DRAFT FINAL

DISPOSAL ACTIONS REPORT

Building 10, Building 107 and Battery 113

FORMER CAMP HERO

Montauk, New York

Formerly Used Defense Sites Property # C02NY002403 Former Camp Hero, Suffolk County, New York

29 June 2023

Prepared for:

U.S. Army Corps of Engineers New England District 696 Virginia Road Concord, Massachusetts 01742

Contract # W912WJ-20-C-0008

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	REGULATORY CITATIONS	1
3.0	BACKGROUND INFORMATION	
4.0	FIELD ACTIVITIES	4
4.1	Waste Characterization Sampling	4
4.2	Building 10	5
4.2.1	Removal Actions	5
4.3	Building 107	8
4.3.1	Removal Actions	8
4.4	Battery 113	10
4.4.1	Disposal Actions	10
4.4.2	Concrete Core Sampling	14
4.4.3	Limited PCB-Concrete Removal	16
4.4.4	Complete PCB-Concrete Removal	17
4.4.5	Removal of Existing Construction and Demolition (C&D) Debris	17
5.0	CONCLUSIONS	15

FIGURES

Figure 1	USGS Topographic Map
Figure 2	Site Location Map
Figure 3	Battery 113 Concrete Core Sample:
Figure 4	Battery 113 Concrete Removal Recommendation
Figure 5	Building 10 Removal Actions
Figure 6	Building 107 Removal Actions
Figure 7	Building 113 Removal Actions

APPENDICES

Appendix A	Waste Characterization Memo
Appendix B	Asbestos-Containing Material (ACM) Disposal Manifest
Appendix C	Hazardous Waste Disposal Manifest
Appendix D	AST Contents + Wash-Water Disposal Manifest
Appendix E	Building 10 Sample Summary Results
Appendix F	Building 107 Sample Summary Results
Appendix G	NYSDEC Tank Registration Correspondence
Appendix H	ASTs Scrap Receipt
Appendix I	Transformer + PCB Fluid Disposal Manifest
Appendix J	Battery 113 Sample Summary Results
Appendix K	Battery 113 Removal Recommendation Memo
Appendix L	Battery 113 Removal Recommendation Revision Memo
Appendix M	PCB Concrete Disposal Manifest
Appendix N	Photo Log
Appendix O	C&D Debris Disposal Documentation

DISC 1

Wash-Water - E21-03247

Building 10 Disposal Actions - E21-03248

Building 107 Disposal Actions - E21-03249

Battery 113 Disposal Actions - PCBs - E21-03337

Battery 113 Disposal Actions – TPH - E21-03338

Battery 113 Concrete Cores - 460-241195

LIST OF ACRONYMS

ACM Asbestos-Containing Material
AST Aboveground Storage Tank

FCH Former Camp Hero

IAL Integrated Analytical Laboratories, LLC of Randolph, New Jersey

NYSDEC New York State Department of Environmental Conservation

PACM Presumed Asbestos-Containing Material

PPE Personal Protective Equipment

SCL Soil Cleanup Level

TPH Total Petroleum Hydrocarbons

USACE United States Army Corps of Engineers

1.0 INTRODUCTION

Renova Environmental Company (Renova) has prepared this Disposal Actions Report to document activities performed at the Former Camp Hero (FCH) site, located in Montauk, Suffolk County, New York. All work within this report has been performed under United States Army Corps of Engineers (USACE) Contract # W912WJ-20-C-0008.

2.0 REGULATORY CITATIONS

The following regulatory citations provide applicable investigation requirements, screening, and remediation standards for the contaminants of concern presented in this report.

NYSDEC Policy CP-51: Soil Cleanup Guidance last amended on October 21, 2010, presents Soil Cleanup Levels (SCLs) for Gasoline Contaminated Soils and Fuel Oil Contaminated Soils.

NYSDEC 6 NYCRR Part 375: Environmental Remediation Programs: last amended on December 14, 2006, presents Unrestricted Use Soil Cleanup Objectives for PCBs/Pesticides [Table 375-6.8(a)].

NYSDEC Technical Guidance for Site Investigation and Remediation (DER-10) and NYSDEC Permanent Closure of Petroleum Storage Tanks, last modified on 03 December 2003.

Resource Conservation and Recovery Act (RCRA), 42 U.S.C. §6901 et seq. (1976) presents standards and requirements for the transportation and disposal of hazardous waste.

Toxic Substances Control Act (TSCA), 15 U.S.C. §2601 et seq. (1976) presents standards for disposal of specific chemicals including polychlorinated biphenyls (PCBs).

3.0 BACKGROUND INFORMATION

All project sites under this contract were constructed as part of the Former Camp Hero (FCH). The Former Camp Hero (FCH) site is located north of Daniel Road, east and west of Camp Hero Road, and south of Montauk Highway, located 6 miles northeast of the hamlet and census-designated place of Montauk in Suffolk County, New York (Appendix A). The FCH site is roughly bell-shaped and has an approximate area of 468.69 acres. The site is located along the southern shore of Long Island, near the island's easternmost point (Montauk Point). Subsurface geology includes glacial till moraine deposits with small amounts of kame deposits overlying the Monmouth Group, Matawan Group, Magothy Formation bedrock.

Groundwater flow within the FCH site is generally towards the east and southeast, towards the Atlantic Ocean.

The FCH site was utilized for various training activities during the Revolutionary War, the War of 1812, the Spanish American War, World War I, and World War II. During and after World War II, the site was utilized as a Coastal Defense Installation to defend approaches to New York via three self-sufficient batteries (Battery 112, Battery 113, and Battery 216) and supporting facilities.

The majority of the FCH site is under the jurisdiction of the New York State Office of Parks, Recreation, and Historic Preservation (NYS OPRHP). The park is mostly undeveloped and is open to the public for pedestrian-based passive recreation including bird watching, beach combing, walking/hiking, photography, and seasonal surf fishing (with permit). Vehicular traffic is restricted in most areas. Camping or overnight parking is not allowed within the park without a permit. Several areas, mostly due to safety concerns associated with old structures, are fenced and restricted from public access. Future land use is anticipated to be active and passive public recreation with development consisting of infrastructure in support of this use. Several structures, some of which have safety deficiencies, are listed on the National Register of Historic Places. Renova's work at the FCH site occurred at the former Electrical Substation Operations Building (Building 107), Kitchen/Exchange Store (Building 10), and Battery 113. Battery 113 is an underground bunker constructed of concrete and covered with earth. The buildings are not currently in use and are boarded up. The property location is illustrated on Figure 1 (USGS Topographic Map) and Figure 2 (Site Location Map). Battery 113 is detailed on Figure 3 (Battery 113 Concrete Core Samples) and Figure 4 (Battery 113 Concrete Removal Recommendation) and Figure 7 (Building 113 Removal Actions). Building 10 is detailed on Figure 5 (Building 10 Removal Actions) and Building 107 is detailed on Figure 6 (Building 107 Removal Actions).

The work at Buildings 10, 107 and Battery 113 was conducted to address comments received by New York State Department of Conservation (NYSDEC), in a January 7, 2019 letter, regarding the Remedial Investigation Report.

Three (3) locations at the FCH site were identified for disposal actions and evaluation, as described below:

 Building 10: Site work completed within Building 10 comprised of removal and disposal of hazardous materials, as well as cleaning of the hazardous materials storage area, and postcleaning wipe and chip sampling.

- 2. **Building 107:** Site work completed within Building 107 comprised of removal and disposal of three (3) transformers and their associated PCB-containing fluids, as well as cleaning of the transformer removal area, and post-cleaning wipe and chip sampling.
- 3. Battery 113: Site work completed within Battery 113 comprised of removal and disposal of two (2) 150-gallon Aboveground Storage Tanks (ASTs) containing water and petroleum fuel mix, removal and disposal of four (4) transformers and their associated polychlorinated biphenyl (PCB)-containing fluids, as well as cleaning of the removal areas, and post-cleaning wipe and chip sampling.

4.0 FIELD ACTIVITIES

The following paragraphs detail field work completed at the FCH site between August 2020 and October 2021. Lighting was installed and headlamps/flashlights were utilized to fully illuminate work areas with low visibility.

4.1 Waste Characterization Sampling

Renova conducted waste characterization sampling and analysis per the requirements of offsite permitted treatment, storage, or disposal facilities (TSDFs) receiving the material, in which all regulatory requirements, including the preparation of hazardous materials and waste for transportation, were met. All tank product, pumpable liquids, and sludge were characterized in accordance with 40 Code of Federal Regulations (CFR) 261 and 40 CFR 279. Renova collected liquid, sludge, concrete chip, and wipe samples for preliminary waste characterization purposes and in order to develop a detailed removal action strategy. The waste characterization phase was requisite to determine the type of disposal required for each material based on local, state, and Federal disposal regulations.

All waste characterization samples were submitted to Integrated Analytical Laboratories, LLC (IAL) of Randolph, New Jersey (Laboratory Certification Number 14751) for analysis. Renova has prepared summary tables and a memorandum documenting the waste characterization sampling and subsequent disposal plans. The Waste Characterization Memorandum, including all associated Laboratory Analytical Summary Reports, has been included as **Appendix A**.

4.2 Building 10

4.2.1 Removal Actions

Renova completed removal and disposal of hazardous materials within the FCH Building 10. The removal actions at Building 10 are illustrated on **Figure 5.** Approximately 24.75 gallons of oil, hydraulic fluid, and paint/enamel with their associated containers and cans were removed from the building. The following is a summary of the materials removed from Building 10:

Main Room (Kitchen)

- Twenty-Five (25) 1-Quart Metal Cans of Chevron HyJet IV, Phosphate Ester
- Five (5) 1-Quart Metal Cans of Mobil Jet Oil II
- Five (5) 1-Quart Metal Cans of Exxon Turbo Oil 2389
- Two (2) 1-Gallon Metal Cans of Skydrol Monsanto 500 B-4 Fire Starter Fluid
- Two (2) 5-Gallon Metal Cans of 3100 Clean Compound Jet Engine Path Cleaner, B&B Chemical Company

Back Room (Storage)

• Four (4) 1-Gallon Metal Cans of Modern All-Purpose Enamel

Metal cans storing the materials were in poor condition. Most were leaking, bulging, rusty, and had labels that were barely legible. Renova positioned an over-pack drum at the entrance and placed 6-mil poly sheeting under the drum and in the walking path. The materials of concern were carefully removed and placed into the drum. Once all cans were removed and drummed Renova evaluated the area to determine if any other material that was in contact with the containers/their contents could also be removed and placed in the drum for disposal. Oil absorbent pads were used to collect any free liquids that were observed on the floors and storage surfaces. The four (4) enamel cans in the back room were severely rusted and fused to their storage cart. Renova cleaned all shelving and portable surfaces that had been impacted by the spilled enamel and leaking fluid containers. The metal components were cleaned of fluids, removed from FCH Building 10, and placed into dumpsters. After all fluid containers, impacted items, and oil absorbent pads were removed from Building 10 the drums were sealed and transported to the staging area inside of Battery 113 for removal from the site. All disposal activities were conducted in compliance with the most stringent local, State, and Federal requirements. A manifest for the disposal of the hazardous waste removed from Building 10 has been included as **Appendix C**.

Asbestos-Containing Material (ACM) Removal

Following removal of the containers and associated items as described above from within Building 10, it was noted that some of the oils and paints formerly stored on the floor of the main room had leaked outside of their containers onto existing floor tiles. Accordingly, approximately 25 bags of ACM in the form of floor tiles were properly removed and disposed of by US Environmental Abatement Corp. of Westbury, NY. The asbestos disposal manifest is included as **Appendix B**.

Cleaning

Following removal of the containers and associated items from FCH Building 10, the work areas were left clear of all hazardous materials and pre-existing general debris. The stained areas were assessed to determine the extent of staining. Renova pressure-washed stains from the Building 10 floors and walls in the direct vicinity of the hazardous material storage areas. Approximately 160 square feet of floor and 50 square feet of wall were cleaned. The area of pressure washing and mopping was contained to ensure collection and containment of all wash-water. Renova utilized New Pig: Blue Absorbent Socks to "ring" the area prior to cleaning. The amount of water introduced by the pressure washer was minimal and the wash-water was squeegeed and immediately collected using a wet/dry vacuum as it was applied by the pressure washer. The water collected in the vacuum was placed in a DOT-approved 55-gallon drum, labeled, and placed in the secure drum laydown area for proper disposal. A manifest for the disposal of the wash-water generated onsite has been included as **Appendix D**.

Sampling

Following pressure washing of the work areas within Building 10, Renova collected spatially distributed concrete chip and surficial wipe samples from the stained areas in the former oil, paint and maintenance storage locations. All samples were submitted to Integrated Analytical Laboratories, LLC (IAL) of Randolph, New Jersey (Laboratory Certification Number 14751) for analysis. The Laboratory Analytical Summary Reports are included as **Appendix E**. Results of the lab analysis are summarized on the following table:

Sample ID	Date	Parameter	Results	Soil Cleanup Standard ¹	
WIPE SAMPLES					
CH-WS-01	5/20/21	TPH ²	154 ug/100cm2	N/A	
CH-WS-02	5/20/21	IPH	273 ug/100cm2	N/A	
CONCRETE CHIP SAMPLE					
	5/20/21	TPH ²	358 mg/kg	N/A	
CH-CS-03		Naphthalene	0.00381 mg/kg	12.0 mg/kg	
		Phenanthrene	0.178 mg/kg	100 mg/kg	

NOTES:

Although there are no specific standards in New York for TPH in soil, the New Jersey residential standard for Extractable Petroleum Hydrocarbons (EPH), a fraction of the TPH family, is 5300 mg/kg and can be used as a comparable standard for comparison and risk evaluation purposes. TPH was detected in all samples of both medias analyzed at Building 10, however, the low concentrations detected do not pose sufficient hazard to warrant further removal action in Building 10 at this time.

^{1 –} Soil Cleanup Standards from NYSDEC Policy CP-51 "Soil Cleanup Guidance." In the absence of standards for concrete, results were compared to soil standards.

^{2 –} TPH = Total Petroleum Hydrocarbons, analyzed at the request of the NYSDEC Case Manager.

4.3 Building 107

4.3.1 Removal Actions

Renova removed and disposed of three (3) transformers, their electrical components, rigid piping stained with oil, and associated PCB-containing fluids in Building 107. The removal actions at Building 107 are illustrated on **Figure 6.** This work was completed in a building that formerly contained a small electrical substation. The transformers were located in the building's blast bunker basement, with a small entry opening to access the area. Due to the location of the transformers, they were hoisted by straps and manpower up to ground surface for disposal. Proper precautions, as detailed further below, were taken to avoid spills as well as physical injury to those handling the removal and disposal.

Renova personnel descended into the basement via a stairway. Prior to removal, transformers, electrical components, floors, and walls were inspected for free liquids; oil absorbent pads were used to collect minor amounts of fluid. The transformers PCB-containing fluid contents were drained directly into five-gallon buckets and secured with lids. The buckets were hoisted to entry level for removal and disposal. A manifest for the disposal of the non-TSCA PCB fluid contents is included as **Appendix I**.

Using hand tools Renova then removed the transformers from the wall and placed them in the access way. A chain hoist affixed to the existing climbing rungs was utilized to safely hoist the transformers to entry level for removal and disposal. Renova then removed any other associated electrical component and placed them in the access way point. With the assistance of the chain hoist, the materials were brought up to entry level piece by piece for disposal.

Cleaning

Following removal of the transformers and associated components within Building 107, stained areas were assessed to determine the extent of cleaning required. Renova proceeded to pressure wash stains from the floors (approximately XX square feet) and walls (approximately XX square feet) in the areas of transformer removal. All washwater produced by pressure washing and mopping was contained. Renova utilized New Pig: Blue Absorbent Socks to "ring" the area prior to cleaning. The wash-water was squeegeed and immediately collected using a wet/dry vacuum as it was applied by the pressure washer. The water collected in the vacuum was placed in a DOT-approved 55-gallon drum, labeled, and placed in the secure drum laydown area for proper disposal. A manifest for the disposal of the wash-water generated onsite has been included as **Appendix D**.

Sampling

Following pressure washing of the removal action work areas within Building 107, Renova collected concrete chip and surficial wipe samples from the stained areas below and adjacent to the former locations of the transformers. All samples were submitted to Integrated Analytical Laboratories, LLC (IAL) of Randolph, New Jersey (Laboratory Certification Number 14751) for analysis of PCBs. The Laboratory Analytical Summary Reports are included as **Appendix F**. Results of the lab analysis are summarized on the following table:

Sample ID	Date	Parameter	Results	NYCRR Part 375	
		WIPE SAMP	LES		
CH-WS-03			ND	NS	
CH-WS-04	-04 5/20/21 PCBs		0.168 ug/100cm2	NS	
	CONCRETE CHIP SAMPLES				
CH-CS-04	5/20/21	PCBs	0.011 mg/kg	0.1 mg/kg	

NYCRR Part 375 = New York Codes, Rules and Regulations Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives PCBs = Poly-Chlorinated Biphenyls , ND = Not Detected , NS = No Standard

PCBs were detected in one of the two wipe samples, as well as in the one concrete sample analyzed from Building 107, however, the low concentrations detected do not pose sufficient hazard to warrant further removal action in Building 107 at this time when compared against the NYCRR Part 375 Unrestricted Use Soil Cleanup Objective of 0.1 mg/kg.

4.4 Battery 113

4.4.1 Disposal Actions

Removal of Wall-Mounted ASTs

On May 24, 2021, Renova personnel decommissioned and safely removed two (2) interior, wall-mounted ASTs, each with approximately 250-gallon capacity, from within the Former Camp Hero Battery 113. The removal actions at Building 113 are illustrated on **Figure 7.** Local tank removal permits and NYSDEC tank registrations were not required for removal of the ASTs. The NYSDEC correspondence confirming no tank registration requirement is included as **Appendix G**.

The two (2) wall-mounted ASTs were made inert and the area was covered with absorbent pads and surrounded by absorbent booms prior to removal and disposal. One (1) floor drain in the vicinity was plugged and surrounded with absorbent booms before work on the tanks began. Staining was not observed near the floor drain. The tanks were cut using non-sparking cutting instruments and emptied of all contents. Petroleum mixture liquid was removed from the tanks and transported for disposal at Water Works of Newburgh, New York. The ASTs were emptied in place and the contents were collected in Department of Transportation (DOT) approved 55-gallon drums. These drums were labeled, transported to the Battery 113 entrance, and placed in the secure drum laydown area for disposal. A manifest for the disposal of the ASTs contents is included as **Appendix D**.

Upon removal of all liquid contents, the ASTs were purged of all interior vapors using an explosion proof blower and extension hoses. The tanks' interiors (top and bottom) were continually monitored for CO, H₂S, O₂, and LEL using a properly calibrated QRAE II portable multiple gas meter. Once the interior had been safely purged, the ASTs were cut fully open and wiped clean using oil-absorbent pads. The associated AST piping and appurtenances were decommissioned, cut, capped, and removed. All pads and oil-soaked personal protective equipment (PPE) were collected in trash bags for proper disposal.

Renova prepared the ASTs for removal from the wall and ultimate disposal. A chain hoist was secured to the wall and fastened to one tank using nylon straps. After the chain hoist was secured to both the wall and the tank, the tank was removed from its wall brackets using hand and power tools. Once the tank was freed from the brackets, it was carefully lowered to the floor using the anchored chain hoist. The second AST was safely removed from its wall brackets in the same sequence.

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

RENOVA environmental company 29 June 2023

The empty ASTs, piping, and associated appurtenances were cut into a manageable size, as some metal components needed to be trimmed into smaller pieces to fit through existing doorways. The metal components were placed on dollies and removed from Battery 113 for recycling as scrap metal. A scrap receipt was generated at the recycling facility and is included as **Appendix H**. Proper care was taken to eliminate the risk of spills and physical injury to those working to empty, lower, cut, transport, and dispose of the ASTs.

Removal of Transformers and Associated Electrical Components

On May 25, 2021, Renova removed and disposed of the four (4) abandoned transformers located within Battery 113, as well as their rigid piping and associated electrical components. There were no local, state, or federal permits required for removal of the transformers. One (1) floor drain in the vicinity of the transformers was plugged and surrounded with absorbent booms before work on the transformers began. Staining was not observed near the floor drain.

The transformers were first emptied of any PCB-containing fluid contents within them prior to removal and disposal. The PCB-containing fluid was drained from the transformers into five-gallon buckets with lids and transported offsite for disposal. Approximately 65 gallons of fluid was removed from the transformers. A manifest for the disposal of the PCB fluid contents is included as **Appendix I**.

Renova personnel next removed each of the transformers in whole on their existing brackets and placed them, along with all associated electrical appurtenances, in DOT-approved 55-gallon drums. These drums were labeled, transported to the Battery 113 entrance, and placed in the secure drum laydown area for disposal.

One (1) of the four (4) transformers located within Battery 113 was too large to fit inside a DOT-approved 55-gallon drum. The exterior and interior of the large transformer was visually inspected by Renova, and it was not leaking and the structural integrity appeared to remain sound. Accordingly, the large transformer unit was transported in its entirety for disposal.

The transformers and all associated electrical equipment totaled approximately 3,906 pounds. The transformers and electrical components were picked up by TCI of New York, LLC and transported to TCI of Alabama, LLC for disposal as TSCA-PCB material (PCB concentrations assumed to be above 500 mg/kg).

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

RENOVA environmental company 29 June 2023

The manifests associated with the transportation and disposal of the transformers are included in **Appendix I**.

All transformers and associated components were removed by Renova taking proper care taken to eliminate the risk of spills and physical injury to those working to empty, lower, transport, and dispose of the equipment. Historical staining was noted on the floor near the transformer removal area, indicating PCB-containing fluid had previously leaked onto the concrete.

Disposal of 10 x 55-gal bags of ACM

Renova removed ten (10) garbage bags of non-friable presumed ACM (PACM) shingles, in which the shingles were previously placed into the bags. The non-friable PACM shingles were disposed of as asbestos-containing waste. The asbestos disposal manifest is included as **Appendix B**.

Cleaning

Following removal of the ASTs, transformers, and associated components within Battery 113, stained areas were assessed to determine the extent of cleaning required. Renova proceeded to pressure wash stains from the Battery 113 floors and walls in the areas of AST (approximately 80 square feet) and transformer (approximately 120 square feet) removal. The utmost care was taken during pressure washing and mopping to ensure safe collection and containment of all wash-water. Renova utilized absorbent socks such as New Pig: Blue Absorbent Socks to "ring" the area prior to cleaning. As described above, loor drains were covered and plugged shut prior to the introduction of wash-water to eliminate any potential contamination migration or seepage, though the amount of water introduced by the pressure washer was minimal. The wash-water was squeegeed and immediately collected using a wet/dry vacuum as it was applied by the pressure washer. The water collected in the vacuum was placed in a DOT-approved 55-gallon drum, labeled, and placed in the secure drum laydown area for proper disposal. A manifest for the disposal of the wash-water generated onsite has been included as **Appendix D**. Renova mobilized with oil absorbent pads in anticipation of potentially encountering free petroleum-based liquids, however, no free petroleum liquids were observed, therefore pressure washing and mopping provided sufficient means of stain cleaning.

Sampling

Following pressure washing of the removal action work areas within Battery 113, Renova collected concrete chip and surficial wipe samples from the stained areas below and adjacent to the former locations of the ASTs and transformers. All samples were submitted to Integrated Analytical Laboratories,

LLC (IAL) of Randolph, New Jersey (Laboratory Certification Number 14751) for analysis. The Laboratory Analytical Summary Reports are included as **Appendix J**. Results of the lab analysis are summarized on the following tables:

Sample ID	Date	Parameter	Results		
	WIPE SAMPLES - AST REMOVAL AREA				
CH-WS-05	E /27/24	TDU	3,600 ug/100cm2		
CH-WS-06	5/27/21	TPH	27,700 ug/100cm2		
CON	CONCRETE CHIP SAMPLE - AST REMOVAL AREA				
CH-CS-06			7,280 mg/kg		
CH-CS-07	5/27/21	TPH	17,700 mg/kg		
CH-CS-08			10,100 mg/kg		

TPH = Total Petroleum Hydrocarbons, analyzed at the request of the NYSDEC Case Manager.

In the Battery 113 AST removal area, TPH was detected in all samples of both medias analyzed (surficial wipe and concrete chip samples). Although there are no specific standards in New York for TPH in soil, the media is concrete and not in a residential area, the New Jersey residential standard for EPH, a fraction of the TPH family, is 5300 mg/kg and provides a qualitative reference. Although petroleum staining remains on the concrete floor inside the building, based on the small footprint, lack of evidence of a widespread release (i.e., the ASTs are small capacity and were intact at removal), and removal of the ASTs, the staining is considered a de minimis condition and is anticipated to degrade further over time.

Sample ID	Date	Parameter	Results	NYCRR Part 375	
W	IPE SAMPLES	S – TRANSFORI	MER REMOVAI	AREA	
CH-WS-07	F /27/24	D.C.D.	0.445 ug/100cm2	NS	
CH-WS-08	5/27/21	PCBs	335 ug/100cm2	NS	
CONCRETE CHIP SAMPLES - TRANSFORMER REMOVAL AREA					
CH-CS-09			77.1 mg/kg	0.1 ppm	
CH-CS-10	CH-CS-10 5/27/21		64.5 mg/kg	0.1 ppm	
CH-CS-11			70.9 mg/kg	0.1 ppm	

NYCRR Part 375 = New York Codes, Rules and Regulations Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives PCBs = Poly-Chlorinated Biphenyls , NS = No Standard

Concentrations highlighted in yellow are above the NYCRR Part 375 soil cleanup standard (0.1 ppm for PCBs)

In the Bunker 113 transformer removal area, PCBs were detected in all samples of both medias analyzed (surficial wipe and concrete chip samples).

Based on the sampling results, additional assessment and removal of concrete was completed as detailed further below. Work was delayed due to a Time of Year (TOY) restriction for endangered bats.

4.4.2 Concrete Core Sampling

Following removal actions and assessment of lab results, the USACE directed Renova to perform additional sample collection work under contract option tasks. The goal of this work was to delineate the horizontal and vertical extents of contamination in the Battery 113 AST and transformer removal areas.

On August 10, 2021, Renova mobilized to the Camp Hero Site to collect concrete core samples to characterize the media for recommended extents of removal. Concrete core samples four-and-a-half-inches in diameter (4.5" Ø) were collected using a hollow, 14" diamond-tipped core bit and a standalone core drill machine. The core drill was advanced to either the maximum extent of the core bit, in which case the concrete core was separated from the remaining floor and collected for lab analysis, or until "bottoming-out" of the concrete floor, in which case the entire concrete core as well as sub-slab soil samples were collected and submitted for lab analysis. All concrete core and sub-slab soil samples were submitted to Eurofins/Test America of Edison, New Jersey for analysis. The results are summarized in the tables below.

Bunker 113 – Laboratory Detections in AST Area Concrete Core Sample					
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria	
AST-01-	VOCs 8260D (ug/kg)	Acetone	62	NYDEC 375-6	
0-2	SVOC 8270E (ug/kg)	No Exceed	ances Above Regulatory Criteria	NYDEC 375-0	
AST-01-	VOCs 8260D (ug/kg)	No Exceed	lances Above Regulatory Criteria	NYDEC 375-6	
2-4	SVOC 8270E (ug/kg)	No Exceed	lances Above Regulatory Criteria		
AST-02-	VOCs 8260D (ug/kg)	Acetone	91	NVDEC 27E 6	
0-2	SVOC 8270E (ug/kg)	No Exceed	lances Above Regulatory Criteria	NYDEC 375-6	
AST-02-	VOCs 8260D (ug/kg)	No Exceedances Above Regulatory Criteria		NVDEC 27E 6	
2-4	SVOC 8270E (ug/kg)	No Exceed	lances Above Regulatory Criteria	NYDEC 375-6	
	VOCs 8260D (ug/kg)	No Exceed	lances Above Regulatory Criteria	NYDEC 375-6	

Bunker 113 – Laboratory Detections in AST Area Concrete Core Sample				
AST-03- 0-2	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria		
AST-03-	VOCs 8260D (ug/kg)	No Exceedances Above Regulatory Criteria		
2-4	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria	NYDEC 375-6	

Ви	Bunker 113 – Laboratory Detections in the Transformer Room Concrete Core Samples				
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria	
TR-01-0-2	PCBs (mg/kg)	Aroclor 1254	55	> 50 (TSCA PCB Waste)	
TR-01-2-4	PCBs (mg/kg)	Aroclor 1254	1	> 50 (TSCA PCB Waste)	
TR-02-0-2	PCBs (mg/kg)	Aroclor 1254	1.4	> 50 (TSCA PCB Waste)	
TR-02-2-4	PCBs (mg/kg)	Aroclor 1254	0.39	> 50 (TSCA PCB Waste)	
TR-03-0-2	PCBs (mg/kg)	Aroclor 1254	26	> 50 (TSCA PCB Waste)	
TR-03-2-4	PCBs (mg/kg)	Aroclor 1254	0.043	> 50 (TSCA PCB Waste)	
TR-04-0-2	PCBs (mg/kg)	Aroclor 1254	0.17	> 50 (TSCA PCB Waste)	
TR-04-2-4	PCBs (mg/kg)	Aroclor 1254	0.11	> 50 (TSCA PCB Waste)	
TR-05-0-2	PCBs (mg/kg)	Aroclor 1254	2.8	> 50 (TSCA PCB Waste)	
TR-05-2-4	PCBs (mg/kg)	Aroclor 1254	ND	> 50 (TSCA PCB Waste)	

Bunker 113 – Laboratory Detections in the Transformer Room Soil Sample				
Sample ID Analytical Parameter		Constituent	Analytical Results	Regulatory Criteria
TR-01-SS	PCBs (mg/kg)	Aroclor 1254	0.01	> 50 (TSCA PCB Waste)
TR-02-SS	PCBs (mg/kg)	Aroclor 1254	ND	> 50 (TSCA PCB Waste)
TR-03-SS	PCBs (mg/kg)	Aroclor 1254	0.065	> 50 (TSCA PCB Waste)
TR-05-SS	PCBs (mg/kg)	Aroclor 1254	.21	> 50 (TSCA PCB Waste)

AST Area

The concentrations of TPH (VOCs and SVOCs) detected in the Battery 113 AST removal area are of little concern, and do not pose sufficient hazard to warrant further removal action. The only compound detected above the most stringent NYSDEC criteria (acetone) is not related to petroleum compounds and is a common laboratory contaminant. The level of constituents remaining are not a health threat based on the use of this area. Renova recommended no further action in the AST removal area of Battery 113.

Transformer Area

The concentration of PCB contamination detected the Battery 113 transformer removal area exceeded the TSCA level of 50 ppm in some portions of the floor. Based on the results of the core sampling, removal of the top two inches (2") of PCB-impacted concrete in the former transformer area was recommended.

Renova prepared analytical tables and a memorandum summarizing the concrete core and sub-slab soil sampling activities, which provides an overview of the work completed, sampling results, and removal recommendations. The Battery 113 Removal Recommendation Memo has been included as **Appendix K**.

4.4.3 Limited PCB-Concrete Removal

Following the concrete core and sub-slab soil sampling event, analytical lab results were assessed and Renova recommended removal of the top two inches (2") of PCB-impacted concrete in the transformer removal area within Battery 113.

On October 18, 2021, Renova mobilized to the Camp Hero Site to complete the recommended concrete removal work. Chipping guns affixed with steel bits were utilized to remove chips of surficial concrete from the concrete floor, however, this removal strategy was inefficient and largely ineffective in achieving the required extent of concrete removal.

This removal method has successfully been completed by Renova in the past, however, after discussion with the USACE it was determined that the concrete floor within Battery 113 had been installed using very high strength concrete which exceeds conventional concrete specifications. Concrete amendments in the form of metal rebar, wire mesh, and large aggregate stones were encountered during core drilling and concrete chipping activities. Additionally, it is assumed that the concrete floor within Battery 113 is approximately 80 years old, further contributing to its increased strength.

Removal of visual staining was achieved, however, the intended two inch (2") concrete removal depth could not be reached using this removal strategy. Renova collected surficial wipe samples from the concrete removal areas, with sample locations ranging in depth from 1.5-inches to 0.75-inches (1.5"-0.75") below the original concrete surface.

Renova has prepared a memorandum summarizing the PCB-concrete removal activities to date. The Battery 113 Removal Recommendation Revision Memo has been included as **Appendix L**.

Based on the sampling results, Renova recommends full depth removal of the PCB-impacted concrete material at the transformer removal area within Camp Hero Battery 113.

4.4.4 Complete PCB-Concrete Removal

Following the limited PCB-concrete removal completed during October 2021 and assessment of the analytical sample results, it was confirmed that PCB-impacted concrete remained at the Former Camp Hero site at the transformer removal area within Battery 113. Renova personnel mobilized to site on May 9, 2022 to achieve full depth removal of the contaminated concrete.

Renova personnel removed the PCB-impacted concrete from the transformer removal area within Battery 113 through the use of pneumatic jackhammers equipped with chisels and spades. The jackhammers were supplied pressurized air by a compressor staged outside of Battery 113, and sufficient hose to reach the concrete removal area.

Adequate dust-suppression was achieved during concrete removal activities via continual mist from pressurized water sprayers. Appropriate PPE and dust-masks were worn at all times, and air quality was monitored continually for the duration of all concrete removal activities.

The concrete spoils were collected from the transformer removal area, transported to the staging area via buckets and wheelbarrows, and secured in an approved container for transportation offsite and proper disposal. In total, approximately 5.2 tons of PCB-impacted concrete material was removed from the former transformer area within Battery 113 and transported offsite for proper disposal. The PCB-impacted concrete disposal manifest is included as **Appendix M**. A photo log of the disposal activities is included as **Appendix N**.

Following completion of the concrete removal actions, the work area was fully restored with new concrete material in kind. Concrete with a strength of 4,000 pounds-per-square-inch (PSI) was installed with (6" \times 6") wire mesh in the transformer removal area. Restoration of the concrete floor was achieved with the use of a concrete pump and sufficient hose to reach the transformer removal area.

4.4.5 Removal of Existing Construction and Demolition (C&D) Debris

Following complete removal and restoration of concrete at the transformer removal area within Battery #113, Renova was contracted by USACE to remove and dispose of pre-existing construction and demolition (C&D) debris from a separate room located within Battery #113. From October 11 to October

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

RENOVA environmental company 29 June 2023

12, 2022, Renova personnel mobilized to site to safely remove and dispose of the C&D debris from Battery #113.

Continuous air monitoring was conducted in the work area using QRAE II Multi-Gas detector and pDR-1000AN dust monitor instruments to ensure sufficient air quality was maintained. Additionally, N95 dust-masks were donned by all personnel entering the work area. Each piece of debris was inspected carefully before it was disturbed to minimize the spread of mold and/or other hazardous substances.

The debris was transported out of Battery #113 through the use of shovels and wheelbarrows and was loaded into a 20-yard dumpster container for disposal. Following removal of all C&D debris pieces, the work area was carefully swept clean of any smaller particles from the debris pile.

The 20-yard dumpster container was removed from site on October 13, 2022. Documentation of the C&D debris disposal has been included as **Appendix O**.

5.0 CONCLUSIONS

Renova has completed removal actions and associated work under contract option tasks at the Former Camp Hero site at the direction of the USACE. Prior to removal actions, waste characterization sampling was conducted in order to determine a disposal plan for each material to be removed from site based on results of lab analyses, as well as local, state, and Federal disposal regulations. Following waste characterization sampling, Renova personnel mobilized to site to complete contracted removal actions within the Former Camp Hero Building 10, Building 107, and Battery 113.

Removal actions included the removal and disposal of hazardous materials from Building 10, removal and disposal of four (4) transformers and their contents from Building 107, removal and disposal of two (2) Aboveground Storage Tanks (ASTs) and three (3) transformers and their associated contents from Battery 113, as well as cleaning and sampling of all removal action work areas.

Sampling results following the removal action work indicated the presence of PCB-impacted concrete in the transformer removal area within Battery 113. Accordingly, Renova returned to the FCH site to collect concrete core samples in order to fully delineate the horizontal and vertical extents of contamination and fully characterize the media for recommended extents of removal. It was determined that the top two inches (2") of concrete in the transformer removal area has been impacted by PCBs to the extent that removal is required.

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

Renova returned to site to remove the impacted concrete in the transformer removal area using chipping guns affixed with steel bits. The concrete floor in the transformer removal area was installed approximately 80 years ago using very high strength concrete beyond conventional specifications, and was significantly amended with metal rebar, wire mesh, and large aggregate stones. As a result, the chipping guns were ineffective in achieving the extent of concrete removal required.

Following limited PCB-concrete removal, Renova personnel mobilized to the FCH site to achieve full depth removal of the contaminated concrete at the transformer removal area within Battery 113. Renova personnel removed the PCB-impacted concrete utilizing pneumatic jackhammers equipped with chisels and spades. The concrete spoils were collected and secured in an approved container for transportation offsite and proper disposal. In total, approximately 5.2 tons of PCB-impacted concrete material was removed from the former transformer area within Battery 113. Following completion of the concrete removal actions, the work area was fully restored with new concrete material in kind.

All work at the Former Camp Hero site under contract # W912WJ20C0008 has been completed. All fuel tanks, electrical transformers, associated components, hazardous materials, PCB-impacted concrete, and sources of contamination in Battery 113, Building 107 and Building 10, as described in NYSDEC's 2019 letter regarding RI Report comments have been removed and properly disposed. No further investigation or remediation of the work areas at the Former Camp Hero site is recommended at this time.

FIGURES

Figure 1	USGS Topographic Map
Figure 2	Site Location Map
Figure 3	Battery 113 Concrete Core Samples
Figure 4	Battery 113 Concrete Removal Recommendation
Figure 5	Building 10 Removal Actions
Figure 6	Building 107 Removal Actions
Figure 7	Building 113 Removal Actions

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

APPENDIX A

Waste Characterization Memo

Date: January 26, 2021

To: Julie Rupp

US Army Corps of Engineers

New England District

From: Tom Bykow

Renova Environmental Services, LLC

Re: Waste Characterization and Disposal

Camp Hero, Montauk, New York

FUDS Project Number: C02NY002403

NAE Project Number: 452115

Renova Environmental Services, LLC (Renova) prepared this memorandum to summarize the results of the waste characterization sampling performed for Buildings 10, 107, and 113 located at the Camp Hero Site, in Montauk, New York. The work was performed following the scope of work outlined in Task 4.3.2 Waste Characterization Sampling of the Performance Work Statement (PWS) dated June 8, 2020. The following provides an overview of the sampling scope of work; summary of waste characterization results; summary of waste determinations, by media, for each building; and waste disposal recommendations.

1.0 SCOPE OF WORK

On August 26, 2020, Renova mobilized to the Camp Hero Site and collected samples from various media within Buildings 10, 107, and Bunker 113 to characterize the media for disposal in support of this removal action. Table 1 below provides a summary, by structure, of the actual media that was sampled, the sample type, and the laboratory analysis performed on that sample type. The collected samples were delivered to Integrated Analytical Laboratories, LLC (IAL), located in Randolph, New Jersey, on the day of sample collection. Renova received the laboratory results in September, 2020. On January 11, 2021, Renova collected additional samples from the contents within the two transformers located in Bunker 113. The collected samples were delivered to Analytical Testing Technologies (ATT) on January 13, 2021. Renova received the additional laboratory results in January, 2021. Seven bags of debris within Bunker 113, which contain

shingles, are assumed to be asbestos containing material (ACM) and were not sampled as part of the site visits.

Table 1 Summary of Waste Characterization Sampling							
Structure	Media	Sample Type	Analyses				
Building 10	Container fluids	Liquid	Volatile organic compounds (VOCs), toxicity characteristic leaching procedure (TCLP) VOCs, TCLP semi-VOCs (SVOCs), polychlorinated biphenyls (PCBs), TCLP pesticides, TCLP herbicides, total petroleum hydrocarbons diesel range organics (TPH-DRO), TCLP metals, corrosivity, ignitibility, and flash point				
	Wall stains near containers	Wipe	PCBs				
	Unknown solid waste under containers stored on the floor	Sludge	VOCs, TCLP VOCs, TCLP SVOCs, PCBs, TCLP pesticides, TCLP herbicides, TPH-DRO, TCLP metals, corrosivity, ignitibility, and flash point				
Building 107	Surfaces of electrical components	Wipe	PCBs				
	Floor stains near electrical components	Concrete Chip	TCLP VOCs, TCLP SVOCs, PCBs, TCLP pesticides, TCLP herbicides, and TCLP metals				
	ASTs supply line fluids	Liquid	VOCs, TCLP VOCs, TCLP SVOCs, TCLP pesticides, TCLP herbicides, TPH-DRO, lead, TCLP metals, corrosivity, ignitibility, and flash point				
	Surfaces of electrical components	Wipe	PCBs				
	Wall stains near ASTs	Wipe	Lead				
Bunker 113	Wall stains near electrical components	Wipe	PCBs				
	Concrete stains near ASTs	Concrete Chip	TCLP VOCs, TCLP SVOCs, TCLP pesticides, TCLP herbicides, TPH-DRO, and TCLP metals				
	Floor stains near electrical components	Concrete Chip	TCLP VOCs, TCLP SVOCs, PCBs, TCLP pesticides, TCLP herbicides, and TCLP metals				
	Bagged debris with roof shingles	_	Assumed to be ACM and were not sampled				
	ASTs fluids	Liquid	PCBs				

2.0 WASTE CHARACTERIZATION RESULTS

The following provides a summary of the laboratory detections by structure, along with the associated regulatory criteria.

2.1 Building 10 – Waste Characterization Results

Tables 2 and 3 provide a summary of the detections for the samples collected from Building 10, with the corresponding laboratory sampling results provided in Attachment 1.

2.1.1 Building 10 – Containers Liquid Samples

Five (5) liquid samples, CH-WC-39, 40, 46, 47, and 48, and a composite sample, Composite CH-WC-41-45, were collected from containers labeled Skydrol 500 B4 located in Building 10. Table 2 provides a summary of the laboratory detections for the liquid samples collected from within Building 10.

Table 2 Building 10 – Laboratory Detections in Container Liquid Samples							
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria			
CH-WC-39	VOCs (mg/Kg)	Toluene	56.9				
	sVOCs (mg/Kg)	4-Methylphenol	51.0	Not a regulated waste, probable oil			
	TPH – DRO (mg/Kg)		681,000				
	TCLP Metals (mg/L)	Barium Cadmium Chromium Lead	0.115 1.03 2.59 12.0	100.0 1.0 (Hazardous) 5.0 5.0 (Hazardous)			
	рН		5.7	≤ 2 or ≥ 12.5			
	VOCs (mg/Kg)	Toluene	60.9				
	sVOCs (mg/Kg)	4-Methylphenol	46.3	Not a regulated waste, probable oil			
CH-WC-40	TPH – DRO (mg/Kg)		600,000				
	TCLP Metals (mg/L)	Arsenic Barium Cadmium Chromium Lead	0.085 J 2.64 0.407 3.19 6.56	5.0 100.0 1.0 5.0 5.0 (Hazardous)			
	рН		5.5	≤ 2 or ≥ 12.5			

Table 2 (Continued) Building 10 – Laboratory Detections in Container Liquid Samples							
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria			
CH-WC-46	VOCs (mg/Kg)	Toluene	62.8				
	sVOCs (mg/Kg)	4-Methylphenol	42.9	Probable Used Oil			
	TPH – DRO (mg/Kg)		649,000				
	TCLP Metals (mg/L)	Barium Cadmium Chromium Lead	0.089 0.781 2.53 6.68	100.0 1.0 5.0 5.0 (Hazardous)			
	рН		5.5	≤ 2 or ≥ 12.5			
	VOCs (mg/Kg)	Toluene	67.8				
	sVOCs (mg/Kg)	4-Methylphenol	48.9	Probable Used Oil			
	TPH – DRO (mg/Kg)		614,000				
CH-WC-47	TCLP Metals (mg/L)	Barium Cadmium Chromium Lead	0.075 2.11 0.198 7.77	100.0 1.0 (Hazardous) 5.0 5.0 (Hazardous)			
	рН	•	5.56	≤ 2 or ≥ 12.5			
	VOCs (mg/Kg) Toluene		62.0				
	sVOCs (mg/Kg)	4-Methylphenol	46.2	Probable Used Oil			
	TPH – DRO (mg/Kg)		644,000				
CH-WC-48	TCLP Metals (mg/L)	Barium Cadmium Chromium Lead	0.094 0.510 5.15 15.2	100.0 1.0 5.0 (Hazardous) 5.0 (Hazardous)			
	рН		5.42	≤ 2 or ≥ 12.5			
	VOCs (mg/Kg)	Toluene	65.3				
	sVOCs (mg/Kg) 4-Methylphenol		50.8	Probable Used Oil			
Composite	TPH – DRO (mg/Kg)		672,000				
CH-WC-41- 45	TCLP Metals (mg/L)	Barium Cadmium Chromium Lead	0.058 0.601 3.94 5.09	100.0 1.0 5.0 5.0 (Hazardous)			
	рН		5.70	≤ 2 or ≥ 12.5			

Building 10 – Containers Liquid Samples Waste Determination

Based on the laboratory detections presented in Table 2-1, all of the collected liquid samples are considered a RCRA hazardous waste as the result of the TCLP results for at least one of the detected metals.

2.1.2 Building 10 – Wall Wipe Samples Near Containers

Three (3) wipe samples, CH-WC-49, 50, and 51, and a field duplicate, Field Duplicate 1, were collected from walls near the containers in Building 10. The laboratory results were below the detection limit of 0.050 for the analyzed PCBs, in the units of ug/100 cm². The decontamination criteria for non-porous surfaces is ≤ 10 ug/100 cm². Table 2a provides a summary of the laboratory detections for the wipe samples collected from Building 10.

Table 2a Building 107 – Laboratory Detections in Wipe Samples Electrical Components Surfaces					
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria	
CH-WC-49	PCBs (ug/100 cm ²)		ND	> 10	
CH-WC-50	PCBs (ug/100 cm ²)		ND	> 10	
CH-WC-51	PCBs (ug/100 cm ²)		ND	> 10	
Field Duplicate 1	PCBs (ug/100 cm ²)		ND	> 10	

Building 10 – Wall Wipe Samples Waste Determination

The wall material, represented by the wipe samples, is considered non-hazardous and not a TSCA regulated waste.

2.1.3 Building 10 – Floor Solid Sludge Samples Near Containers

Five (5) solid sludge samples, CH-WC-52 through 56, were collected from the observed solid waste that was present under containers stored on the floor in Building 10. Table 3 provides a summary of the laboratory detections for the solid sludge samples collected from within Building 10.

Table 3 Building 10 – Laboratory Detections in Floor Solid Sludge Samples					
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria	
	VOCs (mg/Kg)	2-Hexanone	892		
	sVOCs (mg/Kg)	4-Methylphenol	0.207	Probable Used Oil	
CH-WC-52	TPH – DRO (mg/Kg)		90,600		
CH-WC-32	TCI P Metals (mg/L)	Barium	0.247	100.0	
	TCLF Wietais (Hig/L)	TCLP Metals (mg/L) Cadmium		1.0	
	рН		7.17	≤ 2 or ≥ 12.5	

	VOCs (mg/Kg)	Methyl Acetate	1.18	
	sVOCs (mg/Kg)	4-Methylphenol	0.235	Probable Used Oil
CH-WC-53	TPH – DRO (mg/Kg)		61,200	
CH-WC-55	TCLP Metals (mg/L)	Barium	0.430	100.0
	,	Cadmium	0.558	1.0
	pН		7.22	≤ 2 or ≥ 12.5
	VOCs (mg/Kg)	2-Hexanone	70.9	
	sVOCs (mg/Kg)	4-Methylphenol	0.151	Probable Used Oil
CH-WC-54	TPH – DRO (mg/Kg)		729,000	
CH-WC-34	TCLP Metals (mg/L)	Barium	0.696	100.0
	TCLP Wietals (Hig/L)	Cadmium	1.31	1.0 (Hazardous)
	рН		7.39	≤ 2 or ≥ 12.5
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria
	VOCs (mg/Kg)	2-Hexanone	529	
	sVOCs (mg/Kg)	4-Methylphenol	0.110	Probable Used Oil
CH-WC-55	TPH – DRO (mg/Kg)	•	104,000	
C11-VVC-33	CH-WC-55			
	TCLD Motals (mg/L)	Barium	0.416	100.0
	TCLP Metals (mg/L)	Barium Cadmium	0.416 0.863	100.0 1.0
	TCLP Metals (mg/L) pH		****	
			0.863	1.0
	рН	Cadmium	0.863 7.50	1.0
CH-WC-56	pH VOCs (mg/Kg)	Cadmium Methyl Acetate	0.863 7.50 0.657	1.0 ≤ 2 or ≥ 12.5
CH-WC-56	pH VOCs (mg/Kg) sVOCs (mg/Kg)	Cadmium Methyl Acetate	0.863 7.50 0.657 0.256	1.0 ≤ 2 or ≥ 12.5

Building 10 – Floor Solid Sludge Waste Determination

Based on the laboratory detections presented in Table 3, all of the collected floor solid sludge samples are considered non-hazardous waste, with the exception of the media represented by sample CH-WC-54. Cadmium was detected in sample CH-WC-54, above the indicated TCLP regulatory criteria; thus the sampled media is considered a RCRA hazardous waste.

2.2 Building 107 – Waste Characterization Results

Tables 4 and 5 provide a summary of the detections for the samples collected from Building 107, with the corresponding laboratory sampling results for the samples collected from Building 107.

2.2.1 Building 107 – Electrical Components Surfaces Wipe Samples

Three (3) wipe samples, CH-WC-33 through 35, and a field duplicate, Field Duplicate 1, were collected from product leaks on the surface of electrical components in Building 107. Table 4 provides a summary of the laboratory detections for the wipe samples collected from Building 107.

Table 4 Building 107 – Laboratory Detections in Wipe Samples Electrical Components Surfaces					
Sample ID Analytical Parameter Constituent Analytical Regulatory Criteri					
CH-WC-33	PCBs (ug/100 cm ²)	Aroclor 1254	0.260	> 10	
CH-WC-34	PCBs (ug/100 cm ²)	Aroclor 1254	0.307	> 10	
CH-WC-35	PCBs (ug/100 cm ²)	Aroclor 1254	0.155	> 10	
Field Duplicate 1	PCBs (ug/100 cm ²)	Aroclor 1254	0.311	> 10	

Building 107 – Electrical Components Surfaces Wipe Samples Waste Determination

The material represented by the wipe samples is considered non-hazardous and not a TSCA regulated waste.

2.2.2 Building 107 – Floor Stains Near Electrical Components Concrete Chip Samples

Three 3 concrete chip samples were collected from floor stains near the electrical components in Building 107 and were then composited into a single concrete chip sample, COMP CH-WC-36-37-38, for laboratory analysis. Table 5 provides a summary of the laboratory detections for the composite concrete chip sample collected from within Building 107.

Table 5 Building 107 – Laboratory Detections in Composite Concrete Chip Sample Floor Stains Near Electrical Components				
Sample ID	Analytical Parameter Constituent		Analytical Results	Regulatory Criteria
COMP CH-WC-36-	PCBs (ug/100 cm ²)	Aroclor 1254	0.506	> 10
37-38	TCLP Metals (mg/L)	Barium	0.509	100.0

Building 107 – Floor Stains Near Electrical Components Chip Sample Waste Determination

The material represented by the concrete composite chip sample is considered non-hazardous and not a TSCA regulated waste.

2.3 Bunker 113 – Waste Characterization Results

Tables 6 through 12 provide a summary of the laboratory detections for the samples collected from Bunker 113, with the corresponding laboratory sampling results provided in Attachment 3.

2.3.1 Bunker 113 – AST Supply Line Liquid Samples

Table 6 provides a summary of the laboratory detections for the liquid sample, CH-WC-02, which was collected from the supply line for the ASTs located in Bunker 113.

Table 6 Bunker 113 – Laboratory Detections in AST Supply Line Liquid Sample					
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria	
	VOCs (mg/L)	Benzene, Toluene Total Xylenes	223 283 2,020	Probable Fuel	
	TPH – DRO (mg/L)		830,000		
CH-WC-02	Metals (mg/L	Lead	1.21		
	TCLP Metals (mg/L)	Chromium	0.277		
	Flash Point (°C)		74.2	< 60 °C	
	Oils & Grease (mg/Kg)		549,000	5.0	

Bunker 113 – AST Supply Line Liquid Sample Waste Determination

The material represented by the liquid sample is considered a non-hazardous waste.

2.3.2 Bunker 113 – Electrical Components Surface Wipe Samples

Table 7 provides a summary of the laboratory detections for the three wipe samples, CH-WC-08 through 10, collected from surfaces of the electrical components. Table 8 provides a summary of the three wipe samples, CH-WC-11 through 13, collected from wall stains near the ASTs. Table 9 provides a summary of the three (3) wipe samples, CH-WC-14 through 16, collected from wall stains near the electrical components.

Table 7 Bunker 113 – Laboratory Detections in Wipe Samples Electrical Components Surfaces				
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria
CH-WC-08	PCBs (ug/100 cm ²)	Aroclor 1254	15.3	> 10 (TSCA PCB Waste)
CH-WC-09	PCBs (ug/100 cm ²)	Aroclor 1254	76.0	> 10 (TSCA PCB Waste)

CH-WC-10	PCBs (ug/100 cm ²)	Aroclor 1254	88.5	> 10 (TSCA PCB Waste)

Bunker 113 – Surface of Electrical Components Wipe Samples Waste Determination The surfaces represented by the wipe samples are above the decontamination criteria for non-porous surfaces of $> 10 \text{ ug}/100 \text{ cm}^2$ and are considered a TSCA PCB contaminated waste.

Table 8 Bunker 113 – Laboratory Detections in Wipe Samples Wall Stains Near ASTs					
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria	
CH-WC-11	Metals (ug/100 cm ²)	Lead	365	> 27	
CH-WC-12	Metals (ug/100 cm ²)	Lead	95.4	> 27	
CH-WC-13	Metals (ug/100 cm ²)	Lead	368	> 27	
FIELD DUPLICATE 1	Metals (ug/100 cm ²)	Lead	75.3	> 27	

Bunker 113 - Wall Stains Near the ASTs Wipe Samples Waste Determination

The material represented by the wipe samples indicates the potential presence of lead-based paint and may not be associated with the stains from the ASTs. The referenced regulation is USEPA clearance standards for maximum allowable residual lead criteria of 250ug/ft² for interior window sills, which equates to 27ug/100 cm² and 40ug/ft² for floors, which equates to 4.3ug/100 cm².

Table 9 Bunker 113 – Laboratory Detections in Wipe Samples Wall Stains Near Electrical Components				
Sample ID	Analytical Parameter	Regulatory Criteria		
CH-WC-14	PCBs (ug/100 cm²)	Aroclor 1254 Aroclor 1262 Total PCBs	1.78 2.21 3.99	> 10
CH-WC-15	PCBs (ug/100 cm²)	Aroclor 1254 Aroclor 1262 Total PCBs	1.97 1.88 3.83	> 10
CH-WC-16	PCBs (ug/100 cm²)	Aroclor 1254 Aroclor 1262 Total PCBs	12.1 8.10 20.2	> 10 (TSCA PCB Waste)
FIELD DUPLICATE 1	PCBs (ug/100 cm²)	Aroclor 1254 Aroclor 1262 Total PCBs	16.0 6.92 22.9	> 10 (TSCA PCB Waste)

Bunker 113 – Stains Near Electrical Components Wipe Samples Waste Determination

The material represented by the wipe sample CH-WC-16 and FIELD DUPLICATE 1 are above the decontamination criteria for non-porous surfaces of > 10 ug/100 cm² and are considered a TSCA PCB contaminated waste.

2.3.3 Bunker 113 – Floor Stains Near ASTs Concrete Chip Samples

Concrete chip samples, CH-WC-17 through 19, were collected from floor stains near the ASTs, which samples were composited into a single concrete chip sample, COMP CH-WC-17 – CH-WC-19, for laboratory analysis. Table 10 provides a summary of the laboratory detections for the AST floor stain concrete chip composite sample. These concrete samples were collected within Bunker 113.

Table 10 Bunker 113 – Laboratory Detections in Concrete Composite Chip Sample Floor Stains Near ASTs				
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria
COMP CH-WC-17 –	TPH – DRO (mg/Kg)		18,300	Probable Used Oil
CH-WC-19	TCLP Metals (mg/L)	Barium	0.656	100.0

Bunker 113 – Floor Stains Near ASTs Concrete Chip Samples Waste Determination

The material represented by composite chip sample is considered a non-hazardous waste.

2.3.4 Bunker 113 – Floor Stains Near Electrical Components Concrete Chip Samples

The concrete chip samples, CH-WC-20 through 22, collected from the floor stain near the electrical components, were composited into a single concrete chip sample, COMP CH-WC-20 – CH-WC-22, for laboratory analysis. Table 11 provides a summary of the laboratory detections for the electrical components floor stain concrete chip composite sample. These concrete samples were collected within Bunker 113.

Table 11					
Bunker 113 – Laboratory Detections in Concrete Composite Chip Sample					
	Floor Stains Near Electrical Components				
Sample ID	Analytical				

COMP CH-WC-20 –	PCBs (mg/Kg)	Aroclor 1254	135	> 50 (TSCA PCB Waste)
CH-WC-22	TCLP Metals (mg/L)	Barium	0.679	100.0
S	TOLF IVICIAIS (IIIg/L)	Lead	0.222	5.0

Bunker 113 – Floor Stains Near Electrical Components Concrete Chip Samples Waste Determination

The material represented by composite chip sample is considered a TSCA PCB waste.

2.3.5 Bunker 113 – Bags of Demolition Debris

Seven bags of debris within Bunker 113, which contain roof shingles, are assumed to be asbestos containing material (ACM), and were not sampled as part of August 26, 2020 site visit.

2.3.6 Bunker 113 – Transformers Contents Liquid Samples

Table 12 provides a summary of laboratory detections for samples T2311 through T2313, which were collected from the liquid contents within the two transformers and a switch in Bunker 113.

	Bunker 113 – Laboratory Dete	Table 12 ections in Transform	ers Liquid Conte	nt Samples
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria
T2311	PCBs (mg/L)	Aroclor 1260	1	> 50
T2312	PCBs (mg/L)	Aroclor 1260	2	> 50
T2313	PCBs (mg/L)	Aroclor 1260	5	> 50

Bunker 113 – Transformers Content Liquid Samples Waste Determination

The material represented by liquid samples are not considered a TSCA PCB waste.

3.0 WASTE DETERMINATION SUMMARY

The following provides a summary of the waste determinations, by building and sampled media.

3.1 Building 10 – Waste Determination Summary

- Containers Liquid Contents (Table 2): RCRA hazardous waste
- <u>Wall Surfaces Near Containers</u>: Non-hazardous; not a TSCA regulated waste.
- <u>Floor Solid Sludge Near Containers (Table 3)</u>: Non-hazardous waste, with the exception of CH-WC-54, which is a RCRA hazardous waste due to cadmium detected in exceedance of the TCLP regulatory criteria.

3.2 Building 107 – Waste Determination Summary

- <u>Electrical Components Surfaces (Table 4)</u>: Non-hazardous; not a TSCA regulated waste. However, the electrical components were sealed and, due to their assumed age, they will be disposed of as a TSCA regulated waste.
- <u>Concrete Floor Stains Near Electrical Components (Table 5)</u>: Non-hazardous; not a TSCA regulated waste.

3.3 Bunker 113– Waste Determination Summary

- <u>AST Supply Line Liquid (Table 6)</u>: Non-hazardous waste.
- <u>Electrical Components Surfaces (Table 7)</u>: TSCA PCB waste.
- Wall Stains Near ASTs (Table 8): Potential presence of lead-based paint may not be associated with the stains from the ASTs.
- Wall Stains Near Electrical Components (Table 9): TSCA PCB waste.
- Floor Stains Near ASTs (Table 10): Non-hazardous waste.
- Floor Stains Near Electrical Components (Table 11): TSCA PCB waste.
- Bags of Debris: Assumed to be ACM.
- Transformers Contents (Table 12): Not a TSCA PCB waste.

4.0 WASTE DISPOSAL RECOMMENDATIONS

Table 13 provides the waste disposal recommendations for the PWS media characterized in Building 10, Building 107 and Bunker 113.

Based on the USEPA Small Quantity Generators (SQG) Program's disposal regulations, this event is within the monthly allowable disposal limit of **1,000kg** of RCRA Hazardous wastes. In review of the waste characterization sampling results, the only items that would be subject to the SQG program are the containerized liquids and the sludge on the floor under the containers, both within Building 10. The estimated quantity for the RCRA hazardous waste portion of this disposal event is anticipated to be approximately **486kg** and well within the monthly disposal threshold. The other materials for disposal as part of the PWS are not considered RCRA hazardous wastes and, as such, are not subject to the disposal reporting requirements for an SQG.

		Waste Disp	oosal Recommendation	ns
Location	Material	Type of Waste	Assumed Quantity Packaging	Waste Disposal Recommendations
	Containers Liquid Contents	RCRA hazardous waste.	Two (2) 55-gallon Drum	Dispose as RCRA hazardous waste at Veolia Environmental Services in Wantagh, NY.
	Floor Solid Sludge	RCRA hazardous waste.	Two (2) 5-gallon Pails	Dispose as RCRA hazardous waste at Veolia Environmental Services in Wantagh, NY
Building 10	Wall Staining	Non-Hazardous	Two (2) 55-gallon Drums	Clean wall staining as required in the PWS. Wash water will be collected and assumed to be non-hazardous waste. Dispose at Water Works in Newburgh, NY. Wash water to be tested prior to disposal to confirm waste type.
	Floor Tiles and Mastic	Presumed ACM	Four (4) Bags	Dispose at Waste Management Fairless Landfill in Morrisville, PA.
	Existing Electrical Components	TSCA	Three (3) Main Units and six (6) Small Capacitors	Dispose at TCI in Pelle City AL.
Building 107	Wall Staining and Floor	Non-Hazardous	One (1) 55-gallon Drum	Clean wall staining and floor as required in the PWS. Wash water will be collected and assumed to be non-hazardous waste. Dispose at Water Works in Newburgh, NY. Wash water to be tested prior to disposal to confirm waste type.
	AST Supply Line Liquid	Non-Hazardous	Two (2) 55-gallon Drums	Dispose as non-hazardous waste at Water Works in Newburgh, NY
	AST and Associated Steel Piping	Non-Hazardous	20 CY Container	Recycled at Gershow Recycling in Bay Shore, NY.
	Floor and Walls by AST	Non-Hazardous	One (1) 55-gallon Drum	Clean floor and walls as required in the PWS. Wash water will be collected and assumed to be non-hazardous waste. Dispose at Water Works in Newburgh, NY. Wash water to be tested prior to disposal to confirm waste type.
	Transformers Contents	Non- Hazardous/Non- TSCA	One (1) 5-Gallon Pail	Dispose at TCI in Hudson, NY.
Bunker 113	Transformers and Associated Electrical Components	Non- Hazardous/Non- TSCA	Four (4) Transformers and associate electrical components	Dispose at TCI in Hudson, NY.
	Electrical Conduit and Wire	Non-Hazardous	20 CY Container	Recycled at Gershow Recycling in Bay Shore, NY.
	Floor and Walls by Transformers	Non-Hazardous	One (1) 55-gallon Drum	Clean floor and walls as required in the PWS. Wash water will be collected and assumed to be non-hazardous waste. Dispose at Water Works in Newburgh, NY. Wash water to be tested prior to disposal to confirm waste type.
	Bags of ACM Shingles	Presumed ACM	8 Bags	Dispose at Waste Management Fairless Landfill in Morrisville, PA.

Attachment 1 Building 10 – Laboratory Results

SAMPLE NOTES	Samples CH-V	VC-49 thro	ugh	CH-WC-5	1 & Field I	Duplicate	1 w	ere collect	ed from w	alls surro	undi	ng the co	ntainers in	Building	10.		
Sample #	:		(H-WC-49			(CH-WC-50			С	H-WC-51		F	IELD	DUPLICATE	<u> </u>
Field ID	:																
Lab ID				5668-011				05668-012			_	5668-013				5668-019	
Date Sampled			0	8/26/2020			(8/26/2020			0	8/26/2020			0	8/26/2020	
Depth(ft)																	
	CAS																
PCB's (ug/100cm2)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Aroclor-1016	12674-11-2	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1221	11104-28-2	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1232	11141-16-5	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1242	53469-21-9	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1248	12672-29-6	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1254	11097-69-1	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1260	11096-82-5	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1262	37324-23-5	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
Aroclor-1268	11100-14-4	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
PCBs	1336-36-3	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020
BOLD Conc	Indicates a concent	tration that ex	ceed	s applicable o	criteria.												
BOLD RL	Indicates RL that ex	xceeds applic	able	criteria.													
BOLD MDL	Indicates MDL that	exceeds app	licabl	e criteria.													
NS = No Standard Available																	
~ = Sample not analyzed for																	
ND = Analyzed for but Not Detected at the	MDL																
J = Concentration detected at a value below	v the RL and above t	he MDL for ta	arget	compounds.	For non-targe	t compounds	(i.e.	TICs), qualific	er indicates es	stimated con	centra	tions.					
D = The compound was reported from the I				-													

SAMPLE NOTES Sample #:		Samples	CH-WC-39 t CH-WC-39	hrough CH-	WC-48 & C	COMP CH-WC	-41-45 col	ected fron	n can labeled CH-WC-46	"Skydrol 5	500 B4" in	buiding 10. A	II other ca	ns were en	npty or unabl	e to be op	ened for s	ample collec	ction.
Field ID:																			
Lab ID: Date Sampled:			05668-001 08/26/2020			05668-002 08/26/2020			05668-008 08/26/2020			05668-009 08/26/2020			05668-010 08/26/2020			05668-020 08/26/2020	
Date Sampled: Depth(ft):			08/28/2020			06/26/2020			00/20/2020			06/26/2020			00/20/2020			08/28/2020	
	CAS																		
Volatiles (mg/Kg)		Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL
Dichlorodifluoromethane	75-71-8	ND	50.0	24.5	ND	50.0	24.5	ND	50.0	24.5	ND	50.0	24.5	ND	50.0	24.5	ND	50.0	24.5
Chloromethane	74-87-3	ND	25.0	15.9	ND	25.0	15.9	ND	25.0	15.9	ND	25.0	15.9	ND	25.0	15.9	ND	25.0	15.9
Vinyl chloride	75-01-4	ND	50.0	7.45	ND	50.0	7.45	ND	50.0	7.45	ND	50.0	7.45	ND	50.0	7.45	ND	50.0	7.45
Bromomethane	74-83-9	ND	50.0	17.8	ND	50.0	17.8	ND ND	50.0	17.8	ND ND	50.0	17.8	ND	50.0	17.8	ND	50.0	17.8
Chloroethane	75-00-3 75-69-4	ND ND	25.0 25.0	19.5 22.3	ND ND	25.0 25.0	19.5 22.3	ND ND	25.0 25.0	19.5 22.3	ND ND	25.0 25.0	19.5 22.3	ND ND	25.0 25.0	19.5 22.3	ND ND	25.0 25.0	19.5 22.3
Trichlorofluoromethane 1,1-Dichloroethene	75-69-4	ND ND	25.0	20.5	ND ND	25.0	20.5	ND ND	25.0	20.5	ND ND	25.0	20.5	ND ND	25.0	20.5	ND ND	25.0	20.5
Acetone	67-64-1	ND	100	97.5	ND	100	97.5	ND	100	97.5	ND	100	97.5	ND	100	97.5	ND	100	97.5
Carbon disulfide	75-15-0	ND	25.0	11.0	ND	25.0	11.0	ND	25.0	11.0	ND	25.0	11.0	ND	25.0	11.0	ND	25.0	11.0
Methylene chloride	75-19-2	ND	50.0	49.5	ND	50.0	49.5	ND	50.0	49.5	ND	50.0	49.5	ND	50.0	49.5	ND	50.0	49.5
trans-1,2-Dichloroethene	156-60-5	ND	25.0	14.1	ND	25.0	14.1	ND	25.0	14.1	ND	25.0	14.1	ND	25.0	14.1	ND	25.0	14.1
Methyl tert-butyl ether (MTBE)	1634-04-4	ND	25.0	13.3	ND	25.0	13.3	ND	25.0	13.3	ND	25.0	13.3	ND	25.0	13.3	ND	25.0	13.3
1,1-Dichloroethane	75-34-3	ND	25.0	9.65	ND	25.0	9.65	ND	25.0	9.65	ND	25.0	9.65	ND	25.0	9.65	ND	25.0	9.65
cis-1,2-Dichloroethene	156-59-2	ND	25.0	7.80	ND	25.0	7.80	ND	25.0	7.80	ND	25.0	7.80	ND	25.0	7.80	ND	25.0	7.80
2-Butanone (MEK)	78-93-3	ND	100	35.1	ND	100	35.1	ND	100	35.1	ND	100	35.1	ND	100	35.1	ND	100	35.1
Bromochloromethane	74-97-5	ND	50.0	8.70	ND	50.0	8.70	ND	50.0	8.70	ND	50.0	8.70	ND	50.0	8.70	ND	50.0	8.70
Chloroform	67-66-3	ND	25.0	8.15	ND	25.0	8.15	ND	25.0	8.15	ND	25.0	8.15	ND	25.0	8.15	ND	25.0	8.15
1,1,1-Trichloroethane Carbon tetrachloride	71-55-6 56-23-5	ND ND	25.0 50.0	5.25 5.95	ND ND	25.0 50.0	5.25 5.95	ND ND	25.0 50.0	5.25 5.95	ND ND	25.0 50.0	5.25 5.95	ND ND	25.0 50.0	5.25 5.95	ND ND	25.0 50.0	5.25 5.95
1,2-Dichloroethane (EDC)	107-06-2	ND ND	25.0	13.6	ND ND	25.0	13.6	ND ND	25.0	13.6	ND ND	25.0	13.6	ND ND	25.0	13.6	ND ND	25.0	13.6
Benzene	71-43-2	ND	25.0	7.20	ND	25.0	7.20	ND ND	25.0	7.20	ND	25.0	7.20	ND	25.0	7.20	ND ND	25.0	7.20
Trichloroethene	79-01-6	ND	25.0	10.3	ND	25.0	10.3	ND	25.0	10.3	ND	25.0	10.3	ND	25.0	10.3	ND	25.0	10.3
1,2-Dichloropropane	78-87-5	ND	25.0	5.50	ND	25.0	5.50	ND	25.0	5.50	ND	25.0	5.50	ND	25.0	5.50	ND	25.0	5.50
1,4-Dioxane	123-91-1	ND	5000	1840	ND	5000	1840	ND	5000	1840	ND	5000	1840	ND	5000	1840	ND	5000	1840
Bromodichloromethane	75-27-4	ND	25.0	14.3	ND	25.0	14.3	ND	25.0	14.3	ND	25.0	14.3	ND	25.0	14.3	ND	25.0	14.3
cis-1,3-Dichloropropene	10061-01-5	ND	25.0	11.1	ND	25.0	11.1	ND	25.0	11.1	ND	25.0	11.1	ND	25.0	11.1	ND	25.0	11.1
4-Methyl-2-pentanone (MIBK)	108-10-1	ND	100	39.8	ND	100	39.8	ND	100	39.8	ND	100	39.8	ND	100	39.8	ND	100	39.8
Toluene	108-88-3	56.9	D 25.0	8.70	60.9	D 25.0	8.70	62.8	D 25.0	8.70	67.8	D 25.0	8.70	62.0	D 25.0	8.70	65.3	D 25.0	8.70
trans-1,3-Dichloropropene	10061-02-6	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1
1,1,2-Trichloroethane	79-00-5	ND	25.0	11.6	ND	25.0	11.6	ND	25.0	11.6	ND	25.0	11.6	ND	25.0	11.6	ND	25.0	11.6
Tetrachloroethene	127-18-4	ND ND	25.0 100	13.5 48.8	ND ND	25.0	13.5 48.8	ND ND	25.0 100	13.5	ND ND	25.0 100	13.5 48.8	ND ND	25.0	13.5 48.8	ND ND	25.0	13.5 48.8
2-Hexanone Dibromochloromethane	591-78-6 124-48-1	ND ND	50.0		ND ND	100 50.0	48.8 19.1		50.0	48.8	ND ND	50.0	48.8 19.1	ND ND	100 50.0	48.8 19.1	ND ND	100 50.0	48.8 19.1
1,2-Dibromoethane (EDB)	106-93-4	ND ND	25.0	19.1 13.0	ND	25.0	13.0	ND ND	25.0	19.1 13.0	ND	25.0	13.0	ND	25.0	13.0	ND	25.0	13.0
Chlorobenzene	108-90-7	ND	25.0	13.9	ND	25.0	13.9	ND	25.0	13.9	ND	25.0	13.9	ND	25.0	13.9	ND	25.0	13.9
Ethylbenzene	100-41-4	ND	25.0	13.5	ND	25.0	13.5	ND	25.0	13.5	ND	25.0	13.5	ND	25.0	13.5	ND	25.0	13.5
Total Xylenes	1330-20-7	ND	50.0	44.1	ND	50.0	44.1	ND	50.0	44.1	ND	50.0	44.1	ND	50.0	44.1	ND	50.0	44.1
Styrene	100-42-5	ND	50.0	21.6	ND	50.0	21.6	ND	50.0	21.6	ND	50.0	21.6	ND	50.0	21.6	ND	50.0	21.6
Bromoform	75-25-2	ND	25.0	21.2	ND	25.0	21.2	ND	25.0	21.2	ND	25.0	21.2	ND	25.0	21.2	ND	25.0	21.2
Isopropylbenzene	98-82-8	ND	25.0	19.3	ND	25.0	19.3	ND	25.0	19.3	ND	25.0	19.3	ND	25.0	19.3	ND	25.0	19.3
1,1,2,2-Tetrachloroethane	79-34-5	ND	50.0	39.6	ND	50.0	39.6	ND	50.0	39.6	ND	50.0	39.6	ND	50.0	39.6	ND	50.0	39.6
1,3-Dichlorobenzene	541-73-1	ND	25.0	14.8	ND	25.0	14.8	ND	25.0	14.8	ND	25.0	14.8	ND	25.0	14.8	ND	25.0	14.8
1,4-Dichlorobenzene	106-46-7	ND	25.0	19.6	ND	25.0	19.6	ND	25.0	19.6	ND	25.0	19.6	ND	25.0	19.6	ND	25.0	19.6
1,2-Dichlorobenzene	95-50-1	ND	25.0	16.2	ND	25.0	16.2	ND	25.0	16.2	ND	25.0	16.2	ND	25.0	16.2	ND	25.0	16.2
1,2-Dibromo-3-chloropropane	96-12-8	ND ND	50.0 50.0	28.6	ND ND	50.0 50.0	28.6	ND ND	50.0 50.0	28.6	ND ND	50.0 50.0	28.6 18.1	ND ND	50.0 50.0	28.6 18.1	ND ND	50.0 50.0	28.6 18.1
1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene	120-82-1 87-61-6	ND ND	50.0	18.1 25.7	ND ND	50.0	18.1 25.7	ND ND	50.0	18.1 25.7	ND ND	50.0	18.1 25.7	ND ND	50.0	18.1 25.7	ND ND	50.0	18.1 25.7
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	ND ND	50.0	17.4	ND	50.0	17.4	ND	50.0	17.4	ND ND	50.0	17.4	ND ND	50.0	17.4	ND	50.0	17.4
Methyl acetate	79-20-9	ND ND	25.0	24.4	ND ND	25.0	24.4	ND ND	25.0	24.4	ND ND	25.0	24.4	ND ND	25.0	24.4	ND	25.0	24.4
Cyclohexane	110-82-7	ND	50.0	27.4	ND	50.0	27.4	ND	50.0	27.4	ND	50.0	27.4	ND	50.0	27.4	ND	50.0	27.4
Methylcyclohexane	108-87-2	ND	50.0	25.0	ND	50.0	25.0	ND	50.0	25.0	ND	50.0	25.0	ND	50.0	25.0	ND	50.0	25.0
1,3-Dichloropropene (cis- and trans-)	542-75-6	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1	ND	50.0	12.1
TOTAL VO's:		56.9	D	NA	60.9		NA	62.8		NA	67.8		NA	62.0		NA	65.3	D	NA

TCLP Volatiles (mg/L)		Conc	Q	RL	MDL	Conc	Q		MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	C		MDL
Vinyl chloride	75-01-4	ND		10.0	2.98	ND		10.0	2.98	ND	10.0	2.98	ND	10.0	2.98	ND		10.0	2.98	ND		10.0	2.98
1,1-Dichloroethene	75-35-4	ND		10.0	8.18	ND		10.0	8.18	ND	10.0	8.18	ND	10.0	8.18	ND		10.0	8.18	ND		10.0	8.18
2-Butanone (MEK)	78-93-3	ND		40.0	14.0	ND		40.0	14.0	ND	40.0	14.0	ND	40.0	14.0	ND		40.0	14.0	ND		40.0	14.0
Chloroform	67-66-3	ND		10.0	3.26	ND		10.0	3.26	ND	10.0	3.26	ND	10.0	3.26	ND		10.0	3.26	ND		10.0	3.26
Carbon tetrachloride	56-23-5	ND		10.0	2.38	ND		10.0	2.38	ND	10.0	2.38	ND	10.0	2.38	ND		10.0	2.38	ND		10.0	2.38
1,2-Dichloroethane (EDC)	107-06-2	ND		10.0	5.42	ND		10.0	5.42	ND	10.0	5.42	ND	10.0	5.42	ND		10.0	5.42	ND		10.0	5.42
Benzene	71-43-2	ND		10.0	2.88	ND		10.0	2.88	ND	10.0	2.88	ND	10.0	2.88	ND		10.0	2.88	ND		10.0	2.88
Trichloroethene	79-01-6	ND	\top	10.0	4.10	ND		10.0	4.10	ND	10.0	4.10	ND	10.0	4.10	ND		10.0	4.10	ND		10.0	4.10
Tetrachloroethene	127-18-4	ND	\Box	10.0	5.40	ND		10.0	5.40	ND	10.0	5.40	ND	10.0	5.40	ND		10.0	5.40	ND	\neg	10.0	5.40
Chlorobenzene	108-90-7	ND	\Box	10.0	5.56	ND		10.0	5.56	ND	10.0	5.56	ND	10.0	5.56	ND		10.0	5.56	ND	\neg	10.0	5.56
1.4-Dichlorobenzene	106-46-7	ND	\Box	20.0	7.84	ND		20.0	7.84	ND	20.0	7.84	ND	20.0	7.84	ND		20.0	7.84	ND	\neg	20.0	7.84
TCLP Semivolatiles (mg/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	C	RL	MDL
Pyridine	110-86-1	ND	u	10.0	1.96	ND	u	10.0	1.96	ND	10.0	1.96	ND	10.0	1.96	ND	u	10.0	1.96	ND		10.0	1.96
2-Methylphenol	95-48-7	ND ND	+	10.0	2.50	ND ND		10.0	2.50	ND	10.0	2.50	ND	10.0	2.50	ND		10.0	2.50	ND	+	10.0	2.50
	106-44-5	51.0	+	10.0	2.00	46.3		10.0	2.04	42.9	10.0	2.04	48.9	10.0	2.04	46.2		10.0	2.04	50.8	+	10.0	2.04
4-Methylphenol	108-39-4	ND	+	10.0	2.04	40.3 ND	-	10.0	2.04	42.9 ND	10.0	2.04	46.9 ND	10.0	2.04	40.2 ND		10.0	2.04	ND	+	10.0	2.04
3-Methylphenol			+				-														-		2.04
Hexachloroethane	67-72-1	ND	+	10.0	2.14	ND		10.0	2.14	ND	10.0	2.14	ND	10.0	2.14	ND		10.0	2.14	ND	_	10.0	
Nitrobenzene	98-95-3	ND		10.0	4.28	ND		10.0	4.28	ND	10.0	4.28	ND	10.0	4.28	ND		10.0	4.28	ND	_	10.0	4.28
Hexachlorobutadiene	87-68-3	ND	+	10.0	1.83	ND	-	10.0	1.83	ND	10.0	1.83	ND	10.0	1.83	ND	_	10.0	1.83	ND	_	10.0	1.83
2,4,6-Trichlorophenol	88-06-2	ND	\perp	10.0	1.79	ND		10.0	1.79	ND	10.0	1.79	ND	10.0	1.79	ND		10.0	1.79	ND		10.0	1.79
2,4,5-Trichlorophenol	95-95-4	ND	\perp	10.0	1.84	ND		10.0	1.84	ND	10.0	1.84	ND	10.0	1.84	ND		10.0	1.84	ND		10.0	1.84
2,4-Dinitrotoluene	121-14-2	ND	\perp	10.0	1.42	ND		10.0	1.42	ND	10.0	1.42	ND	10.0	1.42	ND		10.0	1.42	ND		10.0	1.42
Hexachlorobenzene	118-74-1	ND		10.0	3.22	ND		10.0	3.22	ND	10.0	3.22	ND	10.0	3.22	ND		10.0	3.22	ND		10.0	3.22
Pentachlorophenol	87-86-5	ND		10.0	2.59	ND		10.0	2.59	ND	10.0	2.59	ND	10.0	2.59	ND		10.0	2.59	ND	I	10.0	2.59
PCB's (mg/Kg)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	C	RL	MDL
Aroclor-1016	12674-11-2	ND	T	0.495	0.198	ND	T	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND		0.500	0.200	ND	T	0.500	0.200
Aroclor-1221	11104-28-2	ND	+	0.495	0.198	ND	1	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND		0.500	0.200	ND	_	0.500	0.200
Aroclor-1221	11141-16-5	ND	+	0.495	0.198	ND	\top	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND		0.500	0.200	ND ND	\dashv	0.500	0.200
Aroclor-1242	53469-21-9	ND	++	0.495	0.198	ND	+	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND		0.500	0.200	ND	+	0.500	0.200
Aroclor-1248	12672-29-6	ND ND	+	0.495	0.198	ND ND	-	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND ND		0.500	0.200	ND	+	0.500	0.200
Aroclor-1254	11097-69-1	ND	+	0.495	0.198	ND ND	-	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND		0.500	0.200	ND	+	0.500	0.200
		ND ND	+		0.198	ND ND									0.196						-	0.500	0.200
Aroclor-1260	11096-82-5			0.495				0.500	0.200	ND	0.500	0.200	ND	0.490		ND		0.500	0.200	ND	_		
Aroclor-1262	37324-23-5	ND	+	0.495	0.198	ND	-	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND		0.500	0.200	ND	_	0.500	0.200
Aroclor-1268	11100-14-4	ND		0.495	0.198	ND	1	0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND		0.500	0.200	ND	- 1	0.500	0.200
PCBs	1336-36-3	ND	$\downarrow \downarrow \downarrow$	0.495	0.198	ND		0.500	0.200	ND	0.500	0.200	ND	0.490	0.196	ND	_	0.500	0.200	ND		0.500	0.200
TCLP Pesticides (mg/L)		Conc	Q	RL	MDL	Conc	Q	0.500 RL	0.200 MDL	Conc	0.500 Q RL	0.200 MDL	Conc	0.490 Q RL	MDL	Conc	Q	0.500 RL	MDL	Conc	C	RL.	MDL
TCLP Pesticides (mg/L) gamma-BHC (Lindane)	58-89-9	Conc ND	Q	RL 0.189	MDL 0.094	Conc ND	Q	0.500 RL 0.192	0.200 MDL 0.096	Conc ND	0.500 Q RL 0.189	0.200 MDL 0.094	Conc ND	0.490 Q RL 0.187	MDL 0.094	Conc ND	Q	0.500 RL 0.192	MDL 0.096	Conc ND	C	0.194	MDL 0.097
TCLP Pesticides (mg/L)	58-89-9 76-44-8	Conc ND ND	Q	RL 0.189 0.189	MDL 0.094 0.094	Conc ND ND	Q	0.500 RL 0.192 0.192	0.200 MDL 0.096 0.096	Conc ND ND	0.500 Q RL 0.189 0.189	0.200 MDL 0.094 0.094	Conc ND ND	0.490 Q RL 0.187 0.187	MDL 0.094 0.094	Conc ND ND	Q	0.500 RL 0.192 0.192	MDL 0.096 0.096	Conc ND ND	C	0.194 0.194	MDL 0.097 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane)	58-89-9 76-44-8 1024-57-3	Conc ND ND ND	Q	RL 0.189 0.189 0.189	MDL 0.094 0.094 0.094	ND ND ND	Q	0.500 RL 0.192 0.192 0.192	0.200 MDL 0.096 0.096 0.096	Conc ND ND ND	0.500 Q RL 0.189 0.189 0.189	0.200 MDL 0.094 0.094 0.094	Conc ND ND ND	0.490 Q RL 0.187 0.187 0.187	MDL 0.094 0.094 0.094	Conc ND ND ND	Q	0.500 RL 0.192 0.192 0.192	MDL 0.096 0.096 0.096	ND ND ND	C	0.194 0.194 0.194	MDL 0.097 0.097 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor	58-89-9 76-44-8	Conc ND ND	Q	RL 0.189 0.189	MDL 0.094 0.094	Conc ND ND	Q	0.500 RL 0.192 0.192	0.200 MDL 0.096 0.096	Conc ND ND	0.500 Q RL 0.189 0.189	0.200 MDL 0.094 0.094	Conc ND ND	0.490 Q RL 0.187 0.187	MDL 0.094 0.094	Conc ND ND	Q	0.500 RL 0.192 0.192	MDL 0.096 0.096	Conc ND ND	C	0.194 0.194	MDL 0.097 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	58-89-9 76-44-8 1024-57-3	Conc ND ND ND	Q	RL 0.189 0.189 0.189	MDL 0.094 0.094 0.094	ND ND ND	Q	0.500 RL 0.192 0.192 0.192	0.200 MDL 0.096 0.096 0.096	Conc ND ND ND	0.500 Q RL 0.189 0.189 0.189	0.200 MDL 0.094 0.094 0.094	Conc ND ND ND	0.490 Q RL 0.187 0.187 0.187	MDL 0.094 0.094 0.094	Conc ND ND ND	Q	0.500 RL 0.192 0.192 0.192	MDL 0.096 0.096 0.096	ND ND ND	C	0.194 0.194 0.194	MDL 0.097 0.097 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin	58-89-9 76-44-8 1024-57-3 72-20-8	Conc ND ND ND ND	Q	RL 0.189 0.189 0.189 0.189	MDL 0.094 0.094 0.094 0.094	Conc ND ND ND ND	Q	0.500 RL 0.192 0.192 0.192 0.192	0.200 MDL 0.096 0.096 0.096 0.096	ND ND ND ND ND	0.500 Q RL 0.189 0.189 0.189 0.189	0.200 MDL 0.094 0.094 0.094 0.094	ND ND ND ND	0.490 Q RL 0.187 0.187 0.187	MDL 0.094 0.094 0.094 0.094	Conc ND ND ND ND	Q	0.500 RL 0.192 0.192 0.192 0.192	MDL 0.096 0.096 0.096 0.096	ND ND ND ND ND	C	RL 0.194 0.194 0.194 0.194	MDL 0.097 0.097 0.097 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5	Conc ND ND ND ND ND	Q	RL 0.189 0.189 0.189 0.189 0.189	MDL 0.094 0.094 0.094 0.094 0.094	ND ND ND ND ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192	0.200 MDL 0.096 0.096 0.096 0.096 0.096	ND ND ND ND ND ND	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 0.189	0.200 MDL 0.094 0.094 0.094 0.094 0.094	Conc ND ND ND ND ND	0.490 Q RL 0.187 0.187 0.187 0.187 0.187	MDL 0.094 0.094 0.094 0.094 0.094	Conc ND ND ND ND ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192	MDL 0.096 0.096 0.096 0.096 0.096	ND ND ND ND ND ND	C	RL 0.194 0.194 0.194 0.194 0.194 0.194	MDL 0.097 0.097 0.097 0.097 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6	Conc ND		RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13	Conc ND ND ND ND ND ND ND		0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 2.40	0.200 MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15	ND N	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 0.189 2.36 2.36	0.200 MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13	ND N	0.490 Q RL 0.187 0.187 0.187 0.187 0.187 2.34 2.34	MDL 0.094 0.094 0.094 0.094 0.094 1.12 1.12	Conc ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 2.40	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15	Conc ND ND ND ND ND ND ND		RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43	MDL 0.097 0.097 0.097 0.097 0.097 1.17
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L)	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2	Conc ND ND ND ND ND ND ND ND ND N	Q	RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13	ND Conc	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 RL	0.200 MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL	Conc ND ND ND ND ND ND ND ND ND N	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 Q RL	0.200 MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL	Conc ND Conc	0.490 Q RL 0.187 0.187 0.187 0.187 0.187 0.187 2.34 2.34 Q RL	MDL 0.094 0.094 0.094 0.094 0.094 1.12 1.12 MDL	Conc ND ND ND ND ND ND ND ND ND N	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL	ND N		RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7	Conc ND		RL 0.189 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100	Conc ND		0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250	0.200 MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100	Conc ND	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 Q RL 0.250	0.200 MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100	Conc ND	0.490 Q RL 0.187 0.187 0.187 0.187 0.187 2.34 2.34 Q RL 0.250	MDL 0.094 0.094 0.094 0.094 0.094 1.12 1.12 MDL 0.100	Conc ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100	Conc ND		RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 RL 0.250	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-5-TP (Silvex)	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2	Conc ND	Q	RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100	Conc ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250	0.200 MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100	Conc ND	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 Q RL 0.250 0.250	0.200 MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100	Conc ND ND ND ND ND ND ND ND ND N	0.490 Q RL 0.187 0.187 0.187 0.187 0.187 2.34 2.34 2.34 Q RL 0.250 0.250	MDL 0.094 0.094 0.094 0.094 0.094 1.12 1.12 MDL 0.100 0.100	Conc ND ND ND ND ND ND ND N	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 RL 0.250 0.250	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100 0.100
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5.TP (Silvex) Hydrocarbons (mg/Kg)	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1	Conc ND ND ND ND ND ND ND ND ND N		RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL	Conc ND ND ND ND ND ND ND N		0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL	0.200 MDL 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL	Conc ND ND ND ND ND ND ND ND ND N	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 Q RL 0.250 0.250 Q RL	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL	Conc ND ND ND ND ND ND ND ND ND N	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 2.34 2.34 Q RL 0.250 0.250 Q RL	MDL 0.094 0.094 0.094 0.094 0.094 1.12 1.12 MDL 0.100 0.100 MDL	Conc ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 2.43 RL 0.250 0.250 RL	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100 0.100 MDL
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachior Heptachior Heptachior Heptachior Endrin Methoxychior Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 T2 (Silvex) Hydrocarbons (mg/Kg) TPH-DRO	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7	Conc ND	Q	RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000	Conc ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250	0.200 MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100	Conc ND	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 Q RL 0.250 0.250 Q RL 25000	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000	Conc ND ND ND ND ND ND ND ND ND N	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 Q RL 0.250 0.250 Q RL 25000	MDL 0.094 0.094 0.094 0.094 0.094 1.12 1.12 MDL 0.100 0.100 MDL 20000	Conc ND ND ND ND ND ND ND N	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 RL 0.250 0.250	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100 0.100
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4,5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L)	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133	Conc ND ND ND ND ND ND ND N	Q	RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 25000 RL	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL	Conc ND ND ND ND ND ND ND N	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.240 2.40 RL 0.250 0.250 RL 25000 RL	0.200 MDL 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 20000 MDL	Conc ND Conc ND Conc Conc 649000 Conc	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 2.36 2.36 0 RL 0.250 0.250 Q RL 25000 Q RL	0.200 MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL	Conc ND ND ND ND ND ND ND ND ND N	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.2.34 2.34 2.34 Q RL 0.250 0.250 Q RL 25000 Q RL	MDL 0.094 0.094 0.094 0.094 1.12 MDL 0.100 0.100 MDL	Conc ND ND ND ND ND ND ND N	Q Q Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 24800 RL	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 19800 MDL	Conc ND ND ND ND ND ND ND N	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 RL 0.250 0.250 RL 250000 RL	MDL 0.097 0.097 0.097 0.097 0.097 1.17 MDL 0.100 0.100 MDL 20000 MDL
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Metals (mg/L)	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133	Conc ND ND ND ND ND ND ND N	Q	RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000	Conc ND ND ND ND ND ND ND N	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 25000	0.200 MDL 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 20000	Conc ND	0.500 Q RL 0.189 0.189 0.189 0.189 2.36 2.36 Q RL 0.250 0.250 Q RL 25000 Q RL 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 2.34 Q RL 0.250 0.250 Q RL 25000 Q RL 0.100	MDL 0.094 0.094 0.094 0.094 0.094 1.12 1.12 MDL 0.100 0.100 MDL 20000	Conc ND ND ND ND ND ND ND N	Q Q Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 24800 RL 0.100	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 19800	Conc ND ND ND ND ND ND ND N	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 RL 0.250 0.250 RL 25000 RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100 0.100 MDL 20000
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4,5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L)	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133	Conc ND ND ND ND ND ND ND N	Q	RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 25000 RL	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL	Conc ND ND ND ND ND ND ND N	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.240 2.40 RL 0.250 0.250 RL 25000 RL	0.200 MDL 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 20000 MDL	Conc ND Conc ND Conc Conc 649000 Conc	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 2.36 2.36 0 RL 0.250 0.250 Q RL 25000 Q RL	0.200 MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL	Conc ND ND ND ND ND ND ND Conc ND ND ND Conc ND ND Conc Con	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.2.34 2.34 2.34 Q RL 0.250 0.250 Q RL 25000 Q RL	MDL 0.094 0.094 0.094 0.094 1.12 MDL 0.100 0.100 MDL	Conc ND ND ND ND ND ND ND N	Q Q Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 24800 RL	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 19800 MDL	Conc ND ND ND ND ND ND ND N	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 RL 0.250 0.250 RL 250000 RL	MDL 0.097 0.097 0.097 0.097 0.097 1.17 MDL 0.100 0.100 MDL 20000 MDL
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Metals (mg/L)	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133	Conc ND ND ND ND ND ND ND N	Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 25000 RL 250000 RL	MDL 0.094 0.094 0.094 0.094 0.094 1.13 MDL 0.100 0.100 MDL 0.040	Conc ND ND ND ND ND ND ND N	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 25000 RL 0.100	0.200 MDL 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 MDL 20000 MDL 0.040	Conc ND ND ND ND ND ND ND ND ND Conc ND ND Conc ND ND Conc 649000 Conc ND	0.500 Q RL 0.189 0.189 0.189 0.189 2.36 2.36 Q RL 0.250 0.250 Q RL 25000 Q RL 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 20000 MDL 0.040	Conc ND ND ND ND ND ND ND ND ND Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 2.34 Q RL 0.250 0.250 Q RL 25000 Q RL 0.100	MDL 0.094 0.094 0.094 0.094 1.12 MDL 0.100 0.100 0.100 MDL 20000 MDL 0.040	Conc ND ND ND ND ND ND ND N	Q Q Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 24800 RL 0.100	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 19800 MDL 0.040	Conc ND ND ND ND ND ND ND N	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 RL 0.250 0.250 RL 25000 RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100 0.100 MDL 0.040
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachior Heptachior epoxide Endrin Methoxychior Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Arsenic TCLP Arsenic	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3	Conc ND ND ND ND ND ND ND N	Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 RL 25000 RL 0.100 0.100	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050	Conc ND ND ND ND ND ND ND ND ND Conc 600000 Conc	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 25000 RL 0.100 0.100	0.200 MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 MDL 0.100 0.100 MDL 20000 MDL 0.060	Conc ND ND ND ND ND ND ND ND ND Conc ND ND ND ND ND ND ND ND ND Conc ND ND Conc 649000 Conc ND ND ND 0.089	0.500 Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.236 Q RL 0.250 Q RL 25000 Q RL 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050	Conc ND ND ND ND ND ND ND N	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 2.34 2.34 Q RL 0.250 0.250 Q RL 25000 Q RL 0.100	MDL 0.094 0.094 0.094 0.094 0.094 1.112 1.12 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050	Conc ND ND ND ND ND ND ND N	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 2.240 0.250 0.250 RL 24800 RL 0.100	MDL 0.096 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 MDL 19800 MDL 0.040 0.050	Conc ND ND ND ND ND ND ND N	C	RL 0.194 0.194 0.194 0.194 0.194 0.250 0.250 RL 25000 R RL 0.100 0.100 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor peoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Asrain TCLP Barium TCLP Cadmium TCLP Cdmium TCLP Cdmium	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-39-3 7440-43-9 7440-43-9	Conc ND	Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 RL 0.250 0.250 RL 0.100 0.1	MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070	Conc ND ND ND ND ND ND ND ND ND Conc Conc 600000 Conc 0.085 2.64 0.407 3.19	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 RL 25000 RL 0.100 0.100 0.100 0.100	0.200 MDL 0.096 0.096 0.096 0.096 1.15 MDL 0.100 0.100 0.100 MDL 20000 MDL 0.050 0.050	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 2.36 2.36 Q RL 0.250 0.250 Q RL 25000 Q RL 0.100 J 0.100 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 HDL 0.100 0.100 MDL 20000 MDL 20000 0.050 0.070	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 2.34 Q RL 0.250 0.250 Q RL 25000 Q RL 0.100 J 0.100 0.100	MDL 0.994 0.094 0.094 0.094 1.12 1.12 MDL 0.100 0.100 MDL 2000 MDL 0.040 0.050 0.070	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 24800 RL 0.100 0.100 0.100 0.100	MDL 0.096 0.096 0.096 0.096 0.096 1.15 MDL 0.100 0.100 MDL 19800 MDL 0.050 0.070	Conc ND	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 0.250 0.250 0.250 0.250 0.10 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 MDL 0.100 MDL 2000 MDL 0.040 0.050 0.070
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachior Heptachior epoxide Endrin Methoxychior Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Chromium TCLP Chromium TCLP Communications	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-47-3 7439-92-1	Conc ND	Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070 0.070	Conc ND ND ND ND ND ND ND Conc ND ND Conc 600000 Conc 600000 Conc 1.0885 2.64 0.407 3.19 6.56	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 RL 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.200 MDL 0.096 0.096 0.096 0.096 0.096 1.15 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 Q RL 0.250 Q RL 25000 Q RL 0.100 0.100 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.050 0.070 0.060	Conc ND Conc ND ND Conc 14000 Conc 14000 Conc 14000 Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 2.34 2.34 Q RL 0.250 0.250 Q RL 0.100 0.100 0.100 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070 0.070	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.240 RL 0.250 0.250 RL 24800 RL 0.100 0.100 0.100 0.100 0.100 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 MDL 19800 MDL 0.040 0.050 0.070 0.060	Conc ND	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 2.43 1.40 0.250 0.250 0.250 1. RL 0.100 0.100 0.100 0.100 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.057 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor peoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Chromium TCLP Chromium TCLP Lead TCLP Metals TCLP Lead TCLP Lead	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7440-47-3 7439-92-1 7439-97-6	Conc ND	Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.000	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 1.13 MDL 0.100 0.100 MDL 0.004 0.004 0.005 0.070 0.070 0.070	Conc ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 RL 25000 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.001	0.200 MDL 0.096 0.096 0.096 0.096 1.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 Q RL 0.250 Q RL 25000 Q RL 0.100 0.100 0.100 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 MDL 0.100 0.100 0.100 0.000 MDL 0.004 0.050 0.070 0.070 0.070	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 Q RL 0.250 0.250 Q RL 25000 J 0.100 0.100 0.100 0.100 0.001	MDL 0.094 0.094 0.094 0.094 0.094 1.12 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070 0.070	Conc ND Conc ND ND ND ND ND ND ND ND ND Conc 644000 0.510 0.515 15.2	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.0001	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 MDL 0.100 0.100 MDL 19800 MDL 0.040 0.050 0.070 0.070	Conc ND	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 RL 0.250 0.250 1 RL 25000 1 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.000	MDL 0.097 0.097 0.097 0.097 0.097 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.060
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor Deposide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4.5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Sarium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Hercury TCLP Mercury TCLP Selenium	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-39-3 7440-43-9 7440-43-9 7440-47-3 7439-97-6 7782-49-2	Conc ND	Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.250 RL 0.250 0.250 RL 0.100 0.1	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 1.13 MDL 0.100 MDL 20000 MDL 0.050 0.070 0.060 0.0060 0.0000	Conc ND	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 RL 25000 RL 0.100 0.100 0.100 0.100 0.100 0.000 1.000	0.200 MDL 0.096 0.096 0.096 0.096 1.15 MDL 0.100 0.100 0.100 0.000 MDL 20000 MDL 0.050 0.070 0.060 0.006	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 2.36 Q RL 0.250 0.250 Q RL 0.100 J 0.100 0.100 0.100 0.100 0.001 0.001	0.200 MDL 0.094 0.094 0.094 0.094 1.13 HDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.060 0.0006	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.234 Q RL 0.250 0.250 Q RL 25000 J 0.100 0.100 0.100 0.001 0.001 1.00	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 1.10 0.100 MDL 20000 MDL 0.050 0.050 0.070 0.060 0.060 0.060	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.001	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 0.100 MDL 0.100 MDL 19800 MDL 0.040 0.050 0.070 0.060 0.0006	Conc ND	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 2.43 RL 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 MDL 0.100 MDL 20000 MDL 0.050 0.050 0.070 0.097
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor poxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 Pt (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Lead TCLP Mercury TCLP Mercury TCLP Mercury TCLP Mercury TCLP Selenium TCLP CLP Selenium TCLP CLP Selenium TCLP Silver	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7440-47-3 7439-92-1 7439-97-6	Conc ND	Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.060 0.0004 0.060	Conc ND	QQ	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.001	0.200 MDL 0.096 0.096 0.096 0.096 1.15 1.15 MDL 0.100 0.100 MDL 0.040 0.050 0.050 0.050 0.070 0.070 0.070 0.060 0.0004	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.070 0.070 0.070 0.070 0.070	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.000 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.050 0.070 0.060 0.0004 0.060	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 24800 RL 0.100 0.100 0.100 0.100 0.100 0.0001 0.100 0.0001	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.15 MDL 0.100 0.100 MDL 19800 MDL 0.040 0.050 0.070 0.060 0.0064	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0250 0.250 0.250 0.250 0.260 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.050 0.050 0.070 0.060
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Chromium TCLP Chromium TCLP Chemun TCLP Mercury TCLP Selenium	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7440-47-3 7439-97-6 7782-49-2 7440-22-4	Conc ND	Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.250 0.250 0.250 0.250 0.100 RL	MDL 0.094 0.094 0.094 0.094 0.094 1.13 MDL 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.060 0.0004 0.300 0.300 MDL	Conc ND ND ND ND ND ND ND ND ND Conc ND ND Conc 600000 Conc 0.085 2.64 0.407 3.19 6.56 ND ND ND ND ND Conc	Q	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 RL 25000 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.001 RL 0.001 0.001 RL	0.200 MDL 0.096 0.096 0.096 0.096 1.15 MDL 0.100 0.100 MDL 0.000 MDL 0.000 MDL 0.070 0.070 0.070 0.070 0.0004 0.300 0.0004 0.300 MDL	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 Q RL 0.250 Q RL 25000 Q RL 0.100 0.100 0.100 0.100 0.001 1.00 0.100 0.100 0.100 Q RL	0.200 MDL 0.094 0.094 0.094 0.094 1.13 MDL 0.100 0.100 0.100 0.000 MDL 0.000 0.000 0.000 0.000 MDL	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 0.250 0.250 0.250 Q RL 0.100 0.100 0.100 0.100 0.001 1.00 0.100 0.100 0.100 0.100 0.100 0.100 0.100	MDL 0.094 0.094 0.094 0.094 0.094 1.12 MDL 0.100 0.100 MDL 20000 MDL 0.070 0.070 0.060 0.0004 0.300 MDL	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 RL 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL	MDL 0.096 0.096 0.096 0.096 1.15 MDL 0.100 MDL 19800 0.096 0.096 0.070 MDL 0.070 0.070 0.070 0.060 0.0004 0.300 0.000 MDL	Conc ND	C	RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 RL 0.250 0.250 1 RL 25000 1 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.001	MDL 0.097 0.097 0.097 0.097 0.097 1.17 MDL 0.100 0.100 0.100 0.000 MDL 0.040 0.050 0.070 0.070 0.070 0.060 0.000 MDL
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor (Heptachlor) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4.5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Assenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Mecury TCLP Silver TCLP Silver General Analytical pH/Corrosivity-SU	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-39-3 7440-43-9 7440-43-9 7440-47-3 7439-97-6 7782-49-2 7440-22-4 SRP 6	Conc ND	Q Q Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 2.36 RL 0.250 0.250 0.250 0.250 0.0.00 0.100 RL NA	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 0.000 MDL 20000 MDL 0.050 0.050 0.050 0.060 MDL 0.0004 0.300 0.060 MDL	Conc ND	QQ	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.240 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.15 MDL 0.100 0.100 0.100 0.000 MDL 0.000 0.070 0.070 0.070 0.060 0.000 MDL 0.000 MDL 0.000 MDL 0.000 MDL 0.000 MDL 0.000	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 2.36 Q RL 0.250 0.250 Q RL 0.000 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 H.13 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.060 0.300 0.060 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 2.34 Q RL 2.500 Q RL 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100 Q RL NA	MDL 0.094 0.094 0.094 0.094 1.12 1.12 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.060 0.070 0.060 MDL 0.000 MDL 0.000 0.000 MDL 0.000	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.240 RL 0.250 RL 24800 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL 1.00 0.100 RL NA	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 0.100 MDL 19800 MDL 0.040 0.050 0.070 0.060 0.070 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 2.43 2.43 2.8 RL 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100	MDL 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.060 0.070 0.060 0.060 0.060 MDL NA
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachior Heptachior Heptachior Heptachior Heptachior Heptachior Heptachior Chiordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 Tg (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Hercury TCLP Selenium TCLP Selenium TCLP Selenium TCLP Silver General Analytical pH/Corrosivity-SU [gintability Use	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor (Heptachlor) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4.5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Assenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Mecury TCLP Silver TCLP Silver General Analytical pH/Corrosivity-SU	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-39-3 7440-43-9 7440-43-9 7440-47-3 7439-97-6 7782-49-2 7440-22-4 SRP 6	Conc ND	Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 2.36 RL 0.250 0.250 0.250 0.250 0.0.00 0.100 RL NA	MDL 0.094 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 0.100 0.000 MDL 20000 MDL 0.050 0.050 0.050 0.060 MDL 0.0004 0.300 0.060 MDL	Conc ND ND ND ND ND ND ND ND ND Conc ND ND Conc 600000 Conc 0.085 2.64 0.407 3.19 6.56 ND ND ND ND ND Conc	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.240 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.15 MDL 0.100 0.100 0.100 0.000 MDL 0.000 0.070 0.070 0.070 0.060 0.000 MDL 0.000 MDL 0.000 MDL 0.000 MDL 0.000 MDL 0.000	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 2.36 Q RL 0.250 0.250 Q RL 0.000 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 H.13 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.060 0.300 0.060 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.060 0.070 0.060 MDL 0.000 MDL 0.000 0.000 MDL 0.000	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.240 RL 0.250 RL 24800 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL 1.00 0.100 RL NA	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 0.100 MDL 19800 MDL 0.040 0.050 0.070 0.060 0.070 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 2.43 2.43 2.43 2.43 2.8 RL 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100 1.00 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 1.10 0.100 MDL 20000 MDL 0.050 0.050 0.070 0.060 0.060 0.060 0.060 0.060 MDL 0.060 0.060 0.060 0.060 MDL 0.060 0.060 0.060 MDL 0.060 0.060 0.060 MDL 0.060
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachior Heptachior Heptachior Heptachior Heptachior Heptachior Heptachior Chiordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 Tg (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Hercury TCLP Selenium TCLP Selenium TCLP Selenium TCLP Silver General Analytical pH/Corrosivity-SU [gintability Use	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0.0004 0.0004 0.0004 0.0004 NA NA
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachior Heptachior Heptachior Heptachior Heptachior Heptachior Heptachior Chiordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 Tg (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Hercury TCLP Selenium TCLP Selenium TCLP Selenium TCLP Silver General Analytical pH/Corrosivity-SU [gintability Use	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0.0004 0.0004 0.0004 0.0004 NA NA
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachior Heptachior epoxide Endrin Methoxychior Chiordane Toxaphene TCLP Herbicides (mg/L) 2,4-5 TP (Silivex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Arsenic TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Lead TCLP Mercury TCLP Selenium TCLP Selenium TCLP Siliver General Analytical pH/Corrosity-SU Ignitability Flash Point-*C	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0.0004 0.0004 0.0004 0.0004 NA NA
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor poxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Chromium TCLP Chromium TCLP Lead TCLP Metals (mg/L) TCLP Metals (mg/L) TCLP Metals (mg/L) TCLP General Metals (mg/L) TCLP Gromium TCLP Chromium TCLP Chromium TCLP Chromium TCLP Selenium	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0.0004 0.0004 0.0004 0.0004 NA NA
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor (Heptachlor) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Chemous TCLP Silver TCLP Silver General Analytical pH/Corrosivity-SU Ignitability Flash Point-*C BOLD Conc BOLD RL	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070 0.060 0.0004 0.00
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor poxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4,5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Chromium TCLP Chromium TCLP Chromium TCLP Lead TCLP Metals TCLP Selenium TCLP Selenium TCLP Chromium TCLP Corrosivity-SU Ignitability Flash Point-*C	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070 0.060 0.0004 0.0004 0.0000 MDL NA
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor (Heptachlor) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Chemous TCLP Silver TCLP Silver General Analytical pH/Corrosivity-SU Ignitability Flash Point-*C BOLD Conc BOLD RL	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070 0.060 0.0004 0.00
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor (Heptachlor) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4-D 2,4-5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Chemous TCLP Silver TCLP Silver General Analytical pH/Corrosivity-SU Ignitability Flash Point-*C BOLD Conc BOLD RL	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 20000 MDL 0.050 0.070 0.070 0.060 0.0004 0.00
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor (Heptachlor) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4.5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Silver TCLP Mercury TCLP Silver General Analytical pH/Corrosivity-SU Ignitability Flash Point-*C BOLD Conc BOLD RL	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.000 1.00 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor Heptachlor (Heptachlor) Heptachlor epoxide Endrin Methoxychlor Chlordane Toxaphene TCLP Herbicides (mg/L) 2,4.5-TP (Silvex) Hydrocarbons (mg/Kg) TPH-DRO TCLP Metals (mg/L) TCLP Arsenic TCLP Barium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Cadmium TCLP Silver TCLP Mercury TCLP Silver General Analytical pH/Corrosivity-SU Ignitability Flash Point-*C BOLD Conc BOLD RL	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.000 1.00 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0
TCLP Pesticides (mg/L) gamma-BHC (Lindane) Heptachlor H	58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 12789-03-6 8001-35-2 94-75-7 93-72-1 SRP 133 7440-38-2 7440-39-3 7440-43-9 7439-97-6 7782-49-2 7440-22-4 SRP 6 SRP 129	Conc ND	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RL 0.189 0.189 0.189 0.189 2.36 2.36 RL 0.250 0.250 RL 0.100	MDL 0.094 0.094 0.094 0.094 1.13 1.13 1.13 1.13 MDL 0.100 0.100 0.100 MDL 0.040 0.050 0.070 0.060 0.0004 0.060 MDL NA	Conc ND	Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 RL NA	0.200 MDL 0.096 0.096 0.096 0.096 1.115 MDL 0.100 0.100 MDL 0.000 MDL 0.000 0.070 0.070 0.070 0.070 0.080 0.080 0.080 0.080 0.080 0.080	Conc ND	Q RL 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.236 0.250 0.250 0.250 0.250 0.250 0.00 0.100 0.100 0.100 0.100 0.001 1.00 0.100	0.200 MDL 0.094 0.094 0.094 0.094 1.13 1.13 MDL 0.100 MDL 0.000 MDL 0.050 0.070 0.070 0.070 0.080 0.080 MDL NA	Conc ND	Q RL 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.234 2.34 2.34 0.250 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100 0.100 0.001 1.00 0.001 1.00 0.100	MDL 0.094 0.094 0.094 0.094 1.12 1.12 1.12 0.100 0.100 MDL 0.000 MDL 0.060 0.070 0.070 0.060 0.0004 MDL NA	Conc ND	Q Q Q J	0.500 RL 0.192 0.192 0.192 0.192 0.192 2.40 2.40 RL 0.250 0.250 RL 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.000 1.00 0.100	MDL 0.096 0.096 0.096 0.096 1.15 1.15 1.15 1.10 0.100 0.100 MDL 19800 MDL 0.050 0.070 0.070 0.060 0.0064 0.300 0.060 MDL NA	Conc ND	G	RL 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.243 2.43 2.43 1.0.250 0.250 0.250 1. RL 0.100	MDL 0.097 0.097 0.097 0.097 0.097 1.17 1.17 1.17 MDL 0.100 0.100 MDL 0.040 0.050 0.070 0.070 0.060 0.0004 0

SAMPLE NOTES			Samples CH	WC 52 thre	ough CH V	VC 56 word	collected fro	m floor eli	udao surr	ounding the co	ontainore ir	Building 1	10						
Sample #:		Part 375-6.8(a)	Samples Cit	CH-WC-52	Jugii Cii-v	VC-30 Wele	CH-WC-53	JIII IIOOI SIL	uuge suit	CH-WC-54	Jillailleis II	i Bullullig	CI	H-WC-55				CH-WC-56	
Field ID:		Unrestricted Use																	
Lab ID:		Soil Cleanup		05668-014			05668-015			05668-016				5668-017				05668-018	
Date Sampled: Depth(ft):		Objectives	,	08/26/2020			08/26/2020			08/26/2020			30	8/26/2020				08/26/2020	
Deptii(it).	CAS	(ppm)																	
Volatiles (mg/Kg)			Conc Q	RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Dichlorodifluoromethane	75-71-8	NS	ND	50.0	24.5	ND	0.100	0.049	ND	50.0	24.5	ND		25.0	12.3	ND		0.100	0.049
Chloromethane	74-87-3	NS	ND	25.0	15.9	ND	0.050	0.032	ND	25.0	15.9	ND		12.5	7.93	ND		0.050	0.032
Vinyl chloride	75-01-4 74-83-9	0.02	ND ND	50.0	7.45 17.8	ND ND	0.100	0.015	ND ND	50.0	7.45	ND ND		25.0 25.0	3.73 8.90	ND ND		0.100 0.100	0.015
Bromomethane Chloroethane	74-83-9 75-00-3	NS NS	ND ND	25.0	17.8	ND ND	0.100	0.036	ND ND	25.0	17.8 19.5	ND ND		25.0 12.5	9.75	ND ND		0.100	0.036
Trichlorofluoromethane	75-69-4	NS NS	ND ND	25.0	22.3	ND	0.050	0.035	ND	25.0	22.3	ND	-	12.5	11.1	ND		0.050	0.035
1,1-Dichloroethene	75-35-4	0.33	ND	25.0	20.5	ND	0.050	0.041	ND	25.0	20.5	ND		12.5	10.2	ND		0.050	0.041
Acetone	67-64-1	0.05	ND	100	97.5	ND	0.200	0.195	ND	100	97.5	ND		50.0	48.7	ND		0.200	0.195
Carbon disulfide	75-15-0	NS 0.05	ND ND	25.0 50.0	11.0 49.5	ND ND	0.050 0.100	0.022	ND ND	25.0 50.0	11.0	ND	_	12.5	5.50 24.8	ND		0.050 0.100	0.022
Methylene chloride trans-1.2-Dichloroethene	75-09-2 156-60-5	0.05	ND ND	25.0	49.5 14.1	ND ND	0.100	0.099	ND ND	25.0	49.5 14.1	ND ND	-	25.0 12.5	7.03	ND ND		0.100	0.099
Methyl tert-butyl ether (MTBE)	1634-04-4	0.19	ND ND	25.0	13.3	ND	0.050	0.028	ND	25.0	13.3	ND	-	12.5	6.63	ND	\vdash	0.050	0.028
1,1-Dichloroethane	75-34-3	0.27	ND	25.0	9.65	ND	0.050	0.019	ND	25.0	9.65	ND	T	12.5	4.83	ND	П	0.050	0.019
cis-1,2-Dichloroethene	156-59-2	0.25	ND	25.0	7.80	ND	0.050	0.016	ND	25.0	7.80	ND		12.5	3.90	ND		0.050	0.016
2-Butanone (MEK)	78-93-3	0.12	ND ND	100	35.1	ND ND	0.200	0.070	ND ND	100	35.1	ND ND	_	50.0	17.5	ND ND		0.200	0.070
Bromochloromethane Chloroform	74-97-5 67-66-3	NS 0.37	ND ND	50.0 25.0	8.70 8.15	ND ND	0.100 0.050	0.017 0.016	ND ND	50.0 25.0	8.70 8.15	ND ND	-	25.0 12.5	4.35 4.08	ND ND	\vdash	0.100 0.050	0.017 0.016
1,1,1-Trichloroethane	71-55-6	0.68	ND ND	25.0	5.25	ND	0.050	0.011	ND	25.0	5.25	ND	$^{+}$	12.5	2.63	ND		0.050	0.011
Carbon tetrachloride	56-23-5	0.76	ND	50.0	5.95	ND	0.100	0.012	ND	50.0	5.95	ND	I	25.0	2.98	ND		0.100	0.012
1,2-Dichloroethane (EDC)	107-06-2	0.02	ND	25.0	13.6	ND	0.050	0.027	ND	25.0	13.6	ND		12.5	6.78	ND		0.050	0.027
Benzene	71-43-2	0.06	ND ND	25.0	7.20	ND ND	0.050	0.014	ND ND	25.0	7.20	ND ND	_	12.5	3.60	ND	Н	0.050	0.014
Trichloroethene 1,2-Dichloropropane	79-01-6 78-87-5	0.47 NS	ND ND	25.0 25.0	10.3 5.50	ND ND	0.050 0.050	0.021 0.011	ND ND	25.0 25.0	10.3 5.50	ND ND	+	12.5 12.5	5.13 2.75	ND ND	\vdash	0.050 0.050	0.021
1,4-Dioxane	123-91-1	0.1	ND ND	5000	1840	ND ND	10.0	3.67	ND	5000	1840	ND	\dashv	2500	918	ND	Н	10.0	3.67
Bromodichloromethane	75-27-4	NS	ND	25.0	14.3	ND	0.050	0.029	ND	25.0	14.3	ND		12.5	7.15	ND		0.050	0.029
cis-1,3-Dichloropropene	10061-01-5	NS	ND	25.0	11.1	ND	0.050	0.022	ND	25.0	11.1	ND		12.5	5.55	ND		0.050	0.022
4-Methyl-2-pentanone (MIBK)	108-10-1	NS	ND	100	39.8	ND	0.200	0.080	ND	100	39.8	ND		50.0	19.9	ND		0.200	0.080
Toluene trans-1,3-Dichloropropene	108-88-3 10061-02-6	0.7 NS	ND ND	25.0 50.0	8.70 12.1	ND ND	0.050 0.100	0.017 0.024	ND ND	25.0 50.0	8.70 12.1	ND ND		12.5 25.0	4.35 6.03	ND ND		0.050 0.100	0.017 0.024
1,1,2-Trichloroethane	79-00-5	NS	ND	25.0	11.6	ND	0.050	0.023	ND	25.0	11.6	ND		12.5	5.80	ND		0.050	0.023
Tetrachloroethene	127-18-4	1.3	ND	25.0	13.5	ND	0.050	0.027	ND	25.0	13.5	ND		12.5	6.75	ND		0.050	0.027
2-Hexanone	591-78-6	NS	892 D	100	48.8	ND	0.200	0.098	70.9	DJ 100	48.8		D	50.0	24.4	ND		0.200	0.098
Dibromochloromethane 1.2-Dibromoethane (EDB)	124-48-1 106-93-4	NS NS	ND ND	50.0 25.0	19.1 13.0	ND ND	0.100 0.050	0.038 0.026	ND ND	50.0 25.0	19.1 13.0	ND ND	_	25.0 12.5	9.53 6.50	ND ND		0.100 0.050	0.038
Chlorobenzene	108-90-7	1.1	ND ND	25.0 25.0	13.0	ND	0.050	0.028	ND	25.0	13.9	ND	-	12.5	6.95	ND		0.050	0.028
Ethylbenzene	100-41-4	1	ND	25.0	13.5	ND	0.050	0.027	ND	25.0	13.5	ND	1	12.5	6.75	ND		0.050	0.027
Total Xylenes	1330-20-7	0.26	ND	50.0	44.1	ND	0.100	0.088	ND	50.0	44.1	ND		25.0	22.0	ND		0.100	0.088
Styrene	100-42-5	NS	ND	50.0	21.6	ND	0.100	0.043	ND	50.0	21.6	ND		25.0	10.8	ND		0.100	0.043
Bromoform Isopropylbenzene	75-25-2 98-82-8	NS NS	ND ND	25.0 25.0	21.2 19.3	ND ND	0.050	0.042	ND ND	25.0 25.0	21.2 19.3	ND ND		12.5 12.5	10.6 9.65	ND ND		0.050 0.050	0.042
1,1,2,2-Tetrachloroethane	79-34-5	NS NS	ND ND	50.0	39.6	ND	0.000	0.039	ND	50.0	39.6	ND	-	25.0	19.8	ND	\vdash	0.100	0.039
1,3-Dichlorobenzene	541-73-1	2.4	ND	25.0	14.8	ND	0.050	0.030	ND	25.0	14.8	ND		12.5	7.40	ND		0.050	0.030
1,4-Dichlorobenzene	106-46-7	1.8	ND	25.0	19.6	ND	0.050	0.039	ND	25.0	19.6	ND	1	12.5	9.80	ND		0.050	0.039
1,2-Dichlorobenzene	95-50-1 96-12-8	1.1 NS	ND ND	25.0 50.0	16.2 28.6	ND ND	0.050 0.100	0.032	ND ND	25.0 50.0	16.2 28.6	ND ND	+	12.5 25.0	8.10 14.3	ND ND	Н	0.050 0.100	0.032 0.057
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	96-12-8 120-82-1	NS NS	ND ND	50.0	18.1	ND ND	0.100	0.057	ND ND	50.0	18.1	ND ND	+	25.0	9.05	ND ND	\vdash	0.100	0.057
1,2,3-Trichlorobenzene	87-61-6	NS	ND ND	50.0	25.7	ND	0.100	0.051	ND	50.0	25.7	ND	\dashv	25.0	12.8	ND	\vdash	0.100	0.051
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NS	ND	50.0	17.4	ND	0.100	0.035	ND	50.0	17.4	ND		25.0	8.68	ND		0.100	0.035
Methyl acetate	79-20-9	NS	ND	25.0	24.4	1.16	0.050	0.049	ND	25.0	24.4	ND	_[12.5	12.2	0.657	Ш	0.050	0.049
Cyclohexane	110-82-7	NS NS	ND ND	50.0	27.4	ND ND	0.100	0.055	ND ND	50.0	27.4	ND ND	_	25.0	13.7	ND	Н	0.100	0.055
Methylcyclohexane 1,3-Dichloropropene (cis- and trans-)	108-87-2 542-75-6	NS NS	ND ND	50.0 50.0	25.0 12.1	ND ND	0.100	0.050 0.024	ND ND	50.0 50.0	25.0 12.1	ND ND	+	25.0 25.0	12.5 6.03	ND ND	\vdash	0.100 0.100	0.050 0.024
TOTAL VO's:	042-10-0	NS	892 D	50.0	NA	1.16	0.100	NA	70.9	DJ 30.0	NA		D	20.0	NA	0.657	H	0.100	NA
TCLP Volatiles (mg/L)			Conc Q	RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Vinyl chloride	75-01-4	0.02	ND	0.025	0.00745	ND	0.025	0.00745	ND	0.025	0.00745	ND		0.025	0.00745	ND		0.025	0.00745
1,1-Dichloroethene	75-35-4	0.33	ND	0.025	0.021	ND	0.025	0.021	ND	0.025	0.021	ND	-	0.025	0.021	ND		0.025	0.021
2-Butanone (MEK) Chloroform	78-93-3 67-66-3	0.12 0.37	ND ND	0.100 0.025	0.035 0.00815	ND ND	0.100 0.025	0.035 0.00815	ND ND	0.100 0.025	0.035 0.00815	ND ND	+	0.100 0.025	0.035 0.00815	ND ND	\vdash	0.100 0.025	0.035 0.00815
Carbon tetrachloride	56-23-5	0.76	ND ND	0.025	0.00595	ND	0.025	0.00595	ND	0.025	0.00595	ND	\dashv	0.025	0.00595	ND	H	0.025	0.00595
1,2-Dichloroethane (EDC)	107-06-2	0.02	ND	0.025	0.014	ND	0.025	0.014	ND	0.025	0.014	ND		0.025	0.014	ND		0.025	0.014
Benzene	71-43-2	0.06	ND	0.025	0.0072	ND	0.025	0.0072	ND	0.025	0.0072	ND		0.025	0.0072	ND		0.025	0.0072
Trichloroethene	79-01-6	0.47	ND ND	0.025	0.010	ND	0.025	0.010	ND	0.025	0.010	ND ND	_	0.025	0.010	ND	Ш	0.025	0.010
Tetrachloroethene Chlorobenzene	127-18-4 108-90-7	1.3 1.1	ND ND	0.025 0.025	0.014	ND ND	0.025 0.025	0.014 0.014	ND ND	0.025 0.025	0.014 0.014	ND ND	+	0.025 0.025	0.014 0.014	ND ND	Н	0.025 0.025	0.014
1,4-Dichlorobenzene	106-90-7	1.8	ND ND	0.023	0.014	ND	0.025	0.014	ND	0.050	0.014	ND	\dashv	0.025	0.014	ND	H	0.025	0.014
1 :		•															1		

TCLP Semivolatiles (mg/L)			Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
Pyridine	110-86-1	NS	ND	0.020	0.00392	ND	u	0.020	0.00392	ND	u	0.020	0.00392	ND	0.020	0.00392	ND	u	0.020	0.00392
2-Methylphenol	95-48-7	0.33	ND	0.020	0.005	ND		0.020	0.00392	ND		0.020	0.00352	ND	0.020	0.00352	ND		0.020	0.005
4-Methylphenol	106-44-5	0.33	0.207	0.020	0.00408	0.235		0.020	0.003	0.151		0.020	0.003	0.110	0.020	0.003	0.256		0.020	0.00408
3-Methylphenol	108-39-4	0.33	ND	0.020	0.00408	ND		0.020	0.00408	ND		0.020	0.00408	ND	0.020	0.00408	ND		0.020	0.00408
Hexachloroethane	67-72-1	NS	ND	0.020	0.00408	ND		0.020	0.00408	ND		0.020	0.00408	ND	0.020	0.00428	ND		0.020	0.00408
Nitrobenzene	98-95-3	NS	ND	0.020	0.00426	ND		0.020	0.00426	ND		0.020	0.00426	ND	0.020	0.00856	ND		0.020	0.00426
Hexachlorobutadiene	87-68-3	NS	ND	0.020	0.00366	ND		0.020	0.00366	ND		0.020	0.00366	ND	0.020	0.00366	ND		0.020	0.00366
2,4,6-Trichlorophenol	88-06-2	NS	ND	0.020	0.00358	ND		0.020	0.00358	ND		0.020	0.00358	ND	0.020	0.00358	ND		0.020	0.00358
2,4,5-Trichlorophenol	95-95-4	NS	ND	0.020	0.00368	ND		0.020	0.00338	ND		0.020	0.00338	ND	0.020	0.00358	ND		0.020	0.00368
2,4-Dinitrotoluene	121-14-2	NS	ND	0.020	0.00384	ND		0.020	0.00300	ND		0.020	0.00300	ND	0.020	0.00388	ND		0.020	0.00384
Hexachlorobenzene	118-74-1	0.33	ND	0.020	0.00204	ND		0.020	0.00204	ND		0.020	0.00204	ND	0.020	0.00204	ND		0.020	0.00204
Pentachlorophenol	87-86-5	0.8	ND	0.020	0.00518	ND		0.020	0.00518	ND		0.020	0.00518	ND	0.020	0.00518	ND		0.020	0.00518
PCB's (mg/Kg)	0. 00 0	0.0	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
Aroclor-1016	12674-11-2	NS	ND	1.00	0.400	ND	u	0.964	0.386	ND	ď	0.988	0.395	ND	0.996	0.398	ND	u	0.933	0.373
Aroclor-1221	11104-28-2	NS	ND	1.00	0.400	ND		0.964	0.386	ND		0.988	0.395	ND	0.996	0.398	ND		0.933	0.373
Aroclor-1232	11141-16-5	NS	ND	1.00	0.400	ND		0.964	0.386	ND		0.988	0.395	ND	0.996	0.398	ND		0.933	0.373
Aroclor-1242	53469-21-9	NS NS	ND ND	1.00	0.400	ND		0.964	0.386	ND		0.988	0.395	ND	0.996	0.398	ND		0.933	0.373
Aroclor-1248	12672-29-6	NS NS	ND ND	1.00	0.400	ND		0.964	0.386	ND		0.988	0.395	ND	0.996	0.398	ND		0.933	0.373
Aroclor-1254	11097-69-1	NS NS	ND	1.00	0.400	ND		0.964	0.386	ND		0.988	0.395	ND	0.996	0.398	ND		0.933	0.373
Aroclor-1254 Aroclor-1260	11097-69-1	NS NS	ND ND	1.00	0.400	ND ND	Н	0.964	0.386	ND ND	Н	0.988	0.395	ND ND	0.996	0.398	ND ND	+	0.933	0.373
Aroclor-1260 Aroclor-1262	37324-23-5	NS NS	ND	1.00	0.400	ND ND		0.964	0.386	ND ND		0.988	0.395	ND ND	0.996	0.398	ND ND		0.933	0.373
Aroclor-1262 Aroclor-1268	11100-14-4	NS NS	ND	1.00	0.400	ND		0.964	0.386	ND		0.988	0.395	ND	0.996	0.398	ND		0.933	0.373
PCBs	1336-36-3	0.1	ND	1.00	0.400	ND		0.964	0.386	ND		0.988	0.395	ND	0.996	0.398	ND		0.933	0.373
	1330-30-3	0.1					•											_		
TCLP Pesticides (mg/L)	50.00.0		Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
gamma-BHC (Lindane)	58-89-9 76-44-8	0.1 0.042	ND ND	0.001	0.0005	ND		0.001	0.0005	ND		0.001	0.0005	ND	0.001	0.0005	ND ND		0.001	0.0005
Heptachlor		0.042 NS	ND ND	0.001	0.0005	ND		0.001	0.0005 0.0005	ND ND		0.001	0.0005	ND ND	0.001	0.0005			0.001 0.001	0.0005
Heptachlor epoxide	1024-57-3				0.0005	ND		0.001					0.0005			0.0005	ND			0.0005
Endrin	72-20-8	0.014	ND	0.001	0.0005	ND		0.001	0.0005	ND		0.001	0.0005	ND	0.001	0.0005	ND		0.001	0.0005
Methoxychlor	72-43-5	NS	ND	0.001	0.0005	ND		0.001	0.0005	ND		0.001	0.0005	ND	0.001	0.0005	ND		0.001	0.0005
Chlordane	12789-03-6	NS	ND	0.013	0.006	ND		0.013	0.006	ND		0.013	0.006	ND	0.013	0.006	ND		0.013	0.006
Toxaphene	8001-35-2	NS	ND	0.013	0.006	ND		0.013	0.006	ND		0.013	0.006	ND	0.013	0.006	ND		0.013	0.006
TCLP Herbicides (mg/L)			Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
2,4-D	94-75-7	NS	ND	0.100	0.040	ND		0.100	0.040	ND		0.100	0.040	ND	0.100	0.040	ND		0.100	0.040
2,4,5-TP (Silvex)	93-72-1	3.8	ND	0.100	0.040	ND		0.100	0.040	ND		0.100	0.040	ND	0.100	0.040	ND		0.100	0.040
Hydrocarbons (mg/Kg)			Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
TPH-DRO	SRP 133	NS	90600	1850	1480	61200		1810	1450	72900		1870	1500	104000	1910	1530	64600		1820	1460
TCLP Metals (mg/L)			Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
TCLP Arsenic	7440-38-2	NS	ND	0.100	0.040	ND		0.100	0.040	ND		0.100	0.040	ND	0.100	0.040	ND		0.100	0.040
TCLP Barium	7440-39-3	NS	0.247	0.100	0.050	0.430		0.100	0.050	0.696		0.100	0.050	0.416	0.100	0.050	ND		0.100	0.050
TCLP Cadmium	7440-43-9	NS	0.850	0.100	0.070	0.658		0.100	0.070	1.31		0.100	0.070	0.863	0.100	0.070	0.375		0.100	0.070
TCLP Chromium	7440-47-3	NS	ND	0.100	0.070	ND		0.100	0.070	ND		0.100	0.070	ND	0.100	0.070	ND		0.100	0.070
TCLP Lead	7439-92-1	NS	ND	0.100	0.060	ND		0.100	0.060	ND		0.100	0.060	ND	0.100	0.060	ND		0.100	0.060
TCLP Mercury	7439-97-6	NS	ND	0.0005	0.0002	ND		0.0005	0.0002	ND		0.0005	0.0002	ND	0.0005	0.0002	ND		0.0005	0.0002
TCLP Selenium	7782-49-2	NS	ND	1.00	0.300	ND		1.00	0.300	ND		1.00	0.300	ND	1.00	0.300	ND		1.00	0.300
TCLP Silver	7440-22-4	NS	ND	0.100	0.060	ND		0.100	0.060	ND		0.100	0.060	ND	0.100	0.060	ND		0.100	0.060
General Analytical			Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
pH/Corrosivity-SU	SRP 6	NS	7.17	NA	NA	7.22		NA	NA	7.39		NA	NA	7.50	NA	NA	6.39		NA	NA
Ignitability-Yes/No	SRP 129	NS	NO	NA	NA	NO		NA	NA	NO		NA	NA	NO	NA	NA	NO		NA	NA
Flash Point	IALCAS092	NS	~	~	~	~		~	~	~		~	~	~	~	~	~		~	~
6NYCRR Part 375-6.8(a) Unrestricted Use	Soil Cleanup Obiectiv	es December 2006																		
BOLD Conc	Indicates a concent		nnlicable crite	ria																
BOLD RL	Indicates PL that a	ceeds applicable crite	opiioabio orito				\vdash				+				 			+		
BOLD MDL		cceeds applicable crit exceeds applicable ci		 			\vdash				\vdash							+		
	mulcates MDL that	exceeds applicable ci	пена.	 			\vdash				\vdash							+		
NS = No Standard Available	-		-				\vdash			l				-				+		
~ = Sample not analyzed for							\vdash				\vdash					-		+		
top a contract of the contract																				1
ND = Analyzed for but Not Detected at the		MBI C		Щ.			L,											+		
ND = Analyzed for but Not Detected at the J = Concentration detected at a value below	v the RL and above th	e MDL for target com	pounds. For	non-target compou	inds (i.e. TICs), qualifier ind	icate	s estimated c	oncentrations.											

Attachment 2 Building 107 – Laboratory Results

Virgin concess				Sample	es C	H-WC-33	through C	H-WC-35 8	Fie	eld Duplica	ate 1 colle	cted from	susi	ect prod	uct on sur	faces of ele	ctrical c	oamo	nents
Septime Column		s	<u> </u>																
Company Comp					(CH-WC-33			- (CH-WC-34			С	H-WC-35		FIE	D DUPLIC	CATE 1	1
Care	Lab ID):																	
CAS					(08/26/2020			0	08/26/2020			0	8/26/2020			08/26/202	20	
Color Colo	Deptn(tt																		
Virgit described 79-014	TCLP Volatiles (mg/L)			Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL		MDL
2-04-content 167-6-2 - - - - - - - - -	Vinyl chloride			~				~				~				~	_		
Closed control																	_		
Cancel Interference 56-73-5 - - - - - - - - -							~												
Second Fig. 2							~	~	\vdash		~								
Tristorestone	1,2-Dichloroethane (EDC)	107-06-2		~		~	~	~		~	~	~		~	~	~	~		~
Standardoneme				~		~	~	~			~	~		~	~	~			~
Contentioner 105-607 - - - - - - - - -				~		~	~	~			~	~		~	~	~			~
Independencement 1,004-07 - - - - - - - -				~			~	~				~		~					~
Color				~		~	~	~		~	~	~		~	~	~	~		~
SAMPhyphenical S94-847	TCLP Semivolatiles (mg/L)			Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	RL		MDL
Matehlypitherial 1064-45					П		~		Ш		~	~	LŢ			~	_	T	
Substitypement 108-98-4							~	~	Н		~	~	\vdash	~					
Heard-Incomplemen						~	~	~			~	~		~	~	~	~		~
Nindescription Septimized				~	+	~	~	~	\vdash		~	~	H	~	~	~	~		~
24.5 Frinchisrophenol 98.08-2 - - - - - - - - -	Nitrobenzene			~		~	~	~		~	~	~		~	~	~	~		~
24.5 Introlopolemen				~			~	~			~	~		~	~	~			~
24-Dimicrolatemen 121-14-2							~							~					
Hissachtorobenzener 116-74-1							~		H					~					
PGB* (gg/90em2)				~		~	~	~		~	~	~		~	~	~	~		~
Acade-1786 12674-11-12	Pentachlorophenol	87-86-5		~		~	~	~		~	~	~		~	~	~	~		~
Acoder-1221					Q				Q				Q						MDL
Accolor-1232																			0.020
Acoder-1242																			0.020
Acoder-1248									H										0.020
Accolor-1260				ND		0.050	0.020	ND		0.050	0.020	ND		0.050	0.020	ND	0.05	0	0.020
Acodo-1/282 37324-23-5 ND 0.550 0.020 ND 0.050 ND 0.05																			0.020
Acodon-1288																			0.020
FCBs																			0.020
Sampa-BHC (Lindane) S8-89-9																			0.020
Heptachlor	TCLP Pesticides (mg/L)			Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL		MDL
Heptachlor epoxide				~			~	~			~	~		~	~	~			~
Endin							~							~					
Methoxychlor 72-43-5							~												
Chlordane 12789-03-6				~	L	~	~	~	ĮП	~	~	~	Lt	~	~	~	~		~
TCLP Herbicides (mg/L)							~	~				~		~	~	~			~
2,4-D 94-75-7 ~ <td< td=""><td></td><td>8001-35-2</td><td></td><td></td><td>_</td><td></td><td>~</td><td>~</td><td>Ļ</td><td></td><td></td><td>~</td><td>_</td><td>~</td><td>~</td><td>~</td><td></td><td>-</td><td>~</td></td<>		8001-35-2			_		~	~	Ļ			~	_	~	~	~		-	~
2.4,5-TP (Silvex)		94-75-7			Q				Q				Q						
TCLP Metals (mg/L)				~		~	~		\vdash					~		~			
TCLP Barium 7440-39-3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL		MDL
TCLP Cadmium 7440-43-9	TCLP Arsenic			~		~		~		~	~	~		~	~	~	~		~
TCLP Chromium 7440-47-3							~		Ш				Н						
TCLP Lead 7439-92-1					Н		~		Н			~	H	~					~
TCLP Mercury 7439-97-6 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					Н		~		H		~	~	H	~					~
TCLP Silver 7440-22-4	TCLP Mercury	7439-97-6		~		~	~	~		~	~	~		~	~		~		~
BOLD Conc Indicates a concentration that exceeds applicable criteria. BOLD RL Indicates RL that exceeds applicable criteria. BOLD MDL Indicates MDL that exceeds applicable criteria.					Ш		~	~	Ш			~	Ш	~					~
BOLD RL Indicates RL that exceeds applicable criteria. BOLD MDL Indicates MDL that exceeds applicable criteria. NS = NO Standard Available - = Sample not analyzed for	ICLP Silver	7440-22-4		~		~	~	~	Н	~	~	~	H	~	~	~	~		~
BOLD RL Indicates RL that exceeds applicable criteria. BOLD MDL Indicates MDL that exceeds applicable criteria. NS = No Standard Available - = Sample not analyzed for		+	+		\vdash				\vdash				\vdash				+		
BOLD RL Indicates RL that exceeds applicable criteria. BOLD MDL Indicates MDL that exceeds applicable criteria. NS = NO Standard Available - = Sample not analyzed for	BOLD Conc	Indicates a concen	tration that exceeds a	policable crite	eria				H				H				+	-	
BOLD MDL Indicates MDL that exceeds applicable criteria. NS = No Standard Available - = Sample not analyzed for					1				\vdash				H				+		
NS = No Standard Available		Indicates MDL that	exceeds applicable c	riteria.	L				ĮП				Lt						
r = Sample not analyzed for	NS = No Standard Available			-				1		-				-					
ND = Analyzed for but Not Detected at the MDI																			

SAMPLE NOTES			Sample	s C	H-WC-36 1	through Cl	H-WC-38 &	co		C-36-37-38				ollected fr	om floor stai	ns associa	ited with
Sample #:		Part 375-6.8(a)	L	_	CH-WC-36		T		CH-WC-37				H-WC-38		COMP	CH-WC-36 -3	7 -38
Field ID:		Unrestricted Use															1
Lab ID:		Soil Cleanup			05666-004				05666-005				5666-006			05666-008	
Date Sampled: Depth(ft):		Objectives (ppm)		(08/26/2020			- 0	08/26/2020			30	3/26/2020			08/26/2020	1
Dopan(ii).	CAS	(pp)															+
TCLP Volatiles (mg/L)			Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc Q		MDL
Vinyl chloride	75-01-4	0.02	~		~	~	~		~	~	~		~	~	ND	0.025	0.00745
1,1-Dichloroethene	75-35-4	0.33	~	_	~	~	~		~	~	~		~	~	ND	0.025	0.021
2-Butanone (MEK) Chloroform	78-93-3 67-66-3	0.12 0.37	~		~	~	~		~	~	~		~	~	ND ND	0.100 0.025	0.035 0.00815
Carbon tetrachloride	56-23-5	0.76	~		~	~	~		~	~	~		~	~	ND ND	0.025	0.00595
1,2-Dichloroethane (EDC)	107-06-2	0.02	~		~	~	~		~	~	~		~	~	ND	0.025	0.014
Benzene	71-43-2	0.06	~		~	~	~		~	~	~		~	~	ND	0.025	0.0072
Trichloroethene	79-01-6	0.47	~		~	~	~		~	~	~		~	~	ND	0.025	0.010
Tetrachloroethene	127-18-4	1.3	~		~	~	~		~	~	~		~	~	ND	0.025	0.014
Chlorobenzene 1,4-Dichlorobenzene	108-90-7 106-46-7	1.1 1.8	~	+	~	~	~		~	~	~		~	~	ND ND	0.025 0.050	0.014 0.020
	100-40-7	1.0		Q	RL	MDL		Q	RL	MDL		0	RL	MDL			MDL
TCLP Semivolatiles (mg/L) Pvridine	110-86-1	NS	Conc	ų	RL ~	WDL ~	Conc	u	~ KL	WDL ~	Conc	Q	~	MDL ~	Conc Q	0.020	0.00392
2-Methylphenol	95-48-7	0.33	~		~	~	~	\vdash	~	~	~	+	~	~	ND ND	0.020	0.00392
4-Methylphenol	106-44-5	0.33	~		~	~	~	Н	~	~	~	t	~	~	ND	0.020	0.00408
3-Methylphenol	108-39-4	0.33	~		~	~	~		~	~	~	Ш	~	~	ND	0.020	0.00408
Hexachloroethane	67-72-1	NS	~		~	~	~	П	~	~	~	LΤ	~	~	ND	0.020	0.00428
Nitrobenzene	98-95-3	NS	~		~	~	~		~	~	~		~	~	ND	0.020	0.00856
Hexachlorobutadiene	87-68-3	NS	~	+	~	~	~		~	~	~		~	~	ND	0.020	0.00366
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	88-06-2 95-95-4	NS NS	~		~	~	~		~	~	~		~	~	ND ND	0.020 0.020	0.00358 0.00368
2,4-Dinitrotoluene	121-14-2	NS NS	~		~	~	~		~	~	~		~	~	ND ND	0.020	0.00300
Hexachlorobenzene	118-74-1	0.33	~		~	~	~		~	~	~		~	~	ND	0.020	0.00644
Pentachlorophenol	87-86-5	0.8	~		~	~	~		~	~	~		~	~	ND	0.020	0.00518
PCB's (mg/Kg)			Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc Q		MDL
Aroclor-1016	12674-11-2	NS	~		~	~	~		~	~	~		~	~	ND	0.019	0.00763
Aroclor-1221	11104-28-2	NS	~		~	~	~		~	~	~		~	~	ND	0.019	0.00763
Aroclor-1232	11141-16-5	NS	~	+	~	~	~		~	~	~		~	~	ND	0.019	0.00763
Aroclor-1242 Aroclor-1248	53469-21-9 12672-29-6	NS NS	~		~	~	~		~	~	~		~	~	ND ND	0.019 0.019	0.00763 0.00763
Aroclor-1254	11097-69-1	NS	~		~	~	~		~	~	~		~	~	0.506	0.019	0.00763
Aroclor-1260	11096-82-5	NS	~		~	~	~		~	~	~		~	~	ND	0.019	0.00763
Aroclor-1262	37324-23-5	NS	~		~	~	~		~	~	~		~	~	ND	0.019	0.00763
Aroclor-1268	11100-14-4	NS	~		~	~	~		~	~	~		~	~	ND	0.019	0.00763
PCBs	1336-36-3	0.1	~		~	~	~		~	~	~		~	~	0.506	0.019	0.00763
TCLP Pesticides (mg/L)			Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc Q		MDL
gamma-BHC (Lindane)	58-89-9	0.1	~		~	~	~		~	~	~		~	~	ND	0.00005	0.000025
Heptachlor Heptachlor epoxide	76-44-8 1024-57-3	0.042 NS	~		~	~	~		~	~	~		~	~	ND ND	0.00005 0.00005	0.000025 0.000025
Endrin	72-20-8	0.014	~		~	~	~	\vdash	~	~	~	+	~	~	ND ND	0.00005	0.000025
Methoxychlor	72-43-5	NS	~	+	~	~	~	H	~	~	~	\vdash	~	~	ND	0.00005	0.000025
Chlordane	12789-03-6	NS	~		~	~	~		~	~	~		~	~	ND	0.000625	0.0003
Toxaphene	8001-35-2	NS	~		~	~	~		~	~	~		~	~	ND	0.000625	0.0003
TCLP Herbicides (mg/L)			Conc	Q		MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc Q		MDL
2,4-D	94-75-7	NS	~		~	~	~	Ш	~	~	~	Ш	~	~	ND	0.100	0.040
2,4,5-TP (Silvex)	93-72-1	3.8	~	_	~	~	~	_	~	~	~		~	~	ND 0	0.100	0.040
TCLP Metals (mg/L)	7440-38-2	NS	Conc	Q	RL	MDL	Conc	Q	RL ~	MDL	Conc	Q	RL	MDL	Conc Q ND	RL 0.100	MDL 0.040
TCLP Arsenic TCLP Barium	7440-38-2	NS NS	~	+	~	~	~	\vdash	~	~	~	+	~	~	0.509	0.100	0.040
TCLP Cadmium	7440-43-9	NS	~		~	~	~	Н	~	~	~	+	~	~	ND	0.100	0.070
TCLP Chromium	7440-47-3	NS	~		~	~	~	П	~	~	~	T^{\dagger}	~	~	ND	0.100	0.070
TCLP Lead	7439-92-1	NS	~		~	~	~		~	~	~		~	~	ND	0.100	0.060
TCLP Mercury	7439-97-6	NS	~		~	~	~		~	~	~	ш	~	~	ND	0.0005	0.0002
TCLP Selenium	7782-49-2	NS	~		~	~	~	Ш	~	~	~	\sqcup	~	~	ND	1.00	0.300
TCLP Silver	7440-22-4	NS	~		~	~	~	\vdash	~	~	~	+	~	~	ND	0.100	0.060
CNIVODE Port 275 C 0/-> Ulara stricte (1)	oil Cleanur Ohio "	rea December 20000		-				\vdash				\vdash					
6NYCRR Part 375-6.8(a) Unrestricted Use S BOLD Conc			anlianhlait-			1	1	\vdash			-	+			 	1	+
		tration that exceeds a		епа.								\vdash					+
BOLD RL BOLD MDL		exceeds applicable crit						\vdash				+			 		+
NS = No Standard Available	aioatos MDE tildt	олоссио аррисавле с	nona.					\vdash				+		1	 		+
~ = Sample not analyzed for								П									†
ND = Analyzed for but Not Detected at the M	DL																
		_			_												

Attachment 3 Bunker 113 – Laboratory Results

0.440 5 10755		Commiss	СH	MC 00 4h-	ough CU	WC 40		allastad fo					amata Car	mmlee CU	MC .	14 46	.h.CU.W.C	12	ممالم	ated forces	well etale
SAMPLE NOTES Sample #		Samples		CH-WC-08	ougn CH-	WC-10 We		CH-WC-09	om surrac	es of elect		H-WC-10	enets. Sar	npies CH-		I throug I-WC-11	In CH-MC	13 were c		H-WC-12	wali stain
Field ID	:																				
Lab ID				5667-001				05667-002				5667-003				667-004				5667-005	
Date Sampled			0	8/26/2020			0	8/26/2020		-	0	8/26/2020			08	/26/2020			0	8/26/2020	1
Depth(ft):	CAS																				
	CAS	_	-			_	+=			_	_				_				+-		
TCLP Volatiles (mg/L)	75-01-4	Conc	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL	Conc ~	Q	RL ~	MDL ~	Conc ~	Q	RL ~	MDL ~
Vinyl chloride 1,1-Dichloroethene	75-35-4	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
2-Butanone (MEK)	78-93-3	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Chloroform	67-66-3	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Carbon tetrachloride	56-23-5	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
1,2-Dichloroethane (EDC)	107-06-2	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Benzene	71-43-2	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Trichloroethene	79-01-6	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Tetrachloroethene	127-18-4	~		~	~	~	\perp	~ ~	~	~		~	~	~		~	~	~		~	~
Chlorobenzene	108-90-7	~		~	~	~	+	~	~	~		~	~	~		~	~	~		~	~
1,4-Dichlorobenzene	106-46-7		^	PI PI	MDI	Conc		DI DI	MDI		0	PI PI		Cono			MDI	Conc		- DI	MDI
TCLP Semivolatiles (mg/L) Pyridine	110-86-1	Conc ~	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL ~	Conc ~	Q	RL ~	MDL ~	Conc ~	Q	RL ~	MDL ~
2-Methylphenol	95-48-7	~	\vdash	~	~	~	+	~	~	~		~	~	~		~	~	~		~	~
4-Methylphenol	106-44-5	~		~	~	~	1-1	~	~	~		~	~	~		~	~	~		~	~
3-Methylphenol	108-39-4	~	\vdash	~	~	~	+	~	~	~	H	~	~	~	\vdash	~	~	~		~	~
Hexachloroethane	67-72-1	~	LΠ	~	~	~		?	~	~		~	~	~		~	~	~		~	~
Nitrobenzene	98-95-3	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Hexachlorobutadiene	87-68-3	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
2,4,6-Trichlorophenol	88-06-2	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
2,4,5-Trichlorophenol	95-95-4	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
2,4-Dinitrotoluene	121-14-2	~		~	~	~	+	~	~	~		~	~	~		~	~	~		~	~
Hexachlorobenzene Pentachlorophenol	118-74-1 87-86-5	~		~	~	~	+	~	~	~		~	~	~		~	~	~		~	~
	07-00-3	Cono	Q	RL	MDL	Cono	0	RL	MDL	Cono	^	RL	MDL	Cono	0	RL	MDL	Cono	0	RL	MDL
PCB's (ug/100cm2) Aroclor-1016	12674-11-2	Conc ND	Q	1.00	0.400	Conc ND	Q	1.00	0.400	ND ND	Q	1.00	0.400	Conc	Q	~	WIDL ~	Conc	Q	~	WIDL ~
Aroclor-1221	11104-28-2	ND		1.00	0.400	ND		1.00	0.400	ND		1.00	0.400	~		~	~	~		~	~
Aroclor-1232	11141-16-5	ND		1.00	0.400	ND		1.00	0.400	ND		1.00	0.400	~		~	~	~		~	~
Aroclor-1242	53469-21-9	ND		1.00	0.400	ND		1.00	0.400	ND		1.00	0.400	~		~	~	~		~	~
Aroclor-1248	12672-29-6	ND		1.00	0.400	ND		1.00	0.400	ND		1.00	0.400	~		~	~	~		~	~
Aroclor-1254	11097-69-1	15.3	D	1.00	0.400	76.0	D	1.00	0.400	88.5	D	1.00	0.400	~		~	~	~		~	~
Aroclor-1260	11096-82-5	ND		1.00	0.400	ND		1.00	0.400	ND		1.00	0.400	~		~	~	~		~	~
Aroclor-1262	37324-23-5	ND		1.00	0.400	ND	\perp	1.00	0.400	ND		1.00	0.400	~		~	~	~		~	~
Aroclor-1268 PCBs	11100-14-4 1336-36-3	ND 15.3	D	1.00	0.400	ND 76.0	D	1.00	0.400 0.400	ND 88.5	D	1.00	0.400	~		~	~	~		~	~
TCLP Pesticides (mg/L)	1330-30-3	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
gamma-BHC (Lindane)	58-89-9	Conc	u	RL ~	WIDL ~	Conc	Q	RL ~	WIDL ~	Conc	Q	RL ~	WIDL ~	Conc	Q	~	WIDL	Conc	ų	RL ~	WIDL ~
Heptachlor	76-44-8	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Heptachlor epoxide	1024-57-3	~		~	~	~	+	~	~	~		~	~	~		~	~	~		~	~
Endrin	72-20-8	~		~	~	~	\Box	~	~	~		~	~	~		~	~	~		~	~
Methoxychlor	72-43-5	~		2	~	~		~	~	~		2	~	~		~	~	~		~	~
Chlordane	12789-03-6	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
Toxaphene	8001-35-2	~	Н	~	~	~		~	~	~		~	~	~	ĻĻ	~	~	~	$\downarrow \downarrow \downarrow$	~	~
TCLP Herbicides (mg/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
2,4-D	94-75-7 93-72-1	~		~	~	~	+	~	~	~		~	~	~	\vdash	~	~	~	+	~	~
2,4,5-TP (Silvex)	93-12-1	-		Pi	A MDI	~ C-=-		- DI	MDI		_			~ C		 DI	MDI	-		- Pi	
Hydrocarbons (ug/100cm2) TPH-DRO	SRP 133	Conc	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL ~	Conc	Q	RL ~	MDL ~
Metals (ug/100cm2)	OIN- 100	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Lead	7439-92-1	~	u	~	WDL ~	~	Q	~	WDL ~	~	u	~	WIDE ~	365	u	1.25	0.625	95.3	u	1.25	0.625
TCLP Metals (mg/L)	1403-32-1	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL.	MDL	Conc	Q	RL	MDL
TCLP Arsenic	7440-38-2	~	٧	~	~	~	- 4	~	~	~	4	~	~	~	۳.	~	~	~	4	~	~
TCLP Barium	7440-39-3	~	\vdash	~	~	~	+	~	~	~	H	~	~	~		~	~	~		~	~
TCLP Cadmium	7440-43-9	~		~	~	~	\Box	~	~	~		~	~	~		~	~	~		~	~
TCLP Chromium	7440-47-3	~	LΠ	~	~	~		~	~	~		~	~	~		~	~	~		~	~
TCLD Lood	7439-92-1	~		2	~	~		~	~	~		1	~	~		~	~	~		~	~
TCLP Lead																			1 T		٠
TCLP Mercury	7439-97-6	~	Ш	~	~	~	\perp	~	~	~		~	~	~		~	~	~	\perp	~	
TCLP Mercury TCLP Selenium	7782-49-2	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
TCLP Mercury			Q				Q	~ ~			Q				Q				Q		

Conc ~ ~ ~ ~ ~ ~ ~ ~	05	1-WC-13 6667-006 /26/2020				CH-WC-14			$\overline{}$	H-WC-15								DUPLICATI		+	$\overline{}$	DUPLICAT	$\overline{}$
~ ~																							
~ ~	08	/26/2020				05667-007				5667-008				5667-009				5667-023				5667-024	
~ ~					0	8/26/2020			0	8/26/2020			0:	8/26/2020			01	3/26/2020			08.	3/26/2020	T
~ ~	Q	RL	MDL	Conc	Q		MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
		~	~	~		~	~	~		~	~	~		~	~	~	+	~	~	~	++	~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~	++	~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
~		~	~	~		~	~ ~	~		~	~	~		~	~	~		~	~	~	++	~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~	++	~	~
Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MD
~		~	~	~		2 2	1 1	~		~	~	~		~	~	~	\blacksquare	~	~ ~	~	\vdash	~	~
~		~	~	~	L	1 1	~	~	L	~	~	~	H	~	~	~	Ħ	~	~	~	$\pm \pm$	~	~
~		~	~	~		~ ~	~ ~	~		~	~	~	П	~	~	~	Н	~	~	~	\Box	~	~
~		~	~	~		~	~	~		~	~	~	+	~	~	~	\mathbb{H}	~	~	~	++	~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
~		~	~ ~	~		~	~	~		~	~	~		~	~	~		~	~	~	++	~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~		~	~
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~	++	~	~
Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MD
~		~	~	ND		0.050	0.020	ND		0.050	0.020	ND		0.500	0.200	ND		0.500	0.200	~	lacksquare	~	~
~		~	~	ND ND		0.050	0.020	ND ND		0.050	0.020 0.020	ND ND		0.500	0.200	ND ND		0.500	0.200 0.200	~	++	~	~
~		~	~	ND		0.050	0.020	ND		0.050	0.020	ND		0.500	0.200	ND		0.500	0.200	~		~	~
~		~	~ ~	ND 1.78		0.050 0.050	0.020	ND 1.97		0.050	0.020 0.020	ND 12.1	D	0.500	0.200 0.200	ND 16.0	D	0.500	0.200 0.200	~	+	~	~
~		~	~	ND		0.050	0.020	ND		0.050	0.020	ND		0.500	0.200	ND		0.500	0.200	~		~	~
~		~	~	2.21 ND		0.050	0.020	1.86 ND		0.050	0.020 0.020	8.10 ND	D	0.500	0.200 0.200	6.92 ND	D	0.500	0.200 0.200	~	++	~	~
~		~	~	3.99		0.050	0.020	3.83		0.050	0.020	20.2	D	0.500	0.200	22.9	D	0.500	0.200	~		~	~
Conc	Q	RL	MDL	Conc	Q	RL ~	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MD
~		~	~	~		~	~	~		~	~	~		~	~	~		~	~	~	+++	~	~
~		~	~	~ ~		~ ~	~ ~	~ ~		~	~	~		~	~	~		~	~	~	ш	~	~
~	+	~	~	~	+	~	~	~	+	~	~	~	+	~	~	~	+	~	~	~	++	~	~
~		~	~	~		~ ~	2	~		~	~	~		~	~	~	\blacksquare	~	~	~	H	~	~
Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	MD
~	_	~	~	~		~	~	~		~	~	~		~	~	~		~	~	~	Ħ	~	~
Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MDL	Conc	Q	~ RL	~ MD
~		~	~	~	ų.	~	~	~	ų.	~	~	~	ų.	~	~	~	· ·	~	~	~		~	~
Conc 368	Q	RL 1.25	MDL 0.625	Conc ~	Q	RL ~	MDL ~	Conc ~	Q	RL ~	MDL ~	Conc ~	Q	RL ~	MDL ~	Conc ~	Q	RL ~	MDL ~	75.3	Q	RL 1.25	0.63
Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MD
~	$-\parallel$	~	~	~	+1	2 2	1 1	~	+1	~	~	~	+	~	~	~	+1	~	~	~	+	~	~
~		~	~	~		1 2	~	~		~	~	~		~	~	~	ΔŤ	~	~	~	$\pm \pm$	~	~
~	4	~	~	~		~	~	~		~	~	~		~	~	~	\blacksquare	~	~	~	\blacksquare	~	~
~		~	~	~		~	~	~		~	~	~	+	~	~	~	\mathbb{H}	~	~	~	++	~	~
~		~	~	~		~ ~	~	~		~	~	~		~	~	~		~	~	~	П	~	~

			collected WC-20 th	fro oug	m floor sta h CH-WC-	ough CH-Nains assoc 22 were cowith electri	iated with oncrete ch	AS ips	Ts. Sample collected	es CH- from
SAMPLE NOTES			were colle	ecte	d from Bu	ilding 113				-
Sample #:		Part 375-6.8(a)	COMP	CH-	WC-17 - CH-	WC19	COMP CH-WC-20 - CH-WC-22			
Field ID: Lab ID:		Unrestricted Use Soil Cleanup		_	05667-025			Ь,	05667-026	
Date Sampled:		Objectives			8/26/2020				8/26/2020	
Depth(ft):		(ppm)								
	CAS									
TCLP Volatiles (mg/L) Vinyl chloride	75-01-4	0.02	Conc ND	Q	RL 0.025	MDL 0.00745	Conc ND	Q	RL 0.025	MDL 0.00745
1,1-Dichloroethene	75-35-4	0.02	ND ND		0.025	0.00745	ND ND	-	0.025	0.00745
2-Butanone (MEK)	78-93-3	0.12	ND		0.100	0.035	ND		0.100	0.035
Chloroform	67-66-3	0.37	ND		0.025	0.00815	ND		0.025	0.00815
Carbon tetrachloride	56-23-5	0.76	ND		0.025	0.00595	ND		0.025	0.00595
1,2-Dichloroethane (EDC)	107-06-2	0.02	ND		0.025	0.014	ND		0.025	0.014
Benzene Trichloroethene	71-43-2 79-01-6	0.06 0.47	ND ND	-	0.025 0.025	0.0072 0.010	ND ND		0.025 0.025	0.0072 0.010
Tetrachloroethene	127-18-4	1.3	ND	H	0.025	0.010	ND		0.025	0.010
Chlorobenzene	108-90-7	1.1	ND		0.025	0.014	ND	T	0.025	0.014
1,4-Dichlorobenzene	106-46-7	1.8	ND		0.050	0.020	ND		0.050	0.020
TCLP Semivolatiles (mg/L)			Conc	Q	RL	MDL	Conc	Q	RL	MDL
Pyridine	110-86-1	NS	ND	-	0.020	0.00392	ND		0.020	0.00392
2-Methylphenol 4-Methylphenol	95-48-7 106-44-5	0.33 0.33	ND ND	-	0.020	0.005 0.00408	ND ND		0.020	0.005 0.00408
3-Methylphenol	108-39-4	0.33	ND		0.020	0.00408	ND	-	0.020	0.00408
Hexachloroethane	67-72-1	NS	ND		0.020	0.00428	ND		0.020	0.00428
Nitrobenzene	98-95-3	NS	ND		0.020	0.00856	ND		0.020	0.00856
Hexachlorobutadiene	87-68-3	NS	ND		0.020	0.00366	ND		0.020	0.00366
2,4,6-Trichlorophenol	88-06-2	NS	ND		0.020	0.00358	ND		0.020	0.00358
2,4,5-Trichlorophenol 2,4-Dinitrotoluene	95-95-4 121-14-2	NS NS	ND ND	-	0.020	0.00368	ND ND	-	0.020	0.00368 0.00284
Hexachlorobenzene	118-74-1	0.33	ND		0.020	0.00204	ND		0.020	0.00264
Pentachlorophenol	87-86-5	0.8	ND		0.020	0.00518	ND		0.020	0.00518
PCB's (mg/Kg)			Conc	Q	RL	MDL	Conc	Q	RL	MDL
Aroclor-1016	12674-11-2	NS	~		~	~	ND		0.040	0.016
Aroclor-1221 Aroclor-1232	11104-28-2	NS NS	~		~	~	ND		0.040	0.016
Aroclor-1232 Aroclor-1242	11141-16-5 53469-21-9	NS NS	~		~	~	ND ND	-	0.040	0.016 0.016
Aroclor-1248	12672-29-6	NS	~		~	~	ND		0.040	0.016
Aroclor-1254	11097-69-1	NS	~		~	~	135	D	1.98	0.794
Aroclor-1260	11096-82-5	NS	~		~	~	ND		0.040	0.016
Aroclor-1262	37324-23-5	NS	~	-	~	~	ND		0.040	0.016
Aroclor-1268 PCBs	11100-14-4 1336-36-3	NS 0.1	~		~	~	ND 135	D	0.040 1.98	0.016 0.794
	1330-30-3	0.1	Conc	Q	RL.	MDL	Conc	Q	RL	MDL
TCLP Pesticides (mg/L) gamma-BHC (Lindane)	58-89-9	0.1	ND	ų	0.00005	0.000025	ND	Q	0.00005	0.000025
Heptachlor	76-44-8	0.042	ND		0.00005	0.000025	ND	1	0.00005	0.000025
Heptachlor epoxide	1024-57-3	NS	ND		0.00005	0.000025	ND		0.00005	0.000025
Endrin	72-20-8	0.014	ND		0.00005	0.000025	ND		0.00005	0.000025
Methoxychlor	72-43-5	NS	ND	1	0.00005	0.000025	ND	1	0.00005	0.000025
Chlordane Toxaphene	12789-03-6 8001-35-2	NS NS	ND ND		0.000625 0.000625	0.0003	ND ND		0.000625 0.000625	0.0003
TCLP Herbicides (mg/L)	0001=30=2	143	Conc	Q	0.000625	0.0003 MDL	Conc	Q	0.000625	0.0003 MDL
2,4-D	94-75-7	NS	ND	-	0.100	0.040	ND	-	0.100	0.040
2,4,5-TP (Silvex)	93-72-1	3.8	ND	L	0.100	0.040	ND	L	0.100	0.040
Hydrocarbons (mg/Kg)			Conc	Q	RL	MDL	Conc	Q	RL	MDL
TPH-DRO	SRP 133	NS	18300		188	150	~	1	~	~
Metals (mg/Kg)	7400 00 4		Conc	Q	RL	MDL	Conc	Q	RL	MDL
Lead	7439-92-1	63	~ Cr	_	~ P'	~ MDL	~ Cr	_	~ P'	~ MDL
TCLP Metals (mg/L) TCLP Arsenic	7440-38-2	NS	Conc ND	Q	RL 0.100	MDL 0.040	Conc ND	Q	RL 0.100	MDL 0.040
TCLP Barium	7440-38-2	NS NS	0.656	1	0.100	0.040	0.679	1	0.100	0.040
TCLP Cadmium	7440-43-9	NS	ND	T	0.100	0.070	ND		0.100	0.070
TCLP Chromium	7440-47-3	NS	ND		0.100	0.070	ND		0.100	0.070
TCLP Lead	7439-92-1	NS	ND	L	0.100	0.060	0.222	ĻΞ	0.100	0.060
TCLP Mercury	7439-97-6	NS NS	ND ND	1	0.0005	0.0002	ND	1	0.0005	0.0002
TCLP Selenium TCLP Silver	7782-49-2 7440-22-4	NS NS	ND ND		1.00 0.100	0.300	ND ND	\vdash	1.00 0.100	0.300
Subcontracted Data			Conc	O	RL	MDL	Conc	Q	RL	MDL
ouroondoted Data		l .	OUTO	- ×	11.	mp.	OUTO	- 4		IIIDL

		Sam	ple	CH-WC-02	was
			-	m the AST	
SAMPLE NOTES				Building	
Sample #:		† 		CH-WC-02	<u>: : •</u> - – -
Field ID:					
Lab ID:			(5669-001	
Date Sampled:			0	8/26/2020	
Depth(ft):	CAS				
Volatiles (mg/Kg)	CAS	Conc	Q	RL	MDL
Benzene	71-43-2	ND	ų	25.0	7.20
Toluene	108-88-3	223	D	25.0	8.70
Ethylbenzene	100-41-4	283	D	25.0	13.5
Total Xylenes	1330-20-7	2020	D	50.0	44.1
TCLP Volatiles (mg/L)		Conc	Q	RL	MDL
Vinyl chloride	75-01-4	ND		25.0	7.45
1,1-Dichloroethene	75-35-4	ND		25.0	20.5
2-Butanone (MEK)	78-93-3	ND		100	35.1
Chloroform	67-66-3	ND		25.0	8.15
Carbon tetrachloride 1,2-Dichloroethane (EDC)	56-23-5 107-06-2	ND ND		25.0 25.0	5.95 13.6
Benzene	71-43-2	ND ND	-	25.0	7.20
Trichloroethene	79-01-6	ND		25.0	10.3
Tetrachloroethene	127-18-4	ND		25.0	13.5
Chlorobenzene	108-90-7	ND		25.0	13.9
1,4-Dichlorobenzene	106-46-7	ND		50.0	19.6
TCLP Semivolatiles (mg/L)		Conc	Q	RL	MDL
Pyridine	110-86-1	ND	L	10.0	1.96
2-Methylphenol	95-48-7	ND		10.0	2.50
4-Methylphenol	106-44-5	ND		10.0	2.04
3-Methylphenol	108-39-4	ND		10.0	2.04
Hexachloroethane	67-72-1	ND		10.0	2.14
Nitrobenzene	98-95-3	ND		10.0	4.28
Hexachlorobutadiene	87-68-3	ND		10.0	1.83
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	88-06-2 95-95-4	ND ND		10.0 10.0	1.79
2,4,5-1 richiorophenoi 2.4-Dinitrotoluene	121-14-2	ND ND		10.0	1.84
Hexachlorobenzene	118-74-1	ND		10.0	3.22
Pentachlorophenol	87-86-5	ND		10.0	2.59
TCLP Pesticides (mg/L)		Conc	Q	RL	MDL
gamma-BHC (Lindane)	58-89-9	ND	1	0.198	0.099
Heptachlor	76-44-8	ND		0.198	0.099
Heptachlor epoxide	1024-57-3	ND		0.198	0.099
Endrin	72-20-8	ND		0.198	0.099
Methoxychlor	72-43-5	ND		0.198	0.099
Chlordane	12789-03-6	ND		2.48	1.19
Toxaphene	8001-35-2	ND		2.48	1.19
TCLP Herbicides (mg/L)		Conc	Q	RL	MDL
2,4-D	94-75-7	ND		0.250	0.100
2,4,5-TP (Silvex)	93-72-1	ND		0.250	0.100
Hydrocarbons (mg/Kg) TPH-DRO	SRP 133	Conc 830000	Q	RL 24300	MDL 19400
Metals (mg/Kg)	3KF 133	Conc	_	24300 RL	MDL
Lead	7439-92-1	1.21	Q	0.250	0.125
TCLP Metals (mg/L)	7439-92-1		_	0.230 RL	MDL
TCLP Metals (mg/L) TCLP Arsenic	7440-38-2	Conc ND	Q	0.100	0.040
TCLP Barium	7440-39-3	ND		0.100	0.040
TCLP Cadmium	7440-43-9	ND		0.100	0.070
TCLP Chromium	7440-47-3	0.277		0.100	0.070
TCLP Lead	7439-92-1	ND		0.100	0.060
TCLP Mercury	7439-97-6	ND	L	0.001	0.0004
TCLP Selenium	7782-49-2	ND		1.00	0.300
TCLP Silver	7440-22-4	ND		0.100	0.060
General Analytical		Conc	Q	RL	MDL
Flash Point-°C	IALCAS092	74.2		20.0	NA
	IALCAS054	549000		250	125
Oil & Grease HEM-mg/Kg		ntration that o	(CBO)	ds annlicable	criteria
Oil & Grease HEM-mg/Kg BOLD Conc	Indicates a concer				criteria.
Oil & Grease HEM-mg/Kg BOLD Conc BOLD RL BOLD MDL	Indicates a concer	exceeds appli	cable	criteria.	criteria.
Oil & Grease HEM-mg/Kg BOLD Conc BOLD RL BOLD MDL	Indicates a concer	exceeds appli	cable	criteria.	criteria.
Oil & Grease HEM-mg/Kg BOLD Conc BOLD RL	Indicates a concer Indicates RL that e Indicates MDL that	exceeds appli	cable	criteria.	criteria.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

American Testing Technologies, Inc. 1350 Home Avenue. Suite G-I Akron. OH 44310

Website: www.AmericanTestingTechnologies.com Toll Free: 877-634-9906 Phone: (330) 634-9906 Fax: (330) 634-9907

PROJECT REFERENCE Long island	PROJECT NO. PROJECT LOCATION 1898 Montar K Highlighten WY	MATRIX TYPE		REQUIRED ANALYSIS	PAGE 1 OF 1
PROJECT MANAGER JULIE M. BULLARD	P.O. NUMBER CONTRACT NO.		SILICONE KARL FISCHER (ppm)		STANDARD REPORT DELIVERY
CLIENT (SITE)	CLIENT PHONE CLIENT FAX 518-756-9997 518-756-9979	COMPOSITE (C) OR GRAB (G) INDICAT AQUEOUS (WATER) SOLID OR SEMISOLID AIR NONAQUEOUS LIQUID (OIL, SOLVENT,	HER	VISCOSITY (cst)	DATE DUE 48 AR TA
CLIENT NAME	CLIENT E-MAIL	(3)	A S		EXPEDITED REPORT DELIVERY
TCI OF NY, LLC	BRIAN@TCI-NY.COM, JULIE@TCI-NY.COM		SILICONE KARL FISC	8 4	(SURCHARGE)
CLIENT ADDRESS		SOLID SOLID	₹ I ₹	VISCO	DATE DUE
99 COEYMANS INDUSTRIAL PARK LA	NE, COEYMANS, NY 12045	- ISI WATER			NUMBER OF COOLERS SUBMITTED
		OUS (V		ESERVATIVE	PER SHIPMENT:
SAMPLE TIME	SAMPLE (DENTIFICATION	SOLIC ARE NONA	NI	UMBER OF CONTAINERS SUBMITTED	REMARKS
1/11/21 12:00p T23	11 - T2313		c		3 samples
(/ /					/

	A CONTRACTOR OF THE CONTRACTOR				
RELINQUISHED BY: (SIGNATURE)	- DATE TIME RELINQUISHED BY:	SIGNATURE)	DATE	TIME RELINQUISHED BY: (SIGNATURE)	DATE TIME
RECEIVED BY: (SIGNATURE)	DATE TIME RECEIVED BY: (SIGN/	TURE)	DATE	TIME RECEIVED BY: (SIGNATURE)	DATE TIME
		LABORATORY USE (NLY SAME		
RECEIVED FOR LABAORATORY BY:	DATE TIME CUSTODY INTACT	CUSTODY A.	ur.	LABORATORY REMARKS	
(SIGNATURE) Queller Work	1113/20 930 YES O	SEAL NO. LC	GNO. 1321-03-05		

TCI of NY, LLC Attn: Julie Bullard PO Box 936 99 Coeymans Industrial Park Lane Coeymans, NY 12045

Date Received: 01/13/2021 Date Reported: 01/15/2021 Date Collected: 01/11/2021 Time Collected: 12:00 PM

Matrix: Oil Method: 8082A

Date of Analysis: 01/13/2021

<u>Certificate of Analysis</u> <u>Renova Long Island 1898 Montauk Highway NY</u>

Lab ID No.	Client ID No.	Aroclor 1016 PPM	Aroclor 1221 PPM	Aroclor 1232 PPM	Aroclor 1242 PPM	Aroclor 1248 PPM	Aroclor 1254 PPM	Aroclor 1260 PPM	PCBs Total PPM
011321-03	T2311	<0.199	<0.199	<0.199	<0.199	<0.199	<0.199	1	1
011321-04	T2312	<0.199	<0.199	< 0.199	<0.199	<0.199	< 0.199	$\frac{1}{2}$	
011321-05	T2313	<0.199	<0.199	<0.199	<0.199	<0.199	<0.199	5	5
Detection Limits		0.199	0.199	0.199	0.199	0.199	0.199	0.199	0.199

Final report reviewed by: Labbratory Manager

Page 1 of 1

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

APPENDIX B

Asbestos-Containing Material (ACM) Disposal Manifest

Drop Date:

NYSDEC 1A-1178

M E N T C O R P. Phone: (800) 300-8734
Fax: (516) 506-7984

-----WASTE MANIFEST

Manifest No: 49	153	Date :	Truck No	8
Contractor:		Container No. 41	Load No.	F - s
Owner's Name: NY	S LI PANK & P	GA 100	(1) O-1-1- GU	
0 0		wiateri	ial Origin Site:	
	The second of th		898 Montai	17 Highway
<u>69640</u>	ON NY 1179	<u></u>	Yontauk My	11954
Site Supervisor: Tox	1 By Kow	Site Te	1: 908-307-25	ે
Name and Address of Resp	onsible NESHAPS Agency	Other		
U.S. EPA REGION II, 290	BROADWAY, NEW YORK,	NY 10007		
Description of Materials		JA+	35	
□ RQ Waste White Ash	pestos, Class 9, NA2212, PGII		Bags	Cube Yds.
	estos, Class 9, UN2590, PGII		frieble	
Special Handling Instruction	ons and Additional Information		Drums or To	ns Other
SITE OPERATOR'S CEPT	EICATION, Thank		t are fully and accurately described	
And are classified packed, mark			t are fully and accurately described highway according to applicable inter	above by proper shipping name
Print / Type Name	3 Sulen	1.10.0		-05/21/2021
Transporter 1 (Acknow	ledgement of Receipt of N	Signature	/ .	Date
Company Name and Address				
US Environmental Abatemen 558 Union Avenue	Signatur at Corp. Print Na		Telephone	No. 800 - 300 - 8734
Westbury, NY 11590	Tea		Date	
Transporter 2 (Acknow	ledgement of Receipt of M	Materials		
Company Name and Address	Signatur	e		*
4.1	Print Na	me	Telephone	No.
Discrepancy Indication Space	Title	DRIVER	<u>Date</u>	
10 T 2 R T.		3 A.		No. of the second second
Waste Disposal Site Owne	er or Operator's Certificati	ion (Receipt of Above Wast	e Accontad)	The stage of the s
Waste Disposal Site	(Check One)	- I I	/ Accepted)	
Southern Alleghenies	Minerva Landfill	/	Signature	m
	willer va Langtill	110 Sand O. (71)		·
043 Miller Parking Pd	8955 Minerva Rd	110 Sand Co 170 Cabot St. W Babylon NV 11704		
043 Miller Parking Rd. Davidsville, PA 15928	8955 Minerva Rd. Waynesburg, OH 44688	110 Sand Co 170 Cabot St. W. Babylon, NY 11704	Print Nam	ne: Micheal Fritz
043 Miller Parking Dd	8955 Minerva Rd	170 Cabot St		

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

APPENDIX C

Hazardous Waste Disposal Manifest

Camp Hero

Form Approved. OMB No. 2050-0039 Please print or type. (Form designed for use on elite (12-pitch) typewriter.) Assertion of type. (Form designed for use on elite (12-pitch) typewriter.)

UNIFORM HAZARDOUS WASTE MANIFEST

5. Generator's Name and Mailing Address

Generator's Name and Mailing Address

Generator's Phone:

Generator's Phone:

U.S. EPA ID Number

U.S. EPA ID Number

U.S. EPA ID Number 7. Transporter 2 Company Name

U.S. EPA ID Number 8. Designated Facility Name and Site Address
Virtual ES 972-347-7111 NTがかいというと Facility's Phone: 1 Cando 15, 10 (1)521. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 13. Waste Codes and Packing Group (if any)) Quantity Wt./Vol. нм No. Type NUNI KERA MUD DET LEGARCIED SCHOOLS GENERATOR DIL $\gamma 0$ 14. Special Handling Instructions and Additional Information Line I My word it Tools 100 MU 02 310785 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAcknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name ショ は はん いっこう シー Signature Day Year Ellist of the man 16. International Shipments Export from U.S. Port of entry/exit: Date leaving U.S.: Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month Day Year Transporter 2 Printed/Typed Name Year 18. Discrepancy 18a. Discrepancy Indication Space Туре Quantity Partial Rejection Residue Full Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Year Month 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Signature Month Year

U.S. EPA Form 8700-22

Read all instructions before completing this form.

- 1. This form has been designed for use on a 12-pitch (elite) typewriter which is also compatible with standard computer printers; a firm point pen may also be used-press down hard.
- 2. Federal regulations require generators and transporters of hazardous waste and owners or operators of hazardous waste treatment, storage, and disposal facilities to complete this form (EPA Form 8700–22) and, if necessary, the continuation sheet (EPA Form 8700–22A) for both inter- and intrastate transportation of hazardous waste.

Public reporting burden for this collection of information is estimated to average: 30 minutes for generators, 10 minutes for transporters, and 25 minutes for owners or operators of treatment, storage, and disposal facilities. This includes time for reviewing instructions, gathering data, completing, reviewing and transmitting the form. Any correspondence regarding the PRA burden statement for the manifest must be sent to the Director of the Collection Strategies Division in EPA's Office of information Cotlection at the following address: U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW., Washington, DC 20460. Do not send the completed form to this address.

1. Instructions for Generators

Item 1: Generator's U.S. EPA Identification Number

Enter the generator's U.S. EPA twelve digit identification number, or the State generator identification number if the generator site does not have an EPA identification number.

Enter the total number of pages used to complete this Manifest (i.e., the first page (EPA Form 8700-22) plus the number of Continuation Sheets (EPA Form 8700-22A), if any).

Item 3. Emergency Response Phone Number

Enter a phone number for which emergency response information can be obtained in the event of an incident during transportation. The emergency response phone number must:

- 1. Be the number of the generator or the number of an agency or organization who is capable of and accepts responsibility for providing detailed information about the shipment;
- ¹2. Reach a phone that is monitored 24 hours a day at all times the waste is in transportation (including transportation related storage); and
- 3. Reach someone who is either knowledgeable of the hazardous waste being shipped and has comprehensive emergency response and spill cleanup/incident mitigation information for the material being shipped or has immediate access to a person who has that knowledge and information about the shipment.

Note: Emergency Response phone number information should only be entered in Item 3 when there is one phone number that applies to all the waste materials described in Item 9b. If a situation (e.g., consolidated shipments) arises where more than one Emergency Response phone number applies to the various wastes listed on the manifest, the phone numbers associated with each specific material should be entered after its description in Item 9b.

Item 4. Manifest Tracking Number

This unique tracking number must be pre-printed on the manifest by the forms printer.

Item 5. Generator's Mailing Address, Phone Number and Site Address

Enter the name of the generator, the mailing address to which the completed manifest signed by the designated facility should be mailed, and the generator's telephone number. Note, the telephone number (including area code) should be the normal business number for the generator, or the number where the generator or his authorized agent may be reached to provide instructions in the event the designated and/or alternate (if any) facility rejects some or all of the shipment. Also enter the physical site address from which the shipment originates only if this address is different than the mailing address.

Item 6. Transporter 1 Company Name, and U.S. EPA ID Number

Enter the company name and U.S. EPA ID number of the first transporter who will transport the waste. Vehicle or driver information may not be entered here.

Item 7. Transporter 2 Company Name and U.S. EPA ID Number

If applicable, enter the company name and U.S. EPA ID number of the second transporter who will transport the waste. Vehicle or driver information may not be entered here.

If more than two transporters are needed, use a Continuation Sheet(s) (EPA Form 8700-22A).

Item 8. Designated Facility Name, Site Address, and U.S. EPA ID Number

Enter the company name and site address of the facility designated to receive the waste listed on this manifest. Also enter the facility's phone number and the U.S. EPA twelve digit identification number of the facility.

Item 9. U.S. DOT Description (Including Proper Shipping Name, Hazard Class or Division, Identification Number, and Packing Group)

Item 9a. If the wastes identified in Item 9b consist of both hazardous and nonhazardous materials, then identify the hazardous materials by entering an "X" in this Item next to the corresponding hazardous material identified in Item 9b.

ltem 9b. Enter the U.S. DOT Proper Shipping Name, Hazard Class or Division, Identification Number (UN/NA) and Packing Group for each waste as identified in 49 CFR 172. Include technical name(s) and reportable quantity references, if applicable.

Note: If additional space is needed for waste descriptions, enter these additional descriptions in Item 27 on the Continuation Sheet (EPA Form 8700-22A). Also, if more than one Emergency Response phone number applies to the various wastes described in either Item 9b., or Item 27, enter applicable Emergency Response phone numbers immediately following the shipping descriptions for those Items.

Item 10. Containers (Number and Type)

Enter the number of containers for each waste and the appropriate abbreviation from Table I (below) for the type of container,

TABLE I.-TYPES OF CONTAINERS

BA = Burlap, cloth, paper, or plastic bags. DT = Dump truck:

CF = Fiber or plastic boxes, cartons, cases.

DW = Wooden drums, barrels, kegs. HG = Hopper or gondola cars.

CM = Metal boxes, cartons, cases (including roll-offs).

TC = Tank cars.

CW = Wooden boxes, cartons, cases. CY = Cylinders.

TP = Portable tanks.

TT = Cargo tanks (tank trucks).

DF = Fiberboard or plastic drums, barrels, kegs. DM = Metal drums, barrels, kegs. _

Item 11. Total Quantity

Enter, in designated boxes, the total quantity of waste. Round partial units to the nearest whole unit, and do not enter decimals or fractions. To the extent practical, report quantities using appropriate units of measure that will allow you to report quantities with precision. Waste quantities entered should be based on actual measurements or reasonably accurate estimates of actual quantities shipped. Container capacities are not acceptable as estimates.

Item 12. Units of Measure (Weight/Volume)

Enter, in designated boxes, the appropriate abbreviation from Table II (below) for the unit of measure.

TABLE II.-UNITS OF MEASURE

G = Gallons (liquids only). N = Cubic Meters.

K = Kilograms.

P = Pounds.

L = Liters (liquids only).

T = Tons (2000 Pounds).

M = Metric Tons (1000 kilograms).

Y = Cubic Yards.

Note: Tons, Metric Tons, Cubic Meters, and Cubic Yards should only be reported in connection with very large bulk shipments, such as rail cars, tank trucks, or barges.

Item 13. Waste Codes

Enter up to six federal and state waste codes to describe each waste stream identified in Item 9b. State waste codes that are not redundant with federal codes must be entered here, in addition to the federal waste codes which are most representative of the properties of the waste.

Item 14. Special Handling Instructions and Additional Information

- 1. Generators may enter any special handling or shipment-specific information necessary for the proper management or tracking of the materials under the generator's or other handler's business processes, such as waste profile numbers, container codes, bar codes, or response guide numbers. Generators also may use this space to enter additional descriptive information about their shipped materials, such as chemical names, constituent percentages, physical state, or specific gravity of wastes identified with volume units in
- 12. This space may be used to record limited types of federally required information for which there is no specific space provided on the manifest, including any alternate facility designations; the manifest tracking number of the original manifest for rejected wastes and residues that are re-shipped under a second manifest; and the specification of PCB waste descriptions and PCB out-of-service dates required under 40 CFR 761.207. Generators, however, cannot be required to enter information in this space to meet state regulatory requirements.

Item 15. Generator's/Offeror's Certifications

- 1. The generator must read, sign, and date the waste minimization certification statement. In signing the waste minimization certification statement, those generators who have not been exempted by statute or regulation from the duty to make a waste minimization certification under section 3002(b) of RCRA are also certifying that they have complied with the waste minimization requirements. The Generator's Certification also contains the required attestation that the shipment has been properly prepared and is in proper condition for transportation (the shipper's certification). The content of the shipper's certification statement is as follows: "I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent." When a party other than the generator prepares the shipment for transportation, this party may also sign the shipper's certification statement as the offeror of the shipment.
- 2. Generator or Offeror personnel may preprint the words, "On behalf of" in the signature block or may hand write this statement in the signature block prior to signing the generator/offeror certification, to indicate that the individual signs as the employee or agent of the named principal.

Note: All of the above information except the handwritten signature required in Item 15 may be pre-printed.

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

APPENDIX D

AST Contents + Wash-Water Disposal Manifest

NON-HAZARDOUS WASTE MANIFEST	Generator ID Number	2. Pa	ige 1 of 3. Emer		nse Phone		Tracking Numb	er 000449
Generator's Phone: 6. Transporter 1 Company Nam	ng Address	NJ 07712		or's Site Addr	ress (if different th	U.S. EPA II	D Number	. Mehar
7. Transporter 2 Company Nam						U.S. EPA II		100032
		845 5614	1 1			U.S. EPA II	Number	553634C
Waste Shipping Name	Facility			10. Co	ontainers	11. Total	12. Unit	
				No.	Туре	Quantity	Wt./Vol.	
	CEA NON-DU			ŧ	FFF	j.,	G	
100	ANOI-DOTIE	ugulisted Lig	MAD	1	DF:		65	
3.								
4.	7-41	-						
14. GENERATOR'S/OFFEROR marked and labeled/placarde	'S CERTIFICATION: I hereby declared, and are in all respects in proper oped Name	e that the contents of this consign condition for transport according to	nment are fully and o applicable interro	d accurately on ational and n	described above lational government	by the proper sental regulation	shipping name, a	nd are classified, packaged Month Day
TO 100 M.	LEW THAN	JAIE		1		A.		108 109 12
15. International Shipments Transporter Signature (for export		Ехро	rt from U.S.		entry/exit:eaving U.S.:		Parada series	
 Transporter Acknowledgmen Transporter 1 Printed/Typed Nar 			Signature					
Transporter 1 Filinear typed Hai			Signature					Month Day
Transporter 2 Printed/Typed Nar	me	-	Signature					Month Day
17. Discrepancy								
17a. Discrepancy Indication Spa	Quantity	Туре	Manif	Residue	e Number	Partial Re	ejection	Full Rejection
17b. Alternate Facility (or General	ator)		·	St Holorono.	e Number.	U.S. EPA ID	Number	
Facility's Phone: 17c. Signature of Alternate Facili	ity (or Generator)	<u> </u>	1	ÿ				Month Day
						7		
18. Designated Facility Owner or	r Operator: Certification of receipt of	materials covered by the manifes	t except as noted	in Item 17a				

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX E</u>

Building 10 Sample Summary Results

ANALYTICAL DATA REPORT

Renova Environmental Services 3417 Sunset Ave. Ocean, NJ 07712

Project Name: **CAMP HERO BUILDING #10**IAL Case Number: **E21-03248**

These data have been reviewed and accepted by:

Michael H. Leftin, Ph.D.

Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed. The results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

INTEGRATED ANALYTICAL LABORATORIES, LLC

RESULTS SUMMARY REPORT

FINALIZED 07/01/2021 E21-03248 Page 6

SUMMARY REPORT

Client: Renova Environmental Services Project: CAMP HERO BUILDING #10 Lab Case No.: E21-03248

Lab ID:	03248		03248		0324	8-003	0.	3248-0	004	
Client ID:	CH-F		CH-C			CS-02		H-CS		
Matrix:		pes	So			lid		Solid		
Sampled Date	5/20	•	5/20		5/20	0/21		5/20/2		
PARAMETER(Units)	Conc (Conc C) MDL	Conc (Q MDL	Conc	Q	MDL	
Volatiles (Units)	(ug/10	(ug/100cm2)		(mg/Kg)		/Kg)	(mg/Kg)		r)	
Benzene	~	~	~	~	~	~	ND		0.00043	
Toluene	~	~	~	~	~	~	ND		0.000605	
Ethylbenzene	~	~	~	~	~	~	ND		0.000545	
Total Xylenes	~	~	~	~	~	~	ND		0.00195	
Isopropylbenzene	~	~	~	~	~	~	ND		0.00107	
n-Propylbenzene	~	~	~	~	~	~	ND		0.00069	
1,3,5-Trimethylbenzene	~	~	~	~	~	~	ND		0.00106	
tert-Butylbenzene	~	~	~	~	~	~	ND		0.0011	
1,2,4-Trimethylbenzene	~	~	~	~	~	~	ND		0.00136	
sec-Butylbenzene	~	~	~	~	~	~	ND		0.00118	
4-Isopropyltoluene	~	~	~	~	~	~	ND		0.00187	
n-Butylbenzene	~	~	~	~	~	~	ND		0.00185	
Naphthalene	~	~	~	~	~	~	0.00381	DJ	0.00209	
m,p-Xylene	~	~	~	~	~	~	ND		0.00195	
o-Xylene	~	~	~	~	~	~	ND		0.0007	
Semivolatiles - BN (Units)	(ug/10	0cm2)	(mg	/Kg)	(mg	/Kg)		(mg/Kg	3)	
Acenaphthylene	~	~	~	~	~	~	ND		0.027	
Acenaphthene	~	~	~	~	~	~	ND		0.028	
Fluorene	~	~	~	~	~	~	ND		0.028	
Phenanthrene	~	~	~	~	~	~	0.178		0.031	
Anthracene	~	~	~	~	~	~	ND		0.033	
Fluoranthene	~	~	~	~	~	~	ND		0.032	
Pyrene	~	~	~	~	~	~	ND		0.030	
Benzo[a]anthracene	~	~	~	~	~	~	ND		0.020	
Chrysene	~	~	~	~	~	~	ND		0.031	
Benzo[b]fluoranthene	~	~	~	~	~	~	ND		0.032	
Benzo[k]fluoranthene	~	~	~	~	~	~	ND		0.028	
Benzo[a]pyrene	~	~	~	~	~	~	ND		0.029	
Indeno[1,2,3-cd]pyrene	~	~	~	~	~	~	ND		0.032	
Dibenz[a,h]anthracene	~	~	~	~	~	~	ND		0.031	
Benzo[g,h,i]perylene	~	~	~	~	~	~	ND		0.032	
Hydrocarbons (Units)	(mg/100cm2)		(mg/100cm2) (mg/Kg		/Kg)	(mg/Kg)		(mg/Kg)		g)
TPH-DRO	142	40.0	~	~	~	~	358		138	

 $[\]sim$ = Sample not analyzed for

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds.

For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

SUMMARY REPORT

Client: Renova Environmental Services Project: CAMP HERO BUILDING #10 Lab Case No.: E21-03248

Lab ID: Client ID: Matrix: Sampled Date		CH-W Wi _l	/S-01 pes	03248-006 CH-WS-02 Wipes 5/20/21		
PARAMETER(Units)		Conc Q	MDL	Conc	Q MDL	
Hydrocarbons (Units)		(mg/100cm2)		(mg/100cm2)		
TPH-DRO		154	40.0	273	40.0	

 $[\]sim$ = Sample not analyzed for

For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

FINALIZED 07/01/2021 E21-03248 Page 8

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds.

D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX F</u>

Building 107 Sample Summary Results

ANALYTICAL DATA REPORT

Renova Environmental Services 3417 Sunset Ave. Ocean, NJ 07712

Project Name: **CAMP HERO BUILDING #107**IAL Case Number: **E21-03249**

These data have been reviewed and accepted by:

chael H. Left n, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed. The results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

RESULTS SUMMARY REPORT

SUMMARY REPORT

Client: Renova Environmental Services Project: CAMP HERO BUILDING #107 Lab Case No.: E21-03249

Lab Case 110., Ear 13219												
	Lab ID:		49-001 ED 02			0-002 'S-04		9-003 CS-05	03249 CH-V			
	Client ID: Matrix:		CH-FB-02 Wipes 5/20/21		CH-CS-04 Solid 5/20/21			Solid 5/20/21		Wipes 5/20/21		
	Sampled Date											
PARAMETER(Units)	Sampled Date	Conc	Q MDL	Conc	Q	MDL		Q MDL	Conc (
PCB's (Units)		(ug/100cm2)		((mg/Kg)		(mg/Kg)		(ug/100cm2)			
Aroclor-1016		ND	0.150	ND		0.00574	~	~	ND	0.150		
Aroclor-1221		ND	0.150	ND		0.00574	~	~	ND	0.150		
Aroclor-1232		ND	0.150	ND		0.00574	~	~	ND	0.150		
Aroclor-1242		ND	0.150	ND		0.00574	~	~	ND	0.150		
Aroclor-1248		ND	0.150	ND		0.00574	~	~	ND	0.150		
Aroclor-1254		ND	0.150	0.011	J	0.00574	~	~	ND	0.150		
Aroclor-1260		ND	0.150	ND		0.00574	~	~	ND	0.150		
Aroclor-1262		ND	0.150	ND		0.00574	~	~	ND	0.150		
Aroclor-1268		ND	0.150	ND		0.00574	~	~	ND	0.150		
PCBs		ND	0.150	0.011	J	0.00574	~	~	ND	0.150		

	Lab ID:	03249-005					
	Client ID:	CH	CH-WS-04				
	Matrix:	7	Wipes				
	Sampled Date	5,	5/20/21				
PARAMETER(Units)		Conc	Q	MDL			
PCB's (Units)		(ug/100cm2)					
Aroclor-1016		ND		0.150			
Aroclor-1221		ND		0.150			
Aroclor-1232	3	ND		0.150			
Aroclor-1242		ND		0.150			
Aroclor-1248		ND		0.150			
Aroclor-1254		0.168	DJ	0.150			
Aroclor-1260		ND		0.150			
Aroclor-1262		ND		0.150			
Aroclor-1268		ND		0.150			
PCBs		0.168	DJ	0.150			

 $[\]sim$ = Sample not analyzed for

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

D = The compound was reported from the Diluted analysis

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

APPENDIX G

NYSDEC Tank Registration Correspondence

Ryan Bilgrav <ryan@renovaenviro.com>

Camp hero: Aboveground Storage Tank Removal

3 messages

Ryan Bilgrav <ryan@renovaenviro.com> To: nick.acampora@dec.ny.gov

Thu, Dec 17, 2020 at 2:02 PM

Hi Nick,

Renova was contracted by the US Army Corps of Engineers two remove two 250-gallon aboveground storage tanks at the former Camp Hero Site. The tanks currently contain a water and petroleum fuel mix. Would these tanks and the facility need to be registered with NYSDEC prior to their removal?

Thank you for your assistance, Ryan

Ryan Bilgrav | Project Scientist

Main: 732.659.1000 | Fax: 732.659.1034

ryan@renovaenviro.com

Renova Environmental Services

3417 Sunset Ave. | Ocean Twp., NJ 07712 | www.renovaenviro.com

SBA 8(a)-certified and HUBZone-certified

2020 SBA Region II Small Business Prime Contractor of the Year

Acampora, Nick (DEC) <nick.acampora@dec.ny.gov> To: Ryan Bilgrav <ryan@renovaenviro.com>

Fri, Dec 18, 2020 at 10:30 AM

Ryan:

No, just let me know when they are scheduled to be removed. Where are they located?

Sincerely,

Nick Acampora

Environmental Program Specialist II, Division of Environmental Remediation

New York State Department of Environmental Conservation

50 Circle Road, SUNY @ Stony Brook, Stony Brook, NY 11790-3409

P: (631) 444-0322 | F: (631) 444-0328 | nick.acampora@dec.ny.gov

www.dec.ny.gov | 🚮 | 💟 | 🧐

From: Ryan Bilgrav <ryan@renovaenviro.com> Sent: Thursday, December 17, 2020 2:03 PM

To: Acampora, Nick (DEC) <nick.acampora@dec.ny.gov> Subject: Camp hero: Aboveground Storage Tank Removal

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

[Quoted text hidden]

Ryan Bilgrav <ryan@renovaenviro.com>

Draft To: "Acampora, Nick (DEC)" <nick.acampora@dec.ny.gov>

Fri, Dec 18, 2020 at 11:09 AM

Ryan Bilgrav | Project Scientist

Main: 732.659.1000 | Fax: 732.659.1034

ryan@renovaenviro.com

Renova Environmental Services

3417 Sunset Ave. | Ocean Twp., NJ 07712 | www.renovaenviro.com

SBA 8(a)-certified and HUBZone-certified

2020 SBA Region II Small Business Prime Contractor of the Year

[Quoted text hidden]

Camp Hero AST location.pdf

9052K

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

APPENDIX H

ASTs Scrap Receipt

THIS MEMORANDUM is an acknowledgement that a bill of lading has been issued or duplicate, covering the property named herein, and is into	tended solely for filling or record.	Shipper's No.	705
111 /		//////////////////////////////////////	
(Carrier) 101/12 20,60p	SCAC	Carrier's No.	
RECEIVED, subject to individually determined rates or contracts that have been agreed upo established by the carrier and are available to the shipper, on request; and all applicable star		oplicable, otherwise to the rates,	classifications and rules that have been
at		rom	ord company being understood throughout this
me Property described below, in apparent good order, expenses as foliar (contents and contained or contents or property under the contract) agrees to corry to contract as meaning any person or corporation in possession of the property under the contract) agrees to carry to carrier of all or any of said Property over all or any portion of said route to destination and as to each party at an expense of the continuous on the back hereof, which are hereby agreed whether printed or written, herein contained, including the conditions on the back hereof, which are hereby agreed.	to delivery at said destination, if on its route, or otherwise to time interested in all or any of said Property that every serv	deliver to another carrier on the route to s	aid destination. It is mutually agreed as to each
(Mail or street address of consignee for purposes of notification of the consignee Street Destination Zip	Shipper Street Origin	ive Environ	mest Er Vic-
Route:			
Delivering Carrier	Trailer Initial/ Number	U.S. DOT Hazmat Reg. Number	
Number of packages HM Description of articles, special	marks, and exceptions		ass or Check Charges (for carrier use only)
Lyan metle			
			5.0
Remit C.O.D. to: Address:	COD	C. O. D. FEE:	TOTAL CHARGES:
City: State: Zip:	AMT: \$	Collect \$	FREIGHT CHARGES
tote where the rate is dependent on value, shippers are required to state specifically in writing the agreed or declared value of the proper he agreed or declared value of the property is hereby pecifically stated by the shipper to be not exceeding	erty. Subject to Section 7 of the conditions, if this shipme the consignor, the consignor shall sign the following. The carrier shall not make delivery of this shipment. (Signature of consignor)	statement:	Except when CHECK BOX
NOTE: Liability Limitation for loss or damage in this shipment may be applicable. See 4 This is to certify that the above-named materials are properly classified, described, packar Department of Transportation. Per		ondition for transportation accor	ding to the applicable regulations of the
SHIPPER: Repure En Jeruce	CARRIER:	1- 9,000	LAC
PER: DATE: 5-2	PER:	1 2	_ DATE: (2)->/
	EMERGENCY RESPON	/	
Permanent post office address of shipper			storage incidental to transportation (§172.604).

THIS MEMORANDUM is an acknowledgement that a bill of lading has been issued and is not the or duplicate, covering the property named herein, and is intended solely for	e Original Bill of Laurily, 1101 a 2029 for filing or record.	oper's No	10	5	
(Carrier) RECEIVED, subject to individually determined rates or contracts that have been agreed upon in writing the established by the carrier and are available to the shipper, on request; and all applicable state and feder at the Property described below, in apparent good order, except as noted (contents and condition of contents of packages unknown to the property described below, in apparent good order, except as noted (contents and condition of contents of packages unknown to the property under the contract) agrees to carry to delivery at six whether of all or any of said Property over all or any portion of said route to destination and as to each party at any time interests carrier of all or any of said Property over all or any portion of said route to destination and as to each party at any time interests carrier of all or any of said Property over all or any portion of said route to destination and as to each party at any time interests carrier of all or any of said Property over all or any portion of said route to destination and as to each party at any time interests.	between the carrier and shipper, if applic ral regulations;	rier's No	y (the word compa bute to said destina all be subject to all	ny being understood tion. It is mutually ag the conditions not p	that have been ithroughout this greed as to each rohibited by law.
(Mail or street address of consignee for purposes of notification only.) TO: Consignee Street Destination	FROM: Monte Shipper Street Origin	u K N. X		ip //93	14
Route:				in .	
Delivering Carrier	Trailer Initial/ Number	U.S. DOT Hazm Reg. Number		Check	Charges
Number of packages HM Description of articles, special mark	s, and exceptions	(subject to correction)	Class or rate	column	(for carrier use only)
				LTOTAL	CHARGES
Remit C.O.D. to:	COD	C. O. D.	FEE:	S	CHANGES.
Address: City: State: Zip:	AMT: \$ Subject to Section 7 of the conditions, if this shipment			FREIGHT PR Except when	T CHARGE EPAID CHECK BO
Note. – where the rate is dependent on value, shippers are required to state specifically in writing the agreed or declared value of the property. The agreed or declared value of the property is hereby	the consignor, the consignor shall sign the following s The carrier shall not make delivery of this shipment w (Signature of consignor)	thout payment of freight and all o	ther lawful charges.	box at right is checked	to be collect
specifically stated by the shipper to be not exceeding NOTE: Liability Limitation for loss or damage in this shipment may be applicable. See 49 U.S.C. This is to certify that the above-named materials are properly classified, described, packaged, may Department of Transportation. Per SHIPPER:		ndition for transportati	Top	o the applicable	regulations of the
PER: DATE: DATE:	EMERGENCY RESPON				
Permanent post office address of shipper	Monitored at all times the Hazardous	Material is in transportatio	n Including storag	ge incidental to tran	0-BLS-A3 4 (Rev. 11/

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX I</u>

Transformers + PCB Fluid Disposal Manifest

BILL OF LADING

Document No. 14658

21-0274

GENERATOR NAME AND MAILING ADDRESS	ii.	US EPA ID NUMBER: (OPTIONAL)					
NYS LI PK & REC		N V belald	9 4 3 5 1 2				
PO Box 247 Babylon, NY 11702							
PICKUP LOCATION (NAME & STREET ADDRE	ESS):	Broker: REN	OVA ENVIRONMENTAI	. SERVICES			
	-	Quote: 1912020N					
1898 Montauk Highway Montauk NY 11954							
Contact: TOM ByKOW	1-4	Phone Number:	908-307-250	0			
DESIGNATED FACILITY NAME & SITE ADDRE	ESS:	US EPA ID NUMBI	ER: (OPTIONAL)				
TCI of NY, LLC		N 1 RO 0 0 2	2 1 1 5 4 0				
99 Coeymans Industrial Park Coeymans, NY 12045	Ln						
Contact: Brian Hemlock		Phone Number: 5	18-756-9997				
DESCRIPTION OF SHIPMENT							
No. of Units Type	Full/Empty	KVA	PCB Content	Total Weight			
45 TRANSFORMER	0	0	DRY	1000			
3 sw	74	0	<50	380			
/ JUNCTION BOX	0	0	DRY	ilo			
			DRI				
		-	-				
			-				
Type: P= Pole DM = D			ushings SS = Sub				
PM = Padmount S = Sw	ritch O = OCE	LB = L	ight Ballasts C = Capa	citor			
Generator's Certification: I certify the madisposal of Hazardous Waste and that I a	terials described above	e are not subject to	federal regulations for	reporting proper			
	am authorized to conve	ey this material by t	he owner who holds cle	ar title.			
PRINTED/TYPED NAME				5-25-21			
PRINTED/TYPED NAME	SIGNATURE			DATE			
Transporter: AllState O.R.C., Inc.			TIME IN:	TIME OUT:			
ALIBERTO VIR.C., INC.		Pick		1:30 a.m.			
Weaker Taker	Mi		-	05/25/21			
DRIVER NAME PRINTED/TYPED	SIGNATURE			DATE			
Additional Information							
Designated Facility Owner or Operator –	Certification of Receip	t of Materials with	Discrepancies Noted:				
Lebecca O'Neill	- Sel	secca O	News	6/1/21			
PRINTED/TYPED NAME	SIGNATURE			DATE			

JUN 1	i	20245	4
			J

RECEIVED .

JUN 0 3 2021

#1	11	IM	1
1173	orr	proved. OMB N	J lo. 2050-l

		It Comments In North		:CN222702	31.51			opproved.	UMB NO.	2000-003
11			2. Page 1 of 3. Er			4. Manifest				
Н		ASTE MANIFEST N Y D9 8 6 9 4 3 5 1 2	1	300-424-9	300	1 00	644	031	9 G	RF
П	5. Ger	nerator's Name and Mailing Address	Gene	ator's Site Address	(if different t	nan mailing addre	ss)			
Н		NYS LI PK & REC		98 Montai				mak (talasta)	21-0	274
П	ł	PO Box 247		ntauk NY	–					
П		Babylon, NY 11702		HUMUR HI	TT20.4	in a				
Ш	Gener	Babylon, NY 11702 rators Prione: 631-668-2765								
П	6. Trai	nsporter 1 Company Name				U.S. EPA ID	Number			
П	1	AllState O.R.C., Inc.				M J D9	8 6 5		5 3 N	
Н	7. Trai	nsporter 2 Company Name				U.S. EPA (D (
H		TCI of NY, LLC				•				_
	R Doc	ignated Facility Name and Site Address				NYR) 2 1	154	0
	0. 563	TCI of Alabama, LLC				U.S. EPA ID I	Number			
Ш		101 Parkway East								
Н	l	Pell City, AL 35125								
П	Facilit		8-9997			A L D9	8 3 1	L 6 7 8	9 1	
Н		9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,	10 2221	10.0-1-1			1			
Ш	9a. HM	and Packing Group (if any))		10. Contain		11. Total	12. Unit	13. V	Naste Code	5
П	1161	1		No.	Туре	Quantity	Wt./vol.			
⊯	X	DO IDMAGO DELENELLES DE DELENELLES DO	TD	1			1	8007	R	
12		RQ UN9432 Polychlorinated Biphenyls SOI	ידה		-CH-	352	K			
2		9, PGIII TAR FILLED PCB MISC EQUIP			BH					
GENERATOR		2.					†			
쁑										
	 	3.				<u> </u>				
H,		3 .					1 1			
							l i			
		4.								
ı										
				1		1				
	14 Sn	ecial Handling Instructions and Additional Information		<u> </u>						
		·								
		Dike and contain in case of spill. ERG-	-171 Eme	rgency Co	ontact	: CHEMT	REC 24	Hours	5	
		-		_						
		Broker: RENOVA ENVIRONMENTAL SERVICES	Quote: 1	912020N						
Ш	15. G	ENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this or	onsignment are fully	and accurately des	cribed above	by the proper shi	eman gridge	and are class	sified, pack	aned.
	m	rarked and labeled/placarded, and are in all respects in proper condition for transport accom	ding to applicable in	emational and natio	onat governm	ental regulations.	if export shi	pment and I a	in the Primi	ery
	E:	xporter, I certify that the contents of this consignment conform to the terms of the attached I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large	EPA Acknowledgme	nt of Consent.	l miantihi aa	nametas) la terra				
		ator's Offeror's Printed/Typed Name ON BEHALF OF D. D	Signature	r (D) (II am a sma	i dosumtà Bai	terator) is true.		Mont	h Day	Vane
Ш			a agricitio	/						Year
*	<u>ڪ</u>	hewen Bian - USACE				_		0	5 25	2021
린	16. Inte	emational Shipments Import to U.S.	export from U.S.	ort of ent	v/exit:					
Ξ	Transp	orter signature (for exports only):		Date leavin						
	17. Trei	nsporter Acknowledgment of Receipt of Materials								
TRANSPORTER		orter 1 Printed/Typed Name	Signature					Mont	h Day	Year
ğ		MITT	م ا	11/				ر ما	1 2/	101
\$	Transit	orter 2 Printed/Typed Name		/ Var					حيماح	121
3	7		eignature	ر درا	2	70-		Mont	h Day	Year
E	_Ь	ebecca U'Neill	15/2	DICCI	0 00	NW		U		14
1	18. Disc	crepancy	,							
Ш	18a. Di	screpancy Indication Space Quantity Type		Residue		Partial Reje	nation.	Γ	Full Reje	allan
Ш	12	Screpancy Indication Space Quantity Type Type Type	21772	Residue		Parusi Reje	scuon	L	ruli reje	CHON
	772	ec vi mi companie i i con 3700 21)			M					
اح	18b. Alt	emate Facility (or Generator)		fanifest Reference	Number:	U.S. EPA ID N	umber			
틹						0.0. El A 10 N	amber			
욁	Eneith A	s Phone:				1				
ᇍ		nature of Alternate Facility (or Generator)						Mon	th Davi	Voor
틹		,, (5) 53,						I WACAS	th Day	Year
DESIGNATED FACILITY	40.11									<u></u>
ខ្លា		ardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatme		cycling systems)						
ā	1.	H010 - 4 1 4 1 1 4 1 4 1 4 1 2 1 2 1 1	3.			4.				
11										
	20. Des	ignated Facility Owner or Operator: Certification of receipt of hazardous materials covered t	by the manifest expe	pt ap noted in Item	18a	111	$\overline{}$			
		Typed Name // // // ·	Signature	11 /	VVI			Mont	h Day	Year
↓	2	ohn McClw/Kir	1 //	hu 1	1/100	Kent		16	13	121
PA	Form 8	700-22 (Rev. 12-17) Previous editions are obsolete.	- 40		· · · · · ·					
			//	negi(MATER	FACILITY 1	ハニロハ	MAMILA	ことのす の	1400 PROPERTY

TCI OF ALABAMA, LLC

Receiving Report for Shipment

211747

Company_Name NYS LI PK & REC

Date_Pickup

5/25/2021

ID_Manifest

006440319GBF

#	Gen Ref#	Serial #	Туре	Size	PCB (ppm)	RFS	Gais	Lbs	Kg
CONTA	AINER OF D	RAINED PCB ELECTR	ICAL EQUIPME	NT					
001		POTHEAD1	POTHEAD	0	500	5/25/2021	0.0	174	79
002		POTHEAD2	POTHEAD	0	500	5/25/2021	0.0	175	80
003		POTHEAD3	POTHEAD	0	500	5/25/2021	0.0	175	80
004		JUNCBX-POTHD1	POTHEAD	0	500	5/25/2021	0.0	174	79
005		JUNCBX-POTHD2	POTHEAD	0	500	5/25/2021	0.0	193	88
006		JUNCBX-POTHD3	POTHEAD	0	500	5/25/2021	0.0	193	88
007		TARFLLDPTS-1	P.T.	0	500	5/25/2021	0.0	194	88
800		TARFLLDPTS-2	P.T.	0	500	5/25/2021	0.0	194	88
009		TARFLLDPOTHDS-1	POTHEAD	0	500	5/25/2021	0.0	234	106
010		TARFLLDPOTHDS-2	POTHEAD	0	500	5/25/2021	0.0	234	106
011		TARFLLDPOTHDS-3	POTHEAD	0	500	5/25/2021	0.0	233	106
012		TARFLLDPOTHDS-4	POTHEAD	0	500	5/25/2021	0.0	233	106
013		TARFLLDPOTHDS-5	POTHEAD	0	500	5/25/2021	0.0	301	137
014		TARFLLDPOTHDS-6	POTHEAD	0	500	5/25/2021	0.0	301	137
015		TARFLLDPOTHDS-7	POTHEAD	0	500	5/25/2021	0.0	301	137
016		TARFLLDPOTHDS-8	POTHEAD	0	500	5/25/2021	0.0	301	137
017		TARFLLDPOTHDS-9	POTHEAD	0	500	5/25/2021	0.0	296	135
Quant	ity: 17		Sum	0		Sum	0.0	3906	1775
Total (2ty: 17		Total	0		Total	0.0	3906	1775

TCI of NY, LLC Attn: Julie Bullard PO Box 936 99 Coeymans Industrial Park Lane Coeymans, NY 12045

Date Received: 01/13/2021 Date Reported: 01/15/2021 Date Collected: 01/11/2021 Time Collected: 12:00 PM

Matrix: Oil Method: 8082A

Date of Analysis: 01/13/2021

<u>Certificate of Analysis</u> <u>Renova Long Island 1898 Montauk Highway NY</u>

Lab ID No.	Client ID No.	Aroclor 1016 PPM	Aroclor 1221 PPM	Aroclor 1232 PPM	Aroclor 1242 PPM	Aroclor 1248 PPM	Aroclor 1254 PPM	Aroclor 1260 PPM	PCBs Total PPM
011321-03	T2311	<0.199	<0.199	<0.199	<0.199	<0.199	<0.199	1	
011321-04	T2312	<0.199	<0.199	<0.199	<0.199	<0.199	<0.199	2	
011321-05	T2313	<0.199	<0.199	<0.199	<0.199	<0.199	<0.199	5	
Detection Limits		0.199	0.199	0.199	0.199	0.199	0.199	0.199	0.199

Inal tempt reviewed by: Labbratory Manager

Page 1 of 1

Customer:

NYS LIPK & REC

BOL: 14658

Manifest: 006440319GBF Page 1 of 1 Out of Gallons Picked Up - Picked Up Test KVA Serial Weight Type Comments TCI# **Serv Date** Oil Driver - Plant Results 5/25/2021 0 SW BUNKER OIL SWITCH 2 1 T2311 2 SW BUNKER 5/25/2021 0 T2312 2 OIL SWITCH SW BUNKER 5/25/2021 5 SWITCH 20 0 T2313 5/25/2021 0 0 **POT HEAD** BUNKER POTHEAD1 PCB TAR POTHEAD 5/25/2021 0 0 **POT HEAD** BUNKER POTHEAD2 PCB TAR POTHEAD 5/25/2021 0 **POT HEAD** BUNKER PCB TAR POTHEAD 0 POTHEAD3 DRY JUNCTION JUNCT 0 0 BUNKER 5/25/2021 **DRYJUNCBX-1** DRY BOX BOX JUNCBX-**POT HEAD** BUNKER 5/25/2021 **PCB** TAR POTHEAD 0 0 POTHD1 JUNCBX-BUNKER 5/25/2021 0 0 **POT HEAD** PCB TAR POTHEAD POTHD2 JUNCBX-PCB TAR POTHEAD 0 0 **POT HEAD** BUNKER 5/25/2021 POTHD3 TARFLLDPTS-BUNKER 5/25/2021 PCB TAR FILLED PT 0 0 PT TARFLLDPTS-PCB TAR FILLED PT 0 0 PT BUNKER 5/25/2021 TARFLLDPOT PCB TAR POTHEAD 0 0 POT HEAD BUNKER 5/25/2021 HDS-1 **TARFLLDPOT** PCB TAR POTHEAD 0 0 **POT HEAD** BUNKER 5/25/2021 HDS-2 **TARFLLDPOT PCB** 0 0 **POT HEAD BUNKER** 5/25/2021 TAR POTHEAD HDS-3 **TARFLLDPOT** PCB TAR POTHEAD 0 0 POT HEAD BUNKER 5/25/2021 HDS-4 DRY **TRANSFO** BUNKER, DRYTRNSFRMR DRY 0 0 5/25/2021 RMER 6'3"Tx3'6"Wx6'6" TRANSFORMER DRYTRNSFRMR DRY **TRANSFO** BUNKER, DRY 0 0 5/25/2021 TRANSFORMER RMER 6'Tx3'6"Wx3'6"L DRYTRNSFRMR DRY **TRANSFO** DRY 0 0 BUNKER 5/25/2021 -3 TRANSFORMER RMER DRYTRNSFRMR **TRANSFO** DRY 0 0 BUNKER 5/25/2021 TRANSFORMER RMER **TARFLLDPOT** PCB TAR POTHEAD 0 0 **POT HEAD** BASEMENT 5/25/2021 HDS-5 **TARFLLDPOT** PCB TAR POTHEAD 0 0 **POT HEAD** BASEMENT 5/25/2021 HDS-6 **TARFLLDPOT** PCB TAR POTHEAD 0 0 **POT HEAD** BASEMENT 5/25/2021 HDS-7 **TARFLLDPOT** PCB TAR POTHEAD 0 0 **POT HEAD** BASEMENT 5/25/2021 HDS-8 TARFLLDPOT PCB TAR POTHEAD 0 0 **POT HEAD** BASEMENT 5/25/2021 HDS-9

21-0274 Pickup ID#:

ADDENDUM TO MANIFEST

Generator Name: NYS LI PK & REC

121) NEW YORK

Addendum to Manifest No. 006440319GBF

US EPA ID No:

NYD986943512

Page 1 of 1

Item	Serial #	Туре	РСВ	Gal.	Weight	KVA	Date Out Of Service
POTHEAD1	TAR POTHEAD	POTHEAD	PCB	0		0	5/25/2021
POTHEAD2	TAR POTHEAD	POTHEAD	PCB	0		0	5/25/2021
POTHEAD3	TAR POTHEAD	POTHEAD	PCB	0		0	5/25/2021
JUNCBX-POTHD1	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
JUNCBX-POTHD2	TAR POTHEAD	POTHEAD	PCB	0		0	5/25/2021
JUNCBX-POTHD3	TAR POTHEAD	POTHEAD	PCB	0		0	5/25/2021
TARFLLDPTS-1	TAR FILLED PT	PT	PCB	0		0	5/25/2021
TARFLLDPTS-2	TAR FILLED PT	PT	РСВ	0		0	5/25/2021
TARFLLDPOTHDS-	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
TARFLLDPOTHDS- 2	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
TARFLLDPOTHDS- 3	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
TARFLLDPOTHDS- 4	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
TARFLLDPOTHDS- 5	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
FARFLEDPOTHDS-6	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
TARFLLDPOTHDS- 7	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
RAFELDPOTHDS-	TAR POTHEAD	POTHEAD	РСВ	0		0	5/25/2021
9	TAR POTHEAD	POTHEAD	PCB	0		0	5/25/2021

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX J</u>

Battery 113 Sample Summary Results

ANALYTICAL DATA REPORT

Renova Environmental Services 3417 Sunset Ave. Ocean, NJ 07712

Project Name: **CAMP HERO BUNKER #113** IAL Case Number: **E21-03338**

These data have been reviewed and accepted by:

ichael H. Left n, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed. The results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

RESULTS SUMMARY REPORT

SUMMARY REPORT

Client: Renova Environmental Services Project: CAMP HERO BUNKER #113 Lab Case No.: E21-03338

	Lab ID:	033	38-001	03338	3-002	0333	8-003	0333	8-004
	Client ID:	CH	-FB-03	CH-W	/S-05	CH-	WS-05	CH-	CS-06
	Matrix:	V	/ipes	Wi	oes	W	ipes	Solid	
	Sampled Date	5/:	27/21	5/27	/21	5/2	7/21	5/2	7/21
PARAMETER(Units)		Conc	Q MDL	Conc Q	MDL	Conc	Q MDL	Conc	Q MDL
Hydrocarbons (Units)		(ug/l	(00cm2)	(ug/100	Ocm2)	(ug/1	00cm2)	(mg/Kg)	
TPH-DRO		148	40.0	3600	40.0	27700	400	7280	155
								-	
	Lab ID:	033	38-005	03338	-006				
	Lab ID: Client ID:			03338 CH-C					
		СН	38-005		S-08				
	Client ID:	CH-S	38-005 -CS-07	СН-С	2S-08 id				
PARAMETER(Units)	Client ID: Matrix:	CH-S	38-005 -CS-07 folid	CH-C Sol	S-08 id /21				
	Client ID: Matrix:	CH-S-S-5/2	38-005 -CS-07 folid 27/21	CH-C Sol 5/27	S-08 id /21 0 MDL				

FINALIZED 07/16/2021 E21-03338 Page 6

ANALYTICAL DATA REPORT

Renova Environmental Services 3417 Sunset Ave. Ocean, NJ 07712

Project Name: **CAMP HERO BUNKER #113** IAL Case Number: **E21-03337**

These data have been reviewed and accepted by:

ichael H. Leffin, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed. The results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

RESULTS SUMMARY REPORT

FINALIZED 07/01/2021 E21-03337 Page 6

SUMMARY REPORT

Client: Renova Environmental Services Project: CAMP HERO BUNKER #113

Lab Case No.: E21-03337

		022	27	002	03	1337	-004							
	Lab ID:		337-0			3337			37-6 -WS				-004 S-09	
	Client ID:		I-FB-		C	H-W					C			
	Matrix:		Wipe			Wip			Vipe		Solid 5/27/21			
DADAMETED/II-ital	Sampled Date		5/27/21 onc Q MDL Con			5/27/ Q	MDL	5/27/21 Conc Q MDL						
PARAMETER(Units)		Conc	one Q MDL Co		Conc Q MDL									
PCB's (Units)		(ug	(ug/100cm2)			(ug/100cm2)			(ug/100cm2)			(mg/Kg)		
Aroclor-1016	. 0	ND		0.150	ND		0.150	ND		0.750	ND		0.00572	
Aroclor-1221		ND		0.150	ND		0.150	ND		0.750	ND		0.00572	
Aroclor-1232		ND		0.150	ND		0.150	ND		0.750	ND		0.00572	
Aroclor-1242		ND		0.150	ND		0.150	ND		0.750	ND		0.00572	
Aroclor-1248		ND		0.150	ND		0.150	ND		0.750	ND		0.00572	
Aroclor-1254		ND		0.150	ND		0.150	335	D	0.750	77.1	D	0.571	
Aroclor-1260		ND		0.150	ND		0.150	ND		0.750	ND		0.00572	
Aroclor-1262		ND		0.150	0.445	DJ	0.150	ND		0.750	ND		0.00572	
Aroclor-1268		ND		0.150	ND		0.150	ND		0.750	ND		0.00572	
PCBs		ND		0.150	0.445	DJ	0.150	335	D	0.750	77.1	D	0.571	
	Lab ID:		337-0		03337-006									
	Client ID:	CI	H-CS			СН-С		18						
	Matrix:		Solid			Sol								
	Sampled Date		5/27/2			5/27								
PARAMETER(Units)		Conc	Q	MDL	Conc	Q	MDL							
PCB's (Units)		(mg/Kį	g)		(mg/	Kg)							
Aroclor-1016		ND	(0.00559	ND		0.00569							
Aroclor-1221		ND	(0.00559	ND		0.00569							
Aroclor-1232		ND	(0.00559	ND		0.00569							
					3.773		0.00569							
Aroclor-1242		ND	(0.00559	ND		0.0000							
Aroclor-1242 Aroclor-1248		ND ND		0.00559 0.00559	ND ND		0.00569							
						D								
Aroclor-1248		ND	D	0.00559	ND	D	0.00569							
Aroclor-1248 Aroclor-1254		ND 64.5	D	0.00559 0.559	ND 70.9	D	0.00569 0.569							
Aroclor-1248 Aroclor-1254 Aroclor-1260		ND 64.5 ND	D	0.00559 0.559 0.00559	ND 70.9 ND	D	0.00569 0.569 0.00569							

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds.

For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

D = The compound was reported from the Diluted analysis

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX K</u>

Battery 113 Removal Recommendation Memo

Date: September 2, 2021

To: Julie Rupp

US Army Corps of Engineers

New England District

From: Tom Bykow

Renova Environmental Company

Re: Bunker 113 Removal Recommendation

Camp Hero, Montauk, New York

FUDS Project Number: C02NY002403

NAE Project Number: 452115

Renova Environmental Services, LLC (Renova) prepared this memorandum to summarize the results of the sampling performed at Bunker 113 located at the Camp Hero Site, in Montauk, New York. The following provides an overview of the sampling scope of work, summary of results, and removal recommendations.

1.0 SCOPE OF WORK

On August 10, 2021, Renova mobilized to the Camp Hero Site and collected samples from the concrete floor in Bunker 113 to characterize the media for recommended extents of removal in support of this removal action. Table 1 below provides a summary, by area, of the actual media that was sampled, the sample type, and the laboratory analysis performed on that sample type. **Attachment 1** is a drawing indicating the sample locations within the Bunker.

The concrete core samples were retrieved using a core drill with a 4-inch hollow bit. The extent of core that could be extracted was approximately 12-inches. For cores AST-01, AST-02, AST 03 and TR-04 the core did not extend past the concrete to the subgrade soil below. The samples were returned to our office and prepared for the lab analysis. The cores were cut into 2-inch slugs and labeled as 0-2, 2-4 and 4-6. Renova analyzed the 0-2 and the 2-4 samples but held the 4-6 as a precaution if the analysis on the 2-4 samples failed. The balance of the core sample was retained at Renova's office. Soil samples were collected from cores TR-01, TR-02, TR-03 and TR-05 as

the core penetrated into the existing subgrade. These soil samples were placed in 8-ounce lab jars to be sampled as requested by the USACE.

The collected samples were shipped to Eurofins/Test America, located in Edison, New Jersey on August 19, 2021. Renova received the laboratory results on August 24, 2021.

	Table 1 Summary of Waste Characterization Sampling												
Structure	Media	Sample Type	Analyses										
	Concrete Core Samples AST-01, AST-02 and AST- 03	Concrete	VOC (8260D) and SVOC (8270E)										
Bunker 113	Concrete Core Samples TR-01, TR-02, TR-03, TR- 04 and TR-05	Concrete	PCB (8082A)										
	Soil Samples TR- 01, TR-02, TR-03 and TR-05	Soil	PCB (8082A)										

2.0 WASTE CHARACTERIZATION RESULTS

The following provides a summary of the laboratory detections along with the associated regulatory criteria see **Attachment 2** for the complete analysis.

2.1 Bunker 113 – AST Area Concrete Samples

Table 2 provides a summary of the laboratory detections for the concrete samples which were collected in proximity of the ASTs located in Bunker 113.

	Table 2 Bunker 113 – Laboratory Detections in AST Area Concrete Core Sample													
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria										
	VOCs 8260D (ug/kg)	Acetone	62											
AST-01-0-2	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6										
AST-01-2-4	VOCs 8260D (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6										

	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria		
	VOCs 8260D (ug/kg)	Acetone	91	
AST-02-0-2	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6
AST-02-2-4	VOCs 8260D (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6
A31-02-2-4	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6
AST-03-0-2	VOCs 8260D (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6
A31-03-0-2	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6
AST-03-2-4	VOCs 8260D (ug/kg)	No Exceedances Above Regulatory Criteria		NYDEC 375-6
A31-03-2-4	SVOC 8270E (ug/kg)	No Exceedances Above Regulatory Criteria		NIDEC 373-0

2.2 Bunker 113 – Transformer Room

Table 3 provides a summary of the laboratory detections for concrete core samples TR-01 through TR-05, collected from the concrete floor in proximity of the electrical components.

Bu	Table 3 Bunker 113 – Laboratory Detections in the Transformer Room Concrete Core Samples											
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria								
TR-01-0-2	PCBs (mg/kg)	Aroclor 1254	55	> 50 (TSCA PCB Waste)								
TR-01-2-4	PCBs (mg/kg)	Aroclor 1254	1	> 50 (TSCA PCB Waste)								
TR-02-0-2	PCBs (mg/kg)	Aroclor 1254	1.4	> 50 (TSCA PCB Waste)								
TR-02-2-4	PCBs (mg/kg)	Aroclor 1254	0.39	> 50 (TSCA PCB Waste)								
TR-03-0-2	PCBs (mg/kg)	Aroclor 1254	26	> 50 (TSCA PCB Waste)								
TR-03-2-4	PCBs (mg/kg)	Aroclor 1254	0.043	> 50 (TSCA PCB Waste)								
TR-04-0-2	PCBs (mg/kg)	Aroclor 1254	0.17	> 50 (TSCA PCB Waste)								
TR-04-2-4	PCBs (mg/kg)	Aroclor 1254	0.11	> 50 (TSCA PCB Waste)								
TR-05-0-2	PCBs (mg/kg)	Aroclor 1254	2.8	> 50 (TSCA PCB Waste)								

TR-05-2-4	PCBs (mg/kg)	Aroclor 1254	ND	> 50 (TSCA PCB Waste)

Table 4 provides a summary of the laboratory detections for the soil under the core samples, TR-01 through TR-03 and TR-05, collected from below the concrete floor in proximity of the electrical components.

Table 4 Bunker 113 – Laboratory Detections in the Transformer Room Soil Sample												
Sample ID	Analytical Parameter	Constituent	Analytical Results	Regulatory Criteria								
TR-01-SS	PCBs (mg/kg)	Aroclor 1254	0.01	> 50 (TSCA PCB Waste)								
TR-02-SS	PCBs (mg/kg)	Aroclor 1254	ND	> 50 (TSCA PCB Waste)								
TR-03-SS	PCBs (mg/kg)	Aroclor 1254	0.065	> 50 (TSCA PCB Waste)								
TR-05-SS	PCBs (mg/kg)	Aroclor 1254	.21	> 50 (TSCA PCB Waste)								

3.0 REMOVAL RECOMMENDATIONS

3.1 AST Area

In the AST area Renova recommends no further action. The level of remaining constituents based on the use of the area do not pose a health threat.

3.2 Transformer Room Area

In the transformer room area Renova recommends removal of the top 2" of concrete. Sample TR-01 indicated that the PCB contamination is above the TSCA level of 50 PPM. Attachment 3 shows the sample results by location. Attachment 4 shows the recommended disposal breakdown for TSCA and Non TSCA material. Renova assumes that the volume of TSCA disposal will be one (1) 55-gallon drum and the volume of Non-TSCA concrete disposal will be three (3) 55-gallon drums. Renova will use pneumatic chipping guns affixed with steel bits and chip off the top 2-inches of concrete and load the spoils into the drums. The area will then be vacuumed, and the collected debris will be placed in the drums. Renova will hand mix bagged concrete and place it in the chipped area to replace the removed material in kind.

Attachment 1 Bunker 113 – Core Sample Locations

Core Identification	Core Location	Sample Identification
C1	AST Aera	AST-01
C2	AST Aera	AST-02
C3	AST Aera	AST-03
C4	Transformer Room	TR-01
C5	Transformer Room	TR-02
C6	Transformer Room	TR-03
С7	Transformer Room	TR-04
C8	Transformer Room	TR-05

Attachment 2 Bunker 113 – Laboratory Results

Eurofins TestAmerica, Edison

TestAmerica Laboratories, Inc.
Eurofins TestAmerica, Edison
Lab lob II: 460-21195-1
Job Description: Camp Hero
For:
Renova Environmental Services
4417 Sunset Ave
Ocean, New Jersey 07712

Client ID	NYDEC 375-6	NY CP51	NY CP-51	AST-01-0-2	AST-01-2-4	AST-02-0-2		AST-03-0-2							
Lab Sample ID	Soil Cleanup Obj	Table 2	Table 3	460-241195-1	460-241195-2	460-241195-4	460-241195-5	460-241195-7	460-241195-8						
Sampling Date	UnRestricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use	Soil Gas	Soil Fuel Oil	08/10/2021 09:00:00	08/10/2021 09:00:00	08/10/2021 11:00:00	08/10/2021 11:00:00	08/10/2021 13:00:00	08/10/2021 13:00:00
Matrix		Residential	Restricted Resid	Commercial	Industrial	Protection of EC	Protection of GW	Contaminate	Contaminat	Soil	Soil	Soi	Soil	Soil	Soil
Dilution Factor										1	1	1	. 1	1	1
Unit	ug/kg	ug/kg	ug/kg	ug/kg Result Q MDL	ug/kg Result Q MDL	ug/kg Result Q MDI		ug/kg Result Q MDL							
SOIL BY 8260D										Result Q MDL	Result Q MDL	Result Q Mibi	Result Q MDL	Result Q MDL	Result Q MDL
1,1,1-Trichloroethane	680	100000	100000	500000	1000000	See Reg	680	NA.	NA.	0.25 U 0.25	0.25 U 0.25	0.25 U 0.25	0.21 U 0.21	0.22 U 0.22	0.22 U 0.22
1.1.2.2-Tetrachloroethane	NA.	NA	NA.	NΔ	NA.	NA.	NA	NΔ	NA.	0.23 U 0.23	0.23 U 0.23	0.23 U 0.23		0.21 U 0.21	
1.1.2-Trichloro-1.2.2-trifluoroethane	NA.	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA.	0.23 U 0.23	0.32 U 0.32	0.32 U 0.32		0.29 U 0.29	
1.1.2-Trichloroethane	NA.	NA NA	NA NA		NA NA		NA.	NA NA	NA NA	0.19 U 0.19	0.19 U 0.19	0.19 U 0.19		0.17 U 0.17	
1,1-Dichloroethane	270	19000	26000	240000	480000	See Reg	270	NA.	NA	0.23 U 0.23	0.22 U 0.22	0.22 U 0.22		0.20 U 0.20	
1,1-Dichloroethene	330	100000	100000	500000	1000000	See Reg	330	NA.	NA.	0.25 U 0.25	0.24 U 0.24	0.24 U 0.24		0.22 U 0.22	
1.2.3-Trichlorobenzene	NA.	NA.	NA NA	NA NA	NA.	NA.	NA	NA NA	NA.	0.20 U 0.20	0.19 U 0.19	0.19 U 0.19		0.17 U 0.17	
1,2,4-Trichlorobenzene	NA.	NA.	NA NA	NA	NA.	NA.	NA.	NA	NA	0.39 U 0.39	0.38 U 0.38	0.38 U 0.38		0.34 U 0.34	
1,2-Dibromo-3-Chloropropane	NA.	NA NA	NA NA	NA	NA.	NA.	NA	NA	NA	0.50 U 0.50	0.49 U 0.49	0.49 U 0.49	0.41 U 0.41	0.44 U 0.44	0.43 U 0.43
1,2-Dichlorobenzene	1100	100000	100000	500000	1000000	See Reg	1100	NA	NA	0.39 U 0.39	0.38 U 0.38	0.39 U 0.39	0.32 U 0.32	0.35 U 0.35	0.34 U 0.34
1,2-Dichloroethane	20	2300	3100	30000	60000	See Reg	20	NA	NA	0.32 U 0.32	0.31 U 0.31	0.32 U 0.32	0.26 U 0.26	0.28 U 0.28	
1,2-Dichloropropane	NA	NA.	NA NA	NA	NA.	NA.	NA	NA	NA	0.46 U 0.46	0.45 U 0.45	0.45 U 0.45	0.38 U 0.38	0.41 U 0.41	
1,3-Dichlorobenzene	2400	17000	49000	280000	560000	See Reg	2400	NA	NA	0.40 U 0.40	0.39 U 0.39	0.39 U 0.39		0.35 U 0.35	
1,4-Dichlorobenzene	1800	9800	13000	130000	250000	20000	1800	NA	NA	0.29 J 0.25	0.24 U 0.24	0.24 U 0.24	0.20 U 0.20	0.22 U 0.22	
1,4-Dioxane	100	9800	13000	130000	250000	100	100	NA	NA	10 U 10	9.8 U 9.8	9.9 U 9.9		8.8 U 8.8	
2-Butanone (MEK)	120	100000	100000	500000	1000000	100000	120	NA	NA	21 0.40	5.7 0.39	38 0.39		3.7 J 0.35	
2-Hexanone	NA NA	NA.	NA NA		NA.	NA.	NA NA	NA	NA	6.6 1.9	2.5 J 1.8	12 1.8		2.3 J 1.6	
4-Methyl-2-pentanone (MIBK)	NA NA	NA.	NA NA		NA		NA	NA	NA	1.7 U 1.7	1.7 U 1.7	1.8 J 1.7		1.5 U 1.5	
Acetone	50	100000	100000	500000	1000000	2200	50	NA.	NA	62 6.3	27 6.1	91 6.1		17 5.5	
Benzene	60	2900	4800	44000	89000	70000	60	60	60	0.53 J 0.28	0.29 J 0.27	0.73 J 0.28		0.29 J 0.25	
Bromoform	NA.	NA NA	NA NA		NA.	NA.	NA NA	NA	NA NA	0.46 U 0.46	0.45 U 0.45	0.46 U 0.46		0.41 U 0.41	
Bromomethane Carbon disulfide	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	1.1 U 1.1 0.29 U 0.29	1.1 U 1.1 0.28 U 0.28	1.1 U 1.1 0.29 U 0.29	0.89 U 0.89 0.24 U 0.24	0.96 U 0.96 0.26 U 0.26	
Carbon disulfide Carbon tetrachloride	760	NA 1400	NA 2400	22000	44000	NA See Reg	760	NA NA	NA NA	0.29 U 0.29 0.42 U 0.42	0.28 U 0.28 0.41 U 0.41	0.29 U 0.29 0.42 U 0.42		0.26 U 0.26 0.37 U 0.37	
Carbon tetrachionide Chlorobenzene	1100	100000	100000	500000	1000000	5ee Reg 40000	1100	NA NA	NA NA	0.42 U 0.42 0.19 U 0.19	0.41 U 0.41 0.19 U 0.19	0.42 U 0.42 0.19 U 0.19		0.37 U 0.37 0.17 U 0.17	
Chlorobromomethane	NA NA	40000 NA	NA NA	NA.	NA NA	0.19 U 0.19	0.30 U 0.30	0.30 U 0.30		0.27 U 0.27					
Chlorodibromomethane	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	0.21 U 0.21	0.21 U 0.21	0.21 U 0.21		0.19 U 0.19	
Chloroethane	NA.	NA.	NA NA		NA.	NA.	NA.	NA NA	NA NA	0.57 U 0.57	0.56 U 0.56	0.56 U 0.56		0.50 U 0.50	
Chloroform	370	10000	49000	350000	700000	12000	370	NA NA	NA NA	1.1 U 1.1	1.0 U 1.0	1.0 U 1.0		0.93 U 0.93	
Chloromethane	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA	0.48 U 0.48	0.46 U 0.46	1.7 0.47		0.42 U 0.42	
cis-1,2-Dichloroethene	250	59000	100000	500000	1000000	See Reg	250	NA	NA	0.39 U 0.39	0.38 U 0.38	0.38 U 0.38		0.34 U 0.34	
cis-1,3-Dichloropropene	NA NA	NA.	NA	NA	NA	NA.	NA	NA	NA	0.30 U 0.30	0.29 U 0.29	0.29 U 0.29	0.24 U 0.24	0.26 U 0.26	0.26 U 0.26
Cyclohexane	NA NA	NA.	NA	NA	NA.	NA.	NA.	NA	NA	0.24 U 0.24	0.24 U 0.24	0.24 U 0.24	0.20 U 0.20	0.21 U 0.21	0.21 U 0.21
Dichlorobromomethane	NA NA	NA.	NA	NA	NA	NA.	NA.	NA	NA	0.28 U 0.28	0.27 U 0.27	0.28 U 0.28	0.23 U 0.23	0.25 U 0.25	
Dichlorodifluoromethane	NA.	NA	NA NA	NA	NA	NA	NA	NA	NA	0.37 U 0.37	0.36 U 0.36	0.36 U 0.36		0.32 U 0.32	
Ethylbenzene	1000	30000	41000	390000	780000	See Reg	1000	1000	1000	0.41 J 0.22	0.21 U 0.21	0.67 J 0.21		0.93 J 0.19	
Ethylene Dibromide	NA NA	NA.	NA NA	NA	NA	NA.	NA	NA	NA	0.20 U 0.20	0.19 U 0.19	0.19 U 0.19		0.17 U 0.17	
Isopropylbenzene	NA.	NA.	NA NA		NA		NA.	2300	2300	0.31 U 0.31	0.30 U 0.30	0.59 J 0.31		1.6 0.27	
Methyl acetate	NA.	NA.	NA NA		NA.		NA NA	NA	NA	4.7 U 4.7	4.6 U 4.6	4.6 U 4.6		4.1 U 4.1	
Methyl tert-butyl ether	930	62000	100000	500000	1000000	See Reg	930	930	NA	0.56 U 0.56	0.54 U 0.54	0.55 U 0.55		0.49 U 0.49	
Methylcyclohexane	NA.	NA.	NA.	0.55 U 0.55	0.53 U 0.53	0.54 U 0.54		0.48 U 0.48							
Methylene Chloride	50	51000	100000	500000	1000000	12000	50	NA.	NA	1.3 U 1.3	1.2 U 1.2	1.2 U 1.2		1.1 U 1.1	
m-Xylene & p-Xylene	NA NA	NA.	NA NA		NA.		NA NA	NA NA	NA.	1.1 0.19	0.38 J 0.19	2.2 0.19		4.2 0.17	
o-Xylene	NA NA	NA NA	NA NA	0.76 J 0.21 0.78 J 0.30	0.21 U 0.21 0.30 U 0.30	1.6 0.21 2.1 0.30		3.8 0.19 0.27 U 0.27							
Styrene Tetrachloroethene	1300	NA 5500	19000	150000	300000	NA 2000	1300	NA NA	NA NA	0.78 J 0.30 0.33 U 0.33	0.30 U 0.30 0.32 U 0.32	0.33 U 0.30		0.27 U 0.27 0.29 U 0.29	
Toluene	700	100000	19000	150000 500000	1000000	36000	700	700	700	0.33 U 0.33 0.95 J 0.26	0.32 U 0.32 0.38 J 0.25	0.33 U 0.33 0.67 J 0.25		0.29 U 0.29 0.46 J 0.22	
trans-1 2-Dichloroethene	190	100000	100000	500000	1000000	See Reg	190	700 NA	700 NA	0.95 J 0.26	0.38 J 0.25	0.67 J 0.25		0.46 J 0.22 0.24 U 0.24	
trans-1,3-Dichloropropene	NA NA	NA NA	NA NA	0.29 U 0.29	0.28 U 0.28	0.29 U 0.29		0.24 U 0.24							
Trichloroethene	470	10000	21000	200000	400000	2000	470	NA.	NA NA	0.35 U 0.35	0.24 U 0.34	0.34 U 0.34		0.31 U 0.31	
Trichlorofluoromethane	NA NA	NA.	NA NA	NA NA	NA NA	0.44 U 0.44	0.43 U 0.43	0.44 U 0.44		0.39 U 0.39					
Vinyl chloride	20	210	900	13000	27000	See Reg	20	NA	NA	0.60 U 0.60	0.58 U 0.58	0.59 U 0.59		0.52 U 0.52	
Total Conc	NA	NA.	NA NA	NA	NA.	NA.	NA	NA	NA	94.42	36.25	153.06	22.7	34.28	25.79

Highlighted Concentrations shown in bold type face exceed limits

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U: Indicates the analyte was analyzed for but not detected.

Lab Contact: Jill Miller Senior Project Manager (484)685-0871

Eurofins TestAmerica, Edison

TestAmerica Laboratories, Inc. Eurofins TestAmerica, Edison Lab Job ID: 460-241195-1 Job Description: Camp Hero For: Renova Environmental Services 3417 Sunset Ave

3417 Sunset Ave Ocean, New Jersey 07712															
Client ID	NYDEC 375-6	NY CPS1	NY CP-51	AST-01-0	2 AST-01-2-4	AST-02-0-2	AST-02-2-4	AST-03-0-2	AST-03-2-4						
Lab Sample ID	Soil Cleanup Obj	Table 2	Table 3	460-241195	1 460-241195-3	460-241195-4		460-241195-7	460-241195-						
Sampling Date	UnRestricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use	Soil Gas	Soil Fuel Oil	08/10/2021 09:00:0	08/10/2021 09:00:00			08/10/2021 13:00:00	08/10/2021 13:00:0
Matrix	OHNESTICATED USE	Residential	Restricted Resid	Commercial	Industrial	Protection of FC	Protection of GW	Contaminate	Contaminat	Sc		Soi		Soil	Soi
Dilution Factor											1	1	1	1	
Unit	ug/kg	ug/kg	ug/kg	ug/l	og ug/kj	ug/kg	ug/kg	ug/kg	ug/kj						
	-0.10	-0/-0	-0.10	*0.**0	-0-0	-00	-0-0	-0.10	*0.**0	Result Q ME					Result Q MDI
SOIL BY 8270E															
1,1'-Biphenyl	NA NA	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	4.5 U 4	.5 35 J 4.5	5 150 J 4.5	4.5 U 4.5	4.5 U 4.5	4.5 U 4.5
1.2.4.5-Tetrachlorobenzene	NA NA	NA.	NA NA	NA.	NA.	NA NA	NA.	NA	NA.	11 U 1	1 10 U 10			11 U 11	11 U 1:
2,2'-oxybis[1-chloropropane]	NA NA	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA.	6.1 U 6					6.1 U 6.1
2,3,4,6-Tetrachlorophenol	NA NA	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	23 U 2					23 U 2
2,4,5-Trichlorophenol	NA.	NA.	NA NA	NA.	NA	NA.	NA.	NA.	NA.	35 U 3					34 U 3
2,4,6-Trichlorophenol	NA.	NA	NA	NA.	NA	NA.	NA.	NA	NA.	44 U 4		43 U 43		43 U 43	43 U 4
2,4-Dichlorophenol	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	22 U 2	22 U 23	22 U 22	2 22 U 22	22 U 22	22 U 2
2,4-Dimethylphenol	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	15 U 1	IS 15 U 15	15 U 15	15 U 15	15 U 15	15 U 1
2,4-Dinitrophenol	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	170 U 17	0 160 U 160	170 U 170	170 U 170	170 U 170	170 U 17
2,4-Dinitrotoluene	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	37 U	17 36 U 36	36 U 36	36 U 36	36 U 36	36 U 3
2,6-Dinitrotoluene	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA.	25 U 2	15 24 U 24	24 U 24	24 U 24	24 U 24	24 U 2
2-Chloronaphthalene	NA.	NA	NA	NA.	NA NA	NA.	NA.	NA.	NA.	16 U 1	16 16 U 16	16 U 16		16 U 16	16 U 1
2-Chlorophenol	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA	12 U 1	12 12 U 13	12 U 12	2 12 U 12	12 U 12	12 U 1
2-Methylnaphthalene	NA.	NA	NA.	NA.	NA.	NA	NA	NA	NA	770 9		1200 9.4	1 2200 9.4	4200 9.5	880 9.
2-Methylphenol	330	100000	100000	500000	1000000	See Reg	330	NA	NA	13 U 1	13 13 U 1	3 13 U 13	3 13 U 13	13 U 13	13 U 1
2-Nitroaniline	NA.	NA	NA.	NA.	NA	NA.	NA.	NA	NA	13 U 1	13 13 U 1:	3 13 U 13		13 U 13	13 U 1
2-Nitrophenol	NA.	NA	NA.	NA.	NA	NA.	NA NA	NA.	NA.	34 U 3	14 34 U 34	34 U 34		34 U 34	34 U 3
3,3'-Dichlorobenzidine	NA.	NA	NA.	NA.	NA	NA.	NA NA	NA.	NA.	34 U 3	51 51 U 5:	51 U 51	1 51 U 51	51 U 51	51 U 5
3-Nitroaniline	NA.	NA.	NA.	38 U 3	88 38 U 31				38 U 3						
4,6-Dinitro-2-methylphenol	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA	NA.	140 U 14	10 140 U 140	140 U 140	140 U 140	140 U 140	140 U 14
4-Bromophenyl phenyl ether	NA.	NA	NA.	13 U 1	13 U 1	3 13 U 1	3 13 U 13	13 U 13	13 U 1						
4-Chloro-3-methylphenol	NA NA	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	19 U 1	.9 19 U 19	19 U 19	19 U 19	19 U 19	19 U 19
4-Chloroaniline	NA NA	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	60 U 6	60 U 60	60 U 60	60 U 60	60 U 60	60 U 6
4-Chlorophenyl phenyl ether	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	NA	NA.	12 U 1	2 12 U 13	12 U 12	12 U 12	12 U 12	12 U 13
4-Methylphenol	330	34000	100000	500000	1000000	See Reg	330	NA	NA.	21 U 2	1 21 U 21	21 U 21	1 21 U 21	21 U 21	21 U 2:
4-Nitroaniline	NA.	NA NA	NA	NA.	NA.	NA.	NA.	NA	NA.	39 U 3	19 39 U 39	39 U 39		39 U 39	39 U 39
4-Nitrophenol	NA.	NA NA	NA	NA.	NA.	NA.	NA.	NA	NA.	55 U 5	iS 55 U 55				55 U 55
Acenaphthene	20000	100000	100000	500000	1000000	20000	98000	NA.	20000	84 J 9		350 9.6			9.6 U 9.6
Acenaphthylene	100000	100000	100000	500000	1000000	See Reg	107000	NA	100000	76 J 3	4 17 J 3.4	99 J 3.4			3.4 U 3.4
Acetophenone	NA.	NA.	NA	NA	NA	NA.	NA	NA	NA	17 U 1					17 U 17
Anthracene	100000	100000	100000	500000	1000000	See Reg	1000000	NA.	100000	10 U 1					18 J 10
Atrazine	NA.	NA.	NA	NA	NA	NA.	NA.	NA	NA.	20 U 2	10 20 U 20				20 U 20
Benzaldehyde	NA.	NA.	NA	NA	NA	NA.	NA.	NA	NA.	56 U	66 56 U 56				56 U 56
Benzo[a]anthracene	1000	1000	1000	5600	11000	See Reg	1000	NA.	1000	67 1					18 J 12
Benzo[a]pyrene	1000	1000	1000	1000	1100	2600	22000	NA.	1000	49 9					9.6 J 9.0
Benzo[b]fluoranthene	1000	1000	1000	5600	11000	See Reg	1700	NA.	1000	72 8					16 J 8.8
Benzo[g,h,i]perylene	100000	100000	100000	500000	1000000	See Reg	1000000	NA	100000	40 J 1					10 U 10
Benzo[k]fluoranthene	800	1000	3900	56000	110000	See Reg	1700	NA	800	27 J 6					6.6 U 6.6
Bis(2-chloroethoxy)methane	NA NA	NA	NA	NA NA	NA	NA.	NA	NA	NA	26 U 2				26 U 26	26 U 26
Bis(2-chloroethyl)ether	NA NA	NA NA	NA	NA	NA	NA.	NA NA	NA.	NA.	12 U 1	12 12 U 13	12 U 12		12 U 12	12 U 12
Bis(2-ethylhexyl) phthalate	NA.	NA	NA.	NA.	NA NA	NA.	NA	NA.	NA.	18 U 1	18 U 11	18 U 18		28 J 18	18 U 1
Butyl benzyl phthalate	NA.	NA NA	NA.	NA.	NA NA	NA.	NA NA	NA.	NA.	16 U 1				16 U 16	16 U 16
Caprolactam	NA.	NA NA	NA.	NA.	NA NA	NA.	NA NA	NA.	NA.	53 U 5					53 U 5
Carbazole	NA.	NA	NA.	NA.	NA	NA.	NA NA	NA.	NA	340 1	13 13 U 1				13 U 1
Chrysene	1000	1000	3900	56000	110000	See Reg	1000	NA	1000	84 J 5					15 J 5.1
Dibenz(a,h)anthracene	330	330	330	560	1100	See Reg	1000000	NA	330	15 U 1	15 15 U 19				15 U 19
Dibenzofuran	7000	14000 NA	59000	350000	1000000	See Reg	210000	NA.	NA.	160 J 4					74 J 4.1
Diethyl phthalate	NA.		NA.	NA.	NA	190	NA NA	NA.	NA	4.9 U 4					4.9 U 4.9
Dimethyl phthalate	NA NA	NA NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	77 U 7				77 U 77	77 U 7
Di-n-butyl phthalate	NA NA	NA NA	NA NA	NA	NA	NA.	NA NA	NA.	NA	13 U :	13 13 U 1			13 U 13	13 U 1
Di-n-octyl phthalate				NA	NA NA	NA.		NA.	NA.	18 U :	18 18 U 1	8 18 U 18		18 U 18	18 U 1
Fluoranthene	100000	100000	100000	500000	1000000	See Reg	1000000	NA.	100000	560					45 J 1:
Fluorene	30000	100000	100000	500000	1000000	30000	386000	NA.	30000	220 J 4		480 4.6			33 J 4.1
Hexachlorobenzene	330	330	1200	6000	12000	See Reg	3200	NA.	NA NA	16 U :					
Hexachlorobutadiene	NA NA	NA	NA.	NA.	NA NA	NA.	NA	NA.	NA NA	7.2 U 7					7.2 U 7.1
Hexachlorocyclopentadiene	NA.	NA.	NA.	NA.	NA	NA.	NA NA	NA.	NA.	30 U 3	80 29 U 29		30 U 30	30 U 30	30 U 3
Hexachloroethane	NA	NA	NA.	NA.	NA.	NA.	NA.	N.A.	NA NA	12 U :	12 12 U 1:	2 12 U 12	2 12 U 12		12 U 1
Indeno[1,2,3-cd]pyrene	500	500	500	5600	11000	See Reg	8200	NA.	500	39 1	3 25 J 13				13 U 1
Isophorone	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	98 U 9					98 U 90
Naphthalene	12000	100000	100000	500000	1000000	See Reg	12000	12000	12000	87 J 5					130 J 5.
Nitrobenzene	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	8.2 U 8				8.1 U 8.1	8.1 U 8.
N-Nitrosodi-n-propylamine	NA NA	NA.	NA NA	NA NA	NA.	NA.	NA NA	NA.	NA.	25 U 2					25 U 2
N-Nitrosodiphenylamine	NA 000	NA.	NA CZOO		NA .	NA.	NA na	NA.	NA.	28 U 2				28 U 28	28 U 28
Pentachlorophenol	800	2400	6700	6700	55000	800	1000000	NA.	NA.	70 U 7	0 69 U 69			69 U 69	69 U 69
Phenanthrene	100000	100000	100000	500000		See Reg		NA.	100000	4000 6				2900 5.9	440 5.5
Phenol	330	100000	100000	500000	1000000	30000	330	NA.	NA.	12 U 1	2 12 U 13			12 U 12	12 U 12
Pyrene	100000	100000	100000	500000	1000000	See Reg	1000000	NA	100000	660 8	.4 87 1 8.4	780 8.4	320 J 8.4	340 8.4	55 J 8.4

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U : Indicates the analyte was analyzed for but not detected.

Eurofins TestAmerica, Edison

TestAmerica Laboratories, Inc. Eurofins TestAmerica, Edison

Lab Job ID: 460-241195-1 Job Description: Camp Hero For:

3417 Sunset Ave Ocean, New Jersey 07712

Client ID	NYDEC 375-6	NYDEC 375-6	NYDEC 375-6	NYDEC 375-6	NYDEC 375-4	NYDEC 375-6	NYDEC 375-6	NY CPS1	NY CP-51		TR-01-0-2		TR-01-2-4		TR-01-55	TF	1-02-0-2	П	R-02-2-4		TR-02-55	T	R-03-0-2		TR-03-2-4		TR-03-55		TR-04-0-2		TR-04-2-4	TR-00	0-2	TR-05-2-4	
Lab Sample ID	Soil Cleanup Obj	Soil Cleanup Obj	Soil Cleanup Obj	Soil Cleanup Obj	Soll Cleanup Obj	Soll Cleanup Obj	Soil Cleanup Obj	Table 2	Table 3		460-241195-1		460-241195-11	46	-241195-12	460-24	1195-13	460-24	11195-14		141195-15	460-24	41195-16	460	-241195-17	-	60-241195-18		460-241195-19		60-241195-20	460-24119	-21	460-241195-22	460-241
Sampling Date	UnRestricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use	Restricted Use		Soll Gas	Soil Fuel Oil	08/3	1/2021 08:00:0	08/1	1/2021 08:00:00	08/11/2	21 08:00:00	08/11/2021 0	9:00:00	08/11/2021	09:00:00	08/11/2021	09:00:00	08/11/2021	10:00:00	08/11/202	21 10:00:00	08/11/	2021 10:00:00	08/1	1/2021 11:00:00	08/11	2021 11:00:00	08/11/2021 13:0	1:00	08/11/2021 13:00:00	08/11/2021 13
Matrix		Residential	Restricted Resid	Commercial	Industrial	Protection of EC	Protection of GW	Contaminate	Contaminat		Sol		Salt		Soil		Solt		Solt		Soli		Soll		Soil		Soil		Sol		Sol		Sol	Soli	
Offution Factor											100		- 1		1		2		1		1		50		1		1		1		1		5	1	
Unit	ug/kg	ug/kg	ug/kg		ug/q		ug/kg		ug/kg		पद/पद		ug/kg		भा/भा		nb,dt		ug/kg		ug/kg		ug/kg		मह/मह		/VE	मा/पा							
										Result	Q MD	Result	Q MDL	Result C	MDL	Result Q	MOL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result	Q MOL	Result	O MOL	Result	Q MOL	Result Q	EDL R	Result Q MDL	Result Q
SOIL BY BOB2A																																			
Aroclor 1016	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA:	910	U 91	9.2	U 9.2	9.9 U	9.9	18 U	18	9.1 U	9.1	9.4 U	9.4	460 U	460	9.2 U	9.2	9.9	9.9	9.2	0.2	9.2	U 9.2	46 U	46	9.2 U 9.2	9.5 U
Arpelor 1221	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	910	U 91	9.2	U 9.2	9.9 U	9.9	18 U	12	9.1 U	9.1	9.4 U	9.4	460 U	460	9.2 U	9.2	9.9	9.9	9.2	9.2	9.2	U 9.2	46 U	46	9.2 U 9.2	9.5 U
Arodor 1232	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	910	U 91	9.2	U 9.2	9.9 U	9.9	18 U	18	9.1 U	9.1	9.4 U	9.4	460 U	460	9.2 U	9.2	9.9	9.9	9.2	U 9.2	9.2	U 9.2	46 U	46	9.2 U 9.2	9.5 U
Arodor 1242	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	910	U 91	9.2	U 9.2	9.9 U	9.9	18 U	18	9.1 U	9.1	9.4 U	9.4	460 U	460	9.2 U	9.2	9.9	9.9	9.2	U 9.2	9.2	U 9.2	46 U	46	9.2 U 9.2	9.5 U
Arodor 1248	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	910	U 91	9.2	U 9.2	9.9 U	9.9	18 U	18	9.1 U	9.1	9.4 U	9.4	460 U	460	9.2 U	9.2	9.9	9.9	9.2	U 9.2	9.2	U 9.2	46 U	46	9.2 U 9.2	9.5 U
Aredor 1254	NA NA	NA.	NA	NA.	NA.	NA NA	NA.	NA.	NA:	55000	941	1000	9.5	220	10	1400	19	190	9.4	9.7 U	9.7	26000	470	43 1	9.5	65	1 10	170	9.5	110	9.5	2800	47	9.5 U 9.5	210
Arodor 1260	NA NA	NA.	NA.	NA.	NA:	NA NA	NA.	NA.	NA.	940	U 941	9.5	U 9.5	10 U	10	19 U	29	9.4 U	9.4	9.7 U	9.7	470 U	470	9.5 U	9.5	10	U 10	9.5	U 9.5	9.5	U 9.5	47 U	47	9.5 U 9.5	9.8 U

: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Lab Contact: JII Miller Senior Project Manager

Attachment 3 Bunker 113 – PCB Analytical Results by Location

Attachment 4 Bunker 113 – Recommended TSCA and Non-TSCA Removal Locations

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX L</u>

Battery 113 Removal Recommendation Revision Memo

Date: October 27, 2021

To: Julie Rupp

US Army Corps of Engineers

New England District

From: Tom Bykow

Renova Environmental Company

Re: Battery 113 Removal Recommendation Revision

Camp Hero, Montauk, New York

FUDS Project Number: C02NY002403

NAE Project Number: 452115

Renova Environmental Services, LLC (Renova) prepared this memorandum to summarize the revision of intended work scope at BatteryBattery113 located at the Camp Hero Site, in Montauk, New York. The following provides an overview of the revision to the removal recommendation.

On August 10, 2021, Renova mobilized to the Camp Hero Site and collected samples from the concrete floor in Battery 113 to characterize the media for recommended extents of removal in support of this disposal action. Based on the results of the sampling event Renova recommended removal of the top 2-inches of concrete in the areas of the questioned staining. Renova assumed that they would use chipping guns affixed with steel bits to chip out the top 2-inches of concrete and load the spoils into the drums for disposal. The area will then be vacuumed, and the collected debris will be placed in the drums.

Renova mobilized on October 18, 2021, to perform the intended removal. After getting set up to complete the task it was noted that the chipping had minimal effect on concrete removal. This method of removal is common and has successfully been performed by Renova in the past. Renova spoke both internally and with the USACE about the issues encountered with the removal. We assume that the floor was installed using a very high strength concrete which exceeds conventional concrete. It was suggested to predrill holes in the concrete approximately 3-inches apart (see picture below) and chip out between them.

Battery 113 Pre-Drilled Holes

This had little to no effect on the removal. Renova continued to chip the area and remove the visually stained concrete.

With the visual staining removed but less than the intended 2-inches in depth. In areas that were removed the depths varied from 1.5-inches to .75-inches. Renova proceed to take surface wipe samples within a 10cm x 10cm template. The wipe samples will be analyzed to EPA method 8082A- PCB in harmony with 40 CFR.761 and reported in µg per 100 cm2. The prior sampling event considered sampling at 2-inch intervals from the specimens removed. We anticipate that with the surface staining removed that the disposal action, though not to the anticipated depth, was effective in removing the PCB contamination to an acceptable level. Renova took a total of seven (7) samples and one (1) field blank. Five (5) of the seven samples were taken directly adjacent to the previous core samples. The two (2) additional samples were taken in the removal area about mid-distance from the five (5) original core samples.

Locations of the Wipe Samples

Based on the result of this sampling event Renova will review the results and provide further recommendations. Though other less intrusive concrete removal methods are being researched full depth removal may be required.

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX M</u>

PCB Concrete Disposal Manifest

4 Solini

Please print or type. Form Approved, OMB No. 2050-0039 1. Generator ID Number UNIFORM HAZARDOUS 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number WASTE MANIFEST NYD985943512 908-307-2500 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address) MYS LI PK & REC CAMP HERO STATE PAPK 1898 MONTAUK HWY BOX 247 MONTAUX, 17 11954 Robin NY 11702 Generator's Phone: MONTAUR 6. Transporter 1 Company Name 7. Transporter 2 Company Name P4D/467/4878 U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number EQ/WAYME DISPOSAL INC. SITE #2 LAND 49350 N. I-94 SERVICE DRIVE BELLEVILLE MI 48111 (800) 592~5489 MID048090533 9b, U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 9a. 10. Containers 11. Total and Packing Group (if any)) 12. Unit НМ 13. Waste Codes No. Туре Quantity Wt.Not. RQ, UN3432, Polychlorinated Biphenyls solid, E51 GENERATOR 800 PCB1 9, PGILI 10 200 14, Special Handling Instructions and Additional Information 1 casadaendi WID: 68402 ERG \$171 003 DATE: 5 16. 72 CONTAINER ID: 20136 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and Lam the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent: I certify that the waste minimization statement identified in 40 CFR 262 27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Month Day Year Test Annes 16. International Shipments import to U.S. Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month Day Year Malon 23 16 Transporter 2 Printed/Typed Name Signature 18. Discrepancy 18a. Olscrepancy Indication Space Туре Residue Partial Rejection Full Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number 4 Facility's Phone: 18c, Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

Wayne Disposal, Inc. 49350 N I-94 SERVICE DRIVE, BELLEVILLE, MI 48111 USA

Customer Account: Receipt Receipt ID: 1367468 **AMERICAN WASTE MGMT-05** Customer ID: 848 ONE AMERICAN WAY Manifest / BOL: 023528750JJK WARREN, OH 44484-5555, USA Transporter: HORWITH TRUCKS, INC. Transporter EPA ID: PAD146714878 Generator Site Address: Truck#: 457 NYD986943512, NYS LI PK & REC Date: 05/17/2022 CAMP HERO STATE PARK Time in: 12:33 PM 1898 MONTAUK HWY MONTAUK. NY. 11702, USA Time Out: 2:20 PM Description Qty. Unit Generator C228056WDI - PCB CONTAMINATED CONCRETE 5.200 TONS Hazardous Surcharge Ton 5.200 TONS NYD986943512 NYS LI PK & REC 53,260 lbs. Tare: 42,860 lbs. 10,400 lbs. 2 e-Manifest Submission Fee 1.000 EACH Charge relates to: NYD986943512 NYS LI PK & REC 023528750JJK 53,260 lbs. Tare: 42,860 lbs. C228056WDI-TONS Additional charge due to load minimum 4.800 TONS Charge relates to: NYD986943512 NYS LI PK & REC 023528750JJK - 1 Gross: 53,260 lbs. Tare: 42,860 lbs. Net: 10,400 lbs. Wayne Disposal Host Community Agreement Royalty Fee 5.200 TONS Charge relates to: NYD986943512 NYS LI PK & REC 023528750JJK - 1 Gross: 53,260 lbs. 42,860 lbs. Tare: 10,400 lbs. Net:

HORWITH TRUCKS, INC.

ROUTE 329 BOX 7, NORTHAMPTON, PA 18067

	Container # 20136	<u></u>	Manifest # <u>623528756</u> 3	754
	Tractor # 4.30	$\frac{157}{16446}$ Trailer # $\frac{3}{2}$	14 Fr + 70652	
	Driver Driver	1011113		
1)	Spot Container	Date Time	WO#	
	Name			
	Address			
		Time Out	Total Time	
	Signature			
0	aded Box#	. 4	13674108 10400 59.20	
2) ´	Pickup Container 5	-/6-22 Date / Time	1367468 Soft	
	Name	/teno		7
	Address Montal	yk My		
	Time In	Time Out	Total Time	
	Signature			
3)	Deliver Container 5-/	16-22	5-17-22 Del	
•	Name DWWit	Date Time	wayne (risposal	
	Address	moten D	Belleville MI	
	Time In	/ Time Out	Total Time	
	Signature			

HORWITH TRUCKS, INC. ROUTE 329 BOX 7, NORTHAMPTON, PA 18067

Driver	
1) Spot Container Date Time WO# Name Address	
Time In Total Time	, , , , , , , , , , , , , , , , , , , ,
Signature CMMW Pickup Container Sale Time Wolf Name CAMP / Levo	spet -9-22
Address	
3) Deliver Container 5-/6-22 Del	
Address	

HORWITH TRUCKS, INC.

ROUTE 329 BOX 7, NORTHAMPTON, PA 18067

Container # 20/95 / 20/3	<u>6</u>	Manifest # _	double Spit
Tractor # 436 Driver B. Collans		2.5	
Spot Container 5-9- Date	27_Time	WO#	
Name Comp Hero Address Montonk	NY		
Time In		Tota	
Pickup Container Name Address			
Time In			Time
Deliver Container Date	Time		Del.
Address			
Time In	Time Out	Total	Time
Signature			

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

<u>APPENDIX N</u>

Photo Log

Former Camp Hero Photo Log – Site Closure Report Draft

Montauk, Suffolk County, New York;

FUDS Property #C02NY002403

USACE Contract # W912WJ-20-C-0008

Building #10

Building #10 Entrance

Hazardous Materials (HAZMAT) Stockpile located within Building #10

Chevron HyJet IV Can

Mobil Jet Oil Can

Rusted HAZMAT Can

Rusted and Leaking HAZMAT Can

Tile Staining below HAZMAT Stockpile

Notice of Asbestos Abatement posted outside Building #10

Negative Air Containment Asbestos Abatement

Negative Air Containment Asbestos Abatement

Stained Floor Abated of Asbestos-Containing-Material (ACM) Tiles

Stained Floor Abated of ACM Tiles

Pressure Washing Stained Concrete Floors

Wipe Sampling HAZMAT Removal Area

Concrete Chip and Wipe Sampling HAZMAT Removal Area

Building #107

Building #107 Exterior

Transformers and Electrical Components located within Building #107

Transformers and Electrical Components located within Building #107

Transformer and Electrical Components located within Building #107

Polychlorinated Biphenyl (PCB) Fluid Dried on Exterior of Transformer

Transformers and Electrical Components Removed from Building #107

Transformers and Electrical Components Removed from Building #107

Cleaning and Pressure Washing Transformer Removal Area

Transformer Removal Area Cleaned and Pressure Washed

Concrete Chip and Wipe Sampling Transformer Removal Area

Concrete Chip Sample Collected Below Former Transformer Location

Battery #113

Battery #113 Entrance

Battery #113 Entrance

Bags Containing ACM Removed from Battery #113 and Properly Disposed of

Bag Containing ACM Removed from Battery #113 and Properly Disposed of

Wall-Mounted Above-Ground Storage Tanks (ASTs) Located within Battery #113

ASTs Safely Removed and Prepared for Disposal

Transformers T2311 and T2312 Located within Battery #113

Transformers T2311 and T2312

Transformers T2311 and T2312

Transformers T2311 and T2312

Transformer T2312

Associated Electric Components

Associated Electric Components

Associated Electric Components

Associated Electric Components

Transformer T2313 Located within Battery #113

Removal of PCB-Fluids from Transformer T2313

Transformer T2313 Removed from Battery #113 and Prepared for Proper Disposal

Former Transformer T2311 and T2312 Location

Former Transformer T2313 Location

Cleaning and Pressure Washing Transformer Removal Area

Transformer Removal Area Cleaned and Pressure Washed

Cleaning and Pressure Washing AST Removal Area

Concrete Chip and Wipe Sampling AST Removal Area

Wipe Sampling Transformer Removal Area

Concrete Chip Sampling Transformer Removal Area

Concrete Sampling via Core Drill with Continuous Mist and HEPA Vacuum

Concrete Sampling via Core Drill with Continuous Mist and HEPA Vacuum

Concrete Sampling via Core Drill with Continuous Mist and HEPA Vacuum

Concrete Sampling via Core Drill with Continuous Mist and HEPA Vacuum

Concrete Sampling via Core Drill with Continuous Mist and HEPA Vacuum

Concrete Core Sample Location

Concrete Core Sample Location

Aggregate Reinforcement Observed in Battery #113 Concrete

Concrete Core Sample Locations

Concrete Core Sample Locations

Limited PCB-Impacted Concrete Removal via Chipping Gun

Limited PCB-Impacted Concrete Removal via Chipping Gun

Limited PCB-Impacted Concrete Removal via Chipping Gun

Limited PCB-Impacted Concrete Removal via Chipping Gun

Limited PCB-Impacted Concrete Removal via Chipping Gun

Limited PCB-Impacted Concrete Removal via Chipping Gun

Limited PCB-Impacted Concrete Removal via Chipping Gun

Concrete Sampling Locations

Concrete Removal Area Within Battery #113

Concrete Removal Area Within Battery #113

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

Full-Scale PCB-Impacted Concrete Removal via Jackhammers

10" x 10" Rebar Observed in Battery #113 Concrete

Full-Scale PCB-Impacted Concrete Removal Area

PCB-Impacted Concrete Stockpile

Loading PCB-Impacted Concrete for Disposal

Loading PCB-Impacted Concrete for Disposal

PCB-Impacted Concrete Spoils Prepared for Proper Disposal

Battery #113 Concrete Restoration

Battery #113 Concrete Restoration

Battery #113 Concrete Restoration

Site Closure Report – Draft
Former Camp Hero
Montauk, Suffolk County, New York; FUDS Property #C02NY002403
USACE Contract # W912WJ-20-C-0008

APPENDIX O

C&D Debris Disposal Documentation

BR#S.

WASTE SYSTEMS

Winters Bros Hauling of Long Island

1625 COUNTY ROAD 39 Southampton, NY 11968-5254

Phone: (631) 283-0604 Fax: (631) 287-1232 www.wintersbros.com

CUSTOMER NO	036063
INVOICE DATE	10/14/2022
INVOICE NO	0001144230
CUSTOMER PO	
DUE DATE	11/13/2022

BALANCE FWD	\$-727.79
PAYMENTS	\$0.00
CREDITS	\$0.00
CHARGES	\$727.79
BALANCE DUE	\$0.00

CURRENT	1-30 DAYS	31-60 DAYS	61-90 DAYS	OVER 90 DAYS	BALANCE DUE
\$ 0.00	\$ 0.00	\$ 0.00	\$ 0.00	\$ 0.00	\$ 0.00

DO NOT PAY THIS INVOICE IT WAS CHARGED TO THE CREDIT CARD ON FILE. IF IT DECLINES WE WILL NOTIFY YOU.

DATE	QUANTITY	FREQUENCY	DESCRIPTION	AMOUNT
Outstanding Invo	ices		Invoice #0001144059	\$727.79
Site 036063-000	1 - Renova Envi	ronmental Co	- 1898 Montauk Hwy, Montauk	
10/14/2022	1.00		20 YARD ROLL OFF C & D - Removal - WO: 0000261677 SUFFOLK CTY SALES TAX	\$670.00 \$57.79

Total New Charges:

\$727.79

PLEASE RETURN THIS PORTION WITH YOUR PAYMENT

Winters Bros Hauling of Long Island

1625 COUNTY ROAD 39 Southampton, NY 11968-5254 Phone: (631) 283-0604

CUSTOMER NO	INVOICE DATE	INVOICE NO	BALANCE DUE
036063	10/14/2022	0001144230	\$ 0.00
CHEC	K NO	AMOUNT	ENCLOSED
		\$	

Renova Environmental Co 3417 Sunset Ave Ocean, NJ 07712-3911

paid by credit card on file

Winters Bros Hauling of Long Island

1625 COUNTY ROAD 39 Southampton, NY 11968-5254 Phone: (631) 283-0604

Fax: (631) 287-1232 www.wintersbros.com

CUSTOMER NO	036063
INVOICE DATE	10/13/2022
INVOICE NO	0001144059
CUSTOMER PO	
DUE DATE	11/12/2022

BALANCE FWD	\$-1,455.58
PAYMENTS	\$0.00
CREDITS	\$0.00
CHARGES	\$727.79
BALANCE DUE	\$-727.79

CURRENT	1-30 DAYS	31-60 DAYS	61-90 DAYS	OVER 90 DAYS	BALANCE DUE
\$-727.79	\$ 0.00	\$ 0.00	\$ 0.00	\$ 0.00	\$-727.79

DO NOT PAY THIS INVOICE IT WAS CHARGED TO THE CREDIT CARD ON FILE. IF IT DECLINES WE WILL NOTIFY YOU.

DATE	QUANTITY	FREQUENCY	DESCRIPTION	AMOUNT

New Charges

Site 036063-0001 - Renova Environmental Co - 1898 Montauk Hwy, Montauk

10/13/2022

1.00

20 YARD ROLL OFF C & D - Removal - WO: 0000261676

\$670.00 \$57.79

SUFFOLK CTY SALES TAX

Total New Charges:

\$727.79

PLEASE RETURN THIS PORTION WITH YOUR PAYMENT

Winters Bros Hauling of Long Island

1625 COUNTY ROAD 39 Southampton, NY 11968-5254 Phone: (631) 283-0604

CUSTOMER NO	INVOICE DATE	INVOICE NO	BALANCE DUE
036063	10/13/2022	0001144059	\$-727.79
CHEC	CHECK NO		ENCLOSED
		\$	

Be sure to write your customer number on your check

Renova Environmental Co 3417 Sunset Ave Ocean, NJ 07712-3911

DISC 1

Wash-Water - E21-03247

Building 10 Removal Actions - E21-03248

Building 107 Removal Actions - E21-03249

Battery 113 Removal Actions – PCBs - E21-03337

Battery 113 Removal Actions - TPH - E21-03338

Battery 113 Concrete Cores - 460-241195