Mercury		0.040	0			

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

Client Sample ID:	EHS-GP-	02 (43-45)					44450007 4005
Lab Sample ID: Client Matrix:	220-3404- Solid	-5	% Moisture:	6.0		Date Sampled: Date Received:	11/15/2007 1025 11/16/2007 2100
linensitäinteinet pool sokkentalaisisten etäätin, koi ku	<u>, , , , , , , , , , , , , , , , , , , </u>	8081A Organ	ochlorine Pesticide	s by Gas	Chroma	tography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/04/2007 11/29/2007	1803 1900	Analysis Batch: 220 Prep Batch: 220-11	11588 480	100 and	nstrument ID: HP .ab File ID: D75 nitial Weight/Volume: Final Weight/Volume: njection Volume: Column ID: PF	5890 with dual ECD 08021.D 30.38 g 10 mL 1 uL RIMARY
		D- MH Corre	and V. Rocult (un/k	(a)	Qualifie	r MDL	RL
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	lane) e	DryWt Corre	ected: Y Result (ug/k 3.5 3.5 3.5 2.1 1.8 1.8 1.8 3.5 1.8 3.5 1.8 3.5 5.3 3.5 5.3 3.5 1.8 1.8 1.8 0.47 ⁻ 1. 18 70 1.8 1.8	9U 🗸		0.40 0.46 0.32 0.37 0.29 0.28 0.11 0.34 0.15 0.18 0.14 0.15 0.16 0.16 0.16 0.16 0.12 2.2 1.8 0.12 0.096	3.5 3.5 3.5 2.1 1.8 1.8 1.8 3.5 1.8 3.5 3.5 5.3 3.5 5.3 3.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Surrogate DCB Decachlorob Tetrachloro-m-xyle	iphenyl ene		%Rec 110 89			Accepta 25 - 1 24 - 1	ance Limits 59 54
Method: Preparation: Ditution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/04/2007 11/29/2007	1803 1900	Analysis Batch: 22 Prep Batch: 220-1	0-11588 1480		Instrument ID: HP Lab File ID: C7 Initial Weight/Volume Final Weight/Volume Injection Volume: Column ID: S	2 5890 with dual ECD 508021.D 2: 30.38 g 2: 10 mL 1 uL 2:ECONDARY
Surrogate DCB Decachlorob Tetrachloro-m-xyl	iphenyl ene		%Rec 105 87			Accept 25 - 1 24 - 1	ance Limits 59 54

Jon 12/30/2

12/13/2007

•

Job Number: 220-3404-1 Client: GEI Consultants, Inc. Sdg Number: 220-3404 EHS-GP-02 (43-45) Client Sample ID: 11/15/2007 1025 Date Sampled: 220-3404-5 Lab Sample ID: 11/16/2007 2100 Date Received: 6.0 % Moisture: Solid Client Matrix: 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11517 8082 Method: D4664027.d Lab File ID: Prep Batch: 220-11480 3550B Preparation: 30.38 g Initial Weight/Volume: 1.0 Dilution: 10 mL Final Weight/Volume: 12/01/2007 0130 Date Analyzed: 1 uL Injection Volume: 11/29/2007 1900 Date Prepared: PRIMARY Column ID: MDL. RL Qualifier DryWt Corrected: Y Result (ug/Kg) Analyte 3.0 18 U 18 PCB-1016 35 1.6 U 35 PCB-1221 18 2.0 U 18 PCB-1232 18 3.1 18 U PCB-1242 2.8 18 U 18 PCB-1248 1.3 18 U 18 PCB-1254 4.2 18 U 18 PCB-1260 Acceptance Limits %Rec Surrogate 24 - 154 <u>90</u> Tetrachloro-m-xylene 25 - 159 106 DCB Decachlorobiphenyl

VIQUES 1 12/13/2007

36
Client Sample ID: EHS-GP-02(43-45)

GC Semivolatiles

Lot-Sample #: A7K200307-004		Work Order #:		KCNFX1AC	Matri	Matrix So	
Date Sampled:	11/15/07 10:25	Date Rece	ived:	11/20/07			
Prep Date:	11/26/07	Analysis	Date:	11/27/07			
Prep Batch #:	7330016						
Dilution Factor:	1	Initial W	gt/Vol:	50.2 g	Final	Wgt/Vol:	100 mL
<pre>% Moisture:</pre>	19	Method	:	SW846 8151	A		
				REPORTING			
PARAMETER		RESULT		LIMIT	UNITS	MDL	
2,4-D	······································	ND		99	ug/kg	44	
2,4,5-TP		ND		25	ug/kg	2.7	
2,4,5-T		ND		25	ug/kg	3.9	
		PERCENT		RECOVERY			
SURROGATE		RECOVERY		LIMITS			
2,4-Dichloropheny	lacetic acid	71		(19 - 122)			

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

.

Client Sample ID: EHS-GP-02(43-45)

General Chemistry

Lot-Sample #...: A7K200307-004 Work Order #...: KCNFX Matrix.....: SO Date Sampled...: 11/15/07 10:25 Date Received..: 11/20/07 % Moisture....: 19

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	20.1 🕸 J Dilu	37.0V	mg/kg r: 1	SW846 9030B/9034 MDL 6.9	11/21/07	7325534
Percent Solids	81.1 Dilu	10.0 tion Facto	% r: 1	MCAWW 160.3 MOD MDL 10.0	11/29-11/30/07	7333319

NOTE(S):

RI. Reporting Limit

Results and reporting limits have been adjusted for dry weight.

8 Estimated result. Result is less than RL.

TestAmerica North Canton

Client: GEI Con	sultants, Inc.				Job Number: 220-3395-1
Client Sample ID:	EHS-GP-03(4-	5)			Sag Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-4 Solid	% Moi	sture: 30.3	Date Samp Date Recei	led: 11/13/2007 1400 ved: 11/15/2007 1634
		8260B Volatile Orga	anic Compounds by	y GC/MS	
Method:	8260B	Analysis Bat	ch: 220-11269	Instrument ID:	HP 5890/5971A GC/MS
Preparation:	5030B			Lab File ID:	N6059.D
Dilution:	1.0			Initial Weight/Vo	olume: 5 g
Date Analyzed:	11/20/2007 2356			Final Weight/Vo	iume: 5 mL
Date Prepared:	11/20/2007 2356				
Analyte	Dry	/Wt Corrected: Y Resu	ılt (ug/Kg) Qu	ualifier MDL	RL
Acetone		290 4.	8J-	J 3.4	29
Benzene		7.	2 U	1.0	7.2
Bromodichlorometh	nane	7.	2 U	0.93	7.2
Bromoform		7.	2 U	2.5	7.2
Bromomethane		7.	2 U	2.2	7.2
Methyl Ethyl Keton	e	14	4 U	4.8	14
Carbon disulfide		7.	2 U	0.76	7.2
Carbon tetrachiorid	e	1.	2 U	1.0	7.2
Chloroothano		7.		1.3	7.2
Chloroform		7	2 0	0.76	7.2
Chloromethane		7.	2 U	14	72
Dibromochlorometh	nane	7.	2 U	1.5	72
1.1-Dichloroethane		7.	2 U	0.93	7.2
1,2-Dichloroethane		7.	2 U	1.5	7.2
1,1-Dichloroethene		7.	2 U	1.1	7.2
1,2-Dichloropropan	e	7.	2 U	1.4	7.2
cis-1,3-Dichloropro	pene	7.	2 U	0.89	7.2
trans-1,3-Dichlorop	ropene	7.	2 U	1.5	7.2
Ethylbenzene		7.	2 U	1.0	7.2
2-Hexanone		20.2 14	t Ú	3.8	14
Methylene Chloride		V ~ 4 V - 3.	4 j	2.0	29
methyl isobutyl keto	one	1.	2 U	1.3	7.2
Styrene	athana	1.	2 U	1.9	7.2
Totrachloroothono	ethane	7.7	2 0	1.3	7.2
Toluene		7.	2 11/	0.85	7.2
1 1 1-Trichloroetha	ne	7.	2 1	1.0	7.2
1.1.2-Trichloroetha	ne	7.	2 Ŭ	1.2	7.2
Trichloroethene		7.	2 Ū	1.4	7.2
Vinyl chloride		7.	2 U	1.9	7.2
Xylenes, Total		7.	2 U	3.5	7.2
cis-1,2-Dichloroethe	ene	7.	2 U	1.3	7.2
trans-1,2-Dichloroe	thene	7.	2 U	1.4	7.2
Surrogate	-d4 (Surr)	%R	.ec	Ac	ceptance Limits
4-Bromofiuorohenz	ene	05 Q1	, [4	
Dibromofluorometh	ane	91	, I	6	in - 130
Toluene-d8 (Surr)		88	3	5	1 - 137
					TB.
					- elsy
				. v.	110/00
				En.	1.58
TactAmarica Car	nocticut	Dago	12 OF 2196	,19	10/10/000
resummenca com	recticut	, age		1)	1 2 1 2 1 2 0 0 i

12/19/2007

Job Number: 220-3395-1

Sdg Number: 220-3395 **Client Sample ID:** EHS-GP-03(4-5) Lab Sample ID: 220-3395-4 Date Sampled: 11/13/2007 1400 Client Matrix: Solid % Moisture: 30.3 Date Received: 11/15/2007 1634 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) 8270C Analysis Batch: 220-11422 Method: Instrument ID: HP 6890/5973 GC/MS Preparation: 3541 Prep Batch: 220-11378 Lab File ID: U2139.D Dilution: 1.0 Initial Weight/Volume: 15.24 a Date Analyzed: 11/27/2007 2141 Final Weight/Volume: 1 mL Date Prepared: 11/27/2007 0953 Injection Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Acenaphthene 470 Ũ 81 470 Acenaphthylene 470 U 89 470 Anthracene 470 U 75 470 Benzo[a]anthracene 130 J 3 68 470 Benzo[a]pyrene J J. 60 470 110 Benzolb]fluoranthene 170 J 80 J 470 Benzo[g,h,i]perylene 470 U 91 470 Benzo[k]fluoranthene 470 UM 76 470 Bis(2-chloroethoxy)methane 470 U 75 470 Bis(2-chloroethyl)ether U 470 230 470 Bis(2-ethylhexyl) phthalate U 470 60 470 Butyl benzyl phthalate 470 U 65 470 Carbazole 470 U 79 470 Chrysene 140 J Т 82 470 Di-n-butyl phthalate 470 U 72 470 Di-n-octyl phthalate 470 U 74 470 4-Bromophenyl phenyl ether 470 U 75 470 4-Chloroaniline 470 U 62 470 2-Chloronaphthalene 470 U 81 470 4-Chlorophenyl phenyl ether 470 U 92 470 470 U Dibenz(a,h)anthracene 71 470 U Dibenzofuran 470 82 470 Diethyl phthalate 470 U 120 470 470 U Dimethyl phthalate 82 470 U 1,2-Dichlorobenzene 470 74 470 1,3-Dichlorobenzene 470 U 75 470 U 1,4-Dichlorobenzene 470 73 470 υ 3,3'-Dichlorobenzidine 930 52 930 U 470 71 2,4-Dinitrotoluene 470 U 190 2,6-Dinitrotoluene 470 470 Fluoranthene 150 J T 77 470 Fluorene 470 U 79 470 U Hexachlorobenzene 470 80 470 Hexachlorobutadiene 470 U 89 470 Hexachlorocyclopentadiene 470 U 66 470 Hexachloroethane 470 U 81 470 Indeno[1,2,3-cd]pyrene 470 U 83 470 Isophorone 470 U 96 470 2-Methylnaphthalene 470 U 85 470 Naphthalene 470 U 470 71 2-Nitroaniline 2300 U 2300 63 3-Nitroaniline U 2300 66 2300 U Nitrobenzene 470 86 470 N-Nitrosodi-n-propylamine 470 U 100 470 110/08 Page 30 of 2196 12/19/2007 **TestAmerica Connecticut** 58

1/18/08

Client: GEI Consultants, Inc.

Client: GEI Co	Client: GEl Consultants, Inc. Job Number: 220-3395-1								
Client Sample ID): EHS-GP-03(4-5)			5	ag Number: 220-3395				
Lab Sample ID:	220-3395-4			Date Sampled:	11/13/2007 1400				
Client Matrix:	Solid	% Moisture: 30.3		Date Received:	11/15/2007 1634				
	8270C Semivolatile Co	mpounds by Gas Chromatogra	aphy/Mass Sp	ectrometry (GC/	MS)				
Method:	8270C	Analysis Batch: 220-11422	Instr	rument ID: HP	6890/5973 GC/MS				
Preparation:	3541	Prep Batch: 220-11378	Lab	File ID: U2	139.D				
Dilution:	1.0	i.	Initia	al Weight/Volume	: 15.24 a				
Date Analyzed:	11/27/2007 2141		Fina	Weight/Volume	1 ml				
Date Prenared:	11/27/2007 0953		Inier	rtion Volume:	1 11				
Date i reparea.	1112112007 0000		inje.	suori volume.					
Analyte	DryWt C	orrected: Y Result (ug/Kg)	Qualifier	MDL	RL				
N-Nitrosodiphenv	lamine	470	U	84	470				
Phenanthrene		470	Ū	77	470				
Pvrene		160	JJ	68	470				
1,2,4-Trichlorober	nzene	470	U	74	470				
4-Chloro-3-methy	lphenol	470	U	93	470				
2-Chlorophenol	·	470	U	100	470				
2-Methylphenol		470	U	74	470				
4-Methylphenol		470	U	70	470				
2.4-Dichlorophene	bl	470	U	97	470				
2,4-Dimethylphen	ol	470	U /	62	470				
2,4-Dinitrophenol		2300	U⊀∽́_	310	2300				
4.6-Dinitro-2-meth	iylphenol	2300	UK	360	2300				
2-Nitrophenol		470	U	100	470				
4-Nitrophenol		2300	U	210	2300				
Pentachloropheno	ol	2300	U	33	2300				
Phenol		470	U	56	470				
2,4,5-Trichlorophe	enol	2300	U	71	2300				
2,4,6-Trichlorophe	enol	470	U	68	470				
Benzyl alcohol		470	U	97	470				
4-Nitroaniline		930	Ŭ	70	930				
2,2'-oxybis[1-chlor	ropropane]	470	U	75	470				
Surrogate		%Rec		Accepta	ance Limits				
2-Fluorobiphenyl	annan kan bir sekerek i sekerek tanın kan kan bir	66		32 - 13	31				
2-Fluorophenol		68		25 - 1 ⁻	13				
2,4,6-Tribromoph	enol	87		24 - 15	50				
Nitrobenzene-d5		60		25 - 12	20				
Phenol-d5		72		27 - 12	22				
Terphenyl-d14		98		35 - 14	40				

.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-03(4-5) 11/13/2007 1400 Date Sampled: 220-3395-4 Lab Sample ID: 11/15/2007 1634 Date Received: % Moisture: 30.3 Solid Client Matrix: 6010B Inductively Coupled Plasma - Atomic Emission Spectrometry TJA Trace ICAP Instrument ID: Analysis Batch: 220-11308 6010B Method: W112107 Lab File ID: Prep Batch: 220-11213 3050B Preparation: 1.41 q Initial Weight/Volume: 1.0 Dilution: 250 mL Final Weight/Volume: 11/21/2007 1537 Date Analyzed: 11/19/2007 1407 Date Prepared: RL Qualifier MDL Result (mg/Kg) DryWt Corrected: Y Analyte 3.8 0.38 ับ 3.8 127 Silver 11.7 11000 Aluminum 1.7 10.2J/ 3.2 2.5 Arsenic 0.28 51 20.8 2.5Barium 0.59 υ 2.5 254 Beryllium 15.8 51 456 6.4 Calcium U 1.2 6.4 2.5 Cadmium 0.66 5 1 5.0 3.8 0.43 Cobalt 14.4 Chromium 6.4 0.56 9.6 76.3 Copper 12.5 12000 254 30.5 Iron 71 395 44.5 Potassium 7.9 51 2220 7.6 Magnesium 0.84 96.7 254 Manganese ĵ ´ 24.2 51.1 6.4 Sodium 0.56 9.3 T 6.4 Nickel 1.1 11.3 12.7 Lead 1.8 UT 12.7 12.7 2.1 Antimony U 12.7 19.1 Selenium 2.8 U 19.1 5.1 Thallium 0.41 21.4 25.4 Vanadium 2.8 40.9 Zinc 7471A Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique) Perkin Elmer FIMS Instrument ID: Analysis Batch: 220-11278 7471A N/A Method: Lab File ID: Prep Batch: 220-11264 7471A Preparation: Initial Weight/Volume: 0.62 g Dilution: 1.0 50 mL Final Weight/Volume: 11/21/2007 0949 Date Analyzed: 11/20/2007 1555 Date Prepared: RL Qualifier MDL Result (mg/Kg) DryWt Corrected: Y Analyte 0.069 0.018 0.031 Mercury

t\$ 1/18/18

Client: GEI Consultants, Inc.

.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-GP-0	3(4-5)					
Lab Sample ID: Client Matrix:	220-3395-4 Solid	Ļ	% Moisture	e: 30.3		Date Sampled: Date Received:	11/13/2007 1400 11/15/2007 1634
n v Augusta anna an an Anna ann an Anna		8081A Orga	nochlorine Pestic	ides by Gas	s Chrom	atography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/03/2007 1 11/27/2007 1	734 227	Analysis Batch: 220	220-11521 -11392		Instrument ID: HF Lab File ID: D7 Initial Weight/Volume Final Weight/Volume Injection Volume: Column ID: F	2 5890 with dual ECD 507052.D 2: 30.44 g 2: 10.0 mL 1 uL 2:RIMARY
Analyte 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor Heptachlor Gapha-Chlordane gamma-Chlordane	lane) e	DryWt Com	rected: Y Result (u 0.96 1.9 4.1 2.8 2.4 2.4 2.4 4.7 2.4 4.7 2.4 4.7 4.7 7.1 1.5 0.50 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	g/Kg) 4-115 5 / 5 / 5 / 1	Qualifie J-M- J-M- U U U U U U U U U U U U U U U U U U	er MDL 0.54 0.61 0.44 0.50 0.39 0.38 0.15 0.45 0.21 0.24 0.24 1.3 0.46 0.20 0.21 0.16 3.0 2.5 0.13	RL 4.7 4.7 2.8 2.4 2.4 2.4 4.7 2.4 4.7 2.4 4.7 7.1 4.7 7.1 4.7 7.1 4.7 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
Surrogate DCB Decachlorot Tetrachloro-m-xyl Method: Preparation: Dilution: Date Analyzed: Date Prepared:	biphenyl ene 8081A 3550B 1.0 12/03/2007 11/27/2007	1734 1227	%Rec 121 91 Analysis Batch Prep Batch: 22	220-11521 0-11392	.,	Accep 25 - 24 - Instrument ID: H Lab File ID: C Initial Weight/Volum Final Weight/Volum Injection Volume: Column ID:	tance Limits 159 154 P 5890 with dual ECD 7507052.D ne: 30.44 g ne: 10.0 mL 1 uL SECONDARY
Surrogate DCB Decachlorol Tetrachloro-m-xy	biphenyl lene		%Rec 114 88	; 	میں میں ہی	Acce 25 - 24 -	otance Limits 159 154

(man 1109 11 18 198 DD \mathbb{M} 12/19/2007

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-03(4-5)

Lab Sample ID: Client Matrix:	220-3395-4 Solid	% Moisture: 30.3		Date Sampled: Date Received:	11/13/2007 1400 11/15/2007 1634
	8082 Polyc	chlorinated Biphenyls (PCBs) b	y Gas Chr	omatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 11/29/2007 2315 11/27/2007 1227	Analysis Batch: 220-1149 Prep Batch: 220-11392	7	Instrument ID: HF Lab File ID: D4 Initial Weight/Volume Final Weight/Volume Injection Volume: Column ID: P	9 5890 with dual ECD 663122.d e: 30.44 g : 10.0 mL 1 uL ?RIMARY
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	DryWt	Corrected: Y Result (ug/Kg) 24 47 24 24 24 24 24 24 24 24	Qualifie U U U U U U U U	er MDL 4.0 2.2 2.6 4.2 3.8 1.7 5.6	RL 24 47 24 24 24 24 24 24 24 24
Surrogate Tetrachloro-m-xyle DCB Decachlorob	ene iphenyl	%Rec 69 106		Accepta 24 - 1 25 - 1	ance Limits 54 59

D& 1/18/08

Client Sample ID: EHS-GP-03(4-5)

GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	A7K170204-004 11/13/07 14:00 11/26/07 7330014	Work Order #: Date Received: Analysis Date:	KCH5M1AC 11/17/07 11/27/07	Matrix	·····:	SO
Dilution Factor:	1	Initial Wgt/Vol:	50.03 g	Final	Wgt/Vol:	100 mL
<pre>% Moisture:</pre>	28	Method:	SW846 8151	Ą		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	110	ug/kg	50	
2,4,5-TP		ND	28	ug/kg	3.0	
2,4,5-T		ND	28	ug/kg	4.4	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichloropheny	lacetic acid	69	(19 - 122)			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

2B 11(8/08

[]12 [64m]08

Client Sample ID: EHS-GP-03(4-5)

General Chemistry

Lot-Sample #...: A7K170204-004 Work Order #...: KCH5M Matrix...... SO Date Sampled...: 11/13/07 14:00 Date Received..: 11/17/07 % Moisture....: 28

PARAMETER	RESULT		UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	23.4 þ	J 41.6 Dilution Facto	mg/kg or: 1	SW846 9030B/9034 MDL 7.8	11/19/07	7323421
Percent Solids	72.2	10.0 Dilution Facto	8 or: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330568

NOTE (S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

112108

Lab Sample ID: Client Matrix:	220-3395 Solid	5-14	c	% Moisture:	3.1		Date Sampled: Date Received:	11/14/2007 1324 11/15/2007 1634	
		826	0B Volatile	e Organic Co	mpounds	s by GC	/MS		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 11/21/2007 11/21/2007	0344 0344	Analys	is Batch: 220	-11269		Instrument ID: H Lab File ID: N Initial Weight/Volum Final Weight/Volume	P 5890/5971A GC/MS 6068.D e: 5 g e: 5 mL	
Analyte		DryWt C	orrected: Y	Result (ug/K	g)	Qualifie	er MDL	RL	
Acetone Benzene Bromodichloromett Bromoform Bromomethane Methyl Ethyl Keton Carbon disulfide Carbon tetrachlorid Chlorobenzene Chlorobenzene Chlorothane Dibromochloromett 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropar cis-1,3-Dichloropro trans-1,3-Dichloropro trans-1,3-Dichloropro Ethylbenzene 2-Hexanone Methylene Chloride methyl isobutyl ket Styrene 1,1,2,2-Tetrachloro Tetrachloroethene Toluene 1,1,1-Trichloroetha 1,1,2-Trichloroetha Trichloroethene Vinyl chloride Xylenes, Total cis-1,2-Dichloroeth	hane le de hane e oppene propene e cone bethane ane ane ane		√21U	$\begin{array}{c} 4.8\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2$			$\begin{array}{c} 2.4\\ 0.73\\ 0.67\\ 1.8\\ 1.6\\ 3.5\\ 0.55\\ 0.73\\ 0.91\\ 1.3\\ 0.55\\ 1.0\\ 1.1\\ 0.67\\ 1.1\\ 0.67\\ 1.1\\ 0.67\\ 1.1\\ 0.64\\ 1.1\\ 0.73\\ 2.7\\ 1.4\\ 0.97\\ 1.3\\ 2.7\\ 1.4\\ 0.97\\ 1.3\\ 1.1\\ 0.76\\ 0.61\\ 0.75\\ 0.90\\ 1.0\\ 1.3\\ 2.5\\ 0.95\\ 0.90\end{array}$	$\begin{array}{c} 21 \\ 5.2 \\ $	
trans-1,2-Dichloroe	ethene			5.2		U	0.99	5.2	
Surrogate 1,2-Dichloroethane 4-Bromofluoroben Dibromofluorometh Toluene-d8 (Surr)	e-d4 (Surr) zene hane		·	%Rec 99 96 96 89			Accep 49 - 36 - 60 - 51 -	ance Limits 134 133 130 137	

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-03(44-45)

Client: GEI Con	sultants, Inc.		Job	Number: 220-3395-1	
Client Sample ID:	EHS-GP-03(44	-45)		5	ag Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-14 Solid	% Moisture: 3.1		Date Sampled: Date Received:	11/14/2007 1324 11/15/2007 1634
	8270C Semivolatil	e Compounds by Gas Chromatogra	phy/Mass	Spectrometry (GC/	MS)
Method:	8270C	Analysis Batch: 220-11515		Instrument ID: HP	6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11441		Lab File ID: U2: Initial Woight/Volume	218.D
Date Analyzed:	11/30/2007 2218			Final Weight/Volume	. 10.50 g 10 ml
Date Prepared:	11/28/2007 2045			Injection Volume:	1 uL
Analyte	Dry	Wt Corrected: Y Result (ug/Kg)	Qualifie	r MDL	RL
Acenaphthene		330	U	58	330
Acenaphthylene		330	0	63 64	330
Renzolalanthracen	é	330	11	48	330
Benzo[a]ovrene	0	330	U U	43	330
Benzolb)fluoranthe	ne	330	Ŭ	57	330
Benzo[g,h,i]perylen	ie	330	Ū	65	330
Benzo[k]fluoranthe	ne	330	U	55	330
Bis(2-chloroethoxy))methane	330	U	54	330
Bis(2-chloroethyl)et	ther	330	U	160	330
Bis(2-ethylhexyl) pl	nthalate	330	U	43	330
Butyl benzyl phthal	ate	330	U	47	330
Carbazole		330	U	57	330
Din butyl obtholate	、 、	330	U	58 E4	330
Di-n-butyl primalate	>	330	1	53	330
4-Bromonhenvl phe	nyl ether	330	11	54 54	330
4-Chloroaniline	silyr culor	330	Ű	44	330
2-Chloronaphthaler	ne	330	Ŭ	58	330
4-Chlorophenyl phe	enyl ether	330	Ŭ	65	330
Dibenz(a,h)anthrac	ene	330	Ū	50	330
Dibenzofuran		330	U	58	330
Diethyl phthalate		330	U	82	330
Dimethyl phthalate		330	U	59	330
1,2-Dichlorobenzer	e	330	U	53	330
1,3-Dichlorobenzer	ie	330	U	54	330
1,4-Dichlorobenzer	10	330	U	52	330
3,3'-Dichlorobenzid	ine	670	U	37	670
2,4-Dinitrotoluene		330	U	51	330
Z,6-Dinitrotoluene		330	0	130	330
Fluorene		330	1	57	330
Hexachlorohenzen	۵	330	1	57	330
Hexachlorobutadie	° ne	330	Ŭ	63	330
Hexachlorocyclope	ntadiene	330	Ŭ	47	330
Hexachloroethane		330	Ū	58	330
Indeno[1,2,3-cd]pyr	rene	330	U	59	330
Isophorone		330	U	68	330
2-Methylnaphthaler	ne	330	U	61	330
Naphthalene		330	U	51	330
2-Nitroaniline		1600	U	45	1600
3-Nitroaniline		1600	U	47	1600
	domino	330	U	61	330
iv-ivitrosoai-n-propy	namine	330	U	14	330
TestAmerica Con	necticut	Page 50 of 219	6	Enricolo	12/19/2007
		DB .		~11.	
		(/18/0	8	r r	

Analytical Data

Client: GEI Cor	lient: GEI Consultants, Inc. Job Number: 220-3395-1 Sda Number: 220-3395-1								
Client Sample ID:	EHS-GP-03(44-45)			0	ug Number, 220-3395				
Lab Sample ID: Client Matrix:	220-3395-14 Solid	% Moisture: 3.1		Date Sampled: Date Received:	11/14/2007 1324 11/15/2007 1634				
	8270C Semivolatile Con	pounds by Gas Chromatogra	phy/Mass S	pectrometry (GC/I	MS)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 1.0 11/30/2007 2218 11/28/2007 2045	Analysis Batch: 220-11515 Prep Batch: 220-11441	Ins La Ini Fir Inj	strument ID: HP Ib File ID: U22 tial Weight/Volume: nal Weight/Volume: ection Volume:	6890/5973 GC/MS 218.D 15.36 g 1.0 mL 1 uL				
Analyte	DryWt Co	rrected: Y Result (ug/Kg)	Qualifier	MDL	RL				
N-Nitrosodiphenyla Phenanthrene Pyrene 1,2,4-Trichlorobenz 4-Chloro-3-methylp 2-Chlorophenol 2-Methylphenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 4,6-Dinitro-2-methy 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichloropher 2,4,6-Trichloropher Benzyl alcohol 4-Nitroaniline 2,2'-oxybis[1-chloro	imine zene shenol I I I I I I I I I I I I I I I I I I I	330 330 330 330 330 330 330 330 330 330		60 55 49 53 66 72 53 50 69 45 220 260 71 150 23 40 50 49 69 50 50 54	330 330 330 330 330 330 330 330 330 330				
Surrogate		%Rec		Accenta	nce Limits				
2-Fluorobiphenyl 2-Fluorophenol 2,4,6-Tribromophel Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	nol	99 93 98 92 94 111		32 - 13 25 - 11 24 - 15 25 - 12 27 - 12 35 - 14	1 3 0 0 2 0				

12/19/2007

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID: EHS-GP-03(44-45)

Lab Sample ID: Client Matrix:	220-3395-14 Solid		% Moisture: 3.1	Dat Dat	e Sampled: e Received:	11/14/2007 1324 11/15/2007 1634
	6010B Indu	ctively Cou	upled Plasma - Atomic	Emission Spec	trometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1633 11/19/2007 1407	Analys Prep E	is Batch: 220-11308 9atch: 220-11213	Instrum Lab File Initial W Final W	ent ID: 2 ID: /eight/Volume: /eight/Volume:	TJA Trace ICAP W112107 1.51 g 250 mL
Analyte	DryWt Corre	cted: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver	المتحاد معيارهم والعرابين المراجع		2.6	Ŭ	0.26	2.6
Aluminum			466		7.9	85.4
Arsenic			6.8	U	1.2	6.8 1 7
Barium			4.0 J		0.19	1.7
Beryllium			1.7	U	0.39	171
Calcium			280 2	FI	0.70	43
Cadmium			4.3	0	0.19	17
Cobalt			1.7	Tr V	0.44	2.6
Chromium			1.2	T	0.38	4.3
Copper			1110	N.	8.4	51.3
Iron			642 17111 V	-:	20.5	171
Potassium			126 7		5.3	29.9
Magnesium			17.0		0.56	5.1
Manganese			171	U	16.2	171
Nierol			0.54	J -	0.38	4.3
INICKEI			0.76	J	0.72	4.3
Antimony			8.5	UT	1.2	8.5
Solopium			8.5	ັບ	1.4	8.5
Thallium			12.8	U	1.9	12.8
Vanadium			1.6	J	0.27	3.4
Zinc			17.1	U	1.9	17.1

7471A Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/26/2007 1433 11/23/2007 1041	Analysis Batch: 220-11359 Prep Batch: 220-11309	Instrume Lab File Initial We Final We	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		6
Analyte	DryWt Corrected:	Y Result (mg/Kg)	Qualifier	MDL	RL	
Moroura	and the second	0.047	υ	0.012	0.047	

0.047

1/2/09

Mercury

12/19/2007

Job Number: 220-3395-1

Client: GEI Consultants, Inc. Sdg Number: 220-3395 EHS-GP-03(44-45) Client Sample ID: 11/14/2007 1324 Date Sampled: 220-3395-14 Lab Sample ID: 11/15/2007 1634 Date Received: % Moisture: 3.1 Solid Client Matrix: 8081A Organochlorine Pesticides by Gas Chromatography HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11521 8081A Method: D7507064.D Lab File ID: Prep Batch: 220-11392 3550B Preparation: 30.04 q Initial Weight/Volume: 1.0 Dilution: 10.0 mL Final Weight/Volume: 12/03/2007 2150 Date Analyzed: 1 uL Injection Volume: Date Prepared: 11/27/2007 1227 PRIMARY Column ID: MDL RL Qualifier DryWt Corrected: Y Result (ug/Kg) Analyte 3.4 0.39 ガナン 3.4 4,4'-DDD 340.45 U 3.4 4.4'-DDE 34 UJ / 0.32 3.4 4,4'-DDT 2.1 0.37 2.1 υ Aldrin 0.28 1.8 U 1.8 alpha-BHC 1.8 0.28 U 1.8 beta-BHC 1.8 0.11 U 1.8 delta-BHC 3.4 0.33 3.4 U Dieldrin 0.15 1.8 U 1.8 Endosulfan I 3.4 0.18 U 3.4 Endosulfan II 3.4 0.18 U 3.4 Endosulfan sulfate 5.2 0.92 U 5.2 Endrin 3.4 0.33 U 3.4 Endrin aldehyde 0.15 34 U 3.4 Endrin ketone 1.8 U 0.16 1.8 gamma-BHC (Lindane) 1.8 0.15 1.8 11 Heptachior 1.8 0.12 -+-+-1.8 0.52 J 1.0.... Heptachlor epoxide 18 2.2 18 U Methoxychlor 69 1.8 U 69 Toxaphene 0.11 1.8 1.8 IJ alpha-Chlordane 0.094 1.8 U 1.8 gamma-Chlordane Acceptance Limits %Rec Surrogate 25 - 159 108 DCB Decachlorobiphenyl 24 - 154 98 Tetrachloro-m-xylene HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11521 8081A Method: C7507064.D Lab File ID: Prep Batch: 220-11392 3550B Preparation: 30.04 g Initial Weight/Volume: 1.0 Dilution: Final Weight/Volume: 10.0 mL 12/03/2007 2150 Date Analyzed: 1 uL Injection Volume: 11/27/2007 1227 Date Prepared: SECONDARY Column ID: Acceptance Limits %Rec Surrogate 25 - 159105 DCB Decachlorobiphenyl 24 - 154 97 Tetrachloro-m-xylene NS

1/18/08

12/19/2007

111100

Job Number: 220-3395-1 Sdg Number: 220-3395

11/14/2007 1324

Date Received: 11/15/2007 1634

Date Sampled:

Client: GEI Consultants, Inc.

Client Sample ID:EHS-GP-03(44-45)Lab Sample ID:220-3395-14Client Matrix:Solid% Moisture:3.1

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 11/30/2007 0 11/27/2007 1	Analys Prep E 1227	iis Batch: 220-114 }atch: 220-11392	97	Instrument ID: HP 5890 with du Lab File ID: D4663134.d Initial Weight/Volume: 30.04 Final Weight/Volume: 10.0 r Injection Volume: 1 uL		al ECD } L
					Column ID:	PRIMARY	
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifi	er MDI	RI	
PCB-1016	· · · · · · · · · · · · · · · · · · ·	······································	18		20	1	
PCB-1221			34	ŭ	1.0	24	
PCB-1232			18	ц	1.0	10	
PCB-1242			18	Ü	3.1	40	
PCB-1248			18	11	20	10	
PCB-1254			18	U U	2.0	10	
PCB-1260			18	υ	4.1	18	
Surrogate			%Rec		Acc	eptance Limits	
Tetrachloro-m-xylei	ne		72	· · · · · · · · · · · · · · · · · · ·		- 154	
DCB Decachlorobip	ohenyl		80		25	j - 159	

Client Sample ID: EHS-GP-03(44-45)

GC Semivolatiles

Lot-Sample #:	A7K170204-014	Work Ore	der #:	KCH51	1AC		Matriz	x:	SO
Date Sampled:	11/14/07 13:35	Date Red	ceived:	11/17	/07				
Prep Date:	11/26/07	Analysis	s Date:	11/27	/07				
Prep Batch #:	7330014								
Dilution Factor:	1	Initial	Wgt/Vol:	50.05	g		Final	Wqt/Vol:	100 mL
<pre>% Moisture:</pre>	4.8	Method.		SW846	8151.	A		-	
				REPOR	TING				
PARAMETER		RESULT		LIMIT		UNIT	S	MDL	
2,4-D		ND		84		ug/k	g	38	
2,4,5-TP		ND		21		ug/k	q	2.3	
2,4,5-T		ND		21		ug/k	g	3.4	
		PERCENT		RECOVE	ERY				
SURROGATE		RECOVERY	(LIMITS	3				
2,4-Dichloropheny	lacetic acid	97		(19 -	122)				
2,4,5-TP 2,4,5-T SURROGATE 2,4-Dichloropheny	lacetic acid	ND ND PERCENT <u>RECOVERY</u> 97	<u>.</u>	21 21 RECOVE LIMITS (19 -	ERY 5 122)	ug/k ug/k	à a	2.3 3.4	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Dß 1/18/08

Client Sample ID: EHS-GP-03(44-45)

General Chemistry

Lot-Sample #...: A7K170204-014 Work Order #...: KCH51 Matrix..... SO Date Sampled...: 11/14/07 13:35 Date Received..: 11/17/07 % Moisture....: 4.8

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	ND UJ / Dilu	31.5 tion Facto	mg/kg r: l	SW846 9030B/9034 MDL 5.9	11/21/07	7325534
Percent Solids	95.2 Dilu	10.0 tion Facto	% r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE (S) :

RL. Reporting Limit

Results and reporting limits have been adjusted for dry weight.

1/2/08

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

•

Client Matrix: Solid % Moisture: 31.9 Date Received: 11/15/2007 1634	Client Matrix:	220-3395-5 Solid	% Moisture:	31.9	Date Sampled: Date Received:	11/13/2007 1450 11/15/2007 1634
--	----------------	---------------------	-------------	------	---------------------------------	------------------------------------

Method:	8260B	Analysis Batch: 220-11269	Instrument ID:	HP 5890/59	971A GC/MS
Preparation:	5030B		Lab File ID:	N6060.D	
Dilution:	1.0		Initial Weight/Volu	ume: 5	g
Date Analyzed:	11/21/2007 0022		Final Weight/Volu	ıme: 5	mL
Date Prepared:	11/21/2007 0022				

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL.	RL	
Acetone	290 7.8		3.4	29	
Benzene	7.3	U	1.0	7.3	
Bromodichloromethane	7.3	U	0.95	7.3	
Bromoform	7.3	U	2.5	7.3	
Bromomethane	7.3	U	2.2	7.3	
Methyl Ethyl Ketone	15	U	4.9	15	
Carbon disulfide	7.3	U	0.78	7.3	
Carbon tetrachloride	7.3	U	1.0	7.3	
Chlorobenzene	7.3	U	1.3	7.3	
Chloroethane	7.3	U	1.9	7.3	
Chloroform	7.3	U	0.78	7.3	
Chloromethane	7.3	U	1.5	7.3	
Dibromochloromethane	7.3	U	1.6	7.3	
1,1-Dichloroethane	7.3	U	0.95	7.3	
1,2-Dichloroethane	7.3	U	1.6	7.3	
1,1-Dichloroethene	7.3	U	1.2	7.3	
1,2-Dichloropropane	7.3	U	1.4	7.3	
cis-1,3-Dichloropropene	7.3	U	0.91	7.3	
trans-1,3-Dichloropropene	7.3	U	1.6	7.3	
Ethylbenzene	7.3	U	1.0	7.3	
2-Hexanone	/ 15	U	3.9	15	
Methylene Chloride	V29V 3.6	-	2.1	29	
methyl isobutyl ketone	7.3	U	1.4	7.3	
Styrene	7.3	U	1.9	7.3	
1,1,2,2-Tetrachloroethane	7.3	U	1.5	7.3	
Tetrachloroethene	7.3	U /	1.1	7.3	
Toluene	7.3	UX	0.87	7.3	
1,1,1-Trichloroethane	7.3	U	1.1	7.3	
1,1,2-Trichloroethane	7.3	U	1.3	7.3	
Trichloroethene	7.3	U	1.5	7.3	
Vinyl chloride	7.3	U	1.9	7.3	
Xylenes, Total	7.3	U	3.6	7.3	
cis-1,2-Dichloroethene	7.3	U	1.4	7.3	
trans-1,2-Dichloroethene	7.3	U	1.4	7.3	
Surrogate	%Rec		Accep	tance Limits	
1,2-Dichloroethane-d4 (Surr)	96		49 -	134	
4-Bromofluorobenzene	88		36 - 1	133	
Dibromofluoromethane	92		60 -	130	
Toluene-d8 (Surr)	94		51 - 1	137	

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

.

Client Sample ID: EHS-GP-04(4-5) Lab Sample ID: 220-3395-5 Date Sampled: 11/13/2007 1450 Client Matrix: Solid % Moisture: 31.9 Date Received: 11/15/2007 1634

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-11422	Instrument ID:	HP 6890/	5973	GC/MS
Dilution:	1.0	Prep Batch: 220-11378	Lab File ID: Initial Weight/Voli	U2140.D ume:	(5.08	a
Date Analyzed:	11/27/2007 2207		Final Weight/Volu	ime:	l ml	
Date Prepared:	11/27/2007 0953		Injection Volume:		l uL	

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL	
Acenaphthene	480	Ų	84	480	
Acenaphthylene	480	U	92	480	
Anthracene	480	U	78	480	
Benzo[a]anthracene	480	U	70	480	
Benzo[a]pyrene	480	U	62	480	
Benzo[b]fluoranthene	480	U	82	480	
Benzo[g,h,i]perylene	480	U	94	480	
Benzo[k]fluoranthene	480	U	79	480	
Bis(2-chloroethoxy)methane	480	U	78	480	
Bis(2-chloroethyl)ether	480	U	240	480	
Bis(2-ethylhexyl) phthalate	63	JJ	62	480	
Butyl benzyl phthalate	480	U	68	480	
Carbazole	480	U	82	480	
Chrysene	480	U	85	480	
Di-n-butyl phthalate	480	U	74	480	
Di-n-octyl phthalate	480	U	76	480	
4-Bromophenyl phenyl ether	480	U	78	480	
4-Chloroaniline	480	U	64	480	
2-Chloronaphthalene	480	U	84	480	
4-Chlorophenyl phenyl ether	480	U	95	480	
Dibenz(a,h)anthracene	480	U	73	480	
Dibenzofuran	480	U	84	480	
Diethyl phthalate	480	U	120	480	
Dimethyl phthalate	480	U	85	480	
1,2-Dichlorobenzene	480	U	76	480	
1,3-Dichlorobenzene	480	U	78	480	
1,4-Dichlorobenzene	480	U	75	480	
3,3'-Dichlorobenzidine	960	U	54	960	
2,4-Dinitrotoluene	480	U	73	480	
2,6-Dinitrotoluene	480	U	190	480	
Fluoranthene	480	U	80	480	
Fluorene	480	U	82	480	
Hexachlorobenzene	480	U	83	480	
Hexachlorobutadiene	480	U	92	480	
Hexachlorocyclopentadiene	480	U	68	480	
Hexachloroethane	480	U	83	480	
Indeno[1,2,3-cd]pyrene	480	U	85	480	
Isophorone	480	U	99	480	
2-Methylnaphthalene	480	IJ	88	480	
Naphthalene	480	U	73	480	
2-Nitroaniline	2300	U	65	2300	
3-Nitroaniline	2300	U	69	2300	
Nitrobenzene	480	U	89	480	
N-Nitrosodi-n-propylamine	480	U	110	480	
TestAmerica Connecticut	Page 32 of 2.	196 pB	8 EMH 1/101	0 % 12/19/2	2007

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 EHS-GP-04(4-5) **Client Sample ID:** Lab Sample ID: 220-3395-5 Date Sampled: 11/13/2007 1450 **Client Matrix:** Solid % Moisture: Date Received: 31.9 11/15/2007 1634 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-11422 Instrument ID: HP 6890/5973 GC/MS Preparation: 3541 Prep Batch: 220-11378 Lab File ID: U2140.D **Dilution:** 1.0 Initial Weight/Volume: 15.08 g Date Analyzed: 11/27/2007 2207 Final Weight/Volume: 1 mL Date Prepared: 11/27/2007 0953 Injection Volume: 1 uL DryWt Corrected: Y Result (ug/Kg) Qualifier Analyte MDL RL N-Nitrosodiphenylamine 480 480 Û 87 Phenanthrene 480 U 79 480 480 Pyrene U 71 480 1,2,4-Trichlorobenzene 480 U 77 480 4-Chloro-3-methylphenol 480 U 480 96 2-Chlorophenol 480 U 100 480 2-Methylphenol 480 U 76 480 4-Methylphenol 480 U 72 480 2,4-Dichlorophenol 480 IJ 100 480 2,4-Dimethylphenol 480 U 65 480 2,4-Dinitrophenol 2300 U٨ 320 2300 4,6-Dinitro-2-methylphenol 2300 U۳ 370 2300 2-Nitrophenol 480 U 100 480 4-Nitrophenol 2300 U 220 2300 Pentachlorophenol 2300 U 34 2300 Phenol 480 U 58 480 2,4,5-Trichlorophenol 2300 U 73 2300 2,4,6-Trichlorophenol U 70 480 480 Benzyl alcohol U 480 100 480 4-Nitroaniline 960 U 72 960 2,2'-oxybis[1-chloropropane] 480 U 78 480 %Rec Surrogate Acceptance Limits 2-Fluorobiphenyl 72 32 - 131 2-Fluorophenol 71 25 - 113 2,4,6-Tribromophenol 24 - 150 90 Nitrobenzene-d5 65 25 - 120 75 Phenol-d5 27 - 122 Terphenyl-d14 99 35 - 140

Page 33 of 2196

1/18/08 EMM 108

12/19/2007

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-04(4-5)

Lab Sample ID: Client Matrix:	220-3395-5 Solid		% Moisture: 31.9	Dat Dat	te Sampled: te Received:	11/13/2007 1450 11/15/2007 1634
	6010B Indu	ctively Co	upled Plasma - Atomic	Emission Spec	trometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1542 11/19/2007 1407	Analys Prep E	is Batch: 220-11308 Batch: 220-11213	Instrum Lab File Initial W Final W	ent ID: EID: /eight/Volume: eight/Volume:	TJA Trace ICAP W112107 1.41 g 250 mL
Analyte	DryWt Correc	cted: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver	•	يتها يتفر يردد الدريا	3.9	U	0.39	3.9
Aluminum			14300		12.0	130
Arsenic			3.0	J	1.8	10.4
Barium			21.1 J /		0.29	2.6
Beryllium			2.6	U	0.60	2.6
Calcium			665 J		16.1	260
Cadmium			6.5	U	1.2	6.5
Cobalt			5.0 J		0.68	2.6
Chromium			17.2	4	0.44	3.9
Copper			5.2	J √	0.57	6.5
Iron			12900		12.7	78.1
Potassium			379 J /		31.2	260
Magnesium			2350 エゾ		8.1	45.5
Manganese			96.4	1	0.86	7.8
Sodium			54.3	J/	24.7	260
Nickel			10.4 J		0.57	6.5
Lead			7.4		1.1	6.5
Antimony			13.0	UT	1.8	13.0
Selenium			13.0	U	2.1	13.0
Thallium			19.5	U	2.9	19.5
Vanadium			24.7		0.42	5.2
Zinc			26.8		2.9	26.0

7471A Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0950 11/20/2007 1555	Analysis Batch: 220-11278 Prep Batch: 220-11264	Instrumen Lab File II Initial Weig Final Weig	t ID:): jht/Volume: ht/Volume:	Perkin Elmer FIMS N/A 0.62 g 50 mL
Analyte Mercury	DryWt Corrected	Y Result (mg/Kg) 0.027	Qualifier	MDL 0.018	RL 0.071

1/2100

B 118/08

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

•

Lab Sample ID: Client Matrix: Method: 8 Preparation: 3	220-3395-5 Solid 8081A Org 3081A 3550B	% Moisture: 31.9 anochlorine Pesticides by Gas Analysis Batch: 220-11521	G Chromato	Date Sampled: Date Received:	11/13/2007 1450 11/15/2007 1634
Method: &	8081A Org 3081A 3550B 1.0	anochlorine Pesticides by Gas Analysis Batch: 220-11521	Chromato	i	
Method: 8 Preparation: 3	8081A 3550B	Analysis Batch: 220-11521		ograpny	
Dilution: Date Analyzed: Date Prepared:	12/03/2007 1755 11/27/2007 1227	Prep Batch: 220-11392	In: La In Fi In Co	strument ID: H ab File ID: D itial Weight/Volum nal Weight/Volum jection Volume: olumn ID:	P 5890 with dual ECD 7507053.D e: 30.89 g e: 10.0 mL 1 uL PRIMARY
Apolyta	DrvWt Co	rrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Linda Heptachlor Heptachlor epoxide Methoxychlor Toxaphene alpha-Chlordane gamma-Chlordane	ine)	4.7 4.7 4.7 2.9 2.4 2.4 2.4 4.7 2.4 4.7 7.1 4.7 7.1 4.7 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4		$\begin{array}{c} 0.54\\ 0.62\\ 0.44\\ 0.51\\ 0.39\\ 0.38\\ 0.15\\ 0.46\\ 0.21\\ 0.24\\ 0.25\\ 1.3\\ 0.46\\ 0.21\\ 0.22\\ 0.21\\ 0.22\\ 0.21\\ 0.16\\ 3.0\\ 2.5\\ 0.16\\ 0.13\\ \end{array}$	4.7 4.7 4.7 4.7 2.9 2.4 2.4 2.4 2.4 2.4 4.7 2.4 2.4
Surrogate DCB Decachlorobig	phenyl	%Rec 100 74	ara 11100 - 1110	Acce 25 - 24 -	ptance Limits - 159 - 154
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/03/2007 1755 11/27/2007 1227	Analysis Batch: 220-11521 Prep Batch: 220-11392	 	nstrument ID: I ab File ID: (nitial Weight/Volu Final Weight/Volur njection Volume: Column ID:	HP 5890 with dual ECD C7507053.D me: 30.89 g ne: 10.0 mL 1 uL SECONDARY
Surrogate DCB Decachlorobi Tetrachloro-m-xyle	phenyl ne	%Rec 97 72		Acce 25 24	aptance Limits - 159 - 154

1/1/3

Þß 1/18/08

TestAmerica Connecticut

12/19/2007

Client: GEI Cor	nsultants, Inc.				Job Number: 220-3395-1
Client Sample ID	: EHS-GP-04(4-5)				Sdg Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-5 Solid	% Moisture:	31.9	Date Samp Date Rece	oled: 11/13/2007 1450 ived: 11/15/2007 1634
	8082 Polych	lorinated Biphenyls (PCI	3s) by Gas C	hromatography	nen alter an annan sa annan sa annan an
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 11/29/2007 2331 11/27/2007 1227	Analysis Batch: 220- Prep Batch: 220-1139	1497 92	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo Injection Volum Column ID:	HP 5890 with dual ECD D4663123.d plume: 30.89 g flume: 10.0 mL e: 1 uL PRIMARY
Analyte	DryWt Co	prrected: Y Result (ug/Kg) Qual	ifier MDL	RI
PCB-1016	kana a kana sa antikana ya kutan si yang	24	U	4.0	24
PCB-1221		47	U	2.2	47
PCB-1232		24	U	2.7	24
PCB-1242		24	U	4.3	24
PCB-1248		24	U	3.8	24
PCB-1254		24	U	1.7	24
PCB-1260		24	U	5.7	24
Surrogate		%Rec		Ac	ceptance Limits
Tetrachloro-m-xyle	ne	62	ant a standar and	2	4 - 154
DCB Decachlorobi	ohenyl	93		2	5 - 159

(Jour 15/21/2

Page 70 of 2196

12/19/2007

16

11808

Client Sample ID: EHS-GP-04(4-5)

GC Semivolatiles

Lot-Sample #: A7K170204-005		Work Order #:	KCH5N1AC	Matriz	Matrix: SO	
Date Sampled:	11/13/07 14:50	Date Received:	11/17/07			
Prep Date:	11/26/07	Analysis Date:	11/27/07			
Prep Batch #:	7330014					
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	50.02 g	Final	Wgt/Vol:	100 mL
% Moisture:	29	Method:	SW846 8151	A		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	110	ug/kg	51	
2,4,5-TP		ND	28	ug/kg	3.1	
2,4,5-T		ND	28	ug/kg	4.5	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichloropheny	vlacetic acid	75	(19 - 122)			

NOTE (S) :

.

Results and reporting limits have been adjusted for dry weight.

58

÷

Client Sample ID: EHS-GP-04(4-5)

General Chemistry

Lot-Sample #...: A7K170204-005 Work Order #...: KCH5N Mat: Date Sampled...: 11/13/07 14:50 Date Received..: 11/17/07 % Moisture....: 29

Matrix..... SO

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	8.8 \$ J	, 42.4 tion Facto	mg/kg r: 1	SW846 9030B/9034 MDL 7.9	11/19/07	7323421
Percent Solids	70.8 Dilu	10.0 tion Facto	ද r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Jr. 1510.

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

N6090.D

5 g

5 mL

Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

Client Sample ID): EHS-GP-04 (44-4	5)		
Lab Sample ID: Client Matrix:	220-3404-1 Solid	% Moisture: 6.6	Date Sample Date Receive	ed: 11/16/2007 1040 ed: 11/16/2007 2100
	Ę	3260B Volatile Organic Compound	is by GC/MS	
Method:	8260B	Analysis Batch: 220-11324	Instrument ID:	HP 5890/5971A GC/MS

Method:	8260B	
Preparation:	5030B	
Dilution:	1.0	
Date Analyzed:	11/21/2007	1903
Date Prepared:	11/21/2007	1903

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Acetone	1/210	-5.4	J-J-	2.5	21
Benzene	0	5.4	U	0.76	5.4
Bromodichloromethane		5.4	U	0.70	5.4
Bromoform		5.4	U	1.9	5.4
Bromomethane		5.4	U	1.6	5.4
Methyl Ethyl Ketone		11	U	3.6	11
Carbon disulfide		5.4	U	0.57	5.4
Carbon tetrachloride		5.4	U	0.76	5.4
Chlorobenzene		5.4	U	0.94	5.4
Chloroethane		5.4	U	1.4	5.4
Chloroform		5.4	U	0.57	5.4
Chloromethane		5.4	U	1.1	5.4
Dibromochloromethane		5.4	U	1.1	5.4
1,1-Dichloroethane		5.4	U	0.70	5.4
1,2-Dichloroethane		5.4	U	1.2	5.4
1,1-Dichloroethene		5.4	U	0.85	5.4
1,2-Dichloropropane		5.4	U	1.0	5.4
cis-1,3-Dichloropropene		5.4	U	0.66	5.4
trans-1,3-Dichloropropene		5.4	U	1.1	5.4
Ethylbenzene		5.4	U	0.76	5.4
2-Hexanone		11	U	2.8	11
Methylene Chloride	210	-3.5	J -	1.5	21
methyl isobutyl ketone		5.4	U	1.0	5.4
Styrene		5.4	U	1.4	5.4
1,1,2,2-Tetrachloroethane		5.4	U	1.1	5.4
Tetrachloroethene		5.4	U	0.79	5.4
Toluene		5.4	U	0.63	5.4
1,1,1-Trichloroethane		5.4	U	0.78	5.4
1,1,2-Trichloroethane		5.4	U	0.93	5.4
Trichloroethene		5.4	U	1.1	5.4
Vinyl chloride		5.4	U	1.4	5.4
Xylenes, Total		5.4	U	2.6	5.4
cis-1,2-Dichloroethene		5.4	U	0.99	5.4
trans-1,2-Dichloroethene		5.4	U	1.0	5.4
Surrogate		%Rec		Accepta	nce Limits
1,2-Dichloroethane-d4 (Surr)		82		49 - 13	4
4-Bromofluorobenzene		42		36 - 13	3
Dibromofluoromethane		81		60 - 13	0
Toluene-d8 (Surr)		61		51 - 13	57

Client: GEI Consultants, Inc.

Job Number: 220-3404-1

	·			S	dg Number: 220-3404
Client Sample ID	EHS-GP-04 (44-45)				-
Lab Sample ID:	220-3404-1			Date Sampled:	11/16/2007 1040
Client Matrix:	Solid	% Moisture: 6.6		Date Received:	11/16/2007 2100
	8270C Semivolatile Co	mpounds by Gas Chromatogra	phy/Mass	Spectrometry (GC/I	WS)
Method:	8270C	Analysis Batch: 220-11555	1	nstrument ID: HP	6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11477	L	ab File ID: U22	241.D
Dilution:	1.0		1	nitial Weight/Volume:	15.14 g
Date Analyzed:	12/03/2007 1844		F	Final Weight/Volume:	1 mL
Date Prepared:	11/29/2007 1810		1	njection Volume:	1 uL
A sale da			Qualifia		
Analyte	DIYWIC		Quaimer		750
Acenaphinene		30U 250	U H	67	350
Acenaphtnylene		350	U	07	350
Anthracene		350	0	00	350
Benzolajanthrace	ne	350	U	51	350
Benzo[a]pyrene		350	U	45	350
Benzo[b]fluoranth	ene	350	U	60	350
Benzo[g,h,i]peryle	ene	350	U	68	350
Benzo[k]fluoranthe	ene	350	U	57	350
Bis(2-chloroethoxy	y)methane	350	U	57	350
Bis(2-chloroethyl)	ether	350	U	170	350
Bis(2-ethylhexyl) p	ohthalate	350	U	45	350
Butyl benzyl phtha	alate	350	U	49	350
Carbazole		350	U	60	350
Chrysene		350	U	62	350
Di-n-butyl phthalal	te	350	U	54	350
Di-n-octyl phthalat	te	350	U	55	350
4-Bromophenyl ph	nenvl ether	350	U	57	350
4-Chloroaniline	5	350	U	47	350
2-Chloronaphthale	ene	350	U	61	350
4-Chlorophenyl ph	penvl ether	350	Ū	69	350
Dibenz(a h)anthra		350	ŭ	53	350
Dibenzofuran		350	1	61	350
Diothyl obthalata		350	EL C	87	350
Dimothyl obthalate	-	350	П	62	350
1.2 Dioblarabanza	3	350	- О - П	02	350
1,2-Dichlorobenze		350	о н	50	250
1,3-Dichlorobenze		350	0	50	350
1,4-Dichlorobenze	ene 	350	U	55	350
3,3'-Dichlorobenzi	aine	700	U	39	700
2,4-Dinitrotoluene		350	U	53	350
2,6-Dinitrotoluene		350	U	140	350
Fluoranthene		350	U	58	350
Fluorene		350	U	60	350
Hexachlorobenzer	ne	350	U	60	350
Hexachlorobutadie	ene	350	U	67	350
Hexachlorocyclop	entadiene	350	U	50	350
Hexachloroethane	9	350	U	61	350
Indeno[1,2,3-cd]py	yrene	350	U	62	350
Isophorone		350	U	72	350
2-Methylnaphthale	ene	350	U	64	350
Naphthalene		350	U	53	350
2-Nitroaniline		1700	U	47	1700
3-Nitroapiline		1700	Ū	50	1700

N-Nitrosodi-n-propylamine

Nitrobenzene

U

U

350

350

3 118/28

350

350

64

78

Emr 1)8/08

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

EHS-GP-04 (44-45)				.
220-3404-1 Solid	% Moisture: 6.6		Date Sampled: Date Received:	11/16/2007 1040 11/16/2007 2100
270C Semivolatile Com	pounds by Gas Chromatogr	aphy/Mass :	Spectrometry (GC/M	AS)
3270C 3541 1.0 12/03/2007 1844 11/29/2007 1810	Analysis Batch: 220-11555 Prep Batch: 220-11477	; In Li In Fi In	Istrument ID: HP ab File ID: U22 Iitial Weight/Volume: inal Weight/Volume: Ijection Volume:	6890/5973 GC/MS /41.D 15.14 g 1 mL 1 uL
DryWt Cor	rected: Y Result (ug/Kg)	Qualifier	MDL	RL
ine enol ohenol l l ropane]	350 350 350 350 350 350 350 350 350 350		63 58 51 56 70 76 55 53 73 47 230 270 75 160 25 42 53 51 73 51 73 53 57	350 350 350 350 350 350 350 350 350 350
1.ar (1.ar (%Rec 69 63 71 63 63 65		Acceptar 32 - 13 25 - 11 24 - 15 25 - 12 27 - 12	nce Limits 1 3 0 0 2
	220-3404-1 Solid 270C Semivolatile Com 3270C 3541 1.0 12/03/2007 1844 11/29/2007 1810 DryWt Cor Nine ne enol ohenol	220-3404-1 Solid % Moisture: 6.6 270C Semivolatile Compounds by Gas Chromatogr 3270C Analysis Batch: 220-11555 3541 Prep Batch: 220-11477 1.0 12/03/2007 1844 11/29/2007 1810 350 DryWt Corrected: Y Result (ug/Kg) 350 nine 350 9 63 9 <t< td=""><td>220-3404-1 Solid % Moisture: 6.6 270C Semivolatile Compounds by Gas Chromatography/Mass 3270C Analysis Batch: 220-11555 Ir 3541 Prep Batch: 220-1157 L 1.0 Ir Ir 11/203/2007 1844 F 12/03/2007 1844 F Ir Ir DryWt Corrected: Y Result (ug/Kg) Qualifier Ir 0 350 U 350 U ne 350 U 350 U asso U 350 U 350 U ohenol 350 U 350 U 350 U ohenol 1700 U 1700 1 350 U <</td><td>Date Sampled: 203404-1 Date Sampled: Solid % Moisture: 6.6 Date Received: 270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/M Spectrometry (GC/M 3270C Analysis Batch: 220-11555 Instrument ID: HP 3270C Analysis Batch: 220-11477 Lab File ID: U22 10 Initial Weight/Volume: Initial Weight/Volume: Initial Weight/Volume: 11/29/2007 1844 Final Weight/Volume: Injection Volume: Injection Volume: DryWt Corrected: Y Result (ug/Kg) Qualifier MDL MDL ine 350 U 58 350 U 58 as50 U 58 350 U 55 350 U 55 as50 U 73 350 U 74 320 whenol 1700 U 270 350 U 51 as50 U 75 350 U 53 350 U 51 </td></t<>	220-3404-1 Solid % Moisture: 6.6 270C Semivolatile Compounds by Gas Chromatography/Mass 3270C Analysis Batch: 220-11555 Ir 3541 Prep Batch: 220-1157 L 1.0 Ir Ir 11/203/2007 1844 F 12/03/2007 1844 F Ir Ir DryWt Corrected: Y Result (ug/Kg) Qualifier Ir 0 350 U 350 U ne 350 U 350 U asso U 350 U 350 U ohenol 350 U 350 U 350 U ohenol 1700 U 1700 1 350 U <	Date Sampled: 203404-1 Date Sampled: Solid % Moisture: 6.6 Date Received: 270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/M Spectrometry (GC/M 3270C Analysis Batch: 220-11555 Instrument ID: HP 3270C Analysis Batch: 220-11477 Lab File ID: U22 10 Initial Weight/Volume: Initial Weight/Volume: Initial Weight/Volume: 11/29/2007 1844 Final Weight/Volume: Injection Volume: Injection Volume: DryWt Corrected: Y Result (ug/Kg) Qualifier MDL MDL ine 350 U 58 350 U 58 as50 U 58 350 U 55 350 U 55 as50 U 73 350 U 74 320 whenol 1700 U 270 350 U 51 as50 U 75 350 U 53 350 U 51

,

Job Number: 220-3404-1 Sdg Number: 220-3404

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-04 (44-45)

Lab Sample ID: Client Matrix:	220-3404-1 Solid		% Moisture: 6.6	Dat Dat	e Sampled: 1 e Received: 1	1/16/2007 1040 1/16/2007 2100	a a contrata da
ar na an san in an	6010B Induc	tively Cou	pled Plasma - Atomic I	Emission Spec	trometry		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1638 11/19/2007 1407	Analys Prep B	is Batch: 220-11308 atch: 220-11213	Instrume Lab File Initial W Final W	ent ID: ID: eight/Volume: eight/Volume:	TJA Trace ICAP W112107 1.19 g 250 mL	
Analvte	DryWt Correct	ed: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium			3.4 756 9.0 5.8 J 2.2 80.5 2.25 U 5.6 0.64 2.1 1.2 1880 417 2.25 U 239 J 25.3 225 1.4 5.6 11.2 11.2 16.9 3.0	1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0.34\\ 10.3\\ 1.5\\ 0.25\\ 0.52\\ 13.9\\ 1.0\\ 0.58\\ 0.38\\ 0.49\\ 11.0\\ 27.0\\ 7.0\\ 0.74\\ 21.4\\ 0.49\\ 0.94\\ 1.6\\ 1.8\\ 2.5\\ 0.36\\ 2.6\end{array}$	3.4 112 9.0 2.2 2.2 225 5.6 2.2 3.4 5.6 67.5 225 39.4 6.7 225 5.6 5.6 11.2 11.2 16.9 4.5 225	
Zinc		in Solid o	r Somisolid Waste (Ma	nual Cold Vand	or Technique)	en e	Northeast and an
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A Mercury 7471A 7471A 1.0 11/26/2007 1435 11/23/2007 1041	Analy Prep	sis Batch: 220-11359 Batch: 220-11309	Instrum Lab Fil Initial V Final V	nent ID: e ID: Veight/Volume: Veight/Volume:	Perkin Elmer Flf N/A 0.63 g 50 mL	VIS
Analyte	DryWt Correc	cted: Y	Result (mg/Kg)	Qualifier	MDL	RL	

0.051

Nor. 1200

08 {/18/08

0.013

Mercury

υ

0.051

12/13/2007

,

Client: GEI Con	sultants, Inc.					Jc	b Number: 220-3404-1 Sdg Number: 220-3404
Client Sample ID:	EHS-GP-()4 (44-45)					
Lab Sample ID: Client Matrix:	220-3404- Solid	1	% Moisture:	6.6		Date Sampled: Date Received	11/16/2007 1040 : 11/16/2007 2100
a president and a second statement of the statement of the		8081A Orga	nochlorine Pesticide	s by Gas	Chroma	tography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/04/2007 11/29/2007	1659 1900	Analysis Batch: 220 Prep Batch: 220-11)-11588 480	 	nstrument ID: I- ab File ID: D nitial Weight/Volun Final Weight/Volum njection Volume: Column ID:	IP 5890 with dual ECD 07508018.D ne: 30.52 g ne: 10 mL 1 uL PRIMARY
Analyte 4,4'-DDD 4,4'-DDT Aldrin aipha-BHC beta-BHC delta-BHC Dieldrin Endosulfan II Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor Methoxychlor Toxaphene alpha-Chlordane gamma-Chlordane	dane) le	DryWt Corr	ected: Y Result (ug/k 3.5 3.5 3.5 2.1 1.8 1.8 1.8 3.5 1.8 3.5 3.5 5.3 3.5 5.3 3.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	< <u>0)</u>	Qualifier U U U U U U U U U U U U U U U U U U U	MDL 0.40 0.46 0.33 0.37 0.29 0.28 0.11 0.34 0.15 0.18 0.18 0.14 0.15 0.16 0.16 0.12 2.2 1.8 0.12 0.096	RL 3.5 3.5 2.1 1.8 1.8 3.5 1.8 3.5 1.8 3.5 3.5 5.3 3.5 5.3 3.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Surrogate DCB Decachlorok Tetrachloro-m-xyl Method: Preparation: Dilution: Date Analyzed: Date Prepared:	biphenyl ene 8081A 3550B 1.0 12/04/2007 11/29/2007	1659 1900	%Rec 104 87 Analysis Batch: 22 Prep Batch: 220-1	20-11588 1480		Acce 25 24 Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume: Column ID:	eptance Limits - 159 - 154 HP 5890 with dual ECD C7508018.D me: 30.52 g me: 10 mL 1 uL SECONDARY
Surrogate DCB Decachlorol Tetrachloro-m-xy	piphenyl lene		%Rec 100 86	an th		Acce 25 24	eptance Limits - 159 - 154

TestAmerica Connecticut

.

£.,

Page 22 of 888

.

1/18/08 12/13/2007

66

Jan 12/20/02

-

Client: GEI Consultants, Inc.

.

Job Number: 220-3404-1 Sdg Number: 220-3404

.

Client Sample ID:	EHS-GP-04 (44-45)				
Lab Sample ID: Client Matrix:	220-3404-1 Solid	% Moisture:	6.6	Date Sampled: Date Received:	11/16/2007 1040 11/16/2007 2100
CHEREMANA.					

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 12/01/2007 11/29/2007	Analys Prep E 0040 1900	is Batch: 220-11517 atch: 220-11480		Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volu Injection Volume Column ID:	HP 5890 with dual ECD D4664024.d ume: 30.52 g ume: 10 mL : 1 uL PRIMARY
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260		DryWt Corrected: Y	Result (ug/Kg) 18 35 18 18 18 18 18 18 18 18	Qualifie U U U U U U U U	er MDL 3.0 1.6 2.0 3.1 2.8 1.3 4.2	RL 18 35 18 18 18 18 18 18
Surrogate Tetrachloro-m-xyl DCB Decachlorol:	ene iphenyl		%Rec 84 95		Ac 2 2	ceptance Limits 4 - 154 5 - 159

New 15/30/0 12/13/2007

Page 26 of 888

Client Sample ID: EHS-GP-04(44-45)

GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	A7K200307-001 11/16/07 10:40 11/26/07 7330016	Work Order #: Date Received: Analysis Date:	KCNFQ1AC 11/20/07 11/27/07	Matrix	۲. <i>.</i>	SO
Dilution Factor:	1	Initial Wgt/Vol:	50.03 g	Final	Wqt/Vol:	100 mL
% Moisture:	6.3	Method	SW846 8151	A		
			REPORTING		,	
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	85	ug/kg	38	
2,4,5-TP		ND	21	ug/kg	2.3	
2,4,5-T		ND	21	ug/kg	3.4	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichlorophenylacetic acid		56	(19 - 122)			

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: EHS-GP-04(44-45)

General Chemistry

Matrix.....: SO Work Order #...: KCNFQ Lot-Sample #...: A7K200307-001 Date Sampled...: 11/16/07 10:40 Date Received..: 11/20/07 % Moisture....: 6.3

PARAMETER Acid-soluble sulfide	<u>RESULT</u> 8:0 B,J 32.0 UJ _I	RL 32.0 Dilution Factor	UNITS mg/kg r: l	METHOD SW846 MDL	9030B/9034	PREPARATION- ANALYSIS DATE 11/24/07	PREP BATCH # 7328041
Percent Solids	93.7 I	10.0 Dilution Facto:	e r: 1	MCAWW	160.3 MOD	11/29-11/30/07	7333319

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client: GEI Con	sultants, Ind).				Job	Number:	220-3404-1
Client Sample ID:	EHS-GP	-05 (4-5)				S	dg Number	220-3404
onent bampie ib.								
Lab Sample ID:	220-3404	1-2				Date Sampled:	11/16/2007	1220
Client Matrix:	Solid		% Moisture:	28.2		Date Received:	11/16/2007	2100
		8260B Volatile	e Organic Co	mpounds	by GC/M	IS		
Method:	8260B	Analys	is Batch: 220	-11324	In	strument ID: HP	5890/5971A	GC/MS
Preparation:	5030B				La	ab File ID: N6	091.D	
Dilution:	1.0				In	itial Weight/Volume	: 5 g	
Date Analyzed:	11/21/2007	1928			Fi	nal Weight/Volume:	5 mL	
Date Prepared:	11/21/2007	1928						
				e	~	4.45%	-	
Analyte		DryWt Corrected: Y	Result (ug/K	(g)	Qualifier	MDL	RL.	
Acetone		128V	8.4		1 35-	3.3	28	
Benzene			7.0		U	0.99	7.0	
Bromodichlorometh	hane		7.0		U	0.91	7.0	
Bromotorm			7.0		U	2.4	7.0	
Bromomethane			7.0		U	2.1	7.0	
Methyl Ethyl Keton	e		14		U 11	4.7	14	
Carbon disuinde	10		7.0		0	0.74	7.0	
Carbon tetrachiorit	le		7.0		0	0.99	7.0	
Chloroothana			7.0		0	1.4	7.0	
Chloroform			7.0		11	0.74	7.0	
Chloromethane			7.0		11	14	7.0	
Dibromochloromet	hane		7.0		11	1.4	7.0	
1 1-Dichloroethane	2		7.0		Ŭ	0.91	7.0	
1.2-Dichloroethane	2		7.0		Ŭ	1.5	7.0	
1.1-Dichloroethene	2		7.0		Ŭ	1.1	7.0	
1.2-Dichloropropar	ne		7.0		U	1.4	7.0	
cis-1,3-Dichloropro	pene		7.0		U	0.86	7.0	
trans-1,3-Dichlorop	propene		7.0		U	1.5	7.0	
Ethylbenzene			7.0		U	0.99	7.0	
2-Hexanone			14		U	3.7	14	
Methylene Chloride	e	V28V	-5.7		-J-	1.9	28	
methyl isobutyl ket	one		7.0		U	1.3	7.0	
Styrene			7.0		U	1.8	7.0	
1,1,2,2-Tetrachloro	bethane		7.0		U	1.4	7.0	
Tetrachloroethene			7.0		U	1.0	7.0	
Toluene			7.0		U	0.82	7.0	
1,1,1-Trichloroetha	ine		7.0		U	1.0	7.0	
1,1,2-Trichloroetha	ine		7.0		U	1.2	7.0	
Trichloroethene			7.0		U	1.4	7.0	
Vinyl chloride			7.0		U	1.8	7.0	
Xylenes, Lotal			7.0		U	3.4	7.0	
cis-1,2-Dichloroeth	iene		7.0		U	1.3	7.0	
uans-i,z-Dichioroe	eulene		7.0		0	1.0	7.0	
Surrogate			%Rec			Accepta	ance Limits	
1,2-Dichloroethane	∋-d4 (Surr)		91	, !!		49 - 1	34	
4-Bromofluorobena	zene		83			36 - 13	33	
Dibromofluorometh	nane		90			60 - 1	30	
Toluene-d8 (Surr)			85			51 - 1	37	

Client: GEI Cor	nsultants, Inc.			Job i	Number: 220-3404-1		
Client Sample ID	: EHS-GP-05 (4-5)			50	ig Number, 220-3404		
Lab Sample ID: Client Matrix:	220-3404-2 Solid	% Moisture: 28.2	Date Sampled: Date Received:	11/16/2007 1220 11/16/2007 2100			
	8270C Semivolatile C	ompounds by Gas Chromatogra	phy/Mas	s Spectrometry (GC/M	1S)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 1.0 12/03/2007 1908 11/29/2007 1810	Analysis Batch: 220-11555 Prep Batch: 220-11477		Instrument ID: HP 6 Lab File ID: U224 Initial Weight/Volume: Final Weight/Volume: Injection Volume:	6890/5973 GC/MS 42.D 15.04 g 1 mL 1 uL		
Analyte	DryWt	Corrected: Y Result (ug/Kg)	Qualifie	er MDL	RL		
Anthracene Benzo[a]anthracer Benzo[a]pyrene Benzo[b]fluoranthe Benzo[g,h,i]peryler Benzo[k]fluoranthe Bis(2-chloroethoxy Bis(2-chloroethoxy) Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)p Butyl benzyl phtha Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalate Di-n-octyl phthalate 4-Chloroaniline 2-Chloronaphthale 4-Chlorophenyl ph Dibenz(a,h)anthrac Dibenzofuran Diethyl phthalate 1,2-Dichlorobenze 1,3-Dichlorobenze 3,3'-Dichlorobenze 2,6-Dinitrotoluene Fluorene	ne ene ene r)methane ether hthalate late e e enyl ether ene enyl ether cene e ne ne ne ne ne	$\begin{array}{c} 460 \\$	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	74 67 59 78 90 75 74 230 59 64 78 81 71 72 74 61 80 90 69 80 110 81 73 74 72 51 70 180 76 78	$\begin{array}{c} 460 \\$		
Hexachlorobenzen Hexachlorobutadie Hexachlorocyclope Hexachloroethane Indeno[1,2,3-cd]py Isophorone 2-Methylnaphthale Naphthalene 2-Nitroaniline Nitrobenzene N-Nitroaniline	ee entadiene vrene ne	460 460 460 460 460 460 460 2200 2200 460 460		79 87 65 79 81 94 84 70 62 65 84	460 460 460 460 460 460 460 2200 2200 460 460		
TestAmerica Con	mecticut	Page 16 of 888	3	EMP 108	οβ (18) ² 6 12/13/2007		
Client: GEI Consultants, Inc. Job Number: 220-3404-1							
--	--	--	------------------------	---	---	--	--
Client Sample ID:	EHS-GP-05 (4-5)			3	ay Number. 220-3404		
Lab Sample ID: Client Matrix:	220-3404-2 Solid	% Moisture: 28.2		Date Sampled: Date Received:	11/16/2007 1220 11/16/2007 2100		
	8270C Semivolatile Co	npounds by Gas Chromatogra	phy/Mass	Spectrometry (GC/I	MS)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 1.0 12/03/2007 1908 11/29/2007 1810	Analysis Batch: 220-11555 Prep Batch: 220-11477	ir ل ا ا ا	istrument ID: HP ab File ID: U22 iitial Weight/Volume: inal Weight/Volume: ijection Volume:	6890/5973 GC/MS 242.D : 15.04 g 1 mL 1 uL		
Analyte	DryWt C	orrected: Y Result (ug/Kg)	Qualifier	MDL	RL		
N-Nitrosodiphenyla	mine	460	U	83	460		
Phenanthrene		460	U	75	460		
Pyrene		460	U	67	460		
1,2,4-1 richloroben	zene	460	U	73	460		
4-Chloro-3-methylp	nenol	460	U	92	460		
2-Chlorophenol		460	U	99	460		
2-Methylphenol		460	U	72	460		
4-Methylphenol		460	U	09 05	460		
2,4-Dichlorophenol	1	460	U	95	460		
2,4-Dimethylpheno	1	400		10	400		
2,4-Dinitrophenoi	lahanal	2200	Ur 11	300	2200		
4,0-DINITO-Z-mem	Interior	2200	U	00	460		
2-Nitrophenol		400	U U	90 210	2200		
A-INITOPHEROI Dentechlorepheroi		2200		210	2200		
Phonol		460	U U	52	460		
2.4.5 Trichloropher	hol	2200	U U	70	2200		
2,4,5-Trichloropher	nol	460	U U	67	460		
Renzyl alcohol		460	U U	95	460		
4-Nitroaniline		920	Ŭ	69	920		
2,2'-oxybis[1-chlore	opropane]	460	Ŭ	74	460		
Surrogate		%Rec		Accepta	nce Limits		
2-Fluorobiphenyl		63		32 - 13	31		
2-Fluorophenol		60		25 - 11	13		
2,4,6-Tribromophe	nol	75		24 - 15	50		
Nitrobenzene-d5		58		25 - 12	20		
Phenol-d5		61		27 - 12	22		
Terphenyl-d14		83		35 - 14	10		

EMM 1/18/-8 12/13/2007

Page 17 of 888

Job Number: 220-3404-1 Sdg Number: 220-3404

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GP-05 (4-5)

							_
Lab Sample ID:	220-3404-2		0/ Mainturge 28.2	Date	e Sampled: 11	1/16/2007 122 1/16/2007 210	0 10
Client Matrix:	Solid		% MOISTURE: 20.2				
	6010B Induc	tively Cou	ipled Plasma - Atomic I	Emission Spect	rometry		
Mathark	60108	Analys	is Batch: 220-11308	instrume	ent ID:	TJA Trace IC	AP
Draparation:	3050B	Prep B	atch: 220-11213	Lab File	ID:	W112107	
Fleparation.	10	•		Initial W	eight/Volume:	1.36 g	
Date Analyzed	11/21/2007 1652			Final We	eight/Volume:	250 mL	
Date Prenared:	11/19/2007 1407						
Dato r roparou							
Analyte	DryWt Correct	ed: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Cilver			3.8	U	0.38	3.8	
Aluminum			11600		11.8	128	
Areonic			5.3	1/	1.7	10.2	
Rarium			23.5 J		0.28	2.6	
Bendlium			0.65	J /	0.59	2.6	
Calcium			707 J		15.9	256	
Cadmium			6.4	U	1.2	6.4	
Cobalt			6.2 J		0.67	2.6	
Chromium			15.9		0.44	3.8 6 A	
Copper			10.2		0.55	76.8	
Iron			18100		12.5	256	
Potassium			654)		70	44.8	
Magnesium			2700 3 2		0.84	77	
Manganese			190	۳./	24.3	256	
Sodium			110	0	0.56	6.4	
Nickel			11.U 6.7		11	6.4	
Lead			12.8	117.7	1.8	12.8	
Antimony			12.0	Ű	2.1	12.8	
Selenium			19.2	Ŭ	2.8	19.2	
Thallium			26.3		0.41	5.1	
Vanadium			26.6		2.8	25.6	
	7471 Δ Mercury	in Solid c	or Semisolid Waste (Ma	nual Cold Vapo	r Technique)		
	74748	Apoly	vie Batch: 220-11359	Instrum	ent ID:	Perkin Elme	r FIMS
Method:	74/1A 7474 N	Adaly Droc	Batch: 220-11200	Lah Fili	e ID:	N/A	
Preparation:	7471A	Fieh		Initial V	Veiaht/Volume:	0.63 q	
Dilution:	1.0			Final M	/eight/Volumer	50 mL	
Date Analyzed:	11/26/2007 1436				algine i olulilo.		
Date Prepared:	11/23/2007 1041						
	D- 18/4 0	tod: V	Result (mo/Ko)	Qualifier	MDL	RL	
Analyte	Drywit Correc		Resour (mg/rtg)	Guanna	0.047	0.000	10
Mercury			0.066	U	0.017	U.U66	\$

1/2/08

12/13/2007

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

Client Sample ID:	EHS-GP-	05 (4-5)					
Lab Sample ID: Client Matrix:	220-3404 Solid	-2	% Moisture:	28.2	Date Sample Date Receive	ed: 11/16/2007 2100	
le se al se and se an a se and a second se and s		8081A Organo	ochlorine Pesticides	by Gas Chron	natography		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/04/2007 11/29/2007	1720 1900	Analysis Batch: 220- Prep Batch: 220-114	11588 80	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volution Injection Volume Column ID:	HP 5890 with dual ECD D7508019.D ume: 30.21 g ume: 10 mL : 1 uL PRIMARY	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endosulfan Sulfate Endrin Heptachlor Heptachlor Toxaphene alpha-Chlordane	tane) e	DryWt Correct	cted: Y Result (ug/Kg 4.6 4.6 2.8 2.4 2.4 4.6 2.4 4.6 4.6 6.9 4.6 4.6 4.6 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4)) Qualif U U U U U U U U U U U U U U U U U U U	ier MDL 0.53 0.60 0.43 0.49 0.38 0.37 0.14 0.44 0.20 0.24 0.24 1.2 0.45 0.20 0.21 0.21 0.16 2.9 2.4 0.15 0.42	RL. 4.6 4.6 2.3 2.4 2.4 2.4 2.4 4.6 2.4 4.6 4.6 6.9 4.6 4.6 4.6 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	
gamma-Chlordane Surrogate DCB Decachlorob Tetrachloro-m-xyle	iphenyl		2.4 %Rec 101 81			2:4 cceptance Limits 25 - 159 24 - 154	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 12/04/2007 11/29/2007	7 1720 7 1900	Analysis Batch: 220 Prep Batch: 220-11	-11588 480	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo Injection Volum Column ID:	HP 5890 with dual ECD C7508019.D olume: 30.21 g olume: 10 mL e: 1 uL SECONDARY	
Surrogate DCB Decachlorch Tetrachloro-m-xyl	biphenyl iene		%Rec 97 82		A	cceptance Limits 25 - 159 24 - 154	
					R		173010 12m

ł

Page 23 of 888

 \mathcal{H} ([18]08

12/13/2007

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

Client Matrix:	Solid	% Moisture:	28.2	Date Neceived.		
Lab Sample ID:	220-3404-2		00.0	Date Sampled:	11/16/2007	2100
Client Sample ID:	EHS-GP-05 (4-5)				4400007	1000

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 12/01/2007 11/29/2007	0057 1900	Analysis Batch: 220-11517 Prep Batch: 220-11480	*	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol Injection Volume Column ID:	HP 5890 with dual EC D4664025.d lume: 30.21 g ume: 10 mL y: 1 uL PRIMARY	CD
A 14		DryM/t Corre	octed: Y Result (ua/Ka)	Qualifi	er MDL	RL	
Analyte		Diyweoone	24	U	3.9	24	
PCB-1016			46	Ū	2.1	46	
PCB-1221			24	Ŭ	2.6	24	
PCB-1232			24	ii ii	4.1	24	
PCB-1242			24	Ŭ	3.7	24	
PCB-1248			24	Ц	17	24	
PCB-1254			24	0	55	24	
PCB-1260			24	U	0.0	21	
Surrogate			%Rec		Ac	ceptance Limits	
Tetrachloro-m-xvi	ene		66		2	24 - 154	
DCB Decachlorot	piphenyl		82		2	25 - 159	

Jou 1972010 12/13/2007

TestAmerica Connecticut

Client Sample ID: EHS-GP-05(4-5)

GC Semivolatiles

Lot-Sample #: A7K200307-002		Work Order	# :	KCNFT1AC Matrix			SO	
Date Sampled:	11/16/07 12:20	Date Receiv	ed:	11/20/07				
Prep Date:	11/26/07	Analysis Da	te:	11/27/07				
Prep Batch #:	7330016							
Dilution Factor:	1	Initial Wgt	/Vol:	50.07 g	F	inal	Wgt/Vol:	100 mL
% Moisture:	22	Method	:	SW846 81	51A			
				REPORTING	3			
PARAMETER		RESULT		LIMIT	UNITS		MDL	
2,4-D		ND		100	ug/kg		46	
2,4,5-TP		ND		26	ug/kg		2.8	
2,4,5-T		ND		26	ug/kg		4.1	
		PERCENT		RECOVERY				
SURROGATE		RECOVERY		LIMITS				
2,4-Dichloropheny	lacetic acid	50		(19 - 122	2)			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

TestAmerica Connecticut

Client Sample ID: EHS-GP-05(4-5)

General Chemistry

 Lot-Sample #...: A7K200307-002
 Work Order #...: KCNFT
 Matrix...... SO

 Date Sampled...: 11/16/07 12:20
 Date Received..: 11/20/07

 % Moisture....: 22

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	37.1 B.J. 38.6UJ _{Dilu}	38.6 tion Facto:	mg/kg r: 1	SW846 9030B/9034	11/24/07	7328041
Percent Solids	77.7 Dilu	10.0 tion Facto	% r: 1	MCAWW 160.3 MOD MDL 10.0	11/29-11/30/07	7333319

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

3 Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

Client Sample ID:	EHS-GP-05 (44-45)					
Lab Sample ID: Client Matrix:	220-3404-3 Solid	% Moisture:	12.6	Date Sampled: Date Received:	11/16/2007 11/16/2007	1400 2100

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11324	Instrument ID:	HP 5890/	5971A GC/MS
Preparation:	5030B		Lab File ID:	N6092.D	
Dilution:	1.0		Initial Weight/Volu	ume: 8	i g
Date Analyzed:	11/21/2007 1953		Final Weight/Volu	ime: 8	6 mL
Date Prepared:	11/21/2007 1953				

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Acetone	√ 23 ∪ 6:2	J- <u>3</u>	2.7	23
Benzene	5.7	U	0.81	5.7
Bromodichloromethane	5.7	U	0.74	5.7
Bromoform	5.7	U	2.0	5.7
Bromomethane	5.7	U	1.7	5.7
Methyl Ethyl Ketone	11	U	3.8	11
Carbon disulfide	5.7	U	0.61	5.7
Carbon tetrachloride	5.7	U	0.81	5.7
Chlorobenzene	5.7	U	1.0	5.7
Chloroethane	5.7	U	1.5	5.7
Chloroform	5.7	U	0.61	5.7
Chloromethane	5.7	U	1.2	5.7
Dibromochloromethane	5.7	U	1.2	5.7
1,1-Dichloroethane	5.7	U	0.74	5.7
1,2-Dichloroethane	5.7	U	1.2	5.7
1,1-Dichloroethene	5.7	U	0.90	5.7
1,2-Dichloropropane	5.7	U	1.1	5.7
cis-1,3-Dichloropropene	5.7	U	0.71	5.7
trans-1,3-Dichloropropene	5.7	U	1.2	5.7
Ethylbenzene	5.7	U	0.81	5.7
2-Hexanone	11	U	3.0	11
Methylene Chloride	23V 3.2] *	1.6	23
methyl isobutyl ketone	5.7	U	1.1	5.7
Styrene	5.7	U	1.5	5.7
1,1,2,2-Tetrachloroethane	5.7	U	1.2	5.7
Tetrachloroethene	5.7	U	0.85	5.7
Toluene	5.7	U	0.68	5.7
1,1,1-Trichloroethane	5.7	U	0.84	5.7
1,1,2-Trichloroethane	5.7	U	1.0	5.7
Trichloroethene	5.7	U	1.1	5.7
Vinyl chloride	5.7	U	1.5	5.7
Xylenes, Total	5.7	U	2.8	5.7
cis-1,2-Dichloroethene	5.7	U	1.1	5.7
trans-1,2-Dichloroethene	5.7	U	1.1	5.7
Surrogate	%Rec		Accep	tance Limits
1,2-Dichloroethane-d4 (Surr)	93		49 - 1	134
4-Bromofluorobenzene	71		36 - 1	133
Dibromofluoromethane	94		60 - 1	130
Toluene-d8 (Surr)	78		51 - ⁻	137

Client: GEI Con	sultants, Inc.			Job	Number: 220-3404-1
Client Sample ID:	EHS-GP-05 (44-45)			3	ug Number, 220-3404
Lab Sample ID: Client Matrix:	220-3404-3 Solid	% Moisture: 12.6	3	Date Sampled: Date Received:	11/16/2007 1400 11/16/2007 2100
	8270C Semivolatile Con	apounds by Gas Chromato	graphy/Mass	Spectrometry (GC/	MS)
Method: Preparation: Dilution:	8270C 3541 1.0	Analysis Batch: 220-1155 Prep Batch: 220-11477	55 li L	nstrument ID: HP .ab File ID: U22 nitial Weight/Volume:	6890/5973 GC/MS 243.D 15.48 g
Date Analyzed: Date Prepared:	12/03/2007 1932 11/29/2007 1810		F	Final Weight/Volume: njection Volume:	1 mL 1 uL
Analyte	DryWt Co	rrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Acenaphthene		370	U	64	370
Acenaphthylene		370	U	70	370
Anthracene		370	U	59	370
Benzo[a]anthracen	e	370	U	53	370
Benzo[a]pyrene		370	U	47	370
Benzo[b]fluoranthe	ne	370	U	63	370
Benzo[g,h,i]perylen	e	370	U	72	370
Benzo[k]fluoranther		370	U	60	370
Bis(2-chloroethoxy)	methane	370	U	59	370
Bis(2-chloroethyl)et	ner	370	U	180	370
Bis(2-etayinexyi) pr	nthalate	370	U	47	370
Carborolo	ale	270	U	51	270
Chrysone		370	U	0Z 64	370
Dispublic notification	1	370	11	04 56	370
Di-n-octyl obthalate		370	11	58	370
4-Bromonhenvi phe	nyl ether	370	Ц	59	370
4-Chloroaniline		370	ŭ	49	370
2-Chloronaphthaler	1e	370	ŭ	64	370
4-Chlorophenvi phe	envl ether	370	Ŭ	72	370
Dibenz(a,h)anthrac	ene	370	Ŭ	55	370
Dibenzofuran		370	Ū	64	370
Diethyl phthalate		370	Ū	91	370
Dimethyl phthalate		370	U	65	370
1,2-Dichlorobenzen	e	370	U	58	370
1,3-Dichlorobenzen	e	370	U	59	370
1,4-Dichlorobenzen	e	370	U	57	370
3,3'-Dichlorobenzid	ine	730	U	41	730
2,4-Dinitrotoluene		370	U	56	370
2,6-Dinitrotoluene		370	U	150	370
Fluoranthene		370	U	61	370
Fluorene		370	U	62	370
Hexachlorobenzene	e	370	U	63	370
Hexachlorobutadier	ne , l'	370	U	70	370
Hexachlorocyclope	ntadiene	370	U	52	370
Hexachloroethane		370	U	63	370
indeno[1,2,3-cd]pyr	ene	370	U	65	370
sophorone	20	370	U	/5 67	370
∠-weurynapntnaler Norotholono	с	3/U 270	U	07	370
2-Nitroanilino		37U 1200	U EI	00	370 1800
∠-nacoanane 3-Nitroenitino		1000		43 50	1800
Nitrohenzene		370		52 67	370
N-Nitrosodi-n-propy	lamine	370	U	82	370
TestAmerica Con	necticut	Page 18 of 8	- 88		12/13/200
			1/18/08	ET. 18100	

Client: GEI Cor	Client: GEI Consultants, Inc. Job Number: 220-3404-1							
Client Sample ID:	EHS-GP-05 (44-45)			50	y Number, 220-3404			
Lab Sample ID: Client Matrix:	220-3404-3 Solid	% Moisture: 12.6		Date Sampled: 1 Date Received: 1	1/16/2007 1400 1/16/2007 2100			
	8270C Semivolatile Com	pounds by Gas Chromatogra	phy/Mass S	Spectrometry (GC/M	5)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 1.0 12/03/2007 1932 11/29/2007 1810	Analysis Batch: 220-11555 Prep Batch: 220-11477	In La In Fi In	strument ID: HP 6i ab File ID: U224 itial Weight/Volume: nal Weight/Volume: jection Volume:	890/5973 GC/MS 3.D 15.48 g 1 mL 1 uL			
Analyte	DryWt Co	rrected: Y Result (ug/Kg)	Qualifier	MDL	RL			
N-Nitrosodiphenyla Phenanthrene Pyrene 1,2,4-Trichloroben: 4-Chloro-3-methyl 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 4,6-Dinitro-2-methy 2-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophei 2,4,6-Trichlorophei Benzyl alcohol 4-Nitroaniline 2,2'-oxybis[1-chloro	amine zene ohenol l ylphenol i nol nol ppropane]	370 370 370 370 370 370 370 370 370 370		66 60 54 58 73 79 58 55 76 49 240 280 79 170 26 44 56 53 76 55 59	370 370 370 370 370 370 370 370 370 370			
Surrogate		%Rec		Acceptan	ce Limits			
2-Fluorobiphenyl 2-Fluorophenol 2,4,6-Tribromophe Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	nol	67 59 73 60 61 87		32 - 131 25 - 113 24 - 150 25 - 120 27 - 122 35 - 140				

.

Page 19 of 888

Job Number: 220-3404-1 Sdg Number: 220-3404

•

Client: GEI Consultants, Inc.

Client Sample II	D: EHS-GP-05 (44-45)				
Lab Sample ID: Client Matrix:	220-3404-3 Solid	% Moisture: 12.6	Dat Dat	e Sampled: e Received:	11/16/2007 1400 11/16/2007 2100
i da konstatu in tana provinsi kadi Makhab	6010B Inductive	ly Coupled Plasma - Atomic	Emission Spect	trometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1657 11/19/2007 1407	Analysis Batch: 220-11308 Prep Batch: 220-11213 Initial Weight/Volume: Final Weight/Volume:		TJA Trace ICAP W112107 1.16 g 250 mL	
Analvíe	DryWt Corrected:	Y Result (mg/Kg)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium		$\begin{array}{c} 3.7 \\ 596 \\ 9.9 \\ 2.7 \\ 2.5 \\ 47.0 \\ 2.47 \\ 0.86 \\ 1310 \\ 53.0 \\ 2.47 \\ 0.90 \\ 6.2 \\ 22.6 \\ 247 \\ 0.90 \\ 6.2 \\ 12.3 \\ 12.3 \\ 18.5 \\ 1.7 \\ 247 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.37 11.3 1.7 0.27 0.57 15.3 1.1 0.64 0.42 0.54 12.1 29.6 7.6 0.81 23.4 0.54 1.0 1.7 2.0 2.7 0.39 2.7	3.7 123 9.9 2.5 2.5 247 6.2 2.5 3.7 6.2 74.0 247 43.2 7.4 247 6.2 6.2 6.2 12.3 12.3 12.3 18.5 4.9 24.7
	7471A Mercury in S	Solid or Semisolid Waste (Ma	anual Cold Vapo	or Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/26/2007 1437 11/23/2007 1041	Analysis Batch: 220-11359 Prep Batch: 220-11309	Instrum Lab Fil Initial V Final V	nent ID: e ID: Veight/Volume: Veight/Volume:	Perkin Elmer FIMS N/A 0.64 g 50 mL
Analyte	DrvWt Corrected	: Y Result (mg/Kg)	Qualifier	MDL	RL
Mercury		0.054	Ű	0.014	0.054 -/

1/18/08

 \Diamond

12/13/2007

Job Number: 220-3404-1 Client: GEI Consultants, Inc. Sdg Number: 220-3404 EHS-GP-05 (44-45) Client Sample ID: 11/16/2007 1400 Date Sampled: 220-3404-3 Lab Sample ID: 11/16/2007 2100 Date Received: 12.6 % Moisture: Solid **Client Matrix:** 8081A Organochlorine Pesticides by Gas Chromatography HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11588 Method: 8081A D7508020.D Lab File ID: Prep Batch: 220-11480 3550B Preparation: Initial Weight/Volume: 30.79 g 1.0 Dilution: Final Weight/Volume: 10 mL 12/04/2007 1742 Date Analyzed: 1 uL Injection Volume: 11/29/2007 1900 Date Prepared: Column ID: PRIMARY RL. Qualifier MDL. DryWt Corrected: Y Result (ug/Kg) Analyte 3.7 0.42 U 3.7 4.4'-DDD 3.7 0.48 U 3.7 4,4'-DDE 3.7 0.34 U 3.7 4,4'-DDT 2.2 0.40 U 2.2 Aldrin 0.31 1.9 U 1.9 alpha-BHC 1.9 0.30 11 1.9 beta-BHC 1.9 0.11 Ð 1.9 delta-BHC 3.7 0.36 3.7 U **Dieldrin** 0.16 1.9 11 1.9 Endosulfan I 3.7 υ 0.19 3.7 Endosulfan II 3.7 0.19 U 3.7 Endosulfan sulfate 5.6 0.99 U 5.6 Endrin 3.7 0.36 U 3.7 Endrin aldehyde 3.7 0.16 3.7 U Endrin ketone 1.9 υ 0.17 1.9 gamma-BHC (Lindane) 1.9 0.17 1.9 U Heptachlor 1.9 0.13 1.90 -J--0.10 Heptachlor epoxide 19 2.4 U 19 Methoxychlor 75 2.0 75 Ð Toxaphene 1.9 0.12 1.9 U alpha-Chlordane 0.10 1.9 U 1.9 gamma-Chlordane Acceptance Limits %Rec Surrogate 25 - 159 108 DCB Decachlorobiphenyl 24 - 154 81 Tetrachioro-m-xylene HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11588 8081A Method: C7508020.D Prep Batch: 220-11480 Lab File ID: 3550B Preparation: 30.79 g Initial Weight/Volume: 1.0 Dilution: 10 mL Final Weight/Volume: 12/04/2007 1742 Date Analyzed: 1 uL Injection Volume: 11/29/2007 1900 Date Prepared: SECONDARY Column ID: Acceptance Limits %Rec Surrogate 25 - 159 104 DCB Decachlorobiphenyl 24 - 154 80 Tetrachioro-m-xylene

Page 24 of 888

ریم» 12/13/2007

Ъß

1 18 00

Job Number: 220-3404-1 Client: GEI Consultants, Inc. Sdg Number: 220-3404 EHS-GP-05 (44-45) Client Sample ID: 11/16/2007 1400 Date Sampled: 220-3404-3 Lab Sample ID: 11/16/2007 2100 Date Received: % Moisture: 12.6 Solid Client Matrix: 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11517 8082 Method: D4664026.d Lab File ID: Prep Batch: 220-11480 3550B Preparation: 30.79 g Initial Weight/Volume: Dilution: 1.0 10 mL Final Weight/Volume: 12/01/2007 0114 Date Analyzed: 1 uL Injection Volume: 11/29/2007 1900 Date Prepared: PRIMARY Column ID: RL Qualifier MDL DryWt Corrected: Y Result (ug/Kg) Analyte 3.1 19 U 19 PCB-1016 37 U 1.7 37 PCB-1221 19 2.1 {} 19 PCB-1232 19 3.3 U 19 PCB-1242 19 3.0 U 19 PCB-1248 19 U 1.3 19 PCB-1254 19 4.5 υ 19 PCB-1260 Acceptance Limits %Rec Surrogate 24 - 154 76 Tetrachloro-m-xylene 25 - 159 101 DCB Decachlorobiphenyl

 \mathbb{R}

12/13/2007

TestAmerica Connecticut

.

Client Sample ID: EHS-GP-05(44-45)

GC Semivolatiles

Lot-Sample #: A7K200307-003 Date Sampled: 11/16/07 14:00 Prep Date: 11/26/07	Work Order #: Date Received: Analysis Date:	KCNFV1AC 11/20/07 11/27/07	Matrix	x: SO
Prep Batch #: /330016	T-1-1-1 - T-1-1- (TT-1	FO 14	 ,	
Dilution Factor: 1	Initial wgt/vol:	50.14 g	Final	Wgt/Vol: 100 mL
% Moisture: 6.9	Method:	SW846 8151	A	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2,4-D	ND	86	ug/kg	39
2,4,5-TP	ND	21	ug/kg	2.4
2,4,5-T	ND	21	ug/kg	3.4
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2,4-Dichlorophenylacetic acid	97	(19 - 122)		

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

TestAmerica Connecticut

Client Sample ID: EHS-GP-05(44-45)

General Chemistry

 Lot-Sample #...: A7K200307-003
 Work Order #...: KCNFV
 Matrix...... SO

 Date Sampled...: 11/16/07 14:00
 Date Received..: 11/20/07

 % Moisture....: 6.9

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	ND UJ V	32.2 ition Facto	mg/kg er: 1	SW846 9030B/9034 MDL 6.0	11/24/07	7328041
Percent Solids	93.1 Dil	10.0 ution Facto	ş or: l	MCAWW 160.3 MOD MDL 10.0	11/29-11/30/07	7333319

NOTE(S):

RL Reporting Limit Results and reporting limits have been adjusted for dry weight.

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

		General Chemist	ry			
Client Sample ID:	EHS-GP-02(4-5)					
Lab Sample ID: Client Matrix:	220-3395-1 Solid	% Moisture: 13.0		Date Sampled: Date Received	11/1 : 11/1	3/2007 1317 5/2007 1634
Analyte	Result	Qual / Units	MDL	RL	Dil	Method
Sulfate-S	11,50 10:8- Anly Batch: 220-11366	· 카 · mg/Kg Date Analyzed 11/22	2.2 /2007 0429	11.5	1.0 Dry	300.0 Wt Corrected: Y
Analide	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	13.0 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Percent Solids	87.0 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-GP-01(4-5)					
Lab Sample ID: Client Matrix:	220-3395-2 Solid	% Moisture: 26.0)	Date Sampled Date Received	: 11/ 5: 11/	13/2007 1028 15/2007 1634
Analvte	Result	∠ Qual Units	MDL	RL	Dil	Method
Sulfate-S	20.5 U Anly Batch: 220-11366	mg/Kg Date Analyzed 11/22	2.6 2/2007 0509	13.5	1.0 Dry	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	26.0 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 7/2007 1602	0.100	1.0	PercentMoisture
Percent Solids	74.0 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 7/2007 1602	0.100	1.0	PercentMoisture

1/2100 Mr.

)6

12/19/2007

Job Number: 220-3395-1 Sdg Number: 220-3395

		General Chemist	y			
Client Sample ID:	EHS-GP-01(44-45)					
Lab Sample ID: Client Matrix:	220-3395-3 Solid	% Moisture: 6.5		Date Sampled: Date Received:	11/1 11/1	3/2007 1517 5/2007 1634
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Sulfate-S	10,70 5:5 Anly Batch: 220-11366	Date Analyzed 11/22/	2.0 2007 0522	10.7	1.0 Dry\	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	6.50 Anly Batch: 220-11188	% Date Analyzed 11/17/	0.100 2007 1602	0.100	1.0	PercentMoisture
Percent Solids	93.5 Anly Batch: 220-11188	% Date Analyzed 11/17/	0.100 2007 1602	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-GP-03(4-5)					
Lab Sample ID: Client Matrix:	220-3395-4 Solid	% Moisture: 30.3		Date Sampled: Date Received	11/1 : 11/1	13/2007 1400 15/2007 1634
Anaivte	Result	∠ Qual Units	MDL	RL	Dil	Method
Sulfate-S	1 4.2.0 13.9 * Anly Batch: 220-11366	J- mg/Kg Date Analyzed 11/22	2.7 /2007 0602	14.2	1.0 Dry	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL.	RL	Dil	Method
Percent Moisture	30.3 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Percent Solids	69.7 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture

1/2/08

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

		General Chemistry		
Client Sample ID:	EHS-GP-04(4-5)			
Lab Sample ID: Client Matrix:	220-3395-5 Solid	% Moisture: 31.9	Date San Date Rec	npled: 11/13/2007 1450 seived: 11/15/2007 1634
Apalyte	Result	, Qual Units M	DL RL	Dil Method
Sulfate-S	19.9 U Anly Batch: 220-11366	mg/Kg 2. Date Analyzed 11/22/2007	8 14.6 0615	1.0 300.0 DryWt Corrected: Y
Analyte	Result	Qual Units RI	RL	Dil Method
Percent Moisture	31.9 Anly Batch: 220-11188	% 0. Date Analyzed 11/17/2007	100 0.100 7 1602	1.0 PercentMoisture
Percent Solids	68.1 Anly Batch: 220-11188	% 0. Date Analyzed 11/17/2007	100 0.100 7 1602	1.0 PercentMoisture
Client Sample ID: Lab Sample ID: Client Matrix:	EHS-GP-XX(XX) D 220-3395-6 Solid	wplicate 9 GP-0a(4-5) % Moisture: 25.9	Date Sa Date Re	mpled: 11/13/2007 0000 ceived: 11/15/2007 1634
Analyte	Result	∠ Qual Units N	IDL RL	Dil Method
Sulfate-S	17.8 U Anly Batch: 220-11366	Date Analyzed 11/22/200	.6 13.5 7 0629	1.0 300.0 DryWt Corrected: Y
Analyte	Result	Qual Units R	L RL	Dil Method
Percent Moisture	25.9 Anly Batch: 220-11188	% 0 Date Analyzed 11/17/200	.100 0.100 7 1602	1.0 PercentMoisture
Percent Solids	74.1 Anly Batch: 220-11188	% 0 Date Analyzed 11/17/200	.100 0 <i>.</i> 100 7 1602	1.0 PercentMoisture

han 1/2/08

Job Number: 220-3404-1 Sdg Number: 220-3404

ar nag nyangkarang pangkarangkarangkarang mangkarang nagar		General Chemis	try			
Client Sample ID:	EHS-GP-05 (44-45)					
Lab Sample ID: Client Matrix:	220-3404-3 Solid	% Moisture: 12.6	5	Date Sampled: Date Received	11/1 : 11/1	6/2007 1400 6/2007 2100
Analita	Result	Qual Units	MDL	RL	Dil	Method
Sulfate-S	11.40 -7:1- Anly Batch: 220-11366	J mg/Kg Date Analyzed 11/22	2.2 2/2007 0922	11.4	1.0 Dry ^y	300.0 Wt Corrected: Y
Analyta	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	12.6 Anly Batch: 220-11218	% Date Analyzed 11/19	0.100 9/2007 1604	0.100	1.0	PercentMoisture
Percent Solids	87.4 Anly Batch: 220-11218	% Date Analyzed 11/19	0.100 0/2007 1604	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-GP-02 (43-45)					
Lab Sample ID: Client Matrix:	220-3404-5 Solid	% Moisture: 6.0		Date Sampled Date Received	: 11/ 1: 11/	15/2007 1025 16/2007 2100
Apolyta	Result	/ Qual Units	MDL	RL	Dil	Method
Sulfate-S	ໂຽ.(ວບ - 6.0 Anly Batch: 220-11366	✓ J→ mg/Kg Date Analyzed 11/2:	2.0 2/2007 0935	10.6	1.0 Dry	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL.	RL	Dil	Method
Percent Moisture	6.01 Anly Batch: 220-11218	% Date Analyzed 11/1	0.100 9/2007 1604	0.100	1.0	PercentMoisture
Percent Solids	94.0 Anly Batch: 220-11218	% Date Analyzed 11/1	0.100 9/2007 1604	0.100	1.0	PercentMoisture

118/08

B

Client: GEI Consultants, Inc.

Job Number: 220-3404-1 Sdg Number: 220-3404

.

RAR, L'ADRES, L'AL LE RACIET STRUTTER, MARKA		General Chemis	try			
Client Sample ID:	EHS-GP-04 (44-45)					
Lab Sample ID: Client Matrix:	220-3404-1 Solid	% Moisture: 6.6		Date Sampled: Date Received	11/1 : 11/1	6/2007 1040 6/2007 2100
Apolito	Result	Qual Units	MDL.	RL	Dil	Method
Sulfate-S	10.70 6.0 Anly Batch: 220-11366	J→ mg/Kg Date Analyzed 11/22	2.0 2/2007 0855	10.7	1.0 Dry\	300.0 Wt Corrected: Y
Appleto	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	6.61 Anly Batch: 220-11218	% Date Analyzed 11/19	0.100 9/2007 1604	0.100	1.0	PercentMoisture
Percent Solids	93.4 Anly Batch: 220-11218	% Date Analyzed 11/19	0.100 3/2007 1604	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-GP-05 (4-5)					
Lab Sample ID: Client Matrix:	220-3404-2 Solid	% Moisture: 28.	2	Date Sampled Date Received	: 11/ 1: 11/	16/2007 1220 16/2007 2100
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Sulfate-S	38.1 Anly Batch: 220-11366	mg/Kg Date Analyzed 11/2	2.6 2/2007 0908	13.8	1.0 Dry	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL.	RL	Dil	Method
Percent Moisture	28.2 Anly Batch: 220-11218	% Date Analyzed 11/1	0.100 9/2007 1604	0.100	1.0	PercentMoisture
Percent Solids	71.8 Anly Batch: 220-11218	% Date Analyzed 11/1	0.100 9/2007 1604	0.100	1.0	PercentMoisture

12/13/2007

Job Number: 220-3395-1 Sdg Number: 220-3395

<u>A A A A A A A A A A A A A A A A A A A </u>		General Chemist	iry			
Client Sample ID:	EHS-SS-06					
Lab Sample ID: Client Matrix:	220-3395-13 Solid	% Moisture: 8.4		Date Sample Date Receive	d: 11/1 ed: 11/1	4/2007 1335 5/2007 1634
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Sulfate-S	10.9 し 6.9 - Anly Batch: 220-11366	J- mg/Kg Date Analyzed 11/23	2.1 /2007 1838	10.9	1.0 DryV	300.0 Vt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	8.36 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Percent Solids	91.6 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-GP-03(44-45)					
Lab Sample ID: Client Matrix:	220-3395-14 Solid	% Moisture: 3.1		Date Sample Date Receive	ed: 11/1 ed: 11/1	4/2007 1324 5/2007 1634
Analyte	Result	, Qual Units	MDL	RL	Dil	Method
Sulfate-S	10,3U 9:27 Anly Batch: 220-11366	J- mg/Kg Date Analyzed 11/22	2.0 /2007 0842	10.3	1.0 Dryl	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	3.10 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Percent Solids	96.9 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 7/2007 1602	0.100	1.0	PercentMoisture

28 119/08

12-108

12/19/2007

Client: GEI Consultants, Inc.

EHS-SS-01

Client Sample ID:

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID: 220-3395-7 Date Sampled: 11/14/2007 0835 Client Matrix: Solid % Moisture: 19.4 Date Received: 11/15/2007 1634

8260B Volatile Organic Compounds by GC/MS

Method: Preparation:	8260B 5030B	Analysis Batch: 220-11327	Instrument ID: Lab File ID:	HP 5890/ N6105.D	5971A GC/MS
Dilution: Date Analyzed:	1.0 11/25/2007 1737		Initial Weight/Volu	ime:	5 g 5 ml
Date Prepared:	11/25/2007 1737			ine. :	

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Acetone		25	UVJ	2.9	25
Benzene		6.2	U VJ 🧹	0.88	6.2
Bromodichloromethane		6.2	UUJ/	0.81	6.2
Bromoform		6.2	UVJ 🧹	2.1	6.2
Bromomethane		6.2	UUJ	1.9	6.2
Methyl Ethyl Ketone		12	ບປັ	4.2	12
Carbon disulfide		6.2	レリエー	0.66	62
Carbon tetrachloride		6.2	UVJ	0.88	62
Chlorobenzene		6.2	UVJ	1.1	62
Chloroethane		6.2	UVJ/	1.6	6.2
Chloroform		6.2	UUT	0.66	62
Chloromethane		6.2	UVT	1.3	62
Dibromochloromethane		6.2	1115	1.3	6.2
1,1-Dichloroethane		6.2	1107 -	0.81	6.2
1,2-Dichloroethane		6.2	II VT /	13	0.Z 6 0
1,1-Dichloroethene		6.2	H D.T.C	0.08	6.2
1,2-Dichloropropane		62	11117	1.2	6.2
cis-1,3-Dichloropropene		62		0.77	0.Z 6.0
trans-1,3-Dichloropropene		62	11.05	12	0.2
Ethylbenzene		62	1117	1.0	0.4
2-Hexanone		12		0.00	0.2
Methylene Chloride	(750	8.7		0.0 1 7	12
methyl isobutyl ketone	୍ ମହନ	62	11117	1.7	20
Styrene		62		1.2	6.2
1.1.2.2-Tetrachloroethane		6.2		1.0	6.2
Tetrachloroethene		6.2	UV7 .	1.3	6.2
Toluene		6.2		0.92	6.2
1.1.1-Trichloroetbane		6.2		0.73	6.2
1.1.2-Trichloroethane		0.2	003 /	0.91	6.2
Trichloroethene		6.2		1.1	6.2
Vinvl chloride		0.2	0.03	1.2	6.2
Xvlenes Total		0.2		1.6	6.2
ris-1 2-Dichloroethene		0.2		3.0	6.2
trans-1.2-Dichloroethono		6.Z		1.1	6.2
		6.2	0 VJ /	1.2	6.2
Surrogate		%Rec		Acceptance	e Limits
1,2-Dichloroethane-d4 (Surr)		67		49 - 134	
4-Bromofluorobenzene		43		36 - 122	
Dibromofluoromethane		68		60 - 130	
Toluene-d8 (Surr)		49	*	51 - 137	

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 **Client Sample ID:** EHS-SS-01 Lab Sample ID: 220-3395-7 Date Sampled: 11/14/2007 0835 **Client Matrix:** Solid % Moisture: 19.4 Date Received: 11/15/2007 1634 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-11486 HP 6890/5973 GC/MS Instrument ID: 3541 Preparation: Prep Batch: 220-11378 Lab File ID: U2186.D Dilution: 1.0 Initial Weight/Volume: 15.25 g Date Analyzed: 11/29/2007 2141 Final Weight/Volume: 1 mL Date Prepared: 11/27/2007 0953 Injection Volume: 1 uL DryWt Corrected: Y Result (ug/Kg) Qualifier RL Analyte MDL 400 Ű 70 400 Acenaphthene 400 Acenaphthylene U 77 400 JJ Anthracene 67 65 400 Benzo[a]anthracene 300 J 59 400 3 Benzo[a]pyrene 290 1 77 52 400 Benzo[b]fluoranthene 380 69 400 15 Benzo[g,h,i]perylene 290 79 400 Benzo[k]fluoranthene 130 JJ 66 400 Bis(2-chloroethoxy)methane 400 υ 65 400 Bis(2-chloroethyl)ether 400 U 200 400 Bis(2-ethylhexyl) phthalate U 52 400 400 Butyl benzyl phthalate 400 U 57 400 Carbazole 400 U 68 400 Chrysene 450 71 400 U 400 Di-n-butyl phthalate 400 62 Di-n-octyl phthalate 400 U 64 400 U 65 4-Bromophenyl phenyl ether 400 400 U 54 4-Chloroaniline 400 400 U 70 2-Chloronaphthalene 400 400 U 4-Chlorophenyl phenyl ether 400 79 400 J Ju 61 400 Dibenz(a,h)anthracene 76 Dibenzofuran 400 U 71 400 Diethyl phthalate 400 U 100 400 Dimethyl phthalate 400 U 71 400 1,2-Dichlorobenzene 400 U 64 400 1,3-Dichlorobenzene 400 U 65 400 1,4-Dichlorobenzene 400 U 63 400 3,3'-Dichlorobenzidine 810 U 45 810 2,4-Dinitrotoluene 400 U 61 400 2.6-Dinitrotoluene 400 U 160 400 Fluoranthene 560 67 400 Fluorene 400 U 69 400 Hexachlorobenzene 400 U 69 400 Hexachlorobutadiene 400 U 77 400 Hexachlorocyclopentadiene 400 υ 57 400 400 U 70 400 Hexachloroethane 1 / 290 J Indeno[1,2,3-cd]pyrene 71 400 Isophorone 400 U 83 400 2-Methylnaphthalene 400 U 74 400 Naphthalene 400 U 61 400 2-Nitroaniline 2000 U 54 2000 3-Nitroaniline 2000 υ 57 2000 400 υ 74 400 Nitrobenzene 400 υ 400 N-Nitrosodi-n-propylamine 90 1110/08 Page 36 of 2196 12/19/2007 **TestAmerica Connecticut** 33

1118/08

.

Client: GEI Co	onsultants, Inc.			Job	Number: 220-3395-
Client Sample II): EHS-SS-01			S	dg Number: 220-339
Lab Sample ID:	220-3395-7			Date Sampled:	11/14/2007 0835
Client Matrix:	Solid	% Moisture: 19.4		Date Received:	11/15/2007 1634
	8270C Semivolatile Co	mpounds by Gas Chromatogra	phy/Mass S	pectrometry (GC/I	MS)
Method:	8270C	Analysis Batch: 220-11486	Ins	trument ID: HP	6890/5973 GC/MS
Preparation:	3541	Pren Batch: 220-11378	La	h File ID* 1121	186 D
Dilution	10	Top Datan 220 Thore	Init	ial Weight/Volume:	15.25 σ
Date Analyzed	11/20/2007 21/1		Fin	al Weight Volume:	1 ml
Date Branarod:	11/27/2007 0053		i in Inic	nation Volume:	1 m⊏ 1 mt
Dale Flepaleu.	11/2//2007 0935		ոյ։	ection volume.	
Analvte	DrvWt C	Corrected: Y Result (ua/Ka)	Qualifier	MDL.	RL
N-Nitrosodiphenv	lamine	400	U /	73	400
Phenanthrene		400	J.	66	400
Pvrene		630	the second s	59	400
1.2.4-Trichlorober	nzene	400	U	64	400
4-Chloro-3-methy	lphenol	400	U	80	400
2-Chlorophenol		400	U	87	400
2-Methylphenol		400	U	64	400
4-Methylphenol		400	U	60	400
2,4-Dichlorophen	ol	400	U	84	400
2,4-Dimethylphen	ol	400	U /	54	400
2,4-Dinitrophenol		2000	UX	260	2000
4,6-Dinitro-2-meth	nylphenol	2000	UX	310	2000
2-Nitrophenol		400	U	87	400
4-Nitrophenol		2000	U	180	2000
Pentachlorophene	bl	2000	U	28	2000
Phenol		400	U	48	400
2,4,5-Trichlorophe	enol	2000	U	61	2000
2,4,6-Trichlorophe	enol	400	U	59	400
Benzyl alcohol		400	U	84	400
4-Nitroaniline		810	U	61	810
2,2'-oxybis[1-chlo	ropropane]	400	U	65	400
Surrogate		%Rec		Accepta	nce Limits
2-Fluorobiphenyl		81		32 - 13	51
2-Fluorophenol		74		25 - 11	3
2,4,6-Tribromoph	enol	87		24 - 15	60
Nitrobenzene-d5		69		25 - 12	20
Phenol-d5		82		27 - 12	2
Terphenyl-d14		101		35 - 14	0

TestAmerica Connecticut

Page 37 of 2196

12/19/2007

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-01

Lab Sample ID: Client Matrix:	220-3395-7 Solid	% Moisture: 19.4	Date Date	Sampled: 1 Received: 1	1/14/2007 0835 1/15/2007 1634
	6010B Inductive	ely Coupled Plasma - Atomic I	Emission Spectr	ometry	
Method: 6010B Preparation: 3050B Dilution: 1.0 Date Analyzed: 11/21/2007 1601 Date Prepared: 11/19/2007 1407		Analysis Batch: 220-11308 Prep Batch: 220-11213	Instrumer Lab File I Initial We Final Wei	nt ID: D: ight/Volume: ight/Volume:	TJA Trace ICAP W112107 1.10 g 250 mL
Analyte	DryWt Corrected:	Y Result (mg/Kg)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc		4.2 8240 19.4 30.5 J 2.8 1670 7.1 4.0 J 15.2 54.8 12000 434 J 1560 J 114 175 6.8 40.0 14.1 14.1 14.1 21.2 23.9 50.8		0.42 13.0 1.9 0.31 0.65 17.5 1.3 0.73 0.48 0.62 13.8 33.9 8.7 0.93 26.8 0.62 1.2 1.9 2.3 3.1 0.45 3.1	$\begin{array}{c} 4.2 \\ 141 \\ 11.3 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 2.8 \\ 4.2 \\ 7.1 \\ 84.6 \\ 2.8 \\ 2.8 \\ 49.4 \\ 8.5 \\ 2.8 \\ 2.8 \\ 7.1 \\ 7.1 \\ 14.1 \\ 14.1 \\ 14.1 \\ 21.2 \\ 5.6 \\ 28.2 \\ \end{array}$
	7471A Mercury in	Solid or Semisolid Waste (Ma	nual Cold Vapor	Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0954 11/20/2007 1555	Analysis Batch: 220-11278 Prep Batch: 220-11264	Instrume Lab File Initial W Final We	ent ID: ID: eight/Volume: eight/Volume:	Perkin Elmer FIMS N/A 0.67 g 50 mL
Analyte Mercury	DryWt Corrected	I: Y Result (mg/Kg) 0.11	Qualifier	MDL 0.014	RL 0.056

DB 11808

Jun 12103

.

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-SS-0)1					Ũ	
Lab Sample ID: Client Matrix:	220-3395- Solid	7	% Moistur	re: 19.4		Date Sample Date Receiv	ed: 11/ ed: 11/	14/2007 0835 15/2007 1634
		8081A Organo	ochlorine Pesti	cides by Gas	Chrom	atography		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 5.0 12/03/2007 11/27/2007	1838 1227	Analysis Batch: Prep Batch: 220	220-11521 D-11392		Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol Injection Volume Column ID:	HP 589 C75070 lume: ume: : PRIM/	0 with dual ECD 955.D 30.75 g 10.0 mL 1 uL ARY
Analyte 4,4'-DDD 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	e dane) le	DryWt Correc	cted: Y Result (2.5 85 86 12 10 10 2.3 10 2.6 3.8 30 20 20 10 10 1.3 100 410 10 2.2 20 10 10 1.3 100 410 10	Ug/Kg) J / 200 / 200 / 200 /	イトロン 1000000000000000000000000000000000000	er MDL 2.3 2.6 1.9 2.2 1.7 1.6 0.62 1.9 0.89 1.0 1.0 5.4 2.0 0.87 0.92 0.91 0.69 13 11 0.67 0.55		RL 20 20 20 12 10 10 10 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10
Surrogate DCB Decachlorot Tetrachloro-m-xyl Method: Preparation: Dilution: Date Analyzed: Date Prepared:	oiphenyl ene 8081A 3550B 5.0 12/03/2007 11/27/2007	1838 1227	%Rec 121 108 Analysis Batch Prep Batch: 22	n: 220-11521 20-11392		Ad Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo Injection Volum Column ID:	cceptance 25 - 159 24 - 154 HP 58 C7507 olume: olume: le: SEC	90 with dual ECD 1055.D 30.75 g 10.0 mL 1 uL ONDARY
Surrogate DCB Decachlorol Tetrachloro-m-xy	biphenyl lene	14. 24. i i i i i	%Re 109 95	C)			cceptanc 25 - 159 24 - 154	e Limits

DB 118/08

TestAmerica Connecticut

12/19/2007

J'. 1103

Job Number: 220-3395-1

Client: GEI Consultants, Inc.

				S	dg Number: 220-3395
Client Sample ID:	EHS-55-01				
Lab Sample ID:	220-3395-7			Date Sampled:	11/14/2007 0835
Client Matrix:	Solid	% Moisture: 19.4		Date Received:	11/15/2007 1634
<u></u>	8082 Polych	lorinated Biphenyls (PCBs) b	y Gas Chro	omatography	
Method:	8082	Analysis Batch: 220-11497	,	Instrument ID: HP	5890 with dual ECD
Preparation:	3550B	Prep Batch: 220-11392		Lab File ID: D46	563125.d
Dilution:	1.0	·		Initial Weight/Volume:	: 30.75 g
Date Analyzed:	11/30/2007 0005			Final Weight/Volume:	10.0 mL
Date Prepared:	11/27/2007 1227			Injection Volume:	1 uL
			1	Column ID: PI	RIMARY
Analyte	DryWt C	orrected: Y Result (ug/Kg)	Qualifie	r MDL	RL
PCB-1016	and a control way and an and an and a control of the	21	Û	3.4	21
PCB-1221		40	U	1.9	40
PCB-1232		21	U	2.3	21
PCB-1242		21	U	3.6	21
PCB-1248		21	U	3.3	21
PCB-1254		21	U	1.5	21
PCB-1260		21	U	4.8	21
Surrogate		%Rec		Accepta	nce Limits
Tetrachloro-m-xyle	ne	77		24 - 15	54
DCB Decachlorobi	phenyl	92		25 - 15	59

TestAmerica Connecticut

Client Sample ID: EHS-SS-01

GC Semivolatiles

Lot-Sample #:	A7K170204-007	Work Order #:	KCH5Q1AC	Matrix	K:	SO
Date Sampled:	11/13/07 08:35	Date Received:	11/17/07			
Prep Date	11/26/07	Analysis Date:	11/27/07			
Prep Batch #:	7330014					
Dilution Factor:	1	Initial Wgt/Vol:	50.04 g	Final	Wgt/Vol:	100 mL
<pre>% Moisture:</pre>	21	Method:	SW846 8151	A		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	100	ug/kg	46	
2,4,5-TP		ND	25	ug/kg	2.8	
2,4,5-T		ND	25	ug/kg	4.1	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichloropheny	lacetic acid	74	(19 - 122)			

NOTE (S) :

.

Results and reporting limits have been adjusted for dry weight.

56 1/18/06

TestAmerica Connecticut

Client Sample ID: EHS-SS-01

General Chemistry

Lot-Sample #...: A7K170204-007 Work Order #...: KCH5Q Matrix..... SO Date Sampled...: 11/13/07 08:35 Date Received..: 11/17/07 % Moisture....: 21

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	ND UJ / Dilu	38.1 tion Facto	mg/kg r:l N	SW846 9030B/9034 4DL 7.1	11/19/07	7323421
Percent Solids	78.8 Dilu	10.0 tion Facto	% r:1 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-SS-02				-	
Lab Sample ID: Client Matrix:	220-3395-9 Solid	% Moisture: 19	9.6	Date Sampled: Date Received:	11/14/2007 11/15/2007	1052 1634
· · · · · · · · · · · · · · · · · · ·						

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11399	Instrument ID:	HP 5890/	5971A GC/MS
Preparation:	5030B		Lab File ID:	N6132.D	
Dilution:	1.0		Initial Weight/Volu	ume: 6	5 g
Date Analyzed:	11/26/2007 1527		Final Weight/Volu	ıme: 5	5 mL
Date Prepared:	11/26/2007 1527				

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Acetone	1250	-7.9	J B	2.9	25
Benzene	ý (J-F-	6.2	U	0.88	6.2
Bromodichloromethane		6.2	U	0.81	6.2
Bromoform		6.2	U	2.2	6.2
Bromomethane		6.2	U	1.9	6.2
Methyl Ethyl Ketone		12	U	4.2	12
Carbon disulfide		6.2	U	0.66	6.2
Carbon tetrachloride		6.2	U	0.88	6.2
Chlorobenzene		6.2	U	1.1	6.2
Chloroethane		6.2	U	1,6	6.2
Chloroform		6.2	U	0.66	6.2
Chioromethane		6.2	Ū	1.3	6.2
Dibromochloromethane		6.2	Ŭ	1.3	6.2
1 1-Dichloroethane		6.2	Ū	0.81	6.2
1.2-Dichloroethane		62	ũ	1.3	62
1 1-Dichloroethene		62	ŭ	0.98	62
1.2-Dichloropropane		6.2	Ŭ	12	62
cis-1 3-Dichloropropane		6.2	U U	0.77	6.2
trans_1_3_Dichloropropene		6.2	1	1 3	62
Ethylbonzene		6.2	1	0.88	62
2 Hovenono		12	U U	3.3	12
Anthylopa Chlorida	6001	.1.2		17	25
methylingbutyl kotopo	V 25 V	6.0	-9 -11 -	1.7	20
Charana		0.2	ut ut	1.2	6.2
1 1 2 2 Totrophlaroothong		0.2		1.0	0.2
		0.2	U	1.0	0.Z
Tetrachioroethene		0.2	U	0.92	0.2
		0.2	U	0.73	0.2
1,1,1-Irichloroethane		0.2	Ų	0.91	6.2
1,1,2-I richloroethane		6.2	U	1.1	6.2
Trichloroethene		6.2	U	1.2	6.2
Vinyl chloride		6.2	U	1.6	6.2
Xylenes, Total		6.2	U	3.0	6.2
cis-1,2-Dichloroethene		6.2	U	1.1	6.2
trans-1,2-Dichloroethene		6.2	U	1.2	6.2
Surrogate		%Rec		Acceptance	Limits
1,2-Dichloroethane-d4 (Surr)		78		49 - 134	
4-Bromofluorobenzene		62		36 - 133	
Dibromofluoromethane		73		60 - 130	
Toluene-d8 (Surr)		67		51 - 137	
				EMP 108	DB 1118/08
TestAmerica Connecticut		Page 17 of 2	196	1/910	12/19/200

Client: GEI Con	sultants, Inc.			Jol	Number: 220-3395-1
Client Sample ID:	EHS-SS-02				sag Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-9 Solid	% Moisture: 19.6		Date Sampled: Date Received:	11/14/2007 1052 11/15/2007 1634
,	8270C Semivolatile Co	ompounds by Gas Chromatogra	phy/Mass	Spectrometry (GC)	(MS)
Method:	8270C	Analysis Batch: 220-11486 Bron Batch: 220-11278	l	Instrument ID: HP	2 6890/5973 GC/MS
Dilution	10	Fiep Batch. 220-11376	1	_ao nie iD.	τοο.υ er 15.10 α
Date Analyzed	11/29/2007 2228		, L	Final Weight/Volume	· 1 ml
Date Prepared:	11/27/2007 0953		1	njection Volume:	1 uL
Analyte	D:::////	Corrected: Y. Result (ua/Ka)	Qualifie	r MDI	RI
Acepanhthene		410	11	71	<u>/10</u>
Acenaphthylene		410	U	78	410
Anthracene		410	UM/	66	410
Benzo[a]anthracen	e	280	JJJ	59	410
Benzo[a]pyrene		290	JJ	52	410
Benzo[b]fluoranthe	ne	370	A V	70	410
Benzo[g,h,i]perylen	e	170	JJV	80	410
Benzo[k]fluoranthe	ne	140	リティ	67	410
Bis(2-chloroethoxy)	methane	410	U	66	410
Bis(2-chioroethy))e	uner atholato	410		200	410
Butyl benzyl phthal	ate	410	1 J J -	57	410
Carbazole		410	Ŭ	69	410
Chrysene		350	A second	72	410
Di-n-butyl phthalate	2	410	Û	63	410
Di-n-octyl phthalate	•	410	U	64	410
4-Bromophenyl phe	enyl ether	410	U	66	410
4-Chloroaniline		410	U	54	410
2-Chloronaphthaler	ne	410	U	71	410
4-Chlorophenyl phe	enyl ether	410	U	80	410
Dibenz(a,h)anthrac	ene	410	U	62	410
Dipenzoiuran Diethyl phthalata		410	0	/1	410
Dimethyl phinalale		410	U U	700	410
1 2-Dichlorobenzer	A	410	U U	64	410
1.3-Dichlorobenzen	ie	410	Ŭ	66	410
1.4-Dichlorobenzen	e	410	Ŭ	64	410
3,3'-Dichlorobenzid	ine	820	Ŭ	45	820
2,4-Dinitrotoluene		410	U	62	410
2,6-Dinitrotoluene		410	U	160	410
Fluoranthene		450		68	410
Fluorene		410	U	69	410
Hexachlorobenzene	9	410	U	70	410
Hexachloroputadie	ne ntadiana	410	U	/8 59	410
Hexachloroethane	III.adiene	410	U El	00 71	410
Indepo[1.2.3-cd]pvr	ene	190	1.7 1	72	410
Isophorone		410	Ű	84	410
2-Methylnaphthaler	ie	410	U	75	410
Naphthalene		410	U	62	410
2-Nitroaniline		2000	U	55	2000
3-Nitroaniline		2000	U	58	2000
Nitrobenzene		410	U	75	410
N-Nitrosodi-n-propy	rlamine	410	U	91 	410
TestAmerica Con	necticut	Page 40 of 2196	5 X 111eh	08 En 100	12/19/2007

Client: GEI Co	nsultants, Inc.			Jol	b Number: 220-3395-1
Client Sample ID): EHS-SS-02			č	Sag Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-9 Solid	% Moisture: 19.6		Date Sampled: Date Received:	11/14/2007 1052 11/15/2007 1634
	8270C Semivolatile Co	mpounds by Gas Chromatogra	phy/Mass Sp	ectrometry (GC	/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 1.0 11/29/2007 2228 11/27/2007 0953	Analysis Batch: 220-11486 Prep Batch: 220-11378	Instr Lab Initia Fina Injec	ument ID: HF File ID: U2 I Weight/Volume I Weight/Volume tion Volume:	P 6890/5973 GC/MS 2188.D e: 15.10 g e: 1 mL 1 uL
Analyte N-Nitrosodipheny Phenanthrene Pyrene 1,2,4-Trichlorober 4-Chloro-3-methy 2-Chlorophenol 2-Methylphenol 2,4-Dinchlorophenol 2,4-Dinitrophenol 4,6-Dinitro-2-meth 2,4-Dinitrophenol 4,6-Dinitro-2-meth 2,4,6-Trichlorophenol Pentachlorophenol 2,4,6-Trichlorophe 8enzyl alcohol 4-Nitroaniline 2,2-oxybis[1-chlo	DryWt C lamine nzene lphenol ol ol nylphenol ol enol enol	Corrected: Y Result (ug/Kg) 410 210 400 410 410 410 410 410 410 4	Qualifier U J J U U U U U U U U U U U U U	MDL 73 67 60 65 81 88 64 61 85 55 270 320 88 180 29 49 62 60 85 61 66	RL 410 410 410 410 410 410 410 410
Surrogate 2-Fluorobiphenyl 2-Fluorophenol 2,4,6-Tribromoph Nitrobenzene-d5 Phenol-d5 Terobenyl-d14	enol	%Rec 93 84 85 83 90 85	с - с - а ал са бала с	Accept 32 - 1 25 - 1 24 - 1 25 - 1 27 - 1 35 - 1	ance Limits 31 13 50 20 22 40

TestAmerica Connecticut

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-02

į

Lab Sample ID: Client Matrix:	220-3395-9 Solid		% Moisture: 19.6	Dat Dat	e Sampled: e Received:	11/14/2007 1052 11/15/2007 1634	
n e tala (dil) 200 metro de la facto de	6010B	Inductively Co	upled Plasma - Atomic	Emission Spec	trometry		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1610 11/19/2007 1407	Analys Prep E	is Batch: 220-11308 Batch: 220-11213	Instrum Lab File Initial W Final W	ent ID: ID: /eight/Volume: eight/Volume:	TJA Trace ICAP W112107 1.13 g 250 mL	
Analyte	DryWt C	orrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Maganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc	, , , , , , , , , , , , , , , , , , ,		4.1 4510 4.5 29.1 J 2.8 2180 6.9 2.4 9.9 17.9 7560 396 J 1030 J 104 80.9 4.8 36.0 13.8 13.8 20.6 15.5 56.9	n n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0.41\\ 12.7\\ 1.9\\ 0.30\\ 0.63\\ 17.1\\ 1.3\\ 0.72\\ 0.47\\ 0.61\\ 13.5\\ 33.0\\ 8.5\\ 0.91\\ 26.1\\ 0.61\\ 1.2\\ 1.9\\ 2.3\\ 3.0\\ 0.44\\ 3.0\\ \end{array}$	$\begin{array}{c} 4.1\\ 138\\ 11.0\\ 2.8\\ 2.8\\ 275\\ 6.9\\ 2.8\\ 4.1\\ 6.9\\ 82.5\\ 275\\ 48.1\\ 8.3\\ 275\\ 6.9\\ 6.9\\ 13.8\\ 13.8\\ 13.8\\ 20.6\\ 5.5\\ 27.5\end{array}$	
And himself of the second section of the second	7471A Me	rcury in Solid o	or Semisolid Waste (Ma	nual Cold Vapo	or Technique)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0956 11/20/2007 1555	Analy Prep	sis Batch: 220-11278 Batch: 220-11264	Instrun Lab Fil Initial V Final V	nent ID; e ID; Veight/Volume: Veight/Volume;	Perkin Elmer Fl N/A 0.64 g 50 mL	MS

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Mercury	ana a construction and a construction of an activity of the second second second second second second second se	0.041	1	0.015	0.058	

Wan 1/2/08

1/18/08

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-SS-02	2						
Lab Sample ID: Client Matrix:	220-3395-9 Solid	%	Moisture:	19.6		Date Sampled Date Received	: 11/14 1: 11/15	1/2007 1052 5/2007 1634
a an	{	8081A Organochlorin	e Pesticide	s by Gas	Chromat	ography		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 5.0 12/03/2007 19 11/27/2007 12	Analysis Prep Ba 920 227	Batch: 220 tch: 220-11	-11521 392	۱۳ ۱۲ ۲ ۱۳ ۲	astrument ID: 1 ab File ID: 6 itial Weight/Volu inal Weight/Volur ijection Volume: column ID:	HP 5890 C750705 me: C ne: C PRIMAR	with dual ECD 7.D 30.63 g 10.0 mL 1 uL RY
Analyta		DryWt Corrected: Y	Result (ua/k	(a)	Qualifier	MDL	l	RL
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan suifate Endrin aldehyde Endrin ketone gamma-BHC (Linc Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	lane) e	Drywt Corrected. 1	$\begin{array}{cccc} 6.0 & J \\ 6.0 & J \\ 46 & J \\ 130 & J \\ 12 \\ 10 \\ 10 \\ 10 \\ 20 \\ 20 \\ 20 \\ 30 \\ 5.4 & J \\ 20 \\ 10 \\ 5.4 & J \\ 20 \\ 10 \\ 10 \\ 100 \\ 410 \\ 4.1^{\circ} & 10 \\ 7.8^{\circ} & 100 \end{array}$	9) 	4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 2.3\\ 2.6\\ 1.9\\ 2.2\\ 1.7\\ 1.6\\ 0.63\\ 2.0\\ 0.89\\ 1.0\\ 1.1\\ 5.4\\ 2.0\\ 0.88\\ 0.93\\ 0.91\\ 0.69\\ 13\\ 11\\ 0.67\\ 0.55\end{array}$		20 20 20 12 10 10 10 20 20 20 20 20 10 10 10 10 10 10 10 10 10 1
Surrogate DCB Decachlorob Tetrachloro-m-xyl	iphenyl ene		%Rec 159 134			Acc 25 24	eptance L - 159 - 154	_imits
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 5.0 12/03/2007 11/27/2007	Analys Prep B 1920 1227	is Batch: 22 atch: 220-1	0-11521 1392	1	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume: Column ID:	HP 5890 D750709 Jme: Ime: SECOI) with dual ECD 57.D 30.63 g 10.0 mL 1 uL NDARY
Surrogate DCB Decachlorol Tetrachloro-m-xy	biphenyl lene	,	%Rec 148 116	, er 🔹 🔹		Acc 25 24	eptance 5 - 159 1 - 154	Limits

12/19/2007

1110

Client: GEI Consultants Inc.

Client: GEI Co	ensultants, Inc.			Jo	b Number: 220-3395-1
Client Sample IE): EHS-SS-02				Sdg Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-9 Solid	% Moisture: 19.6		Date Sampled: Date Received:	11/14/2007 1052 11/15/2007 1634
	8082 Polyci	nlorinated Biphenyls (PCBs) by	Gas Chroma	itography	an a
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 11/30/2007 0038 11/27/2007 1227	Analysis Batch: 220-11497 Prep Batch: 220-11392	Inst Lab Initia Fina Inje Colu	rument ID: H. File ID: D al Weight/Volum al Weight/Volume ction Volume: umn ID: I	P 5890 with dual ECD 4663127.d e: 30.63 g e: 10.0 mL 1 uL PRIMARY
Analyte	DryWt C	Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
PCB-1016		21	Ű	3.4	21
PCB-1221		40	U	1.9	40
PCB-1232		21	U	2.3	21
PCB-1242		21	U	3.6	21
PUB-1248		21	0	3.3	21
PCB-1254 PCB-1260		21 45		1.5 4.9	21 21
Surrogate		%Rec	- <u>.</u>	Accept	ance Limits
DCB Decachlorob	ene iphenyl	67 84		24 - 1 25 - 1	154 159
Method: Preparation:	8082 3550B	Analysis Batch: 220-11497 Prep Batch: 220-11392	Instr Lab	rument ID: HF File ID: D4	P 5890 with dual ECD 4663127.d
Dilution:	1.0		Initia	al Weight/Volume	e: 30.63 g
Date Analyzed:	11/30/2007 0038		Fina	I Weight/Volume	»: 10.0 mL
Date Prepared:	11/27/2007 1227		Injec	ction Volume:	1 uL
			Colu	imn ID: S	SECONDARY
Surrogate		%Rec		Accept	ance Limits
Tetrachloro-m-xyle	ene	60	- 100 Million - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	24 - 1	54
DCB Decachlorob	iphenyl	74		25 - 1	59

0B 1/18/08 12/19/2007 (23)167

TestAmerica Connecticut

Client Sample ID: EHS-SS-02

GC Semivolatiles

Lot-Sample #: A7K170204-009	Work Order #:	KCH5T1AC	Matrix	«:	SO
Date Sampled: 11/14/07	Date Received:	11/17/07			
Prep Date: 11/26/07	Analysis Date:	11/27/07			
Prep Batch #: 7330014					
Dilution Factor: 1	Initial Wgt/Vol:	48.73 g	Final	Wgt/Vol:	100 mL
% Moisture: 21	Method:	SW846 8151	A		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
2,4-D	ND	100	ug/kg	46	
2,4,5-TP	ND	25	ug/kg	2.8	
2,4,5-T	ND	25	ug/kg	4.1	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
2,4-Dichlorophenylacetic acid	74	(19 - 122)			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

1/18/08

Em. 110/08

Client: GEI Consultants, Inc.

Client Sample ID:

EHS-SS-03

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID:	220-3395-10			Date Sampled:	11/14/2007	1115
Client Matrix:	Solid	% Moisture:	21.4	Date Received:	11/15/2007	1634

8260B Volatile Organic Compounds by GC/MS

Method: Preparation:	8260B 5030B	Analysis Batch: 220-11399	Instrument ID: Lab File ID:	HP 5890/59 N6133.D	971A GC/MS
Dilution:	1.0		Initial Weight/Volu	ume: 5	g
Date Analyzed:	11/26/2007 1553		Final Weight/Volu	ume: 5	mL.
Date Prepared:	11/26/2007 1553				

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL	
Acetone	1751 -11	J-B	3.0	25	
Benzene	6.4	U	0.90	6.4	
Bromodichloromethane	6.4	U	0.83	6.4	
Bromoform	6.4	U	2.2	6.4	
Bromomethane	6.4	U	1.9	6.4	
Methyl Ethyl Ketone	13	U	4.3	13	
Carbon disulfide	6.4	U	0.67	6.4	
Carbon tetrachloride	6.4	U	0.90	6.4	
Chlorobenzene	6.4	U	1.1	6.4	
Chloroethane	6.4	U	1.6	6.4	
Chloroform	6.4	U	0.67	6.4	
Chloromethane	6.4	U	1.3	6.4	
Dibromochloromethane	6.4	U	1.4	6.4	
1,1-Dichloroethane	6.4	U	0.83	6.4	
1,2-Dichloroethane	6.4	U	1.4	6.4	
1,1-Dichloroethene	6.4	U	1.0	6.4	
1,2-Dichloropropane	6.4	U	1.2	6.4	
cis-1,3-Dichloropropene	6.4	U	0.79	6.4	
trans-1,3-Dichloropropene	6.4	U	1.4	6.4	
Ethylbenzene	6.4	U	0.90	6.4	
2-Hexanone	13	U	3.4	13	
Methylene Chloride	V25V -2.5		1.8	25	
methyl isobutyl ketone	6.4	U	1.2	6.4	
Styrene	6.4	UXVJ	1.6	6.4	
1,1,2,2-Tetrachloroethane	6.4	U	1.3	6.4	
Tetrachloroethene	6.4	U	0.94	6.4	
Toluene	6.4	U	0.75	6.4	
1,1,1-Trichloroethane	6.4	U	0.93	6.4	
1,1,2-Trichloroethane	6.4	U	1.1	6.4	
Trichloroethene	6.4	U	1.3	6.4	
Vinyl chloride	6.4	U	1.7	6.4	
Xylenes, Total	6.4	U	3.1	6.4	
cis-1,2-Dichloroethene	6.4	U	1.2	6.4	
trans-1,2-Dichloroethene	6.4	U	1.2	6.4	
Surrogate	%Rec		Ассер	tance Limits	
1,2-Dichloroethane-d4 (Surr)	77		49 -	134	
4-Bromofluorobenzene	63		36 -	133	
Dibromofluoromethane	72		60 -	130	
Toluene-d8 (Surr)	66		51 -	137	

Client: GEI Cor	nsultants, Inc.			Ļ	ob Number: 220-3395-1
Client Sample ID:	EHS-SS-03				Sug Number: 220-3395
Lab Sample ID: Client Matrix:	220-3395-10 Solid	% Moisture:	21.4	Date Sampled Date Received	l: 11/14/2007 1115 d: 11/15/2007 1634
	8270C Semivolatile	Compounds by Gas Chro	matography/Ma	ss Spectrometry (G	C/MS)
Method:	8270C	Analysis Batch: 220	0-11486	Instrument ID:	HP 6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11	378	Lab File ID: 0	J2189.D
Dilution:	10			Initial Weight/Volur	ne: 15.32 g
Date Analyzed:	11/29/2007 2252			Final Weight/Volur	ne: 1 mL
Date Prepared:	11/27/2007 0953			Injection Volume:	1 uL
Analyte	DrvV	Nt Corrected: Y Result (ua/ł	(a) Qualit	fier MDL	RL
Acenaphthene		3300	J J	720	4100
Acenaphthylene		4100	U	780	4100
Anthracene		6200	J	660	4100
Benzo[a]anthracen	e	11000	J	600	4100
Benzo[a]pyrene		8700	1	530	4100
Benzo[b]fluoranthe	ne	9300	J 7	700	4100
Benzolg,n,ijpervier	ie no	4200	پ ۱ ۳	800	4100
Benzo[K]nuoranine)methano	3600	نۍ ل ۱۱	670	4100
Bis(2-chloroethyl)e	ther	4100	U	2000	4100
Bis(2-ethylhexvi) p	hthalate	1800	1 រី		4100
Butyl benzyl phthal	late	4100	Ŭ	580	4100
Carbazole		2300	JJ	700	4100
Chrysene		11000	J	√ 720	4100
Di-n-butyl phthalate	Э	4100	U	630	4100
Di-n-octyl phthalate	9	4100	U	650	4100
4-Bromophenyl phe	enyl ether	4100	U	660	4100
4-Chloroaniline		4100	Ų	550	4100
2-Chloronaphinale	ne apyl othor	4100	U	720	4100
Dibenz(a h)anthrac	ene	1200	1 3	620	4100
Dibenzofuran		1700	ιπ	720	4100
Diethyl phthalate		4100	Ű	1000	4100
Dimethyl phthalate		4100	Ū	720	4100
1,2-Dichlorobenzer	ne	4100	U	650	4100
1,3-Dichlorobenzer	ne	4100	U	660	4100
1,4-Dichlorobenzer	ne	4100	U	640	4100
3,3'-Dichlorobenzid	line	8200	U	460	8200
2,4-Dinitrotoluene		4100	U	630	4100
2,6-Dinitrotoluene		4100	UT	1600	4100
Fluorantnene		25000		580	4100
Hexachlorobenzen	۵	4100	11	700	4100
Hexachlorobutadie	ne	4100	Ŭ	780	4100
Hexachlorocyclope	ntadiene	4100	Ŭ	580	4100
Hexachloroethane		4100	υ	710	4100
Indeno[1,2,3-cd]py	rene	5000	Ĵ	730	4100
Isophorone		4100	U	840	4100
2-Methylnaphthaler	ne	940	JJ	750	4100
Naphthalene		1200	1 7	630	4100
2-Nitroaniline		20000	U	550	20000
3-Nitroaniline		20000	U	590	20000
Nitropenzene	domino	4100	U 	760	4100
	yiathine nachtaut		U	920 920	4100 \0 \0 10/10/0007
i estAmerica Con	necucut	Page 42 (DT VTA0	HIS Er 1	/ ⁰¹ TS\13\2004
				1/18/08	1

Client: GEI Con	sultants, Inc.			dol	Number: 220-3395-1
Client Sample ID:	EHS-SS-03			0	ug number. 220-3395
Lab Sample ID: Client Matrix:	220-3395-10 Solid	% Moisture: 21.4	D	ate Sampled: ate Received:	11/14/2007 1115 11/15/2007 1634
	8270C Semivolatile Com	pounds by Gas Chromatogra	phy/Mass Spec	trometry (GC/I	VIS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 10 11/29/2007 2252 11/27/2007 0953	Analysis Batch: 220-11486 Prep Batch: 220-11378	Instru Lab Fi Initial Final \ Injecti	ment ID: HP ile ID: U21 Weight/Volume: Neight/Volume: on Volume:	6890/5973 GC/MS 189.D 15.32 g 1 mL 1 uL
Analyte	DryWt Co	rrected: Y Result (ug/Kg)	Qualifier	MDL	RL
N-Nitrosodiphenyla Phenanthrene Pyrene 1,2,4-Trichlorobenz 4-Chloro-3-methylp 2-Chlorophenol 2-Methylphenol 2,4-Dichlorophenol 2,4-Dinethylphenol 2,4-Dimethylphenol 2,4-Dinitrophenol 4,6-Dinitro-2-methy 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichloropher Benzyl alcohol 4-Nitroaniline 2,2'-oxybis[1-chloro	mine zene shenol I Iphenol nol nol	4100 26000 21000 4100 4100 4100 4100 4100 4100 4100 4100 20000 20000 20000 4100 20000 20000 4100 20000 4100 20000 4100 20000 4100 4100 20000 4100 4100 20000 4100		740 680 600 650 820 890 650 620 850 550 2700 3200 880 1900 290 490 620 600 850 620 660	4100 4100 4100 4100 4100 4100 4100 4100 4100 4100 20000 20000 20000 4100 20000 4100 20000 4100 20000 4100 20000 4100 20000 4100 4100 4100 4100 4100 20000 4100 4100 4100 20000 4100 4100 20000 4100 4
Surrogate		%Rec		Accepta	nce Limits
2-Fluorobiphenyl 2-Fluorophenol 2,4,6-Tribromophen Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	noi	100 92 95 96 99 93		32 - 13 25 - 11 24 - 15 25 - 12 27 - 12 35 - 14	1 3 00 0 22 0

De 1/18/08 Enniolog

Page 43 of 2196

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-03

Lab Sample ID: Client Matrix:	220-3395-10 Solid		% Moisture: 21.4	Dat Dat	e Sampled: 1 e Received: 1	1/14/2007 1115 1/15/2007 1634	(*1809) 2009 P		
2.2200.0000000000000000000000000000000	6010B Inductively Coupled Plasma - Atomic Emission Spectrometry								
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1615 11/19/2007 1407	Analysi Prep B	s Batch: 220-11308 atch: 220-11213	Instrume Lab File Initial W Final We	ent ID: ID: eight/Volume: eight/Volume:	TJA Trace ICAP W112107 1.15 g 250 mL			
Analyte	DryWt Correct	ted: Y	Result (mg/Kg)	Qualifier	MDL	RL	. .		
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Maganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc			4.1 22400 J' 29.1 277 J' 1.7 5450 J' 6.9 9.3 J' 90.6 J' 34.6 40600 J' 1620 J' 1620 J' 1620 J' 143 507 J' 29.3 J' 928 J' 13.8 3.7 20.7 122 J' 166 J'	U J U J U	$\begin{array}{c} 0.41 \\ 12.7 \\ 1.9 \\ 0.30 \\ 0.64 \\ 17.1 \\ 1.3 \\ 0.72 \\ 0.47 \\ 0.61 \\ 13.5 \\ 33.2 \\ 8.6 \\ 0.91 \\ 26.3 \\ 0.61 \\ 1.2 \\ 1.9 \\ 2.3 \\ 3.0 \\ 0.44 \\ 3.0 \end{array}$	$\begin{array}{c} 4.1\\ 138\\ 11.1\\ 2.8\\ 2.8\\ 276\\ 6.9\\ 2.8\\ 4.1\\ 6.9\\ 82.9\\ 276\\ 48.4\\ 8.3\\ 276\\ 6.9\\ 6.9\\ 13.8\\ 13.8\\ 13.8\\ 20.7\\ 5.5\\ 27.6\end{array}$			
Land Barnerian J. Philada a national di Ardana	7471A Mercury	in Solid o	r Semisolid Waste (Ma	nual Cold Vapo	or Technique)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0957 11/20/2007 1555	Analy: Prep E	sis Batch: 220-11278 Batch: 220-11264	Instrum Lab Fil Initial V Final V	ient ID: e ID: Veight/Volume: /eight/Volume:	Perkin Elmer Fll N/A 0.67 g 50 mL	ИS		
Analyte Mercury		cted: Y	Result (mg/Kg) 0.13 J	Qualifier	MDL 0.014	RL 0.057			

Nr 1/2/08

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-SS-0)3					
Lab Sample ID: Client Matrix:	220-3395- Solid	-10	% Moistu	re: 21.4		Date Sampled: Date Received:	11/14/2007 1115 11/15/2007 1634
		8081A Organoch	lorine Pesti	cides by Gas	s Chroma	tography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 2.0 12/03/2007 11/27/2007	Ar Pr 1942 1227	alysis Batch: ep Batch: 22	: 220-11521 0-11392	 _ 	nstrument ID: HI .ab File ID: D' nitial Weight/Volum Final Weight/Volume njection Volume: Column ID:	P 5890 with dual ECD 7507058.D e: 30.48 g e: 10.0 mL 1 uL PRIMARY
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Linc Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	lane) e	DryWt Correcte	4: Y Result 20 46 79 5.0 1.9 4.3 0.96 3.7 4.4 4.3 4.3 13 15 8.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4	(ug/Kg) J J 4.30 4.30 JN 4.30 JN 4.30 JN 4.30 JN 4.30 JN 4.30 JN	Qualifies M* U J V J V J M* U U U U U U U U U U U U U	MDL 0.95 1.1 0.77 0.89 0.69 0.67 0.26 0.80 0.37 0.43 0.43 2.2 0.81 0.36 0.38 0.38 0.38 0.38 0.38 0.29 5.3 4.4 0.28 0.23	RL 8.3 8.3 8.3 5.0 4.3 4.3 4.3 8.3 4.3 8.3 8.3 13 8.3 8.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4
Surrogate DCB Decachlorob Tetrachloro-m-xyl Method: Preparation: Dilution: Date Analyzed: Date Prepared:	iphenyl ene 8081A 3550B 2.0 12/03/2007 11/27/2007	A F 1942 1227	%Re 329 128 nalysis Batc rep Batch: 2	c) 3 h: 220-11521 20-11392	*	Acce 25 - 24 - Instrument ID: I Lab File ID: I Initial Weight/Volur Final Weight/Volur Injection Volume: Column ID:	ptance Limits - 159 - 154 - P 5890 with dual ECD D7507058.D me: 30.48 g ne: 10.0 mL 1 uL SECONDARY
Surrogate DCB Decachlorol Tetrachloro-m-xy	biphenyl lene		%Re 231 12	ec 0 0	* * *	Acce 25 24	eptance Limits - 159 - 154

0B 1118/08

(11/08 (11/108

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 Client Sample ID: EHS-SS-03 Lab Sample ID: 220-3395-10 Date Sampled: 11/14/2007 1115 Client Matrix: Solid % Moisture: 21.4 Date Received: 11/15/2007 1634 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography Method: 8082 Analysis Batch: 220-11497 Instrument ID: HP 5890 with dual ECD Preparation: 3550B D4663128.d Prep Batch: 220-11392 Lab File ID: Dilution: 1.0 Initial Weight/Volume: 30.48 g Date Analyzed: 11/30/2007 0055 Final Weight/Volume: 10.0 mL Date Prepared: 11/27/2007 1227 Injection Volume: 1 uL Column ID: PRIMARY DryWt Corrected: Y Result (ug/Kg) Analyte Qualifier MDI. RL. PCB-1016 21 ປີ 3.5 21 PCB-1221 41 Ų 1.9 41 PCB-1232 21 U 2.3 21 PCB-1242 21 U 3.7 21 PCB-1248 21 U 34 21 PCB-1254 21 UT 1.5 21 PCB-1260 24 5.0 21 ₩-T Surrogate %Rec Acceptance Limits Tetrachloro-m-xylene 21 24 - 154 DCB Decachlorobiphenyl 75 25 - 159 Method: 8082 Analysis Batch: 220-11497 HP 5890 with dual ECD Instrument ID: Preparation: 3550B Prep Batch: 220-11392 Lab File ID: D4663128.d Dilution: 1.0 30.48 g Initial Weight/Volume: 11/30/2007 0055 Date Analyzed: Final Weight/Volume: 10.0 mL Date Prepared: 11/27/2007 1227 Injection Volume: 1 uL Column ID: SECONDARY Surrogate %Rec Acceptance Limits Tetrachloro-m-xvlene 18 24 - 154 DCB Decachlorobiphenvl 63 25 - 159

12/19/2007

TestAmerica Connecticut

Client Sample ID: EHS-SS-03

GC Semivolatiles

Lot-Sample #: A7K170204-010 Date Sampled: 11/14/07 10:52 Prep Date: 11/26/07 Prep Batch #: 7330014	Work Order #: 2 Date Received: Analysis Date:	KCH5V1AC 11/17/07 11/27/07	Matrix	«: SO
Dilution Factor: 1	Initial Wqt/Vol:	50.01 q	Final	Wqt/Vol: 100 mL
% Moisture: 22	Method	SW846 8151	A	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2,4-D	ND	100	ug/kg	46
2,4,5-TP	ND	26	ug/kg	2.8
2,4,5-T	ND	26	ug/kg	4.1
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
2,4-Dichlorophenylacetic acid	95	(19 - 122)		

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: EHS-SS-03

General Chemistry

Matrix..... SO

Work Order #...: KCH5V Lot-Sample #...: A7K170204-010 Date Sampled...: 11/14/07 10:52 Date Received..: 11/17/07 % Moisture....: 22

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	25.5 段	J / 38.3 Dilution Facto	mg/kg or: l	SW846 9030B/9034	11/20/07	7324747
Percent Solids	78.4	10.0 Dilution Facto	8 or: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

11408 11408 290

Duplicate of EHS-55-03

Client: GEI Consultants, Inc.

EHS-SS-XX

Client Sample ID:

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID:	220-3395-8			Date Sampled:	11/14/2007	0000
Client Matrix:	Solid	% Moisture:	31.7	Date Received:	11/15/2007	1634

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11269	Instrument ID:	HP 5890/	5971A GC/MS
Preparation:	5030B		Lab File ID:	N6063.D	
Dilution:	1.0		Initial Weight/Vol	ume:	5 g
Date Analyzed:	11/21/2007 0137		Final Weight/Volu	ume: !	5 mL
Date Prepared:	11/21/2007 0137				

Analyte	DryWt Corrected: Y R	tesult (ug/Kg)	Qualifier	MDL	RL
Acetone	290	4.7		3.4	29
Benzene	olv	7.3	U	1.0	7.3
Bromodichloromethane		7.3	U	0.95	7.3
Bromoform		7.3	U	2.5	7.3
Bromomethane		7.3	U	2.2	7.3
Methyl Ethyl Ketone		15	U	4.9	15
Carbon disulfide		7.3	U	0.78	7.3
Carbon tetrachloride		7.3	U	1.0	7.3
Chlorobenzene		7.3	U	1.3	7.3
Chloroethane		7.3	U	1.9	7.3
Chloroform		7.3	U	0.78	7.3
Chloromethane		7.3	U	1.5	7.3
Dibromochloromethane		7.3	U	1.6	7.3
1,1-Dichloroethane		7.3	U	0.95	7.3
1,2-Dichloroethane		7.3	U	1.6	7.3
1,1-Dichloroethene		7.3	U	1.2	7.3
1,2-Dichloropropane		7.3	U	1.4	7.3
cis-1,3-Dichloropropene		7.3	U	0.91	7.3
trans-1,3-Dichloropropene		7.3	U	1.6	7.3
Ethylbenzene		7.3	U	1.0	7.3
2-Hexanone		/15	U	3.9	15
Methylene Chloride	290	2.8	J	2.0	29
methyl isobutyl ketone		7.3	U	1.4	7.3
Styrene		7.3	U	1.9	7.3
1,1,2,2-Tetrachloroethane		7.3	U	1.5	7.3
Tetrachloroethene		7.3	U.	1.1	7.3
Toluene		7.3	U 🖌 🛹	0.86	7.3
1,1,1-Trichloroethane		7.3	U	1.1	7.3
1,1,2-Trichloroethane		7.3	U	1.3	7.3
Trichloroethene		7.3	U	1.4	7.3
Vinyl chloride		7.3	U	1.9	7.3
Xylenes, Total		7.3	U	3.6	7.3
cis-1,2-Dichloroethene		7.3	U	1.3	7.3
trans-1,2-Dichloroethene		7.3	U	1.4	7.3
Surrogate		%Rec		Acceptance	Limits
1,2-Dichloroethane-d4 (Surr)		82		49 - 134	
4-Bromofluorobenzene		44		36 - 133	
Dibromofluoromethane		77		60 - 130	
Toluene-d8 (Surr)		59		51 - 137	

19108

Duplicate of EHS-SS-03

Analytical Data

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID: E	EHS-SS-XX					
Lab Sample ID: 22 Client Matrix: S	20-3395-8 Solid	% Moisture:	31.7	Date Sampled: Date Received:	11/14/2007 0 11/15/2007 1	000 634

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:	8270C 3541	Analysis Batch: 220-11486 Prep Batch: 220-11378	Instrument ID: Lab File ID:	HP 6890/5973 GC/MS U2187.D
Dilution:	1.0	·	Initial Weight/Volu	ume: 15.27 g
Date Analyzed:	11/29/2007 2204		Final Weight/Volu	ime: 1 mL
Date Prepared:	11/27/2007 0953		Injection Volume:	1 uL

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Acenaphthene	470	UVJ	83	470
Acenaphthylene	470	U	90	470
Anthracene	470	UMUT -	77	470
Benzo[a]anthracene	150	J J /	69	470
Benzo[a]pyrene	160	JJV	61	470
Benzo[b]fluoranthene	230	JJ	81	470
Benzo[g,h,i]perylene	150	JT	93	470
Benzo[k]fluoranthene	79	JJ	78	470
Bis(2-chloroethoxy)methane	470	U	77	470
Bis(2-chloroethyl)ether	470	U _ /	230	470
Bis(2-ethylhexyl) phthalate	580	JV	61	470
Butyl benzyl phthalate	470	U	67	470
Carbazole	470	UUJ	81	470
Chrysene	250	JJ	83	470
Di-n-butyl phthalate	470	U	73	470
Di-n-octyl phthalate	470	U	75	470
4-Bromophenyl phenyl ether	470	U	77	470
4-Chloroaniline	470	U	63	470
2-Chloronaphthalene	470	U	83	470
4-Chlorophenyl phenyl ether	470	U .	93	470
Dibenz(a,h)anthracene	470	UUJ	72	470
Dibenzofuran	470	UUT	83	470
Diethyl phthalate	470	U	120	470
Dimethyl phthalate	470	U	84	470
1.2-Dichlorobenzene	470	U	75	470
1.3-Dichlorobenzene	470	U	76	470
1.4-Dichlorobenzene	470	U	74	470
3.3'-Dichlorobenzidine	950	U	53	950
2.4-Dinitrotoluene	470	U	72	470
2.6-Dinitrotoluene	470	U	190	470
Fluoranthene	340	151	79	470
Fluorene	470	UVJ/	81	470
Hexachlorobenzene	470	υ	82	470
Hexachlorobutadiene	470	U	90	470
Hexachlorocyclopentadiene	470	U	67	470
Hexachloroethane	470	U	82	470
Indeno[1,2,3-cd]pyrene	170	15-	84	470
Isophorone	470	ບ້	97	470
2-Methylnaphthalene	470	UUTV	87	470
Naphthalene	470	UVJ	72	470
2-Nitroaniline	2300	U	64	2300
3-Nitroaniline	2300	U	68	2300
Nitrobenzene	470	Ŭ	87	470
N-Nitrosodi-n-propylamine	470	U	110	470
TestAmerica Connecticut	Page 38 of 21	.96 08 118/18	Enno	ل ^{ور} 12/19/2007

Duplicate of EHS-55-03

Analytical Data

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample II	D: EHS-SS-XX				
Lab Sample ID: Client Matrix:	220-3395-8 Solid	% Moisture: 31.7		Date Sampled: Date Received:	11/14/2007 0000 11/15/2007 1634
	8270C Semivolatile Co	ompounds by Gas Chromatogra	phy/Mass Sp	ectrometry (GC/N	IS)
Method:	8270C	Analysis Batch: 220-11486	Instr	rument ID: HP 6	6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11378	Lab	File ID: U21	87.D
Dilution:	1.0		Initia	al Weight/Volume:	15.27 g
Date Analyzed:	11/29/2007 2204		Fina	I Weight/Volume:	1 mL
Date Prepared:	11/27/2007 0953		Injec	ction Volume:	1 uL
Analyte	DryWt (Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
N-Nitrosodiphenv	lamine	470	υ	86	470
Phenanthrene		170	JJV	78	470
Pyrene		330	JT	69	470
1,2,4-Trichlorober	nzene	470	ບ້	76	470
4-Chloro-3-methy	iphenol	470	U	95	470
2-Chlorophenol		470	U	100	470
2-Methylphenol		470	U	75	470
4-Methylphenol		91	151	71	470
2,4-Dichlorophend	ol	470	U	99	470
2,4-Dimethylphen	ol	470	U, /	64	470
2,4-Dinitrophenol		2300	UN	310	2300
4,6-Dinitro-2-meth	nylphenol	2300	UXV	370	2300
2-Nitrophenol		470	U	100	470
4-Nitrophenol		2300	U	220	2300
Pentachlorophene	ol	2300	U	34	2300
Phenol		470	U	57	470
2,4,5-Trichlorophe	enol	2300	U	72	2300
2,4,6-Trichlorophe	enol	470	U	69	470
Benzyl alcohol		470	U	99	470
4-Nitroaniline		950	U	71	950
2,2'-oxybis[1-chlo	ropropane]	470	U	77	470
Surrogate		%Rec	1	Acceptar	nce Limits
2-Fluorobiphenyl		88		32 - 13	1
2-Fluorophenol		82		25 - 11:	3
2,4,6-Tribromoph	enol	88		24 - 150	D
Nitrobenzene-d5		78		25 - 120	D
Phenol-d5		90		27 - 122	2
Terphenyl-d14		103		35 - 140	C

Duplicate of EHS-55-03

Analytical Data

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-XX

Lab Sample ID: Client Matrix:	220-3395-8 Solid		% Moisture: 31.7	Da Da	ate Sampled: 1 ate Received: 1	1/14/2007 0000 1/15/2007 1634		
	6010B Induc	tively Cou	upled Plasma - Atomi	c Emission Spe	ctrometry			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1605 11/19/2007 1407	Analys Prep B	sis Batch: 220-11308 Batch: 220-11213	Instrun Lab Fil Initial V Final V	Instrument ID: TJA Trace ICAP Lab File ID: W112107 Initial Weight/Volume: 1.17 g Final Weight/Volume: 250 mL			
Analyte	DryWt Correct	ed: Y	Result (mg/Kg)	Qualifier	MDL	RL		
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc			4.7 8850 J 22.4 31.0 J 3.1 1680 J 7.8 4.3 J 12.0 J 57.6 12900 J 431 J 1610 J 119 193 6.8 43.2 J 15.6 15.6 23.5 J 46.4 J	U U U J J J J J J J J J J J J J J J J J	$\begin{array}{c} 0.47 \\ 14.4 \\ 2.1 \\ 0.34 \\ 0.72 \\ 19.4 \\ 1.4 \\ 0.81 \\ 0.53 \\ 0.69 \\ 15.3 \\ 37.5 \\ 9.7 \\ 1.0 \\ 29.7 \\ 0.69 \\ 1.3 \\ 2.2 \\ 2.6 \\ 3.4 \\ 0.50 \\ 3.4 \end{array}$	4.7 156 12.5 3.1 3.1 3.1 3.3 7.8 3.1 4.7 7.8 93.9 313 54.8 9.4 313 7.8 7.8 7.8 15.6 15.6 15.6 23.5 6.3 31.3		
	7471A Mercury	in Solid c	or Semisolid Waste (N	lanual Cold Var	or Technique)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/21/2007 0955 11/20/2007 1555	Analy Prep	vsis Batch: 220-11278 Batch: 220-11264	Instru Lab F Initial Final	ment ID: ile ID: Weight/Volume: Weight/Volume:	Perkin Elmer FIMS N/A 0.66 g 50 mL		
Analyte	DryWt Correc	ted: Y	Result (mg/Kg)	Qualifier	MDL	RL		
Mercury	ی بین بین است از میت این ا	,,	0.046 J		0.017	0.067		

1/2/08

Duplicate of EHS-SS-03

Analytical Data

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-SS->	(X					
Lab Sample ID: Client Matrix:	220-3395- Solid	8	% Moistur	e: 31.7		Date Sampled: Date Received:	11/14/2007 0000 11/15/2007 1634
an a		8081A Organo	chlorine Pestic	cides by Gas	6 Chrom	atography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 5.0 12/03/2007 11/27/2007	1859 1227	Analysis Batch: Prep Batch: 220	220-11521)-11392	Qualifi	Instrument ID: HF Lab File ID: D7 Initial Weight/Volume Final Weight/Volume Injection Volume: Column ID: F	9 5890 with dual ECD 507056.D 9: 30.69 g 9: 10.0 mL 1 uL PRIMARY 81
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	a dane) ie	DryWt Correc	ted: Y Result (4.6 85 86 14 12 12 12 24 12 24 12 2.9 6.5 36 24 24 12 12 12 12 12 12 12 12 12 12 12 12 12	12U	4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c} 2.7\\ 3.1\\ 2.2\\ 2.5\\ 2.0\\ 1.9\\ 0.74\\ 2.3\\ 1.1\\ 1.2\\ 1.2\\ 6.4\\ 2.3\\ 1.0\\ 1.1\\ 1.1\\ 1.1\\ 0.82\\ 15\\ 13\\ 0.79\\ 0.65\end{array}$	$\begin{array}{c} 24\\ 24\\ 24\\ 24\\ 14\\ 12\\ 12\\ 12\\ 24\\ 12\\ 24\\ 24\\ 24\\ 24\\ 24\\ 12\\ 12\\ 12\\ 12\\ 120\\ 480\\ 12\\ 12\\ 12\end{array}$
Surrogate DCB Decachlorot Tetrachloro-m-xyl Method: Preparation: Dilution: Date Analyzed: Date Prepared:	oiphenyl ene 8081A 3550B 5.0 12/03/2007 11/27/2007	1859 1227	%Rec 116 93 Analysis Batch Prep Batch: 22	: 220-11521 :0-11392		Accep 25 - 24 - Instrument ID: H Lab File ID: C Initial Weight/Volum Final Weight/Volum Injection Volume: Column ID:	tance Limits 159 154 P 5890 with dual ECD 7507056.D ne: 30.69 g ne: 10.0 mL 1 uL SECONDARY
Surrogate DCB Decachlorol Tetrachloro-m-xy	biphenyl Iene	and an an an an an an	%Re 105 91	C		Accer 25 - 24 -	otance Limits 159 154

Jun 1/1/100

12/19/2007

DB M/18/08

Duplicate of EHS-SS-03

Analytical Data

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-SS-XX			-	
Lab Sample ID: Client Matrix:	220-3395-8 Solid	% Moisture:	31.7	Date Sampled: Date Received:	11/14/2007 0000 11/15/2007 1634

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 11/30/2007 11/27/2007	Analy Prep 1 0022 1227	sis Batch: 220-11497 Batch: 220-11392		Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol Injection Volume	HP 5890 with dual ECE D4663126.d lume: 30.69 g ume: 10.0 mL : 1 uL
					Column ID:	PRIMARY
Analyte		DryWt Corrected: Y	' Result (ug/Kg)	Qualifi	er MDL	RL
PCB-1016			24	U	4.0	24
PCB-1221			47	υ	2.2	47
PCB-1232			24	U	2.7	24
PCB-1242			24	U	4.3	24
PCB-1248			24	U	3.9	24
PCB-1254			24	U	1.7	24
PCB-1260			24	U	5.7	24
Surrogate			%Rec		Acc	ceptance Limits
Tetrachloro-m-xyle	ne	and the second secon	48		24	4 - 154
DCB Decachlorobi	phenyl		59		2	5 - 159

12/19/2007 12/19/2007

Client Sample ID: EHS-SS-XX

GC Semivolatiles

Lot-Sample #:	A7K170204-008	Work Order #:	KCH5R1AC	KCH5R1AC Matrix		С
Date Sampled:	11/14/07	Date Received:	11/17/07			
Prep Date:	11/26/07	Analysis Date:	11/27/07			
Prep Batch #:	7330014					
Dilution Factor:	1	Initial Wgt/Vol:	50.04 g	Final	Wgt/Vol: 10)0 mL
<pre>% Moisture:</pre>	40	Method:	SW846 8151.	A		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	130	ug/kg	60	
2,4,5-TP		ND	33	ug/kg	3.7	
2,4,5-T		ND	33	ug/kg	5.3	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichloropheny	lacetic acid	100	(19 - 122)			

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

DB 11/18 (28

Duplicate of EHS-SS-03

Client Sample ID: EHS-SS-XX

General Chemistry

Lot-Sample #...: A7K170204-008 Date Sampled...: 11/14/07 % Moisture....: 40 Work Order #...: KCH5R Date Received..: 11/17/07 Matrix....: SO

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	nd UJ	50.1 Dilution Factor	mg/kg r: 1	SW846 9030B/9034 MDL 9.3	11/20/07	7324747
Percent Solids	59.9	10.0 Dilution Factor	°; r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

As. 15100

Client: GEI Con	sultants, Ind	Э.				Jot	Number: :	220-3395-1
Client Sample ID:	EHS-SS	-04				5	ag Number	220-3395
Lab Sample ID: Client Matrix:	220-3395 Solid	ō-11 9	6 Moisture:	18.2		Date Sampled: Date Received:	11/14/2007 11/15/2007	1135 1634
		8260B Volatile	Organic Co	mpounds	by GC/M	S		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 11/26/2007 11/26/2007	Analys 1618 1618	is Batch: 220	-11399	In: La Ini Fii	strument ID: HP ib File ID: N6 itial Weight/Volume nal Weight/Volume	5890/5971A 134.D : 5 g : 5 mL	GC/MS
Analyte		DryWt Corrected: Y	Result (ug/K	g)	Qualifier	MDL	RL	
Acetone		6.1.	6.D	37		29	24	•
Ronzono		AAV AAV	6.1		U U	0.87	£.4 6 1	
Denzene Promodiobloromotk	0000		6.1		0	0.07	6.1	
Bromoform	lane		6.1		U El	0.75	0.1	
Bromomothono			6.1		0	2.1	0.1	
Mothul Ethyl Koton	•		40		0	1.9	10.1	
Carban disulfide	e		12		0	4.1	12	
Carbon distillate	la.		0.1		U	0.05	0.1	
Carbon tetrachiono	e		0.1		0	0.87	0.1	
Chlorobenzene			6.1		U	1.1	6.1	
Chloroethane			6.1		0	1.6	6.1	
Chloroform			6.1		U	0.65	6.1	
Chloromethane			6.1		U	1.2	6.1	
Dibromochlorometh	nane		6.1		U	1.3	6.1	
1,1-Dichloroethane			6.1		U	0.79	6.1	
1,2-Dichloroethane			6.1		U	1.3	6.1	
1,1-Dichloroethene			6.1		U	0.97	6.1	
1,2-Dichloropropan	e		6.1		U	1.2	6.1	
cis-1,3-Dichloropro	pene		6.1		U	0.76	6.1	
trans-1,3-Dichlorop	ropene		6.1		U	1.3	6.1	
Ethylbenzene			6.1		U	0.87	6.1	
2-Hexanone		/	12		U	3.2	12	
Methylene Chloride	•	Vayu	-2.8		J	1.7	24	
methyl isobutyl kete	one		6.1		U	, 1.1	6.1	
Styrene			6.1		U* VJ ·	1.6	6.1	
1,1,2,2-Tetrachloro	ethane		6.1		U	1.3	6.1	
Tetrachloroethene			6.1		U	0,90	6.1	
Toluene			6.1		Ū	0.72	6.1	
1.1.1-Trichloroetha	ne		6.1		Ū	0.89	6.1	
1 1.2-Trichloroetha	ne		6.1		Ŭ	1.1	6.1	
Trichloroethene			6.1		п	12	6.1	
Vinvl chloride			6.1		U U	1.6	6.1	
Yulanas Total			6.1		11	3.0	6.1	
rie_1 2_Dichloroeth	ene		61		U U	0.0 1 1	6.1	
trans_1.2_Dichloroe	thene		61		ц П	1.1	6.1	
			0.1		<u> </u>	1.2	V. I	
Surrogate			%Rec			Accepta	ance Limits	
1,2-Dichloroethane	-d4 (Surr)		81			49 - 1	34	
4-Bromofluorobenz	ene		44			36 - 13	33	
Dibromofluorometh	iane		72			60 ~ 1	30	
Toluene-d8 (Surr)			61			51 - 13	37	

Page 19 of 2196 08 EMT 1908

Client: GEI Consultants, Inc.

EHS-SS-04

Client Sample ID:

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID:	220-3395-11			Date Sampled:	11/14/2007	1135
Client Matrix:	Solid	% Moisture:	18.2	Date Received:	11/15/2007	1634

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-11486	Instrument ID:	HP 6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11378	Lab File ID:	U2190.D
Dilution:	1.0		Initial Weight/Volu	ume: 15.29 g
Date Analyzed:	11/29/2007 2315		Final Weight/Volu	ime: 1 mL
Date Prepared:	11/27/2007 0953		Injection Volume:	1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Acenaphthene		400	U	69	400
Acenaphthylene		400	U	75	400
Anthracene		89	JJ /	64	400
Benzo[a]anthracene		290	្រភា/	58	400
Benzo[a]pyrene		230	JJ	51	400
Benzo[b]fluoranthene		340	J. C.	68	400
Benzo[g,h,i]perylene		130	JJ T	77	400
Benzo[k]fluoranthene		110	JJÝ	65	400
Bis(2-chloroethoxy)methane		400	U	64	400
Bis(2-chloroethyl)ether		400	U	190	400
Bis(2-ethylhexyl) phthalate		160	JJ -	51	400
Butyl benzyl phthalate		81	JJ ~	55	400
Carbazole		400	U	67	400
Chrysene		440		70	400
Di-n-butyl phthalate		400	U	61	400
Di-n-octyl phthalate		400	U	62	400
4-Bromophenyl phenyl ether		400	U	64	400
4-Chloroaniline		400	U	53	400
2-Chloronaphthalene		400	U	69	400
4-Chlorophenyl phenyl ether		400	U	78	400
Dibenz(a,h)anthracene		400	U	60	400
Dibenzofuran		400	U	69	400
Diethyl ohthalate		400	U	98	400
Dimethyl phthalate		400	U	70	400
1.2-Dichlorobenzene		400	U	63	400
1.3-Dichlorobenzene		400	Ū	64	400
1,4-Dichlorobenzene		400	U	62	400
3.3'-Dichlorobenzidine		790	U	44	790
2,4-Dinitrotoluene		400	U	60	400
2.6-Dinitrotoluene		400	U	160	400
Fluoranthene		500		66	400
Fluorene		400	U	67	400
Hexachlorobenzene		400	U	68	400
Hexachlorobutadiene		400	U	75	400
Hexachlorocyclopentadiene		400	Ū	56	400
Hexachloroethane		400	Ŭ	69	400
Indeno[1.2.3-cd]pvrene		150	JJV	70	400
Isophorone		400	U	81	400
2-Methylnaphthalene		400	Ŭ	73	400
Naphthalene		400	Ū	60	400
2-Nitroaniline		1900	Ŭ	53	1900
3-Nitroaniline		1900	Ū	56	1900
Nitrobenzene		400	Ŭ	73	400
N-Nitrosodi-n-propylamine		400	Ŭ	88	400
TestAmerica Connecticut		Page 44 of	2196 06 1/18/08	En 110/08	12/19/200

Client: GEI Co	lient: GEI Consultants, Inc. Job Number: 220-3395-1								
Client Sample ID	EHS-SS-04			5	idg Number: 220-3395				
Lab Sample ID:	220-3395-11		1	Date Sampled:	11/14/2007 1135				
Client Matrix:	Solid	% Moisture: 18.2	1	Date Received:	11/15/2007 1634				
	8270C Semivolatile Co	mpounds by Gas Chromatogra	phy/Mass Spe	ctrometry (GC/	MS)				
Mathad	8270C	Analysis Potob: 220 11486	lootri	mont ID: LID					
Niethou.	02700	Analysis batch, 220-11400	insut Labor		6690/5973 GC/MS				
Preparation:	3541	Prep Balch: 220-11376	Labi		190.0				
Dilution:	1.0		Initia	I Weight/Volume	: 15.29 g				
Date Analyzed:	11/29/2007 2315		Final	Weight/Volume:	1 mL				
Date Prepared:	11/27/2007 0953		Injec	tion Volume:	1 uL				
Analyte	DrvWt C	orrected: Y_Result (un/Ka)	Oualifier	MDI	RI				
N-Nitrosodinbenvl	amine	400	11	71	400				
Phenapthrene	ammo	350	X	65	400				
Pyrene		500	<i>7</i> 0	58	400				
1.2.4-Trichlorober	izene	400	U	63	400				
4-Chloro-3-methyl	phenol	400	Ŭ	79	400				
2-Chlorophenol	Priorior	400	ŭ	85	400				
2-Methviphenoi		400	Ŭ	62	400				
4-Methvinhenol		400	ŭ	59	400				
2.4-Dichloropheno	bl	400	Ŭ	82	400				
2.4-Dimethylphen	ol	400	Ŭ /	53	400				
2 4-Dinitrophenol		1900	U.A.	260	1900				
4 6-Dinitro-2-meth	vinhenol	1900	Ŭ.	310	1900				
2-Nitrophenol		400	Ŭ	85	400				
4-Nitrophenol		1900	ũ	180	1900				
Pentachlorophenc	5	1900	Ŭ	28	1900				
Phenol		400	Ũ	47	400				
2 4 5-Trichlorophe	nol	1900	Ü.	60	1900				
2.4.6-Trichlorophe	nol	400	Ŭ	58	400				
Benzvl aicohol		400	Ŭ	82	400				
4-Nitroaniline		790	Ŭ	59	790				
2,2'-oxybis[1-chlor	opropane]	400	U	64	400				
Surrogate		%Rec		Accepta	ince Limits				
2-Fluorobiphenyl		91		32 - 13	31				
2-Fluorophenol		70		25 - 11	13				
2,4,6-Tribromophe	enol	73		24 - 15	50				
Nitrobenzene-d5		83		25 - 12	20				
Phenol-d5		81		27 - 12	22				
Terphenyl-d14		73		35 - 14	10				

OB (118/08 (118/08

TestAmerica Connecticut

Page 45 of 2196

12/19/2007

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-04

Lab Sample ID: Client Matrix:	220-3395-11 Solid	% Moisture: 18.2	Date Sampl Date Receiv	ed: 11/14/2007 1135 red: 11/15/2007 1634
	6010B Induct	ively Coupled Plasma - Atomic	Emission Spectrometry	í
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1619 11/19/2007 1407	Anaiysis Batch: 220-11308 Prep Batch: 220-11213	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	TJA Trace ICAP W112107 lume: 1.15 g lume: 250 mL
Analyte	DryWt Correcte	ed: Y Result (mg/Kg)	Qualifier MDI	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc		$\begin{array}{c} 4.0\\ 20400\\ 38.1\\ 324\\ 2.0\\ 10200\\ 6.6\\ 10.6 \\ 114\\ 45.9\\ 44400\\ 1720\\ 3730 \\ 3730 \\ 3730 \\ 3730 \\ 3730 \\ 31.8\\ 1140\\ 13.3\\ 4.6\\ 19.9\\ 163\\ 81.9 \end{array}$	U 0.40 12.2 1.8 0.29 J 0.6 16.9 U 1.2 0.69 0.44 0.56 0.44 0.56 13.0 31.3 8.2 0.8 25 0.5 1.1 U J 1.8 J 2.2 U 2.9 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	7471A Mercury	in Solid or Semisolid Waste (Ma	nual Cold Vapor Techr	lique)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 11/26/2007 1424 11/23/2007 1041	Analysis Batch: 220-11359 Prep Batch: 220-11309	Instrument ID: Lab File ID: Initial Weight/V Final Weight/V	Perkin Elmer FIMS N/A olume: 0.60 g olume: 50 mL

Analvte	DryWt Corrected: Y	Resuit (mg/Kg)	Qualifier	MDL	RL
Mercury	and a second	0.13		0.016	0.061

(1×108

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID: EHS-SS-04 11/14/2007 1135 Date Sampled: 220-3395-11 Lab Sample ID: 11/15/2007 1634 Date Received: 18.2 % Moisture: Solid Client Matrix: 8081A Organochlorine Pesticides by Gas Chromatography HP 5890 with dual ECD Analysis Batch: 220-11521 Instrument ID: 8081A Method: D7507059.D Lab File ID: Prep Batch: 220-11392 3550B Preparation: 30.83 g Initial Weight/Volume: 1.0 Dilution: 10.0 mL Final Weight/Volume: 12/03/2007 2003 Date Analyzed: 1 uL Injection Volume: 11/27/2007 1227 Date Prepared: PRIMARY Column ID: RL MDL DrvWt Corrected: Y Result (ug/Kg) Qualifier Analyte 3.9 UT / 0.45 3.9 4,4'-DDD 3.9 39 0.52 4,4'-DDE 3.9 H۰ 0.37 75 T 4,4'-DDT 2.4 υ 0.42 2.4 Aldrin 2.0 2.0 U 0.33 alpha-BHC 2.0 0.32 U 2.0 beta-BHC J 2.0 0.12 0.45 delta-BHC 3.9 0.38 8.0 T -1/1 Dieldrin 2.0 Л 0.17 0.43 Endosulfan I 3.9 0.20 19 3.90 -0-₩ Endosulfan II 3.9 JM 0.21 2.2 T Endosulfan sulfate U 1.1 5.9 5.9 Endrin 0.38 3.9 υ 3.9 Endrin aldehyde 3.9 0.17 U 3.9 Endrin ketone 2.0 U 0.18 2.0 gamma-BHC (Lindane) 2.0 U 0.18 2.0 Heptachlor 2.0 1.2 J 0.14 Heptachlor epoxide 20 2.5 20 U Methoxychlor 80 2.1 U 80 Toxaphene 0.13 2.0 2.00 -J-, 1.3 alpha-Chlordane 2.0 0.11 J-M-4.4. 2.00 gamma-Chlordane Acceptance Limits %Rec Surrogate 25 - 159 119 DCB Decachlorobiphenyl 24 - 154 109 Tetrachloro-m-xylene HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11521 8081A Method: Lab File ID: C7507059.D Prep Batch: 220-11392 3550B Preparation: Initial Weight/Volume: 30.83 g Dilution: 1.0 10.0 mL Final Weight/Volume: 12/03/2007 2003 Date Analyzed: 1 uL Injection Volume: 11/27/2007 1227 Date Prepared: SECONDARY Column ID: Acceptance Limits %Rec Surrogate 25 - 159 200 DCB Decachlorobiphenyl 24 - 154 107 Tetrachloro-m-xylene

TestAmerica Connecticut

12/19/2007

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 **Client Sample ID:** EHS-SS-04 Lab Sample ID: 220-3395-11 Date Sampled: 11/14/2007 1135 **Client Matrix:** Solid % Moisture: 18.2 Date Received: 11/15/2007 1634 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography Method: 8082 Analysis Batch: 220-11497 Instrument ID: HP 5890 with dual ECD Preparation: 3550B Prep Batch: 220-11392 Lab File ID: D4663129.d Dilution: Initial Weight/Volume: 1.0 30.83 g/ do not Date Analyzed: 11/30/2007 0112 Final Weight/Volume: 10.0 mL ryast Date Prepared: 11/27/2007 1227 Injection Volume: 1 uL Column ID: PRIMARY Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL PCB-1016 20 UT 3.3 20 PCB-1221 39 U 1.8 39 PCB-1232 20 U 2.2 20 PCB-1242 20 U 3.6 20 PCB-1248 20 U 3.2 20 PCB-1254 20 20 U 1.4 PCB-1260 20 UJ 4.7 20 Surrogate %Rec Acceptance Limits Tetrachloro-m-xylene 12 24 - 154 DCB Decachlorobiphenyl 16 25 - 159

Client: GEI Consultants, Inc.

EHS-SS-04

Client Sample ID:

Job Number:	220-3395-1
Sdg Numbe	r: 220-3395

Lab Sample ID: Client Matrix:	220-3395-11 Solid	% Moisture: 18.2		Date Sampled: 1 Date Received: 1	1/14/2007 1135 1/15/2007 1634
	8082 Polyc	hlorinated Biphenyls (PCBs) b	y Gas Ch	romatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 12/04/2007 0108 12/03/2007 1539	Analysis Batch: 220-11552 Prep Batch: 220-11532 Run Type: RE	:	Instrument ID: HP 58 Lab File ID: D466 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: SEC	390 with dual ECD 4075.d 30.63 g 10 mL 1 uL CONDARY
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	DryWt C	Corrected: Y Result (ug/Kg) 20 U 39 20 20 20 45 T 27 J	Qualifi UH UH UH UH UH HM	er MDL 3.4 1.8 2.2 3.6 3.2 1.4 4.8	RL 20 39 20 20 20 20 20 20
Surrogate Tetrachloro-m-xyle Tetrachloro-m-xyle DCB Decachlorob DCB Decachlorob	ene ene iphenyl iphenyl	%Rec 91 97 98 92	· · .	Acceptanc 24 - 154 24 - 154 25 - 159 25 - 159 25 - 159	e Limits

Client Sample ID: EHS-SS-04

GC Semivolatiles

Lot-Sample #: A	7K170204-011	Work Order #:	KCH5W1AC	Matrix	· · · · · · · · · · · · · · · · · · ·	SO
Date Sampled: 1	.1/14/07 11:15	Date Received:	11/17/07			
Prep Date: 1	1/26/07	Analysis Date:	11/27/07			
Prep Batch #: 7	330014					
Dilution Factor: 1		<pre>Initial Wgt/Vol:</pre>	50.06 g	Final	Wgt/Vol:	100 mL
<pre>% Moisture: 2</pre>	20	Method:	SW846 8151	A		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4-D		ND	100	ug/kg	45	
2,4,5-TP		ND	25	ug/kg	2.8	
2,4,5-T		ND	25	ug/kg	4.0	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichlorophenyl	acetic acid	98	(19 - 122)			

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

0B 1118/08

Enn 108

Client Sample ID: EHS-SS-04

General Chemistry

 Lot-Sample #...: A7K170204-011
 Work Order #...: KCH5W
 Matrix.....: SO

 Date Sampled...: 11/14/07 11:15
 Date Received..: 11/17/07

 % Moisture....: 20

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	20.4 度丁、 Dil	37.6 ution Facto	mg/kg r: 1	SW846 9030B/9034	11/21/07	7325534
Percent Solids	79.9 Dil	10.0 ution Facto	% er: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 **Client Sample ID:** EHS-SS-05 Lab Sample ID: 220-3395-12 Date Sampled: 11/14/2007 1315 **Client Matrix:** Solid % Moisture: 18.6 Date Received: 11/15/2007 1634 8260B Volatile Organic Compounds by GC/MS Analysis Batch: 220-11399 Method: 8260B Instrument ID: HP 5890/5971A GC/MS Preparation: 5030B Lab File ID: N6135.D Dilution: Initial Weight/Volume: 1.0 5 g 11/26/2007 1643 Final Weight/Volume: Date Analyzed: 5 mL Date Prepared: 11/26/2007 1643 Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL JB UJ Acetone ~6.0 2.9 25 1250 6.1 UVT 0.87 Benzene 6.1 Bromodichloromethane 6.1 UVJ 0.80 6.1 UUJ 6.1 2.1 Bromoform 6.1 UUJ Bromomethane 6.1 1.9 6.1 005 12 4.1 Methyl Ethyl Ketone 12 UVJ Carbon disulfide 6.1 0.65 6.1 UUJ Carbon tetrachloride 6.1 0.87 6.1 UUJ Chlorobenzene 6.1 1.1 6.1 Chloroethane 6.1 UNJ 1.6 6.1 UVJ Chloroform 6.1 0.65 6.1 UVJ Chloromethane 6.1 1.2 6.1 Dibromochloromethane UUJ 6.1 1.3 6.1 1.1-Dichloroethane 6.1 UUJ 0.80 6.1 1,2-Dichloroethane 6.1 UUJ 1.3 6.1 1,1-Dichloroethene 6.1 UVJ 0.97 6.1 1,2-Dichloropropane 6.1 UVJ 1.2 6.1 UUJ cis-1,3-Dichloropropene 6.1 0.76 6.1 UUJ trans-1,3-Dichloropropene 6.1 1.3 6.1 リップ Ethylbenzene 6.1 0.87 6.1 0 05 2-Hexanone 12 3.2 12 2500 Methylene Chloride -2.5 もいび 1.7 25 methyl isobutyl ketone 6.1 11 1.2 6.1 UKUJ Styrene 6.1 1.6 6.1 1.1.2.2-Tetrachloroethane U V5 6.1 1.3 6.1 Tetrachloroethene 05 0.91 6.1 IJ 6.1 Toluene VJ 0.72 6.1 Ð 6.1 1.1.1-Trichloroethane 6.1 П レブ 0.90 6.1 1.1.2-Trichloroethane 15 6.1 Ш 1.1 6.1 UVJ Trichloroethene 6.1 1.2 6.1 UVJ Vinyl chloride 6.1 1.6 6.1 Xylenes, Total 6.1 UUJ 3.0 6.1 cis-1,2-Dichloroethene 6.1 U 15 1.1 6.1 VJ trans-1,2-Dichloroethene 6.1 11 1.2 6.1 Surrogate %Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 70 49 - 134 4-Bromofluorobenzene 26 36 - 133 Dibromofluoromethane 60 - 130 61 Toluene-d8 (Surr) 51 - 137 46

Page 20 of 2196

Client: GEI Consultants, Inc.

EHS-SS-05

Client Sample ID:

Job Number: 220-3395-1 Sdg Number: 220-3395

Lab Sample ID:	220-3395-12			Date Sampled:	11/14/2007	1315
Client Matrix:	Solid	% Moisture:	18.6	Date Received:	11/15/2007	1634

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-11486	Instrument ID:	HP 6890/5973 GC/MS
Preparation:	3541	Prep Batch: 220-11378	Lab File ID:	U2185.D
Dilution:	1.0		Initial Weight/Volu	ıme: 15.74 g
Date Analyzed:	11/29/2007 2117		Final Weight/Volu	me: 1 mL
Date Prepared:	11/27/2007 0953		Injection Volume:	1 uL

Analyte	DryWt Corrected: Y Res	ult (ug/Kg)	Qualifier	MDL	RL.
Acenaphthene	3	90	U	68	390
Acenaphthylene	3	90	U _	73	390
Anthracene	3	90	UM	62	390
Benzo[a]anthracene	1	90	JJY	56	390
Benzo[a]pyrene	1	50	15 1	49	390
Benzo[b]fluoranthene	2	20	JJ	66	390
Benzo[g,h,i]perylene	1	80	リブー	75	390
Benzo[k]fluoranthene	7	6	JJ 🗸	63	390
Bis(2-chloroethoxy)methane	3	90	U	62	390
Bis(2-chloroethyl)ether	3	90	U	190	390
Bis(2-ethylhexyl) phthalate	3	90	U	49	390
Butyl benzyl phthalate	3	90	U	54	390
Carbazole	3	90	U	66	390
Chrysene	2	70	JJ	68	390
Di-n-butyl phthalate	3	90	U	60	390
Di-n-octyl phthalate	3	90	U	61	390
4-Bromophenyl phenyl ether	3	90	U	62	390
4-Chloroaniline	3	90	U	52	390
2-Chloronaphthalene	3	90	U	67	390
4-Chlorophenyl phenyl ether	3	90	U	76	390
Dibenz(a,h)anthracene	3	90	U	59	390
Dibenzofuran	3	90	U	68	390
Diethyl phthalate	3	90	U	96	390
Dimethyl phthalate	3	90	U	68	390
1,2-Dichlorobenzene	3	90	U	61	390
1,3-Dichlorobenzene	3	90	U	62	390
1,4-Dichlorobenzene	3	90	U	60	390
3,3'-Dichlorobenzidine	7	70	U	43	770
2,4-Dinitrotoluene	3	90	U	59	390
2,6-Dinitrotoluene	3	90	U	150	390
Fluoranthene	3	10	JJ	64	390
Fluorene	3'	90	U	66	390
Hexachlorobenzene	3	90	U	67	390
Hexachlorobutadiene	3'	90	U	74	390
Hexachlorocyclopentadiene	3'	90	U	55	390
Hexachloroethane	3'	90	U	67	390
Indeno[1,2,3-cd]pyrene	1	70	JJ	68	390
Isophorone	3'	90	U	79	390
2-Methylnaphthalene	3'	90	U	71	390
Naphthalene	3	90	U	59	390
2-Nitroaniline	1	900	U	52	1900
3-Nitroaniline	1	900	U	55	1900
Nitrobenzene	3'	90	U	71	390
N-Nitrosodi-n-propylamine	3'	90	U	86	390
TestAmerica Connecticut	Page	∋ 46 of 2196	DB 1	An olo	12/19/2007
			11(8/08		
			N1 1 5		

Client: GEI Co	nsultants, Inc.			oL	b Number: 220-3395-1
Client Sample ID	: EHS-SS-0	5			Sdg Number: 220-3395
Lab Sample ID:	220-3395-1	12		Date Sampled:	11/14/2007 1315
Client Matrix:	Solid	% Moisture:	18.6	Date Received:	11/15/2007 1634
	8270C Semivo	olatile Compounds by Gas Chron	natography/Mass	Spectrometry (GC	:/MS)
Mathod:	82700	Applyeis Batch: 220	11/86	Instrument ID: 4	2 6800/5072 CC/MS
Proparation:	25/1	Drop Rotob: 220.111	279 1		2495 D
Dilution:	10	Thep Datch. 220-The	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Latin Noight Volum	- 15.74 a
Data Applyzod:	11/20/2007 2	417	1	Final Weight Volum	e. 15.74 y
Date Analyzeu.	11/29/2007 2	.1.17	г 1	Final Weight Volume	≠. I IIIE
Date Prepareu:	11/27/2007 0	903	t	injection volume:	1 UL
Analyte		DrvWt Corrected: Y Result (ua/K	a) Qualifier	r MDL	RL
N-Nitrosodiphenvl	amine	390	5,	70	390
Phenanthrene		320	81	or 64	390
Pvrene		390	10	57	390
1.2.4-Trichloroben	izene	390	U	62	390
4-Chloro-3-methyl	lphenol	390	Ŭ	77	390
2-Chlorophenol		390	Ū	83	390
2-Methylphenol		390	Ū	61	390
4-Methylphenol		390	U	58	390
2,4-Dichlorophenc	bl	390	U	80	390
2,4-Dimethylphen	ol	390	U	52	390
2,4-Dinitrophenol		1900	U × V	250	1900
4,6-Dinitro-2-meth	ylphenol	1900	UX	300	1900
2-Nitrophenol		390	U	83	390
4-Nitrophenol		1900	U	180	1900
Pentachlorophend	bl	1900	U	27	1900
Phenol		390	U	46	390
2,4,5-Trichlorophe	enol	1900	U	59	1900
2,4,6 Trichlorophe	enol	390	U	56	390
Benzyl alcohol		390	U	80	390
4-Nitroaniline		770	U	58	770
2,2'-oxybis[1-chlor	ropropane]	390	U	62	390
Surrogate		%Rec		Accept	ance Limits
2-Fluorobiphenyl		77		32 - 1	131
2-Fluorophenol		60		25 - 1	13
2,4,6-Tribromophe	enol	53		24 - 1	50
Nitrobenzene-d5		71		25 - 1	120
Phenol-d5		70		27 - 1	22
Terphenyl-d14		93		35 - 1	40

TestAmerica Connecticut

.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-05

Lab Sample ID: Client Matrix:	220-3395-12 Solid	% Moisture: 18.6	Dat Dat	e Sampled: e Received:	11/14/2007 1315 11/15/2007 1634
	6010B Indu	uctively Coupled Plasma - Atomic	Emission Spect	trometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 11/21/2007 1624 11/19/2007 1407	Analysis Batch: 220-11308 Prep Batch: 220-11213	Instrume Lab File Initial W Final We	ent ID: ID: leight/Volume: eight/Volume:	TJA Trace ICAP W112107 1.19 g 250 mL
Analyte	DryWt Corre	cted: Y Result (mg/Kg)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Magnesium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium		$\begin{array}{c} 3.9\\ 9670\\ 205\\ 101\\ 2.4\\ 5790\\ 6.4\\ 7.8 \\ 9.1\\ 101\\ 29.1\\ 101\\ 21900\\ 631 \\ 530\\ 529\\ 20.2\\ 1220\\ 1220\\ 12.9\\ 15.8\\ 5.4\\ 19.3 \\ 190\\ 57.9\\ 190\\ \end{array}$	4. ∩.2.∿, 1.∖ Ω Ω	$\begin{array}{c} 0.39\\ 11.9\\ 1.8\\ 0.28\\ 0.59\\ 16.0\\ 1.2\\ 0.67\\ 0.44\\ 0.57\\ 12.6\\ 31.0\\ 8.0\\ 0.85\\ 24.5\\ 0.57\\ 1.1\\ 1.8\\ 2.1\\ 2.8\\ 0.41\\ 2.8\end{array}$	3.9 129 10.3 2.6 2.6 2.58 6.4 2.6 3.9 6.4 77.4 258 45.1 7.7 258 6.4 6.4 6.4 12.9 12.9 12.9 12.9 19.3 5.2 25.8
	7471A Moreu	ry in Solid or Semisolid Waste (Ma	anual Cold Vapo	or Technique)	
	747 (A MEICU	Analysis Batch: 220-11359	Instrum	nent ID:	Perkin Elmer FIMS

Method:7471AAnaPreparation:7471APrepDilution:1.0Date Analyzed:11/26/20071426Date Prepared:11/23/20071041		Analysis Batch: 2 Prep Batch: 220-	ialysis Batch: 220-11359 ep Batch: 220-11309		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		Perkin Elmer FIMS N/A 0.61 g 50 mL	
Analyte	DryWt Corrected	l: Y Result	: (mg/Kg)	Qualifier	MDL	RL		
Moreup	مەرىمەر مەرىمەر بىرى مىر	0.39	and the second second		0.015	0.060		

Mercury

1/2/08

øß 1/18/08

12/19/2007

Client: GEI Consultants, Inc.

EHS-SS-05

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID:	EHS-SS-0	5					
Lab Sample ID: Client Matrix:	220-3395- Solid	12 % Moistu	ıre: 18.6	Da Da	te Sampled: te Received:	11/14/2007 11/15/2007	1315 1634
ayı ilerileri yalan başanı başanı ilerinde		8081A Organochlorine Pesti	icides by Gas (Chromatograp	ohy		
Method: 8081A Preparation: 3550B Dilution: 1.0 Date Analyzed: 12/03/2007 2024 Date Prepared: 11/27/2007 1227		Analysis Batch: Prep Batch: 22 2024 1227	Analysis Batch: 220-11521 Prep Batch: 220-11392 Initial Weight Final Weight Injection Volu Column ID:		nent ID: HP e ID: D7(Veight/Volume /eight/Volume: on Volume: n ID: Pl	: HP 5890 with dual ECD D7507060.D Volume: 30.12 g Volume: 10.0 mL ime: 1 uL PRIMARY	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lin Heptachlor Heptachlor epoxid Methoxychlor Toxaphene alpha-Chlordane gamma-Chlordane	e dane) de	DryWt Corrected: Y Result 4.0 9.5 25 2.4 2.1 2.1 2.1 2.1 2.1 4.0 3.0 6.1 4.0 4.0 2.1 2.1 4.0 3.0 6.1 4.0 4.0 2.1 2.1 2.1 4.0 3.0 6.1 4.0 3.0 6.1 4.0 3.0 6.1 4.0 3.0 6.1 4.0 3.0 6.1 4.0 3.0 6.1 4.0 5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	(ug/Kg) J 4.00 J 1 J 2 2.11 U	Qualifier UJ M- U U U U U U U U U U U U U U U U U U	MDL 0.47 0.53 0.38 0.44 0.34 0.33 0.13 0.39 0.18 0.21 0.21 1.1 0.40 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.11 2.6 2.1 0.13 0.11	RL 4.0 4.0 2.4 2.1 2.1 2.1 4.0 2.1 4.0 6.1 4.0 6.1 4.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	
Surrogate DCB Decachloro Tetrachloro-m-xy Method: Preparation: Dilution: Date Analyzed: Date Prepared:	biphenyl lene 8081A 3550B 1.0 12/03/2007 11/27/2007	%Re 148 98 Analysis Batc Prep Batch: 2 2024 1227	c } h: 220-11521 (20-11392	Instru Lab F Initial Final Inject Colur	Accept 25 - 24 - ment ID: Hi ile ID: D' Weight/Volum weight/Volum ion Volume: nn ID:	tance Limits 159 154 P 5890 with du 7507060.D e: 30.12 e: 10.0 1 uL SECONDARY	uəl ECD g mL
Surrogate DCB Decachloro Tetrachloro-m-x	obipheny! ylene	%R 10 95	ec 1	n aan an ar	Ассер 25 - 24 -	otance Limits 159 154	

0~,11100

DB 1/18/08

9750

Client: GEI Consultants, Inc. Client Sample ID: EHS-SS-05 Lab Sample ID: 220-3395-12

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Matrix:	220-3395-12 Solid	% Moisture: 18	6	Date Sampled: Date Received:	11/14/2007 1315 11/15/2007 1634
	8082 Polyc	chlorinated Biphenyls (PCBs)	by Gas Chro	omatography	an a
Method: 8082 Preparation: 3550B Dilution: 1.0 Date Analyzed: 11/30/2007 0128 Date Prepared: 11/27/2007 1227		Analysis Batch: 220-114 Prep Batch: 220-11392	97	Instrument ID: HP Lab File ID: D46 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: PF	5890 with dual ECD 63130.d 30.12 g 10.0 mL 1 uL RIMARY
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260	DryWt	Corrected: Y Result (ug/Kg) 21 40 21 21 21 21 21 21 21	Qualifie U U U U U U U U	r MDL 3.4 1.9 2.3 3.7 3.3 1.5 4.9	RL 21 40 21 21 21 21 21 21 21
Surrogate Tetrachloro-m-xyle DCB Decachlorob	ene iphenyl	%Rec 78 91	·	Acceptar 24 - 154 25 - 159	ace Limits 4 9

Qβ 1/18/08

Client Sample ID: EHS-SS-05

GC Semivolatiles

Lot-Sample #: A7K170204-012	Work Order #:	KCH5X1AC	Matrix	« SO
Date Sampled: 11/14/07 11:35	Date Received:	11/17/07		
Prep Date: 11/26/07	Analysis Date:	11/27/07		
Prep Batch #: 7330014				
Dilution Factor: 1	Initial Wgt/Vol:	50.02 g	Final	Wgt/Vol: 100 mL
% Moisture: 37	Method	SW846 8151	A	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2,4,5-T	ND	32	ug/kg	5.1
2,4-D	ND	130	ug/kg	57
2,4,5-TP	ND	32	ug/kg	3.5
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2,4-Dichlorophenylacetic acid	63	(19 - 122)		

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

08 1/18/08

Client Sample ID: EHS-SS-05

General Chemistry

PARAMETER	RESULT		UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	10.9 専	J /47.4 Dilution Facto	mg/kg r: 1	SW846 9030B/9034 MDL 8.8	11/21/07	7325534
Percent Solids	63.3	10.0 Dilution Facto	8 r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

1210B

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 **Client Sample ID:** EHS-SS-06 220-3395-13 Lab Sample ID: 11/14/2007 1335 Date Sampled: Solid % Moisture: **Client Matrix:** 8.4 Date Received: 11/15/2007 1634 8260B Volatile Organic Compounds by GC/MS Method: 8260B Analysis Batch: 220-11327 Instrument ID: HP 5890/5971A GC/MS Preparation: 5030B Lab File ID: N6099.D Dilution: Initial Weight/Volume: 1.0 5 g 11/25/2007 1505 Final Weight/Volume: Date Analyzed: 5 mL Date Prepared: 11/25/2007 1505 Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 22 22 Acetone Ũ 2.6 5.5 U 0.77 5.5 Benzene Bromodichloromethane 5.5 U 0.71 5.5Bromoform 5.5 U 1.9 5.5Bromomethane 5.5 U 1.7 5.5 Methyl Ethyl Ketone 11 U 3.7 11 Carbon disulfide 5.5 υ 0.58 5.5 Carbon tetrachloride 5.5 υ 0.77 5.5Chlorobenzene 5.5 υ 0.96 5.5 Chloroethane 5.5 υ 5.5 1.4 Chloroform 5.5 υ 0.58 5.5 Chloromethane 5.5 υ 1.1 5.5 Dibromochloromethane 5.5 U 5.5 1.2 1,1-Dichloroethane 5.5 U 0.71 5.5 1.2-Dichloroethane 5.5 U 1.2 5.5 1.1-Dichloroethene 5.5 U 0.86 5.5 1.2-Dichloropropane 5.5 U 5.5 11 cis-1,3-Dichloropropene 5.5 U 0.68 5.5 trans-1,3-Dichloropropene U 5.512 5.5 Ethylbenzene U 5.50.77 5.5 2-Hexanone U 11 2.9 11 Methylene Chloride 82 1.5 22 w22U methyl isobutyl ketone 5.5U 5.5 1.0 Stvrene 5.5 U UJ. 1.4 5.5 1,1,2,2-Tetrachloroethane 5.5 U 1.1 5.5 Tetrachloroethene 5.5 U 0.81 5.5 Toluene 5.5 U 0.64 5.5 1,1,1-Trichloroethane 5.5 U 0.80 5.5 5.5 1,1,2-Trichloroethane U 0.95 5.5 Trichloroethene U 5.5 5.5 1.1 Vinyl chloride U 5.5 5.5 1.4 U Xylenes, Total 5.5 2.7 5.5 cis-1,2-Dichloroethene U 5.5 1.0 5.5 trans-1,2-Dichloroethene U 5.5 1.0 5.5 Surrogate %Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 79 49 - 134 4-Bromofluorobenzene 62 36 - 133 Dibromofluoromethane 79 60 - 130 Toluene-d8 (Surr) 74 51 - 137

Page 21 of 2196

08 Erin 108 1118/08 119/08

Client: GEI Consultants, Inc. Job Number: 220-3395-1 Sdg Number: 220-3395 **Client Sample ID:** EHS-SS-06 Lab Sample ID: 220-3395-13 Date Sampled: 11/14/2007 1335 **Client Matrix:** Solid % Moisture: 8.4 Date Received: 11/15/2007 1634 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-11514 HP 6890/5975 Instrument ID: Preparation: 3541 Lab File ID: Prep Batch: 220-11441 A7764.D 15.07 g Dilution: 1.0 Initial Weight/Volume: 11/30/2007 1638 Date Analyzed: Final Weight/Volume: 1.0 mL Date Prepared: 11/28/2007 2045 Injection Volume: 1 uL DryWt Corrected: Y Result (ug/Kg) Qualifier RL Analyte MDL. Acenaphthene 360 U 63 360 Acenaphthylene 360 U 68 360 Anthracene 360 U 58 360 5-Benzo[a]anthracene 100 J 52 360 ป วี Benzolalpyrene 110 46 360 Benzo[b]fluoranthene 160 J T 61 360 Benzo[g,h,i]perylene 92 J T 70 360 Benzo[k]fluoranthene 62 JJ 59 360 Bis(2-chloroethoxy)methane 360 U 58 360 Bis(2-chloroethyl)ether 360 U 180 360 Bis(2-ethylhexyl) phthalate 360 U 360 46 Butyl benzyl phthalate 360 υ 50 360 Carbazole U 360 61 360 Chrysene 120 J 63 360 J Di-n-butyl phthalate 360 U 55 360 Di-n-octyl phthalate 360 U 57 360 4-Bromophenyl phenyl ether 360 U 58 360 4-Chloroaniline 360 U 48 360 2-Chloronaphthalene 360 U 62 360 4-Chlorophenyl phenyl ether 360 U 70 360 Dibenz(a,h)anthracene 360 U 54 360 Dibenzofuran 360 U 63 360 Diethyl phthalate 360 U 89 360 Dimethyl phthalate 360 U 63 360 1.2-Dichlorobenzene 360 U 57 360 1,3-Dichlorobenzene U 360 58 360 1,4-Dichlorobenzene U 360 56 360 3.3'-Dichlorobenzidine U 720 40 720 2.4-Dinitrotoluene 360 U 55 360 2,6-Dinitrotoluene 360 U 360 140 Fluoranthene 51 160 J 59 360 Fluorene 360 υ 61 360 υ Hexachlorobenzene 360 62 360 υ Hexachlorobutadiene 360 68 360 Hexachlorocyclopentadiene υ 360 51 360 Hexachloroethane 360 U 62 360 Indeno[1,2,3-cd]pyrene J 50 98 64 360 U Isophorone 360 74 360 2-Methylnaphthalene 360 U 66 360 Naphthalene 360 U 55 360 2-Nitroaniline 1700 U 48 1700 3-Nitroaniline 1700 U 51 1700 Nitrobenzene 360 U 66 360 N-Nitrosodi-n-propylamine 360 U 360 80 12/19/2007 **TestAmerica Connecticut** Page 48 of 2196 DB 1/18/08

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

Client Sample ID): EHS-SS-06				sug Number, 220-3395	
Lab Sample ID: Client Matrix:	220-3395-13 Solid	% Moisture:	8.4	Date Sampled: Date Received:	11/14/2007 1335 11/15/2007 1634	
	8270C Semivolatile	Compounds by Gas Chro	omatography/Mass	Spectrometry (GC/	MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3541 1.0 11/30/2007 1638 11/28/2007 2045	Analysis Batch: 22 Prep Batch: 220-1	0-11514 Ir 1441 L Ir F Iı	nstrument ID: HP .ab File ID: A7 nitial Weight/Volume Final Weight/Volume njection Volume:	6890/5975 764.D : 15.07 g : 1.0 mL 1 uL	
Analyte	DryV	Vt Corrected: Y Result (ug/	Kg) Qualifier	MDL	RL	
N-Nitrosodiphenyl Phenanthrene Pyrene 1,2,4-Trichlorober 4-Chloro-3-methy 2-Chlorophenol 2-Methylphenol 2,4-Dichlorophenol 2,4-Dinitrophenol 4,6-Dinitro-2-meth 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophe Benzyl alcohol 4-Nitroaniline 2,2'-oxybis[1-chlor	amine nzene Iphenol ol ol aylphenol ol enol enol enol	360 76 180 360 360 360 360 360 360 1700 1700 1700 360 1700 360 1700 360 1700 360 1700 360 360 360 360 360 360 360		65 59 52 57 72 77 57 54 74 48 240 280 77 160 25 43 54 52 74 54 52 74 54 58	360 360 360 360 360 360 360 360 360 360	
Surrogate		%Rec		Accepta	ance Limits	
2-Fluorobiphenyl 2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14		66 68 65 67 70 74		32 - 131 25 - 113 24 - 150 25 - 120 27 - 122 35 - 140		

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-06

Lab Sample ID: Client Matrix:	220-3395-13 Solid	% Moisture: 8.4	Date Sampled: 11/14/2007 1335 Date Received: 11/15/2007 1634					
6010B Inductively Coupled Plasma - Atomic Emission Spectrometry								
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 12/07/2007 1807 12/05/2007 0930	Analysis Batch: 220-11696 Prep Batch: 220-11587	Instrumer Lab File I Initial We Final Wei	nt ID: D: ight/Volume: ight/Volume:	TJA Trace ICAP W120707 1.20 g 250 mL			
Analyte	DryWt Corrected:	Y Result (mg/Kg)	Qualifier	MDL	RL			
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium		$\begin{array}{c} 3.4 \\ 6290 \\ 12.9 \\ 22.4 \\ J \\ 2.3 \\ 5730 \\ 5.7 \\ 2.2 \\ 9.3 \\ 24.3 \\ 7880 \\ 252 \\ J \\ 3450 \\ 65.1 \\ 75.4 \\ 4.8 \\ 103 \\ 11.4 \\ 11.4 \\ 11.4 \\ 11.4 \\ 17.1 \\ 14.8 \end{array}$		0.34 10.5 1.5 0.25 0.52 14.1 1.0 0.59 0.39 0.50 11.1 27.3 7.0 0.75 21.6 0.50 0.95 1.6 1.9 2.5 0.36 2.5	3.4 114 9.1 2.3 2.3 2.27 5.7 2.3 3.4 5.7 68.2 227 39.8 6.8 227 5.7 5.7 11.4 11.4 17.1 4.5 22.7			
Zinc		29.8		Z.5				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A Mercury in 7471A 7471A 1.0 11/26/2007 1427 11/23/2007 1041	Solid or Semisolid Waste (Ma Analysis Batch: 220-11359 Prep Batch: 220-11309	anual Cold Vapor Instrume Lab File Initial W Final We	ent ID: ID: eight/Volume: eight/Volume:	Perkin Elmer FIMS N/A 0.61 g 50 mL			
Analyte	DryWt Corrected	t: Y Result (mg/Kg)	Qualifier	MDL	RL			
Mercury		0.12		0.014	0.054			

1/2/08

DB 1/18/08
Job Number: 220-3395-1

Client: GEI Con	sultants, Inc.			Jo	b Number: 220-3395-1 Sda Number: 220-3395
Client Sample ID:	EHS-SS-06				
Lab Sample ID:	220-3395-13			Date Sampled:	11/14/2007 1335
Client Matrix:	Solid	% Moisture: 8.4		Date Received:	11/15/2007 1634
	8081A O	rganochlorine Pesticides by Gas	s Chromat	tography	
Method:	8081A	Analysis Batch: 220-11521	Ìr	nstrument ID: HI	P 5890 with dual ECD
Prenaration:	3550B	Prep Batch: 220-11392	L	ab File ID: C	7507061.D
Dilution	50		li	nitial Weight/Volum	e: 30.08 g
Data Analyzed:	12/03/2007 2046		F	inal Weight/Volume	e: 10.0 mL
Date Analyzed:	11/27/2007 1227		i.	njection Volume:	1 uL.
Date Frepareo.	, (12)/1200) (122)		C	Column ID: I	PRIMARY
Appleto	DrvWt (Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
	a second second second second	7.3. 1805	J-M-€	2.1	18
4,4-00E		78	₩ ~	2.4	18
4 4'-DDT		110 丁 -		1.7	18
Aldrin		11	U	1.9	11
alpha-BHC		9.3	U	1.5	9.5
beta-BHC		9.3	U	1.5	9.3
delta-BHC		9.3	U	1.7	18
Dieldrin		6.2 J V	19-19T 11	0.80	9.3
Endosulfan I		9.3	U	0.00	18
Endosulfan II		18	13	0.00	18
Endosulfan sulfate	3	10	U U	4.8	27
Endrin		19	ŭ	1.8	18
Endrin aldehyde		18	Ŭ	0.78	18
Endrin ketone	معما	93	U	0.83	9.3
gamma-BHC (Line	uane)	9.3	U	0.82	9.3
Heptachlor	6	9.3	U	0.62	9.3
Methowichlor	10	93	U	12	93
Texephone		360	U	9.5	360
alpha Chlordane		9.3	U	0.60	9.3
gamma-Chlordan	e	-4.6 F 9.3U	J₩ ✓	0.50	9.3
Surrogata		%Rec		Acce	ptance Limits
DCR Decachlorol	hinhertyl	191	*	25 -	- 159
Tetrachloro-m-xy	lene	134		24 -	- 154
Method:	8081A	Analysis Batch: 220-11521		Instrument ID: 1	HP 5890 with dual ECD
Preparation:	3550B	Prep Batch: 220-11392		Lab File ID: I	D/50/061.D
Dilution	5.0			Initial Weight/Volu	me: 30.08 g
Date Analyzed	12/03/2007 2046			Final Weight/Volur	ne: 10.0 mL
Date Propared	11/27/2007 1227			Injection Volume:	1 UL

1 (opuration	
Dilution:	5.0
Date Analyzed:	12/03/2007 2046
Date Prepared:	11/27/2007 1227

Surrogate	%Rec	Acceptance Limits
DCB Decachlorobiphenyl Tetrachloro-m-xylene	130 112	24 - 154

Dow 1/1/08

Ъß 1/18/08

Column ID:

SECONDARY

12/19/2007

Job Number: 220-3395-1 Sdg Number: 220-3395

Client: GEI Consultants, Inc.

Solid

Client Matrix:

Client Sample ID: EHS-SS-06 Lab Sample ID: 220-3395-13

		Date Sampled:	11/14/2007	1335
% Moisture:	8.4	Date Received:	11/15/2007	1634

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

				-				
8082 3550B 1.0 11/30/2007 (11/27/2007 ⁻	0145 1227	Analysis Batch: 220-11497 Prep Batch: 220-11392	,	Instrume Lab File Initial We Final We Injection Column	ent ID: ID: eight/Vo ight/Vc Volum ID:	HP 589 D46631 blume: lume: e: PRIMA	0 with dual EC 31.d 30.08 g 10.0 mL 1 uL 4RY	CD
	DryWt Corre	cted: Y Result (ug/Kg)	Qualifi	er	MDL.		RI	
		19	UT	1	3.1		19	
		36	υ		1.7		36	
		19	Ū		2.0		19	
		19	Ū		3.3		19	
		19	Ū		2.9		19	
		19	U	1	1.3		19	
		19	リプ	1	4.3		19	
		%Rec			Ac	ceptance l	Limits	
6		50			2	4 - 154		
nenyl		70			2	5 - 159		
	8082 3550B 1.0 11/30/2007 11/27/2007	8082 3550B 1.0 11/30/2007 0145 11/27/2007 1227 DryWt Corre DryWt Corre	8082 Analysis Batch: 220-11497 3550B Prep Batch: 220-11392 1.0 1/30/2007 0145 11/27/2007 0145 19 DryWt Corrected: Y Result (ug/Kg) 19 36 19 19 19 </td <td>8082 Analysis Batch: 220-11497 3550B Prep Batch: 220-11392 1.0 1/30/2007 0145 11/30/2007 0145 19 11/27/2007 1227 19 DryWt Corrected: Y Result (ug/Kg) Qualifi 19 U 36 U 19 U 70 70 <td>8082 Analysis Batch: 220-11497 Instrume 3550B Prep Batch: 220-11392 Lab File 1.0 Initial We 11/30/2007 0145 Final We 11/27/2007 1227 Injection DryWt Corrected: Y Result (ug/Kg) Qualifier 19 U 36 U 19 U</td><td>8082 Analysis Batch: 220-11497 Instrument ID: 3550B Prep Batch: 220-11392 Lab File ID: 1.0 Initial Weight/Vc 11/30/2007 0145 Final Weight/Vc 11/27/2007 1227 Injection Volume DryWt Corrected: Y Result (ug/Kg) Qualifier MDL 19 U 3.1 36 U 1.7 19 U 2.0 19 U 3.3 19 U 2.9 19 U 3.3 19 U 3.3 19 U 3.3 19 U 3.3 19 U 3.3</td><td>8082 Analysis Batch: 220-11497 Instrument ID: HP 5896 3550B Prep Batch: 220-11392 Lab File ID: D46631 1.0 Initial Weight/Volume: Initial Weight/Volume: 11/30/2007 0145 Final Weight/Volume: Injection Volume: 11/27/2007 1227 Ingection Volume: Column ID: PRIMA DryWt Corrected: Y Result (ug/Kg) Qualifier MDL 19 Ugr 3.1 36 U 1.7 19 U 2.0 19 U 2.0 19 U 2.0 19 U 2.9 19 U 1.3 19 U 3.3 19 U 3.</td><td>8082 Analysis Batch: 220-11497 Instrument ID: HP 5890 with dual EC 3550B Prep Batch: 220-11392 Lab File ID: D4663131.d 1.0 Initial Weight/Volume: 30.08 g 11/27/2007 0145 Final Weight/Volume: 10.0 mL 11/27/2007 1227 Injection Volume: 1 uL Column ID: PRIMARY DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 19 U T 3.1 19 36 U 1.7 36 19 U 2.0 19 19 U 2.9 19 19 U 2.9 19 19 U 2.9 19 19 U 3.3 19 19 U 1.3 19 19 U 3.3 19 19 U 4.3 19 19 U 4.3 19 19 U 3.4 19 19 U 2.9 19 19 U 3.3</td></td>	8082 Analysis Batch: 220-11497 3550B Prep Batch: 220-11392 1.0 1/30/2007 0145 11/30/2007 0145 19 11/27/2007 1227 19 DryWt Corrected: Y Result (ug/Kg) Qualifi 19 U 36 U 19 U 70 70 <td>8082 Analysis Batch: 220-11497 Instrume 3550B Prep Batch: 220-11392 Lab File 1.0 Initial We 11/30/2007 0145 Final We 11/27/2007 1227 Injection DryWt Corrected: Y Result (ug/Kg) Qualifier 19 U 36 U 19 U</td> <td>8082 Analysis Batch: 220-11497 Instrument ID: 3550B Prep Batch: 220-11392 Lab File ID: 1.0 Initial Weight/Vc 11/30/2007 0145 Final Weight/Vc 11/27/2007 1227 Injection Volume DryWt Corrected: Y Result (ug/Kg) Qualifier MDL 19 U 3.1 36 U 1.7 19 U 2.0 19 U 3.3 19 U 2.9 19 U 3.3 19 U 3.3 19 U 3.3 19 U 3.3 19 U 3.3</td> <td>8082 Analysis Batch: 220-11497 Instrument ID: HP 5896 3550B Prep Batch: 220-11392 Lab File ID: D46631 1.0 Initial Weight/Volume: Initial Weight/Volume: 11/30/2007 0145 Final Weight/Volume: Injection Volume: 11/27/2007 1227 Ingection Volume: Column ID: PRIMA DryWt Corrected: Y Result (ug/Kg) Qualifier MDL 19 Ugr 3.1 36 U 1.7 19 U 2.0 19 U 2.0 19 U 2.0 19 U 2.9 19 U 1.3 19 U 3.3 19 U 3.</td> <td>8082 Analysis Batch: 220-11497 Instrument ID: HP 5890 with dual EC 3550B Prep Batch: 220-11392 Lab File ID: D4663131.d 1.0 Initial Weight/Volume: 30.08 g 11/27/2007 0145 Final Weight/Volume: 10.0 mL 11/27/2007 1227 Injection Volume: 1 uL Column ID: PRIMARY DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 19 U T 3.1 19 36 U 1.7 36 19 U 2.0 19 19 U 2.9 19 19 U 2.9 19 19 U 2.9 19 19 U 3.3 19 19 U 1.3 19 19 U 3.3 19 19 U 4.3 19 19 U 4.3 19 19 U 3.4 19 19 U 2.9 19 19 U 3.3</td>	8082 Analysis Batch: 220-11497 Instrume 3550B Prep Batch: 220-11392 Lab File 1.0 Initial We 11/30/2007 0145 Final We 11/27/2007 1227 Injection DryWt Corrected: Y Result (ug/Kg) Qualifier 19 U 36 U 19 U	8082 Analysis Batch: 220-11497 Instrument ID: 3550B Prep Batch: 220-11392 Lab File ID: 1.0 Initial Weight/Vc 11/30/2007 0145 Final Weight/Vc 11/27/2007 1227 Injection Volume DryWt Corrected: Y Result (ug/Kg) Qualifier MDL 19 U 3.1 36 U 1.7 19 U 2.0 19 U 3.3 19 U 2.9 19 U 3.3 19 U 3.3 19 U 3.3 19 U 3.3 19 U 3.3	8082 Analysis Batch: 220-11497 Instrument ID: HP 5896 3550B Prep Batch: 220-11392 Lab File ID: D46631 1.0 Initial Weight/Volume: Initial Weight/Volume: 11/30/2007 0145 Final Weight/Volume: Injection Volume: 11/27/2007 1227 Ingection Volume: Column ID: PRIMA DryWt Corrected: Y Result (ug/Kg) Qualifier MDL 19 Ugr 3.1 36 U 1.7 19 U 2.0 19 U 2.0 19 U 2.0 19 U 2.9 19 U 1.3 19 U 3.3 19 U 3.	8082 Analysis Batch: 220-11497 Instrument ID: HP 5890 with dual EC 3550B Prep Batch: 220-11392 Lab File ID: D4663131.d 1.0 Initial Weight/Volume: 30.08 g 11/27/2007 0145 Final Weight/Volume: 10.0 mL 11/27/2007 1227 Injection Volume: 1 uL Column ID: PRIMARY DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 19 U T 3.1 19 36 U 1.7 36 19 U 2.0 19 19 U 2.9 19 19 U 2.9 19 19 U 2.9 19 19 U 3.3 19 19 U 1.3 19 19 U 3.3 19 19 U 4.3 19 19 U 4.3 19 19 U 3.4 19 19 U 2.9 19 19 U 3.3

TestAmerica Connecticut

Client Sample ID: EHS-SS-06

GC Semivolatiles

Lot-Sample #: A7K170204-013	Work Order #:	KCH501AC	Matri	ĸ:	SO
Date Sampled: 11/14/07 13:15	Date Received:	11/17/07			
Prep Date: 11/26/07	Analysis Date:	11/27/07			
Prep Batch #: 7330014					
Dilution Factor: 1	Initial Wgt/Vol:	50.06 g	Final	Wgt/Vol:	100 mL
% Moisture: 8.4	Method:	SW846 8151	A		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
2,4-D	ND	87	ug/kg	39	
2,4,5-TP	ND	22	ug/kg	2.4	
2,4,5-T	ND	22	ug/kg	3.5	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
2,4-Dichlorophenylacetic acid	59	(19 - 122)			

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

TestAmerica Connecticut

Client Sample ID: EHS-SS-06

General Chemistry

Lot-Sample #...: A7K170204-013 Work Order #...: KCH50 Matrix.....: SO Date Sampled...: 11/14/07 13:15 Date Received..: 11/17/07 % Moisture....: 8.4

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Acid-soluble sulfide	ND Dil	32.8 ution Facto	mg/kg pr: 1	SW846 9030B/9034 MDL 6.1	11/20/07	7324747
Percent Solids	91.6 Dil	10.0 ution Facto	왕)r: 1	MCAWW 160.3 MOD MDL 10.0	11/26-11/27/07	7330572

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

.

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

<u> </u>		General Chemis	try			
Client Sample ID:	EHS-SS-01					
Lab Sample ID: Client Matrix:	220-3395-7 Solid	% Moisture: 19.4	1	Date Sample Date Receive	ed: 11/1 ed: 11/1	4/2007 0835 5/2007 1634
Analyte	Result	∠ Qual Units	MDL	RL	Dil	Method
Sulfate-S	12, રે∪ . 6.3 Anly Batch: 220-11366	Date Analyzed 11/22	2.3 2/2007 0642	12.3	1.0 Dry\	300.0 Vt Corrected: Y
Analvte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	19.4 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 7/2007 1602	0.100	1.0	PercentMoisture
Percent Solids	80.6 Anly Batch: 220-11188	% Date Analyzed 11/1	0.100 7/2007 1602	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-SS-XX DUP	licate of HS-SS-03		Data Sample	ad: 11/1	4/2007 0000
Lab Sample ID: Client Matrix:	220-3395-8 Solid	% Moisture: 31.	7	Date Sample Date Receiv	ed: 11/1	5/2007 1634
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Sulfate-S	14.60 11.1. Anly Batch: 220-11366	→ mg/Kg Date Analyzed 11/2.	2.8 2/2007 0655	14.6	1.0 Dry	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	31.7 Anly Batch: 220-11188	% Date Analyzed 11/1	0.100 7/2007 1602	0.100	1.0	PercentMoisture
Percent Solids	68.3 Anly Batch: 220-11188	% Date Analyzed 11/1	0.100 7/2007 1602	0.100	1.0	PercentMoisture

1/2/08

N1 8 (08

Client: GEI Consultants, Inc.

Job Number: 220-3395-1 Sdg Number: 220-3395

		General Chemist	ry			
Client Sample ID:	EHS-SS-02					
Lab Sample ID: Client Matrix:	220-3395-9 Solid	% Moisture: 19.6		Date Sampled: Date Received	: 11/1 : 11/1	4/2007 1052 5/2007 1634
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Sulfate-S	39.8 Anly Batch: 220-11366	mg/Kg Date Analyzed 11/22/	2.4 2007 0709	12.4	1.0 Dry ¹	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	19.6 Anly Batch: 220-11188	% Date Analyzed 11/17/	0.100 /2007 1602	0.100	1.0	PercentMoisture
Percent Solids	80.4 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-SS-03					
Lab Sample ID: Client Matrix:	220-3395-10 Solid	% Moisture: 21.4		Date Sampled Date Received	l: 11/ d: 11/	14/2007 1115 15/2007 1634
Analyte	Result	Z Qual Units	MDL	RL	Dil	Method
Sulfate-S	14.7 ∪ Anly Batch: 220-11366	mg/Kg Date Analyzed 11/22	2.4 /2007 0722	12.7	1.0 Dry	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	21.4 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 /2007 1602	0.100	1.0	PercentMoisture
Percent Solids	78.6 Anly Batch: 220-11188	% Date Analyzed 11/17	0.100 72007 1602	0.100	1.0	PercentMoisture

Jun 1/2/00

Job Number: 220-3395-1 Sdg Number: 220-3395

		General Chemistry				
Client Sample ID:	EHS-SS-04					
Lab Sample ID: Client Matrix:	220-3395-11 Solid	% Moisture: 18.2		Date Sampled: Date Received:	11/1 11/1	14/2007 1135 15/2007 1634
Analyte	Result	, Qual Units	MDL	RL	Dil	Method
Sulfate-S	12.1U - 4.7 Anly Batch: 220-11366	ד mg/Kg Date Analyzed 11/22/20	2.3 007 0735	12.1	1.0 Dry	300.0 Wt Corrected: Y
Analvte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	18.2 Anly Batch: 220-11188	% Date Analyzed 11/17/20	0.100 007 1602	0.100	1.0	PercentMoisture
Percent Solids	81.8 Anly Batch: 220-11188	% Date Analyzed 11/17/20	0.100 007 1602	0.100	1.0	PercentMoisture
Client Sample ID:	EHS-SS-05					
Lab Sample ID: Client Matrix:	220-3395-12 Solid	% Moisture: 18.6		Date Sampled: Date Received	11/ : 11/	14/2007 1315 15/2007 1634
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Sulfate-S	54.1 Anly Batch: 220-11366	mg/Kg Date Analyzed 11/22/20	2.3 007 0749	12.3	1.0 Dry	300.0 Wt Corrected: Y
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	18.6 Anly Batch: 220-11188	% Date Analyzed 11/17/2	0.100 007 1602	0.100	1.0	PercentMoisture
Percent Solids	81.4 Anly Batch: 220-11188	% Date Analyzed 11/17/2	0.100 007 1602	0.100	1.0	PercentMoisture

Client: GEI Consultants, Inc.

Client Sample ID: EHS-FB-01

Client Matrix:

Lab Sample ID: 220-3438-1FB

Water

Job Number: 220-3438-1 Sdg Number: 220-3438

Date Sampled: 11/19/2007 0945 Date Received: 11/20/2007 1910

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11353	Instrument ID:	HP 6890/59	973 GC/MS
Preparation:	5030B		Lab File ID:	V1330.D	
Dilution:	1.0		Initial Weight/Vol	ume: 5	mL
Date Analyzed:	11/23/2007 1456		Final Weight/Volu	ume: 5	mL
Date Prepared:	11/23/2007 1456				

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acetone	2.3	JMJ	1.6	10
Benzene	5.0	U	0.23	5.0
Bromodichloromethane	5.0	U	0.24	5.0
Bromoform	5.0	U	1.2	5.0
Bromomethane	5.0	U	1.0	5.0
Methyl Ethyl Ketone	10	U	1.1	10
Carbon disulfide	5.0	U	0.14	5.0
Carbon tetrachloride	5.0	U	0.29	5.0
Chlorobenzene	5.0	U	0.15	5.0
Chloroethane	5.0	U	0.48	5.0
Chloroform	5.0	U	0.27	5.0
Chloromethane	5.0	U	0.24	5.0
Dibromochloromethane	5.0	U	0.21	5.0
1,1-Dichloroethane	5.0	U	0.23	5.0
1,2-Dichloroethane	5.0	U	0.25	5.0
1,1-Dichloroethene	5.0	U	0.25	5.0
1,2-Dichloropropane	5.0	U	0.32	5.0
cis-1,3-Dichloropropene	5.0	U	0.28	5.0
trans-1,3-Dichloropropene	5.0	U	0.28	5.0
Ethylbenzene	5.0	U	0.28	5.0
2-Hexanone	10	U /	0.37	10
Methylene Chloride	1.3	X J	0.26	5.0
methyl isobutyl ketone	10	ີປີ	0.38	10
Styrene	5.0	U	0.70	5.0
1,1,2,2-Tetrachloroethane	5.0	U /	0.23	5.0
Tetrachloroethene	5.0	UMV	0.30	5.0
Toluene	5.0	U	0.090	5.0
1,1,1-Trichloroethane	5.0	U	0.38	5.0
1,1,2-Trichloroethane	5.0	U	0.33	5.0
Trichloroethene	5.0	U	0.26	5.0
Vinyl chloride	5.0	U	0.30	5.0
Xylenes, Total	5.0	U	0.46	5.0
cis-1,2-Dichloroethene	5.0	U	0.33	5.0
trans-1,2-Dichloroethene	5.0	U	0.22	5.0
Surrogate	%Rec		Accept	tance Limits
1,2-Dichloroethane-d4 (Surr)	101		53 - 1	125
4-Bromofluorobenzene	91		73 - 1	127
Dibromofluoromethane	105		54 - 1	137
Toluene-d8 (Surr)	100		63 - 1	121

Page 9 of 839

EMM 1/1/08

DB The las

Client: GEI Consultants, Inc.

Lab Sample ID:

Client Matrix:

Client Sample ID: EHS-FB-01

220-3438-1FB

Water

Job Number: 220-3438-1 Sdg Number: 220-3438

Date Sampled: 11/19/2007 0945 Date Received: 11/20/2007 1910

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

,

Method:	8270C	Analysis Batch: 220-11515	Instrument ID:	HP 6890	/5973 GC/MS
Preparation:	3510C	Prep Batch: 220-11372	Lab File ID:	U2209.D)
Dilution:	1.0		Initial Weight/Volu	ume:	1000 mL
Date Analyzed:	11/30/2007 1842		Final Weight/Volu	ime:	1.0 mL
Date Prepared:	11/26/2007 2155		Injection Volume:		1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acenaphthene	10	U	0.35	10	
Acenaphthylene	10	U	0.35	10	
Anthracene	10	U	0.32	10	
Benzo[a]anthracene	10	U	0.44	10	
Benzo[a]pyrene	10	U	0.32	10	
Benzo[b]fluoranthene	10	U	0.45	10	
Benzo[g,h,i]perylene	10	U	0.40	10	
Benzo[k]fluoranthene	10	U	0.29	10	
Bis(2-chloroethoxy)methane	10	U	0.51	10	
Bis(2-chloroethyl)ether	10	U	2.0	10	
Bis(2-ethylhexyl) phthalate	10	U	1.7	10	
Butyl benzyl phthalate	10	U	0.43	10	
Carbazole	10	U	0.61	10	
Chrysene	10	U	0.40	10	
Di-n-butyl phthalate	10	U	1.9	10	
Di-n-octyl phthalate	10	U	0.35	10	
4-Bromophenyl phenyl ether	10	U	0.26	10	
4-Chloroaniline	10	U	0.31	10	
2-Chloronaphthalene	10	U	0.46	10	
4-Chlorophenyl phenyl ether	10	U	0.48	10	
Dibenz(a,h)anthracene	10	U	0.39	10	
Dibenzofuran	10	U	0.46	10	
Diethyl phthalate	10	U	0.37	10	
Dimethyl phthalate	10	U	0.29	10	
1,2-Dichlorobenzene	10	U	0.43	10	
1,3-Dichlorobenzene	10	U	0.49	10	
1,4-Dichlorobenzene	10	U	0.38	10	
3,3'-Dichlorobenzidine	10	U	0.60	10	
2,4-Dinitrotoluene	10	U	0.48	10	
2,6-Dinitrotoluene	10	U	0.49	10	
Fluoranthene	10	U	0.51	10	
Fluorene	10	U	0.35	10	
Hexachlorobenzene	10	U	0.35	10	
Hexachlorobutadiene	10	U	0.74	10	
Hexachlorocyclopentadiene	10	U	1.3	10	
Hexachloroethane	10	U	0.64	10	
Indeno[1,2,3-cd]pyrene	10	U _ /	0.51	10	
Isophorone	10	UX X	0.54	10	
2-Methylnaphthalene	10	U	0.49	10	
Naphthalene	10	U	0.47	10	
2-Nitroaniline	50	U	0.45	50	
3-Nitroaniline	50	U	0.41	50	
Nitrobenzene	10	U	0.50	10	
N-Nitrosodi-n-propylamine	10	U	0.59	10	

TestAmerica Connecticut

Epril 8/09

Client: GEI Consultants, Inc.

Job Number: 220-3438-1 Sdg Number: 220-3438

Client Sample ID:	EHS-FB-01		0
Lab Sample ID: Client Matrix:	220-3438-1FB Water	Date Sampled: Date Received:	11/19/2007 0945 11/20/2007 1910
	8270C Semivolatile Compounds by Gas (Chromatography/Mass Spectrometry (GC/	MS)

Method:	8270C	Analysis Batch: 220-11515	Instrument ID:	HP 689	0/5973 GC/MS
Preparation:	3510C	Prep Batch: 220-11372	Lab File ID:	U2209.I	C
Dilution:	1.0		Initial Weight/Vol	lume:	1000 mL
Date Analyzed:	11/30/2007 1842		Final Weight/Vol	ume:	1.0 mL
Date Prepared:	11/26/2007 2155		Injection Volume	:	1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
N-Nitrosodiphenylamine	10	U	0.41	10	
Phenanthrene	10	U	0.28	10	
Pyrene	10	U	0.40	10	
1,2,4-Trichlorobenzene	10	U	0.47	10	
4-Chloro-3-methylphenol	10	U	0.43	10	
2-Chlorophenol	10	υ./	0.46	10	
2-Methylphenol	10	UN	0.50	10	
4-Methylphenol	10	U	0.39	10	
2,4-Dichlorophenol	10	U	0.30	10	
2,4-Dimethylphenol	10	U	0.63	10	
2,4-Dinitrophenol	50	U	1.7	50	
4,6-Dinitro-2-methylphenol	50	U	3.3	50	
2-Nitrophenol	10	U ./	0.50	10	
4-Nitrophenol	50	UXŰ	1.3	50	
Pentachlorophenol	50	U, /	4.1	50	
Phenol	10	UX ~	0.85	10	
2,4,5-Trichlorophenol	50	U	0.33	50	
2,4,6-Trichlorophenol	10	U	0.42	10	
Benzyl alcohol	10	U	0.84	10	
4-Nitroaniline	20	U	0.50	20	
2,2'-oxybis[1-chloropropane]	10	U	0.54	10	
Surrogate	%Rec		Accep	tance Limits	
2-Fluorobiphenyl	81		43 -	116	• • • • • • • • • • • • • • • • •
2-Fluorophenol	46		21 -	97	
2,4,6-Tribromophenol	93		29 -	126	
Nitrobenzene-d5	82		38 -	113	
Phenol-d5	33		18 -	97	

98

Enn 1/8/08 (118/08

10 - 119

Terphenyl-d14

Job Number: 220-3438-1 Sdg Number: 220-3438

Client: GEI Consultants, Inc.

Client Sample ID: EHS-FB-01

Lab Sample ID: Client Matrix:	220-3438-1FB Water	n soon namen waa mer dar no basker in yn baber yn ar we geganne yn an dy parlen i berne berne ar yn	Date Date	e Sampled: 1 e Received: 1	1/19/2007 0945 1/20/2007 1910
n an tao ana amin'ny fisiana amin'n	6010B In	ductively Coupled Plasma - Atomic I	Emission Spect	rometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3010A 1.0 11/27/2007 1631 11/21/2007 1444	Analysis Batch: 220-11410 Prep Batch: 220-11295	Instrume Lab File Initial We Final We	ent ID: ID: eight/Volume: eight/Volume:	TJA Trace ICAP W112707 50 mL 50 mL
Analyte		Result (ug/L)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium		5.0 500 25 5.0 300 10 10 10 10 10 10 200 130 100 15 400 10 10 50 30 40 5.0 5.0 50 30 50 50 30 50		$\begin{array}{c} 1.3\\ 84\\ 5.4\\ 2.3\\ 0.60\\ 130\\ 1.1\\ 2.1\\ 1.9\\ 3.9\\ 51\\ 130\\ 55\\ 5.2\\ 350\\ 1.9\\ 4.9\\ 6.0\\ 9.8\\ 8.1\\ 1.0\\ 12\\ \end{array}$	5.0 500 25 5.0 5.0 300 10 10 10 10 10 200 400 100 15 400 10 10 15 400 10 10 10 50 30 40 50 30 50 30 50 30 50 30 50 30 50 30 50 30 30 400 10 10 10 10 10 10 100 500 300 400 500 300 400 500 300 400 50
	7470/	A Mercury in Liquid Waste (Manual C	old Vapor Tech	inique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 11/30/2007 1018 11/29/2007 1800	Analysis Batch: 220-11490 Prep Batch: 220-11476	Instrum Lab File Initial W Final W	ent ID: > ID: /eight/Volume: /eight/Volume:	Perkin Elmer FIMS N/A 25 mL 50 mL
Analyte Mercury		Result (ug/L)	Qualifier Ü	MDL - 0.10 0.20	RL 0:20- 0.40

Client: GEI Consultants, Inc.

,

Job Number: 220-3438-1 Sdg Number: 220-3438

Client Sample ID:	EHS-FB-01			
Lab Sample ID: Client Matrix:	220-3438-1FB Water	Date Sampled: Date Received:	11/19/2007 11/20/2007	0945 1910
		والمراز المتكاف مشاهلات والمراجع والمستعد والمتراج فبالمراجع والمتعاد والمتحار والمتحاد		A REAL PROPERTY AND A REAL

annen a Sanne Shini Harren e Shini Harren a		8081A Organ	ochlorine Pesticides by Gas	Chromat	ography		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 11/29/2007 11/26/2007	2054 2225	Analysis Batch: 220-11459 Prep Batch: 220-11374	lr L Ir F C	nstrument ID: ab File ID: nitial Weight/Volu inal Weight/Volu njection Volume: Column ID:	HP 5890 D750507 me: me: PRIMA	with dual ECD (6.D 1000 mL 10 mL 1 uL RY
Analyte 4,4'-DDD 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor epoxid Methoxychlor Toxaphene alpha-Chlordane gamma-Chlordane	ane)		Result (ug/L) 0.15 0.10 0.050 0.050 0.050 0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.50 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.10 0.10 0.050 0.10 0.050 0.10 0.050 0.050 0.10 0.050 0.050 0.050 0.10 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.050 0.050 0.050 0.050 0.10 0.050 0.050 0.050 0.10 0.050 0.050 0.050 0.10 0.050 0.10 0.050 0.10 0.050 0.10 0.050 0.10 0.50 0.050 0.10 0.10 0.10 0.50 0.050 0.050 0.10 0.10 0.50 0.018	Qualifier U U U U U U U U U U U U U	MDL 0.014 0.0088 0.010 0.0058 0.011 0.013 0.0022 0.0057 0.0035 0.0035 0.0035 0.014 0.025 0.028 0.016 0.0052 0.0078 0.0057 0.0041 0.21 0.0055 0.0061		RL 0.15 0.10 0.050 0.050 0.050 0.050 0.050 0.10 0.1
gamma-cinicidants Surrogate DCB Decachlorob Tetrachloro-m-xyle Method: Preparation: Dilution: Date Analyzed: Date Prepared:	iphenyl 8081A 3510C 1.0 11/29/2007 11/26/2007	7 2054 7 2225	%Rec 37 115 Analysis Batch: 220-11459 Prep Batch: 220-11374		Acc 28 53 Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volume Column ID:	ceptance) - 156 3 - 144 HP 5899 C75050 ume: ume: : SECC	Limits 0 with dual ECD 76.D 1000 mL 10 mL 1 uL NDARY
Surrogate DCB Decachlorol: Tetrachloro-m-xyl	iphenyl ene		%Rec 36 117		Acc 25	ceptance 9 - 156 3 - 144	Limits

. . .

Client: GEI Consultants, Inc.

Job Number: 220-3438-1 Sdg Number: 220-3438

Client Sample ID:	EHS-FB-01		
Lab Sample ID: Client Matrix:	220-3438-1FB Water	Date Sampled: Date Received:	11/19/2007 0945 11/20/2007 1910
Onorie macini			

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: Preparation: Dilution:	8082 3510C 1.0	Analysis Batch: 220-11444 Prep Batch: 220-11374	ins La Ini	trument ID: b File ID: tial Weight/Vol	HP 5890 with dual ECD D4663063.d ume: 1000 mL	
Date Analyzed:	11/28/2007 0434		Fir	nal Weight/Voli	ume: 10 mL	
Date Prenared	11/26/2007 2225		Inj	ection Volume	: 1 uL	
Dutorroparou			Co	olumn ID:	PRIMARY	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
DCD 1016		0.50	υ	0.072	0.50	
PUD-1010		1.0	U	0.23	1.0	
PCD-1221		0.50	U	0.11	0.50	
PUB-1232		0.50	U	0.11	0.50	
PCB-1242		0.50	U	0.15	0.50	
PCB-1246		0.50	U	0.037	0.50	
PUB-1254		0.50	U	0.064	0.50	
PCB-1260		0.00				
Surrooate		%Rec		Aci	ceptance Limits	
Totrachloro-m-XVI	ene .	91		5	3 - 144	
DCB Decachlorob	phenyl	36		2	9 - 156	

Dß 1/18/08

for 12730/0

12/14/2007

TestAmerica Connecticut

.

Client Sample ID: EHS-FB-01

GC Semivolatiles

Lot-Sample #:	A7K240131-001	Work Order #:	KCT0K1AA	Matrix	к WG
Date Sampled:	11/19/07 09:45	Date Received:	11/24/07		
Prep Date:	11/26/07	Analysis Date:	11/27/07		
Prep Batch #:	7330017				
Dilution Factor:	1	Initial Wgt/Vol:	500 mL	Final	Wgt/Vol: 100 mL
		Method:	SW846 8151.	A	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	MDL
2,4,5-T		ND	1.0	ug/L	0.17
2,4-D		ND	4.0	ug/L	1.5
2,4,5-TP		ND	1.0	ug/L	0.16
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
2,4-Dichloropheny	lacetic acid	87	(32 - 112)		

Emm 118/06

DC 1/18/08

.

Client: GEI Consultants, Inc.

Job Number: 220-3438-1 Sdg Number: 220-3438

Client Sample ID:	EHS-FB-02			
Lab Sample ID: Client Matrix:	220-3438-2FB Water	Date Sampled: Date Received:	11/19/2007 11/20/2007	1045 1910
				ZAN WINDOW

8081A Organochlorine Pesticides by Gas Chromatography

Method: Preparation: Dilution:	8081A 3510C 1.0	Analysis Batch: 220-11459 Prep Batch: 220-11374	In La In Fi	strument ID: ab File ID: itial Weight/Volu pal Weight/Volu	HP 5890 with dual ECD D7505077.D Ime: 1000 mL me: 10 ml
Date Analyzed:	11/29/2007 2115		In	jection Volume:	1 uL
Date i reparet.			C	olumn ID:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	RL
		0.15	U	0.014	0.15
4.4'-DDF		0.10	U	0.0088	0.10
4 4'-DDT		0.10	ป	0.010	0.10
Aldrin		0.050	U	0.0058	0.050
aloha-BHC		0.050	U	0.011	0.050
beta-BHC		0.050	U	0.013	0.050
delta-BHC		0.050	U	0.0022	0.050
Dieldrin		0.10	U	0.0057	0.10
Endosulfan I		0.050	U	0.0035	0.050
Endosulfan II		0.10	U	0.0035	0.10
Endosulfan sulfate		0.10	Ų	0.014	0.10
Endrin		0.10	U ,	0.025	0.10
Endrin aldehyde		0.10	U3 /	0.028	0.10
Endrin ketone		0.10	ປີສໍ້	0.016	0.10
gamma-BHC (Lind	ane)	0.050	U	0.0052	0.050
Heptachlor		0.050	U	0.0078	0.050
Heptachlor epoxid	e	0.050	U	0.0057	0.050
Methoxychlor		0.50	UJ 🗸	0.041	0.50
Toxaphene		2.5	U	0.21	2.5
alpha-Chlordane		0.050	U	0.0055	0.050
gamma-Chlordane	2	0.050	U	0.0061	0.050
Surrogate		%Rec		Acc	eptance Limits
DCB Decachiorob	iphenvl	39		29	9 - 156
Tetrachioro-m-xyle	ene	110		53	3 - 144
Mathad	80810	Analysis Batch: 220-11459	Ir	nstrument ID:	HP 5890 with dual ECD
Deeporation:	35400	Pren Batch: 220-11374	L	ab File ID:	C7505077.D
Preparation.	10		Ir	hitial Weight/Vol	ume: 1000 mL
Dilution:	1.0		F	inal Weight/Vol	ume: 10 mL
Date Analyzed:	17/29/2007 2115		},	niection Volume	- 1 11
Date Prepared:	11/26/2007 2225		" "		
			Ĺ	Jolumin ID:	SECONDART
Surrogate		%Rec		Acc	ceptance Limits
DCB Decembroh	iobenvl	38		29	9 - 156
Tatrachloro_m_vvl	ene	107		53	3 - 144
тапаснюю-ш-хул		•			

TB 1/18/08

12/14/2007

1513010

Client: GEI Consultants, Inc.

Client Sample ID: EHS-FB-02

Lab Sample ID:

Client Matrix:

220-3438-2FB

Water

Job Number: 220-3438-1 Sdg Number: 220-3438

Date Sampled: 11/19/2007 1045 Date Received: 11/20/2007 1910

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11353	Instrument ID:	HP 6890/59	973 GC/MS
Preparation:	5030B		Lab File ID:	V1331.D	
Dilution:	1.0		Initial Weight/Volu	ume: 5	mL.
Date Analyzed:	11/23/2007 1523		Final Weight/Volu	ime: 5	mL
Date Prepared:	11/23/2007 1523				

Analyte	e Result (ug/L)		MDL	RL	
Acetone	2.0	JM J 🗸	1.6	10	
Benzene	5.0	Ú	0.23	5.0	
Bromodichloromethane	5.0	U	0.24	5.0	
Bromoform	5.0	U	1.2	5.0	
Bromomethane	5.0	U	1.0	5.0	
Methyl Ethyl Ketone	10	U	1.1	10	
Carbon disulfide	5.0	U	0.14	5.0	
Carbon tetrachloride	5.0	U	0.29	5.0	
Chlorobenzene	5.0	U	0.15	5.0	
Chloroethane	5.0	U	0.48	5.0	
Chloroform	5.0	U	0.27	5.0	
Chloromethane	5.0	U	0.24	5.0	
Dibromochloromethane	5.0	U	0.21	5.0	
1,1-Dichloroethane	5.0	U	0.23	5.0	
1,2-Dichloroethane	5.0	U	0.25	5.0	
1,1-Dichloroethene	5.0	U	0.25	5.0	
1,2-Dichloropropane	5.0	U	0.32	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0	U	0.28	5.0	
Ethylbenzene	5.0	U	0.28	5.0	
2-Hexanone	10	U	0.37	10	
Methylene Chloride	1.3	881	0.26	5.0	
methyl isobutyl ketone	10 .	U	0.38	10	
Styrene	5.0	U	0.70	5.0	
1,1,2,2-Tetrachloroethane	5.0	U	0.23	5.0	
Tetrachloroethene	5.0	U	0.30	5.0	
Toluene	5.0	U	0.090	5.0	
1,1,1-Trichloroethane	5.0	U	0.38	5.0	
1,1,2-Trichloroethane	5.0	U	0.33	5.0	
Trichloroethene	5.0	U	0.26	5.0	
Vinyl chloride	5.0	U	0.30	5.0	
Xylenes, Total	5.0	U	0.46	5.0	
cis-1,2-Dichloroethene	5.0	U	0.33	5.0	
trans-1,2-Dichloroethene	5.0	U	0.22	5.0	
Surrogate	%Rec		Accept	ance Limits	
1,2-Dichloroethane-d4 (Surr)	98		53 - 1	25	
4-Bromofluorobenzene	86		73 - 1	27	
Dibromofluoromethane	98		54 - 1	37	
Toluene-d8 (Surr)	91		63 - 1	21	

TestAmerica Connecticut

12/14/2007

DB 1/18/08

Client: GEI Consultants, Inc.

Client Sample ID: EHS-FB-02

Job Number: 220-3438-1 Sdg Number: 220-3438

Lab Sample ID:	220-3438-2FB	Date Sampled:	11/19/2007	1045
Client Matrix:	Water	Date Received:	11/20/2007	1910

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-11515	Instrument ID:	HP 6890/5973 GC/MS
Preparation:	3510C	Prep Batch: 220-11372	Lab File ID:	U2210.D
Dilution:	1.0		Initial Weight/Volu	ume: 1000 mL
Date Analyzed:	11/30/2007 1906		Final Weight/Volu	ume: 1.0 mL
Date Prepared:	11/26/2007 2155		Injection Volume:	1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acenaphthene	10	U	0.35	10	
Acenaphthylene	10	U	0.35	10	
Anthracene	10	U	0.32	10	
Benzo[a]anthracene	10	U	0.44	10	
Benzo[a]pyrene	10	U	0.32	10	
Benzo[b]fluoranthene	10	U	0.45	10	
Benzo[g,h,i]perylene	10	U	0.40	10	
Benzo[k]fluoranthene	10	U	0.29	10	
Bis(2-chloroethoxy)methane	10	U	0.51	10	
Bis(2-chloroethyl)ether	10	U	2.0	10	
Bis(2-ethylhexyl) phthalate	10	U	1.7	10	
Butyl benzyl phthalate	10	U	0.43	10	
Carbazole	10	U	0.61	10	
Chrysene	10	U	0.40	10	
Di-n-butyl phthalate	10	U	1.9	10	
Di-n-octyl phthalate	10	U	0.35	10	
4-Bromophenyl phenyl ether	10	U	0.26	10	
4-Chloroaniline	10	U	0.31	10	
2-Chloronaphthalene	10	U	0.46	10	
4-Chiorophenyl phenyl ether	10	U	0.48	10	
Dibenz(a,h)anthracene	10	U	0.39	10	
Dibenzofuran	10	U	0.46	10	
Diethyl phthalate	10	U	0.37	10	
Dimethyl phthalate	10	U	0.29	10	
1,2-Dichlorobenzene	10	U	0.43	10	
1,3-Dichlorobenzene	10	U	0.49	10	
1,4-Dichlorobenzene	10	U	0.38	10	
3,3'-Dichlorobenzidine	10	U	0.60	10	
2,4-Dinitrotoluene	10	U	0.48	10	
2,6-Dinitrotoluene	10	U	0.49	10	
Fluoranthene	10	U	0.51	10	
Fluorene	10	U	0.35	10	
Hexachlorobenzene	10	U	0.35	10	
Hexachlorobutadiene	10	U	0.74	10	
Hexachlorocyclopentadiene	10	U	1.3	10	
Hexachloroethane	10	U	0.64	10	
Indeno[1,2,3-cd]pyrene	10	U /	0.51	10	
Isophorone	10	U≯✓	0.54	10	
2-Methylnaphthalene	10	U	0.49	10	
Naphthalene	10	U	0.47	10	
2-Nitroaniline	50	U	0.45	50	
3-Nitroaniline	50	U	0.41	50	
Nitrobenzene	10	U	0.50	10	
N-Nitrosodi-n-propylamine	10	U	0.59	10	
TestAmerica Connecticut	Page 14 of 8	39 CMM	18/08	03	12/14/2007

Client: GEI Consultants, Inc.

Job Number: 220-3438-1 Sdg Number: 220-3438

Client Sample ID:	EHS-FB-02	-	-9	
Lab Sample ID:	220-3438-2FB	Date Sampled:	11/19/2007	1045
Client Matrix:	Water	Date Received:	11/20/2007	1910

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-11515	Instrument ID:	HP 6890	/5973 GC/MS
Preparation:	3510C	Prep Batch: 220-11372	Lab File ID:	U2210.D)
Dilution:	1.0		Initial Weight/Volu	ume:	1000 mL
Date Analyzed:	11/30/2007 1906		Final Weight/Volu	ume:	1.0 mL
Date Prepared:	11/26/2007 2155		Injection Volume:	:	1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL.	
N-Nitrosodiphenylamine	10	U	0.41	10	
Phenanthrene	10	U	0.28	10	
Pyrene	10	U	0.40	10	
1,2,4-Trichlorobenzene	10	U	0.47	10	
4-Chloro-3-methylphenol	10	U	0.43	10	
2-Chlorophenol	10	υ,	0.46	10	
2-Methylphenol	10	U/	0.50	10	
4-Methylphenol	10	U	0.39	10	
2,4-Dichlorophenol	10	U	0.30	10	
2,4-Dimethylphenol	10	U	0.63	10	
2,4-Dinitrophenol	50	U	1.7	50	
4,6-Dinitro-2-methylphenol	50	U	3.3	50	
2-Nitrophenol	10	U,	0.50	10	
4-Nitrophenol	50	UY	1.3	50	
Pentachlorophenol	50	U,	4.1	50	
Phenol	10	U/	0.85	10	
2,4,5-Trichlorophenol	50	U	0.33	50	
2,4,6-Trichlorophenol	10	U	0.42	10	
Benzyl alcohol	10	U	0.84	10	
4-Nitroaniline	20	U	0.50	20	
2,2'-oxybis[1-chloropropane]	10	U	0.54	10	
Surrogate	%Rec		Accep	tance Limits	
2-Fluorobiphenyl	77		43 - 1	116	
2-Fluorophenol	45		21 - 9	97	
2,4,6-Tribromophenol	91	29 - 126			
Nitrobenzene-d5	76		38 - 1	113	
Phenol-d5	33	18 - 97			
Terphenyl-d14	99	10 - 119			

ÐB

118/08

TestAmerica Connecticut

Job Number: 220-3438-1 Sdg Number: 220-3438

Client: GEI Consultants, Inc.

06 11803

12/14/2007

Client: GEI Consultants, Inc.

Job Number: 220-3438-1 Sdg Number: 220-3438

EHS-FB-02			
220-3438-2FB Water	Date Sampled: Date Received:	11/19/2007 10 11/20/2007 19	045 910
	EHS-FB-02 220-3438-2FB Water	EHS-FB-02Date Sampled:220-3438-2FBDate Received:WaterDate Received:	EHS-FB-02 Date Sampled: 11/19/2007 10 220-3438-2FB Date Received: 11/20/2007 10 Water Date Received: 11/20/2007 10

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: 8082 Preparation: 3510C Dilution: 1.0 Date Analyzed: 11/28/2007 0541 Date Prepared: 11/26/2007 2225		Analysis Batch: 220-11444 Prep Batch: 220-11374	4 Instrument ID: HP 5890 with dua Lab File ID: D4663067.d Initial Weight/Volume: 1000 m Final Weight/Volume: 10 mL Injection Volume: 1 uL Column ID: PRIMARY		
A 17.		Result (uo/l.)	Qualifier	MDL	RL.
Analyte		0.50	· 11	0.072	0.50
PCB-1016		1.0	Ű	0.23	1.0
PCB-1221		0.50	ц Ц	0.11	0.50
PCB-1232		0.50	Ц	0.11	0.50
PCB-1242		0.50	0	0.16	0.50
PCB-1248		0.50	U	0.10	0.50
PCB-1254		0.50	U	0.037	0.50
PCB-1260		0.50	U	0.064	0.50
Surronate		%Rec		Acc	eptance Limits
		88		53	- 144
DCB Decachlorot	viphenyl	39		29	- 156

123010

12/14/2007

TestAmerica Connecticut

Client Sample ID: EHS-FB-02

GC Semivolatiles

Lot-Sample #:	A7K240131-002	Work Or	der #:	KCT0N1AA	Matri	.x:	WG
Date Sampled:	11/19/07 10:45	Date Re	ceived:	11/24/07			
Prep Date:	11/26/07	Analysi	s Date:	11/28/07			
Prep Batch #:	7330017						
Dilution Factor:	1	Initial	Wgt/Vol:	500 mL	Final	Wgt/Vol:	100 mL
		Method.	· · · · · · · · · :	SW846 8151	A		
				REPORTING			
PARAMETER		RESULT		LIMIT	UNITS	MDL	
2,4,5-T		ND		1.0	ug/L	0.17	
2,4-D		ND		4.0	ug/L	1.5	
2,4,5-TP		ND		1.0	ug/L	0.16	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
2,4-Dichlorophenylacetic acid	82	(32 - 112)

Enn 18/08

.

Client: GEI Consultants, Inc.

TRIP BLANK Client Sample ID:

Lab Sample ID:	220-3395-16TB
Client Matrix:	Water

Job Number: 220-3395-1 Sdg Number: 220-3395

Date Sampled: 11/14/2007 0000 Date Received: 11/15/2007 1634

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11235	Instrument ID:	HP 5890/59	971 GC/MS
Preparation:	5030B		Lab File ID:	L2382.D	
Dilution:	1.0		Initial Weight/Volu	ume: 5	mL
Date Analyzed:	11/19/2007 1716		Final Weight/Volu	ıme: 5	mL.
Date Prepared:	11/19/2007 1716				

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acetone	10	U	1.6	10
Benzene	5.0	U	0.23	5.0
Bromodichloromethane	5.0	U	0.24	5.0
Bromoform	5.0	U	1.2	5.0
Bromomethane	5.0	U	1.0	5.0
Methyl Ethyl Ketone	10	U	1.1	10
Carbon disulfide	5.0	U	0.14	5.0
Carbon tetrachloride	5.0	U	0.29	5.0
Chlorobenzene	5.0	U	0.15	5.0
Chloroethane	5.0	U	0.48	5.0
Chloroform	5.0	U	0.27	5.0
Chloromethane	5.0	U	0.24	5.0
Dibromochloromethane	5.0	U	0.21	5.0
1,1-Dichloroethane	5.0	U	0.23	5.0
1,2-Dichloroethane	5.0	U	0.25	5.0
1,1-Dichloroethene	5.0	U	0.25	5.0
1,2-Dichloropropane	5.0	U	0.32	5.0
cis-1,3-Dichloropropene	5.0	U	0.28	5.0
trans-1,3-Dichloropropene	5.0	U	0.28	5.0
Ethylbenzene	5.0	U	0.28	5.0
2-Hexanone	10	U ,	0.37	10
Methylene Chloride	2.5	JJV	0.26	5.0
methyl isobutyl ketone	10	U	0.38	10
Styrene	5.0	U	0.70	5.0
1,1,2,2-Tetrachloroethane	5.0	U	0.23	5.0
Tetrachloroethene	5.0	U	0.30	5.0
Toluene	5.0	U	0.090	5.0
1,1,1-Trichloroethane	5.0	U	0.38	5.0
1,1,2-Trichloroethane	5.0	U×V	0.33	5.0
Trichloroethene	5.0	U	0.26	5.0
Vinyl chloride	5.0	U	0.30	5.0
Xylenes, Total	5.0	U	0.46	5.0
cis-1,2-Dichloroethene	5.0	U	0.33	5.0
trans-1,2-Dichloroethene	5.0	Ų	0.22	5.0
Surrogate	%Rec		Acceptance	Limits
1,2-Dichloroethane-d4 (Surr)	106		53 - 125	
4-Bromofluorobenzene	105		73 - 127	
Dibromofluoromethane	110		54 - 137	
Toluene-d8 (Surr)	90		63 - 121	

Client: GEI Consultants, Inc.

Client Sample ID: TRIP BLANK

Lab Sample ID: 220-3438-3TB Client Matrix: Water Job Number: 220-3438-1 Sdg Number: 220-3438

Date Sampled: 11/19/2007 0000 Date Received: 11/20/2007 1910

8260B Volatile Organic Compounds by GC/MS

Method: Preparation:	8260B 5030B	Analysis Batch: 220-11353	Instrument ID: Lab File ID:	HP 6890 V1332.C)/59)	973 GC/MS
Date Analyzed: Date Prepared:	1.0 11/23/2007 1549 11/23/2007 1549		Initial Weight/Vol Final Weight/Vol	ume: ume:	5 5	mL mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acetone	10	U	1.6	10	
Benzene	5.0	Ŭ	0.23	50	
Bromodichloromethane	5.0	U	0.24	5.0	
Bromoform	5.0	U	1.2	5.0	
Bromomethane	5.0	U	1.0	5.0	
Methyl Ethyl Ketone	10	Ŭ	1.1	10	
Carbon disulfide	5.0	Ū	0.14	50	
Carbon tetrachloride	5.0	U	0.29	5.0	
Chlorobenzene	5.0	U	0.15	5.0	
Chloroethane	5.0	U	0.48	5.0	
Chloroform	5.0	Ū	0.27	5.0	
Chloromethane	5.0	Ū	0.24	5.0	
Dibromochloromethane	5.0	U	0.21	5.0	
1,1-Dichloroethane	5.0	U	0.23	5.0	
1,2-Dichloroethane	5.0	U	0.25	5.0	
1,1-Dichloroethene	5.0	Ū	0.25	5.0	
1,2-Dichloropropane	5.0	Ŭ	0.32	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0	Ŭ	0.28	5.0	
Ethylbenzene	5.0	Ū	0.28	5.0	
2-Hexanone	10	Ŭ	0.37	10	
Methylene Chloride	3.7	J V	0.26	50	
methyl isobutyl ketone	10	Ű	0.38	10	
Styrene	5.0	Ū	0.70	50	
1,1,2,2-Tetrachloroethane	5.0	Ŭ	0.23	50	
Tetrachloroethene	5.0	Ū	0.30	5.0	
Toluene	5.0	Ū	0.090	5.0	
1,1,1-Trichloroethane	5.0	Ŭ	0.38	5.0	
1,1,2-Trichloroethane	5.0	Ú	0.33	5.0	
Trichloroethene	5.0	Ū	0.26	5.0	
Vinyl chloride	5.0	Ŭ	0.30	5.0	
Xylenes, Total	5.0	Ŭ	0.46	5.0	
cis-1,2-Dichloroethene	5.0	Ū	0.33	5.0	
trans-1,2-Dichloroethene	5.0	U	0.22	5.0	
Surrogate	%Rec	Accentance Limite			
1,2-Dichloroethane-d4 (Surr)	95		53 - 1	25	
4-Bromofluorobenzene	85		73 . 1	27	
Dibromofluoromethane	101	10 * 121			

Client: GEI Consultants, Inc.

Client Sample ID: EHS-TB-111607

Lab Sample ID:	220-3406-2TB	Date Sampled:	11/16/2007 00	000
Client Matrix:	Water	Date Received:	11/16/2007 21	00

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11235	Instrument ID:	HP 5890)/59	971 GC/MS
Preparation:	5030B		Lab File ID:	L2379.E)	
Dilution:	1.0		Initial Weight/Vol	ume:	5	mL
Date Analyzed:	11/19/2007 1602		Final Weight/Volu	ume:	5	mL
Date Prepared:	11/19/2007 1602					

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acetone	10	U	1.6	10	
Benzene	5.0	U	0.23	5.0	
Bromodichloromethane	5.0	U	0.24	5.0	
Bromoform	5.0	U	1.2	5.0	
Bromomethane	5.0	U	1.0	5.0	
Methyl Ethyl Ketone	· 10	U	1.1	10	
Carbon disulfide	5.0	U	0.14	5.0	
Carbon tetrachloride	5.0	U	0.29	5.0	
Chlorobenzene	5.0	U	0.15	5.0	
Chloroethane	5.0	U	0.48	5.0	
Chloroform	5.0	U	0.27	5.0	
Chloromethane	5.0	U	0.24	5.0	
Dibromochloromethane	5.0	U	0.21	5.0	
1,1-Dichloroethane	5.0	U	0.23	5.0	
1,2-Dichloroethane	5.0	U	0.25	5.0	
1,1-Dichloroethene	5.0	U	0.25	5.0	
1,2-Dichloropropane	5.0	U	0.32	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0	U	0.28	5.0	
Ethylbenzene	5.0	U	0.28	5.0	
2-Hexanone	10	U	0.37	10	
Methylene Chloride	3.3	JJV	0.26	5.0	
methyl isobutyl ketone	10	U	0.38	10	
Styrene	5.0	U	0.70	5.0	
1,1,2,2-Tetrachloroethane	5.0	U	0.23	5.0	
Tetrachloroethene	5.0	U	0.30	5.0	
Toluene	5.0	U	0.090	5.0	
1,1,1-Trichloroethane	5.0	U 🦯	0.38	5.0	
1,1,2-Trichloroethane	5.0	U×	0.33	5.0	
Trichloroethene	5.0	U	0.26	5.0	
Vinyl chloride	5.0	U	0.30	5.0	
Xylenes, Total	5.0	U	0.46	5.0	
cis-1,2-Dichloroethene	5.0	U	0.33	5.0	
trans-1,2-Dichloroethene	5.0	U	0.22	5.0	
Surrogate	%Rec		Accept	ance Limits	
1,2-Dichloroethane-d4 (Surr)	112		53 - 1	25	
4-Bromofluorobenzene	108		73 - 1	27	
Dibromofluoromethane	113		54 - 1	37	
Toluene-d8 (Surr)	92	63 - 121			

Sdg Number: 220-3406

ENTIPL

Client: GEI Consultants, Inc.

Client Sample ID: EHS-TB-111607

Lab Sample ID: 220-3404-4 Client Matrix: Water

Job Number: 220-3404-1 Sdg Number: 220-3404

Date Sampled: 11/16/2007 0000 Date Received: 11/16/2007 2100

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11235	Instrument ID:	HP 5890/5	971 GC/MS
Preparation:	5030B		Lab File ID:	L2381.D	
Dilution:	1.0		Initial Weight/Volu	ume: 5	mL
Date Analyzed:	11/19/2007 1651		Final Weight/Volu	ime: 5	mL
Date Prepared:	11/19/2007 1651				

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acetone	10	U	1.6	10
Benzene	5.0	U	0.23	5.0
Bromodichloromethane	5.0	U	0.24	5.0
Bromoform	5.0	U	1.2	5.0
Bromomethane	5.0	U	1.0	5.0
Methyl Ethyl Ketone	10	U	1.1	10
Carbon disulfide	5.0	U	0.14	5.0
Carbon tetrachloride	5.0	U	0.29	5.0
Chlorobenzene	5.0	U	0.15	5.0
Chloroethane	5.0	U	0.48	5.0
Chloroform	5.0	U	0.27	5.0
Chloromethane	5.0	U	0.24	5.0
Dibromochloromethane	5.0	U	0.21	5.0
1,1-Dichloroethane	5.0	U	0.23	5.0
1,2-Dichloroethane	5.0	U	0.25	5.0
1,1-Dichloroethene	5.0	U	0.25	5.0
1,2-Dichloropropane	5.0	U	0.32	5.0
cis-1,3-Dichloropropene	5.0	U	0.28	5.0
trans-1,3-Dichloropropene	5.0	U	0.28	5.0
Ethylbenzene	5.0	U	0.28	5.0
2-Hexanone	10	U	0.37	10
Methylene Chloride	4.3	JJ	0.26	5.0
methyl isobutyl ketone	10	U	0.38	10
Styrene	5.0	U	0.70	5.0
1,1,2,2-Tetrachloroethane	5.0	U	0.23	5.0
Tetrachloroethene	5.0	U	0.30	5.0
Toluene	5.0	U	0.090	5.0
1,1,1-Trichloroethane	5.0	U, /	0.38	5.0
1,1,2-Trichloroethane	5.0	U# ·	0.33	5.0
Trichloroethene	5.0	U	0.26	5.0
Vinyl chloride	5.0	U	0.30	5.0
Xylenes, Total	5.0	U	0.46	5.0
cis-1,2-Dichloroethene	5.0	U	0.33	5.0
trans-1,2-Dichloroethene	5.0	U	0.22	5.0
Surrogate	%Rec	Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	101		53 - 1	25
4-Bromofluorobenzene	96		73 - 1	27
Dibromofluoromethane	100		54 - 1	37

54 - 137 63 - 121

Toluene-d8 (Surr)

86

12/13/2007

Client: GEI Consultants, Inc.

TRIP BLANK EHS-TB-112907

220-3509-2TB

Water

Client Sample ID:

Lab Sample ID:

Client Matrix:

Job Number: 220-3509-1 Sdg Number: 220-3509

Date Sampled:	11/29/2007	0000
Date Received:	11/30/2007	1855

.

8260B Volatile Organic Compounds by GC/MS

Method:	8260B		Analysis Batch: 220-11611	Instrument ID:	HP 5890	/59	71 GC/MS
Preparation:	5030B			Lab File ID:	L2679.D		
Dilution:	1.0			Initial Weight/Voli	ume:	5	mL
Date Analyzed:	12/04/2007	1040		Final Weight/Volu	ıme:	5	mL
Date Prepared:	12/04/2007	1040					

10 5.0 5.0 5.0 5.0
5.0 5.0 5.0
5.0 5.0 5.0
5.0 5.0
50
0.0
10
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
10
5.0
10
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
e Limits

8		
1,2-Dichloroethane-d4 (Surr)	76	53 - 125
4-Bromofluorobenzene	109	73 - 127
Dibromofluoromethane	76	54 - 137
Toluene-d8 (Surr)	85	63 - 121

Job Number: 220-3539-1 Sdg Number: 220-3539

Client: GEI Consultants, Inc.

Client Sample ID: EHS-TB-120407

Lab Sample ID:	220-3539-5TB	Date Sampled:	12/04/2007 0000
Client Matrix:	Water	Date Received:	12/04/2007 1600

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11665	Instrument ID:	HP 6890/	5973 GC/I	MS
Preparation:	5030B		Lab File ID:	W3039.D		
Dilution:	1.0		Initial Weight/Volu	ume: (5 mL	
Date Analyzed:	12/06/2007 1451		Final Weight/Volu	ime:	5 mL	
Date Prepared:	12/06/2007 1451					

Result (ug/L)	Qualifier	MDL	RL	
10	U	1.6	10	
5.0	U	0.23	5.0	
5.0	U	0.24	5.0	
5.0	U	1.2	5.0	
5.0	U	1.0	5.0	
10	U	1.1	10	
5.0	Ux ->	0.14	5.0	
5.0	U	0.29	5.0	
5.0	U	0.15	5.0	
5.0	U	0.48	5.0	
5.0	U	0.27	5.0	
5.0	U	0.24	5.0	
5.0	U	0.21	5.0	
5.0	U	0.23	5.0	
5.0	U	0.25	5.0	
5.0	U	0.25	5.0	
5.0	U	0.32	5.0	
5.0	U	0.28	5.0	
5.0	U	0.28	5.0	
5.0	U	0.28	5.0	
10	U	0.37	10	
2.7	J 🖅	0.26	5.0	
10	U	0.38	10	
5.0	U	0.70	5.0	
5.0	U	0.23	5.0	
5.0	U	0.30	5.0	
5.0	U	0.090	5.0	
5.0	U	0.38	5.0	
5.0	U	0.33	5.0	
5.0	U	0.26	5.0	
5.0	U	0.30	5.0	
5.0	U	0.46	5.0	
5.0	U	0.33	5.0	
5.0	U	0.22	5.0	
%Rec		Accept	ance Limits	
109		53 - 1	25	
79		73 - 1	27	
101		54 - 1	37	
82		63 - 1	21	
	10 5.	Result (ug/L) Qualitier 10 U 5.0 U	Result (ug/L)QualifierMDL10U1.65.0U0.235.0U0.245.0U1.25.0U1.010U1.15.0U0.145.0U0.295.0U0.215.0U0.275.0U0.215.0U0.215.0U0.235.0U0.245.0U0.235.0U0.235.0U0.255.0U0.255.0U0.285.0U0.285.0U0.285.0U0.235.0U0.372.7J0.2610U0.372.7J0.2610U0.335.0U0.235.0U0.235.0U0.305.0U0.305.0U0.335.0U0.335.0U0.335.0U0.335.0U0.22%%Kec10953 - 17973 - 110154 - 18263 - 1	Result (ug/L)QualifierMDLRL10U1.6105.0U0.235.05.0U1.25.05.0U1.05.010U1.1105.0U0.145.05.0U0.155.05.0U0.295.05.0U0.275.05.0U0.245.05.0U0.245.05.0U0.215.05.0U0.225.05.0U0.235.05.0U0.235.05.0U0.285.05.0U0.285.05.0U0.285.05.0U0.235.05.0U0.235.05.0U0.235.05.0U0.235.05.0U0.235.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0U0.335.05.0 </td

Client: GEI Consultants, Inc.

.

.

Job Number: 220-3438-1 Sdg Number: 220-3438

General Chemistry					
Client Sample ID:	EHS-FB-01				
Lab Sample ID: Client Matrix:	220-3438-1FB Water			Date Sampled: Date Received:	11/19/2007 0945 11/20/2007 1910
Analyte	Result	Qual Units	MDL	RL	Dil Method
Sulfate	1.0 Anly Batch: 220-11388	U mg/L Date Analyzed 11/22	0.0086 /2007 0948	1.0	1.0 300.0
Sulfide	1.0 Anly Batch: 220-11321	U mg/L Date Analyzed 11/21	0.22 /2007 1243	1.0	1.0 376.1
Client Sample ID:	EHS-FB-02				
Lab Sample ID: Client Matrix:	220-3438-2FB Water			Date Sampled: Date Received:	11/19/2007 1045 11/20/2007 1910
Analyte	Result	Qual Units	MDL	RL	Dil Method
Sulfate	1.0 Anly Batch: 220-11388	U mg/L Date Analyzed 11/22	0.0086 2/2007 1002	1.0	1.0 300.0
Sulfide	1.0 Anly Batch: 220-11321	U mg/L Date Analyzed 11/21	0.22 /2007 1243	1.0	1.0 376.1

18108 Jun 8

([18/08

DB

Client: GEI Consultants, Inc.

Job Number: 220-3509-1 Sdg Number: 220-3509

Client Sample ID:	EHS-GW-01		0		
Lab Sample ID: Client Matrix:	220-3509-1 Water	Date Sampled: Date Received:	11/29/2007 1 11/30/2007 1	100 1855	
8260B Volatile Organic Compounds by GC/MS					

		• • • •				
Method:	8260B	Analysis Batch: 220-11611	Instrument ID:	HP 5890	/5971 GC/N	ИS
Preparation:	5030B		Lab File ID:	L2681.D		
Dilution:	1.0		Initial Weight/Vol	ume:	5 mL	
Date Analyzed:	12/04/2007 1129		Final Weight/Vol	ume:	5 mL	
Date Prepared:	12/04/2007 1129					

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acetone	10	U	1.6	10	GUBCA.
Benzene	5.0	U	0.23	5.0	
Bromodichloromethane	5.0	U	0.24	5.0	
Bromoform	5.0	U	1.2	5.0	
Bromomethane	5.0	U	1.0	5.0	
Methyl Ethyl Ketone	10	U	1.1	10	
Carbon disulfide	5.0	U	0.14	5.0	
Carbon tetrachloride	5.0	U	0.29	5.0	
Chlorobenzene	5.0	U	0.15	5.0	
Chloroethane	5.0	U	0.48	5.0	
Chloroform	5.0	U	0.27	5.0	
Chloromethane	5.0	U	0.24	5.0	
Dibromochloromethane	5.0	U	0.21	5.0	
1,1-Dichloroethane	5.0	U	0.23	5.0	
1,2-Dichloroethane	5.0	U	0.25	5.0	
1,1-Dichloroethene	5.0	U	0.25	5.0	
1,2-Dichloropropane	5.0	U	0.32	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0	U	0.28	5.0	
Ethylbenzene	5.0	U	0.28	5.0	
2-Hexanone	10	U	0.37	10	
Methylene Chloride	5.0	U	0.26	5.0	
methyl isobutyl ketone	10	U	0.38	10	
Styrene	5.0	U	0.70	5.0	
1,1,2,2-Tetrachloroethane	5.0	U	0.23	5.0	
Tetrachloroethene	5.0	U	0.30	5.0	
Toluene	5.0	.U	0.090	5.0	
1,1,1-Trichloroethane	5.0	U	0.38	5.0	
1,1,2-Trichloroethane	5.0	U	0.33	5.0	
Trichloroethene	5.0	U	0.26	5.0	
Vinyl chloride	5.0	U	0.30	5.0	
Xylenes, Total	5.0	U	0.46	5.0	
cis-1,2-Dichloroethene	5.0	U	0.33	5.0	
trans-1,2-Dichloroethene	5.0	U	0.22	5.0	
Surrogate	%Rec		Accept	ance Limits	
1,2-Dichloroethane-d4 (Surr)	68		53 - 1	25	200000
4-Bromofluorobenzene	93		73 - 1	27	
Dibromofluoromethane	72		54 - 1	37	
Toluene-d8 (Surr)	76		63 - 1	21	

DB 111810**8**

Client: GEI Consultants, Inc.

Job Number: 220-3509-1 Sdg Number: 220-3509

21700 Samiyalatila Compayinda by Cao Chramatagraphy/Mago Spectrometry (CC/MS)						
Client Matrix:	Water	Date Received:	11/30/2007 1855			
Lab Sample ID:	220-3509-1	Date Sampled:	11/29/2007 1100			
Client Sample ID:	EHS-GW-01		C			

Analysis Batch: 220-11648 HP 6890/5975 Method: 8270C Instrument ID: 3510C Prep Batch: 220-11633 Preparation: Lab File ID: A7876.D Dilution: 1.0 Initial Weight/Volume: 960 mL Date Analyzed: 12/06/2007 2122 Final Weight/Volume: 1 mL Date Prepared: 12/05/2007 1420 Injection Volume: 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acenaphthene	. 10	U	0.36	10	
Acenaphthylene	10	U	0.36	10	
Anthracene	10	U	0.34	10	
Benzo[a]anthracene	10	U	0.46	10	
Benzo[a]pyrene	10	U	0.33	10	
Benzo[b]fluoranthene	10	. U	0.47	10	
Benzo[g,h,i]perylene	10	U	0.42	10	
Benzo[k]fluoranthene	10	Ų	0.31	10	
Bis(2-chloroethoxy)methane	10	U	0.53	10	
Bis(2-chloroethyl)ether	10	U	2.1	10	
Bis(2-ethylhexyl) phthalate	10	U	1.8	10	
Butyl benzyl phthalate	10	U	0.45	10	
Carbazole	10	U	0.63	10	
Chrvsene	10	U	0.41	10	
Di-n-butyl phthalate	10	Ū	2.0	10	
Di-n-octyl phthalate	10	Ŭ	0.36	10	
4-Bromophenyl phenyl ether	10	Ŭ	0.27	10	
4-Chloroaniline	10	Ŭ	0.32	10	
2-Chloronaphthalene	10	Ŭ	0.48	10	
4-Chlorophenyl phenyl ether	10	Ŭ	0.50	10	
Dihenz(a h)anthracene	10	Ŭ	0.40	10	
Dibenzofuran	10	Ŭ	0.48	10	
Diethyl ohthalate	10	Ŭ	0.39	10	
Dimethyl phthalate	10	Ŭ	0.31	10	
1 2-Dichlorobenzene	10	ŭ	0.45	10	
1.3-Dichlorobenzene	10	Ŭ	0.51	10	
1 4-Dichlorobenzene	10	Ŭ	0.39	10	
3 3'-Dichlorobenzidine	10	ũ	0.63	10	
2 4-Dinitrotoluene	10	Ü.	0.50	10	
2.6-Dinitrotoluene	10	Ŭ	0.50	10	
Eluoranthene	10	Ŭ	0.53	10	
Fluorene	10	Ŭ	0.36	10	
Hexachlorobenzene	10	Ŭ	0.00	10	
Hexachlorobutadiene	10	U U	0.00	10	
Hexachlorocyclopentadiene	10	Ü	13	10	
Hexachloroethane	10	U U	0.67	10	
Indeno[1.2.3-cd]ovrene	10	Ŭ	0.53	10	
Isophorone	10	0	0.55	10	
2-Methylpaphthalene	10	11	0.50	10	
Nanhthalene	10	Ц	0.48	10	
2-Nitroaniline	52	Ц	0.40	52	
3-Nitroaniline	52	Ц	0.47	52	
Nitrohenzene	10	U	0.42	JZ 10	
N-Nitrosodi-n-propylamine	10	U	0.02	10	
n-narosodi-n-propylanine	10	U	0.01	NB 10	
TestAmerica Connecticut	Page 11 of 7	66	Enm 19108	118/08	12/28/2007

Client: GEI Consultants, Inc.

Ì

Job Number: 220-3509-1 Sdg Number: 220-3509

Client Sample ID:	EHS-GW-01		Ũ			
Lab Sample ID:	220-3509-1	Date Sampled:	11/29/2007	1100		
Client Matrix:	Water	Date Received:	11/30/2007	1855		
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)						

Method: 8270C Analysis Batch: 220-11648 Instrument ID: HP 6890/5975 Preparation: 3510C A7876.D Prep Batch: 220-11633 Lab File ID: Dilution: 1.0 Initial Weight/Volume: 960 mL Date Analyzed: 12/06/2007 2122 Final Weight/Volume: 1 mL Date Prepared: 12/05/2007 1420 Injection Volume: 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
N-Nitrosodiphenylamine	10	U	0.43	10	
Phenanthrene	10	U	0.30	10	
Pyrene	10	U	0.42	10	
1,2,4-Trichlorobenzene	10	U	0.49	10	
4-Chloro-3-methylphenol	10	U	0.45	10	
2-Chlorophenol	10	U	0.48	10	
2-Methylphenol	10	U	0.52	10	
4-Methylphenol	10	U	0.41	10	
2,4-Dichlorophenol	10	U	0.31	10	
2,4-Dimethylphenol	10	U	0.66	10	
2,4-Dinitrophenol	52	U	1.7	52	
4,6-Dinitro-2-methylphenol	52	U	3.4	52	
2-Nitrophenol	10	U	0.52	10	
4-Nitrophenol	52	U	1.3	52	
Pentachlorophenol	52	U	4.3	52	
Phenol	10	U	0.89	10	
2,4,5-Trichlorophenol	52	U	0.34	52	
2,4,6-Trichlorophenol	10	U	0.43	10	
Benzyl alcohol	10	U	0.88	10	
4-Nitroaniline	21	U	0.52	21	
2,2'-oxybis[1-chloropropane]	10	U	0.56	10	
Surrogate	%Rec		Accep	tance Limits	
2-Fluorobiphenyl	69		43 -	116	
2-Fluorophenol	41		21 - 9	97	
2,4,6-Tribromophenol	88		29 - 1	126	
Nitrobenzene-d5	64		38 - 1	113	
Phenol-d5	29		18 - 1	97	

Enr 1/9/09.

08 12/28/2007

10 - 119

Terphenyl-d14

89

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GW-01

Job Number: 220-3509-1 Sdg Number: 220-3509

Lab Sample ID:	220-3509-1	Date Sampled:	11/29/2007	1100
Client Matrix:	Water	Date Received:	11/30/2007	1855
	6010B Inductively Coupled Plasma - Atomic Emission	Spectrometry		

Method:	6010B	Analysis Batch: 220-11696	Instrument ID:	TJA Trace ICAP
Preparation:	3010A	Prep Batch: 220-11543	Lab File ID:	W120707
Dilution:	1.0		Initial Weight/Volume:	50 mL
Date Analyzed:	12/07/2007 1526		Final Weight/Volume:	50 mL
Date Prepared:	12/04/2007 0847			

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Silver	5.0	U	1.3	5.0	
Aluminum	37900		84	500	
Arsenic	71		5.4	25	
Barium	330	,	2.3	5.0	
Beryllium	2.5	J 🗸	0.60	5.0	
Calcium	11800		130	300	
Cadmium	10	U	1.1	10	
Cobalt	25 J 🖌		2.1	10	
Chromium	300		1.9	10	
Copper	150		3.9	10	
Iron	128000		51	200	
Potassium	5100		130	400	
Magnesium	7600		55	100	
Manganese	3300		5.2	15	
Sodium	21400		350	400	
Nickeł	57		1.9	10	
Lead	62		4.9	10	
Antimony	50	U	6.0	50	
Selenium	30	U,	9.8	30	
Thallium	12	ゴー	8.1	40	
Vanadium	110		1.0	5.0	
Zinc	520		12	50	

7470A Mercury in Liquid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 12/11/2007 2013 12/11/2007 1749	Analysis Batch: 220-11772 Prep Batch: 220-11768	Instrument Lab File ID Initial Weig Final Weig	: ID: I): I ht/Volume: 2 ht/Volum e:	Perkin Elmer FIMS N/A 25 mL 50 mL
Analyte Mercury		Result (ug/L)	Qualifier	MDL	RL

,1310°

VB 1/18/08

Client: GEI Consultants, Inc.

2

Job Number: 220-3509-1 Sdg Number: 220-3509

Client Sample ID:	EHS-GW-01				
Lab Sample ID:	220-3509-1		Date Sampled:	11/29/2007 1100	
Client Matrix:	Water		Date Received:	11/30/2007 1855	
		· · · · · · · · ·	<u>.</u>		1

	8081A	Organochlorine Pesticides by Ga	s Chroma	atography		
Method: Preparation:	8081A 3510C	Analysis Batch: 220-11856 Preo Batch: 220-11600		Instrument ID: Lab File ID:	HP 5890 D751603) with dual ECD 37.D
Dilution:	1.0			Initial Weight/Volu	ime:	1000 mL
Date Analyzed	12/13/2007 1941			Final Weight/Volu	me.	10 ml
Date Prenared:	12/05/2007 1200			Injection Volume:		1 ul
Date riepared.	12/03/2007 1200			Column ID:		
Analyte		Result (ug/L)	Qualifie	r MDL		RL
4,4'-DDD		0.15	U	0.014		0.15
4,4'-DDE		0.10	U	0.0088		0.10
4,4'-DDT		0.10	U	0.010		0.10
Aldrin		0.050	U	0.0058		0.050
alpha-BHC		0.050	IJ	0.011		0.050
beta-BHC		0.050	U	0.013		0.050
delta-BHC		0.050	U	0.0022		0.050
Dieldrin		0.10	U	0.0057		0.10
Endosulfan I		0.050	U	0.0035		0.050
Endosulfan II		0.10	U	0.0035		0.10
Endosulfan sulfate	•	0.10	U	0.014		0.10
Endrin		0.10	U	0.025		0.10
Endrin aldehyde		0.10	u∽ y	り 0.028		0.10
Endrin ketone		0.10	UJV	0.016		0.10
gamma-BHC (Lind	lane)	0.050	U,	/ 0.0052		0.050
Heptachlor		0.050	UJ (0.0078		0.050
Heptachlor epoxid	е	0.050	U	0.0057		0.050
Methoxychlor		0.50	U	0.041		0.50
Toxaphene		2.5	U	0.21		2.5
alpha-Chlordane		0.050	U	0.0055		0.050
gamma-Chlordane	•	0.050	U	0.0061		0.050
Surrogate		%Rec		Acc	eptance l	_imits
DCB Decachlorob	iphenyl	43		29	- 156	
Tetrachloro-m-xyle	ene	84		53	- 144	
Method:	8081A	Analysis Batch: 220-11856		Instrument ID:	HP 5890) with dual ECD
Preparation:	3510C	Prep Batch: 220-11600		Lab File ID:	C751603	37.D
Dilution:	1.0			Initial Weight/Volu	ıme:	1000 mL
Date Analyzed:	12/13/2007 1941			Final Weight/Volu	me.	10 ml
Date Prenared:	12/05/2007 1200			Injection Volume:		1 11
Balo i Toparoa.	12,00,2001 1200			Column ID:	SECO	NDARY
Surroanto		9/ Doo		A		imite
		%KeC		ACO	eptance L	_1111115
	ipnenyi	38		29	- 156	
i etracnioro-m-xyle	ene	83		53	- 144	

DB 1/18/08

Page 13 of 766

12/28/2007

01.11/08

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GW-01

Job Number: 220-3509-1 Sdg Number: 220-3509

			11/30/2007 1855
Client Matrix:	Water	Date Received:	11/30/2007 1855
Lab Sample ID:	220-3509-1	Date Sampled:	11/29/2007 1100
-			

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3510C 1.0 12/06/2007 2302 12/05/2007 1200	Analysis Batch: 220-11660 Prep Batch: 220-11600	Insti Lab Initia Fina Injec Colu	rument ID: File ID: al Weight/Vo Il Weight/Vol ction Volume umn ID:	HP 589 D4664 lume: ume: : PRIM	90 with dual ECD 165.d 1000 mL 10 mL 1 uL ARY
Analyte		Result (ug/L)	Qualifier	MDL		RL.
PCB-1016		0.50	U	0.072		0.50
PCB-1221		1.0	U	0.23		1.0
PCB-1232		0.50	U	0.11		0.50
PCB-1242		0.50	U	0.11		0.50
PCB-1248		0.50	U	0.15		0.50
PCB-1254		0.50	U	0.037		0.50
PCB-1260		0.50	U	0.064		0.50
Surrogate		%Rec		Ace	ceptance	Limits
Tetrachloro-m-xylene		79		5	3 - 144	******
DCB Decachlorobi	phenyl	44		2	9 - 156	

TestAmerica Connecticut

Client Sample ID: EHS-GW-01

GC Semivolatiles

Lot-Sample #: A7L050368-001	Work Order #:	KDH4W1AA	Matrix	« WG
Date Sampled: 11/29/07 11:00	Date Received:	12/05/07		
Prep Date: 12/06/07	Analysis Date:	12/07/07		
Prep Batch #: 7340041	_	· .		
Dilution Factor: 1	Initial Wgt/Vol:	500 mL	Final	Wqt/Vol: 100 mL
	Method:	SW846 8151	A	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2,4,5-T	ND	1.0	ug/L	0.17
2,4-D	ND	4.0	ug/L	1.5
2,4,5-TP	ND	1.0	ug/L	0.16
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2,4-Dichlorophenylacetic acid	71	(32 - 112)		

Enn 108 1/18/08
Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-02		5		
Lab Sample ID:	220-3539-1	Date Sampled:	12/03/2007 1125		
Client Matrix:	Water	Date Received:	12/04/2007 1600		
8260B Volatile Organic Compounds by GC/MS					

Method: 8260B Analysis Batch: 220-11665 Instrument ID: HP 6890/5973 GC/MS 5030B Preparation: Lab File ID: W3041.D Dilution: 1.0 Initial Weight/Volume: 5 mL Date Analyzed: 12/06/2007 1544 Final Weight/Volume: 5 mL Date Prepared: 12/06/2007 1544

Analyte ,	Result (ug/L)	Qualifier	MDL	RL	
Acetone	10	U	1.6	10	
Benzene	2.8	N -	0.23	5.0	
Bromodichloromethane	5.0	U	0.24	5.0	
Bromoform	5.0	U	1.2	5.0	
Bromomethane	5.0	U	1.0	5.0	
Methyl Ethyl Ketone	10	υ	1.1	10	
Carbon disulfide	5.0	معم ^{ما س} ر ل	0.14	5.0	
Carbon tetrachloride	5.0	U	0.29	5.0	
Chlorobenzene	5.0	U	0.15	5.0	
Chloroethane	5.0	U	0.48	5.0	
Chloroform	5.0	U	0.27	5.0	
Chloromethane	5.0	U	0.24	5.0	
Dibromochloromethane	5.0	U	0.21	5.0	
1,1-Dichloroethane	5.0	U	0.23	5.0	
1,2-Dichloroethane	5.0	U	0.25	5.0	
1,1-Dichloroethene	5.0	U	0.25	5.0	
1,2-Dichloropropane	5.0	U	0.32	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0	U 🖌	0.28	5.0	
Ethylbenzene	5.0	U UJ 🗸	0.28	5.0	
2-Hexanone	10	U	0.37	10	
Methylene Chloride	5.0	U	0.26	5.0	
methyl isobutyl ketone	10	U .	0.38	10	
Styrene	5.0	UUJ	0.70	5.0	
1,1,2,2-Tetrachloroethane	5.0	U	0.23	5.0	
Tetrachloroethene	5.0	U 🖊	0.30	5.0	
Toluene	0.23	リエレ	0.090	5.0	
1,1,1-Trichloroethane	5.0	U	0.38	5.0	
1,1,2-Trichloroethane	5.0	U	0.33	5.0	
Trichloroethene	5.0	U	0.26	5.0	
Vinyl chloride	5.0	U	0.30	5.0	
Xylenes, Total	5.0	U	0.46	5.0	
cis-1,2-Dichloroethene	5.0	U	0.33	5.0	
trans-1,2-Dichloroethene	5.0	U	0.22	5.0	
Surrogate	%Rec		Accept	ance Limits	
1,2-Dichloroethane-d4 (Surr)	111		53 - 1	25	*****
4-Bromofluorobenzene	81		73 - 1	27	
Dibromofluoromethane	102		54 - 1	37	
Toluene-d8 (Surr)	83		63 - 1	21	

ØB 1/18/08

EUN 1/7/08

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client	Sample	ID:	EHS-GW-02

Client Matrix:	Water	Date Received:	12/04/2007 160
Lab Sample ID:	220-3539-1	Date Sampled:	12/03/2007 112

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:	8270C 3510C	Analysis Batch: 220-11829 Prep Batch: 220-11706	Instrument ID: HP 68 Lab File ID: C4073	90/5975 .D
Dilution:	1.0		Initial Weight/Volume:	1000 mL
Date Analyzed:	12/12/2007 2151		Final Weight/Volume:	1.0 mL
Date Prepared:	12/10/2007 1530		Injection Volume:	1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acenaphthene	. 10	U	0.35	10
Acenaphthylene	10	U	0.35	10
Anthracene	10	U	0.32	10
Benzo[a]anthracene	10	U	0.44	10
Benzo[a]pyrene	10	U	0.32	10
Benzo[b]fluoranthene	10	U	0.45	10
Benzo[g,h,i]perylene	10	U	0.40	10
Benzo[k]fluoranthene	10	U	0.29	10
Bis(2-chloroethoxy)methane	10	υ,,	0.51	10
Bis(2-chloroethyl)ether	10	U/ /	2.0	10
Bis(2-ethylhexyl) phthalate	10	U	1.7	10
Butyl benzyl phthalate	10	U	0.43	10 · ·
Carbazole	10	U	0.61	10
Chrysene	10	U	0.40	10
Di-n-butyl phthalate	10	U	1.9	10
Di-n-octyl phthalate	10	U	0.35	10
4-Bromophenyl phenyl ether	10	U	0.26	10
4-Chloroaniline	10	U	0.31	10
2-Chloronaphthalene	10	U	0.46	10
4-Chlorophenyl phenyl ether	10	U	0.48	10
Dibenz(a,h)anthracene	10	U	0.39	10
Dibenzofuran	10	U	0.46	10
Diethyl phthalate	10	U	0.37	10
Dimethyl phthalate	10	U	0.29	10
1,2-Dichlorobenzene	10	U	0.43	10
1,3-Dichlorobenzene	10	Ŭ	0.49	10
1,4-Dichlorobenzene	10	U	0.38	10
3,3'-Dichlorobenzidine	10	Ŭ	0.60	10
2,4-Dinitrotoluene	10	U	0.48	10
2,6-Dinitrotoluene	10	U	0.49	10
Fluoranthene	10	U	0.51	10
Fluorene	10	U	0.35	10
Hexachlorobenzene	10	U	0.35	10
Hexachlorobutadiene	10	Ū	0.74	10
Hexachlorocyclopentadiene	10	Ū	1.3	10
Hexachloroethane	10	U	0.64	10
Indeno[1,2,3-cd]pyrene	10	U	0.51	10
Isophorone	10	Ū	0.54	10
2-Methvinaphthalene	10	Ŭ	0.49	10
Naphthalene	10	Ū	0.47	10
2-Nitroaniline	50	Ŭ	0.45	50
3-Nitroaniline	50	Ū	0.41	50
Nitrobenzene	10	Ū	0.50	10
N-Nitrosodi-n-propylamine	10	Ū	0.59	10
TestAmerica Connecticut	Page 14 of 9	22 DB	Enry 1/8/08	12/28/2007

DB 1118/08

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-02				
Lab Sample ID:	220-3539-1	Date Sampled: 12/03/2007 112	5		
Client Matrix:	Water	Date Received: 12/04/2007 160	0		
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)					

Method:	8270C	Analysis Batch: 220-11829	Instrument ID:	HP 6890/5975
Preparation:	3510C	Prep Batch: 220-11706	Lab File ID:	C4073.D
Dilution:	1.0		Initial Weight/Volu	ume: 1000 mL
Date Analyzed:	12/12/2007 2151		Final Weight/Volu	ime: 1.0 mL
Date Prepared:	12/10/2007 1530		Injection Volume:	1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL.
N-Nitrosodiphenylamine	10	U	0.41	10
Phenanthrene	10	U	0.28	10
Pyrene	10	U	0.40	10
1,2,4-Trichlorobenzene	10	U	0.47	10
4-Chloro-3-methylphenol	10	ປ	0.43	10
2-Chiorophenol	10	U	0.46	10
2-Methylphenol	10	U	0.50	10
4-Methylphenol	10	U	0.39	10
2,4-Dichlorophenol	10	U	0.30	10
2,4-Dimethylphenol	10	U	0.63	10
2,4-Dinitrophenol	50	U	1.7	50
4,6-Dinitro-2-methylphenol	50	U	3.3	50
2-Nitrophenol	10	U	0.50	10
4-Nitrophenol	50	U	1.3	50
Pentachlorophenol	50	U	4.1	50
Phenol	10	U	0.85	10
2,4,5-Trichlorophenol	50	U	0.33	50
2,4,6-Trichlorophenol	10	U	0.42	10
Benzyl alcohol	10	U	0.84	10
4-Nitroaniline	20	U	0.50	20
2,2'-oxybis[1-chloropropane]	10	U	0.54	10
Surrogate	%Rec		Acceptance	Limits
2-Fluorobiphenyl	78		43 - 116	
2-Fluorophenol	50		21 - 97	
2,4,6-Tribromophenol	93		29 - 126	
Nitrobenzene-d5	79		38 - 113	
Phenol-d5	32		18 - 97	

103

ļ

Terphenyl-d14

10 - 119

ъß

1/18/08

12/28/2007

Job Number: 220-3539-1 Sdg Number: 220-3539

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GW-02

Lab Sample ID:	220-3539-1	Date Sampled:	12/03/2007	1125			
Client Matrix:	Water	Date Received:	12/04/2007	1600			
	6010B Inductively Coupled Plasma - Atomic Emission Spectrometry						

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3010A 1.0 12/10/2007 1629 12/06/2007 1004	Analysis Batch: 220-11721 Prep Batch: 220-11621	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	TJA Trace ICAP W121007 50 mL 50 mL
--	---	--	--	---

Analyte	Result (ug/L)	Qualifier	MDL	RL.	
Silver	6	U /	1.3	5.0	
Aluminum	160	J ~	84	500	
Arsenic	25	U	5.4	25	
Barium	58 J 🖊		2.3	5.0	
Bervllium	5.0	υ	0.60	5.0	
Calcium	15300		130	300	
Cadmium	10	U	1.1	10	
Cobalt	10	U,	2.1	10	
Chromium	8.7	エイ	1.9	10	
Copper	10	U	3.9	10	
Iron	410 .		51	200	
Potassium	1400 J		130	400	
Magnesium	3600 J		55	100	
Manganese	520		5.2	15	
Sodium	22800	/	350	400	
Nickel	9.5	ゴイ	1.9	10	
Lead	10	U	4.9	10	
Antimony	50	U	6.0	50	
Selenium	30	U	9.8	30	
Thallium	40	U	8.1	40	
Vapadium	5.0	U,	1.0	5.0	
Ziac	19	J 🗸	12	50	

7470A Mercury in Liquid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 12/15/2007 1837 12/15/2007 1554	Analysis Batch: 220-11902 Prep Batch: 220-11900	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	Perkin Elmer FIMS N/A 25 mL 50 mL
--	---	--	--	--

Analyte	Result (ug/L)	Qualifier	MDL	RL	/
Mercury	- 0.20 0.40	U	0.10 0.20	- 0.20 0.40	

TestAmerica Connecticut

γß 1/18/08

Jar 1/3/08

12/28/2007

Client: GEI Consultants, Inc.

ļ

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-02		
Lab Sample ID: Client Matrix:	220-3539-1 Water	Date Sampled: Date Received:	12/03/2007 1125 12/04/2007 1600

	8081A Or	ganochlorine Pesticides by Gas	s Chroma	atography		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 12/15/2007 2100 12/10/2007 2241	Analysis Batch: 220-11916 Prep Batch: 220-11710		Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volu Injection Volume Column ID:	HP 5890 wi C7518020. ume: 10 ume: 10 : 1 PRIMARY	th dual ECD D 00 mL → mL uL
Analyte		Result (ug/L)	Qualifie	er MDL	RI	_
	and the second secon	0.030 J	৮ M-	0.014	0.	15
4,4-000 4.4'-00E		0.10	U,	, 0.0088	0.	10
4,4-00L 4 4'-00T		0.10	UTV	0.010	0.	10
Aldrin		0.050	ບີ	0.0058	0.	050
aloba_BHC		0.050	U	0.011	0.	050
heta-BHC		0.050	U	0.013	0.	050
delta-BHC		0.050	U	0.0022	0.	050
Dieldrin		0.012 J		0.0057	0.	10
Endosulfan I		0.050	U	0.0035	0.	050
Endosulfan II		0.10	U	0.0035	0.	10
Endosulfan sulfat	e	0.10	U	0.014	0.	10
Endrin	-	0.10	U,	0.025	0.	10
Endrin aldehvde		0.10	່ມປີ	0.028	0.	10
Endrin ketone		0.10	U	0.016	0.	10
oamma-BHC (Lin	darie)	0.050	U	0.0052	0.	050
Heptachlor	,	0.050	ប	0.0078	0.	050
Heptachlor epoxic	de	0.050	U	0.0057	0.	050
Methoxychlor		0.50	U	0.041	0.	50
Toxaphene		2.5	U	0.21	2.	5
alpha-Chlordane		0.050	U	0.0055	0.	050
gamma-Chlordan	е	0.050	U	0.0061	0.	050
Surrogate		%Rec		Ac	ceptance Lin	nits
DCB Decachlorobiphenyl		57		2	9 - 156	
Tetrachloro-m-xylene		93		5	3 - 144	
Method:	8081A	Analysis Batch: 220-11916		Instrument ID:	HP 5890 w	rith dual ECD
Prenaration:	35100	Prep Batch: 220-11710		Lab File ID:	C7518020	.D
Dilution:	10			Initial Weight/Vo	lume: 1	000 mL
Data Apolyand	10/15/2007 2100			Final Weight/Vol	ume 1) ml
Date Analyzeu.	12/13/2007 2100			Injection Volume	- 1	<u>.</u>
Date Prepared:	12/10/2007 2241			Column ID:		
				Column 12.	OLOONL	// W N I

Surrogate	%Rec	Acceptance Limits
DCB Decachlorobiphenyl	52	29 - 156
Tetrachloro-m-xylene	95	53 - 144

Page 22 of 922

1/18/08

Øß

Jon 1/2/08

Job Number: 220-3539-1 Client: GEI Consultants, Inc. Sdg Number: 220-3539 EHS-GW-02 Client Sample ID: 12/03/2007 1125 Date Sampled: 220-3539-1 Lab Sample ID: 12/04/2007 1600 Date Received: Water **Client Matrix:** 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11915 8082 Method: D4666076.d Lab File ID: Prep Batch: 220-11710 3510C Preparation: Initial Weight/Volume: 1000 mL Dilution: 1.0 Final Weight/Volume: 10 mL 12/14/2007 1854 Date Analyzed: Injection Volume: 1 uL 12/10/2007 2241 Date Prepared: PRIMARY Column ID: Qualifier MDL RL Result (ug/L) Analyte 0.50 0.072 Ų 0.50 PCB-1016 1.0 U 0.23 1.0 PCB-1221 U 0.11 0.50 0.50 PCB-1232 บ 0.11 0.50 0.50 PCB-1242 0.50 υ 0.15 0.50 PCB-1248 υ 0.037 0.50 0.50 PCB-1254 0.064 0.50 0.16 JM J PCB-1260 Acceptance Limits %Rec Surrogate 53 - 144 93 Tetrachloro-m-xylene 29 - 156 55 DCB Decachlorobiphenyl HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11915 8082 Method: D4666076.d Lab File ID: Prep Batch: 220-11710 3510C Preparation: 1000 mL Initial Weight/Volume: Dilution: 1.0 10 mL Final Weight/Volume: 12/14/2007 1854 Date Analyzed: 1 uL Injection Volume: 12/10/2007 2241 Date Prepared: SECONDARY Column ID: Acceptance Limits %Rec Surrogate 53 - 144 87 Tetrachloro-m-xylene 29 - 156 49 DCB Decachlorobiphenyl

0B 1118/08

TestAmerica Connecticut

Client Sample ID: EHS-GW-02

GC Semivolatiles

Lot-Sample #:	A7L060295-001	Work Order #:	KDLMQ1AA	Matrix	« :	WG
Date Sampled:	12/03/07 11:25	Date Received:	12/06/07			
Prep Date:	12/10/07	Analysis Date:	12/11/07			
Prep Batch #:	7344015					
Dilution Factor:	1	Initial Wgt/Vol:	500 mL	Final	Wgt/Vol:	100 mL
		Method:	SW846 8151	A	-	
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4,5-T		ND	1.0	ug/L	0.17	
2,4-D		ND	4.0	ug/L	1.5	
2,4,5-TP		ND	1.0	ug/L	0.16	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichloropheny	lacetic acid	77	(32 - 112)			

Maturia

Duplicate of EHS-GW-02

Job Number: 220-3539-1 Sdg Number: 220-3539

Client: GEI Consultants, Inc. 12/03/2007 1700 EHS-GW-XX-120307 Date Sampled: Client Sample ID: 12/04/2007 1600 Date Received: 220-3539-4 Lab Sample ID: Water Client Matrix: 8260B Volatile Organic Compounds by GC/MS HP 6890/5973 GC/MS Instrument ID: Analysis Batch: 220-11665 W3044.D Lab File ID: 8260B 5 mL Initial Weight/Volume: Method: 5030B mL Preparation: 5 Final Weight/Volume: 1.0 Dilution: 12/06/2007 1704 Date Analyzed: 12/06/2007 1704 Date Prepared: RL MDL Qualifier Result (ug/L) 10 1.6 υ 10 5.0 Analyte 0.23 1 8 5.0 Acetone 0.79 0.24 υ 5.0 5.0 Benzene 1.2 U Bromodichloromethane 5.0 5.0 1.0 U 10 Bromoform 5.0 1.1 U 5.0 Bromomethane υ∕ ∕u 10 0.14 5.0 Methyl Ethyl Ketone 5.0 0.29 υ 5.0 Carbon disulfide 5.0 0.15 υ Carbon tetrachloride 5.0 5.0 0.48 U 5.0 Chlorobenzene 5.0 0.27 U 5.0 Chloroethane 5.0 0.24 U 5.0 Chloroform 5.0 0.21 υ 5.0 Chloromethane 5.0 0.23 ປ Dibromochloromethane 5.0 5.0 0.25 U 1,1-Dichloroethane 5.0 5.0 0.25 U 1,2-Dichloroethane 5.0 5.0 0.32 U 1,1-Dichloroethene 5.0 5.0 0.28 υ 1,2-Dichloropropane 5.0 5.0 0.28 υ cis-1,3-Dichloropropene 5.0 5.0 0.28 trans-1,3-Dichloropropene U 10 5.0 0.37 U 5.0 Ethylbenzene 10 0.26 U 10 5.0 2-Hexanone 0.38 ປ 5.0 Methylene Chloride 10 0,70 ឋ methyl isobutyl ketone 5.05.0 0.23 U 5.0 5.0 Styrene 0.30 1,1,2,2-Tetrachloroethane U 5.0 5.0 0.090 151 5.0 Tetrachloroethene 0.11 0.38 υ 5.0 5.0 Toluene 0.33 υ 1,1,1-Trichloroethane 5.0 5.0 0.26 U 1,1,2-Trichloroethane 5.0 5.0 0.30 U 5.0 5.0 Trichloroethene 0.46 U 5.0 5.0Vinvl chloride 0.33 υ 5.0 Xylenes, Total 5.0 0.22 U cis-1,2-Dichloroethene 5.0 trans-1,2-Dichloroethene Acceptance Limits %Rec 53 - 125 Surrogate 112 73 - 127 1,2-Dichloroethane-d4 (Surr) 80 54 - 137 4-Bromofluorobenzene 105 63 - 121 Dibromofluoromethane 84

Toluene-d8 (Surr)

EUNIOS

12/28/2007

118/08

Duplicate of EHS-GW-BZ

Client: GEI Consultants, Inc.

Client Matrix:

Client Sample ID: EHS-GW-XX-120307 Lab Sample ID: 220-3539-4

Water

Job Number: 220-3539-1 Sdg Number: 220-3539

Date Sampled: 12/03/2007 1700 Date Received: 12/04/2007 1600

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Mothod.	00700	graphing operionery (GC/MS)			
Preparation: Dilution: Date Analyzed: Date Prepared:	8270C 3510C 1.0 12/12/2007 2303 12/10/2007 1530	Analysis Batch: 220-11829 Prep Batch: 220-11706	Instrument ID: HP 68 Lab File ID: C4076 Initial Weight/Volume: Final Weight/Volume: Injection Volume:	90/5975 5.D 1000 mL 1.0 mL 1 uL	

Analyte	Result (ug/L)	Ourlin		
Acenaphthene		Qualifier	MDL	RL
Acenaphthylene	10	U	0.35	10
Anthracene	10	U	0.35	10
Benzo[a]anthracene	10	U	0.32	10
Benzo[a]pyrene	10	U	0.44	10
Benzo[b]fluoranthene	10	Ų	0.32	10
Benzo[g,h,i]perviene	10	U	0.45	10
Benzo kifluoranthene	10	U	0.40	10
Bis(2-chloroethoxy)methane	10	U	0.29	10
Bis(2-chloroethyl)ether	10	υ,,	0.51	10
Bis(2-ethylhexyl) phthalate	10	U# #	2.0	10
Butyl benzyl phthalate	10	U	1.7	10
	10	U	0.43	10
Chrysene	10	U	0.61	10
Di-n-butyl phthalate	10	U	0.40	10
Di-n-octvl obthalate	10	U	1.9	10
4-Bromophenyl phenyl othor	10	U	0.35	10
4-Chloroaniline	10	U	0.26	10
2-Chloronanbthaleno	10	U	0.31	10
4-Chlorophenyl phonyl other	10	U	0.46	10
Dibenz(a b)anthracana	10	U	0.48	10
Dibenzofuran	10	U	0.39	10
Diethyl obthalato	10	U	0.46	10
Dimethyl obtalate	10	U	0.37	10
1 2-Dichlorobonzone	10	U	0.29	10
1.3-Dichlorobenzene	10	U	0.43	10
1.4-Dichlorobenzene	10	U	0.49	10
3.3'-Dichlorobenzidin -	10	U	0.38	10
2 4-Dipitrotoluopo	10	U	0.60	10
2.6 Dipitrotoluone	10	U	0.48	10
Elucrophone	10	U	0 49	10
Fluorano	10	U	0.51	10
	10	U	0.35	10
	10	U	0.35	10
	10	U	0.00	10
Hexachiorocyclopentadiene	10	U	13	10
	10	Ŭ	0.64	10
Indeno[1,2,3-cd]pyrene	10	Ū	0.54	10
2 Mathedra - Luis	10	Ŭ	0.54	10
2-methyinaphthalene	10	ū	0.04	10
	10	Ŭ.	0.45	10
2-Nitroaniline	50	Ŭ	0.47	10
3-Nitroaniline	50	ŭ	0.45	50
Nitrobenzene	10	U U	0.41	50
N-Nitrosodi-n-propylamine	10	Ŭ	0.50	10
TestAmerica Connecticut	Page 20 of 92	2	0.00 	IU .
		~ 0ß	Entilor	12/28/2007
		1/18/08	1/2.	

Duplicate of EHS-GW-02

Client: GEI Consultants, Inc.

EHS-GW-XX-120307

Client Sample ID:

Job Number: 220-3539-1 Sdg Number: 220-3539

Lab Sample ID:	220-3539-4	Date Sampled:	12/03/2007 1700
Client Matrix:	Water	Date Received:	12/04/2007 1600

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-11829	Instrument ID:	HP 6890	/5975
Preparation:	3510C	Prep Batch: 220-11706	Lab File ID:	C4076.D	1
Dilution:	1.0		Initial Weight/Vol	ume:	1000 mL
Date Analyzed:	12/12/2007 2303		Final Weight/Volu	ume:	1.0 mL
Date Prepared:	12/10/2007 1530		Injection Volume:	:	1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	•
N-Nitrosodiphenylamine	10	U	0.41	10	
Phenanthrene	10	U	0.28	10	
Pyrene	10	บ	0.40	10	
1,2,4-Trichlorobenzene	10	U	0.47	10	
4-Chloro-3-methylphenol	10	U	0.43	10	
2-Chlorophenol	10	U	0.46	10	
2-Methylphenol	10	U	0.50	10	
4-Methylphenol	10	U	0.39	10	
2,4-Dichlorophenol	10	U	0.30	10	
2,4-Dimethylphenol	10	U	0.63	10	
2,4-Dinitrophenol	50	U	1.7	50	
4,6-Dinitro-2-methylphenol	50	U	3.3	50	
2-Nitrophenol	10	U	0.50	10	
4-Nitrophenol	50	U	1.3	50	
Pentachlorophenol	50	U	4.1	50	
Phenol	10	U	0.85	10	
2,4,5-Trichlorophenol	50	U	0.33	50	
2,4,6-Trichlorophenol	10	U	0.42	10	
Benzyl alcohol	10	U	0.84	10	
4-Nitroaniline	20	ិ	0.50	20	
2,2'-oxybis[1-chloropropane]	10	U	0.54	10	
Surrogate	%Rec		Accep	tance Limits	÷
2-Fluorobiphenyl	87		43 - 1	116	onenen annan anna anna anna anna anna an
2-Fluorophenol	52		21 - 9	97	
2,4,6-Tribromophenol	103		29 - 1	126	
Nitrobenzene-d5	85		38 - 1	113	
Phenol-d5	35		18 - 9	97	
Terphenyl-d14	120	*	10 - ⁻	119	

Duplicate of EHS-GW-02

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GW-XX-120307

Job Number: 220-3539-1 Sdg Number: 220-3539

Lab Sample ID:	220-3539-4	Date Sampled:	12/03/2007	1700
Client Matrix:	Water	Date Received:	12/04/2007	1600
				_

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3010A 1.0 12/10/2007 1657 12/06/2007 1004	Analysis Batch: 220-11721 Prep Batch: 220-11621	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	TJA Trace ICAP W121007 50 mL 50 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Silver	5.0	U	1.3	5.0	
Aluminum	200	J /	84	500	
Arsenic	25	U	5.4	25	
Barium	60 J 🖌		2.3	5.0	
Beryllium	5.0	U	0.60	5.0	
Calcium	15700		130	300	
Cadmium	10	U	1.1	10	
Cobalt	10	U	2.1	10	
Chromium	11		1.9	10	
Copper	10	U	3.9	10	
lron	530		51	200	
Potassium	1400 5		130	400	
Magnesium	3600 J 🖌		55	100	
Manganese	540		5.2	15	
Sodium	23800		350	400	
Nickel	13		1.9	10	
Lead	10	U	4.9	10	
Antimony	50	ບ	6.0	50	
Selenium	30	U	9.8	30	
Thallium	40	U	8.1	40	
Vanadium	5.0	U /	1.0	5.0	
Zinc	22	2 /	12	50	

7470A Mercury in Liquid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed:	7470A 7470A 1.0 12/15/2007 1842	Analysis Batch: 220-11902 Prep Batch: 220-11900	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	Perkin Elmer FIMS N/A 25 mL 50 mL
Date Prepared:	12/15/2007 1554			
Analyte		Result (ug/L)	Qualifier MDL	, RL
Mercury		୫.20 ୦,40 ୀ	U 0.10 0,20	- 0.20 0. 40

Duplicate of EHS-GW-02

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

		VV 400007				oug Number. 220 0000
Client Sample ID:	EHS-GW-	XX-120307			Dete Orientada	40/00/0007 4700
Lab Sample ID:	220-3539-	4			Date Sampled:	12/03/2007 1700
Client Matrix:	Water					
		8081A Orga	nochlorine Pesticides by Gas	Chroma	atography	
Mathod-	8081A		Analysis Batch: 220-11916		Instrument ID: H	P 5890 with dual ECD
Bronaration'	35100		Prep Batch: 220-11710		Lab File ID: D	7518023.D
Dilution:	10		-		Initial Weight/Volum	ie: 1000 mL
Data Analyzad	12/15/2007	2204			Final Weight/Volum	e: 10 mL
Date Analyzed.	12/10/2007 2	2201			Injection Volume:	1 uL
Date Prepareo.	12/10/2007 2	2241			Column ID:	PRIMARY
Analyte			Result (ug/L)	Qualifie	er MDL	RL
			0.15	υ	0.014	0.15
4,4'-DDE			0.10	U	0.0088	0.10
4 4'-DDT			0.10	UJ 🗸	0.010	0.10
Aldrin			0.050	U	0.0058	0.050
alpha-BHC			0.050	U	0.011	0.050
beta-BHC			0.050	U	0.013	0.050
delta-BHC			0.050	U	0.0022	0.050
Dieldrin			0.10	U	0.0057	0.10
Endosulfan I			0.050	U	0.0035	0.050
Endosulfan II			0.10	U	0.0035	0.10
Endosulfan sulfate	e		0.10	U	0.014	0.10
Endrin			0.10	U	, 0.025	0.10
Endrin aldehyde			0.10	03 -	0.028	0.10
Endrin ketone			0.10	U	0.016	0.10
gamma-BHC (Lind	dane)		0.050	U	0.0052	0.050
Heptachlor			0.050	U	0.0078	0.050
Heptachlor epoxid	le		0.050	U	0.0057	0.050
Methoxychlor			0.50	U	0.041	0.50
Toxaphene			2.5	U	0.21	2.5
alpha-Chlordane			0.050	U	0.0055	0.050
gamma-Chlordane	e		0.050	U	0.0001	0.050
Surrogate		2. 2. 2. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	%Rec		Acce	otance Limits
DCB Decachlorot	piphenyl		b/ 01		29 - E2	110
Tetrachloro-m-xyl	ene		91		- 55 -	144
Method:	8081A		Analysis Batch: 220-11916		Instrument ID: 1	IP 5890 with dual ECD
Preparation:	3510C		Prep Batch: 220-11710		Lab File ID: 0	C7518023.D
Dilution:	1.0				Initial Weight/Volur	ne: 1000 mL
Date Analyzed:	12/15/2007	2204			Final Weight/Volun	ne: 10 mL
Date Prepared	12/10/2007	2241			Injection Volume:	1 uL
Edic Frephiod.					Column ID:	SECONDARY
Surrogate		and the second	%Rec		Acce	ptance Limits
DCB Decachlorot	biphenyl		60		29 -	- 156
Tetrachloro-m-xyl	lene		92		53 -	- 144

Qβ

1/18/08

12/28/2007

Qu. 11/108

Duplicate of EHS-GW-02

Client: GEI Consultants, Inc.

EHS-GW-XX-120307

Job Number: 220-3539-1 Sdg Number: 220-3539

	8082 Polychlorinated Biphenyls (PCBs) by	y Gas Chromatography	
Lab Sample ID: Client Matrix:	220-3539-4 Water	Date Sampled: Date Received:	12/03/2007 1700 12/04/2007 1600
Client Sample ID:	EHS-GW-XX-120307		

Analysis Batch: 220-11915 Instrument ID: HP 5890 with dual ECD 8082 Method: D4666082.d Prep Batch: 220-11710 Lab File ID: 3510C Preparation: Initial Weight/Volume: 1000 mL 1.0 Dilution: Final Weight/Volume: 10 mL 12/14/2007 2034 Date Analyzed: Injection Volume: 1 uL 12/10/2007 2241 Date Prepared: Column ID: PRIMARY RL Result (ug/L) Qualifier MDL Analyte Ū 0.072 0.50 0.50 PCB-1016 υ 0.23 1.0 1.0 PCB-1221 0.50 U 0.11 0.50PCB-1232 0.50 υ 0.11 0.50 PCB-1242 0.50 υ 0.15 0.50 PCB-1248 0.50 0.037 0.50 υ PCB-1254 0.50 U 0.064 0.50 PCB-1260 Acceptance Limits %Rec Surrogate 53 - 144 81 Tetrachloro-m-xylene 59 29 - 156 DCB Decachlorobiphenyl

DØ 118 -8

Duplicate g EHS-GW-02

TestAmerica Connecticut

Client Sample ID: EHS-GW-XX-120307

GC Semivolatiles

Lot-Sample #:	A7L060295-004	Work Order #:	KDLMX1AA	Matrix	ĸ	WG
Date Sampled:	12/03/07 17:00	Date Received:	12/06/07			
Prep Date:	12/10/07	Analysis Date:	12/11/07			
Prep Batch #:	7344015					
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	500 mL	Final	Wgt/Vol:	100 mL
		Method:	SW846 8151A			
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4,5-T		ND	1.0	ug/L	0.17	
2,4-D		ND	4.0	ug/L	1.5	
2,4,5-TP		ND	1.0	ug/L	0.16	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
2,4-Dichlorophenylacetic acid	76	(32 - 112)

78 1/18(08

Exer 8/03.

Client: GEI Consultants, Inc.

EHS-GW-03

Job Number: 220-3406-1 Sdg Number: 220-3406

Client Sample ID:	EHS-GW-03		-
Lab Sample ID:	220-3406-1	Date Sampled:	11/16/2007 1100
Client Matrix:	Water	Date Received:	11/16/2007 2100

8260B Volatile Organic Compounds by GC/MS

Method: Preparation:	8260B 5030B	Analysis Batch: 220-11235	Instrument ID: Lab File ID:	HP 5890/5971 GC/MS L2380.D
Dilution:	1.0		Initial Weight/Volu	ume: 5 mL
Date Analyzed:	11/19/2007 1627		Final Weight/Volu	ıme: 5 mL
Date Prepared:	11/19/2007 1627			

Result (ug/L)	Qualifier	MDL	RL	
10	U	1.6	10	2004
5.0	U	0.23	5.0	
5.0	U	0.24	5.0	
5.0	U	1.2	5.0	
5.0	U	1.0	5.0	
10	U	1.1	10	
5.0	U	0.14	5.0	
5.0	U	0.29	5.0	
5.0	U	0.15	5.0	
5.0	U	0.48	5.0	
5.0	U	0.27	5.0	
5.0	U	0.24	5.0	
5.0	U	0.21	5.0	
5.0	U	0.23	5.0	
5.0	U	0.25	5.0	
5.0	U	0.25	5.0	
5.0	U	0.32	5.0	
5.0	U	0.28	5.0	
5.0	U	0.28	5.0	
5.0	U	0.28	5.0	
10	U	0.37	10	
5.0	U	0.26	5.0	
10	U	0.38	10	
5.0	U	0.70	5.0	
5.0	U	0.23	5.0	
5.0	U	0.30	5.0	
5.0	U	0.090	5.0	
5.0	υ,,	0.38	5.0	
5.0	U/ V	0.33	5.0	
5.0	U	0.26	5.0	
5.0	U	0.30	5.0	
5.0	U	0.46	5.0	
5.0	U	0.33	5.0	
5.0	U	0.22	5.0	
	Result (ug/L) 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	Result (ug/L) Qualitier 10 U 5.0 U <td< td=""><td>Result (ug/L)QualitierMDL10U1.6$5.0$U0.23$5.0$U0.24$5.0$U1.2$5.0$U1.010U1.1$5.0$U0.14$5.0$U0.29$5.0$U0.15$5.0$U0.27$5.0$U0.21$5.0$U0.23$5.0$U0.25$5.0$U0.25$5.0$U0.28$5.0$U0.28$5.0$U0.28$5.0$U0.28$5.0$U0.28$5.0$U0.28$5.0$U0.28$5.0$U0.28$5.0$U0.33$5.0$U0.30$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33$5.0$U0.33</td><td>Result (ug/L)QualifierMDLRL10U1.610$5.0$U0.235.0$5.0$U0.245.0$5.0$U1.25.0$5.0$U1.110$5.0$U0.145.0$10$U0.145.0$5.0$U0.155.0$5.0$U0.275.0$5.0$U0.245.0$5.0$U0.245.0$5.0$U0.245.0$5.0$U0.235.0$5.0$U0.235.0$5.0$U0.235.0$5.0$U0.235.0$5.0$U0.255.0$5.0$U0.285.0$5.0$U0.285.0$5.0$U0.285.0$5.0$U0.285.0$5.0$U0.235.0$5.0$U0.235.0$5.0$U0.305.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0$5.0$U0.335.0<t< td=""></t<></td></td<>	Result (ug/L)QualitierMDL10U1.6 5.0 U0.23 5.0 U0.24 5.0 U1.2 5.0 U1.010U1.1 5.0 U0.14 5.0 U0.29 5.0 U0.15 5.0 U0.27 5.0 U0.21 5.0 U0.23 5.0 U0.25 5.0 U0.25 5.0 U0.28 5.0 U0.33 5.0 U0.30 5.0 U0.33	Result (ug/L)QualifierMDLRL10U1.610 5.0 U0.235.0 5.0 U0.245.0 5.0 U1.25.0 5.0 U1.110 5.0 U0.145.0 10 U0.145.0 5.0 U0.155.0 5.0 U0.275.0 5.0 U0.245.0 5.0 U0.245.0 5.0 U0.245.0 5.0 U0.235.0 5.0 U0.235.0 5.0 U0.235.0 5.0 U0.235.0 5.0 U0.255.0 5.0 U0.285.0 5.0 U0.285.0 5.0 U0.285.0 5.0 U0.285.0 5.0 U0.235.0 5.0 U0.235.0 5.0 U0.305.0 5.0 U0.335.0 <t< td=""></t<>

Surrogate	%Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	109	53 - 125
4-Bromofluorobenzene	104	73 - 127
Dibromofluoromethane	104	54 - 137
Toluene-d8 (Surr)	83	63 - 121

DB

1/18/08

12/13/2007

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Connecticut	Job No.: 220-3406-1
SDG No.: 220-3406	
Client Sample ID: EHS-GW-03	Lab Sample ID: 220-3406-1
Matrix: Water	Lab File ID: C4351.D
Analysis Method: 8270C	Date Received: <u>11/16/2007</u> 21:00
Sample wt/vol: <u>1000 (mL)</u>	Date Extracted: 01/08/2008 16:00
Level: (low/med) Low	Date Analyzed: 01/09/2008 17:43
Con. Extract Vol.: 1 (mL)	Dilution Factor: 1
Injection Volume: 1 (uL)	Extract, Method: 3510C
GPC Cleanup:(Y/N) N	% Moisture:
Analy. Batch No.: 12566	Units: ug/L

CAS No.	Compound Name	Result	Q	RL	MDL
83-32-9	Acenaphthene	-10	-U-H-	R . 10	0.35
208-96-8	Acenaphthylene	10	U -11	R 10	0.35
120-12-7	Anthracene		U II -	K 10	0.32
56-55-3	Benzo[a]anthracene	10		10	0.44
50-32-8	Benzo[a]pyrene	- 10-	UН	2 10	0,32
205-99-2	Benzo[b]fluoranthene	1-0	U-H-	10	0.45
191-24-2	Benzo[g,h,i]perylene	10	U H.	L 10	0.40
207-08-9	Benzo[k]fluoranthene	10-	-U-II-	L 10	0.29
111-91-1	Bis(2-chloroethoxy)methane	10	U H	L 10	0.51
111-44-4	Bis(2-chloroethyl)ether	10	만뷰	L 10	2.0
117-81-7	Bis(2-ethylhexyl) phthalate	10	_U_¥-	R 10	1.7
85-68-7	Butyl benzyl phthalate	10 -	UH	L 10	0.43
86-74-8	Carbazole	-10	_ U_II_	R 10	0.61
218-01-9	Chrysene	10	- U -II-	R 10	0.40
84-74-2	Di-n-butyl phthalate	-10-	- U-H-	R 10	1.9
117-84-0	Di-n-octyl phthalate	10	U-H-	R 10	0.35
101-55-3	4-Bromophenyl phenyl ether	10	U H.	R 10	0.26
106-47-8	4-Chloroaniline	1.0	U-H	L 10	0.31
91~58-7	2-Chloronaphthalene	10	U H	R 10	0.46
7005-72-3	4-Chlorophenyl phenyl ether	10 -	U H	L 10	0.48
53-70-3	Dibenz(a,h)anthracene	1.0	U H	R 10	0.39
132-64-9	Dibenzofuran	-10	U II	R 10	0.46
84-66-2	Diethyl phthalate	10	U-H-	L 10	0.37
131-11-3	Dimethyl phthalate	10	U-H	R 10	0.29
95-50-1	1,2-Dichlorobenzene	10	U II •	L 10	0.43
541-73-1	1,3-Dichlorobenzene	10	U H.	R 10	0.49
106-46-7	1,4-Dichlorobenzene	-10	U H	L 10	0.38
91-94-1	3,3'-Dichlorobenzidine	10	U H-	R 10	0.60
121-14-2	2,4-Dinitrotoluene	10	U H-	R 10	0.48
606-20-2	2,6-Dinitrotoluene	10	U H	R 10	. 0.49
206-44-0	Fluoranthene	10	<u>ILH</u>	R 10	0.51
86-73-7	Fluorene	1-0	U II -	R 10	0.35
118-74-1	Hexachlorobenzene	1- 20-	-U-11-	R 10	0.35
87-68-3	Hexachlorobutadiene	10	-U-H-	R 10	0.74
77-47-4	Hexachlorocyclopentadiene	10	UH.	L 10	1,3

FORM I 8270C

EMM, 5108 08 1 1118/08

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Connecticut	Job No.: 220-3406-1
SDG No.: 220-3406	
Client Sample ID: EHS-GW-03	Lab Sample ID: 220-3406-1
Matrix: Water	Lab File ID: <u>C4351.D</u>
Analysis Method: 8270C	Date Received: 11/16/2007 21:00
Sample wt/vol: 1000 (mL)	Date Extracted: 01/08/2008 16:00
Level: (low/med) Low	Date Analyzed: 01/09/2008 17:43
Con. Extract Vol.: 1 (mL)	Dilution Factor: 1
Injection Volume: <u>1 (uL)</u>	Extract. Method: 3510C
GPC Cleanup:(Y/N) N	% Moisture:
Analy. Batch No.: 12566	Units: ug/L

CAS No.	Compound Name	Result	Q	RL	MDL
67-72-1	Hexachloroethane	10	Ū H ·	R 10	0.64
193-39-5	Indeno[1,2,3-cd]pyrene	+0-	U II-	R . 10	0.51
78-59-1	Isophorone	40	-U-H-	R 10	0.54
91-57-6	2-Methylnaphthalene	-10	-U R	L 10	0.49
91-20-3	Naphthalene	10	UH	L 10	0.47
88-74-4	2-Nitroaniline	<u>-50</u> .	UH.	R 50	0.45
99-09-2	3-Nitroaniline	50.	ÛН	№ 50	0.41
98~95~3	Nitrobenzene	10	-0 H	R 10	0.50
621-64-7	N-Nitrosodi-n-propylamine	10	U H	L 10	0.59
86-30-6	N-Nitrosodiphenylamine	10	U H	L 10	0.41
85-01-8	Phenanthrene	40	U H	R 10	0.28
129-00-0	Pyrene	-10-	-U-II-	R 10	0.40
120-82-1	1,2,4-Trichlorobenzene	20 -	U.H.	R 10	0.47
59-50-7	4-Chloro-3-methylphenol	10	-U fi-	L 10	0.43
95-57-8	2-Chlorophenol	10-	U H•	R 10	0.46
95-48-7	2-Methylphenol	· 10-	-UH-	R 10	0.50
106-44-5	4-Methylphenol	10_	U H	R 10	0.39
120-83-2	2,4-Dichlorophenol	-10	-U-H	R 10	0.30
105-67-9	2,4-Dimethylphenol	10	ЦЦ	R 10	0.63
51-28-5	2,4-Dinitrophenol	50	UH	2 50	1.7
534-52-1	4,6-Dinitro-2-methylphenol	.50	U H.	R 50	3.3
88-75-5	2-Nitrophenol	-10	U H -	R 10	0.50
100-02-7	4-Nitrophenol	-50-	-UH-	K 50	1.3
87-86-5	Pentachlorophenol	50	U-H-	R 50	4.1
108-95-2	Phenol	10	UH	R 10	0.85
95-95-4	2,4,5-Trichlorophenol	-50	-U-H-	R 50	0.33
88-06-2	2,4,6-Trichlorophenol	¥0	U H-	R 10	0.42
100-51-6	Benzyl alcohol	_10	U_H_	R 10	0.84
100-01-6	4-Nitroaniline	20	<u>U H -</u>	R 20	0.50
108-60-1	2,2'-oxybis[1-chloropropane]	10	U -H-	A 10	0.54

Ern 115108 (118/08

Job Number: 220-3406-1 Sdg Number: 220-3406

Client: GEI Consultants, Inc.

Client Sample ID: EHS-GW-03

Lab Sample ID: Client Matrix:	220-3406 Water	-1		Dat Dat	e Sampled: 1 e Received: 1	1/16/2007 1100 1/16/2007 2100
	(6010B Induct	ively Coupled Plasma - Atomic	: Emission Spec	trometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3010A 1.0 11/26/2007 11/20/2007	1553 1120	Analysis Batch: 220-11365 Prep Batch: 220-11242	Instrum Lab File Initial W Final W	ent ID: + ID: /eight/Volume: eight/Volume:	TJA Trace ICAP W112607 50 mL 50 mL
Analyte			Result (ug/L)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc			5.0 89 25 48 J 5.0 11100 10 2.5 3.7 10 560 1800 J 2300 J 790 32700 6.1 10 50 30 40 5.0 22	1 Π Π Π Π Π Π Π Π Π Π Π Π Π	1.3 84 5.4 2.3 0.60 130 1.1 2.1 1.9 3.9 51 130 55 5.2 350 1.9 4.9 6.0 9.8 8.1 1.0 12	5.0 500 25 5.0 300 10 10 10 10 10 200 400 100 15 400 10 10 10 15 400 10 10 30 40 50 30 40 5.0 50 30 50
		7470A Mei	cury in Liquid Waste (Manual	Cold Vapor Tech	nique)	<u>an na mang ng sa </u>
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 11/30/2007 11/29/2007	0936 1732	Analysis Batch: 220-11490 Prep Batch: 220-11475	Instrum Lab File Initial V Final W	ient ID: e ID: Veight/Volume: /eight/Volume:	Perkin Elmer FIMS N/A 25 mL 50 mL
Analyte			Result (ug/L)	Qualifier	MDL	RL
Мегсигу			0.20 · 0.40 /	U	0.10 0.20	0 - 0.20 0.40

08 1/18/08

Client: GEI Consultants, Inc. in.

Job Number: 220-3406-1 Sdg Number: 220-3406

Client Sample ID:	EHS-GW-03				
Lab Sample ID: Client Matrix:	220-3406-1 Water	Dat	te Sampled: te Received:	11/16/2007 11/16/2007	1100 2100
	أسترجل والمتحد والمتركب والمتحد المتحد والمتحد والمتحد والمتحد والمتحد				

A Organochlorine Pesticides by Gas Chromatography

	8061A OF	ganocillorine resucides by ea			
Method: Preparation:	8081A 3510C	Analysis Batch: 220-11459 Prep Batch: 220-11303		Instrument ID: H Lab File ID: D	IP 5890 with dual ECD 07505073.D
Dilution:	1.0	·		Initial Weight/Volum	ne: 1000 mL
Date Analyzed:	11/29/2007 1950			Final Weight/Volum	ie: 10 mL
Date Prenared:	11/21/2007 1630			Injection Volume:	1 uL
Date Prepared.	1.72,72001			Column ID:	PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	RL
	 A. Arabitan and a straight of the straight of the	0.15	U	0.014	0.15
4 4'-DDE		0.10	U	0.0088	0.10
4,4'000 4,4'-DDT		0.10	U	0.010	0.10
Aldrin		0.050	U	0.0058	0.050
aloha-BHC		0.050	U	0.011	0.050
beta-BHC		0.050	U	0.013	0.050
delta-BHC		0.050	U	0.0022	0.050
Dieldrin		0.10	U	0.0057	0.10
Endosulfan i	-	0.050	U	0.0035	0.050
Endosulfan II		0.10	U	0.0035	0.10
Endosulfan sulfat	e	0.10	U	0.014	0.10
Endrin		0.10	U	0.025	0.10
Endrin aldehyde		0.10	η λ	0.028	0.10
Endrin ketone		0.10	U J	0.016	0.10
gamma-BHC (Lin	idane)	0.050	U	0.0052	0.050
Heptachlor		0.050	U	0.0078	0.050
Heptachlor epoxi	de	0.050	<u> </u>	0.0057	0.050
Methoxychlor		0.50	0.7	0.041	0.50
Toxaphene		2.5	0	U_21	2,5
alpha-Chlordane		0.050	U	0.0000	0.050
gamma-Chlordar	1e	0.050	U	0.0061	0.050
Surrogate		%Rec		Acce	ptance Limits
DCB Decachloro	biphenyl	77		29	- 156
Tetrachloro-m-xy	/lene	83		53	- 144
Method:	8081A	Analysis Batch: 220-11459		Instrument ID:	HP 5890 with dual ECD
Prenaration'	3510C	Prep Batch: 220-11303		Lab File ID:	C7505073.D
Dilution	10	•		Initial Weight/Volu	me: 1000 mL
Data Analizad	11/29/2007 1950			Final Weight/Volur	me: 10 mL
Date Analyzeu.	11/21/2007 1630			Injection Volume:	1 uL
Date Prepared:	11/21/2007 1030			Column ID:	SECONDARY
_ ·		% Pag		Δετε	eptance Limits
Surrogate	and the second secon		anananya taka bir a saad	, .cc. 20	- 156
DCB Decachloro	biphenyl	76		29	111
Tetrachloro-m-xy	ylene	82		03	- 1-4-4

TestAmerica Connecticut

DB 1/18/08

12130107

12/13/2007

Job Number: 220-3406-1 Client: GEI Consultants, Inc. Sdg Number: 220-3406 EHS-GW-03 **Client Sample ID:** Date Sampled: 11/16/2007 1100 220-3406-1 Lab Sample ID: Date Received: 11/16/2007 2100 Water Client Matrix: 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography HP 5890 with dual ECD Instrument ID: Analysis Batch: 220-11444 8082 Method: D4663058.d Lab File ID: Prep Batch: 220-11303 3510C Preparation: 1000 mL Initial Weight/Volume: 1.0 Dilution: 10 mL Final Weight/Volume: 11/28/2007 0310 Date Analyzed: 1 uL Injection Volume: 11/21/2007 1630 Date Prepared: PRIMARY Column ID: RL MDL Qualifier Result (ug/L) Analyte 0.50 0.072 Ü 0.50

Tetrachloro-m-xylene DCB Decachlorobiphenyl	68 71		53 - 1 29 - 1	44 56	
Surrogate	%Rec	1999-1	Accept	ance Limits	
PCB-1260	0.50	U	0.064	0.50	
PCB-1254	0.50	U	0.037	0.50	
PCB-1248	0.50	1	0.037	0.50	
PCB-1242	0.50		0.15	0.50	
	0.50	U	0.11	0.50	
DCP 1932	0.50	υ	0.11	0.50	
PCB-1221	1.0	U	0.23	1.0	
PCB-1016	0.00	-			

ъß 1/18/08

12/30/07 12/13/2007

TestAmerica Connecticut

Client Sample ID: EHS-GW-03

GC Semivolatiles

Lot-Sample #: A7K200313-001	Work Order #:	KCNGP1AA	Matrix	x W G
Date Sampled: 11/16/07 11:0	Date Received:	11/20/07		
Prep Date: 11/21/07	Analysis Date:	11/26/07		
Prep Batch #: 7325042	-			
Dilution Factor: 1	Initial Wgt/Vol:	500 mL	Final	Wqt/Vol: 100 mL
	Method:	SW846 8151	А	,,,,
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2,4,5-T	ND	1.0	ug/L	0.17
2,4-D	ND	4.0	ug/L	1.5
2,4,5-TP	ND	1.0	ug/L	0.16
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2,4-Dichlorophenylacetic acid	57	(32 - 112)		

(r, 1/2°

DB 1/18/08

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-04
Lab Sample ID:	220-3539-2

Water

Client Matrix:

Date Sampled:12/03/20071410Date Received:12/04/20071600

8260B Volatile Organic Compounds by GC/MS

Method:	8260B	Analysis Batch: 220-11665	Instrument ID:	HP 6890/5973 GC/MS
Preparation:	5030B		Lab File ID:	W3042.D
Dilution:	1.0		Initial Weight/Volu	ume: 5 mL
Date Analyzed:	12/06/2007 1611		Final Weight/Volu	me: 5 mL
Date Prepared:	12/06/2007 1611			

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acetone	10	U	1.6	10
Benzene	5.0	U	0.23	5.0
Bromodichloromethane	5.0	U	0.24	5.0
Bromoform	5.0	U	1.2	5.0
Bromomethane	5.0	U	1.0	5.0
Methyl Ethyl Ketone	10	U 🖌	1.1	10
Carbon disulfide	5.0	U	0.14	5.0
Carbon tetrachloride	5.0	ປ	0.29	5.0
Chlorobenzene	5.0	U	0.15	5.0
Chloroethane	5.0	U	0.48	5.0
Chloroform	5.0	υ	0.27	5.0
Chloromethane	5.0	U	0.24	5.0
Dibromochloromethane	5.0	U	0.21	5.0
1,1-Dichloroethane	5.0	U	0.23	5.0
1,2-Dichloroethane	5.0	U	0.25	5.0
1,1-Dichloroethene	5.0	U	0.25	5.0
1,2-Dichloropropane	5.0	U	0.32	5.0
cis-1,3-Dichloropropene	5.0	U	0.28	5.0
trans-1,3-Dichloropropene	5.0	U	0.28	5.0
Ethylbenzene	5.0	U	0.28	5.0
2-Hexanone	10	U	0.37	10
Methylene Chloride	5.0	U	0.26	5.0
methyl isobutyl ketone	10	U	0.38	10
Styrene	5.0	U	0.70	5.0
1,1,2,2-Tetrachioroethane	5.0	U,	0.23	5.0
Tetrachloroethene	0.30	151	0.30	5.0
Toluene	5.0	U _	0.090	5.0
1,1,1-Trichloroethane	5.0	U	0.38	5.0
1,1,2-Trichloroethane	5.0	U	0.33	5.0
Trichloroethene	5.0	U	0.26	5.0
Vinyl chloride	5.0	U	0.30	5.0
Xylenes, Total	5.0	U	0.46	5.0
cis-1,2-Dichloroethene	5.0	U	0.33	5.0
trans-1,2-Dichloroethene	5.0	U	0.22	5.0
Surrogate	%Rec		Accept	ance Limits
1,2-Dichloroethane-d4 (Surr)	111		53 - 1	25
4-Bromofluorobenzene	80		73 - 1	27
Dibromofluoromethane	102		54 - 1	37
Toluene-d8 (Surr)	81		63 - 1	21

3

% 12/28/2007

Client: GEI Consultants, Inc.

EHS-GW-04

Client Sample ID:

- ----

Job Number: 220-3539-1 Sdg Number: 220-3539

Lab Sample ID:	220-3539-2	Date Sampled:	12/03/2007 1410
Client Matrix:	Water	Date Received:	12/04/2007 1600
	8270C Semivolatile Compounds by	Gas Chromatography/Mass Spectrometry (GC/	 MS)

8270C Analysis Batch: 220-11829 Method: Instrument ID: HP 6890/5975 3510C Prep Batch: 220-11706 Preparation: Lab File ID: C4074.D Dilution: 1.0 Initial Weight/Volume: 1000 mL Date Analyzed: 12/12/2007 2215 Final Weight/Volume: 1.0 mL Date Prepared: 12/10/2007 1530 Injection Volume: 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acenaphthene	10	U	0.35	10	CONTRACTOR DE LA CONTRACTOR DE L
Acenaphthylene	10	U	0.35	⁻ 10	
Anthracene	10	U	0.32	10	
Benzo[a]anthracene	10	U	0.44	10	
Benzo[a]pyrene	10	U	0.32	10	
Benzo[b]fluoranthene	10	U	0.45	10	
Benzo[g,h,i]perylene	10	U	0.40	10	
Benzo[k]fluoranthene	10	U	0.29	10	
Bis(2-chloroethoxy)methane	10	U	0.51	10	
Bis(2-chloroethyl)ether	10	U∕r	2.0	10	
Bis(2-ethylhexyl) phthalate	10	U	1.7	10	
Butyl benzyl phthalate	10	U	0.43	10	
Carbazole	10	U	0.61	10	
Chrysene	10	U	0.40	10	
Di-n-butyl phthalate	10	U	1.9	10	
Di-n-octyl phthalate	10	U	0.35	10	
4-Bromophenyl phenyl ether	10	U	0.26	10	
4-Chloroaniline	10	U	0.31	10	
2-Chloronaphthalene	10	U	0.46	10	
4-Chlorophenyl phenyl ether	10	U	0.48	10	
Dibenz(a,h)anthracene	10	U	0.39	10	
Dibenzofuran	10	U	0.46	10	
Diethyl phthalate	10	U	0.37	10	
Dimethyl phthalate	10	U	0.29	10	
1,2-Dichlorobenzene	10	U	0.43	10	
1,3-Dichlorobenzene	10	U	0.49	10	
1,4-Dichlorobenzene	10	U	0.38	10	
3,3'-Dichlorobenzidine	10	U	0.60	10	
2,4-Dinitrotoluene	10	U	0.48	10	
2,6-Dinitrotoluene	10	U	0.49	10	
Fluoranthene	10	U	0.51	10	
Fluorene	10	ប	0.35	10	
Hexachlorobenzene	10	U	0.35	10	
Hexachlorobutadiene	10	U	0.74	10	
Hexachlorocyclopentadiene	10	U	1.3	10	
Hexachloroethane	10	U	0.64	10	
Indeno[1,2,3-cd]pyrene	10	U	0.51	10	
Isophorone	10	U	0.54	10	
2-Methylnaphthalene	10	U	0.49	10	
Naphthalene	10	U	0.47	10	. 0
2-Nitroaniline	50	U	0.45	50	Þ/5 , "
3-Nitroaniline	50	U	0.41	50	118 00
Nitrobenzene	10	U	0.50	10	t 1 '
N-Nitrosodi-n-propylamine	10	U	0.59	10	

TestAmerica Connecticut

Page 16 of 922

12/28/2007

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-04		- J			
Lab Sample ID:	220-3539-2	Date Sampled:	12/03/2007 1410			
Client Matrix:	Water	Date Received:	12/04/2007 1600			
8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)						

Method:	8270C	Analysis Batch: 220-11829	Instrument ID: H	IP 6890/5975
Preparation:	3510C	Prep Batch: 220-11706	Lab File ID: C	4074.D
Dilution:	1.0		Initial Weight/Volun	ne: 1000 mL
Date Analyzed:	12/12/2007 2215		Final Weight/Volum	ne: 1.0 mL
Date Prepared:	12/10/2007 1530		Injection Volume:	1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	10	U	0.41	10
Phenanthrene	10	U	0.28	10
Pyrene	10	U	0.40	10
1,2,4-Trichlorobenzene	10	U	0.47	10
4-Chloro-3-methylphenol	10	U	0.43	10
2-Chlorophenol	10	U	0.46	10
2-Methylphenol	10	U	0.50	10
4-Methylphenol	10	U	0.39	10
2,4-Dichlorophenol	10	U	0.30	10
2,4-Dimethylphenol	10	U	0.63	10
2,4-Dinitrophenol	50	U	1.7	50
4,6-Dinitro-2-methylphenol	50	U	3.3	50
2-Nitrophenol	10	ป	0.50	10
4-Nitrophenol	50	U	1.3	50
Pentachlorophenol	50	U	4.1	50
Phenol	10	U	0.85	10
2,4,5-Trichlorophenol	50	U	0.33	50
2,4,6-Trichlorophenol	10	U	0.42	10
Benzyl alcohol	10	U	0.84	10
4-Nitroaniline	20	U	0.50	20
2,2'-oxybis[1-chloropropane]	10	U	0.54	10
Surrogate	%Rec		Accept	ance Limits
2-Fluorobiphenyl	93		43 - 1	16
2-Fluorophenol	54		21 - 9	7
2,4,6-Tribromophenol	99		29 - 1	26
Nitrobenzene-d5	89		38 - 1	13

35

106

18 - 97

10 - 119

Terphenyl-d14

Phenol-d5

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample (D): EHS-GW	/-04				
Lab Sample ID: Client Matrix:	220-3539 Water) -2		Dat Dat	e Sampled: e Received:	12/03/2007 1410 12/04/2007 1600
		6010B Indu	ctively Coupled Plasma - Atomic	Emission Spec	trometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3010A 1.0 12/10/2007 12/06/2007	1647 1004	Analysis Batch: 220-11721 Prep Batch: 220-11621	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		TJA Trace ICAP W121007 50 mL 50 mL
Analyte			Result (ug/L)	Qualifier	MDL	RL
Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thailium Vanadium Zinc			5.0 93 25 60 J 5.0 21300 10 3.6 6.9 10 350 2600 J 3100 J 990 31000 9.8 10 50 30 40 5.0 15	τ υ υ υ υ υ υ υ υ υ υ υ υ υ	1.3 84 5.4 2.3 0.60 130 1.1 2.1 1.9 3.9 51 130 55 5.2 350 1.9 4.9 6.0 9.8 8.1 1.0 12	5.0 500 25 5.0 300 10 10 10 10 200 400 100 15 400 10 10 15 400 10 10 50 30 40 50 30 40 5.0 50 50 50 50 50 50 50 50 50 5
		7470A N	lercury in Liquid Waste (Manual C	old Vapor Tech	nnique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 12/15/2007 12/15/2007	7 1838 7 1554	Analysis Batch: 220-11902 Prep Batch: 220-11900	Instrum Lab Fili Initial V Final W	ient ID: e ID: Veight/Volume: /eight/Volume:	Perkin Elmer FIMS N/A 25 mL 50 mL
Analyte			Result (ug/L)	Qualifier	MDL	RL
Mercury	nan an ann an Anna an Anna an Anna an Anna an Anna	97. <u>97. 99.</u> 99. 90. 90. 90. 90. 90. 90. 90. 90. 90.	0.20 . 0.46	U	- 0:10 0,20	0.20 0.40

TestAmerica Connecticut

¢₿ 1118/08

m 13/08

12/28/2007

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-04				-
Lab Sample ID: Client Matrix:	220-3539-2 Water	220-3539-2 Water			12/03/2007 1410 12/04/2007 1600
	8081A C	Organochlorine Pesticides by Ga	s Chromatog	raphy	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 12/15/2007 2122 12/10/2007 2241	Analysis Batch: 220-11916 Prep Batch: 220-11710	Instr Lab Initia Fina Injec Colu	Tument ID: HP File ID: D7: al Weight/Volume: I Weight/Volume: Stion Volume: umn ID: P	5890 with dual ECD 518021.D :: 1000 mL : 10 mL 1 uL RIMARY
Analyte		Result (ug/L)	Qualifier	MDL	RL

Analyte					A 15	
4,4'-DDD		0.15	U	0.014	0.15	
4,4'-DDE		0.10	U	0.0088	0.10	
4,4'-DDT		0.10	03 /	0.010	0.10	
Aldrin		0.050	U	0.0058	0.050	
alpha-BHC		0.050	U	0.011	0.050	
beta-BHC		0.050	U	0.013	0.050	
delta-BHC		0.050	U	0.0022	0.050	
Dieldrin		0.10	U	0.0057	0.10	
Endosulfan I		0.050	U	0.0035	0.050	
Endosulfan li		0.10	U	0.0035	0.10	
Endosulfan sulfate		0.10	U	0.014	0.10	
Endrin		0.10	U	0.025	0.10	
Endrin aldehvde		0.10	UJ 🗸	0.028	0.10	
Endrin ketone		0.10	U	0.016	0.10	
gamma-BHC (Lind	lane)	0.050	U	0.0052	0.050	
Heptachlor	·-···,	0.050	U	0.0078	0.050	
Heptachlor epoxid	e	0.050	U	0.0057	0.050	
Methoxychlor	-	0.50	U	0.041	0.50	
Toxaphene		2.5	U	0.21	2.5	
aloba-Chlordane		0.050	U	0.0055	0.050	
namma-Chlordane	1	0.050	U	0.0061	0.050	
gamma ornoreane						
Surrogate		%Rec		Ace	eptance Limits	er sammer mense andere state ante 10
DCB Decachlorob	iphenyl	71		29	9 - 156	
Tetrachloro-m-xyle	ene	82		5	3 - 144	
Mathadi	80810	Analysis Batch: 220-11916		Instrument ID:	HP 5890 with du	al ECD
Meutou.	36400	Bren Batch: 220-11710		Lah File ID:	C7518021 D	
Preparation:	33100	F160 Baton: 220-11730		Initial Maight Ma	umo: 1000 x	ml
Dilution:	1.0				ume. 1000 1	
Date Analyzed:	12/15/2007 2122			Final weight vol		-
Date Prepared:	12/10/2007 2241			Injection Volume	: 1 UL	
				Column ID:	SECONDARY	

Surrogate	%Rec	Acceptance Limits
DCB Decachlorobiphenyl		29 - 156
Tetrachloro-m-xylene	81	53 - 144

DB 1118/08 11/108

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-04			-
Lab Sample ID:	220-3539-2		Date Sampled	: 12/03/2007 1410
Client Matrix:	Water		Date Received	1: 12/04/2007 1600
	8082 Poly	chlorinated Biphenyls (PCBs) by Gas	Chromatography	
Method:	8082	Analýsis Batch: 220-11915	Instrument ID: H	HP 5890 with dual ECD
Preparation:	3510C	Prep Batch: 220-11710	Lab File ID:	D4666077.d

Dilution: Date Analyzed: Date Prepared:	1.0 12/14/2007 1911 12/10/2007 2241		Initia Final Injec Colu	I Weight/Volume: Weight/Volume: tion Volume: mn ID: PRI	1000 mL 10 mL 1 uL MARY	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
PCB-1016	andan manana manana ana kaominina mpikambana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana am	0.50	U	0.072	0.50	
PCB-1221		1.0	U	0.23	1.0	
PCB-1232		0.50	U	0.11	0.50	
PCB-1242		0.50	U	0.11	0.50	
PCB-1248		0.50	U	0.15	0.50	
PCB-1254		0.50	U	0.037	0.50	
PCB-1260		0.50	U	0.064	0.50	
Surrogate		%Rec		Acceptan	e Limits	
Tetrachloro-m-xvle	ene	80		53 - 144		
DCB Decachlorob	iphenyl	60		29 - 156	_	

Dβ 1/18/08

JA' 11118

12/28/2007

TestAmerica Connecticut

Client Sample ID: EHS-GW-04

GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	A7L060295-002 12/03/07 14:10 12/10/07 7344015	Work Order #: Date Received: Analysis Date:	KDLMR1AA 12/06/07 12/11/07	Matrix	·····:	WG
Dilution Factor:	1	Initial Wgt/Vol: Method	500 mL SW846 81512	Final	Wgt/Vol:	100 mL
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4,5-T		ND	1.0	ug/L	0.17	
2,4-D		ND	4.0	ug/L	1.5	
2,4,5-TP		ND	1.0	ug/L	0.16	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			

72

(32 - 112)

SURROGATE 2,4-Dichlorophenylacetic acid

Erra 16/03

Client: GEI Consultants, Inc.

ł

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-05			•	
Lab Sample ID:	220-3539-3		Date Sampled:	12/03/2007	1535
Client Matrix:	Water		Date Received:	12/04/2007	1600
		8260B Volatile Organic Compounds by GC/MS			

8260B HP 6890/5973 GC/MS Method: Analysis Batch: 220-11665 Instrument ID: 5030B Preparation: Lab File ID: W3043.D Dilution: 1.0 Initial Weight/Volume: 5 mL 12/06/2007 1638 Final Weight/Volume: Date Analyzed: 5 mL Date Prepared: 12/06/2007 1638

Analyte	Result (ug/L)	Qualifier	MDL	RL.
Acetone	10	U	1.6	10
Benzene	5.0	U	0.23	5.0
Bromodichloromethane	5.0	U	0.24	5.0
Bromoform	5.0	U	1.2	5.0
Bromornethane	5.0	U	1.0	5.0
Methyl Ethyl Ketone	10	U ,	1.1	10
Carbon disulfide	5.0	u/ 🦯	0.14	5.0
Carbon tetrachloride	5.0	U	0.2 9	5.0
Chlorobenzene	5.0	U	0.15	5.0
Chloroethane	5.0	U	0.48	5.0
Chloroform	5.0	U	0.27	5.0
Chloromethane	5.0	U	0.24	5.0
Dibromochloromethane	5.0	U	0.21	5.0
1,1-Dichloroethane	5.0	U	0.23	5.0
1,2-Dichloroethane	5.0	ป	0.25	5.0
1,1-Dichloroethene	5.0	U	0.25	5.0
1,2-Dichloropropane	5.0	U	0.32	5.0
cis-1,3-Dichloropropene	5.0	U	0.28	5.0
trans-1,3-Dichloropropene	5.0	U	0.28	5.0
Ethylbenzene	5.0	U	0.28	5.0
2-Hexanone	10	U	0.37	10
Methylene Chloride	5.0	U	0.26	5.0
methyl isobutyl ketone	10	U	0.38	10
Styrene	5.0	U	0.70	5.0
1,1,2,2-Tetrachloroethane	5.0	U	0.23	5.0
Tetrachloroethene	5.0	U	0.30	5.0
Toluene	5.0	U	0.090	5.0
1,1,1-Trichloroethane	5.0	U	0.38	5.0
1,1,2-Trichloroethane	5.0	U	0.33	5.0
Trichloroethene	5.0	U	0.26	5.0
Vinyl chloride	5.0	U	0.30	5.0
Xylenes, Total	5.0	U	0.46	5.0
cis-1,2-Dichloroethene	5.0	U	0.33	5.0
trans-1,2-Dichloroethene	5.0	U	0.22	5.0
Surrogate	%Rec		Accept	ance Limits
1,2-Dichloroethane-d4 (Surr)	112		53 - 1	25
4-Bromofluorobenzene	80		73 - 1	27
Dibromofluoromethane	102		54 - 1	37
Toluene-d8 (Surr)	82		63 - 1	21

EMM 108

Client: GEI Consultants, Inc.

.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-05		
Lab Sample ID: Client Matrix:	220-3539-3 Water	Date Sampled: Date Received:	12/03/2007 1535 12/04/2007 1600

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:	8270C 3510C	Analysis Batch: 220-11829 Prep Batch: 220-11706	Instrument ID: Lab File ID:	HP 6890 C4075.D)/5975)
Dilution:	1.0		Initial Weight/Volu	ume:	1000 mL
Date Analyzed:	12/12/2007 2239		Final Weight/Volu	ime:	1.0 mL
Date Prepared:	12/10/2007 1530		Injection Volume:		1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acenaphthene	0.44	JJ/	0.35	10
Acenaphthylene	0.39	JJ	0.35	10
Anthracene	0.43	J 3 🗸	0.32	10
Benzo[a]anthracene	0.45	J 🕹 🔨	0.44	10
Benzo[a]pyrene	10	U	0.32	10
Benzo[b]fluoranthene	10	U	0.45	10
Benzo[g,h,i]perylene	10	U ,	0.40	10
Benzo[k]fluoranthene	0.30	J J V	0.29	10
Bis(2-chloroethoxy)methane	10	U	0.51	10
Bis(2-chloroethyl)ether	10	UXV	2.0	10
Bis(2-ethylhexyl) phthalate	10	U	1.7	10
Butyl benzyl phthalate	10	U	0.43	10
Carbazole	10	U	0.61	10
Chrysene	0.41	J J /	0.40	10
Di-n-butyl phthalate	10	U	1.9	10
Di-n-octyl phthalate	10	U ,	0.35	10
4-Bromophenyl phenyl ether	0.39	JJ	0.26	10
4-Chloroaniline	10	U	0.31	10
2-Chloronaphthalene	10	U	0.46	10
4-Chlorophenyl phenyl ether	10	U	0.48	10
Dibenz(a,h)anthracene	10	U	0.39	10
Dibenzofuran	10	U	0.46	10
Diethyl phthalate	0.52	JJV	0.37	10
Dimethyl phthalate	10	U	0.29	10
1,2-Dichlorobenzene	10	U	0.43	10
1,3-Dichlorobenzene	10	U	0.49	10
1,4-Dichlorobenzene	10	U	0.38	10
3,3'-Dichlorobenzidine	10	U	0.60	10
2,4-Dinitrotoluene	10	U	0.48	10
2,6-Dinitrotoluene	10	U	0.49	10
Fluoranthene	1.4	JJ/	0.51	10
Fluorene	0.50	リゴノ	0.35	10
Hexachlorobenzene	10	U .	0.35	10
Hexachlorobutadiene	10	U	0.74	10
Hexachlorocyclopentadiene	10	U	1.3	10
Hexachloroethane	10	U	0.64	10
Indeno[1,2,3-cd]pyrene	10	U	0.51	10
Isophorone	10	U,	0.54	10
2-Methylnaphthalene	0.81	JY√	0.49	10
Naphthalene	10	U.	0.47	10
2-Nitroaniline	50	U	0.45	50
3-Nitroaniline	50	U	0.41	50
Nitrobenzene	10	U	0.50	10
N-Nitrosodi-n-propylamine	10	U	0.59	10

TestAmerica Connecticut

0B 1118/08

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-05		
Lab Sample ID:	220-3539-3 ⁻	Date Sampled:	12/03/2007 1535
Client Matrix:	Water	Date Received:	12/04/2007 1600
	3270C Semivolatile Compounds by Gas	Chromatography/Mass Spectrometry (GC/	MS)

Method: 8270C Analysis Batch: 220-11829 Instrument ID: HP 6890/5975 Preparation: 3510C Prep Batch: 220-11706 Lab File ID: C4075.D Dilution: 1.0 Initial Weight/Volume: 1000 mL Date Analyzed: 12/12/2007 2239 Final Weight/Volume: 1.0 mL Date Prepared: 12/10/2007 1530 Injection Volume: 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodiphenylamine	0.55	J 7 1	0.41	10
Phenanthrene	0.71	JJ,	0.28	10
Pyrene	0.82	1 7 ⁄	0.40	10
1,2,4-Trichlorobenzene	10	U	0.47	10
4-Chloro-3-methylphenol	10	U	0.43	10
2-Chlorophenol	10	U	0.46	10
2-Methylphenol	10	U ./	0.50	10
4-Methylphenol	0.54	J J′	0.39	10
2,4-Dichlorophenol	0.32	コスノ	0.30	10
2,4-Dimethylphenol	10	υŤ	0.63	10
2,4-Dinitrophenol	50	U	1.7	50
4,6-Dinitro-2-methylphenol	50	U	3.3	50
2-Nitrophenol	10	U	0.50	10
4-Nitrophenol	50	U	1.3	50
Pentachlorophenol	50	U	4.1	50
Phenol	10	U	0.85	10
2,4,5-Trichlorophenol	50	U	0.33	50
2,4,6-Trichlorophenol	10	Ų	0.42	10
Benzył alcohol	10	U	0.84	10
4-Nitroaniline	20	U	0.50	20
2,2'-oxybis[1-chloropropane]	10	U	0.54	10
Surrogate	%Rec		Accep	tance Limits
2-Fluorobiphenyl	91		43 -	116
2-Fluorophenol	56		21 -	97
2,4,6-Tribromophenol	109		29 -	126
Nitrobenzene-d5	89		38 -	113
Phenol-d5	36		18 -	97
Terphenyl-d14	123	*	10 -	119

Job Number: 220-3539-1 Sdg Number: 220-3539

Client: GEI Consultants, Inc.

1

Client Sample ID: EHS-GW-05

Lab Sample ID:	220-3539-3	Date Sampled:	12/03/2007 1535	
Client Matrix:	Water	Date Received:	12/04/2007 1600	
	6010B Inductively Coupled Plasma - Ator	nic Emission Spectrometry		

Method:6010BAnalysis Batch: 220-Preparation:3010APrep Batch: 220-116Dilution:1.0Date Analyzed:12/10/2007 1652Date Prepared:12/06/2007 1004	11721Instrument ID:TJA Trace ICAP21Lab File ID:W121007Initial Weight/Volume:50 mLFinal Weight/Volume:50 mL
--	--

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Silver	5.0	U ,	1.3	5.0	
Alumiaum	280		84	500	
Arsenic	25	U	5.4	25	
Barium	70 J 🗸		2.3	5.0	
Beryllium	5.0	U	0.60	5.0	
Calcium	31000		130	300	
Cadmium	10	U	1.1	10	
Cobalt	10	U /	2.1	10	
Chromium	9.7	J 🗸	1.9	10	
Copper	10	U	3.9	10	
iron	460		51	200	
Potassium	3100 J 🗸		130	400	
Magnesium	5000		55	100	
Manganese	970		5.2	15	
Sodium	21600		350	400	
Nickel	11		1.9	10	
Lead	10	U	4.9	10	
Antimony	50	U	6.0	50	
Selenium	30	U	9.8	30	
Thallium	40	U	8.1	40	
Vanadium	5.0	U /	1.0	5.0	
Zinc	18	<u> </u>	12	50	

7470A Mercury in Liquid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 12/15/2007 1839 12/15/2007 1554	Analysis Batch: 220-11902 Prep Batch: 220-11900	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	Perkin Elmer FIMS N/A 25 mL 50 mL
--	---	--	--	--

Analyte	Result (ug/L)	Qualifier	MDL	RL
Mercury	0.20 0.40	U	0.10 0.20	0.20 0.40

1/3/08

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EH2-GW-03		
Lab Sample ID: Client Matrix:	220-3539-3 Water	Date Sampled: Date Received:	12/03/2007 1535 12/04/2007 1600

8081A Organochlorine Pesticides by Gas Chromatography Analysis Batch: 220-11916 Instrument ID: HP 5890 with dual ECD 8081A Method: D7518022.D Prep Batch: 220-11710 Lab File ID: 3510C Preparation: Initial Weight/Volume: 1000 mL Dilution: 1.0 Final Weight/Volume: 10 mL 12/15/2007 2143 Date Analyzed: Injection Volume: 1 uL 12/10/2007 2241 Date Prepared: Column ID: PRIMARY Qualifier MDL RL Result (ug/L) Analyte 0.15 0.15 Ũ 0.014 4.4'-DDD 0.10 U 0.0088 0.10 4.4'-DDE UJ / 0.10 0.10 0.010 4,4'-DDT 0.050 0.050 U 0.0058 Aldrin 0.050 U 0.011 0.050 alpha-BHC 0.050 U 0.050 0.013 beta-BHC 0.050 IJ 0.0022 0.050 delta-BHC . w 0.10 0.0057 0.100 0.100 Dieldrin 0.0035 0.050 U 0.050 Endosulfan I U 0.0035 0.10 Endosulfan II 0.10 U 0.10 0.014 0.10 Endosulfan sulfate U 0.10 0.10 0.025 Endrin 0.10 UJ 0.028 0.10 Endrin aldehyde 0.10 0.10 U 0.016 Endrin ketone U 0.0052 0.050 0.050 gamma-BHC (Lindane) υ 0.0078 0.050 0.050 Heptachlor 0.050 υ 0.0057 0.050 Heptachlor epoxide 0.50 0.50 IJ 0.041 Methoxychlor υ 2.5 0.21 2.5 Toxaphene U 0.0055 0.050 0.050 alpha-Chlordane 0.0061 0.050 0.019 gamma-Chlordane Л %Rec Acceptance Limits Surrogate DCB Decachlorobiphenyl 77 29 - 156 97 53 - 144 Tetrachioro-m-xylene 00044 Analysis Batch: 220-11916 Instrument ID: HP 5890 with dual ECD

Method:	.000TA
Preparation:	3510C
Dilution:	1.0
Date Analyzed:	12/15/2007 2143
Date Prepared:	12/10/2007 2241

Surrogate	%Rec	Acceptance Limits
DCB Decachlorobiphenyl	71	29 - 156
Tetrachloro-m-xylene	94	53 - 144

Prep Batch: 220-11710

C7518022.D

1000 mL

10 mL

1 uL

SECONDARY

Lab File ID:

Column ID:

Initial Weight/Volume:

Final Weight/Volume:

Injection Volume:

12/28/2007

Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

Client Sample ID:	EHS-GW-05			
Lab Sample ID: Client Matrix:	220-3539-3 Water	Date Sampled: Date Received:	12/03/2007 12/04/2007	1535 1600
<u></u>	8082 Polychlorinated	Biphenyls (PCBs) by Gas Chromatography		

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3510C 1.0 12/14/2007 2017 12/10/2007 2241	Analysis Batch: 220-11915 Prep Batch: 220-11710	Instr Lab Initia Fina Injec Colu	ument ID: I File ID: I I Weight/Volu I Weight/Volur tion Volume: Imn ID:	HP 5890 with dual ECD D4666081.d me: 1000 mL ne: 10 mL 1 uL PRIMARY
Applyte		Result (ug/L)	Qualifier	MDL.	RL
DCD 1016		0,50	U	0.072	0.50
PCD-1010		1.0	U.	0.23	1.0
PCD-1221		0.50	U	0.11	0.50
PUD-1232		0.50	บ	0.11	0.50
PUB-1242		0.50	U	0.15	0.50
PUB-1240		0.50	U	0.037	0.50
PCB-1254 PCB-1260		0.50	U	0.064	0.50
Surrogate		%Rec		Acce	eptance Limits
Tetrachloro-m-xy	lene	86		53	- 144
DCB Decachloro	biphenyl	70		29	- 156

Jun 108

TestAmerica Connecticut

Client Sample ID: EHS-GW-05

GC Semivolatiles

Lot-Sample #:	A7L060295-003	Work Order #:	KDLMT1AA	Matrix		WG
Date Sampled:	12/03/07 15:35	Date Received:	12/06/07			
Prep Date:	12/10/07	Analysis Date:	12/11/07			
Prep Batch #:	7344015					
Dilution Factor:	1	Initial Wgt/Vol:	500 mL	Final	Wqt/Vol:	100 mL
		Method	SW846 8151	A.	-	
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
2,4,5-T		ND	1.0	ug/L	0.17	
2,4-D		ND	4.0	ug/L	1.5	
2,4,5-TP		ND	1.0	ug/L	0.16	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2,4-Dichloropheny	lacetic acid	78	(32 - 112)			

TestAmerica North Canton

08 1118/08

EHAN

Client: GEI Consultants, Inc.

Job Number: 220-3509-1 Sdg Number: 220-3509

General Chemistry							
Client Sample ID:	EHS-GW-01	Cen		ioti y			
Lab Sample ID: Client Matrix:	220-3509-1 Water				Date Sampled: Date Received:	11/2 11/3	29/2007 1100 30/2007 1855
Analyte	Rest	ult Qual	Units	MDL	RL	Dil	Method
Sulfate	13.0 Anly Batch: 220-116	018 Date Analy:	mg/L zed 12/0	0.0086 04/2007 1922	1.0	1.0	300.0
Sulfide	1.0 Anly Batch: 220-11	U 575 Date Analy	mg/L zed 12/0	0.22 04/2007 1400	1.0	1.0	376.1

Yan

12/28/2007
Client: GEI Consultants, Inc.

Job Number: 220-3539-1 Sdg Number: 220-3539

		General Chemistry		
Client Sample ID:	EHS-GW-02			
Lab Sample ID: Client Matrix:	220-3539-1 Water		Date Sampled: Date Received:	12/03/2007 1125 12/04/2007 1600
Analvte	Result	Qual Units MDL	RL	Dil Method
Sulfate	11.1 Anly Batch: 220-11713	mg/L 0.0086 Date Analyzed 12/05/2007 1804	1.0	1.0 300.0
Sulfide	1.0 Anly Batch: 220-11670	U mg/L 0.22 Date Analyzed 12/07/2007 1301	1.0	1.0 376.1
Client Sample ID:	EHS-GW-04			
Lab Sample ID: Client Matrix:	220-3539-2 Water		Date Sampled: Date Received:	12/03/2007 1410 12/04/2007 1600
Analyte	Result	Qual Units MDL	RL	Dil Method
Sulfate	17.9 Anly Batch: 220-11713	mg/L 0.0086 Date Analyzed 12/05/2007 1817	1.0	1.0 300.0
Sulfide	1.0 Anly Batch: 220-11670	U mg/L 0.22 Date Analyzed 12/07/2007 1301	1.0	1.0 376.1
Client Sample ID:	EHS-GW-05			
Lab Sample ID: Client Matrix:	220-3539-3 Water		Date Sampled: Date Received:	12/03/2007 1535 12/04/2007 1600
Analyte	Result	Qual Units MDL	RL	Dil Method
Sulfate	19.7 Anly Batch: 220-11713	mg/L 0.0086 Date Analyzed 12/05/2007 1830	1.0	1.0 300.0
Sulfide	1.0 Anly Batch: 220-11670	U mg/L 0.22 Date Analyzed 12/07/2007 1301	1.0	1.0 376.1
Client Sample ID:	EHS-GW-XX-120307			
Lab Sample ID: Client Matrix:	220-3539-4 Water		Date Sampled: Date Received:	12/03/2007 1700 12/04/2007 1600
Analyte	Result	Qual Units MDL	RL	Dil Method
Sulfate	11.0 Anly Batch: 220-11713	mg/L 0.0086 Date Analyzed 12/05/2007 1844	1.0	1.0 300.0
Sulfide	1.0 Anly Batch: 220-11670	U mg/L 0.22 Date Analyzed 12/07/2007 1301	1.0	1.0 376.1
TestAmerica Conn	ecticut	Page 34 of 922	DB 1118108	۷ ال 12/28/2007

Client: GEI Consultants, Inc.

Job Number: 220-3406-1 Sdg Number: 220-3406

General Chemistry						
Client Sample ID:	EHS-GW-03					
Lab Sample ID: Client Matrix:	220-3406-1 Water			Date Sampled: Date Received:	11/1 11/1	6/2007 1100 6/2007 2100
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Sulfate	19.0 Anly Batch: 220-11361	mg/L Date Analyzed 11/22	0.0086 2/2007 0122	1.0	1.0	300.0
Sulfide	1.0 Anly Batch: 220-11321	U mg/L Date Analyzed 11/2*	0.22 1/2007 1243	1.0	1.0	376.1

Par 13/08

12/13/2007

693 1/18/08

Site:	Keyspan-East Hampton
Laboratory:	Test America, CT
Report No.:	220-8107-1
Reviewer:	Lisa McDonagh/GEI Consultants
Date:	April 1, 2009

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
Trip Blank	220-8107-1	VOC
EHS-SS-10	220-8107-3	VOC, SVOC, HERB
EHS-SS-08	220-8107-4	VOC, SVOC, HERB
EHS-SS-09	220-8107-5	VOC, SVOC, HERB
EHS-SS-07	220-8107-6	VOC, SVOC, HERB
BD-1	220-8107-7	VOC, SVOC, HERB
RB-1	220-8107-8	VOC, SVOC, HERB
Associated QC Samples(s):	Field Blanks:	Trip Blank
	Field Duplicate pair:	EHS-SS-09/BD-1

The above-listed soil samples were collected on February 18, 2009 and were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B, semivolatile organic compounds (SVOCs) by SW-846 method 8270C and herbicide organic compounds (HERBs) by SW-846 method 8151A. The data validation based on the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999 and the USEPA Region II Standard Operating Procedure (SOP) for the Validation of Organic Data acquired using SW-846 8260B, 8270C and 8151A, modified to accommodate the SW-846 methodologies.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Sample Preservation
- * Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations
 - Blanks
- Surrogate Recoveries
- NA Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- * Internal Standards
 - Field Duplicate Results
 - Ouantitation Limits and Data Assessment
- * Sample Quantitation and Compound Identification

Laboratory Job 220-8107-1, Organics, Page 1 of 8

* - All criteria were met.

All results are usable for project objectives.

Qualifications applied the data as a result of sampling error are discussed below.

• The HERB positive and/or nondetect results were qualified as estimated (J/UJ) due to field duplicate %RPDs which were above the required limits: 2,4-D and 2,4,5-T in samples EHS-SS-09 and BD-1. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select VOC and SVOC results, which were below the lowest calibration standard. These results were qualified as estimated (J). These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive VOC results for acetone in samples Trip Blank and RB-1 were qualified as estimated (J) due to continuing calibration nonconformances. The results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect Herbicide results for 2,4-D in all samples 220-8107-1 and 2,4,5-T in sample RB-1 were qualified as estimated (UJ) due to continuing calibration nonconformances. The nondetect results can be used for project objectives as estimated quantitation limits. These qualifications may have a minor impact on the data usability.
- The positive VOC results for methylene chloride in samples EHS-SS-10, EHS-SS-08, EHS-SS-09, EHS-SS-07 and BD-1 were qualified as a nondetect due to method blank contamination. The results are still usable for project objectives as nondetect. These qualifications may have a minor impact on the data usability.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYASP category B deliverables for the VOC, SVOC and HERB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the VOC, SVOC and HERB analyses.

GC/MS Tunes

All criteria were met in the VOC and SVOC analyses.

Initial and Continuing Calibrations

<u>VOC</u>

Compounds that did not meet criteria in the VOC calibrations are summarized in the following table.

Instrument ID MSV Compound	IC 02/26/09	CC 02/27/09
Acetone		XX(31.6%)
Samples Affected	All samples listed.	Trip Blank RB-1

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC); estimate (J) positive and blank-qualified (UJ) results only.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

+= Response factor (RRF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

The positive VOC result for acetone in samples Trip Blank and RB-1 in samples was qualified as estimated (J) due to continuing calibration nonconformances.

<u>SVOC</u>

All criteria were met in the SVOC analyses.

<u>HERB</u>

Compounds that did not meet criteria in the HERB calibrations are summarized in the following tables.

Instrument ID: 0911_2 Compound	CC 03/04/09 21:33	CC 03/04/09 21:33
2,4,5-T	RIX-ULP	XX(18.6%)
Samples Affected	RB-1	RB-1

X = Initial calibration (IC) relative standard deviation (%RSD) > 20; estimate (J) positive and (UJ) blankgualified nondetect results.

 $XX = \hat{C}$ ontinuing calibration (CC) percent difference (%D) > 15; estimate (J/UJ) positive and nondetect results.

XXX = The correlation coefficient for the calibration curve < 0.995; estimate (J) positive results only.

Instrument ID: 0911_2 Compound	CC 03/05/09 01:14 RTX-CLP	CC 03/05/09 01:14 RTX-CLPII
2,4-D		XX(16.0%)
2,4,5-T	XX(15.5%)	
Samples Affected	RB-1	RB-1

X = Initial calibration (IC) relative standard deviation (%RSD) > 20; estimate (J) positive and (UJ) blankqualified nondetect results.

XX = Continuing calibration (CC) percent difference (%D) > 15; estimate (J/UJ) positive and nondetect results.XXX = The correlation coefficient for the calibration curve < 0.995; estimate (J) positive results only.

Instrument ID:	CC	CC
0911_2	03/05/09	03/05/09
Compound	04:34	04:34
	RTX-CLP	RTX-CLPII
2,4-D		XX(16.4%)
Complex Affected	EHS-SS-10	EHS-SS-10
Samples Affected	EHS-SS-08	EHS-SS-08
	EHS-SS-07	EHS-SS-07
	BD-1	BD-1

X = Initial calibration (IC) relative standard deviation (%RSD) > 20; estimate (J) positive and (UJ) blankqualified nondetect results.

XX = Continuing calibration (CC) percent difference (%D) > 15; estimate (J/UJ) positive and nondetect results.

XXX = The correlation coefficient for the calibration curve < 0.995; estimate (J) positive results only.

Laboratory Job 220-8107-1, Organics, Page 4 of 8

Instrument ID: 0911_2 Compound	CC 03/05/09 06:47 RTX-CLP	CC 03/05/09 06:47 RTX-CLPII
2,4-D		XX(18.5%)
Samples Affected	EHS-SS-10 EHS-SS-08 EHS-SS-09 EHS-SS-07 BD-1	EHS-SS-10 EHS-SS-08 EHS-SS-09 EHS-SS-07 BD-1

X = Initial calibration (IC) relative standard deviation (%RSD) > 20; estimate (J) positive and (UJ) blankqualified nondetect results.

 $XX = \hat{C}$ ontinuing calibration (CC) percent difference (%D) > 15; estimate (J/UJ) positive and nondetect results.

XXX = The correlation coefficient for the calibration curve < 0.995; estimate (J) positive results only.

The nondetect Herbicide results for 2,4-D in all samples 220-8107-1 and 2,4,5-T in sample RB-1 were qualified as estimated (UJ) due to continuing calibration nonconformances.

<u>Blanks</u>

<u>VOC</u>

Methylene chloride, acetone and 2-butanone were detected in the method and field blank samples. The presence of blank contamination indicates that false positives may exist for this compound in the associated samples. Action Levels (ALs) were established at 10x (for common contaminants) and 5x (for other compounds) the concentrations detected. The following table summarizes the AL.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Action Level
Methylene chloride	Method Blank	EHS-SS-10 EHS-SS-08 EHS-SS-09 EHS-SS-07 BD-1	1.6 ug/Kg	16 ug/Kg
Acetone 2-butanone	Field Blank	All soil samples 220-8107-1.	4.8 ug/L 5.1 ug/L	48 ug/L 51 ug/L

Sample results were qualified as follows:

• If sample concentration was < the quantitation limit (QL) and ≤ the Action Level, qualify the result as a nondetect (U) at the QL.

Laboratory Job 220-8107-1, Organics, Page 5 of 8

- If sample concentration was > the QL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the QL and > the Action Level, qualification of the data was not required.

The positive VOC results for methylene chloride in samples EHS-SS-10, EHS-SS-08, EHS-SS-09, EHS-SS-07 and BD-1 were qualified as a nondetect due to method blank contamination.

<u>SVOC</u>

Target compounds were not detected in the SVOC method and field blank samples. Qualifications were not required.

<u>HERB</u>

Target compounds were not detected in the HERB method and field blank samples. Qualifications were not required.

Surrogate Recoveries

VOC, SVOC and HERB

All criteria were met in the VOC, SVOC and HERB analyses.

Ņ

MS/MSD Results

VOC, SVOC and HERB

Batch QC submitted with the data package.

LCS Results

<u>VOC</u>

All criteria were met in the VOC analyses.

<u>SVOC</u>

The following table lists the recoveries, which were outside of control limits in the LCS analyses and the resulting validation actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Validation Actions
2,4-dinitrophenol	85	0-36	All soil samples 220-8107-1.	Qualifications were not required.

Laboratory Job 220-8107-1, Organics, Page 6 of 8

<u>HERB</u>

All criteria were met in the HERB analyses

Internal Standards

VOC and SVOC

All criteria were met in the VOC and SVOC analyses.

Field Duplicate Results

Samples EHS-SS-09 and BD-1 were submitted as the field duplicate pair with this sample group.

<u>VOC</u>

All criteria were met in the VOC analyses. Target compounds were not detected in the VOC field duplicate samples. Qualifications were not required.

<u>SVOC</u>

The following table summarizes the SVOC RPDs of detected analytes, all of which met criteria.

Analyte	EHS-SS-09 ug/Kg	BD-1 ug/Kg	RPD (%)
Anthracene	83	320U	118, within 2XQL.
Benzo(a)anthracene	320	170	61, within 2XQL.
Benzo(a)pyrene	320	200	46
Benzo(b)fluoranthene	330	220	40
Benzo(ghi)perylene	490	380	25
Benzo(k)fluoranthene	120	84	35
Chrysene	350	210	50
Dibenz(ah)anthracene	62	320U	135, within 2XQL.
Fluoranthene	560	300	60, within 2XQL.
Indeno(123cd)pyrene	490	380	25
Phenanthrene	480	190	86, within 2XQL.
Pyrene	560	260	73, within 2XQL.

NC-Not calculable

For soil results >5xQL and RPDs>50; estimate (J) results in the field duplicate pair.

For soil results <5xQL; the sample and duplicate results must be within 2xQL.

<u>HERB</u>

The following table summarizes the HERB RPDs of detected analytes, all of which met criteria, with the exception of 2,4D and 2,4,5-T.

Analyte	EHS-SS-09 ug/Kg	BD-1 ug/Kg	RPD (%)
2,4-D	270	46U	142
2,4,5-T	230	11U	182

NC-Not calculable

For soil results >5xQL and RPDs>50; estimate (J) results in the field duplicate pair. For soil results <5xQL; the sample and duplicate results must be within 2xQL.

Quantitation Limits and Data Assessment

VOC, SVOC and HERB

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the VOC and SVOC analyses. These results were qualified as estimated (J) due to uncertainty at the low end of the calibration.

All VOC, SVOC and HERB analyses were performed at a 1:1 dilution.

Sample Quantitation and Compound Identification

VOC, SVOC and HERB

Calculations were spot-checked; no discrepancies were noted in the VOC, SVOC and HERB analyses.

Site:	East Hampton
Laboratory:	Test America, Shelton, CT
Report No.:	220-8107
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	March 28, 2009

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-GW-01	220-8107-02	Metals
EHS-SS-10	220-8107-03	Metals, Sulfate, Sulfide
EHS-SS-08	220-8107-04	Metals, Sulfate, Sulfide
EHS-SS-09	220-8107-05	Metals, Sulfate, Sulfide
EHS-SS-07	220-8107-06	Metals, Sulfate, Sulfide
BD-1	220-8107-07	Metals, Sulfate, Sulfide
RB-1	220-8107-08	Metals, Sulfate, Sulfide
Associated QC Samples(s):	Field Blanks:	RB-1
	Field Duplicate pair:	EHS-SS-09/BD-1

The above-listed soil samples and field blank sample were collected on February 18, 2009 and were analyzed for metals by SW-846 methods 6010B/7470/7471A, sulfate by EPA method 300.0, and sulfide by SW-846 method 9030. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540/R-04/004 (October 2004) and the USEPA Region 2 Standard Operating Procedure for the Evaluation of Metals for the Contract Laboratory Program, SOP HW-2, Revision 13 (September 2005), modified as necessary to accommodate the non-CLP methodologies used.

The inorganic data were evaluated based on the following parameters:

- * Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness
- * Holding Times and Sample Preservation
- * Instrument Calibration
- * Contract Required Quantitation Limit (CRQL) Standard Recoveries
 - Blank Analysis Results
 - Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Results
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Duplicate Results
- Field Duplicate Results
 - Laboratory Control Sample (LCS) Results
 - Serial Dilution Results
 - Moisture Content

*

• Detection Limits Results

- * Sample Quantitation Results
- * All criteria were met for this parameter.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives.

Qualifications applied to the data as a result of sampling error are discussed below.

• The positive results for sodium in sample EHS-SS-10 and sulfide in samples EHS-SS-10, EHS-SS-08, and EHS-SS-07 were qualified as nondetect (U) at the reporting limit due to field blank contamination. The results are usable for project objectives as nondetects which may have a minor effect on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- The positive results for selenium in sample EHS-SS-10 and sulfate in all soil samples were qualified as nondetect (U) at the reporting limit due to laboratory blank contamination. The results are usable for project objectives as nondetects which may have a minor effect on the data usability.
- Potential uncertainty exists for the following results which were detected above the method detection limit (MDL) but below the low calibration check standard:

Beryllium:	All soil samples
Cobalt:	EHS-SS-10
Copper:	EHS-GW-01
Iron:	EHS-GW-01
Manganese:	EHS-GW-01
Nickel:	EHS-GW-01
Selenium:	EHS-SS-08
Silver:	EHS-SS-07
Sodium:	EHS-SS-08, RB-1
Thallium:	EHS-SS-08
Sulfate:	RB-1

These results were qualified as estimated (J) and can be used for project objectives as estimated values which may have a minor effect on the data usability.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables for the metals and inorganic analyses.

Holding Times and Sample Preservation

All criteria were met.

Instrument Calibration

All criteria were met.

CRQL Standard Recoveries

All criteria were met.

Blank Results

Analytes were detected in the metals laboratory blank samples and field blank sample. Analytes which were detected in the project samples at levels less than five times those in the blanks were qualified as nondetect (U). The following table summarizes the contamination.

Analyte	Blank ID	Associated Samples	Maximum Concentration	Action Level
Antimony	Instrument	EHS-SS-10	23 ug/L, 4.6 mg/kg	23.0 mg/kg
Selenium	Method	EHS-SS-10, EHS-SS-08, EHS- SS-09, EHS-SS-07	0.90 mg/kg	4.5 mg/kg
Sulfate	Instrument	All samples	0.18 mg/L, 1.8 mg/kg	9.0 mg/kg
Sodium	RB-1	All soil samples	67 ug/L, 13.4 mg/kg	67 mg/kg
Sulfide	RB-1	All soil samples	5.6 mg/L, 28 mg/kg	140 mg/kg

Blank Actions

If the sample result is < QL and < action level; report the result as nondetect (U) at the QL. If the sample result is \ge QL and < action level; report the sample result as nondetect (U) at the reported value. For negative blank contamination \ge MDL; professional judgement was taken to estimate (J/UJ) those results which were less than the action level.

The positive results for selenium in sample EHS-SS-10 and sulfate in all soil samples were qualified as nondetect (U) at the reporting limit due to laboratory blank contamination. The positive results for sodium in sample EHS-SS-10 and sulfide in samples EHS-SS-10, EHS-SS-08, and EHS-SS-07 were qualified as nondetect (U) at the reporting limit due to field blank contamination.

ICP ICS Results

All analytes were recovered within control limits in the ICSAB sample analysis.

Positive results for manganese and vanadium and negative results for cobalt and zinc were detected above the method detection limit (MDL) in the ICSA solution analysis

associated with sample EHS-SS-10. Positive results for barium, manganese, sodium, and vanadium and negative results for cobalt and zinc were detected above the method detection limit (MDL) in the ICSA solution analysis associated with samples EHS-GW-01, EHS-SS-08, EHS-SS-09, EHS-SS-07, BD-1, and RB-1. Sample interferent levels were reviewed. Validation actions were not required on this basis as sample interferents levels were less than those of the ICSA sample.

MS Results

The laboratory performed MS/MSD analyses on various non-project samples for metals, sulfide, and sulfate. Due to differences in matrix, type, etc, the results of these MS/MSDs were not used to qualify the project samples in this case number.

Laboratory Duplicate Results

The laboratory performed the duplicate analyses on various non-project samples for metals, sulfide, and sulfate. Due to differences in matrix, type, etc, the results of these duplicates were not used to qualify the project samples in this case number.

Field Duplicate Results

Samples EHS-SS-09 and BD-1 were submitted as the field duplicate pair with this sample group. The following table summarizes the RPDs of the detected analytes, all of which were within the acceptance criteria.

Analyte	EHS-SS-09 (mg/kg)	BD-1 (mg/kg)	RPD (%)
Aluminum	7580	6980	8.2
Arsenic	12.3	8.7	34.3
Barium	22.8	20.8	9.2
Beryllium	0.38	0.43	12.3
Calcium	873	721	19.1
Chromium	9.7	8.9	8.6
Cobalt	3.1	3.1	0
Copper	24.0	20.2	17.2
Iron	10500	13100	22.0
Lead	25.4	22.6	11.7
Magnesium	1490	1380	7.7
Manganese	114	124	8.4
Mercury	0.039	0.068	54.2, Within 2xQL

Analyte	EHS-SS-09 (mg/kg)	BD-1 (mg/kg)	RPD (%)
Nickel	6.2	6.0	3.3
Potassium	356	331	7.3
Sodium	262	207	23.5
Vanadium	17.1	16.7	2.4
Zinc	31.9	26.7	17.7

For soil results > 5xQL and RPDs >50; estimate (J) results in the field duplicate pair. For soil results < 5xQL; the sample and duplicate results must be within 2xQL.

Moisture Content

All criteria were met.

LCS Results

The recovery for beryllium (121%) was above the control limits in the LCS associated with samples EHS-GW-01 and RB-01. The recovery for antimony (122%) was above the control limits in the LCS associated with samples EHS-SS-10, EHS-SS-08, EHS-SS-09, and EHS-SS-07. Validation action was not required on this basis as the results for beryllium and antimony were nondetect in the affected samples and therefore not affected by the potential high bias.

Serial Dilution Results

The laboratory performed the serial dilution analysis on various non-project samples for metals, sulfide, and sulfate. Due to differences in matrix, type, etc, the results of these serial dilutions were not used to qualify the project samples in this case number.

Detection Limits Results

Dilutions were not required.

Positive results which were above the MDL but below the reporting limit were reported by the laboratory with a "J" qualifier. These results were qualified as estimated (J) due to uncertainty at the low end of calibration.

However, in some cases the low level calibration check standard analyzed was less than the laboratory reporting limit. As analysis of the low level standard demonstrates the accuracy at that level, results which were above the method detection limit (MDL) but below the low level calibration check standard were estimated (J) by the validator. The following results were affected:

Beryllium: All soil samples

Cobalt:	EHS-SS-10
Copper:	EHS-GW-01
Iron:	EHS-GW-01
Manganese:	EHS-GW-01
Nickel:	EHS-GW-01
Selenium:	EHS-SS-08
Silver:	EHS-SS-07
Sodium:	EHS-SS-08, RB-1
Thallium:	EHS-SS-08
Sulfate:	RB-1

As the following results reported were greater than the lowest calibration standard or low level calibration check standard, the validator removed the laboratory "J" qualifiers: mercury in samples EHS-SS-09 and EHS-SS-07, nickel in sample BD-1, sodium in samples EHS-SS07 and BD-1, and zinc in sample BD-1.

The aqueous reporting limit for mercury was found to be calculated without the sample preparation factor (25 ml initial sample to 50 ml final volume). The validator edited the aqueous mercury reporting limits for the field blank sample to reflect the sample preparation dilution factor.

Sample Quantitation Results

Calculations were spot-checked; no discrepancies were noted.

Site:	East Hampton
Laboratory:	Test America, Shelton, CT
Report No.:	220-8107
Reviewer:	Lorie MacKinnon/GEI Consultants
Date:	March 28, 2009

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
EHS-SS-10 EHS-SS-08 EHS-SS-09 EHS-SS-07 BD-1 RB-1	220-8107-03 220-8107-04 220-8107-05 220-8107-06 220-8107-07 220-8107-08	Pesticide, PCBs Pesticide, PCBs Pesticide, PCBs Pesticide, PCBs Pesticide, PCBs Pesticide, PCBs
Associated QC Samples(s):	Field Blanks: Field Duplicate pair:	RB-1 EHS-SS-09/BD-1

The above-listed soil samples and field blank sample were collected on February 18, 2009 and were analyzed for pesticides by SW-846 method 8081A and polychlorinated biphenyls (PCBs) by SW-846 method 8082. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008 (October 1999) and the USEPA Region II Functional Guidelines for Evaluating Organic Analyses (March 2001), modified as necessary to accommodate the non-CLP methodology used.

The organic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Sample Preservation
- NA Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - GC/Electron Capture Detector (GC/ECD) Instrument Performance Checks
 - Initial and Continuing Calibrations
- * Blanks
 - Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- * Moisture Content
- NA Internal Standards
 - Field Duplicate Results
 - Quantitation Limits and Data Assessment
 - Sample Quantitation and Compound Identification

Laboratory Job 220-8107, Page 1 of 7

* - All criteria were met.

NA – Not applicable to the method reviewed.

All results are usable for project objectives.

Qualifications applied to the data as a result of sampling error are discussed below.

• The positive results for 4,4'-DDE and 4,4'-DDT in samples EHS-SS-09 and BD-1 were qualified as estimated (J) due to high relative percent differences (RPDs) in the evaluation of the field duplicate pair. The direction of the bias cannot be determined from this nonconformance. The results can be used for project objectives as estimated values which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select pesticide and PCB results which were below the lowest calibration standard and quantitation limit. These results were qualified as estimated (J). These results can be used for project objectives as estimated values which may have a minor impact on the data usability.
- The positive and nondetect results for endrin, 4,4'-DDD, 4,4'-DDT, and methoxychlor in sample RB-1 and 4,4'-DDE, alpha-BHC, gamma-BHC, beta-BHC, delta-BHC, aldrin, heptachlor epoxide, gamma-chlordane, alpha-chlordane, endosulfan I, dieldrin, endrin, 4,4'-DDD, endosulfan II, endosulfan sulfate, and endrin ketone in all soil samples were qualified as estimated (J/UJ) due to continuing calibration nonconformances. The direction of the bias cannot be determined from these nonconformances. The results can be used for project objectives as estimated values and nondetects with estimated quantitation limits which may have a minor impact on the data usability.
- The positive results for endrin aldehyde and Aroclor 1260 in sample EHS-SS-08, 4,4'-DDD in sample EHS-SS-09, gamma-chlordane, dieldrin, 4,4'-DDD, and endrin aldehyde in sample EHS-SS-07, and 4,4'-DDD in sample BD-1 were qualified as nondetect (U) at the reporting limits due to the high dual column relative percent differences (%RPDs). The results can be used for project objectives as nondetects which may have a minor impact on the data usability.
- The positive results for 4,4'-DDD in sample EHS-SS-08, 4,4'-DDT in sample EHS-SS-07, and endosulfan sulfate in sample BD-1 were qualified as estimated (J) due to the high dual column relative percent differences (%RPDs). The direction of the bias cannot be determined. The results can be used for project objectives as estimated values which may have a minor impact on the data usability.

The validation findings were based on the following information.

Laboratory Job 220-8107, Page 2 of 7

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables for the pesticide and PCB analyses.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met in the pesticide and PCB analyses.

GC/ECD Instrument Performance Checks

The DDT breakdown (43.4 and 45.2) exceeded the control limit on both columns in the standard analyzed on 02/25/09 05:37 on instrument HP6890-08, associated with sample RB-1. Validation actions were not required as the affected compound results were nondetect.

Initial and Continuing Calibrations

Pesticides

Compounds that did not meet criteria in the pesticide continuing calibrations are summarized in the following tables.

Instrument ID HP6890-08 Compound	CC 02/25/09 06:03 RTX-CLP	CC 02/25/09 06:03 RTX-CLP Pest2
Endrin	XX (21.4%)	XX (22.3%)
4,4'-DDD	XX (37.1%)	XX (38.3%)
4,4'-DDT	XX (42.2%)	XX (42.2%)
Methoxychlor	XX (23.5%)	XX (21.8%)
Samples Affected	RB-1	RB-I

Instrument ID HP6890-08 Compound	CC 03/05/09 03:43 RTX-CLP Pest2	CC 03/05/09 03:43 RTX-CLP
Alpha-BHC	XX (41.2%)	XX (40.3%)
Gamma-BHC	XX (36.0%)	XX (32.7%)
Beta-BHC	XX (24.0%)	XX (23.3%)
Delta-BHC	XX (26.6%)	XX (23.1%)

Laboratory Job 220-8107, Page 3 of 7

Instrument ID HP6890-08	CC 03/05/09 03:43	CC 03/05/09 03:43
Compound	RTX-CLP Pest2	RTX-CLP
Aldrin	XX (23.5%)	XX (21.5%)
Heptachlor epoxide	XX (25.1%)	XX (23.6%)
Gamma-chlordane	XX (23.8%)	XX (20.6%)
Alpha-chlordane	XX (27.7%)	XX (21.3%)
4,4'-DDE		XX (15.1%)
Endosulfan I	XX (26.3%)	XX (23.2%)
Dieldrin	XX (29.5%)	XX (27.1%)
Endrin	XX (31.0%)	XX (30.5%)
4,4'-DDD	XX (32.1%)	XX (25.1%)
Endosulfan II	XX (24.9%)	XX (20.5%)
Endosulfan sulfate	XX (29.8%)	XX (24.4%)
Endrin ketone	XX (22.2%)	
Samples Affected	All soil samples	All soil samples

X = Initial calibration (IC) relative standard deviation (%RSD) > 30 for GC/MS (VOC and SVOC) and >20 for GC (pesticide/PCBs and herbicides); estimate (J) positive and blank-qualified (UJ) results only.

XX = Continuing calibration (CC) percent difference (%D) > 25 for GC/MS and >15 for GC; estimate (J/UJ) positive and nondetect results.

XXX = Continuing calibration (CC) percent difference (%D) > 90; estimate (J) positive results and reject (R) nondetect results.

The positive and nondetect results for endrin, 4,4'-DDD, 4,4'-DDT, and methoxychlor in sample RB-1 and 4,4'-DDE, alpha-BHC, gamma-BHC, beta-BHC, delta-BHC, aldrin, heptachlor epoxide, gamma-chlordane, alpha-chlordane, endosulfan I, dieldrin, endrin, 4,4'-DDD, endosulfan II, endosulfan sulfate, and endrin ketone in all soil samples were estimated (J/UJ) due to continuing calibration nonconformances.

<u>PCB</u>

The following table lists the Aroclor peak initial and continuing calibration results which were outside of control limits. No validation actions were required as the Aroclor %D averages for the standards were within control limits.

Compound	Calibration Date	Instrument ID/Column	%D
Aroclor 1016-5 Average Aroclor 1016	02/25/09 19:24	HP5890-04/Pest2	16.9% 8.1%
Aroclor 1260-5 Average Aroclor 1260	02/25/09 19:24	HP5890-04/Pest2	17.5% 6.8%

<u>Blanks</u>

Target compounds were not detected in the pesticide and PCB method and instrument blanks. Target compounds were not detected in the pesticide and PCB field blank sample.

Surrogate Recoveries

Pesticide

All criteria were met in the pesticide analyses.

<u>PCB</u>

The following table lists the surrogates recovered outside of control limits and the resulting actions.

Sample	DCB1	DCB2	TCMX1	TCMX2	Validation actions
BD-1	- 25-159		-	158%	Validation action was not required as the
				12070	surrogate recovery was within control limits on the alternate column.

- Criteria met

MS/MSD Results

Pesticide

MS/MSD analyses were performed on a non-project sample (220-8106-3) for the pesticide analyses. The recoveries for 4,4'-DDT (136%) and endrin (129%) were above the control limits in the MS. Validation actions were not required as the sample was not included in this sample set.

<u>PCB</u>

An MS/MSD was not associated with this sample set.

LCS Results

All criteria were met in the pesticide and PCB analyses.

Moisture Content

All criteria were met.

Field Duplicate Results

Samples EHS-SS-09 and BD-1 were submitted as the field duplicate pair with this sample group. The following table summarizes the RPDs of the detected analytes, which were within the acceptance criteria, with the exception of 4,4'-DDE and 4,4'-DDT. The positive results for 4,4'-DDE and 4,4'-DDT in samples EHS-SS-09 and BD-1 were estimated (J).

Analyte	EHS-SS-09 (ug/kg)	BD-1 (ug/kg)	RPD (%)
4,4°-DDE	18	33	58.8
4,4' - DDT	15	31	69.6
Dieldrin	3.9 U	0.93	NC, Within 2xQL
Endosulfan sulfate	3.9 U	2.1	NC, Within 2xQL
Heptachlor	2.0 U	0.53	NC, Within 2xQL
Heptachlor epoxide	2.0 U	0.70	NC, Within 2xQL
Aroclor 1260	13	19	37.5

For soil results > 5xQL and RPDs >50; estimate (J) results in the field duplicate pair. For soil results < 5xQL; the sample and duplicate results must be within 2xQL.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the MDL in the pesticide and PCB analyses. These results were qualified as estimated (J) by the laboratory. Dilutions were not required.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted in the pesticide and PCB analyses.

It should be noted that the laboratory did not report the dual column results and RPDs for the detected pesticide compounds. The validator calculated the dual column RPDs. The following table lists the dual column RPDs which were outside of control limits and the resulting actions.

Sample	Compound	RPD	Actions
EHS-SS-08	4.4'-DDD	47.7	Estimate (J) the positive result for 4.4'-DDD.
EHS-SS-08	Endrin aldehyde Aroclor 1260	98.1 97.1	Results were less than the reporting limit; qualify the results for endrin aldehyde and Aroclor 1260 as nondetect (U) at the reporting limit.
EHS-SS-09	4,4'-DDD	61.0	Result was less than the reporting limit; qualify the result for 4,4'-DDD as nondetect (U) at the reporting limit.
EHS-SS-07	Gamma-chlordane Dieldrin 4,4'-DDD Endrin aldehyde	73.9 68.2 62.2 139.8	Results were less than the reporting limit; qualify the results for gamma-chlordane, dieldrin, 4,4'- DDD, and endrin aldehyde as nondetect (U) at the reporting limit.
EHS-SS-07	4,4'-DDT	66.9	Estimate (J) the positive result for 4,4'-DDT.
BD-1	4,4-DDD	54.7	Result was less than the reporting limit; qualify the result for 4,4'-DDD as nondetect (U) at the reporting limit.
BD-1	Endosulfan sulfate	41.2	Estimate (J) the positive result for endosulfan sulfate.

For Pesticide/PCB %RPDs between 25 and 70%; estimate (J) the positive result.

For Pesticide/PCB %RPDs between 70and 100%; qualify the result as presumptively present (JN).

For pesticide/PCB %RPD >50% and the result < QL; raise the value to the QL and qualify as nondetect (U).

For pesticide/PCB %RPD > 100% and interference is present; qualify the result as presumptively present (JN). For pesticide/PCB %RPD > 100% and interference is not present; reject (R) result.

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID: EHS-SS-07 Lab Sample ID: 220-8107-6

Lab Sample ID: Client Matrix:	220-8107-6 Solid	% Moisture:	19.2	Date Sample Date Receive	ed: 02/18/2009 110 ed: 02/19/2009 100	5)
		8260B Volatile Organic C	ompounds	(GC/MS)		
Method:	8260B	Analysis Batch: 220	-24788	Instrument ID:	HP 5890/5971A GC/	٨s

Method:	8260B	Analysis Batch: 220-24788	Instrument ID:	HP 5890/	5971A GC/	ħ
Preparation:	5030B		Lab File ID:	N1687.D		
Dilution:	1.0		Initial Weight/Volu	ume:	5 g	
Date Analyzed:	03/03/2009 1747		Final Weight/Volu	ime:	5 mL	
Date Prepared:	03/03/2009 1747		-			

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL.
Acetone	25	U	2.8	25
Benzene	6.2	U	0.71	6.2
Bromodichloromethane	6.2	U	0.37	6.2
Bromoform	6.2	U	0.75	6.2
Bromomethane	6.2	U	2.6	6.2
Methyl Ethyl Ketone	12	U	2.0	12
Carbon disulfide	6.2	U	0.51	6.2
Carbon tetrachloride	6.2	U	1.2	6.2
Chlorobenzene	6.2	U	0.73	6.2
Chloroethane	6.2	U	1.2	6.2
Chloroform	6.2	U	0.42	6.2
Chloromethane	6.2	U	0.96	6.2
Dibromochloromethane	6.2	U	0.43	6.2
1,1-Dichloroethane	6.2	U	0.37	6.2
1,2-Dichloroethane	6.2	U	0.72	6.2
1,1-Dichloroethene	6.2	U	0.72	6.2
1,2-Dichloropropane	6.2	U	0.83	6.2
cis-1,3-Dichloropropene	6.2	U	0.69	6.2
trans-1,3-Dichloropropene	6.2	U	0.33	6.2
Ethylbenzene	6.2	U	0.87	6.2
2-Hexanone	12	U	1.5	12
Methylene Chloride	250 -3.1	——/	1.3	25
methyl isobutyl ketone	6.2	U	0.68	6.2
Styrene	6.2	U	0.19	6.2
1,1,2,2-Tetrachloroethane	6.2	U	0.64	6.2
Tetrachloroethene	6.2	U	1.0	6.2
Toluene	6.2	U	0.092	6.2
1,1,1-Trichloroethane	6.2	U	0.66	6.2
1,1,2-Trichloroethane	6.2	U	0.46	6.2
Trichloroethene	6.2	U	1.0	6.2
Vinyl chloride	6.2	U	0.28	6.2
Xylenes, Total	6.2	U	0.60	6.2
cis-1,2-Dichloroethene	6.2	U	0.46	6.2
trans-1,2-Dichloroethene	6.2	U	0.48	6.2
Surrogate	%Rec		Accept	ance Limits
1,2-Dichloroethane-d4 (Surr)	91		49 - 1	34
4-Bromofluorobenzene	87		36 - 1	33
Dibromofluoromethane	92		60 - 1	30

60 - 130

51 - 137

Toluene-d8 (Surr)

89

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID: EHS-SS-07

Lab Sample ID: Client Matrix:	220-8107-6 Solid	% Moisture: 19.2		Date Sampled: Date Received:	02/18/2009 1105 02/19/2009 1000
	8270C Semivolatile C	ompounds by Gas Chromatog	raphy/Mass \$	Spectrometry (GC/N	IS)
Method:	8270C	Analysis Batch: 220-2504	6 In	strument ID: HP 6	6890/5975
Preparation:	3541	Prep Batch: 220-24518	La	ab File ID: A42	09.D
Dilution:	1.0	-	In	itial Weight/Volume:	.15.56 g
Date Analyzed:	03/10/2009 2211		Fi	inal Weight/Volume:	1 mL
Date Prepared:	02/21/2009 0743		In	jection Volume:	1.0 uL
Analyte	DryWt	Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL.
Acenaphthene		320	U	70	320
Acenaphthylene		320	U	74	320
Anthracene		320	U	71	320
Benzo[a]anthrace	ne	180	1.11	60	320

Benzo[a]anthracene	180	JJ	60	320	
Benzo[a]pyrene	210	137	45	320	
Benzolbifluoranthene	240	JJ/	57	320	
Benzo[g,h,i]perylene	410		45	320	
Benzo[k]fluoranthene	84	170	52	320	
Bis(2-chloroethoxy)methane	320	U	66	320	
Bis(2-chloroethyl)ether	320	U	91	320	
Bis(2-ethylhexyl) phthalate	320	U	64	320	
Butyl benzyl phthalate	320	U	65	320	
Carbazole	320	U	64	320	
Chrysene	260	JJJ	68	320	
Di-n-butyl phthalate	320	U	75	320	
Di-n-octyl phthalate	320	U	57	320	
4-Bromophenyl phenyl ether	320	U	59	320	
4-Chloroaniline	320	U	52	320	
2-Chloronaphthalene	320	U	68	320	
4-Chlorophenyl phenyl ether	320	U	68	320	
Dibenz(a,h)anthracene	320	U	41	320	
Dibenzofuran	320	U	70	320	
Diethyl phthalate	320	U	75	320	
Dimethyl phthalate	320	U	68	320	
1,2-Dichlorobenzene	320	U	64	320	
1,3-Dichlorobenzene	320	U	54	320	
1,4-Dichlorobenzene	320	U	69	320	
3,3'-Dichlorobenzidine	800	U	66	800	
2,4-Dinitrotoluene	320	U	61	320	
2,6-Dinitrotoluene	320	U	53	320	
Fluoranthene	300	JTV	71	320	
Fluorene	320	ປິ	73	320	
Hexachlorobenzene	320	U	77	320	
Hexachlorobutadiene	320	U	68	320	
Hexachlorocyclopentadiene	800	U	100	800	
Hexachloroethane	320	U	63	320	
Indeno[1,2,3-cd]pyrene	400		44	320	
Isophorone	320	U	74	320	
2-Methylnaphthalene	320	U	74	320	
Naphthalene	320	U	70	320	
2-Nitroaniline	2000	U	63	2000	
3-Nitroaniline	2000	U	61	2000	
Nitrobenzene	320	U	78	320	
N-Nitrosodi-n-propylamine	320	U	80	320	
TestAmerica Connecticut	Page 29 of 2173	3	Enn 21/20109	1C 4.109 0	3/18/2009

Client: GEI Con	sultants, Inc.			Job	Number: 220-8107-1
Client Sample ID:	EHS-SS-07			5	ag Number: 220-8107
Lab Sample ID:	220-8107-6			Date Sampled:	02/18/2009 1105
Client Matrix:	Solid	% Moisture: 19.2		Date Received:	02/19/2009 1000
	8270C Semivolatile C	ompounds by Gas Chromatogra	phy/Mass S	pectrometry (GC/I	MS)
Method:	8270C	Analysis Batch: 220-25046	Ins	trument ID: HP	6890/5975
Preparation:	3541	Prep Batch: 220-24518	Lal	b File ID: A42	209.D
Dilution:	1.0		Init	ial Weight/Volume:	15.56 g
Date Analyzed:	03/10/2009 2211		Fin	al Weight/Volume:	1 mL
Date Prepared:	02/21/2009 0743		Inje	ection Volume:	1.0 uL
Analuta	Do/M/t	Corrected: V. Recult (un/Ka)	Qualifier		DI
N Nitrosodiobopyla	Diywi			65	320
Phenanthrone		220	1-1-1	70	320
Pyrene		300		79	320
1 2 4-Trichlorobenz	rene	320	U J J	65	320
4-Chloro-3-methylp	henol	320	Ŭ	58	320
2-Chlorophenol		320	Ŭ	72	320
2-Methylphenol		320	U	58	320
4-Methylphenol		320	U	77	320
2,4-Dichlorophenol		320	U	67	320
2,4-Dimethylpheno	l	320	U	52	320
2,4-Dinitrophenol		2000	U *~~~	440	2000
4,6-Dinitro-2-methy	lphenol	2000	U	29	2000
2-Nitrophenol		320	U	56	320
4-Nitrophenol		2000	U	72	2000
Pentachlorophenol		2000	U	40	2000
Phenol		320	U	66	320
2,4,5-Trichloropher	101	2000	U	59	2000
2,4,6- i richioropher	101	320	0	60 50	320
A Nitroanilino		320	0	56 60	320
2.2' ovubie[1.chlore	propagel	320	0	77	320
Atrazino	φισματισ]	390	0	71	390
Simazine		390	U	16	390
Surrogate		%Rec		Accepta	nce Limits
2-Fluorobinhenvl	l y fergennegen fergen op en en en geschenden en gehöcktigte für eine generation i de ferfen.	44 	al and any fact that the second s	32 - 13	
2-Fluorophenol		65		25 - 11	3
2.4.6-Tribromopher	nol	60		24 - 15	0
Nitrobenzene-d5		68		25 - 12	0
Phenol-d5		65		27 - 12	2
Terphenyl-d14		65		35 - 14	0

Emm 109 +11109 3126/09 +11109 03/18/2009

Client: GEI Cor	nsultants, Inc.			oL	b Number: 220-8107-1 Sdg Number: 220-8107
Client Sample ID	EHS-SS-07				
Lab Sample ID:	220-8107-6			Date Sampled:	02/18/2009 1105
Client Matrix:	Solid	% Moisture: 19.2	11	Date Received:	02/19/2009 1000
	8082 Polych	lorinated Biphenyls (PCBs) by	Gas Chr	omatography	
Method:	8082	Analysis Batch: 220-25007		Instrument ID: HI	P 5890 with dual ECD
Prenaration:	3550B	Prep Batch: 220-24485		Lab File ID: C4	4748435.d
Dilution:	10			Initial Weight/Volum	e: 30.20 g
Data Analyzed	03/09/2009 1619			Final Weight/Volume	e: 10 mL
Date Prenared:	02/19/2009 2010			Injection Volume:	1.0 uL
Date i Toparou.				Column ID:	PRIMARY
Apolyte	DrvWt C	orrected: Y Result (ug/Kg)	Qualifie	ər MDL	RL
DCB_1016		21	U	1.6	21
PCB-1221		21	U	1.6	21
PCB-1232		21	U	1.6	21
PCB-1242		21	U	1.6	21
PCB-1248		21	U	1.6	21
PCB-1254		21	U	1.8	21
PCB-1260		180		8.1	21
Surrogate		%Rec	19. des a del Miller Miller I de 19	Accep	tance Limits
Tetrachloro-m-xyl	ene	127		24 -	154
DCB Decachiorob	piphenyl	110		25 -	159
Method:	8082	Analysis Batch: 220-25007		Instrument ID: H	P 5890 with dual ECD
Preparation:	3550B	Prep Batch: 220-24485		Lab File ID: C	4748435.d
Dilution:	1.0			Initial Weight/Volum	te: 30.20 g
Date Analyzed:	03/09/2009 1619			Final Weight/Volum	e: 10 mL
Date Prepared:	02/19/2009 2010			Injection Volume:	1.0 uL
Bulle () part = 1				Column ID:	SECONDARY
Surrogate		%Rec	n a state of the second strengt	Accep	otance Limits
Tetrachloro-m-xvl	ene	117		24 -	154
DCB Decachlorot	piphenyl	81		25 -	159

x 1/1/09 03/18/2009

Page 46 of 2173

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID: Lab Sample ID: Client Matrix:	EHS-SS-07 220-8107-6 Solid	Date Sampled: 02/18/20 % Moisture: 19.2 Date Received: 02/19/20						
8081A Organochlorine Pesticides (GC)								
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 03/05/2009 0201 02/19/2009 2010	Analysis Batch: 220-24849 Prep Batch: 220-24485		Instrument ID: HP 6 Lab File ID: D836 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: PR	890 dual ECD 35035.D 30.20 g 10 mL 1.0 uL IMARY			
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	DryWt lane) e .	Corrected: Y Result (ug/Kg) $-1.1 Q.I \cup J$ $9.4 J \sim$ $16 J \sim$ 2.1 2.1 2.1 2.1 2.1 2.1 2.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 2.1 2.1 2.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 2.1 2.1 2.1 2.1 4.1 4.1 4.1 4.1 4.1 2.1 2.1 2.1 2.1 2.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 2.1 3.1 4.0 2.1 4.0	Qualifie J-V UJ- UJ- UJ- UJ- UJ- UJ- UJ- UJ-	MDL 0.73 0.82 1.0 0.22 0.30 0.46 0.45 0.70 0.36 0.76 0.73 0.76 0.75 0.35 0.39 0.37 4.5 11 0.34 0.65 3.7	RL 4.1 4.1 2.1 2.1 2.1 2.1 2.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2			
Surrogate DCB Decachlorob Tetrachloro-m-xv/e	iphenyl	%Rec 75 63	ang ginakanan da kana kana per semanahana	Acceptar 25 - 15 24 - 15	nce Limits 9 4			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 03/05/2009 0201 02/19/2009 2010	Analysis Batch: 220-24849 Prep Batch: 220-24485		Instrument ID: HP Lab File ID: D83 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: SE	6890 dual ECD 655035.D 30.20 g 10 mL 1.0 uL ECONDARY			

DCB Decachlorobiphenyl 120	25 - 159
Tetrachloro-m-xylene 60	24 - 154

41.109 X

Stadlas

Client: GEI Consultants, Inc.

03/18/2009

FORM 1 HERBICIDES ORGANICS ANALYSIS DAT	STLCTS SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contra	EHS-SS-07
Lab Code: STLV Case No.: RIVERGEI SAS	No.: SDG No.: 22081071
Matrix: (soil/water) SOIL	Lab Sample ID: 785227
Sample wt/vol: 50.0 (g/mL) G	Lab File ID: 04MA091433-R341
% Moisture: 18 decanted: (Y/N) N	Date Received: 02/20/09
Extraction: (SepF/Cont/Sonc) OTHER	Date Extracted: 02/21/09
Concentrated Extract Volume: 10(mL)	Date Analyzed: 03/05/09
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND (ug	NCENTRATION UNITS: g/L or ug/Kg) UG/KG Q
94-75-72,4-D 93-72-12,4,5-TP (Silvex) 93-76-52,4,5-T	46 UVJ 4.6 U 12 U

FORM I HERBICIDES

03/18/2009

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-07

Chem Sample is					
Lab Sample ID: Client Matrix:	220-8107-6 Solid	% Moisture: 19.2	Date Date	2/18/2009 1105 2/19/2009 1000	
annan di kanan	ann an	6010B Metals (ICP)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/05/2009 1506 03/02/2009 1146	Anałysis Batch: 220-24866 Prep Batch: 220-24742	ich: 220-24866 Instrument ID: 220-24742 Lab File ID: Initial Weight/Volun Final Weight/Volun		TJA Trace ICAP W030509 1.26 g 250 mL
6 maluto	DrvWt Correcte	ed: Y Result (mg/Kg)	Qualifier	MDL	RL
Analyte Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium Zinc	Diywi conece	$\begin{array}{c} 0.42 \\ 7850 \\ 7.1 \\ 30.2 \\ 0.49 \\ 868 \\ 6.1 \\ 4.9 \\ 10.1 \\ 136 \\ 11100 \\ 322 \\ 1470 \\ 119 \\ 154 \\ 7.7 \\ 36.6 \\ 12.3 \\ 12.3 \\ 8.6 \\ 19.1 \\ 32.7 \end{array}$	J J U U U U U U U U U	0.34 77.3 0.76 0.27 13.5 0.64 0.25 0.34 0.74 8.6 20.9 12.3 0.25 13.5 0.64 0.52 1.5 1.1 3.8 0.22 1.8	$\begin{array}{c} 3.7\\ 123\\ 6.1\\ 2.5\\ 2.5\\ 245\\ 6.1\\ 2.5\\ 3.7\\ 6.1\\ 73.6\\ 245\\ 43.0\\ 7.4\\ 245\\ 6.1\\ 6.1\\ 12.3\\ 12.3\\ 8.6\\ 4.9\\ 24.5\end{array}$
And the state of the	nen generale de la competente de la competencia de la competencia de la competencia de la competencia de la com La competencia de la c	7471A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 02/27/2009 1453 02/26/2009 1609	Analysis Batch: 220-24727 Prep Batch: 220-24679	Instrum Lab File Initial V Final W	ent ID: e ID: /eight/Volume: /eight/Volume:	Perkin Elmer FIMS N/A 0.62 g 50 mL

Apoluto	DrvWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Mercury		0.051	17	0.018	0.060	

03/18/2009 Hillon

WET CHEMISTRY

Sample Report Summary

Client Sample No.

EHS-SS-07

Lab Name: TestAmerica Burlington	Contract: 220-8107-1	SDG No.: 22081071
Lab Code: TALVT	Case No.: RIVERGEI	Lab Sample ID: 785227
Matrix: SOLID	Client: STLCTS	Date Received: 02/20/09

% Solids: 81.7

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.	
9030B/9034	Acid Soluble Sulfide	02/24/09	BLKSU022409A	mg/Kg	1	17.5	17.5 U	/	
N623	Solids. Percent	02/23/09	N/A	%	1.0		81.7		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
						Ę			
									ł
									ĺ
									ł
									ŀ
									l

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID:	EHS-SS-08		-
Lab Sample ID: Client Matrix:	220-8107-4 Solid	% Moisture: 23.4	Date Sampled: 02/18/2009 1045 Date Received: 02/19/2009 1000
		8260B Volatile Organic Compounds (GC/MS)
Method:	8260B	Analysis Batch: 220-24788	Instrument ID: HP 5890/5971A GC/MS
Preparation:	5030B		Lab File ID: N1685.D
Dilution:	1.0		Initial Weight/Volume: 5 g
Date Analyzed:	03/03/2009 1651		Final Weight/Volume: 5 mL
Date Prepared:	03/03/2009 1651		

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL.	
Acetone	26	U	2.9	26	
Benzene	6.5	U	0.74	6.5	
Bromodichloromethane	6.5	U	0.39	6.5	
Bromoform	6.5	U	0.80	6.5	
Bromomethane	6.5	U	2.7	6.5	
Methyl Ethyl Ketone	13	U	2.1	13	
Carbon disulfide	6.5	U	0.54	6.5	
Carbon tetrachloride	6.5	U	1.2	6.5	
Chlorobenzene	6.5	U	0.77	6.5	
Chloroethane	6.5	U	1.3	6.5	
Chloroform	6.5	U	0.44	6.5	
Chloromethane	6.5	U	1.0	6.5	
Dibromochloromethane	6.5	U	0.46	6.5	
1,1-Dichloroethane	6.5	U	0.39	6.5	
1,2-Dichloroethane	6.5	U	0.76	6.5	
1,1-Dichloroethene	6.5	U	0.76	6.5	
1,2-Dichloropropane	6.5	U	0.87	6.5	
cis-1,3-Dichloropropene	6.5	U	0.73	6.5	
trans-1,3-Dichloropropene	6.5	U	0.35	6.5	
Ethylbenzene	6.5	U	0,91	6.5	
2-Hexanone	13	U	1.6	13	
Methylene Chloride	260 - 2.2	<u> </u>	1.4	26	
methyl isobutyl ketone	6.5	U	0.72	6.5	
Styrene	6.5	U	0.20	6.5	
1,1,2,2-Tetrachloroethane	6.5	U	0.68	6.5	
Tetrachloroethene	6.5	U	1.1	6.5	
Toluene	6.5	U	0.097	6.5	
1,1,1-Trichloroethane	6.5	U	0.69	6.5	
1,1,2-Trichloroethane	6.5	U	0.48	6.5	
Trichloroethene	6.5	U	1.1	6.5	
Vinyl chloride	6.5	U	0.30	6.5	
Xylenes, Total	6.5	U	0.63	6.5	
cis-1,2-Dichloroethene	6.5	U	0.48	6.5	
trans-1,2-Dichloroethene	6.5	U	0.51	6.5	
Surrogate	%Rec		Accept	ance Limits	
1,2-Dichloroethane-d4 (Surr)	90		49 - 1	34	
4-Bromofluorobenzene	87		36 - 1	33	
Dibromofluoromethane	83		60 - 1	30	

EMP 109

Toluene-d8 (Surr)

85

Client: GEI Con	sultants, Inc.	-					Job Number: Sda Numb	220-8107-1
Client Sample ID:	EHS-SS-08						oug Numb	01. 220-0107
Lab Sample ID:	220-8107-4					Date Sampled	d: 02/18/20	09 1045
Client Matrix:	Solid		% Moisture:	23.4		Date Receive	d: 02/19/20	09 1000
	8270C Semivo	latile Compo	ounds by Gas Chro	matograp	hy/Mas	s Spectrometry (C	GC/MS)	
Method:	8270C		Analysis Batch: 220	-25046		Instrument ID:	HP 6890/597	5
Preparation:	3541		Prep Batch: 220-24	518		Lab File ID:	A4207.D	
Dilution:	1.0	40				Initial Weight/Volu	me: 15.0	4 g
Date Analyzed:	03/10/2009 21	19				Final Weight/Volu	me: 1 m 10	ا ل مرا
Date Frepareu.	02/21/2009 01	40				mjecaon volume.	1.0	uL
Analyte		DrvWt Corre	cted: Y Result (ua/k	(a)	Qualifie	er MDL	RL	
Acenaphthene		biytti oono	350	·9/	U	76	350	
Acenaphthylene			350		U	80	350	
Anthracene			350		U/	, 78	350	
Benzo[a]anthracen	e		97		JJ	. 65	350	
Benzo[a]pyrene			90		J	49	350	
Benzo[b]fluoranthe	ne		150		JJJ	62	350	
Benzolg,h,ijpervlen	ie 		410			50	350	
Benzojkjiluorantnei	ne		300		0	20 70	350	
Bis(2-chloroethol)	ther		350		0	12	350	
Bis(2-ethylbeyyl) of	nthalate		350		U U	70	350	
Butvi benzvi phthal	ate		350		Ŭ	71	350	
Carbazole			350		Ŭ	70	350	
Chrysene			190		JJV	74	350	
Di-n-butyl phthalate)		350		U	82	350	
Di-n-octyl phthalate)		350		U	62	350	
4-Bromophenyl phe	enyl ether		350		U	65	350	
4-Chloroaniline			350		U	57	350	
2-Chloronaphthaler	ne 		350		U	75	350	
4-Chlorophenyl phe	enyi etner		350		U	14	300	
Dibenz(a,n)animac	ene		350		0	44	350	
Diethyl obthalate			350		U U	82	350	
Dimethyl phthalate			350		Ŭ	74	350	
1.2-Dichlorobenzen	e		350		Ū	70	350	
1,3-Dichlorobenzen	e		350		U	58	350	
1,4-Dichlorobenzen	e		350		U	75	350	
3,3'-Dichlorobenzid	ine		870		U	72	870	
2,4-Dinitrotoluene			350		U	67	350	
2,6-Dinitrotoluene			350		U	58	350	
Fluorantnene			140		J J/J/	78	300	
Hovechlorobenzen	5		350		11	84	350	
Hexachlorobutadier	7 10		350		11	75	350	
Hexachlorocyclope	ntadiene		870		Ŭ	110	870	
Hexachloroethane			350		Ū	68	350	
Indeno[1,2,3-cd]pyr	ene		390			48	350	
Isophorone			350		U	80	350	
2-Methylnaphthaler	ne		350		U	80	350	
Naphthalene			350		U	77	350	
2-Nitroaniline			2200		U	69	2200	ſ
3-Nitroaniline			2200		U	66	2200	1
Nitrobenzene	lamine		350		U	85 97	350	
rv-ivitrosoai-n-propy	amme		300		U	01	30U	
TestAmerica Con	necticut		Page 25 c	of 2173		ENT 109	1.109	03/18/2009
						3°	-(11)	

9

Analytical Data

Client: GEI Consultants, Inc.

EHS-SS-08

Client Sample ID:

Job Number: 220-8107-1 Sdg Number: 220-8107

Lab Sample ID: Client Matrix:	220-8107-4 Solid	% Moisture: 23.4		Date Sampled: 0 Date Received: 0	2/18/2009 1045 2/19/2009 1000
	8270C Semivolatile	Compounds by Gas Chromatogra	phy/Mass Sp	ectrometry (GC/MS	6)
Method:	8270C	Analysis Batch: 220-25046	Inst	rument ID: HP 68	390/5975
Preparation:	3541	Prep Batch: 220-24518	Lab	File ID: A4207	7.D
Dilution:	1.0		Initi	al Weight/Volume:	15.04 g
Date Analyzed:	03/10/2009 2119		Fina	al Weight/Volume:	1 mL
Date Prepared:	02/21/2009 0743		Inje	ction Volume:	1.0 uL
Analyte	DryWi	t Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
N-Nitrosodiphenv	lamine	350	U	70	350
Phenanthrene		120	Jゴイ	76	350
Pyrene		170	」ゴノ	86	350
1,2,4-Trichlorober	zene	350	U	71	350
4-Chloro-3-methy	lphenol	350	U	63	350
2-Chlorophenol		350	U	79	350
2-Methylphenol		350	U	64	350
4-Methylphenol		350	U	84	350
2,4-Dichlorophene	ol	350	U	73	350
2,4-Dimethylphen	ol	350	U	57	350
2,4-Dinitrophenol		2200	U ** 🗸	480	2200
4,6-Dinitro-2-meth	ylphenol	2200	U	32	2200
2-Nitrophenol		350	U	61	350
4-Nitrophenol		2200	U	79	2200
Pentachloropheno	bl	2200	U	43	2200
Phenol		350	U	72	350
2,4,5-Trichlorophe	enol	2200	U	64	2200
2,4,6-Trichlorophe	enol	350	U	71	350
Benzyl alcohol		350	U	61	350
4-Nitroaniline		350	U	66	350
2,2'-oxybis[1-chlor	ropropanej	350	U	84	350
Atrazine		430	U	78 47	430
Simazine		430	U	17	430
Surrogate	211 / 1221 an 211 an	%Rec	and the second	Acceptanc	e Limits
2-Fluorobiphenyl	ale a construction of the second s	67		32 - 131	a an
2-Fluorophenol		64		25 - 113	
2,4,6-Tribromophe	enol	62		24 - 150	
Nitrobenzene-d5		64		25 - 120	
Phenol-d5		66		27 - 122	
Terphenyl-d14		74	35 - 140		

,

03/18/2009

Client: GEI Cor	sultants, Inc.			ال	ob Numl Sdg Nu	ber: 220-8107-1 mber: 220-8107
Client Sample ID:	EHS-SS-08					
Lab Sample ID:	220-8107-4		D	ate Sampled	: 02/18	/2009 1045
Client Matrix:	Solid	% Moisture: 23.4	D	ate Received	1: UZ/19	/2009 1000
analan ana amin'ny fantana amin'ny fantana amin'ny fanadana amin'ny fanadana amin'ny fanadana amin'ny fanadana	8082 Polychlor	rinated Biphenyls (PCBs) by	Gas Chromato	ography		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 03/09/2009 1656 03/03/2009 0852	Analysis Batch: 220-25007 Prep Batch: 220-24759	Instru Lab F Initial Final Inject Colun	ment ID: H 'ile ID: (Weight/Volur Weight/Volun ion Volume: nn ID:	HP 5890 v C4748437 me: 3 ne: 1 PRIMAR	with dual ECD 7.d 80.01 g 10.0 mL 1.0 uL XY
Analyte	DryWt Con	rected: Y Result (ug/Kg)	Qualifier	MDL	F	₹L
PCB-1016	Non-many and differences and the first scale and descent and the descent and the descent scale and an every sol	22	U	1.7	2	22
PCB-1221		22	U	1.7	1	22
PCB-1232		22	U	1.7	4	22
PCB-1242		22	U	1.7		22
PCB-1248		22	U	1.7		22 22
PCB-1254 PCB-1260		-44 22U	J was V	1.9		22
Surrogate		%Rec		Acce	eptance L	imits
Tetrachloro-m-xyl	9 ne	77	24 - 154			
DCB Decachlorob	iphenyl	77		25	- 159	
Method:	8082 3550B	Analysis Batch: 220-25007 Prep Batch: 220-24759	Instru Lab f	ument ID: File ID:	HP 5890 C474843	with dual ECD 7.d
Dilution:	1.0		Initial	l Weight/Volu	me:	30.01 g
Dilution. Doto Apolyzod:	03/09/2009 1656		Final	Weight/Volu	me:	10.0 mL
Date Prenared	03/03/2009 0852		Inject	tion Volume:		1.0 uL
Date i Topulou.			Colui	mn ID:	SECON	IDARY
Surrogate		%Rec		Acce	eptance L	imits
Tetrachloro-m-xvl		75		24	- 154	
DCB Decachlorob	iphenyl.	71		25	- 159	

15 Je 103/18/2009

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID:	EHS-SS-0	8					
Lab Sample ID: Client Matrix:	220-8107-4 Solid	4 % M	oisture: 23.4	5	Date Sampled Date Received	: 02/18/2009 1045 1: 02/19/2009 1000	
	ayar kata manang katalan mang mang katalan sa kana kana katalan ka	8081A Organo	ochlorine Pestici	des (GC)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 2.0 03/05/2009 0 02/19/2009 2	Analysis B Prep Batcł 1110 2010	Analysis Batch: 220-24849 Prep Batch: 220-24485		Instrument ID: HP 6890 dual ECD Lab File ID: D8365033.D Initial Weight/Volume: 30.75 g Final Weight/Volume: 10 mL Injection Volume: 1.0 uL Column ID: PRIMARY		
Apolyte		DrvWt Corrected: Y Re	sult (ug/Kg)	Qualifier	MDL	RL	
Analyte 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor epoxic Methoxychlor Toxaphene alpha-Chlordane gamma-Chlordane	e dane) de		5.3 130 \mathbf{J} 71 4.3 4.3 4.3 4.3 4.3 8.4 4.3 8.4 8.4 8.4 8.4 8.4 8.4 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4		$\begin{array}{c} 1.5\\ 1.7\\ 2.1\\ 0.46\\ 0.62\\ 0.95\\ 0.93\\ 1.5\\ 0.74\\ 1.6\\ 1.5\\ 1.6\\ 1.0\\ 1.5\\ 0.73\\ 0.81\\ 0.77\\ 9.3\\ 23\\ 0.70\\ 1.4\\ 7.7\end{array}$	8.4 8.4 8.4 4.3 4.3 4.3 4.3 8.4 4.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	
Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene			%Rec 131 66	21220000 20 79 00	Acceptance Limits 25 - 159 24 - 154		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 2.0 03/05/2009 02/19/2009	Analysis I Prep Bato 2010	Batch: 220-24849 ch: 220-24485	1: L F 1 C	nstrument ID: .ab File ID: nitial Weight/Volu Final Weight/Volu njection Volume: Column ID:	HP 6890 dual ECD C8365033.D Ime: 30.75 g me: 10 mL 1.0 uL SECONDARY	
Surrogate			%Rec	Acceptance Limits		eptance Limits	
DCB Decachlorobiphenyl Tetrachloro-m-xylene		مەسىمەن ، يېچە « « « « « « « « « « « « « « « « « « «	117 25 - 159 61 24 - 154		- 159 - 154		

JC 41.109
FORM 1 HERBICIDES ORGANICS ANALYSIS DATA	STLCTS SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract	EHS-SS-08
Lab Code: STLV Case No.: RIVERGEI SAS No	.: SDG No.: 22081071
Matrix: (soil/water) SOIL	Lab Sample ID: 785225
Sample wt/vol: 50.0 (g/mL) G	Lab File ID: 04MA091433-R321
<pre>% Moisture: 24 decanted: (Y/N) N</pre>	Date Received: 02/20/09
Extraction: (SepF/Cont/Sonc) OTHER	Date Extracted: 02/21/09
Concentrated Extract Volume: 10(mL)	Date Analyzed: 03/05/09
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N
CONCE CAS NO. COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) UG/KG Q
94-75-72,4-D 93-72-12,4,5-TP (Silvex) 93-76-52,4,5-T	50 U UJ 5.0 U 12 U

FORM I HERBICIDES

Enri 20/09 11 3/20/09 11/109 03/18/2009

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

Client Sample (D: EHS-SS-08

Lab Sample ID: 220-8107-4 % Moisture: 23.4 Client Matrix: Solid % Moisture: 23.4 Gent Matrix: Solid % Moisture: 23.4 Method: 6010B Analysis Batch: 220-24866 Preparation: 3050B Prep Batch: 220-24742 Dilution: 1.0 Date Analyzed: 03/05/2009 1448 Date Prepared: 03/02/2009 1448 4.1 Aluminum 12100 4.1 Aluminum 67.8 83.0 Barium 1.2 2250 Calcium 6.8 2250 Cadmium 4.4 4.4 Chromium 89.5 1 Iron 19900 900 Potassium 340 340 Maganese 125 30 Sodium 1220 4.1	Dat Instrum Lab File Initial W Final W	te Received: 0 ent ID: e ID: /eight/Volume:	2/19/2009 1000 TJA Trace ICAP W030509
Method: 6010B Analysis Batch: 220-24866 Preparation: 3050B Prep Batch: 220-24742 Dilution: 1.0 Pate Analyzed: 03/05/2009 1448 Date Prepared: 03/02/2009 1145 Kesult (mg/Kg) Analyte DryWt Corrected: Y Result (mg/Kg) Silver 4.1 Anuminum 12100 Arsenic 67.8 Barium 83.0 Beryllium 1.2 Calcium 2250 Cadmium 6.8 Cobalt 4.4 Chromium 18.8 Copper 89.5 Iron 19900 Potassium 1220 Manganese 1220 Sodium 144 Nickel 12.2 Lead 193	Instrum Lab File Initial W Final W	ent ID: 9 ID: /eight/Volume:	TJA Trace ICAP W030509
Method:6010BAnalysis Batch: 220-24866Preparation:3050BPrep Batch: 220-24742Dilution:1.0Date Analyzed:03/05/2009 1448Date Prepared:03/02/2009 1145AnalyteDryWt Corrected: YResult (mg/Kg)Silver4.1Aluminum12100Arsenic67.8Barium1.2Calcium2250Calcium2250Calcium4.4Cobalt4.4Chromium18.8Copper89.5Iron19900Potassium340Maganese1220Manganese114Sodium1220Manganese114Nickel12.2Lead193Antimony13.6	Instrum Lab File Initial W Final W	ent ID: > ID: /eight/Volume:	TJA Trace ICAP W030509
AnalyteDryWt Corrected: YResult (mg/Kg)Silver4.1Aluminum12100Arsenic67.8Barium83.0Beryllium1.2Calcium2250Cadmium6.8Cobalt4.4Chromium18.8Copper89.5Iron19900Potassium340Maganesium1220Manganese125Sodium114Nickel12.2Lead193Antimopy13.6		/eight/Volume:	1.20 g 250 mL
Silver 4.1 Aluminum 12100 Arsenic 67.8 Barium 83.0 Beryllium 1.2 Calcium 2250 Cadmium 6.8 Cobalt 4.4 Chromium 89.5 Copper 89.5 Iron 19900 Potassium 340 Magnesium 125 Sodium 114 Nickel 12.2 Lead 193 Antimopy 13.6	Qualifier	MDL	RL
Anamony 6.7 Selenium 4.3 Thallium 34.5 Zinc 117 7471A Mercury (CVAA) Method: 7471A Preparation: 7471A Prep Batch: 220-24679 Dilution: 1.0	U J J J J J J J J J J J J J J J J J J J	0.38 85.7 0.84 0.30 0.30 15.0 0.71 0.27 0.38 0.82 9.5 23.1 13.6 0.27 15.0 0.71 0.57 1.6 1.2 4.2 0.24 2.0 ment ID: le ID: Weight/Volume:	4.1 136 6.8 2.7 2.7 272 6.8 2.7 4.1 6.8 81.6 272 47.6 8.2 272 6.8 6.8 13.6 13.6 9.5 5.4 27.2 Perkin Elmer FIMS N/A 0.61 g

Analyte	DrvWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	KL
Mercury	an a	0.27	in in the second se	0.019	0.064

JL JAM 03/18/2009 3123101

WET CHEMISTRY

Sample Report Summary

<u>Client</u>	Sample	No.

EHS-SS-08

Lab Name: TestAmerica Burlington	Contract: 220-8107-1	SDG No.: 22081071
Lab Code: TALVT	Case No.: RIVERGEI	Lab Sample ID: 785225
Matrix: SOLID	Client: STLCTS	Date Received: 02/20/09
% Solids: 76.4		

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DE	RL	Conc.	Qual.
9030B/9034	Acid Soluble Sulfide	02/24/09	BLKSU022409A	mg/Kg	1	18.8	28.2 J	\checkmark
IN623	Solids, Percent	02/23/09	N/A	%	1.0		76.4	

۲۱۱۱^۷ ۱ Hill^۷ ۱ Hill^۷ I Hill⁹ Printed on: 02/26/09 02:24³ M^{8/2009} Hill⁸ \0⁶\

Client: GEI Cor	sultants, Inc.					Jol	Number: 2	220-8107-1
Client Sample ID:	EHS-SS-09	ì				:	5dg Number:	220-8107
Lab Sample ID:	220-8107-5					Date Sampled:	02/18/2009	1055
Client Matrix:	Solid	% M	oisture:	17.2		Date Received:	02/19/2009	1000
	244544499999999999999999999999999999999	8260B Volatile O	rganic Co	mpounds	(GC/MS)			22:03.5:0000000000000000000000000000000000
Method:	8260B	Analysis B	atch: 220-	24788	Inst	rument ID: HF	5890/5971A	GC/MS
Preparation:	5030B				Lab	File ID: N1	686.D	
Dilution:	1.0				Initia	al Weight/Volume	e: 5 a	
Date Analvzed:	03/03/2009 17	' 19			Fina	il Weight/Volume	: 5 mL	
Date Prepared:	03/03/2009 17	19						
A., _ [.] _					t et			
Analyte		Drywit Corrected: Y Re	suit (ug/Kg)) Q	uaimer	MUL	RL	
Acetone			24	U		2.7	24	
Benzene			6.0	U		0.69	6.0	
Bromodicniorometr	lane		6.U 6.0	U		0.30	6.0	
Bromomothano			6.U	U		0.74	6.0	
Motbyl Ethyl Koton	_		0.U 40	U 11		2.0	0.U 10	
Corbon disulfide	e		12	0		1.9	12	
Carbon totrachlarid	•		0.0 6.0	U		0.50	6.U	
Carbon tetrachionu	0		0.0 6.0	11		0.71	0.0 6.0	
Chloroothana			0.0 6.0	U 11		1.2	0.0 6.0	
Chloroform			0.0 6 0			1.2	0.0 6.0	
Chloromethane			0.0 6 0	U U		0.41	0.0 6.0	
Dibromochlorometh	ane		0.0 6 N	U U		0.42	6.0	
1 1-Dichloroethane	lane		6.0	1		0.36	0.0	
1 2-Dichloroethane			6.0 6.0	11		0.00	6.0	
1 1-Dichloroethene			6,0 6 0	1		0.70	6.0	
1 2-Dichloropropan	e		6.0 6.0	П		0.81	6.0	
cis-1 3-Dichloropro	nene		6.0 6.0	1		0.68	6.0	
trans-1 3-Dichloron	ropene		6.0	11		0.33	6.0	
Ethylbenzene	lopolio	1	6.0	ŭ		0.85	6.0	
2-Hexanone			12	Ŭ		1.4	12	
Methylene Chloride	ł	2411 4	3.4		8-1	1.3	24	
methyl isobutyl keto	one	<i>er 1 ×</i>	6.0	Ŭ	-	0.66	6.0	
Stvrene			6.0	Ū		0.18	6.0	
1.1.2.2-Tetrachloro	ethane		6.0	Ū		0.63	6.0	
Tetrachloroethene		4	6.0	Ū		0.98	6,0	
Toluene			6.0	U		0.089	6.0	
1.1.1-Trichloroetha	ne	1	6.0	U		0.64	6.0	
1,1,2-Trichloroethar	ne	i	6.0	Ū		0.45	6.0	
Trichloroethene			6.0	U		0.98	6.0	
Vinyl chloride		1	6.0	Ū		0.28	6.0	
Xylenes, Total			6.0	U		0.59	6.0	
cis-1,2-Dichloroethe	ene		6.0	Ū		0.45	6.0	
trans-1,2-Dichloroet	thene		3.0	Ū		0.47	6.0	
Surrogate		%	Rec			Accepta	ance Limits	
1,2-Dichloroethane	-d4 (Surr)	(37			49 - 1	34	
4-Bromofluorobenz	ene	(90			36 - 1	33	
Dibromofluorometh	ane	(93			60 - 13	30	
Toluene-d8 (Surr)		ę) 3			51 - 13	37	

01-137 JC 3/24/09 41.109

03/18/2009

Analytical Data

Client: GEI Consultants, Inc. Job Number: 220-8107-1 Sdg Number: 220-8107 EHS-SS-09 Client Sample ID: Lab Sample ID: 220-8107-5 Date Sampled: 02/18/2009 1055 Client Matrix: Solid % Moisture: 17.2 Date Received: 02/19/2009 1000 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-25046 Instrument ID: HP 6890/5975 Preparation: 3541 Prep Batch: 220-24518 Lab File ID: A4208.D Dilution: 1.0 Initial Weight/Volume: 15.13 g 03/10/2009 2145 Date Analyzed: Final Weight/Volume: 1 mL Date Prepared: 02/21/2009 0743 Injection Volume: 1.0 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL. Acenaphthene 320 U 70 320 Acenaphthylene 320 U 74 320 ぴレ J Anthracene 83 71 320 31 Benzo[a]anthracene 320 J 60 320 31 Benzo[a]pyrene 320 J 45 320 Benzo[b]fluoranthene 330 57 320 Benzo[g,h,i]perylene 490 46 320 Benzo[k]fluoranthene 5-52 120 J 320 Bis(2-chloroethoxy)methane U 320 66 320 Bis(2-chloroethyl)ether 320 U 91 320 Bis(2-ethylhexyl) phthalate U 320 64 320 Butyl benzyl phthalate U 320 66 320 Carbazole 320 U 64 320 Chrysene 350 69 320 U Di-n-butyl phthalate 320 76 320 Di-n-octvl phthalate 320 υ 57 320 4-Bromophenyl phenyl ether 320 U 59 320 4-Chloroaniline 320 U 53 320 2-Chloronaphthalene 320 U 69 320 4-Chlorophenyl phenyl ether 320 U 68 320 5-Dibenz(a,h)anthracene 62 J 41 320 Dibenzofuran 320 U 70 320 Diethyl phthalate U 75 320 320 Dimethyl phthalate 320 U 68 320 1,2-Dichlorobenzene 320 U 65 320 U 1.3-Dichlorobenzene 320 54 320 U 1.4-Dichlorobenzene 320 69 320 3,3'-Dichlorobenzidine 800 U 66 800 2.4-Dinitrotoluene 320 U 61 320 U 2.6-Dinitrotoluene 320 53 320 Fluoranthene 560 72 320 U Fluorene 320 73 320 77 Hexachlorobenzene 320 U 320 Hexachlorobutadiene 69 320 320 U Hexachlorocyclopentadiene 800 U 100 800 Hexachloroethane U 320 320 63 Indeno[1,2,3-cd]pyrene 490 44 320 U 320 Isophorone 320 74 2-Methylnaphthalene 320 U 74 320 Naphthalene 320 U 71 320 2-Nitroaniline 2000 U 63 2000 3-Nitroaniline 2000 U 61 2000 Nitrobenzene 320 U 79 320 80 320 N-Nitrosodi-n-propylamine 320 U Emm 24/09 JC 3/24/09 JC **TestAmerica Connecticut** Page 27 of 2173

03/18/2009

Analytical Data

Client: GEI Consultants, Inc.

EHS-SS-09

Client Sample ID:

Job Number: 220-8107-1 Sdg Number: 220-8107

Lab Sample ID: Client Matrix:	220-8107-5 Solid	% Moisture: 17.2		Date Sampled: (Date Received: (02/18/2009 1055 02/19/2009 1000
	8270C Semivolatile Co	ompounds by Gas Chromatogra	phy/Mass Sp	ectrometry (GC/M	S)
Method:	8270C	Analysis Batch: 220-25046	Inst	rument ID: HP 6	890/5975
Preparation:	3541	Prep Batch: 220-24518	Lab	File ID: A420	8.D
Dilution:	1.0		Initia	al Weight/Volume:	15.13 g
Date Analyzed:	03/10/2009 2145		Fina	l Weight/Volume:	1 mL
Date Prepared:	02/21/2009 0743		Injed	ction Volume:	1.0 uL
Analyte	DryWt	Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
N-Nitrosodiphenvl	lamine	320	U	65	320
Phenanthrene		480	-	70	320
Pyrene		560		79	320
1,2,4-Trichlorober	nzene	320	U	66	320
4-Chloro-3-methy	Iphenol	320	U	58	320
2-Chlorophenol		320	U	73	320
2-Methylphenol		320	U	58	320
4-Methylphenol		320	U	77	320
2,4-Dichloropheno	bl	320	U	67	320
2,4-Dimethylphen	ol	320	U	52	320
2,4-Dinitrophenol		2000	U	440	2000
4,6-Dinitro-2-meth	ylphenol	2000	U	29	2000
2-Nitrophenol		320	U	56	320
4-Nitrophenol		2000	U	72	2000
Pentachloropheno	bl	2000	U	40	2000
Phenol		320	U	66	320
2,4,5-Trichlorophe	enol	2000	U	59	2000
2,4,6-Trichlorophe	enol	320	U	65	320
Benzyl alcohol		320	U	56	320
4-Nitroaniline		320	U	61	320
2,2'-oxybis[1-chlor	ropropane]	320	U	77	320
Atrazine		400	U	72	400
Simazine		400	U	16	400
Surrogate				Acceptanc	e Limits
2-Fluorobiphenyl		72		32 - 131	
2-Fluorophenol		64		25 - 113	
2,4,6-Tribromophe	enol	66		24 - 150	
Nitrobenzene-d5		64		25 - 120	
Phenol-d5		63		27 - 122	
Terphenyl-d14		72		35 - 140	

Client: GEI Cor	nsultants, Inc.			oL	b Number: 220-8107-1 Sdg Number: 220-8107
Client Sample ID	; EHS-SS-09				-
Lab Sample ID: Client Matrix:	220-8107-5 Solid	% Moisture: 17.2		Date Sampled: Date Received:	02/18/2009 1055 02/19/2009 1000
annaa ay ahaa ahaa ahaa ahaa ahaa ahaa a	8082 Polych	lorinated Biphenyls (PCBs) by	Gas Chroma	tography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 03/09/2009 1714 03/03/2009 0852	Analysis Batch: 220-25007 Prep Batch: 220-24759	Inst Lab Initi Fina Inje Col	rument ID: Hi File ID: C- al Weight/Volum al Weight/Volume ction Volume: umn ID:	P 5890 with dual ECD 4748438.d e: 30.01 g e: 10.0 mL 1.0 uL PRIMARY
Analide	DrvWt C	orrected: Y Result (ug/Kg)	Qualifier	MDL	RL
PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xyl DCB Decachlorob	ene siphenyl	21 21 21 21 21 21 21 13 %Rec 82 82		1.6 1.6 1.6 1.6 1.6 1.7 1.7 Accep 24 - 25 -	21 21 21 21 21 21 21 21 stance Limits 154 159
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 03/09/2009 1714 03/03/2009 0852	Analysis Batch: 220-25007 Prep Batch: 220-24759	Insi Lat Init Fin Inj∈ Col	trument ID: H b File ID: C ial Weight/Volum al Weight/Volum ection Volume: umn ID:	P 5890 with dual ECD 4748438.d ne: 30.01 g e: 10.0 mL 1.0 uL SECONDARY
Surrogate		%Rec		Accep	stance Limits
Tetrachloro-m-xyl DCB Decachlorot	ene oiphenyl	63 70		24 - 25 -	154 159

X 4/1/09 03/18/2009 3/24/10

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID:	EHS-SS-09	Ð					
Lab Sample ID: Client Matrix:	220-8107-5 Solid	5	% Moisture:	17.2		Date Sampled: Date Received:	02/18/2009 1055 02/19/2009 1000
enner en formen en e	1999	808	1A Organochiorin	e Pesticide	es (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A ['] 3550B 1.0 03/05/2009 0 02/19/2009 24	136 010	Analysis Batch: 22 Prep Batch: 220-24	0-24849 4485	Ins Lai Init Fin Init Co	trument ID: HI b File ID: D ial Weight/Volum al Weight/Volume ection Volume: lumn ID: I	P 6890 dual ECD 8365034.D e: 30.37 g e: 10 mL 1.0 uL PRIMARY
		Do Mt Corre	cted: Y. Result (ut/	Ka)	Qualifier	MDL	RL
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	ane) 2	Diywi Cone	$\begin{array}{c} 4.3 \\ 1.3 \\ 18 \\ 15 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 3.9 \\ 2.0 \\ 3.9 \\ 3.9 \\ 3.9 \\ 3.9 \\ 3.9 \\ 3.9 \\ 3.9 \\ 3.9 \\ 2.0 \\ 2$			$\begin{array}{c} 0.71 \\ 0.80 \\ 0.97 \\ 0.22 \\ 0.29 \\ 0.45 \\ 0.44 \\ 0.68 \\ 0.35 \\ 0.74 \\ 0.71 \\ 0.74 \\ 0.71 \\ 0.74 \\ 0.49 \\ 0.72 \\ 0.34 \\ 0.38 \\ 0.36 \\ 4.4 \\ 11 \\ 0.33 \\ 0.63 \\ 3.6 \end{array}$	3.9 3.9 3.9 2.0 2.0 2.0 2.0 3.9 2.0 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Surrogate			%Rec	The second second second second		Acce	ptance Limits
DCB Decachlorob Tetrachloro-m-xyle	iphenyl ene		54 35			25 - 24 -	- 159 - 154
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 03/05/2009 02/19/2009	0136 2010	Analysis Batch: 2 Prep Batch: 220-:	20-24849 24485	In Li F Ir C	Istrument ID: H ab File ID: C Itial Weight/Volur Inal Weight/Volun Ijection Volume: Iolumn ID:	HP 6890 duai ECD C8365034.D ne: 30.37 g ne: 10 mL 1.0 uL SECONDARY
Surrogate			%Rec			Acce	ptance Limits
DCB Decachlorob	iphenyl		40	and an and a second		25	- 159 - 154

25 - 159 24 - 154

よしの

Tetrachloro-m-xylene

Client: GEI Consultants, Inc.

35

ッ)) 03/18/2009

FORM 1 HERBICIDES ORGANICS ANALYSIS DATA	STLCTS SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Contract	EHS-SS-09
Lab Code: STLV Case No.: RIVERGEI SAS No	SDG No.: 22081071
Matrix: (soil/water) SOIL	Lab Sample ID: 785226
Sample wt/vol: 50.0 (g/mL) G	Lab File ID: 11MA091318-R031
% Moisture: 18 decanted: (Y/N) N	Date Received: 02/20/09
Extraction: (SepF/Cont/Sonc) OTHER	Date Extracted: 02/21/09
Concentrated Extract Volume: 10(mL)	Date Analyzed: 03/11/09
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N
CONCE CAS NO. COMPOUND (ug/I	NTRATION UNITS: or ug/Kg) UG/KG Q
94-75-72,4-D 93-72-12,4,5-TP (Silvex) 93-76-52,4,5-T	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

FORM I HERBICIDES

Entra 109 3/24/09

03/18/2009

Page 2129 of 2173

FORM : HERBICIDES ORGANICS AI	l NALYSIS DATA S	S'. HEET	TLCTS SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON	Contract:	29001	EHS-SS-09DL
Lab Code: STLV Case No.: RI	VERGEI SAS No.	: SDO	G No.: 22081071
Matrix: (soil/water) SOIL		Lab Sample ID	: 785226D1
Sample wt/vol: 50.0 (g/mL)) G	Lab File ID:	11MA091318-R041
% Moisture: 18 decanted: ()	Y/N) N	Date Received	: 02/20/09
Extraction: (SepF/Cont/Sonc) OT	HER	Date Extracted	1: 02/21/09
Concentrated Extract Volume:	10(mL)	Date Analyzed	: 03/11/09
Injection Volume: 1.0(uL)		Dilution Facto	or: 2.0
GPC Cleanup: (Y/N) N pH	:	Sulfur Cleanu	p: (Y/N) N
CAS NO. COMPOUND	CONCEN (ug/L	TRATION UNITS or ug/Kg) UG/3	: KG Q
94-75-72,4-D 93-72-12,4,5-TP 93-76-52,4,5-T	(Silvex)		280 D J 9.3 U 230 D J 🗸

FORM I HERBICIDES

03/18/2009

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-09

Lab Sample ID: Client Matrix:	220-8107-5 Solid	% Moisture: 17.2	Date Sampled: Date Received:	02/18/2009 1055 02/19/2009 1000		
6010B Metals (ICP)						
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/05/2009 150 03/02/2009 114	Analysis Batch: 220-24866 Prep Batch: 220-24742	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	TJA Trace ICAP W030509 1.27 g 250 mL		

Analvte	DryWt Correcte	ed: Y	Result (mg/Kg)	Qualifier	MDL	RL
Analyte Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium Vanadium			3.6 7580 12.3 22.8 0.38 873 5.9 3.1 9.7 24.0 10500 356 1490 114 262 6.2 25.4 11.9 11.9 11.9 8.3 17.1 31.9	U J U U U U U U	$\begin{array}{c} 0.33 \\ 74.9 \\ 0.74 \\ 0.26 \\ 0.26 \\ 13.1 \\ 0.62 \\ 0.24 \\ 0.33 \\ 0.71 \\ 8.3 \\ 20.2 \\ 11.9 \\ 0.24 \\ 13.1 \\ 0.62 \\ 0.50 \\ 1.4 \\ 1.1 \\ 3.7 \\ 0.21 \\ 1.8 \end{array}$	3.6 119 5.9 2.4 2.4 238 5.9 2.4 3.6 5.9 71.4 238 41.6 7.1 238 5.9 5.9 5.9 11.9 11.9 11.9 8.3 4.8 23.8
ZINC	n an					
			7471A Mercury (CVAA	()		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 02/27/2009 1452 02/26/2009 1609	Analy Prep	sis Batch: 220-24727 Batch: 220-24679	Instru Lab F Initial Final	ment ID: ile ID: Weight/Volume: Weight/Volume:	Perkin Elmer FIMS N/A 0.60 g 50 mL
Analyte	DryWt Correct	ted: Y	Result (mg/Kg)	Qualifier	MDL	KL
Mercury		and saturation and	0.039	17	0.018	0.060

1(1)09 03/18/2009 3/25/0°

WET CHEMISTRY

Sample Report Summary

Client Sample No. EHS-SS-09

Lab Name: TestAmerica BurlingtonContract: 220-8107-1SDG No.: 22081071Lab Code: TALVTCase No.: RIVERGEILab Sample ID: 785226Matrix: SOLIDClient: STLCTSDate Received: 02/20/09

% Solids: 82.5

Analytical Analytical DF Run Date Batch Units RL Qual. Method Parameter Conc. 90308/9034 Acid Soluble Sulfide 02/24/09 BLKSU022409A mg/Kg 18.0 18.0 U 1 IN623 Solids, Percent 02/23/09 N/A % 1.0 82.5

Printed on: 02/26/09 02:24 PM 8/2009

Duplicate of EHS-SS-09

Client: GEI Consultants, Inc.						Job Number: 220-810 Sda Number: 220-8			
Client Sample ID	: BD-1						Sug Number. 220-0107		
Lab Sample ID:	220-8107-7	7				Date Sampled	1: 02/18/2009 0000		
Client Matrix:	Solid		% Moisture:	16.4		Date Receive	d: 02/19/2009 1000		
		8260E	Volatile Organic C	ompoun	ds (GC/N	AS)			
Method:	8260B		Analysis Batch: 220)-24788		Instrument ID:	HP 5890/5971A GC/MS		
Preparation:	5030B					Lab File ID:	N1688.D		
Dilution:	1.0					Initial Weight/Volu	me: 5 g		
Date Analyzed:	03/03/2009 1	815				Final Weight/Volur	me: 5 mL		
Date Prepared:	03/03/2009 1	815							
Analyta			cted: V. Result (un/k	(n)	Qualifia	r MDI	DI		
Acetone		Diyweoone	24	97		97	24		
Benzene			60		U U	0.68	60		
Bromodichloromet	hane		6.0		ü	0.36	6.0		
Bromoform			6.0		ŭ	0.73	6.0		
Bromomethane			6.0		Ū	2.5	6.0		
Methyl Ethyl Keton	е		12		Ū	1.9	12		
Carbon disulfide			6.0		U	0.49	6.0		
Carbon tetrachloric	le		6.0		U	1.1	6.0		
Chlorobenzene			6.0		U	0.71	6.0		
Chloroethane			6.0		U	1.2	6.0		
Chloroform			6.0		U	0.41	6.0		
Chloromethane			6.0		U	0.93	6.0		
Dibromochloromet	hane		6.0		U	0.42	6.0		
1,1-Dichloroethane	•		6.0		U	0.36	6.0		
1,2-Dichloroethane	•		6.0		U	0.69	6.0		
1,1-Dichloroethene	<u></u>		6.0		U	0.69	6.0		
1,2-Dichloropropar	e		6.0		U	0.80	6.0		
cis-1,3-Dichloropro	pene		6.0		U	0.67	6.0		
trans-1,3-Dichlorop	ropene		6.0		U	0.32	6.0		
Ethylbenzene			6.0		U	0.84	6.0		
2-Hexanone			12		U	1.4	12		
Methylene Chloride	;		240 3.4		−JB ノ	1.3	24		
methyl isobutyl kete	one		6.0		U	0.66	6.0		
Styrene	- 41		6.0		U	0.18	6.0		
1,1,2,2-Tetrachioro	etnane		6.0		U	0.62	6.0		
Tetrachioroethene			6.0		U	0.97	6.0		
			6.0		U	0.089	6.0		
1,1,1-Trichloroetha	ne		0.0		U	0.63	6.0		
T, I, 2- I I Chioroetha	ne		0.U 6.0		U	0.44	0.0		
Vinyl chlorido			0.0		0	. 0.97	0.0		
Yvienes Total			0.0		0 11	0.20	6.0		
cie_1 2_Dichlorooth	ana		0.0		0	0.58	6.0		
trans-1.2-Dichloroe	thene		6.0		U	0.47	6.0		
europote			0/ D		-	λ.			
Surroyate	d4 (Dure)		%Kec			ACCO	plance Limits		
A Bromofluoroethane	-u4 (SUTT)		85			49 -	104		
4-DIOMONUORODENZ			03 04			36 -	100		
Toluene_d& (Surr)			04 Q <i>1</i>			00- 54	127		
			04			- 10	101		

03/18/2009

Duplicate of EHS-SS-09

Client: GEI Consultants, Inc.			Job Number: 220-8107- Sda Number: 220-810			220-8107-1		
Client Sample ID:	: BD-1						Sug Numb	61. 220-0107
Lab Sample ID: Client Matrix:	220-8107-7 Solid		% Moisture:	16.4		Date Sampled: Date Received	02/18/20	09 0000 09 1000
	8270C Semivo	latile Compo	ounds by Gas Chro	matograp	ohy/Mass	Spectrometry (G	C/MS)	
Method:	8270C		Analysis Batch: 220)-25046		nstrument ID: H	P 6890/597	5
Preparation:	3541		Prep Batch: 220-24	518	1	Lab File ID: A	4210.D	. .
Dilution:	1.0	704			1	nitiai weight/volum	ie: 15.1	9 g
Date Prenared:	02/21/2009 22	.57 743			1	niection Volume:	e. 1 11 1 0	۱ ۲
Dato i roparoa.		-10				ngoonon volumo.	1.0	uL.
Analyte		DryWt Corre	cted: Y Result (ug/k	(g)	Qualifie	MDL	RL	
Acenaphthene			320		U	69	320	
Acenaphthylene			320		U	73	320	
Anthracene			320		U	70	320	
Benzo[a]anthracen	e		170		JJV	59	320	
Benzo[a]pyrene			200		JJ	44	320	
Benzo[b]fluoranthe	ne		220		10-	57	320	
Benzo[k]fluoranthe	ne		300		151	40 51	320	
Bis(2-chloroethoxy)methane		320		1	66	320	
Bis(2-chloroethyl)e	ther		320		Ŭ	90	320	
Bis(2-ethylhexyl) pl	hthalate		320		Ū	63	320	
Butyl benzyl phthal	ate		320		U	65	320	
Carbazole			320		U	63	320	
Chrysene			210		JJV	68	320	
Di-n-butyl phthalate	9		320		U	75	320	
Di-n-octyl phthalate) 		320		U	56	320	
4-Bromopnenyi pne	enyi etner		320		U	59	320	
2-Chloronaphthale	20		320		0	0Z 68	320	
4-Chlorophenyl nhr	envl ether		320		11	67	320	
Dibenz(a,h)anthrac	ene		320		Ŭ	40	320	
Dibenzofuran			320		Ū	69	320	
Diethyl phthalate			320		U	74	320	
Dimethyl phthalate			320		U	67	320	
1,2-Dichlorobenzer	ne		320		U	64	320	
1,3-Dichlorobenzer	ne		320		U	53	320	
1,4-Dichlorobenzer	ne 		320		U	68	320	
3,3'-Dichlorobenzid	ine		790		U	66	790	
2,4-Dinitrotoluene			320		U 1	6U 53	320	
Fluoranthene			300		17/	71	320	
Fluorene			320		U	72	320	
Hexachlorobenzen	e		320		Ŭ	76	320	
Hexachlorobutadie	ne		320		U	68	320	
Hexachlorocyclope	ntadiene		790		U	99	790	
Hexachloroethane			320		U	62	320	
Indeno[1,2,3-cd]pyr	rene		380			44	320	
Isophorone			320		U	73	320	
∠-wetnyinaphthaler	10		320		U LI	73	320	
Naphenalene			32U 2000		U H	10 10	320	
3-Nitroaniline			2000		U U	60	2000	
Nitrobenzene			320		Ŭ	78	320	
N-Nitrosodi-n-propy	lamine		320		Ū	79	320	
TestAmerica Con	necticut		Page 31 c	f 2173		CMM 101	٨¢	03/18/2009
						2/24	J. L. C	
						2'	4/1/0 9	
							. 1	

Duplicate of EHS-SS-09

Client:	GEI Consulta	ints, Inc.
---------	--------------	------------

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID): BD-1					0
Lab Sample ID: Client Matrix:	220-8107- Solid	7	% Moisture: 10	6.4	Date Sampled: Date Received:	02/18/2009 0000 02/19/2009 1000
	8270C Semive	olatile Compounds b	y Gas Chromat	tography/Mas	s Spectrometry (GC	/MS)
Method: Preparation:	8270C 3541	Analysis Batch: 220-25046 Prep Batch: 220-24518		5046 3	Instrument ID: HF Lab File ID: A4	9 6890/5975 210.D
Dilution:	1.0				Initial Weight/Volume	e: 15.19 g
Date Analyzed:	03/10/2009 2	237			Final Weight/Volume	: 1 mL
Date Prepared:	02/21/2009 0	743			Injection Volume:	1.0 uL
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifi	er MDL	RL
N-Nitrosodiphenyl	amine		320	U	64	320
Phenanthrene			190	JJ	69	320
Pyrene			260	リゴレ	78	320
1,2,4-Trichlorober	izene		320	U	65	320
4-Chloro-3-methyl	phenol		320	U	57	320
2-Chlorophenol			320	U	72	320
2-Methylphenol			320	U	58	320
4-Methylphenol			320	U	76	320
2,4-Dichlorophenc	bl		320	U	66	320
2,4-Dimethylphen	ol		320	U	52	320
2,4-Dinitrophenol			2000	U	430	2000
4,6-Dinitro-2-meth	ylphenol		2000	U	29	2000
2-Nitrophenol			320	U	56	320
4-Nitrophenol			2000	U	71	2000
Pentachlorophenc)]		2000	U	39	2000
Phenol			320	U	65	320
2,4,5-Trichlorophe	enol		2000	U	59	2000
2,4,6-Trichlorophe	enol		320	U	64	320
Benzyl alcohol			320	U	55	320
4-Nitroaniline			320	U	60	320
2,2'-oxybis[1-chlor	opropane]		320	U	76	320
Atrazine			390	U	71	390
Simazine			390	U	16	390
Surrogate			%Rec	0 waa ina digita (1,00 m) waxay mada (1,00 m) m Mana ang mana	Accepta	ance Limits
2-Fluorobiphenyl			74		32 - 1	31
2-Fluorophenol			67		25 - 1	13
2,4,6-Tribromophe	enol		69		24 - 1	50
Nitrobenzene-d5			67		25 - 1	20
Phenol-d5			66		27 - 1	22
Terphenyl-d14			65		35 - 14	40

EMM26/159 J 3/26/159 J 41.109 03/18/2009

Duplicate of EHS-SS-09

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID:	BD-1				0000 0000
Lab Sample ID: Client Matrix:	220-8107-7 Solid	% Moisture: 16.4	anne state and the state of the	Date Sampled: Date Received:	02/18/2009 0000 02/19/2009 1000
<u>kará nemez neme neme konternen jeden konserved je stanistana se publica s</u>	8082 Polych	lorinated Biphenyls (PCBs) by (Jas Chro	omatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 03/09/2009 1637 02/19/2009 2010	Analysis Batch: 220-25007 Prep Batch: 220-24485		Instrument ID: HP Lab File ID: C47 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: Pf	5890 with dual ECD '48436.d 30.54 g 10 mL 1.0 uL RIMARY
Analita	DryWt C	Corrected: Y Result (ug/Kg)	Qualifie	er MDL	RL
PCB-1016 PCB-1221 PCB-1222 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254	ngenaanseen gewegen statistigen in gestaarde en gewegen is soon gewegen is de soon gewegen soon gewegen is soon	20 20 20 20 20 20 20 20 19	บ บ บ บ บ บ บ บ บ บ บ บ	1.5 1.5 1.5 1.5 1.5 1.7 1.7	20 20 20 20 20 20 20 20
Surrogate Tetrachloro-m-xyle DCB Decachlorob	ne iphenyl	%Rec 158 115	li unua in come accession de la fact Station	Accepta 24 - 1 25 - 1	ance Limits 54 59
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 03/09/2009 1637 02/19/2009 2010	Analysis Batch: 220-25007 Prep Batch: 220-24485		Instrument ID: HP Lab File ID: C4 Initial Weight/Volume Final Weight/Volume Injection Volume: Column ID: S	5890 with dual ECD 748436.d :: 30.54 g : 10 mL 1.0 uL ECONDARY

Surrogate	%Rec	Acceptance Limits
Tetrachloro-m-xylene	133	24 - 154
DCB Decachlorobiphenyl	108	25 - 159

JC 03/18/2009

Man Hanloi

Duy licate of EHS-SS-09

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID: Lab Sample ID: Client Matrix:	BD-1 220-8107-7 Solid	% Moisture: 16.4	anna da anna anna da mumi	Date Sampled: 02 Date Received: 02	2/18/2009 0000 2/19/2009 1000
ernen og at konserner formerer formen melle karren så stande	na (feline a la combra de la combra de conserva de la conserva de la conserva de conserva de conserva de conser La conserva de la conserva de conserva de la conserv	8081A Organochlorine Pesticio	les (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 03/05/2009 0227 02/19/2009 2010	Analysis Batch: 220-24849 Prep Batch: 220-24485	 - 	nstrument ID: HP 68 .ab File ID: D8365 nitial Weight/Volume: Final Weight/Volume: njection Volume: Column ID: PRIM	90 dual ECD 5036.D 30.54 g 10 mL 1.0 uL //ARY
		Corrected: V. Result (ug/Kg)	Qualifier	r MDL	RL
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor epoxid Methoxychlor Toxaphene alpha-Chlordane gamma-Chlordane	DryWt dane) le	Corrected: Y Result (ug/kg) $-2.6 - 3.9 \cup J$ $33 J \checkmark$ $31 J \checkmark$ 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.9 2.1 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 2.0 0.53 0.70 20 98 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 2.0 0.53 0.70 20 98 2.0		$\begin{array}{c} 0.70\\ 0.79\\ 0.95\\ 0.21\\ 0.29\\ 0.44\\ 0.43\\ 0.67\\ 0.34\\ 0.73\\ 0.70\\ 0.73\\ 0.70\\ 0.73\\ 0.48\\ 0.71\\ 0.34\\ 0.38\\ 0.35\\ 4.3\\ 11\\ 0.32\\ 0.62\\ 3.5\end{array}$	3.9 3.9 3.9 2.0 2.0 2.0 2.0 3.9 2.0 3.9 3.9 3.9 3.9 3.9 3.9 3.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
		% Pac		Acceptan	ce Limits
Surrogate DCB Decachlorob Tetrachloro-m-xyl	oiphenyl ene	%кесс 116 73	nen a per de la company de la defenda de la com	25 - 159 24 - 154	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 03/05/2009 0227 02/19/2009 2010	Analysis Batch: 220-24849 Prep Batch: 220-24485		Instrument ID: HP 6 Lab File ID: C836 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: SE	890 dual ECD 65036.D 30.54 g 10 mL 1.0 uL CONDARY

Surrogate	%Rec	Acceptance Limits
DCB Decachlorobiphenyl	91	24 - 154
Tetrachloro-m-xylene	12	

TestAmerica Connecticut

Client: GEI Consultants, Inc.

03/18/2009

Dup Ett	s-ssog
FORM 1 HERBICIDES ORGANICS ANALYSIS	STLCTS SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON Co	Dentract: 29001
Lab Code: STLV Case No.: RIVERGEI	SAS No.: SDG No.: 22081071
Matrix: (soil/water) SOIL	Lab Sample ID: 785228
Sample wt/vol: 50.0 (g/mL) G	Lab File ID: 04MA091433-R351
% Moisture: 17 decanted: (Y/N) N	Date Received: 02/20/09
Extraction: (SepF/Cont/Sonc) OTHER	Date Extracted: 02/21/09
Concentrated Extract Volume: 10(ml	Date Analyzed: 03/05/09
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

94-75-72,4-D	46	005/	
93-72-12,4,5-TP (Silvex)	4.6	UUUT	/

FORM I HERBICIDES

- i

Duplicate of EHS-SS-09

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

Client Sample ID: BD-1

Lab Sample ID: Client Matrix:	220-8107-7 Solid	% Moisture: 16.4	Date Sampled: (Date Received: (02/18/2009 0000 02/19/2009 1000
<u>yn Person y feldin skieder set op det dit humpelet</u> Mines felseter		6010B Metals (ICP)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/05/2009 13 03/03/2009 12	Analysis Batch: 220-24866 Prep Batch: 220-24766	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	TJA Trace ICAP W030509 1.11 g 250 mL

Analyte	DryWt Correct	ed: Y	Result (mg/Kg)	Qualifier	MDL	RL
	a an		4 0	U	0.38	4.0
Silver			6980		84.9	135
Aluminum			87		0.84	6.7
Arsenic			20.8		0.30	2.7
Barium			0.43	J 🖌	0.30	2.7
Beryllium			721	-	14.8	270
Calcium			67	U	0.70	6.7
Cadmium			3.1	-	0.27	2.7
Cobalt			90		0.38	4.0
Chromium			20.3		0.81	6.7
Copper			20.2		94	80.9
Iron			224		22.9	270
Potassium			4290		13.5	47.2
Magnesium			104		0.27	8.1
Manganese			124	16	14.8	270
Sodium			207	1	0.70	6.7
Nickel			6.0	4	0.57	6.7
Lead			22.0	11	1.6	13.5
Antimony			13.5	1	12	13.5
Selenium			13.5	11	4.2	94
Thallium			9.4	0	0.24	54
Vanadium			16.7	1	20	27.0
Zinc	an gan an a		20.7	4	2.0	
			7471A Mercury (CVA	\)		
Mathadi	74711	Analy	sis Batch: 220-24727	Instrum	ent ID:	Perkin Elmer FIMS
ivietnoa:	74712	Pren	Batch: 220-24679	Lab File	e ID:	N/A
Preparation:	7471A	i ieb i		Initial V	Veight/Volume:	0.65 g
Dilution:	1.0			Final M	/eight/volume:	50 ml
Date Analyzed:	02/27/2009 1454			1 11 163 10	oldina Apianio.	00
Date Prepared:	02/26/2009 1609					
Analyte	DrvWt Correc	ted: Y	Result (mg/Kg)	Qualifier	MDL	RL
Mercury		1. Marina - Tartan Arriana	0.068	a na lan ana ang kabupatèn di kab	0.016	0.055

03/18/2009 3/25PM

11/10/

Duplicate of Etts-55-09

WET CHEMISTRY

Sample Report Summary

Clie	nt s	Sam	ple	No.
	E	3D-1		

Lab Name: TestAmerica Burlington

Contract: 220-8107-1

Case No.: RIVERGEI

Client: STLCTS

SDG No.: 22081071

Lab Sample ID: 785228

Date Received: 02/20/09

. .

Matrix: SOLID

Lab Code: TALVT

% Solids: 83.2

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9030B/9034	Acid Soluble Sulfide	02/24/09	BLKSU022409A	mg/Kg	1	16.7	16.7	U
IN623	Solids, Percent	02/23/09	N/A	%	1.0		83.2	
					:			

Client: GEI Cor	nsultants, Inc.					JoL	Number: 2	220-8107-1
Client Sample ID:	EHS-SS-10					2	Sdg Number:	220-8107
Lah Sample ID:	220-8107-3					Date Sampled:	02/18/2009	1035
Client Matrix:	Solid		% Moisture:	18.2		Date Received:	02/19/2009	1000
		8260B Volati	le Organic C	ompounds	(GC/MS)		
Method:	8260B	Analys	sis Batch: 220	-24788	Ins	, strument ID: HP	5890/5971A	GC/MS
Preparation:	5030B	, and y	no Baton. 220	21100	La	b File ID: N1	684.D	00,1110
Dilution:	1.0				Ini	tial Weight/Volume	e: 5 a	
Date Analvzed:	03/03/2009 162	3			Fir	nal Weight/Volume	: 5 mL	
Date Prepared:	03/03/2009 162	3				0		
Analyte]	DryWt Corrected: Y	Result (ug/K	(g) (Qualifier	MDL	RL	
Acetone			24		U	2.7	24	
Benzene			6.1	1	0	0.70	6.1 C 1	
Bromodicniorometi	nane		0.1		U	0.37	0.1	
Bromomothono			0.1			0.75	0.1 6.1	
Mothyl Ethyl Kofon	0		0.1			2.0	12	
Corbon disulfide	e		12	1		0.50	6.1	
Carbon tetrachlorid	10		61		Н	1.0	61	
Chlorobenzene			61	, 1		0.72	6.1	
Chloroethane			61	1		1.2	6.1	
Chloroform			6.1	1	U	0.42	6.1	
Chloromethane			6.1	l	Ŭ	0.95	6.1	
Dibromochloromet	hane		6.1	l	Ŭ	0.43	6.1	
1.1-Dichloroethane	•		6.1	l	Ū	0.37	6.1	
1,2-Dichloroethane	ł		6.1	l	U	0.71	6.1	
1,1-Dichloroethene	•		6.1	l	U	0.71	6.1	
1,2-Dichloropropan	e		6.1	l	U	0.82	6.1	
cis-1,3-Dichloropro	pene		6.1	l	U	0.68	6.1	
trans-1,3-Dichlorop	ropene		6.1	t	U	0.33	6.1	
Ethylbenzene			6.1	ι	U	0.86	6.1	
2-Hexanone			12	l	U	1.5	12	
Methylene Chloride	•	241	-2.8		ⅎᡖᠵ	1.3	24	
methyl isobutyl keto	one		6.1	l	J	0.67	6.1	
Styrene			6.1	l	U	0.18	6.1	
1,1,2,2-Tetrachloro	ethane		6.1	l	J	0.64	6.1	
Tetrachloroethene			6.1	l	J	0.99	6.1	
			6.1	l	J	0.090	6.1	
1,1,1-Trichloroetha	ne		0.1 c 4	l	J	0.65	6.1 e 1	
T, I, Z-Trichloroetha	ne		0.1	l	J 1	0.45	0.1 6.1	
Vinul oblorido			0.1	L 1	J 1	0.99	0.1	
View Chionae			6.1	1	1	0.20 N 59	0.1	
ris-1 2-Dichlometh	ene		61	1	1	0.35	6.1	
trans-1.2-Dichloroe	thene		6.1	1		0.43	6.1	
			9.1 X D	,	-	0, 10 •		
Surrogate			%Rec			Accepta	ance Limits	
1,2-Dichloroethane	-d4 (Surr)		89			49 - 1:	34	
4-Bromofluorobenz	ene		83			36 - 1	33	
Dibromofluorometh	ane		86			60 - 13	30	
i oluene-d8 (Surr)			86			51 - 13	57	

TestAmerica Connecticut

Client: GEI Consultants. Inc. Job Number: 220-8107-1 Sdg Number: 220-8107 **Client Sample ID:** EHS-SS-10 Lab Sample ID: 220-8107-3 Date Sampled: 02/18/2009 1035 Client Matrix: Solid % Moisture: 18.2 Date Received: 02/19/2009 1000 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) 8270C Analysis Batch: 220-25046 Instrument ID: HP 6890/5975 Method: Preparation: 3541 Prep Batch: 220-24518 Lab File ID: A4206.D Dilution: 1.0 Initial Weight/Volume: 15.14 g 03/10/2009 2053 Date Analyzed: Final Weight/Volume: 1 mL 02/21/2009 0743 Injection Volume: Date Prepared: 1.0 uL DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Analyte Acenaphthene 330 U 71 330 U Acenaphthylene 330 75 330 330 U Anthracene 72 330 JV J Benzo[a]anthracene 81 61 330 」ブイ Benzo[a]pyrene 93 45 330 Benzo[b]fluoranthene 110 JJV 58 330 Benzo[g,h,i]perylene 390 46 330 Benzo[k]fluoranthene 330 U 52 330 Bis(2-chloroethoxy)methane 330 U 67 330 U Bis(2-chloroethyl)ether 330 92 330 U Bis(2-ethylhexyl) phthalate 330 65 330 Butyl benzyl phthalate 330 U 66 330 Carbazole 330 U 65 330 51 J Chrvsene 100 69 330 Di-n-butyl phthalate 330 U 76 330 Di-n-octyl phthalate 330 U 58 330 4-Bromophenyl phenyl ether 330 U 60 330 4-Chloroaniline 330 U 53 330 2-Chloronaphthalene U 70 330 330 4-Chlorophenyl phenyl ether 330 U 69 330 Dibenz(a,h)anthracene U 41 330 330 Dibenzofuran 330 U 71 330 Diethyl phthalate 330 U 76 330 Dimethyl phthalate 330 U 69 330 1.2-Dichlorobenzene 330 U 65 330 U 1.3-Dichlorobenzene 330 54 330 U 1.4-Dichlorobenzene 330 70 330 U 3.3'-Dichlorobenzidine 810 67 810 2,4-Dinitrotoluene 330 U 62 330 2.6-Dinitrotoluene 330 U 54 330 51 Fluoranthene 160 J 73 330 330 U 74 330 Fluorene Hexachlorobenzene 330 υ 78 330 U 330 Hexachlorobutadiene 330 69 Hexachlorocyclopentadiene 810 U 100 810 Hexachloroethane 330 U 64 330 Indeno[1,2,3-cd]pyrene 370 45 330 U Isophorone 330 75 330 2-Methylnaphthalene 330 U 75 330 Naphthalene 330 U 71 330 2-Nitroaniline U 2100 2100 64 3-Nitroaniline 2100 U 62 2100 υ 330 Nitrobenzene 330 79 U 81 330 N-Nitrosodi-n-propylamine 330 EMIT 3/26/109 Page 23 of 2173 **TestAmerica Connecticut**

03/18/2009

Client: GEI Consultants, Inc. Job Number: 220-8107-1 Sdg Number: 220-8107 **Client Sample ID:** EHS-SS-10 Lab Sample ID: 220-8107-3 Date Sampled: 02/18/2009 1035 **Client Matrix:** Solid % Moisture: 18.2 Date Received: 02/19/2009 1000 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) HP 6890/5975 Method: 8270C Analysis Batch: 220-25046 Instrument ID: Preparation: 3541 Prep Batch: 220-24518 Lab File ID: A4206.D Dilution: 1.0 Initial Weight/Volume: 15.14 g 03/10/2009 2053 Date Analyzed: Final Weight/Volume: 1 mL 02/21/2009 0743 Date Prepared: Injection Volume: 1.0 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL N-Nitrosodiphenylamine 330 U 66 330 Phenanthrene 130 JJV 71 330 Pyrene 190 J J / 80 330 1,2,4-Trichlorobenzene U 330 66 330 4-Chloro-3-methylphenol U 330 59 330 2-Chlorophenol 330 U 74 330 2-Methylphenol U 330 59 330 U 4-Methylphenol 330 78 330 2,4-Dichlorophenol 330 U 68 330 2,4-Dimethylphenol U 330 53 330 U * 🗸 2,4-Dinitrophenol 2100 440 2100 4,6-Dinitro-2-methylphenol 2100 U 30 2100 2-Nitrophenol 330 U 57 330 4-Nitrophenol 2100 U 73 2100 Pentachlorophenol 2100 U 40 2100 Phenol 330 U 67 330 2,4,5-Trichlorophenol 2100 U 60 2100 2,4,6-Trichlorophenol 330 U 66 330 Benzyl alcohol 330 U 57 330 4-Nitroaniline 330 U 61 330 2,2'-oxybis[1-chloropropane] 330 U 78 330 Atrazine 400 U 72 400 Simazine 400 U 16 400 Surrogate %Rec Acceptance Limits 2-Fluorobiphenyl 61 32 - 131 2-Fluorophenol 63 25 - 113 2,4,6-Tribromophenol 61 24 - 150 Nitrobenzene-d5 60 25 - 120 Phenol-d5 63 27 - 122 Terphenyl-d14 76 35 - 140

03/18/2009

Client: GEI Con	sultants, Inc.			Job Ni Sdg	umber: 220-8107-1 Number: 220-8107
Client Sample ID:	EHS-SS-10				
Lab Sample ID: Client Matrix:	220-8107-3 Solid	% Moisture: 18.2		Date Sampled: 0: Date Received: 0:	2/18/2009 1035 2/19/2009 1000
an a	8082 Polych	lorinated Biphenyls (PCBs) by (Gas Chro	omatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 03/09/2009 1601 02/19/2009 2010	Analysis Batch: 220-25007 Prep Batch: 220-24485		Instrument ID: HP 58 Lab File ID: C4748 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: PRI	90 with dual ECD 3434.d 30.20 g 10 mL 1.0 uL MARY
Applyto	DrvWt C	orrected: Y Result (ug/Kg)	Qualifie	er MDL	RL
	general and a West Community of Statement Patient and attraction (Manager 1997). A	21	U	1.6	21
PCB-1221		21	υ	1.6	21
PCB-1232		21	U 	1.6	21
PCB-1242		21	Ų	1.0	21
PCB-1248		21	U	1.0	21
PCB-1254 PCB-1260		37	Ų	1.7	21
Surrogate		%Rec	Landard	Acceptance	ce Limits
Tetrachloro-m-xvle	ene	144		24 - 154	
DCB Decachlorob	iphenyl	140		25 - 159	
Mathod	8082	Analysis Batch: 220-25007		Instrument ID: HP 5	890 with dual ECD
Broporation:	3550B	Prep Batch: 220-24485		Lab File ID: D474	.8434.d
Pilution:	1.0			Initial Weight/Volume:	30.20 g
Ditution. Data Analyzed:	03/09/2009 1601			Final Weight/Volume:	10 mL
Date Prenared:	02/19/2009 2010			Injection Volume:	1.0 uL
Date i Tepareu.	02, 70,2000 2000			Column ID: SEC	CONDARY
Surrogate		%Rec		Acceptan	ce Limits
Tabashian		149	in an	24 - 154	

149 Tetrachloro-m-xylene 97 DCB Decachlorobiphenyl

X 1/2 03/18/2009

25 - 159

Jan 10/10/

Client: GEI Con	sultants, Inc.	·		Job S	Number: 220-8107-1 dg Number: 220-8107
Client Sample ID:	EHS-SS-10				
Lab Sample ID: Client Matrix:	220-8107-3 Solid	% Moisture: 18.2		Date Sampled: Date Received:	02/18/2009 1035 02/19/2009 1000
nanistaniana mashirisina ang panana si panananisi n		8081A Organochlorine Pesticio	les (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 03/05/2009 0045 02/19/2009 2010	Analysis Batch: 220-24849 Prep Batch: 220-24485	ור ע F ה C	nstrument ID: HP .ab File ID: C83 nitial Weight/Volume Final Weight/Volume njection Volume: Column ID: P	6890 dual ECD 365032.D : 30.20 g : 10 mL 1.0 uL RIMARY
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Linc Heptachlor Heptachlor Heptachlor Toxaphene alpha-Chlordane gamma-Chlordane	Dry lane) e	Wt Corrected: Y Result (ug/Kg) 4.0 49 J / 50 2.1 2.1 2.1 2.1 4.0 2.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		MDL 0.72 0.81 0.98 0.22 0.30 0.45 0.44 0.69 0.35 0.76 0.72 0.75 0.49 0.74 0.35 0.39 0.37 4.4 11 0.33 0.64 3.7	RL 4.0 4.0 2.1 2.1 2.1 2.1 4.0 2.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
Surrogate DCB Decachlorob Tetrachloro-m-xyle Method: Preparation: Dilution: Date Analyzed: Date Prepared:	iphenyl ene 8081A 3550B 1.0 03/05/2009 0045 02/19/2009 2010	%Rec 96 86 Analysis Batch: 220-24849 Prep Batch: 220-24485	and day the Made with the	Accept 25 - 24 - Instrument ID: Hi Lab File ID: Di Initial Weight/Volum Final Weight/Volume Injection Volume: Column ID:	tance Limits 159 154 P 6890 dual ECD 8365032.D e: 30.20 g e: 10 mL 1.0 uL SECONDARY
Surrogate DCB Decachlorot Tetrachloro-m-xyl	liphenyl ene	%Rec 149 76	ana na mana ana amin'ny fisiana	Ассер 25 - 24 -	tance Limits 159 154

JC 41.109

TestAmerica Connecticut

Page 35 of 2173

03/18/2009

FORM 1 HERBICIDES ORGANICS ANALYSIS DA	TA SHEET
Lab Name: TESTAMERICA BURLINGTON Contr	EHS-SS-10
Lab Code: STLV Case No.: RIVERGEI SAS	No.: SDG No.: 22081071
Matrix: (soil/water) SOIL	Lab Sample ID: 785224
Sample wt/vol: 50.0 (g/mL) G	Lab File ID: 04MA091433-R311
% Moisture: 18 decanted: (Y/N) N	Date Received: 02/20/09
Extraction: (SepF/Cont/Sonc) OTHER	Date Extracted: 02/21/09
Concentrated Extract Volume: 10(mL)	Date Analyzed: 03/05/09
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N
CO CAS NO. COMPOUND (U	NCENTRATION UNITS: g/L or ug/Kg) UG/KG Q
94-75-72,4-D 93-72-12,4,5-TP (Silvex) 93-76-52,4,5-T	46 UVJ 4.6 U 12 U

FORM I HERBICIDES

Error 31-24/29 16 41.109

03/18/2009

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

Client Sample ID: EHS-SS-10

Lab Sample ID: Client Matrix:	220-810 Solid	7-3	9	6 Moisture: 18.2	Date Date	e Sampled: 02 e Received: 02	2/18/2009 1035 2/19/2009 1000
aller den forste ander den son ander den son ander	ann an Ailtean an Ailtean Ailte	n yr yn ywnar yn yn yn ar yn yn ar yn yn ar yn yn ar yn	(6010B Metals (ICP)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/03/2009 03/02/2009	1854 1145	Analysis E Prep Batc	3atch: 220-24795 h: 220-24742	Instrume Lab File Initial We Final We	nt ID: ID: eight/Volume: eight/Volume:	TJA Trace ICAP W030309 1.30 g 250 mL
Analyte		DryWt Corrected:	Y	Result (mg/Kg)	Qualifier	MDL	RL
Analyte Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony Selenium Thallium				3.5 9700 14.0 31.6 0.50 998 5.9 2.1 10.3 40.8 10300 245 1100 96.6 54.4 2.35 U 5.9 82.2 11.8 1.4 1.8 4.4 1.8 5.9 82.2 11.8 1.4 1.8 5.9 8.2 17.7	U J J U J U U U U U U	0.33 74.0 0.73 0.26 0.26 12.9 0.61 0.24 0.33 0.71 8.2 20.0 11.8 0.24 12.9 0.61 0.24 12.9 0.61 0.49 1.4 1.1 3.6 0.21	3.5 118 5.9 2.4 2.4 235 5.9 2.4 3.5 5.9 70.5 235 41.1 7.1 235 5.9 5.9 5.9 5.9 11.8 11.8 8.2 4.7
Zínc	1. 1919			82.9	- Andrew State Contraction of Contraction of Contraction of Contraction of Contraction of Contraction of Contra	1.8	Z3.5
	-		7	471A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 02/27/200 02/26/200	9 1449 9 1609	Analysis Prep Bat	Batch: 220-24727 .ch: 220-24679	Instrum Lab File Initial V Final W	lent ID: ∋ ID: Veight/Volume: /eight/Volume:	Perkin Elmer FIMS N/A 0.63 g 50 mL
Analyte		DryWt Corrected	: Y	Result (mg/Kg)	Qualifier	MDL.	RL
Мегситу	,			0.063	and a second	0.017	0.058

K 03/18/2009 3/25/109

WET CHEMISTRY

Sample Report Summary

Contract: 220-8107-1

Case No.: RIVERGEI

Client: STLCTS

Lab Name: TestAmerica Burlington

Lab Code: TALVT

Matrix: SOLID

% Solids: 82.1

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc	Qual
9030B/9034	Acid Soluble Sulfide	02/24/09	BLKSU022409A	mg/Kg	1	17.3	17.3 U	/
IN623	Solids, Percent	02/23/09	N/A	%	1.0		82.1	
~								

SDG No.: 22081071

Lab Sample ID: 785224

Date Received: 02/20/09

Page 2115 of 2173

Pelite

Na. 2/2/07

rec d 3/30/09

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

EHS-GW-01

Client Sample ID: 02/18/2009 0958 Date Sampled: 220-8107-2 Lab Sample ID: 02/19/2009 1000 Date Received: Water **Client Matrix:** 6010B Metals (ICP) **TJA Trace ICAP** Instrument ID: Analysis Batch: 220-24866 6010B Method: W030509 Lab File ID: Prep Batch: 220-24819 3010A Preparation: 50 mL Initial Weight/Volume: 1.0 Dilution: 50 mL Final Weight/Volume: 03/05/2009 1529 Date Analyzed: 03/04/2009 1227 Date Prepared: Qualifier RL MDL Result (ug/L) Analyte 10 1.3 υ 10 Silver 500 47 U 500 Aluminum 4.4 20 U 20 Arsenic 1.2 10 43 Barium 10 U 1.1 10 Beryllium 500 62 9700 Calcium 10 U 2.8 10 Cadmium 10 U 1.4 10 Cobalt 10 1.0 10 Chromium 10 ۳V 1.4 2.8 Copper 250 62 ゴレ 180 Iron 81 500 1800 Potassium 500 49 2300 Magnesium 31 2.3 15 6.2 Manganese 500 50 24000 Sodium **ፓ**∠ 10 1.4 5.5 Nickel 30 3.0 U 30 Lead 40 υ 8.8 40 Antimony 30 3.2 U 30 Selenium 30 8.0 U 30 Thallium 10 1.2 υ 10 Vanadium 50 7.0 U 50 Zinc 7470A Mercury (CVAA) Perkin Elmer FIMS Instrument ID: Analysis Batch: 220-24915 7470A Method: N/A Lab File ID: Prep Batch: 220-24863 7470A Preparation: 25 mL Initial Weight/Volume: 1.0 Dilution: 50 mL Final Weight/Volume: 03/05/2009 1651 Date Analyzed: 03/05/2009 1202 Date Prepared: RL MDL. Qualifier Result (ug/L) Analyte 0.090 0.20 0.40 -0.20 0.40 V U Mercury

Han 1/25/07 03/18/2009

Job Number: 220-8107-1

5 mL

5 mL

Client: GEI Consultants, Inc.

Client Sample ID: RB-1

Sdg Number: 220-8107 Date Sampled: 02/18/2009 1215

Date Received: 02/19/2009 1000

Instrument ID: HP 6890/5973 GC/MS

V2129.D

Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

Lab Sample ID: 220-8107-8RB Client Matrix: Water

8260B Volatile Organic Compounds (GC/MS)

Analysis Batch: 220-24745

Method:	8260B
Preparation:	5030B
Dilution:	10
Date Analyzed:	02/27/2009 2008
Date Prepared:	02/27/2009 2008

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acetone	4.8	JTV	1.0	10	
Benzene	5.0	υŬ	0.74	5.0	
Bromodichloromethane	5.0	U	0.48	5.0	
Bromoform	5.0	U	0.46	5.0	
Bromomethane	5.0	U	2.1	5.0	
Methyl Ethyl Ketone	5.1	JJ	1.1	10	
Carbon disulfide	5.0	U	0.90	5.0	
Carbon tetrachloride	5.0	U	1.1	5.0	
Chlorobenzene	5.0	U	0.72	5.0	
Chloroethane	5.0	U	1.1	5.0	
Chloroform	5.0	U	0.67	5.0	
Chloromethane	5.0	U	1.1	5.0	
Dibromochloromethane	5.0	U	0.55	5.0	
1,1-Dichloroethane	5.0	U	1.0	5.0	
1,2-Dichloroethane	5.0	U	0.72	5.0	
1,1-Dichloroethene	5.0	U	0.83	5.0	
1,2-Dichloropropane	5.0	U	0.71	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0	U	0.57	5.0	
Ethylbenzene	5.0	U	0.87	5.0	
2-Hexanone	10	U	1.1	10	
Methylene Chloride	5.0	U	0.78	5.0	
methyl isobutyl ketone	10	U	0.38	10	
Styrene	5.0	U	0.64	5.0	
1,1,2,2-Tetrachloroethane	5.0	U	0.81	5.0	
Tetrachloroethene	5.0	U	0.81	5.0	
Toluene	5.0	U	0.72	5.0	
1,1,1-Trichloroethane	5.0	U	0.69	5.0	
1,1,2-Trichloroethane	5.0	U	0.65	5.0	
Trichloroethene	5.0	U	0.62	5.0	
Vinyl chloride	5.0	U	0.99	5.0	
Xylenes, Total	5.0	U	2.3	5.0	
cis-1,2-Dichloroethene	5.0	U	0.99	5.0	
trans-1,2-Dichloroethene	5.0	U	0.76	5.0	

Surrogate	%Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	102	53 - 125
4-Bromofluorobenzene	80	73 - 127
Dibromofluoromethane	98	54 - 137
Toluene-d8 (Surr)	88	63 - 121

03/18/2009

Client: GEI Consultants, Inc.

Client Sample ID: RB-1

Job Number: 220-8107-1 Sdg Number: 220-8107

Lab Sample ID:	220-8107-8RB	Date Sampled:	02/18/2009	1215
Client Matrix:	Water	Date Received:	02/19/2009	1000
		00000000000000000000000000000000000000		

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:	8270C	Analysis Batch: 220-25046	Instrument ID:	HP 6890	/597	5
Preparation:	3510C	Prep Batch: 220-24533	Lab File ID:	A4203.D		
Dilution:	1.0		Initial Weight/Volu	ume:	1000) mL
Date Analyzed:	03/10/2009 1936		Final Weight/Volu	ime:	1.0	mL
Date Prepared:	02/23/2009 1216		Injection Volume:		1.0	uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acenaphthene	4.0	U	0.38	4.0	
Acenaphthylene	4.0	U	0.47	4.0	
Anthracene	4.0	U	0.42	4.0	
Benzo[a]anthracene	4.0	U	0.37	4.0	
Benzo[a]pyrene	4.0	U	0.37	4.0	
Benzo[b]fluoranthene	4.0	U	0.38	4.0	
Benzo[g,h,i]perylene	4.0	U	0.29	4.0	
Benzo[k]fluoranthene	4.0	U	0.43	4.0	
Bis(2-chloroethoxy)methane	4.0	U	1.1	4.0	
Bis(2-chloroethyl)ether	4.0	U	1.0	4.0	
Bis(2-ethylhexyl) phthalate	4.0	U	0.50	4.0	
Butyl benzyl phthalate	4.0	U	0.48	4.0	
Carbazole	4.0	U	0.35	4.0	
Chrysene	4.0	U	0.40	4.0	
Di-n-butyl phthalate	4.0	U	0.49	4.0	
Di-n-octyl phthalate	4.0	U	0.45	4.0	
4-Bromophenyl phenyl ether	4.0	U	0.49	4.0	
4-Chloroaniline	4.0	U	0.67	4.0	
2-Chloronaphthalene	4.0	U	0.49	4.0	
4-Chlorophenyl phenyl ether	4.0	U	0.49	4.0	
Dibenz(a,h)anthracene	4.0	U	0.32	4.0	
Dibenzofuran	4.0	U	0.39	4.0	
Diethyl phthalate	4.0	U	0.42	4.0	
Dimethyl phthalate	4.0	U	0.33	4.0	
1,2-Dichlorobenzene	4.0	U	0.48	4.0	
1,3-Dichlorobenzene	4.0	U	0.43	4.0	
1,4-Dichlorobenzene	4.0	U	0.51	4.0	
3,3'-Dichlorobenzidine	4.0	U	0.66	4.0	
2,4-Dinitrotoluene	4.0	U	0.30	4.0	
2,6-Dinitrotoluene	4.0	U	0.42	4.0	
Fluoranthene	4.0	U	0.42	4.0	
Fluorene	4.0	U	0.48	4.0	
Hexachlorobenzene	4.0	U	0.48	4.0	
Hexachlorobutadiene	4.0	U	0.86	4.0	
Hexachlorocyclopentadiene	4.0	U	0.75	4.0	
Hexachloroethane	4.0	U	0.52	4.0	
Indeno[1,2,3-cd]pyrene	4.0	U	0.41	4.0	
Isophorone	4.0	U	0.38	4.0	
2-Methylnaphthalene	4.0	U	0.47	4.0	
Naphthalene	4.0	U	0.42	4.0	
2-Nitroaniline	4.0	U	0.53	4.0	
3-Nitroaniline	4.0	U	0.37	4.0	
Nitrobenzene	4.0	U	0.73	4.0	
N-Nitrosodi-n-propylamine	4.0	U	0.41	4.0	
TestAmerica Connecticut	Page 33 of 21	.73	Emplan	,159 C 03/1 41.109	8/2009

Client: GEI Consultants, Inc.

Client Sample ID: RB-1

Job Number: 220-8107-1 Sdg Number: 220-8107

Lab Sample ID:	220-8107-8RB	Date Sampled:	02/18/2009	1215
Client Matrix:		Date Received:	02/19/2009	1000

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:	8270C 3510C	Analysis Batch: 220-25046 Prep Batch: 220-24533	Instrument ID: HP 68 Lab File ID: A4203	90/5975 .D
Dilution:	1.0	· · · ·	Initial Weight/Volume:	1000 mL
Date Analyzed:	03/10/2009 1936		Final Weight/Volume:	1.0 mL
Date Prepared:	02/23/2009 1216		Injection Volume:	1.0 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
N-Nitrosodiphenylamine	4.0	U	0.35	4.0	
Phenanthrene	4.0	U	0.39	4.0	
Pyrene	4.0	U	0.42	4.0	
1,2,4-Trichlorobenzene	4.0	U	0.65	4.0	
4-Chloro-3-methylphenol	5.0	U	1.3	5.0	
2-Chlorophenol	4.0	U	0.61	4.0	
2-Methylphenol	4.0	U	0.60	4.0	
4-Methylphenol	4.0	U	0.39	4.0	
2,4-Dichlorophenol	4.0	U	0.55	4.0	
2,4-Dimethylphenol	4.0	U	0.50	4.0	
2,4-Dinitrophenol	25	U	1.1	25	
4,6-Dinitro-2-methylphenol	25	U	0.37	25	
2-Nitrophenol	4.0	U	0.51	4.0	
4-Nitrophenol	10	U	0.38	10	
Pentachlorophenol	25	U	1.2	25	
Phenol	4.0	U	0.29	4.0	
2,4,5-Trichlorophenol	10	U	0.54	10	
2,4,6-Trichlorophenol	4.0	U	0.49	4.0	
Benzyl alcohol	4.0	U	0.39	4.0	
4-Nitroaniline	4.0	U	0.28	4.0	
2,2'-oxybis[1-chloropropane]	4.0	U	0.71	4.0	
Atrazine	4.0	U	0.31	4.0	
Simazine	4.0	U	0.34	4.0	
Surrogate	%Rec		Accep	ance Limits	
2-Fluorobiphenyl	53		43 - 1	116	,, 1-1
2-Fluorophenol	25		21 - 9	97	

52

53

18

51

Emmalog VC 3126/09 VC 03/18/2009

29 - 126

38 - 113

18 - 97

10 - 119

2,4,6-Tribromophenol

Nitrobenzene-d5

Terphenyl-d14

Phenol-d5

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

Client Sample ID: RB-1 Date Sampled: 02/18/2009 1215 Lab Sample ID: 220-8107-8RB Date Received: 02/19/2009 1000 Client Matrix: Water Date Received: 02/19/2009 1000 S082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography Instrument ID: HP 5890 with dual ECD

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3510C 1.0 03/09/2009 1542 02/20/2009 1343	Analysis Batch: 220-25007 Prep Batch: 220-24491	Instr Lab Initia Fina Injec Colu	ument ID: F File ID: E I Weight/Volun I Weight/Volum tion Volume: imn ID:	04748433.d ne: 1000 mL ne: 10.0 mL 1.0 uL PRIMARY
		Result (up/L)	Qualifier	MDL	RL
Analyte	a an an ann an ann an ann an ann an ann ann an a	A 50	[]	0.050	0.50
PCB-1016		0.50	U U	0.050	0.50
PCB-1221		0.50	U U	0.050	0.50
PCB-1232		0.50	11	0.050	0.50
PCB-1242		0.50	0	0.050	0.50
PCB-1248		0.50	11	0.082	0.50
PCB-1254		0.50	U	0.002	0.50
PCB-1260		0.50	0	0.002	0.00
o		%Rec		Acce	ptance Limits
Surrogate	the second s	84	53 - 144		- 144
Tetrachloro-m-xy	viene	33		29 -	- 156
DCB Decachloro	biphenyl				

03/18/2009

Page 48 of 2173

TestAmerica Connecticut

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID: Lab Sample ID: Client Matrix:	8 RB-1 220-8107-8RB Water			Date Sampled: 02 Date Received: 02	/18/2009 1215 /19/2009 1000
analonitisimmereeveetiinisensuut Monaemere	₩99₩99₩946456789₩999 ₩ =0₩₩9999₽₽₽6787878999₽₽6	8081A Organochlorine Pestici	des (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/25/2009 0058 02/20/2009 1343	Analysis Batch: 220-24614 Prep Batch: 220-24491	In La In Fi C	astrument ID: HP 689 ab File ID: C8361 nitial Weight/Volume: njection Volume: solumn ID: PRIM	90 dual ECD 024.D 1000 mL 10.0 mL 1.0 uL 1ARY
Analvte		Result (ug/L)	Qualifier	MDL	RL
4.4'-DDD		0.10	UJ/	0.011	0.10
4,4'-DDE		0.10	U	0.044	0.10
4.4'-DDT		0.10	0.1~	0.014	0.10
Aldrin		0.050	U	0.0002	0.000
alpha-BHC		0.050	0	0.0075	0.050
beta-BHC		0.050	U	0.0073	0.050
delta-BHC		0.050	U	0.0037	0.000
Dieldrin		0.10	0	0.0030	0.050
Endosulfan I		0.050	U	0.0040	0.000
Endosulfan II		0.10	U H	0.0057	0.10
Endosulfan sulfate	Э	0.10		0.014	0.10
Endrin		0.10	0.9 -	0.014	0.10
Endrin aldehyde		0.10	0	0.0001	0.10
Endrin ketone		0.10	Н	0.0153	0.050
gamma-BHC (Lind	dane)	0.050	11	0.0000	0.050
Heptachlor		0.000		0.0058	0.050
Heptachlor epoxic	le	0.000		0.0000	0.50
Methoxychlor		0.50	11	0.21	2.5
Toxaphene		2.0	1	0.0048	0.050
alpha-Chlordane		0.050	U U	0.0048	0.050
gamma-Chlordan	e	0.000	0		
Surrogate		%Rec	and a state of the	Acceptanc	æ Limits
DCB Decachlorot	biphenyl	36		29 - 100 50 - 444	
Tetrachloro-m-xyl	lene	70		53 - 144	
Method:	8081A	Analysis Batch: 220-24614	1	nstrument ID: HP 68	390 dual ECD
Prenaration:	3510C	Prep Batch: 220-24491	L	_ab File ID: D836	1024.D
Dilution:	10	-	I	nitial Weight/Volume:	1000 mL
Data Analuzad	02/25/2009 0058		F	Final Weight/Volume:	10.0 mL
Date Analyzed.	0212012000 0000		1	njection Volume:	1.0 uL
Date Prepared:	0212012009 1343		Ċ	Column ID: SEC	ONDARY
		0/ Dec		Accentan	ce Limits

Surrogate%RecDCB Decachlorobiphenyl36Tetrachloro-m-xylene70	29 - 156 53 - 144
---	----------------------

41,109

[0] 03/18/2009

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

Client Sample ID:	RB-1			
Lab Sample ID: Client Matrix:	220-8107-8RB Water		Date Sample Date Receive	d: 02/18/2009 1215 ed: 02/19/2009 1000
telletim stantaassetteljäännassannas piekkäännassan		8081A Organochlorine Pesticides	(GC)	
Method: Preparation: Dilution:	8081A 3510C 1.0	Analysis Batch: 220-24849 Prep Batch: 220-24491	Instrument ID: Lab File ID: Initial Weight/Volu	HP 6890 dual ECD C8365025.D ime: 1000 mL

Date Analyzed:	03/04/2009 02/20/2009	2147 1343			Final Weight/Volum Injection Volume: Column ID:		ne: 1	10.0 m 1.0 uL	1L
Date Frepared.		10-0					PRIMARY		
Analyte			Result (ug/L)	Qualifie	er	MDL	F	٦L	en africija skoleta statu ostala (1990) se statu ostala se statu ostala se statu ostala se statu ostala se stat
Methachlor	Andrews	n yn ddall 19 me'r yn yn yn yn ganal yn ganlle refnain yn yn yn ganlyndlânan fa'r yn yn yn ganlyndlânan fa'r yn	0.50	U		0.042	().50	

03/18/2009

Client: GEI Consultants, Inc.

Date Analyzed: 03/04/2009 2147

Date Prepared: 02/20/2009 1343

Job Number: 220-8107-1 Sdg Number: 220-8107

1.0 uL

Injection Volume:

Column ID: SECONDARY

Client Sample ID	- RB-1		
Lab Sample ID: Client Matrix:	220-8107-8RB Water		Date Sampled: 02/18/2009 1215 Date Received: 02/19/2009 1000
enemenen (hallen ander and	n an fair an tra bhair a gun ann ann an Bhannan ann an Bhannan ann an Bhannan ann an Anna ann an Anna ann an An	8081A Organochlorine Pesticides	(GC)
Method: Preparation: Dilution:	8081A 3510C 1.0 03/04/2009 2147	Analysis Batch: 220-24849 Prep Batch: 220-24491	Instrument ID: HP 6890 dual ECD Lab File ID: C8365025.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 10.0 mL

Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene	%Rec 37 36 70 71	Acceptance Limits 29 - 156 29 - 156 53 - 144 53 - 144
Tetrachloro-m-xylene	71	00 - 144

03/18/2009
HERBICIDE	FORM I HERBICIDES ORGANICS ANALYSIS DATA SHEET						
Lab Name: TESTAMERIC	A BURLINGTON Contract	: 29001	RB-1				
Lab Code: STLV	Case No.: RIVERGEI SAS No	SDC	G No.: 22081071				
Matrix: (soil/water)	WATER	Lab Sample ID:	785229				
Sample wt/vol:	940.0 (g/mL) ML	Lab File ID:	04MA091433-R101				
<pre>% Moisture:</pre>	decanted: (Y/N)	Date Received:	: 02/20/09				
Extraction: (SepF/C	ont/Sonc) SEPF	Date Extracted	l: 02/21/09				
Concentrated Extract	Volume: 10(mL)	Date Analyzed:	: 03/04/09				
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0				
GPC Cleanup: (Y/N)	N pH: 7.0	Sulfur Cleanur	p: (Y/N) N				
CAS NO.	CONCE COMPOUND (ug/L	NTRATION UNITS or ug/Kg) UG/I	Q Q				
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T		2.0 U /J 0.20 U 0.50 U VJ				

FORM I HERBICIDES

. .

14/1J 03/18/2009

Job Number: 220-8107-1 Sdg Number: 220-8107

Client: GEI Consultants, Inc.

Client Sample ID: RB-1

Lab Sample ID: Client Matrix:	ample ID: 220-8107-8RB t Matrix: Water			Date Sampled: 02/18/2009 1215 Date Received: 02/19/2009 1000			
ranziękietowa ktorana podsie inanowa pistowa transmy a wieka primacy	na na domining na ng fana ana ang dang dan interna na ng pagta kanang pang kanang na ng pang kanang na dalaman Ng pang kanang na ng pang kanang ng pang kanang ng pang kanang pang kanang pang kanang ng pang kanang pang kana	6010B Metals (ICP)					
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3010A 1.0 03/05/2009 1535 03/04/2009 1227	Analysis Batch: 220-24866 Prep Batch: 220-24819	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		TJA Trace ICAP W030509 50 mL 50 mL		
Analvte		Result (ug/L)	Qualifier	MDL	RL.		
and the second s	and the second	10	U	1.3	10		
Silver		500	U	47	500		
Aiuminum		20	U	4.4	20		
Arsenic		10	U	1.2	10		
Валит		10	U	1.1	10		
Beryillum		500	U	62	500		
Cadmium		10	U	2.8	10		
		10	U	1.4	10		
Copait		10	U	1.0	10		
Chromium		10	U	1.4	10		
Copper		250	U	62	250		
Iron		500	U	81	500		
Potassium		500	υ	49	500		
Magnesium		15	U	2.3	15		
Manganese		67	J 1	50	500		
Sodium		10	ປັ	1.4	10		
Nickel		30	Ū	3.0	30		
Lead		40	Ū	8.8	40		
Antimony		40	Ŭ	3.2	30		
Selenium		30	Ū.	8.0	30		
Thallium		10	Ŭ	1.2	10		
Vanadium		50	Ū	7.0	50		
ZINC		7470A Mercury (CVAA	.)				
/	74704	Analysis Batch: 220-24915	Instrum	ient ID:	Perkin Elmer FIMS		
Method:	747UA	Drop Datch: 220-24863	Lab Fil	e ID:	N/A		
Preparation:	7470A	Prep Baton. 220-24000	Initial V	Veight/Volume:	25 mL		
Dilution:	1.0		Final M	/oight//olume:	50 ml		
Date Analyzed:	03/05/2009 1654		Filldi V	veigna volume.	ou me		
Date Prepared:	03/05/2009 1202						
Analyte		Result (ug/L)	Qualifier	MDL	RL		
Mercury	an a	-0.20 0.40		0.090	-0:20 0.40		

JC

<u>\</u>09

WET CHEMISTRY

Sample Report Summary

Client Sample No. RB-1

Lab Name: TestAmerica BurlingtonContract: 220-8107-1SDG No.: 22081071Lab Code: TALVTCase No.: RIVERGEILab Sample ID: 785229Matrix: WATERClient: STLCTSDate Received: 02/20/09

% Solids:

Analytical Analytical DF RL Method Parameter Run Date Batch Units Conc. Qual. mg/L 02/24/09 BLKSU022409B 9030B/9034 Acid Soluble Sulfide 1 3.20 5.6

ham Printed on: 02/26/09 02:24 PM

Client: GEI Consultants, Inc.

Client Sample ID: Trip Blank

220-8107-1TB

Water

Lab Sample ID:

Client Matrix:

Job Number: 220-8107-1 Sdg Number: 220-8107

Date Sampled: 02/18/2009 0000 Date Received: 02/19/2009 1000

8260B Volatile Organic Compounds (GC/MS)

Method:	8260B	Analysis Batch: 220-24745	Instrument ID:	HP 6890/5	973 GC/MS
Preparation:	5030B		Lab File ID:	V2128.D	
Dilution:	1.0		Initial Weight/Volu	ume: 5	mL
Date Analyzed:	02/27/2009 1942		Final Weight/Volu	ime: 5	mL
Date Prepared:	02/27/2009 1942				

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acetone	10	U V J /	1.0	10	20220000000000000000000000000000000000
Benzene	5.0	U	0.74	5.0	
Bromodichloromethane	5.0	U	0.48	5.0	
Bromoform	5.0	U	0.46	5.0	
Bromomethane	5.0	U	2.1	5.0	
Methyl Ethyl Ketone	10	U	1.1	10	
Carbon disulfide	5.0	U	0.90	5.0	
Carbon tetrachloride	5.0	U	1.1	5.0	
Chlorobenzene	5.0	U	0.72	5.0	
Chloroethane	5.0	U	1.1	5.0	
Chloroform	5.0	U	0.67	5.0	
Chloromethane	5.0	U	1.1	5.0	
Dibromochloromethane	5.0	U	0.55	5.0	
1,1-Dichloroethane	5.0	U	1.0	5.0	
1,2-Dichloroethane	5.0	υ	0.72	5.0	
1,1-Dichloroethene	5.0	U	0.83	5.0	
1,2-Dichloropropane	5.0	U	0.71	5.0	
cis-1,3-Dichloropropene	5.0	U	0.28	5.0	
trans-1,3-Dichloropropene	5.0	U	0.57	5.0	
Ethylbenzene	5.0	U	0.87	5.0	
2-Hexanone	10	U	1.1	10	
Methylene Chloride	5.0	U	0.78	5.0	
methyl isobutyl ketone	10	U	0.38	10	
Styrene	5.0	U	0.64	5.0	
1,1,2,2-Tetrachloroethane	5.0	U	0.81	5.0	
Tetrachloroethene	5.0	U	0.81	5.0	
Toluene	5.0	U	0.72	5.0	
1,1,1-Trichloroethane	5.0	U	0.69	5.0	
1,1,2-Trichloroethane	5.0	U	0.65	5.0	
Trichloroethene	5.0	U	0.62	5.0	
Vinyl chloride	5.0	U	0.99	5.0	
Xylenes, Total	5.0	U	2.3	5.0	
cis-1,2-Dichloroethene	5.0	U	0.99	5.0	
trans-1,2-Dichloroethene	5.0	U	0.76	5.0	
Dumanata	9/ Doo		٨	ana ki-tu	

Surrogate	%Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	102	53 - 125
4-Bromofluorobenzene	81	73 - 127
Dibromofluoromethane	98	54 - 137
Toluene-d8 (Surr)	86	63 - 121

TestAmerica Connecticut

03/18/2009

Client: GEI Consultants, Inc.

.....

Job Number: 220-8107-1 Sdg Number: 220-8107

General Chemistry						
Client Sample ID:	EHS-SS-10					
Lab Sample ID: Client Matrix:	220-8107-3 Solid	% Moisture: 18.2	Date Sampled: Date Received:	02/1 02/1	8/2009 1035 9/2009 1000	
A	Result	Qual Units MDL	RL	Dil	Method	
Sulfate-S	-4:4- 12.2U Anly Batch: 220-24914	Jo / mg/Kg 0.23 Date Analyzed 02/28/2009 0153	12.2	1.0 Dry\	300.0 Nt Corrected: Y	
Analuta	Result	Qual Units RL	RL	Dil	Method	
Percent Moisture	18.2 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100	1.0	PercentMoisture	
Percent Solids	81.8 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100	1.0	PercentMoisture	
Client Sample ID:	EHS-SS-08					
Lab Sample ID: Client Matrix:	220-8107-4 Solid	% Moisture: 23.4	Date Sampled: Date Received	02/1 : 02/1	18/2009 1045 19/2009 1000	
Analvte	Result	Qual Units MDL	RL	Dil	Method	
Sulfate-S	-4.5 3.1U Anly Batch: 220-24914	5- 7 mg/Kg 0.25 Date Analyzed 02/28/2009 0206	13.1	1.0 Dry	300.0 Wt Corrected: Y	
Analyte	Result	Qual Units RL	RL	Dil	Method	
Percent Moisture	23.4 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100	1.0	PercentMoisture	
Percent Soilds	76.6 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100	1.0	PercentMoisture	

Client: GEI Consultants, Inc.

in a subsection of the second s		General Chemistry	
Client Sample ID:	EHS-SS-09		
Lab Sample ID: Client Matrix:	220-8107-5 Solid	% Moisture: 17.2	Date Sampled: 02/18/2009 1055 Date Received: 02/19/2009 1000
Analita	Result	Qual Units MDL	RL Dil Method
Sulfate-S	-6.0• 12.1U Anly Batch: 220-24914	√ ታ mg/Kg 0.23 Date Analyzed 02/28/2009 0247	12.1 1.0 300.0 DryWt Corrected: Y
Apolito	Result	Qual Units RL	RL Dil Method
Percent Moisture	17.2 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100 1.0 PercentMoisture
Percent Solids	82.8 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100 1.0 PercentMoisture
Client Sample ID:	EHS-SS-07		
Lab Sample ID: Client Matrix:	220-8107-6 Solid	% Moisture: 19.2	Date Sampled: 02/18/2009 1105 Date Received: 02/19/2009 1000
Analyte	Result	Qual Units MDL	RL Dil Method
Sulfate-S	- 6.3 12.40 Anly Batch: 220-24914	l	12.4 1.0 300.0 DryWt Corrected: Y
Analyte	Result	Qual Units RL	RL Dil Method
Percent Moisture	19.2 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100 1.0 PercentMoisture
Percent Solids	80.8 Anly Batch: 220-24562	% 0.100 Date Analyzed 02/23/2009 1600	0.100 1.0 PercentMoisture

03/18/2009

Client: GEI Consultants, Inc.

Job Number: 220-8107-1 Sdg Number: 220-8107

General Chemistry								
Client Sample ID:	BD-1							
Lab Sample ID: Client Matrix:	220-8107-7 Solid		% Moi	sture:	16.4	Date San Date Rec	npled: 02/1 ceived: 02/1	8/2009 0000 9/2009 1000
Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Sulfate-S	Anly Batch: 220	- 5.8 12.0 U)-24914	ۍ 🗸 Date Ana	mg/Kg Ilyzed	0.23 02/28/2009 03	12.0 314	1.0 Dry [\]	300.0 Wt Corrected: Y
Analyte	•	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	Anly Batch: 220	16.4)-24562	Date Ana	% Ilyzed	0.100 02/23/2009 10	0.100 600	1.0	PercentMoisture
Percent Solids	Anly Batch: 220	83.6)-24562	Date Ana	% ilyzed	0.100 02/23/2009 10	0.100 600	1.0	PercentMoisture
Client Sample ID:	RB-1							
Lab Sample ID: Client Matrix:	220-8107-8RB Water					Date Sar Date Red	mpled: 02/′ ceived: 02/′	18/2009 1215 19/2009 1000
Analvte		Result	Qual	Units	MDL	RL	Dil	Method
Sulfate	Anly Batch: 220	0.18)-24920	す、 Date Ana	mg/L alyzed	0.046 02/28/2009 0	1.0 557	1.0	300.0

03/18/2009 3/25/0°

Appendix H

Decision Key

Fish and Wildlife Resources Impact Analysis Decision Key East Hampton Hortonsphere Site East Hampton, New York

	Yes	No
1. Is the site or area of concern a discharge or spill event?		
2. Is the site or area of concern a point source of contamination to groundwater which will be		
prevented from discharging to surface water? Soil contamination is not widespread, or if		
widespread, is confined under buildings and paved areas?		
3. Is the site and all adjacent property a developed area with buildings, paved surfaces and	,	
little or no vegetation?		,
4. Does the site contain habitat of an endangered, threatened, or special concern species?		
5. Has the contamination gone off-site?		
6. Is there any discharge or erosion of contamination or the potential for discharge or erosion		,
of contamination?		
7. Are the site contaminants PCBs, pesticides, or other persistent, bioaccumulable substances?		
8. Does contamination exist at concentrations that could exceed SCGs or be toxic to aquatic		
life if discharged to surface water?		
9. Does the site or any adjacent or downgradient property contain any of the following		
resources?	1	
a. Any endangered, threatened, or special concern species or rare plants or their habitats		
b. Any NYSDEC designated significant habitats or rare NYS ecological communities		
c. Tidal or freshwater wetlands		
d. Streams, creeks, or river		
e. Pond, lake, or lagoon		
f. Drainage ditch or channel		
g. Other surface water features		
h. Other marine or freshwater habitats		
i. Forest		
j. Grassland or grassy field		
k. Parkland or woodland		
1. Shrubby area		
m. Urban wildlife habitat		
n. Other terrestrial habitat		
10. Is the lack of resources due to contamination?		
11. Is the contamination a localized source which has not migrated from the source to impact		
any on-site or off-site resources?		
12. Does the site have widespread soil contamination that is not confined under and around		
buildings or paved areas?		
13. Does the contamination at the site or area of concern have the potential to migrate to,		
erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or		
special concern species or other fish and wildlife resources?		
14. Fish and wildlife resource impact analysis needed?		

