P.W. Grosser Consulting 630 Johnson Ave, Suite 7 Bohemia, NY 11716 October 18, 2019

ATTN: Ms. Heather Moran-Botta hmoran-botta@pwgrosser.com

SUBJECT: Revised Suffolk County Biota Sampling Evaluation, SHD1705, Data Usability

Summary Report

Dear Ms. Moran-Botta,

Enclosed are the revised validation reports for the fractions listed below. This SDG was received on June 6, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

 The laboratory re-issued the reports to correct for a prep factor correction. The detection limits were lowered.

LDC Project #42369_RV1:

SDG # Fraction

320-34182-1, 320-34271-1 320-32834-1 Fluorinated Alkyl Substances

The data validation was performed under Category B guidelines using quality control summaries provided by the laboratory. The analyses were validated using the following documents, as applicable to each method:

• USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002; January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

heisting Rink

Project Manager/Senior Chemist

7,878 pages-ADV Attachment 1 (Validate 20% per SDG) LDC #42369 (P.W. Grosser Consulting - Bohemia, NY / Suffolk County Biota Sampling Evaluation, SHD1705) NY DUSR Category B **PFCs** DATE DATE -Mod LDC SDG# REC'D DUE (537)Matrix: Water/Tissue 4 0 320-34182-1 06/06/18 06/27/18 06/06/18 06/27/18 0 13 В 320-34271-1 06/06/18 06/27/18 0 28 320-32834-1 0 Total J/CR

Site:

Suffolk County Biota Sampling Evaluation

Laboratory:

TestAmerica, Inc., Edison, NY

Report No.:

320-34182-1

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

June 18, 2018

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
MW-CR001-A	320-34182-1	Fluorinated Alkyl Substances
FW-YC001-A	320-34182-4	Fluorinated Alkyl Substances
FW-CR007-A	320-34182-6	Fluorinated Alkyl Substances
FW-CR006-A	320-34182-7	Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks:

EB001, EB003, FB01, FB003

Field Duplicate pair:

None Associated

The above-listed water samples were collected on December 5 through December 8, 2017 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-200328/1-A	Perfluorohexanesulfonic acid	0.292 ng/L	RL	MW-CR001-A
	Perfluorooctane sulfonamide	0.368 ng/L	RL	FW-YC001-A
				FW-CR007-A
				FW-CR006-A

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and \le the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
MW-CR001-A	Perfluorooctane sulfonamide	1.11 ng/L	2.03U ng/L
FW-YC001-A	Perfluorooctane sulfonamide	0.45 ng/L	2.05U ng/L
FW-CR007-A	Perfluorohexanesulfonic acid	1.86 ng/L	2.05U ng/L
	Perfluorooctane sulfonamide	0.82 ng/L	2.05U ng/L
FW-CR006-A	Perfluorooctane sulfonamide	0.41 ng/L	2.06U ng/L

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Contamination was detected in the equipment blank samples EB001 and EB003 and field blank samples FB001 and FB003 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
EB001	Perfluorohexanesulfonic acid	0.29 ng/L	RL	FW-YC001-A
	Perfluorooctane sulfonamide	0.51 ng/L	RL	FW-CR007-A
				FW-CR006-A
EB003	Perfluorohexanesulfonic acid	0.30 ng/L	RL	MW-CR001-A
FB001	Perfluorohexanesulfonic acid	0.29 ng/L	RL	FW-YC001-A
				FW-CR007-A
				FW-CR006-A
FB003	Perfluorobutanoic acid	0.42 ng/L	RL	MW-CR001-A
	Perfluorohexanesulfonic acid	0.28 ng/L	RL	

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and < the Action Level, qualify the result as not detected (U) at the reported concentration.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
FW-YC001-A	Perfluorooctane sulfonamide	0.45 ng/L	2.05U ng/L
FW-CR007-A	Perfluorohexanesulfonic acid	1.86 ng/L	2.05U ng/L
	Perfluorooctane sulfonamide	0.82 ng/L	2.05U ng/L
FW-CR006-A	Perfluorooctane sulfonamide	0.41 ng/L	2.06U ng/L
MW-CR001-A	Perfluorobutanoic acid	1.11 ng/L	2.03U ng/L

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

LCS Results

Al criteria were met.

Internal Standards

The following table lists the internal standards recovered outside of control limits and the resulting actions.

Sample	Internal Standard	Area Exceedances (Limits)	Affected Compounds	Validation actions
MW-CR001-A	M2-8:2FTS	183 (25-150)	8:2FTS	UJ nondetects
FW-YC001-A	M2-8:2FTS	169 (25-150)	8:2FTS	UJ nondetects
FW-CR007-A	M2-8:2FTS	158 (25-150)	8:2FTS	UJ nondetects
FW-CR006-A	M2-8:2FTS	172 (25-150)	8:2FTS	UJ nondetects

The 8:2FTS results were estimated due to internal standard area exceedances. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Lab Name: TestAmerica Sacramento Job No.: 320-34182-1 SDG No.: Client Sample ID: MW-CR001-A Lab Sample ID: 320-34182-1 Matrix: Water Lab File ID: 2017.12.19LLC 026.d Analysis Method: 537 (modified) Date Collected: 12/08/2017 10:40 Date Extracted: 12/18/2017 13:25 Extraction Method: 3535 Sample wt/vol: 246.7(mL) Date Analyzed: 12/20/2017 07:49 ___ Dilution Factor: 1 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 200666 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	2.44		2.03	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	4.30		2.03	0.50
307-24-4	Perfluorohexanoic acid (PFHxA)	4.73		2.03	0.59
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.81	J 5	2.03	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	3.17		2.03	0.86
375-95-1	Perfluorononanoic acid (PFNA)	1.92	J 7	2.03	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	0.31	UU	2.03	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.11	U	2.03	1.11
307-55-1	Perfluorododecanoic acid (PFDoA)	0.56	U	2.03	0.56
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.32	U	2.03	1.32
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.29	U	2.03	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.80	J 2	2.03	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	8.63	В	2.03	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.30	1 2	2.03	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	13.4		2.03	0.55
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.32	UU	2.03	0.32
754-91-6	Perfluorooctane Sulfonamide (FOSA)	1.11	J B 2ø	3 ひ 2.03	0.35
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.14	U U	20.3	3.14
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.93	υU	20.3	1.93
27619-97-2	6:2FTS	2.03	UU	20.3	2.03
39108-34-4	8:2FTS	2.03	U U5	20.3	2.03

JUN 1 8 2018

Lab Name: TestAmerica Sacramento Job No.: 320-34182-1 SDG No.: Lab Sample ID: 320-34182-4 Client Sample ID: FW-YC001-A Matrix: Water Lab File ID: 2017.12.19LLC 031.d Analysis Method: 537 (modified) Date Collected: 12/05/2017 10:30 Extraction Method: 3535 Date Extracted: 12/18/2017 13:25 Date Analyzed: 12/20/2017 08:28 Sample wt/vol: 243.6(mL) Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 200666

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	2.01	J 5	2.05	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	1.06	J	2.05	0.50
307-24-4	Perfluorohexanoic acid (PFHxA)	1.08	J	2.05	0.60
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.83	J	2.05	0.26
335-67-1	Perfluorooctanoic acid (PFOA)	2.31		2.05	0.87
375-95-1	Perfluorononanoic acid (PFNA)	0.50	J 5	2.05	0.28
335-76-2	Perfluorodecanoic acid (PFDA)	0.32	UU	2.05	0.32
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.13	U	2.05	1.13
307-55-1	Perfluorododecanoic acid (PFDoA)	0.56	Ü	2.05	0.56
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.33	U	2.05	1.33
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.30	U	2.05	0.30
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.0	J 5	2.05	0.21
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	2.71	В	2.05	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.19	U U	2.05	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	3.80		2.05	0.55
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.33	U	2.05	0.33
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.45	J B 7.04	2.05	0.36
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.18	UY	20.5	3.18
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.95	Ū	20.5	1.95
27619-97-2	6:2FTS	2.05	U	20.5	2.05
39108-34-4	8:2FTS	2.05	∪ 55	20.5	2.05

JUN 18 2018

Lab Name: TestAmerica Sacramento Job No.: 320-34182-1 SDG No.: Client Sample ID: FW-CR007-A Lab Sample ID: 320-34182-6 Matrix: Water Lab File ID: 2017.12.19LLC 033.d Analysis Method: 537 (modified) Date Collected: 12/05/2017 11:50 Extraction Method: 3535 Date Extracted: 12/18/2017 13:25 Sample wt/vol: 244.2(mL) Date Analyzed: 12/20/2017 08:44 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 200666 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.15	J 5	2.05	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	1.34	J	2.05	0.50
307-24-4	Perfluorohexanoic acid (PFHxA)	1.58	J	2.05	0.59
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.85	J	2.05	0.26
335-67-1	Perfluorooctanoic acid (PFOA)	1.95	J	2.05	0.87
375-95-1	Perfluorononanoic acid (PFNA)	0.96	J	2.05	0.28
335-76-2	Perfluorodecanoic acid (PFDA)	0.32	UU	2.05	0.32
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.13	U	2.05	1.13
307-55-1	Perfluorododecanoic acid (PFDoA)	0.56	U	2.05	0.56
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.33	Ū	2.05	1.33
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.30	U	2.05	0.30
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.55	J 3	2.05	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	1.86	J B Z .C	5 0 2.05	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.19	υU	2.05	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	5.69		2.05	0.55
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.33	UU	2.05	0.33
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.82	J B 2.0	2.05	0.36
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.17	υV	20.5	3.17
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.95	υU	20.5	1.95
27619-97-2	6:2FTS	2.05	UV	20.5	2.05
39108-34-4	8:2FTS	2.05	U 05	20.5	2.05

JUN 18 2018

Lab Name: TestAmerica Sacramento Job No.: 320-34182-1 SDG No.: Client Sample ID: FW-CR006-A Lab Sample ID: 320-34182-7 Matrix: Water Lab File ID: 2017.12.19LLC 035.d Analysis Method: 537 (modified) Date Collected: 12/05/2017 12:00 Extraction Method: 3535 Date Extracted: 12/18/2017 13:25 Sample wt/vol: 242.6(mL) Date Analyzed: 12/20/2017 09:00 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 200666 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.78	12	2.06	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	1.90	J 5	2.06	0.50
307-24-4	Perfluorohexanoic acid (PFHxA)	2.11		2.06	0.60
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.93	J	2.06	0.26
335-67-1	Perfluorooctanoic acid (PFOA)	2.56		2.06	0.88
375-95-1	Perfluorononanoic acid (PFNA)	0.92	J 5	2.06	0.28
335-76-2	Perfluorodecanoic acid (PFDA)	0.32	UU	2.06	0.32
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.13	υŬ	2.06	1.13
307-55-1	Perfluorododecanoic acid (PFDoA)	0.58	J 3	2.06	0.57
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.34	UU	2.06	1.34
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.66	JT	2.06	0.30
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.81	JT	2.06	0.21
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	2,23	В	2.06	0.18
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.20	U U	2.06	0.20
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	4.06		2.06	0.56
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.33	υU	2.06	0.33
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.41	J B 2.0	2.06	0.36
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.19	υU	20.6	3.19
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.96	υU	20.6	1.96
27619-97-2	6:2FTS	2.06	UU	20.6	2.06
39108-34-4	8:2FTS	2.06	U 55	20.6	2.06

JUN 18 2018

LDC #: 42369A96 SDG #: 320-34182-1

Laboratory: Test America, Inc.

VALIDATION COMPLETENESS WORKSHEET

Category B

Date: 43/8
Page: / of /
Reviewer: 2nd Reviewer:

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A	
11.	\$C/MS Instrument performance check	A	3
III.	Initial calibration/ICV	AA	250535/0,1,7me 6053√0.101=38/0
IV.	Continuing calibration	ASSA	ac/= 30/0
V.	Laboratory Blanks	w	/
VI.	Field blanks	w	TECO1, TECO3. 28001, 28003
VII.	Surrogate spikes	\wedge	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	A	209
X.	Field duplicates	N	
XI.	Internal standards	W	
XII.	Compound quantitation RL/LOQ/LODs	A	legalts < RL - Sets/A
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

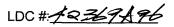
SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

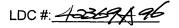

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

Date	Matrix	Lab ID			 Client ID	
Date	IVIALITA	Lab ID	 	 	 Ciletit ID	
12/08/17	Water	320-34182-1			 MW-CR001-A	1
12/05/17	Water	320-34182-4	 ·	 	 FW-YC001-A	2
12/05/17	Water	320-34182-6	 ·		 FW-CR007-A	3
12/05/17	Water	320-34182-7		 	 FW-CR006-A	4
				 	 	5
			 	 	 	6
	·			 	 	7
						8
						lotes:
=				 		8 Notes:

厂				
<u> </u>				



VALIDATION FINDINGS CHECKLIST

Pag	e:/_of_ <u>~</u>
Reviewe	
2nd Reviewe	er:

Method: LCMS (EPA Method 537)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	103			rmanigaroannients
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?		,		
Were all samples analyzed within the 12 hour clock criteria?				
IIIa, Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) <20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				4
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?		8		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks		1		
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates	1000			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples		<i>-</i>	Ī	
Was an LCS analyzed for this SDG?				

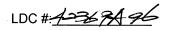
VALIDATION FINDINGS CHECKLIST

Page: of of reviewer: 2nd Reviewer:

	Г			
Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X, Field duplicates	100			
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?.				
XI. Internal standards	1.312		N.	
Were internal standard area counts within <u>+</u> 50% of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification		4		
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance	I	L		Harmon Anna Carlos Carl
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs


WIETHOD: PFOS/PFOAS			
A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)	·		
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriA)			
I. Perfluorotetradecanoic acid (PFTeA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			. 1
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)		•	
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. 6:2FTS			·
S. 8:2FTS			
			•

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	_/_of/_
Reviewer:	<u>a</u>
nd Reviewer:	<u></u>

									2nd Revie	wer:
Was a met W N N/A Was a met Was a met	elow for all questic amples associated thod blank perform thod blank perform contaminants foun	ons answered with a given ned for each r ned with each d in the meth	method blank natrix and wh extraction ba od blanks? If	<br enever a sam tch?	nple extraction	n procedure w	/as performed	d?		
Compound	Blank ID				San	nple Identificati	on			
MB.	20-2003281	A	1	2	3	4				
K	0.292				1865094					
0	0.368		1.11/2034	0.45/2051	1 ' / 🛕 '	0.41/2.064				
			/							
Blank extraction date:	Blank anal	ysis date:		Ass	sociated sam	nples:				
Compound	Blank ID		•		San	nple Identificati	on			
					,					
										_

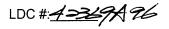
VALIDATION FINDINGS WORKSHEET Field Blanks

	Page:_	/_of/_
	Reviewer:	X
2nd	Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) AY N N/A Were field blanks identified in this SDG?

N N/A Were target compounds detected in the field blanks?

Blank units: NS/- Associated sample units: NS/- Sampling date: |25/|8


Field blank type: (circle one) Trip Blank/Field Blank / Rinsate / Other: Associated Samples: 2-4

Compound	Blank ID	BAID		Sample Identification					
	FB001	EBool		2	3	4			
K	0.29	0.29			1.86/205U				
0		0.51		0.45/	0.82/	0.41/			
				/2.05U	12051	12,064			
			,						

Blank units: <u>MS/-</u> Associated sample units: <u>MS/-</u> Sampling date: <u>/>/-/-</u>

Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples:

Compound	Blank ID	BACID				Sample Identification				
	FE003	ZB003		1						
P	0.4=	ZB003		1.11/5.03N						
K	0.28	0.30								
			,	-	•					

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	of	
Reviewer:	_•	
nd Reviewer	<u> </u>	

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N", Not applicable questions are identified as "N/A".

Were all internal standard area counts within \$6.150% limits?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? Y)N N/A

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		/ (ND)	M2-8=2FTS	183 (25-150)		1/4/7 (AS)
		> (ND)		169		
		3 (ND)		158		
		4 (ND)		172		
		NB 320-200328/A		203		
		/	13CZ-DFTEDA d3-NMEFOSAA	159		(+)
					-	

LDC #: 42369A96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	<u>/</u> of_/
Reviewer:	9_
2nd Reviewer:	<u>a</u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 A_x = Area of compound,

 $\hat{C_x}$ = Concentration of compound,

S = Standard deviation of the RRFs

X = Mean of the RRFs

A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (1.0 std)	RRF (1.0 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	12/19/17	PFOA	(1st internal standard)	1.0272	1.0272	1.0553	1.0553	8.1	8.1
	(A8_N)		PFOS	(2nd internal standard)	1.1082	1.1082	1.0633	1.0633	3.5	3.5
				(3rd internal standard)						
2				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
3				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)						
		L		(3rd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 42369A96

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: / of /	
Reviewer:	
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Re	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2017.12.19_023	12/20/17	PFOA	(1st internal standard)	1.0553	1.068	1.068	1.2	1.2
			PFOS	(2nd internal standard)	1.0633	1.040	1.040	2.1	2.1
2	2017.12.19_034	12/20/17	PFOA	(1st internal standard)	1.0553	1.045	1.045	0.9	0.9
			PFOS	(2nd internal standard)	1.0633	1.016	1.016	4.5	4.5
3			PFOA	(1st internal standard)					
			PFOS	(2nd internal standard)					
4			PFOA	(1st internal standard)					
			PFOS	(2nd internal standard)					

Comments:	Refer to Continuing	Calibration findings	worksheet for list	of qualifications and	associated samp	les when reported	<u>l results do not ag</u>	ree within 10	0.0% of the
recalculated	results								

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Duplicate Results Verification

Page:_	
Reviewer:	9
2nd Reviewer	2_

METHOD: GC / HPLC/MS

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration

SC = Concentration

RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD)

SA = Spike added

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: 320-260 3-8

	s	pike	Spiked Sample		LCS		LCSD		LCS/LCSD	
Compound	(/2	dded 8/4	Conce	ntration	Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)							·			
Diesel (8015)										
Benzene (8021B)										
Methane (RSK-175)					-					
2,4-D (8151)										
Dinoseb (8151)										
Naphthalene (8310)										
Anthracene (8310)										
HMX (8330)				·						
2,4,6-Trinitrotoluene (8330)									·	
PFOA	40.0	NA	30.93	NA	フフ	77.				
PFOS	37.1	1/	31.08	V	84	824				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: _	of
Reviewer:	9
2nd Reviewer	

_GC V HPLC /MS METHOD:

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10% of the reported results?

Concentration=	(A)(FV)(Df)
4	(RF)(Vs or Ws)(%S/100)

A= Area or height of the compound to be measured

Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the compound

In the initial calibration

Vs= Initial volume of the sample

Ws= Initial weight of the sample

%S= Percent Solid

Example:

Sample ID. / Compound Name _

Concentration = (188/5/) (2.5) (10) (1) (5695553) (1.0553) (0.2467) = 3.17 ns/L

					
#	Sample ID	Compound	Reported Concentrations (// S	Recalculated Results Concentrations ()	Qualifications
	/	PFOA	3.17		
	7			·	

mments:		
	•	

Site: Suffolk County Biota Sampling Evaluation

Laboratory: Eurofins, Edison, NY

Report No.: 320-34271-1

Reviewer: Stella Cuenco, Pei Geng, and Christina Rink/Laboratory Data Consultants

for P.W. Grosser Consulting

Date: October 18, 2019

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
BB-CR008-E	320-34271-5	Fluorinated Alkyl Substances
BB-CR008-H	320-34271-8	Fluorinated Alkyl Substances
LB-CR008-B	320-34271-11	Fluorinated Alkyl Substances
LB-CR008-H	320-34271-17	Fluorinated Alkyl Substances
BG-CR008-E	320-34271-24	Fluorinated Alkyl Substances
AE-CR008-A	320-34271-30	Fluorinated Alkyl Substances
AE-CR008-B	320-34271-31	Fluorinated Alkyl Substances
AE-CR008-D	320-34271-33	Fluorinated Alkyl Substances
AE-CR008-H	320-34271-37	Fluorinated Alkyl Substances
WP-CR001-A	320-34271-40	Fluorinated Alkyl Substances
WP-CR001-B	320-34271-41	Fluorinated Alkyl Substances
WP-CR001-C	320-34271-42	Fluorinated Alkyl Substances
WP-CR001-F	320-34271-45	Fluorinated Alkyl Substances
BB-CR008-EDUP	320-34271-5DUP	Fluorinated Alkyl Substances
AE-CR008-DMS	320-34271-33MS	Fluorinated Alkyl Substances
AE-CR008-DMSD	320-34271-33MSD	Fluorinated Alkyl Substances
WP-CR001-FDUP	320-34271-45DUP	Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks: EB-CR001, FB-CR001 Field Duplicate pair: None Associated

The above-listed tissue samples were collected on August 3 through December 1, 2017 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review*, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS)/Standard Reference Material (SRM) Results
- Internal Standards
- Field Duplicate Results
- Moisture Content
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

Initial calibration:

All criteria were met.

Continuing calibration:

Compounds that did not meet criteria are summarized in the following table.

Date	Instrument ID	Compound	CC %D	Associated Samples	Affected Compound		Validation Action
01/06/18	2018.01.06_019	d3-NMeFOSAA	53.7	AE-CR008-A AE-CR008-B	NMeFOSAA	XX	UJ nondetects
				AE-CR008-B AE-CR008-D			
01/06/18	2018.01.06_019	M2-6:2FTS M2-8:2FTS	51.4 149.6	AE-CR008-D	6:2FTS 8:2FTS	XX XX	UJ nondetects UJ nondetects
01/06/18	2018.01.06_030	d3-NMeFOSAA d3-NEtFOSAA	54.0 68.5	AE-CR008-H WP-CR001-A	NMeFOSAA NEtFOSAA	XX XX	UJ nondetects UJ nondetects

- X = Initial calibration (IC) relative standard deviation (%RSD) > 35; estimate (J/UJ) positive and nondetect results.
- XX = Continuing calibration (CC) percent difference (%D) > 30 for unlabeled compounds/50 for labeled compounds; estimate (J/UJ) positive and nondetect results.
- SS = Second source verification percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.
- += Response factor (RRF) < validation criteria; estimate (J/UJ) positive and nondetect results.

The 6:2FTS, 8:2FTS, NMeFOSAA, and NEtFOSAA results for the samples listed above were estimated due to continuing calibration exceedances. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-202823/1-A	6:2FTS	0.0131 mg/Kg	RL	WP-CR001-B
				WP-CR001-C
				WP-CR001-F
MB 320-201207/1-A	Perfluorobutanoic acid	0.000166 mg/Kg	RL	BB-CR008-E
	Perfluoroundecanoic acid	0.0000889 mg/Kg	RL	BB-CR008-H
	Perfluorohexanesulfonic acid	0.0000702 mg/Kg	RL	LB-CR008-B
	6:2FTS	0.000829 mg/Kg	RL	LB-CR008-H
MB 320-201223/1-A	Perfluorohexanesulfonic acid	0.0000792 mg/Kg	RL	BG-CR008-E
				AE-CR008-A
				AE-CR008-B
		-	İ	AE-CR008-D
				AE-CR008-H
				WP-CR001-A

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table belo

Sample ID	Compound	Level Detected	Validation Action
BB-CR008-E	Perfluorobutanoic acid	0.00013 mg/Kg	0.00092U mg/Kg
l l	Perfluoroundecanoic acid	0.00060 mg/Kg	0.00092U mg/Kg
_	Perfluorohexanesulfonic acid	0.00076 mg/Kg	0.00092U mg/Kg
BB-CR008-H	Perfluorobutanoic acid	0.00018 mg/Kg	0.0010U mg/Kg
	Perfluoroundecanoic acid	0.00019 mg/Kg	0.0010U mg/Kg
	Perfluorohexanesulfonic acid	0.00075 mg/Kg	0.0010U mg/Kg
LB-CR008-H	Perfluorobutanoic acid	0.00012 mg/Kg	0.00092U mg/Kg

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Contamination was detected in the equipment blank sample EB-CR001 and field blank sample FB-CR001 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
EB-CR001	Perfluorohexanesulfonic acid	0.29 ng/L	RL	WP-CR001-A
.				WP-CR001-B
				WP-CR001-C
				WP-CR001-F
FB-CR001	Perfluorohexanesulfonic acid	0.27 ng/L	RL	WP-CR001-A
	Perfluorooctane Sulfonamide	0.37 ng/L	RL	WP-CR001-B
	6:2FTS	3.43 ng/L	RL	WP-CR001-C
				WP-CR001-F

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and < the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and < the Action Level, qualify the result as not detected (U) at the reported concentration.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
WP-CR001-A	Perfluorohexanesulfonic acid	0.0038 mg/Kg	0.0038U mg/Kg
	Perfluorooctane Sulfonamide	0.00012 mg/Kg	0.0010U mg/Kg
WP-CR001-B	Perfluorohexanesulfonic acid	0.0016 mg/Kg	0.0016U mg/Kg
	Perfluorooctane Sulfonamide	0.00045 mg/Kg	0.00097U mg/Kg
WP-CR001-C	Perfluorohexanesulfonic acid	0.00070 mg/Kg	0.00098U mg/Kg
	Perfluorooctane Sulfonamide	0.00012 mg/Kg	0.00098U mg/Kg
WP-CR001-F	Perfluorohexanesulfonic acid	0.0029 mg/Kg	0.0029U mg/Kg
	Perfluorooctane Sulfonamide	0.00017 mg/Kg	0.00093U mg/Kg

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

MS/MSD Results

MS/MSD analyses were performed on sample AE-CR008-D for fluorinated alkyl substances analysis. The following table lists the compounds recovered outside of control limits in the MS/MSD analyses and the resulting actions.

	MS %R	MSD %R	RPD		
Compound	(Limits)	(Limits)	(Limits)	Affected Sample	Validation Action
Perfluorohexanesulfonic acid	141 (75-121)	131 (75-121)	-	AE-CR008-D	J detects

The perfluorohexanesulfonic acid result may be biased high due to high MS/MSD percent recovery. The result can be used for project objectives as an estimated value (J) which may have a minor impact on the data usability.

Laboratory Duplicate Results

Laboratory duplicates were performed on samples BB-CR008-E and WP-CR001-F for fluorinated alkyl substances analysis. All criteria were met.

LCS/SRM Results

Al criteria were met.

Internal Standards

The following table lists the internal standards recovered outside of control limits and the resulting actions.

Sample	Internal Standard	Area Exceedances (Limits)	Affected Compounds	Validation actions
BB-CR008-E	d5-NEtFOSAA	180 (25-150)	NEtFOSAA	UJ nondetects
AE-CR008-D	M2-6:2FTS	431 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	741 (25-150)	8:2FTS	UJ nondetects

The NEtFOSAA, 6:2FTS, and 8:2FTS results were estimated due to internal standard area exceedances. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Moisture Content

All criteria were met.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Due to high target compound levels or difficult sample matrix, select samples were analyzed at dilutions. The following table lists the sample dilutions which were performed and the results reported. RLs were elevated accordingly.

Sample	Fluorinated Alkyl Substances Analysis Reported
BB-CR008-E	10-fold dilution for select analytes due to nature of sample matrix
BB-CR008-H	•
LB-CR008-B	
LB-CR008-H	
BG-CR008-E	
AE-CR008-A	
AE-CR008-B	
AE-CR008-H	
WP-CR001-A	
WP-CR001-B	
WP-CR001-C	i
WP-CR001-F	

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Lab Name: Eurofins TestAmerica, Sacramento	Job No.: 320-34271-1		
SDG No.:			
Client Sample ID: BB-CR008-E	Lab Sample ID: 320-34271-5		
Matrix: Tissue	Lab File ID: 2018.01.04LLAX_044.d		
Analysis Method: 537 (modified)	Date Collected: 08/03/2017 15:08		
Extraction Method: SHAKE	Date Extracted: 12/23/2017 09:44		
Sample wt/vol: 1.09(g)	Date Analyzed: 01/05/2018 04:35		
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 202746	Units: ma/Ka		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00013	J В б.()()	092U0.00092	0.000092
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000063	U	0.00092	0.000063
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000048	U	0.00092	0.000048
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000055	U	0.00092	0.000055
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U	0.00092	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.000039	U	0.00092	0.000039
335-76-2	Perfluorodecanoic acid (PFDA)	0.000067	U V	0.00092	0.000067
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00060	J В 0.00	92U 0.00092	0.000068
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00011	J 5	0.00092	0.000054
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00019	JJ	0.00092	0.000047
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000061	UÜ	0.00092	0.000061
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000092	υU	0.00092	0.000092
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00076	JВ().00	0920 0.00092	0.000061
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000066	υU	0.00092	0.000066
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0029		0.00092	0.000071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000054	U U	0.00092	0.000054
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000065	Ü	0.00092	0.000065
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0060	U	0.0092	0.0060
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	n Ω2	0.0092	0.0018

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Client Sample ID: BB-CR008-E DL Lab Sample ID: 320-34271-5 DL

Matrix: Tissue

Lab File ID: 2018.01.12LLC_011.d Date Collected: 08/03/2017 15:08 Analysis Method: 537 (modified)

Extraction Method: SHAKE Date Extracted: 12/23/2017 09:44

Date Analyzed: 01/12/2018 21:04 Sample wt/vol: 1.09(g)

_ Dilution Factor: 10 Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203807 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0036	U U	0.092	0.0036
39108-34-4	8:2 FTS	0.0062	U U	0.092	0.0062

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	159	*	25-150
STL02280	M2-8:2 FTS	204	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: BB-CR008-H Lab Sample ID: 320-34271-8 Lab File ID: 2018.01.04LLAX_049.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 08/03/2017 15:14 Date Extracted: 12/23/2017 09:44 Extraction Method: SHAKE Sample wt/vol: 0.98(g) Date Analyzed: 01/05/2018 05:14 Dilution Factor: 1 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00018	J В 0.00	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000070	UU	0.0010	0.000070
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000053	U	0.0010	0.000053
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000061	U	0.0010	0.000061
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	U V	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.000055	J 5	0.0010	0.000044
335-76-2	Perfluorodecanoic acid (PFDA)	0.000074	υŬ	0.0010	0.000074
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00019	J B ().()(0.0010	0.000076
307-55-1	Perfluorododecanoic acid (PFDoA)	0.000060	U	0.0010	0.000060
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000052	Ü	0.0010	0.000052
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000067	U	0.0010	0.000067
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	U 🕏	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00075	J B 0.00	0.0010 Ook	0.000067
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000073	υÚ	0.0010	0.000073
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0051		0.0010	0.000079
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000060	UV	0.0010	0.000060
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000072	Ū	0.0010	0.000072
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0066	Ŭ	0.010	0.0066
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U L	0.010	0.0020

OCT 1 8 2019

Initials: CR

Analysis Batch No.: 202746

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: BB-CR008-H DL Lab Sample ID: 320-34271-8 DL Lab File ID: 2018.01.12LLC 016.d Matrix: Tissue Date Collected: 08/03/2017 15:14 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 12/23/2017 09:44 Date Analyzed: 01/12/2018 21:43 Sample wt/vol: 0.98(g) Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: _____ GPC Cleanup: (Y/N) N Analysis Batch No.: 203807 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0040	U U	0.10	0.0040
39108-34-4	8:2 FTS	0.0069	υV	0.10	0.0069

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	149	,	25-150
STL02280	M2-8:2 FTS	165	*	25-150

OCT 18 2019

Lab File ID: 2018.01.04LLAX 052.d

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Client Sample ID: LB-CR008-B Lab Sample ID: 320-34271-11

Matrix: Tissue

Analysis Method: 537 (modified) Date Collected: 08/03/2017 14:02

Extraction Method: SHAKE Date Extracted: 12/23/2017 09:44

Sample wt/vol: 1.10(g) Date Analyzed: 01/05/2018 05:38

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202746 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000091	U U	0.00091	0.000091
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000063	U	0.00091	0.000063
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000047	Ü	0.00091	0.000047
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000055	Ü	0.00091	0.000055
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U V	0.00091	0.00010
375-95 - 1	Perfluorononanoic acid (PFNA)	0.00050	JJ	0.00091	0.000039
335-76-2	Perfluorodecanoic acid (PFDA)	0.00035	JJ	0.00091	0.000066
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0018	В	0.00091	0.000067
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00027	JJ	0.00091	0.000054
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00039	J	0.00091	0.000046
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00032	J	0.00091	0.000060
375-73 - 5	Perfluorobutanesulfonic acid (PFBS)	0.000091	υŪ	0.00091	0.000091
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0015	В	0.00091	0.000060
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00017	J 7	0.00091	0.000065
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.050		0.00091	0.000070
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00016	J	0.00091	0.000054
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000065	υŪ	0.00091	0.000065
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0059	U	0.0091	0.0059
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	U L	0.0091	0.0018

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Client Sample ID: LB-CR008-B DL Lab Sample ID: 320-34271-11 DL

Matrix: Tissue

Lab File ID: 2018.01.12LLC 019.d Analysis Method: 537 (modified) Date Collected: 08/03/2017 14:02

Extraction Method: SHAKE Date Extracted: 12/23/2017 09:44

Sample wt/vol: 1.10(g) Date Analyzed: 01/12/2018 22:07

Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 203807 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0035	UU	0.091	0.0035
39108-34-4	8:2 FTS	0.0062	U	0.091	0.0062

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	151	*	25-150
STL02280	M2-8:2 FTS	176	*	25-150

OCT 1 8 2019

Initials: €₽

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: LB-CR008-H Lab Sample ID: 320-34271-17 Lab File ID: 2018.01.04LLAX_059.d Matrix: Tissue Date Collected: 08/03/2017 14:14 Analysis Method: 537 (modified) Date Extracted: 12/23/2017 09:44 Extraction Method: SHAKE Sample wt/vol: 1.09(g) Date Analyzed: 01/05/2018 06:33 Dilution Factor: 1 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 202746 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00012	J B () ((M200.00092	0.000092
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000063	U	0.00092	0.000063
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000048	U	0.00092	0.000048
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000055	U	0.00092	0.000055
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U	0.00092	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00051	JJ	0.00092	0.000039
335-76-2	Perfluorodecanoic acid (PFDA)	0.00023	J 7	0.00092	0.000067
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0013	В	0.00092	0.000068
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00019	JT	0.00092	0.000054
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00026	J	0.00092	0.000047
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00021	J 🗸	0.00092	0.000061
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000092	U	0.00092	0.000092
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0014	В	0.00092	0.000061
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00013	J 7	0.00092	0.000066
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.067		0.00092	0.000071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000094	J 2	0.00092	0.000054
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000065	υŸ	0.00092	0.000065
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0060	Ū	0.0092	0.0060
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	u 🗸	0.0092	0.0018

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: LB-CR008-H DL Lab Sample ID: 320-34271-17 DL Lab File ID: 2018.01.12LLC 026.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 08/03/2017 14:14 Date Extracted: 12/23/2017 09:44 Extraction Method: SHAKE Sample wt/vol: 1.09(g) Date Analyzed: 01/12/2018 23:02 Dilution Factor: 10 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 203807 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0036	U U	0.092	0.0036
39108-34-4	8:2 FTS	0.0062	U U	0.092	0.0062

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	166	*	25-150
STL02280	M2-8:2 FTS	165	*	25-150

OCT 1 8 2019

 SDG No.:
 Client Sample ID: BG-CR008-E
 Lab Sample ID: 320-34271-24

 Matrix: Tissue
 Lab File ID: 2018.01.06LLA_015.d

 Analysis Method: 537 (modified)
 Date Collected: 08/03/2017 13:08

Extraction Method: SHAKE Date Extracted: 12/23/2017 12:23

Sample wt/vol: 1.02(g) Date Analyzed: 01/06/2018 06:34

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202873 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000098	U U	0.00098	0.000098
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	U	0.00098	0.000068
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	U	0.00098	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	U	0.00098	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	Ū	0.00098	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.000042	U	0.00098	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00023	JT	0.00098	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0011		0.00098	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.000098	J 7	0.00098	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000093	JŽ	0.00098	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000065	υÚ	0.00098	0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000098	U ()	0.00098	0.000098
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0012	В	0.00098	0.000065
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0094		0.00098	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000058	υ Ų	0.00098	0.000058
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000070	Ū	0.00098	0.000070
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	U	0.0098	0.0064
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	ū	0.0098	0.0019

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Lab Sample ID: 320-34271-24 RE Client Sample ID: BG-CR008-E RE

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.09(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 204505

Lab File ID: 2018.01.18LLC 013.d

Date Collected: 08/03/2017 13:08

Date Extracted: 01/15/2018 16:12

Date Analyzed: 01/18/2018 11:45

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000066	υ U	0.00092	0.000066

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	78		25-150

OCT 18 2019

initials: CZ

SDG No.:

Client Sample ID: BG-CR008-E DL

Lab Sample ID: 320-34271-24 DL

Matrix: Tissue

Lab File ID: 2018.01.13LLC_008.d

Analysis Method: 537 (modified)

Date Collected: 08/03/2017 13:08

Extraction Method: SHAKE

Date Extracted: 12/23/2017 12:23

Sample wt/vol: 1.02(g) Date Analyzed: 01/13/2018 21:13

Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203820 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0038	U ()	0.098	0.0038
39108-34-4	8:2 FTS	0.0067	U Ŭ	0.098	0.0067

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	152	*	25-150
STL02280	M2-8:2 FTS	173	*	25-150

OCT 1 8 2019

TORRESTANDA CONTRACTOR OF PERSONS ASSESSED.

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Client Sample ID: AE-CR008-A Lab Sample ID: 320-34271-30

Matrix: Tissue Lab File ID: 2018.01.06LLA 022.d

Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:00

Extraction Method: SHAKE Date Extracted: 12/23/2017 12:23

Sample wt/vol: 0.98(g) Date Analyzed: 01/06/2018 07:29

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202873 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00087	J 5	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000070	UU	0.0010	0.000070
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000053	Ū	0.0010	0.000053
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000061	U	0.0010	0.000061
335-67-1	Perfluorooctanoic acid (PFOA)	0.00012	JT	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.0013		0.0010	0.000044
335-76-2	Perfluorodecanoic acid (PFDA)	0.00030	J 👅	0.0010	0.000074
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0017		0.0010	0.000076
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00021	J 😙	0.0010	0.000060
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000052	U()	0.0010	0.000052
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000067	U	0.0010	0.000067
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	ŭ 🗸	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0033	В	0.0010	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.047		0.0010	0.000079
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000098	J	0.0010	0.000060
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000072	υÚ	0.0010	0.000072
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0066	υ <u>ω</u>	0.010	0.0066
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U C	0.010	0.0020

OCT 18 2019

A STATE OF THE PROPERTY OF THE

Lab Name: Eurofins TestAmerica, Sacramento	Job No.: 320-34271-1
SDG No.:	
Client Sample ID: AE-CR008-A RE	Lab Sample ID: 320-34271-30 RE
Matrix: Tissue	Lab File ID: 2018.01.18LLC_021.d
Analysis Method: 537 (modified)	Date Collected: 08/03/2017 12:00
Extraction Method: SHAKE	Date Extracted: 01/15/2018 16:12
Sample wt/vol: 1.00(g)	Date Analyzed: 01/18/2018 12:48
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 204505	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00011	JJ	0.0010	0.000072

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	75		25-150

OCT 1 8 2019

Initials: *€*₹

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Lab Sample ID: 320-34271-30 DL Client Sample ID: AE-CR008-A DL

Matrix: Tissue

Lab File ID: 2018.01.13LLC 015.d Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:00

Extraction Method: SHAKE Date Extracted: 12/23/2017 12:23

Sample wt/vol: 0.98(g) Date Analyzed: 01/13/2018 22:08

Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL)

GPC Cleanup:(Y/N) N % Moisture:

Analysis Batch No.: 203820 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0040	U U	0.10	0.0040
39108-34-4	8:2 FTS	0.0069	U()	0.10	0.0069

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	157	*	25-150
STL02280	M2-8:2 FTS	243	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Client Sample ID: AE-CR008-B Lab Sample ID: 320-34271-31

Matrix: Tissue Lab File ID: 2018.01.06LLA 023.d

Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:02

Extraction Method: SHAKE Date Extracted: 12/23/2017 12:23

Sample wt/vol: 1.05(g) Date Analyzed: 01/06/2018 07:36

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202873 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00072	J 7	0.00095	0.000095
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000066	UU	0.00095	0.000066
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	U	0.00095	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	Ü	0.00095	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U	0.00095	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00042	JT	0.00095	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00029	J	0.00095	0.000070
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0016		0.00095	0.000070
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00019	J 5	0.00095	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00034	J	0.00095	0.000049
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000063	υŬ	0.00095	0.000063
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000095	U (/	0.00095	0.000095
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0056	В	0.00095	0.000063
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.035		0.00095	0.000073
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000093	J	0.00095	0.000056
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000068	υŬ	0.00095	0.000068
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0062	υ ν Σ	0.0095	0.0062
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	U U	0.0095	0.0019

OCT 1 8 2019

Constitutive of the second of the second sec

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: AE-CR008-B RE Lab Sample ID: 320-34271-31 RE Lab File ID: 2018.01.18LLC 022.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:02 Date Extracted: 01/15/2018 16:12 Extraction Method: SHAKE Sample wt/vol: 1.09(g) Date Analyzed: 01/18/2018 12:56 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 204505 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000066	u V	0.00092	0.000066

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS			25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: AE-CR008-B DL Lab Sample ID: 320-34271-31 DL Matrix: Tissue Lab File ID: 2018.01.13LLC 016.d Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:02 Date Extracted: 12/23/2017 12:23 Extraction Method: SHAKE Sample wt/vol: 1.05(g) Date Analyzed: 01/13/2018 22:16 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 203820 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0037	U U	0.095	0.0037
39108-34-4	8:2 FTS	0.0065	U	0.095	0.0065

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	205	*	25-150
STL02280	M2-8:2 FTS	261	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Client Sample ID: AE-CR008-D Lab Sample ID: 320-34271-33

Matrix: Tissue Lab File ID: 2018.01.06LLA_025.d

Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:06

Extraction Method: SHAKE Date Extracted: 12/23/2017 12:23

Sample wt/vol: 1.08(g) Date Analyzed: 01/06/2018 07:52

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202873 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00046	J	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	υÚ	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000048	U	0.00093	0.000048
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	U	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U 🗸	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.0011		0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.00023	J -	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0018		0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00045	J 7	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00071	J	0.00093	0.000047
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00070	J 🗸	0.00093	0.000061
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	υÙ	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0095	F1 B 3	0.00093	0.000061
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.059		0.00093	0.000071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00012	J ブ	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000066	υU	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0060	Ω Ω	0.0093	0.0060
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	U V	0.0093	0.0018
27619-97-2	6:2 FTS	0.00036	0 02	0.0093	0.00036
39108-34-4	8:2 FTS	0.00063	υ 02	0.0093	0.00063

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: AE-CR008-D RE Lab Sample ID: 320-34271-33 RE Matrix: Tissue Lab File ID: 2018.01.18LLC 024.d Date Collected: 08/03/2017 12:06 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 01/15/2018 16:12 Sample wt/vol: 1.02(g) Date Analyzed: 01/18/2018 13:11 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Units: mg/Kg Analysis Batch No.: 204505

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00026	ュナ	0.00098	0.000071

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	73		25-150

OCT 1 8 2019

the second second second

SDG No.: Client Sample ID: AE-CR008-H Lab Sample ID: 320-34271-37 Lab File ID: 2018.01.06LLA 033.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:14 Date Extracted: 12/23/2017 12:23 Extraction Method: SHAKE

Date Analyzed: 01/06/2018 08:55

Sample wt/vol: 1.02(g) Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N % Moisture:

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

Analysis Batch No.: 202873 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0010		0.00098	0.000098
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	U ()	0.00098	0.000068
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	U	0.00098	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	U	0.00098	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	U	0.00098	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00028	JT	0.00098	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00028	J	0.00098	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0021		0.00098	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00032	JJ	0.00098	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00051	J	0.00098	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00041	J 🗸	0.00098	0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000098	υV	0.00098	0.000098
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0045	В	0.00098	0.000065
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.017		0.00098	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00021	J 5	0.00098	0.000058
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	υ Ϣ	0.0098	0.0064
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	u M	0.0098	0.0019

OCT 1 8 2019

The second of the second control of the seco

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: AE-CR008-H RE Lab Sample ID: 320-34271-37 RE Lab File ID: 2018.01.18LLC 033.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:14 Extraction Method: SHAKE Date Extracted: 01/15/2018 16:12 Sample wt/vol: 1.06(g) Date Analyzed: 01/18/2018 14:22 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 204505 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000068	υU	0.00094	0.000068

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	84		25-150

OCT 1 8 2019

ことのかい こうし シャンカス マッカルス ことのからな かまできな 大変からから

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: AE-CR008-H DL Lab Sample ID: 320-34271-37 DL Lab File ID: 2018.01.13LLC_026.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 08/03/2017 12:14 Date Extracted: 12/23/2017 12:23 Extraction Method: SHAKE Sample wt/vol: 1.02(g) Date Analyzed: 01/13/2018 23:35 Dilution Factor: 10 Con. Extract Vol.: 10.00(mL) GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) GPC Cleanup:(Y/N) N % Moisture: Analysis Batch No.: 203820 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00070	U V	0.0098	0.00070
27619-97-2	6:2 FTS	0.0038	U	0.098	0.0038
39108-34-4	8:2 FTS	0.0067	U 🗸	0.098	0.0067

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL01056	13C8 FOSA	33		25-150
STL02279	M2-6:2 FTS	111		25-150
STL02280	M2-8:2 FTS	161	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Lab Sample ID: 320-34271-40 Client Sample ID: WP-CR001-A Matrix: Tissue Lab File ID: 2018.01.06LLA 036.d Analysis Method: 537 (modified) Date Collected: 12/01/2017 16:00 Extraction Method: SHAKE Date Extracted: 12/23/2017 12:23 Sample wt/vol: 1.00(g) Date Analyzed: 01/06/2018 09:18 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) GPC Cleanup:(Y/N) N % Moisture: Analysis Batch No.: 202873 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00027	JJ	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000069	υŬ	0.0010	0.000069
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000052	U	0.0010	0.000052
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000060	Ū	0.0010	0.000060
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	U V	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00056	J 🔨	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00019	J	0.0010	0.000073
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0016		0.0010	0.000074
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00019	J	0.0010	0.000059
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00022	J	0.0010	0.000051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000066	υ Ú.	0.0010	0.000066
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	U	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0038	ВО	0.0010	0.000066
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0084		0.0010	0.000077
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000077	J	0.0010	0.000059
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00012	J 0.00101	0.0010	0.000071
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0065	υ Φ	0.010	0.0065
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	υ 12	0.010	0.0020

OCT 1 8 2019

magnification . And the section of the contract of the contrac

Lab Name: Eurofins TestAmerica, Sacramento	Job No.: 320-34271-1
SDG No.:	
Client Sample ID: WP-CR001-A RE	Lab Sample ID: 320-34271-40 RE
Matrix: Tissue	Lab File ID: 2018.01.18LLC_036.d
Analysis Method: 537 (modified)	Date Collected: 12/01/2017 16:00
Extraction Method: SHAKE	Date Extracted: 01/15/2018 16:22
Sample wt/vol: 1.05(g)	Date Analyzed: 01/18/2018 14:45
Con. Extract Vol.: <u>10.00(mL)</u>	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 204505	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00011	J 7	0.00095	0.000069

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	76		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1

SDG No.:

Client Sample ID: WP-CR001-A DL Lab Sample ID: 320-34271-40 DL

Matrix: Tissue Lab File ID: 2018.01.13LLC 029.d

Analysis Method: 537 (modified) Date Collected: 12/01/2017 16:00

Extraction Method: SHAKE Date Extracted: 12/23/2017 12:23

Sample wt/vol: 1.00(g) Date Analyzed: 01/13/2018 23:58

Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203820 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0039	U * U	0.10	0.0039
39108-34-4	8:2 FTS	0.0068	U	0.10	0.0068

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	121		25-150
STL02280	M2-8:2 FTS	173	*	25-150

OCT 1 8 2019

these .

Initials: *€*₽

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: WP-CR001-B Lab Sample ID: 320-34271-41 Lab File ID: 2018.01.13LLB_004.d Matrix: Tissue Date Collected: 12/01/2017 16:02 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 01/05/2018 16:41 Date Analyzed: 01/13/2018 15:29 Sample wt/vol: 1.03(g) Dilution Factor: 1 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 203811 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00069	JJ	0.00097	0.000097
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.00019	JJ	0.00097	0.000067
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	UV	0.00097	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000058	U	0.00097	0.000058
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	U	0.00097	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00069	JJ	0.00097	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00028	J	0.00097	0.000071
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00066	J	0.00097	0.000072
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00023	J	0.00097	0.000057
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00012	J 🗸	0.00097	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000064	UU	0.00097	0.000064
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000097	U V	0.00097	0.000097
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0016	U	0.00097	0.000064
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000070	U Ū	0.00097	0.000070
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0030		0.00097	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00020	JJ	0.00097	0.000057
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00045	J 0.000	97U 0.00097	0.000069
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0063	UV	0.0097	0.0063
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	υV	0.0097	0.0019

OCT 1 8 2019

The state of the s

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: WP-CR001-B DL Lab Sample ID: 320-34271-41 DL Lab File ID: 2018.01.13LLC 032.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 12/01/2017 16:02 Extraction Method: SHAKE Date Extracted: 01/05/2018 16:41 Sample wt/vol: 1.03(g) Date Analyzed: 01/14/2018 00:22 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) GPC Cleanup:(Y/N) N % Moisture: Analysis Batch No.: 203822 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0038	U O	0.097	0.0038
39108-34-4	8:2 FTS	0.0066	U	0.097	0.0066

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	142		25-150
STL02280	M2-8:2 FTS	225	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Lab Sample ID: 320-34271-42 Client Sample ID: WP-CR001-C Lab File ID: 2018.01.13LLB_005.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 12/01/2017 16:04 Extraction Method: SHAKE Date Extracted: 01/05/2018 16:41 Date Analyzed: 01/13/2018 15:37 Sample wt/vol: 1.02(g) Dilution Factor: 1 Con. Extract Vol.: 10.00(mL) GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203811 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00026	J 7	0.00098	0.000098
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	UÚ	0.00098	0.000068
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	U	0.00098	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	Ū	0.00098	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	U	0.00098	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00043	JT	0.00098	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00026	J	0.00098	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0012		0.00098	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00036	J 1	0.00098	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00021	J	0.00098	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00034	J	0.00098	0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000098	U	0.00098	0.000098
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00070	J 0000	0.00098	0.000065
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000071	υ V	0.00098	0.000071
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0063		0.00098	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000058	UU	0.00098	0.000058
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00012	J 0,000	4 3 0 0.00098	0.000070
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	U U	0.0098	0.0064
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	U C	0.0098	0.0019

OCT 1 8 2019

シーラングでは、大変なないないできませんできませんできます。 かんかいしょう

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: WP-CR001-C DL Lab Sample ID: 320-34271-42 DL Lab File ID: 2018.01.13LLC 033.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 12/01/2017 16:04 Date Extracted: 01/05/2018 16:41 Extraction Method: SHAKE Date Analyzed: 01/14/2018 00:30 Sample wt/vol: 1.02(g) Dilution Factor: 10 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 203822 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0038	U U	0.098	0.0038
39108-34-4	8:2 FTS	0.0067	υ ()	0.098	0.0067

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	142		25-150
STL02280	M2-8:2 FTS	261	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: WP-CR001-F Lab Sample ID: 320-34271-45 Lab File ID: 2018.01.13LLB_012.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 12/01/2017 16:10 Date Extracted: 01/05/2018 16:41 Extraction Method: SHAKE Date Analyzed: 01/13/2018 17:34 Sample wt/vol: 1.08(g) Dilution Factor: 1 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) GPC Cleanup:(Y/N) N % Moisture: Analysis Batch No.: 203811 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00033	J 7	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	UÚ	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000048	U	0.00093	0.000048
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	Ū	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	UV	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.0016		0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.00051	J	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0057		0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00031	J 5	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00027	J	0.00093	0.000047
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00033	J	0.00093	0.000061
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	U 🗸	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0029	U	0.00093	0.000061
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00015	ょナ	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.021		0.00093	0.000071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00013	J 5	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00017	J 0.000	130 0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0060	υU	0.0093	0.0060
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	U U	0.0093	0.0018

OCT 1 8 2019

which is a superior of the sup

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-34271-1 SDG No.: Client Sample ID: WP-CR001-F DL Lab Sample ID: 320-34271-45 DL Matrix: Tissue Lab File ID: 2018.01.13LLC 038.d Analysis Method: 537 (modified) Date Collected: 12/01/2017 16:10 Date Extracted: 01/05/2018 16:41 Extraction Method: SHAKE Sample wt/vol: 1.08(g) Date Analyzed: 01/14/2018 01:09 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203822 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0036	U U	0.093	0.0036
39108-34-4	8:2 FTS	0.0063	u ()	0.093	0.0063

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	153	*	25-150
STL02280	M2-8:2 FTS	270	*	25-150

OCT 1 8 2019

LDC #: _ 42369B96 SDG #: 320-34271-1

VALIDATION COMPLETENESS WORKSHEET

Category B

2nd Reviewer

Laboratory: Test America, Inc.

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	BC/MS Instrument performance check	1	
111.	Initial calibration/ICV	AA	\$50= 3570. 12 True / 1CV = 30/2
IV.	Continuing calibration	w	cc/ € 30/0 /Labeled € 50/0
V.	Laboratory Blanks	W	
VI.	Field blanks	au	EB-CROOL, TB-CROOL
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	W/A	
IX.	Laboratory control samples	40	LCS. SPM
Χ.	Field duplicates	N	
XI.	Internal standards	m/	
XII.	Compound quantitation RL/LOQ/LODs	A	regulas < RL - Jalas / A
XIII.	Target compound identification	A	
XIV.	System performance	4	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

С	Client ID /	Lab ID	Matrix	Date
1 I B	BB-CR008-E (1/10x) (IS)	320-34271-5	Tissue	08/03/17
2 I B	BB-CR008-H	320-34271-8	Tissue	08/03/17
3 L	B-CR008-B	320-34271-11	Tissue	08/03/17
	B-CR008-H	320-34271-17	Tissue	08/03/17
5 7 B	G-CR008-E	320-34271-24	Tissue	08/03/17
6 Z A	E-CR008-A	320-34271-30	Tissue	08/03/17
72 A	NE-CR008-B	320-34271-31	Tissue	08/03/17
8 7 A	E-CR008-D	320-34271-33	Tissue	08/03/17
9 7 A	E-CR008-H (1/10X - +5 (201)	320-34271-37	Tissue	08/03/17
107 N	VP-CR001-A	320-34271-40	Tissue	08/ 93/1 7
	VP-CR001-B	320-34271-41	Tissue	08/03/17
12 N	VP-CR001-C	320-34271-42	Tissue	08/03/17
13 3 V	VP-CR001-F	320-34271-45	Tissue	08/13/17
14 B	BB-CR008-EDUP	320-34271-5DUP	Tissue	08/03/17

LDC #:_	42369B96
SDG #:	320-34271-1

_ VALIDATION COMPLETENESS WORKSHEET

Category B

Reviewer: 2nd Reviewer:

Laboratory: Test America, Inc.

/IET	THOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)							
	Client ID				Lab ID	Matrix	Date	
15	AE-CR008-DMS				320-34271-33MS	Tissue	08/03/17	
16	AE-CR008-DMSD			320-34271-33MSD	Tissue	08/03/17		
17	WP-CR001-FDUP			320-34271-45DUP	Tissue	08/03/17		
18								
19								
20								
otes	:							
\exists								

LDC #: 42369B96

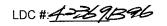
VALIDATION FINDINGS CHECKLIST

Page: ___of ___ Reviewer: ____ 2nd Reviewer: ____

Method: LCMS (EPA Method 537)

Validation Area	Yes	No	NA	Findings/Comments
It Technical holding times			ı	
Were all technical holding times met?	/			·
Was cooler temperature criteria met?				
III: LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
illa: Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of > 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				, i
IIIIb Injual Calleration Verification	F 19			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV Continuing calibration				26
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) of the continuing calibration ≤ 30%?	/			Labeled = 50%
V. ilaboratoryBlanks			197	
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.	/			
VJ ⊑ield;blanks,				100 mg/s
Were field blanks identified in this SDG?	/			
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	/		<u> </u>	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
IX Laboratory control samples:				
Was an LCS analyzed for this SDG?	/		1	

VALIDATION FINDINGS CHECKLIST

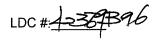

Page: of Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?			_	
Were target compounds detected in the field duplicates?.			/	
XII. internal standards				The second second second
Were internal standard area counts within ± 50% of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII, irangen aginpoundridentification.			10 M	
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				:
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?		Service Arrange		
XIV System-performance	1	T		
System performance was found to be acceptable.				
XIIII Overali assessment of data			i i	
Overall assessment of data was found to be acceptable.	<u> </u>	ļ <u>.</u>	<u> </u>	

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WIETHOD: Prosifroas			
A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)	·		
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)		·	
H. Perfluorotridecanoic acid (PFTriDA)			
Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)		·	
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)		•	
R. 6:2FTS			
S. 8:2 FTS			
T. N-methyl-perfluoroostanesulfonamidoacetic.acid(NMeFOSAA)			·
U. N-Ethyl perfluorooctanesulfenamideaeetie acid-(NEtFOSAA)			


VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a continuing calibration standard analyzed after every 10 injections for each instrument?

Y(N N/A Were all continuing calibration percent differences (%D) ≤30 %?

YN	N/A V	vere all continuing calibra	tion percent differences	(%D) ≤30 %?			
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Finding RRF (Limit:)	Associated Samples	Qualifications
	1/4/18	2018.01.06.019	13-T	53.7 150	70)	6-8,15-16	JANA (T)
	7 7		Ma-R	5/4	, , , , , , , , , , , , , , , , , , , ,	8,5-16	WAR (R)
			Ma-S	149.6		1	1/ (3)
						(ND)	
						/	
	1/6/18	2018.01.06.030	d3-T	54.0 68.5		9-10 (NO)	VUS LT)
<u> </u>			d5-U	68.5			/ L (U)
							·
	14/18	2018.01.13.039	Masq		,		
 							
 							
							· ·
 							``
 							
-							
-							
 							
<u> </u>							<u> </u>
							·
					·		
		·					
					<u> </u>	<u> </u>	<u> </u>

VALIDATION FINDINGS WORKSHEET Blanks

	Page:_	<u>lof /</u>
R	eviewer:	9
2nd R	eviewer:	<u></u>

METHOD:	LC/MS	PFOS/PFOAs	(FPA Method	1 537M)
ITIL IIIOD.	LO/IVIO	1 1 00/1 1 0/13 (2 00 / 191)

i loade dee qualificatione beleff for all quotiene affettered. It is not applicable queetiene are jucififica as 14/11.	Please see qualifications below for all q	uestions answered "N".	Not applicable of	uestions are identified as "N/A".
--	---	------------------------	-------------------	-----------------------------------

N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

★N N/A
 Was a method blank performed with each extraction batch?

YN N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 1518 Blank analysis date: 1218

Conc. units: M249

Associated samples: 11-13

Compound	Blank ID		Sample Identification							
WB37	0-2028-33/4									
R	0.0131									
•										

Blank extraction date: Conc. units:	Blank anal	ysis date:		Associated samples:								
Compound	Blank ID		Sample Identification									

LDC #: 42369B96

VALIDATION FINDINGS WORKSHEET Blanks

	Page:	<u> </u>
	Reviewer:	n
2nd	Reviewer:	

METHOD: LC/MS PFCs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>MN N/A</u> Were all samples associated with a given method blank?

Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y'N N/A Was a method blank performed with each extraction batch?

Y N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

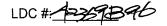
Rlank extraction date: 12/23/17 Blank analysis date: 01/12/18

Conc. units: mg/Kg Associated samples: 1-4

Compound	Blank ID			Sample Identification				
	MB 320-201207/1-A	1	2	4				
P	0.000166	0.00013/0.00092U	0.00018/0.0010U	0.00012/0.00092U				
F	0.0000889	0.0000/0.00092U	0.00019/0.0010U					
κ	0.0000702	0.00076/0.00092U	0.00075/0.0010U					
R	0.000829							·
	<ri< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ri<>							

Blank extraction date: 12/23/17 Blank analysis date: 01/06/18

Conc. units: mg/Kg Associated samples: 5-10


Compound	Blank ID		Sample Identification						
	MB 320-201223/1-A								
К	0.0000792								
		:							
, ×									
	<ri< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ri<>								

LDC	#: <u>12369</u> B96
-----	---------------------

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	<u></u> of
Reviewer:	9
2nd Reviewer:	<u>a</u>

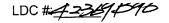
METHOD: LC/MS PFOS/PF										
, — , — — ·	olanks identifie									
YN N/A Were target	t compounds d									
Blank units: 18/4 As	sociated sar	mple units: <u>/</u>	M3/45							
Sampling date: /=////			/			_				
Field blank type: (circle one	ے) Trip Blank/Ի	Field Blank / H	Rinsate / Othe	er:	Asso	ciated Sample	es: <u>/0 -</u>			
Compound	Blank ID	B4 13			s	ample Identifica	ation			
	ZBCROO	Y FB-CRE	2 1	10	11	12	13			
K	0.29	0.27		0.0038/	0.0016/		0.00=9/			
0	<u> </u>	0.37		60010	en george	tt 10.0098	th 0.000	≥µ		
R	l'	3.43	<u></u>]	!
Ô				0,00012	0,00045	0.000/2	0,00017			
	<u> </u> '	<u>'</u>				ļ				
		·		1		l			1	
			Raige De	0.00100	0.000974	0.000984	0,000931	e		
Blank units: Asso	ciated samp	le units:								
Sampling date:	_ a) Field Blank	√ Rinsate / O′	thar	Associa	ited Samples:					
Tield blatte type. (onote one	Tield Diame.	T Trinsact, Ct		7.000014.	teu oampioo.					
Compound	Blank ID	<u></u>			S	ample Identifica	ition			
		+	 	+	+				+	

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates/Duplicates</u>

Page:_	<u></u> of
Reviewer:_	9
2nd Reviewer	2

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


MN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

Y N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

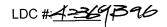
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

N N/A Were all duplicate sample relative percent differences (RPD) or differences within QC limits?

#	Date	MS/MSD/DUP ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		15/6	K	141 (75-12)	131 (75-12)		8 (dets)	Vet3/A
			Z M	70 Rout				No and > 4x54
	,							
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
 		<u> </u>			,			
						· · · · · · · · · · · · · · · · · · ·		
			ļ					
]				
					<u> </u>		:	
								
							·	
						<u> </u>		
						,		

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: / of //
Reviewer: 2
2nd Reviewer: 2


METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within 50-150% limits?

YN N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
	I (ND)	d5- * U	180 (25-150)		VH (U)
	1 (NO)	N2-6=2FTS	159	No leu	VITANTE (R)
		M2-8:2FIS	204	L	* (3)
	MB 320-20/267/	VA d3-T	160		MA
			350		1/1/
		M2-R M2-S	575		V
	14 (Labdup)	d5-U	162		1/4/
	MB 320-201223/H	13C4 PFBA	2		
	, /	13C2 DFHXA	6		
		13C4-PFHA	12		
		BC4-PFOA	13		
		13C3-PFBS	19		
		M2- R	20		V
	MB-320-2028-3	1-A 13C4PTBA	2		VAIA
		13C5PFROA	4		
	- -	13C2+PFHXX	5		
		13C4 PTOA	8		
		130-PFTeM 1303-PFBS	16		
		M2-R	10		

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: 2 of 3
Reviewer: 2
2nd Reviewer: 2

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YANA Were all internal standard area counts within 50-150% limits?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

			Internal Standards Within +/- 30 Seconds of the				
#	Date	Sample ID	Standard	Area (Limits)	RT (Limits)	Qualifications	
		14(Idup)	M2-5	IT9 (25-150)		JAN A	
		, (/					
	<u> </u>	IT(& dup)	V	∆ 724 √			
						V	
		2 (ND)	M2-S	165 (25-150)		+AN (()	
						No Qual 110x	
_		3 (ND)	1 /2 - t2	151		100 4000 110 %	
		3 (NO)	M2-R M2-S				
\dashv			M2-0	176			
		4 ()(7)	16				
		A (ND)	W2-R	166			
			M2-5	165			
							
		5 (ND)_	Na-R	152			
			M2-S	173			
ı		6 (ND)		167			
				243			
		7 (NO)-					
		T (ND)	·	205			
\dashv		1 (100)		205			
$\neg \dagger$			<u> </u>			V	
	<u> </u>	18 (ND)	1/2 5	431		11/11/2015	
\dashv	<u> </u>	8 (ND)	1/2-R	741		1/H/PIR	
			M2-S			(5)	
\perp		0 (15)	1/2			1500	
		9 (ND)	M2-5	16		No Cenal (10x)	
			n / 12		· · · · · · · · · · · · · · · · · · ·	- 	
		10 (ND)	M2-R3	173			

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	≥ of_≥
Reviewer:	9
2nd Reviewer:	2

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N/A Were all internal standard area counts within 50-150% limits?

Y N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		((ND)	M2-5	225 (25-150)		No Ceval (10x)
		'				<u> </u>
		15 (14)	V	7/1		
		1= (NO)	V	26)		
		13 (ND	M2-R	163		
			M2-5	153 276		
					·	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	
Reviewer:	T
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 A_x = Area of compound,

 $\hat{C_x}$ = Concentration of compound,

S = Standard deviation of the RRFs

X = Mean of the RRFs

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	1/3/18	PFOA	(1st internal standard)	1.1336	1.1336	1.1474	1.1474	4.8	4.8
	(A8_N)		8:2 FTS	(2nd internal standard)	1.3681	1.3681	1.2467	1.2467	6.0	6.0
				(3rd internal standard)						
2	ICAL	1/17/18	PFOA	(1st internal standard)	1.1344	1.1344	1.1721	1.1721	6.9	6.9
	(A8_N)		PFHpS	(2nd internal standard)	1.4365	1.4365	1.3545	1.3545	4.0	4.0
			<u> </u>	(3rd internal standard)						
3				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	tost
	Reviewer:	
2nd	Reviewer:	0-

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

A, = Area of compound,

A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Re	ference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.04_034	1/5/18	PFOA	(1st internal standard)	1.1474	1.154	1.154	0.6	0.6
			8:2 FTS	(2nd internal standard)	1.2467	1.240	1.240	0.5	0.5
2	2018.01.04_045	1/5/18	PFOA	(1st internal standard)	1.1474	1.122	1.122	2.2	2.2
			8:2 FTS	(2nd internal standard)	1.2467	1.162	1.162	6.8	6.8
3	2018.01.04_056	1/5/18	PFOA	(1st internal standard)	1.1474	1.130	1.130	1.5	1.5
			8:2 FTS	(2nd internal standard)	1.2467	1.297	1.297	4.0	4.0
4	2018.01.06_007	1/6/18	PFOA	(1st internal standard)	1.1474	1.054	1.054	8.1	8.1
			8:2 FTS	(2nd internal standard)	1.2467	1.237	1.237	0.8	0.8

Comments:	Refer to	Continuing	Calibration	findings v	worksheet for	r list of	qualifications	s and	associated	samples	when	reported	results o	<u>lo not ac</u>	<u>gree withir</u>	10.0%	of the
recalculated r	esults										_						
											_						

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	Of
Reviewer:_	4
2nd Reviewer:	_

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x = Concentration of compound,$ C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Re	ference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.06_019	1/6/18	PFOA	(1st internal standard)	1.1474	1.110	1.110	3.3	3.3
			8:2 FTS	(2nd internal standard)	1.2467	1.296	1.296	3.9	3.9
							-		
2	2018.01.06_030	1/6/18	PFOA	(1st internal standard)	1.1474	1.097	1.097	4.4	4.4
			8:2 FTS	(2nd internal standard)	1.2467	1.186	1.186	4.9	4.9
3	2018.01.12_001	1/12/18	PFOA	(1st internal standard)	1.1474	1.127	1.127	1.7	1.7
			8:2 FTS	(2nd internal standard)	1.2467	1.241	1.241	0.4	0.4
4	2018.01.12_012	1/12/18	PFOA	(1st internal standard)	1.1474	1.120	1.120	2.4	2.4
			8:2 FTS	(2nd internal standard)	1.2467	1.309	1.309	5.0	5.0

Comments:	Refer to	Continuing	Calibration	findings '	<u>worksheet for</u>	list of	qualifications	and a	<u>associated</u>	samples :	<u>when re</u>	eported	<u>results c</u>	<u>lo not a</u>	gree withi	<u>n 10.0</u>	% of th	<u>ie</u>
recalculated r	results																	

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page: 3 of Reviewer: 2nd Reviewer: 2

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

DDE - continuing calibration average

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

RRF = continuing calibration RRF

A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Re	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.12_023	1/12/18	PFOA	(1st internal standard)	1.1474	1.063	1.063	7.3	7.3
			8:2 FTS	(2nd internal standard)	1.2467	1.255	1.255	0.7	0.7
2	2018.01.13_006	1/13/18	PFOA	(1st internal standard)	1.1474	1.050	1.050	8.5	8.5
			8:2 FTS	(2nd internal standard)	1.2467	1.293	1.293	3.7	3.7
3	2018.01.13_015	1/13/18	PFOA	(1st internal standard)	1.1474	1.133	1.133	1.3	1.3
			8:2 FTS	(2nd internal standard)	1.2467	1.258	1.258	0.9	0.9
4	2018.01.13_001	1/13/18	PFOA	(1st internal standard)	1.1474	1.099	1.099	4.2	4.2
			8:2 FTS	(2nd internal standard)	1.2467	1.211	1,211	2.8	2.8

Comments:	Refer to Cor	tinuing C	alibration fir	ndings wo	rksheet fo	r list of	qualification	s and a	ssociated	samples	<u>when</u>	reported r	esults d	o not a	gree withii	<u> 10.0%</u>	of the
recalculated r	results															_	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	₫of \$
Reviewer:_	<u>Q</u>
2nd Reviewer:_	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Re	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.13_012	1/13/18	PFOA	(1st internal standard)	1.1474	1.107	1.107	3.5	3.5
			8:2 FTS	(2nd internal standard)	1.2467	1.254	1.254	0.8	0.8
2	2018.01.13_023	1/13/18	PFOA	(1st internal standard)	1.1474	1.134	1.134	1.2	1.2
			8:2 FTS	(2nd internal standard)	1.2467	1.281	1.281	2.7	2.7

3	2018.01.13_031	1/14/18	PFOA	(1st internal standard)	1.1474	1.163	1.163	1.4	1.4
			8:2 FTS	(2nd internal standard)	1.2467	1.313	1.313	5.3	5.3
4	2018.01.13_039	1/14/18	PFOA	(1st internal standard)	1.1474	1.107	1.107	3.5	3.5
			8:2 FTS	(2nd internal standard)	1.2467	1.210	1.210	3.0	3.0

Comments:	Refer to	Continuing	Calibration f	<u>indings wo</u>	orksneet for	list of	qualifications	s and asso	ociated sa	<u>amples w</u>	<u>men rep</u>	orted r	<u>esuits do</u>	not ag	<u>ree within</u>	<u>_10.0% o</u>	<u>t the</u>
recalculated:	results																

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	4 of 4
Reviewer:	<u> </u>
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compou	nd (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.18_005	1/18/18	PFOA	(1st internal standard)	1.1721	1.139	1.139	2.8	2.8
			PFHpS	(2nd internal standard)	1.3545	1.467	1.467	8.3	8.3
2	2018.01.18_017	1/18/18	PFOA	(1st internal standard)	1.1721	1.102	1.102	6.0	6.0
			PFHpS	(2nd internal standard)	1.3545	1.373	1.373	1.3	1.3
3	2018.01.18_028	1/18/18	PFOA	(1st internal standard)	1.1721	1.110	1.110	5.3	5.3
			PFHpS	(2nd internal standard)	1.3545	1.329	1.329	1.9	1.9
4									

Comments:	Refer to	Continuing	Calibration	<u>findings</u>	worksheet for	list of	qualifications	s and	associated	samples	<u>wnen r</u>	eported	results c	lo not a	<u>gree wi</u>	<u>thin 1</u>	0.0% of	the
recalculated r	results																	
									-						_			
									-									

AVEIDATION I MANIMOO AAOUVOHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Раде: <u> (</u> _от <u> / </u>	
Reviewer:	
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

RPD = I MSC - MSC I * 2/(MSC + MSDC)

Where: SSC = Spiked sample concentration

SC = Sample concentation

MSC = Matrix spike concentration

SA = Spike added

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

Compound	Ad	rike ded	Sample Concentration (WSAS)	Concer	Spiked Sample Concentration MCC Percent Recovery			Matrix Spik		MS/MSD RPD		
	MS	MSD	9,000	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated	
DEPA	0.00917	0.009=6	KZD	0.00816	0.00 PAT	89	89	8)	81	9	9	
	0.00851	0.00859	NZD 0.059	0.000	0.0519	132	134	102	104	4	4	
									, ,			
		· · ·			· · · · · · · · · · · · · · · · · · ·			,				

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0	ე%
of the recalculated results.	
	_

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page/oi_/_
Reviewer: Q
2nd Reviewer:

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 320-20/5

Compound	Sp Ad (1/2)	oike ded, 8/15	Concer	ike ntration		Recovery	J.C.	SD Recovery	L CS/L CSD RPD		
7 (A)	LCS	LCSD	LCS	LCSD	Reported	Reported Recalc.		Recalc.	Reported	Recalculated	
DFOA	0.0100	NA	0.0083	NA	87	87					
\$F05	0.00928	\bigvee	0.00851	+	95	92					
`											
						-					
							,				
								,			

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualificati	<u>ons and associated samples when reporte</u>
results do not agree within 10.0% of the recalculated results.	

LDC #: 423191896

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	9
2nd reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Ŷ	N	N/A
Y	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $(A_i)(I_s)(V_i)(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(%S)$	Example:
Ą	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	10 29 10 1
s	=	Amount of internal standard added in nanograms (ng)	Conc. = (1043/1, 2.39) (10) (1) (1) (308) (1) (1) (1) (1) (1) (1)
/ 。	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	200// 1.13// 1.0 / 1000 x
/ 1	=	Volume of extract injected in microliters (ul)	=0.0029 m8/2
/ _t	=	Volume of the concentrated extract in microliters (ul)	8
Of	=	Dilution Factor.	•
%S	=	Percent solids, applicable to soil and solid matrices only.	

2.0	= Factor of 2 to accou	int for GPC cleanup			
#_	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	1	#FOS	0.00-9		
	4				· .

		,			
					<u> </u>
		:			**************************************
				<u> </u>	
			·		
				· · · · · · · · · · · · · · · · · · ·	
_					<u> </u>
]].	

Site: Suffolk County Biota Sampling Evaluation

Laboratory: Eurofins, Edison, NY

Report No.: 320-32834-1

Reviewer: Stella Cuenco, Pei Geng and Christina Rink/Laboratory Data Consultants

for P.W. Grosser Consulting

Date: October 18, 2019

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
BC-CR002-A-M	320-32834-1	Fluorinated Alkyl Substances
BC-CR002-B-M	320-32834-3	Fluorinated Alkyl Substances
BC-CR002-D-M	320-32834-7	Fluorinated Alkyl Substances
BC-CR002-E-M	320-32834-9	Fluorinated Alkyl Substances
BC-CR002-F-M	320-32834-11	Fluorinated Alkyl Substances
BC-CR002-G-M	320-32834-13	Fluorinated Alkyl Substances
BC-CR002-H-M	320-32834-15	Fluorinated Alkyl Substances
BC-CR002-I-M	320-32834-17	Fluorinated Alkyl Substances
BC-CR002-J-M	320-32834-19	Fluorinated Alkyl Substances
BC-CR001-A-M	320-32834-21	Fluorinated Alkyl Substances
BC-CR001-C-M	320-32834-25	Fluorinated Alkyl Substances
BC-CR001-D-M	320-32834-27	Fluorinated Alkyl Substances
BC-CR001-H-M	320-32834-35	Fluorinated Alkyl Substances
BC-CR001-I-M	320-32834-37	Fluorinated Alkyl Substances
BC-CR001-J-M	320-32834-39	Fluorinated Alkyl Substances
BC-FR001-A-H	320-32834-42	Fluorinated Alkyl Substances
BC-FR001-E-H	320-32834-50	Fluorinated Alkyl Substances
BC-FR001-F-H	320-32834-52	Fluorinated Alkyl Substances
BC-GA001-D-M	320-32834-63	Fluorinated Alkyl Substances
BC-GA001-D-H	320-32834-64	Fluorinated Alkyl Substances
BC-GA001-E-H	320-32834-66	Fluorinated Alkyl Substances
BC-GA002-A-H	320-32834-74	Fluorinated Alkyl Substances
BC-GA002-B-H	320-32834-76	Fluorinated Alkyl Substances
BC-GA002-C-H	320-32834-78	Fluorinated Alkyl Substances
BC-GA002-E-H	320-32834-82	Fluorinated Alkyl Substances
BC-GA002-F-H	320-32834-84	Fluorinated Alkyl Substances
BC-GA002-G-M	320-32834-85	Fluorinated Alkyl Substances
BC-GA002-J-H	320-32834-92	Fluorinated Alkyl Substances
BC-CR002-F-MDUP	320-32834-11DUP	Fluorinated Alkyl Substances
BC-CR002-I-MMS	320-32834-17MS	Fluorinated Alkyl Substances
BC-CR002-I-MMSD	320-32834-17MSD	Fluorinated Alkyl Substances
BC-FR001-E-HDUP	320-32834-50DUP	Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks: None Associated Field Duplicate pair: None Associated

The above-listed tissue samples were collected on October 12 through October 16, 2017 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review*, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS)/Standard Reference Material (SRM) Results
- Internal Standards
- Field Duplicate Results
- Moisture Content
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Laboratory Duplicate Results

Laboratory duplicates were performed on samples BC-CR002-F-M and BC-FR001-E-H for fluorinated alkyl substances analysis. The following table lists the duplicate relative percent differences (RPD) outside of control limits in the fluorinated alkyl substances analysis and the resulting validation actions.

Dup ID	Compound	RPD (Limits)	Affected Sample	Validation Action
BC-FR001-E-HDUP	Perfluorooctanesulfonic acid	38 (≤30)	BC-FR001-E-H	J detects

The perfluorooctanesulfonic acid result for the sample listed above may be biased high due to high duplicate relative percent differences. The results can be used for project objectives as estimated values (J) which may have a minor impact on the data usability.

LCS/SRM Results

The following table lists the compounds recovered outside of control limits in the fluorinated alkyl substances analysis and the resulting validation actions.

LCS ID	Compound	LCS %R (Limits)	LCS/D %R (Limits)	RPD (Limits)	Affected Sample	Validation Action
LCS/D 320-202824	Perfluorobutanoic acid	182 (81-133)	147 (81-133)	-	BC-GA001-D-H BC-GA001-E-H BC-GA002-A-H BC-GA002-B-H	J detects
LCS/D 320-202824	Perfluorobutanoic acid	182 (81-133)	147 (81-133)	-	BC-GA001-D-M BC-GA002-C-H	None

⁻ Within control limits

LCS ID	Compound	%R (Limits)	Affected Sample	Validation Action
LCS 320-202186	Perfluorobutanoic acid	243 (81-133)	BC-FR001-A-H	J detects
			BC-FR001-E-H	
			BC-FR001-F-H	

⁻ Within control limits

The perfluorobutanoic acid results for the samples listed above may be biased high due to high LCS/LCSD percent recovery. The results can be used for project objectives as estimated values (J) which may have a minor impact on the data usability.

Validation action was not required for perfluorobutanoic acid due to high LCS/LCSD percent recovery as positive results only are affected and this compound was not detected in the associated samples.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-202186/1-A	Perfluorobutanoic acid	0.00157 mg/Kg	RL	BC-FR001-A-H
	6:2FTS	0.0341 mg/Kg	RL	BC-FR001-E-H
				BC-FR001-F-H
MB 320-202824/1-A	Perfluorobutanoic acid	0.00481 mg/Kg	RL	BC-GA001-D-M
	Perfluorohexanoic acid	0.00162 mg/Kg	RL	BC-GA001-D-H
·	Perfluoropentanoic acid	0.000241 mg/Kg	RL	BC-GA001-E-H
	6:2FTS	0.00167 mg/Kg	RL	BC-GA002-A-H
				BC-GA002-B-H
				BC-GA002-C-H
MB 320-202832/1-A	6:2FTS	0.0400 mg/Kg	RL	BC-GA002-E-H
	Perfluorobutanoic acid	0.000490 mg/Kg	RL	BC-GA002-F-H
	Perfluoropentanoic acid	0.000254 mg/Kg	RL	BC-GA002-G-M
	Perfluorooctanoic acid	0.000147 mg/Kg	RL	BC-GA002-J-H
	Perfluorohexanesulfonic acid	0.000112 mg/Kg	RL	
	Perfluorooctanesulfonic acid	0.000291 mg/Kg	RL	
MB 320-200601/1-A	Perfluorohexanesulfonic acid	0.0000834 mg/Kg	RL	BC-CR002-A-M
	Perfluorooctanesulfonic acid	0.0000864 mg/Kg	RL	BC-CR002-B-M
	6:2FTS	0.000396 mg/Kg	RL	BC-CR002-D-M
				BC-CR002-E-M
				BC-CR002-F-M
				BC-CR002-G-M
				BC-CR002-H-M
				BC-CR002-I-M
				BC-CR002-J-M
MB 320-200806/1-A	Perfluorohexanesulfonic acid	0.0000701 mg/Kg	RL	BC-CR001-A-M
	Perfluorooctanesulfonic acid	0.000077 mg/Kg	RL	BC-CR001-C-M
				BC-CR001-D-M
				BC-CR001-H-M
				BC-CR001-I-M
				BC-CR001-J-M

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
BC-FR001-A-H Perfluorobutanoic acid		0.0017 mg/Kg	0.0017U mg/Kg
	6:2FTS	0.0061 mg/Kg	0.093U mg/Kg

Sample ID	Compound	Level Detected	Validation Action
BC-FR001-E-H	Perfluorobutanoic acid	0.0049 mg/Kg	0.0049U mg/Kg
BC-FR001-F-H	Perfluorobutanoic acid	0.0025 mg/Kg	0.0025U mg/Kg
BC-GA001-D-M	Perfluorobutanoic acid	0.00053 mg/Kg	0.00094U mg/Kg
	6:2FTS	0.021 mg/Kg	0.021J mg/Kg
BC-GA001-D-H	Perfluorobutanoic acid	0.0028 mg/Kg	0.0028U mg/Kg
BC-GA001-E-H	Perfluorobutanoic acid	0.0046 mg/Kg	0.0046U mg/Kg
	6:2FTS	0.0084 mg/Kg	0.0084J mg/Kg
BC-GA002-A-H	Perfluorobutanoic acid	0.0079 mg/Kg	0.0079U mg/Kg
	6:2FTS	0.024 mg/Kg	0.024J mg/Kg
BC-GA002-B-H	Perfluorobutanoic acid	0.0053 mg/Kg	0.0053U mg/Kg
	6:2FTS	0.020 mg/Kg	0.020J mg/Kg
BC-GA002-C-H	Perfluorobutanoic acid	0.00090 mg/Kg	0.00094U mg/Kg
BC-GA002-E-H	Perfluorobutanoic acid	0.00030 mg/Kg	0.00093U mg/Kg
	Perfluorooctanoic acid	0.00040 mg/Kg	0.00093U mg/Kg
	Perfluorooctanesulfonic acid	0.0091 mg/Kg	0.0093U mg/Kg
BC-GA002-F-H	Perfluorooctanoic acid	0.00069 mg/Kg	0.00093U mg/Kg
BC-GA002-G-M	6:2FTS	0.011 mg/Kg	0.10U mg/Kg
	Perfluorobutanoic acid	0.00078 mg/Kg	0.0010U mg/Kg
	Perfluorooctanoic acid	0.00085 mg/Kg	0.0010U mg/Kg
BC-CR002-A-M	Perfluorohexanesulfonic acid	0.00029 mg/Kg	0.00093U mg/Kg
BC-CR002-B-M	Perfluorohexanesulfonic acid	0.00013 mg/Kg	0.00093U mg/Kg
BC-CR002-D-M	Perfluorohexanesulfonic acid	0.00020 mg/Kg	0.0010U mg/Kg
BC-CR002-E-M	Perfluorohexanesulfonic acid	0.00011 mg/Kg	0.00097U mg/Kg
BC-CR002-F-M	Perfluorohexanesulfonic acid	0.00015 mg/Kg	0.00098U mg/Kg
	Perfluorooctanesulfonic acid	0.00084 mg/Kg	0.00098U mg/Kg
BC-CR002-G-M	Perfluorohexanesulfonic acid	0.00030 mg/Kg	0.00093U mg/Kg
BC-CR002-H-M	Perfluorohexanesulfonic acid	0.000094 mg/Kg	0.0010U mg/Kg
BC-CR002-I-M	Perfluorohexanesulfonic acid	0.00030 mg/Kg	0.0010U mg/Kg
BC-CR002-J-M	Perfluorohexanesulfonic acid	0.00053 mg/Kg	0.00097U mg/Kg
BC-CR001-A-M	Perfluorohexanesulfonic acid	0.00054 mg/Kg	0.0010U mg/Kg
BC-CR001-C-M	Perfluorohexanesulfonic acid	0.00021 mg/Kg	0.0010U mg/Kg
BC-CR001-D-M	Perfluorohexanesulfonic acid	0.00042 mg/Kg	0.0010U mg/Kg
BC-CR001-H-M	Perfluorohexanesulfonic acid	0.00044 mg/Kg	0.00093U mg/Kg
BC-CR001-I-M	Perfluorohexanesulfonic acid	0.00053 mg/Kg	0.00099U mg/Kg
BC-CR001-J-M	Perfluorohexanesulfonic acid	0.00038 mg/Kg	0.00095U mg/Kg

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Using professional judgement, select 6:2FTS results were qualified as estimated (J) due to blank contamination present and the sample having a high dilution factor applied. The results can be used for project objectives as estimated values (J) which may have a minor impact on the data usability.

A field blank was not associated with this sample set. Validation action was not required on this basis.

MS/MSD Results

MS/MSD analyses were performed on sample BC-CR002-I-M for fluorinated alkyl substances analysis. All criteria were met.

Laboratory Duplicate Results

Laboratory duplicates were performed on samples BC-CR002-F-M and BC-FR001-E-H for fluorinated alkyl substances analysis. The following table lists the duplicate relative percent differences (RPD) outside of control limits in the fluorinated alkyl substances analysis and the resulting validation actions.

		RPD		Validation
Dup ID	Compound	(Limits)	Affected Sample	Action
BC-FR001-E-HDUP	Perfluorooctanesulfonic acid	38 (≤30)	BC-FR001-E-H	J detects

The perfluorooctanesulfonic acid result for the sample listed above may be biased high due to high duplicate relative percent differences. The results can be used for project objectives as estimated values (J) which may have a minor impact on the data usability.

LCS/SRM Results

The following table lists the compounds recovered outside of control limits in the fluorinated alkyl substances analysis and the resulting validation actions.

LCS ID	Compound	LCS %R (Limits)	LCS/D %R (Limits)	RPD (Limits)	Affected Sample	Validation Action
LCS/D 320-202824	Perfluorobutanoic acid	182 (81-133)	147 (81-133)	-	BC-GA001-D-H BC-GA001-E-H BC-GA002-A-H BC-GA002-B-H	J detects
LCS/D 320-202824	Perfluorobutanoic acid	182 (81-133)	147 (81-133)	-	BC-GA001-D-M BC-GA002-C-H	None

⁻ Within control limits

LCS ID	Compound	%R (Limits)	Affected Sample	Validation Action
LCS 320-202186	Perfluorobutanoic acid	243 (81-133)	BC-FR001-A-H BC-FR001-E-H BC-FR001-F-H	J detects

⁻ Within control limits

The perfluorobutanoic acid results for the samples listed above may be biased high due to high LCS/LCSD percent recovery. The results can be used for project objectives as estimated values (J) which may have a minor impact on the data usability.

Validation action was not required for perfluorobutanoic acid due to high LCS/LCSD percent recovery as positive results only are affected and this compound was not detected in the associated samples.

Internal Standards

The following table lists the internal standards recovered outside of control limits and the resulting actions.

		Area Exceedances	Affected	
Sample	Internal Standard	(Limits)	Compounds	Validation actions
BC-CR002-I-M	M2-6:2FTS	214 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	214 (25-150)	8:2FTS	UJ nondetects
BC-FR001-A-H	13C2-Perfluorotetradecanoic acid	4 (25-150)	Perfluorotetradecanoic acid	UJ nondetects
BC-FR001-E-H	13C2-Perfluorotetradecanoic acid	20 (25-150)	Perfluorotetradecanoic acid	UJ nondetects
BC-FR001-F-H	13C2-Perfluorotetradecanoic acid	22 (25-150)	Perfluorotetradecanoic acid	UJ nondetects
BC-GA001-D-H	13C4-Perfluorobutanoic acid	3 (25-150)	Perfluorobutanoic acid	J detects/UJ nondetects
	13C5-Perfluoropentanoic acid	6 (25-150)	Perfluoropentanoic acid	J detects/UJ nondetects
	13C2-Perfluorohexanoic acid	4 (25-150)	Perfluorohexanoic acid	J detects/UJ nondetects
	13C4-Perfluoroheptanoic acid	4 (25-150)	Perfluoroheptanoic acid	J detects/UJ nondetects
	13C4-Perfluorooctanoic acid	5 (25-150)	Perfluorooctanoic acid	J detects/UJ nondetects
	13C5-Perfluorononanoic acid	8 (25-150)	Perfluorononanoic acid	J detects/UJ nondetects
	13C2-Perfluorotetradecanoic acid	8 (25-150)	Perfluorotetradecanoic acid	J detects/UJ nondetects
	13C3-Perfluorobutanesulfonic acid	15 (25-150)	Perfluorobutanesulfonic acid	J detects/UJ nondetects
	M2-8:2FTS	20 (25-150)	8:2FTS	J detects/UJ nondetects
BC-GA001-E-H	13C4-Perfluorobutanoic acid	5 (25-150)	Perfluorobutanoic acid	J detects/UJ nondetects
	13C5-Perfluoropentanoic acid	9 (25-150)	Perfluoropentanoic acid	J detects/UJ nondetects
	13C2-Perfluorohexanoic acid	8 (25-150)	Perfluorohexanoic acid	J detects/UJ nondetects
	13C4-Perfluoroheptanoic acid	5 (25-150)	Perfluoroheptanoic acid	J detects/UJ nondetects
	13C4-Perfluorooctanoic acid	13 (25-150)	Perfluorooctanoic acid	J detects/UJ nondetects
	13C5-Perfluorononanoic acid	22 (25-150)	Perfluorononanoic acid	J detects/UJ nondetects
	13C2-Perfluorotetradecanoic acid	14 (25-150)	Perfluorotetradecanoic acid	J detects/UJ nondetects
	13C3-Perfluorobutanesulfonic acid	20 (25-150)	Perfluorobutanesulfonic acid	J detects/UJ nondetects
BC-GA002-A-H	13C4-Perfluorobutanoic acid	6 (25-150)	Perfluorobutanoic acid	J detects/UJ nondetects
	13C5-Perfluoropentanoic acid	11 (25-150)	Perfluoropentanoic acid	J detects/UJ nondetects
	13C2-Perfluorohexanoic acid	11 (25-150)	Perfluorohexanoic acid	J detects/UJ nondetects
	13C4-Perfluoroheptanoic acid	10 (25-150)	Perfluoroheptanoic acid	J detects/UJ nondetects
	13C2-Perfluorotetradecanoic acid	17 (25-150)	Perfluorotetradecanoic acid	J detects/UJ nondetects
BC-GA002-B-H	13C4-Perfluorobutanoic acid	4 (25-150)	Perfluorobutanoic acid	J detects/UJ nondetects
	13C5-Perfluoropentanoic acid	14 (25-150)	Perfluoropentanoic acid	J detects/UJ nondetects
	13C2-Perfluorohexanoic acid	16 (25-150)	Perfluorohexanoic acid	J detects/UJ nondetects
	13C4-Perfluoroheptanoic acid	12 (25-150)	Perfluoroheptanoic acid	J detects/UJ nondetects
BC-GA002-C-H	13C4-Perfluorobutanoic acid	2 (25-150)	Perfluorobutanoic acid	UJ nondetects
	13C5-Perfluoropentanoic acid	8 (25-150)	Perfluoropentanoic acid	UJ nondetects
	13C2-Perfluorohexanoic acid	9 (25-150)	Perfluorohexanoic acid	UJ nondetects
1	13C4-Perfluoroheptanoic acid	7 (25-150)	Perfluoroheptanoic acid	UJ nondetects
	13C2-Perfluorotetradecanoic acid	21 (25-150)	Perfluorotetradecanoic acid	UJ nondetects

The 6:2FTS, 8:2FTS, perfluorobutanoic acid, perfluoropentanoic acid, perfluorohexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorotetradecanoic acid, and perfluorobutanesulfonic acid results were estimated due to internal standard area exceedances. The bias cannot be determined. The results can be used for project objectives as

estimated values (J) or nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Moisture Content

All criteria were met.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Due to high target compound levels or difficult sample matrix, select samples were analyzed at dilutions. The following table lists the sample dilutions which were performed and the results reported. RLs were elevated accordingly.

	Fluorinated Alkyl Substances Analysis
Sample	Reported
BC-CR002-A-M	10-fold dilution for select analytes due to nature of sample matrix
BC-CR002-B-M	
BC-CR002-D-M	
BC-CR002-E-M	
BC-CR002-F-M	
BC-CR002-G-M	
BC-CR002-H-M	
BC-CR002-J-M	
BC-CR001-A-M	
BC-CR001-C-M	
BC-CR001-D-M	
BC-CR001-H-M	
BC-CR001-I-M	
BC-CR001-J-M	
BC-FR001-A-H	
BC-FR001-E-H	
BC-FR001-F-H	
BC-GA001-D-M	

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-CR002-A-M Lab Sample ID: 320-32834-1 Lab File ID: 2017.12.29LLB_034.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:26 Extraction Method: SHAKE Date Extracted: 12/19/2017 18:59 Sample wt/vol: 1.07(g) Date Analyzed: 12/29/2017 19:34 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) GPC Cleanup:(Y/N) N % Moisture: Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00049	J 5	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.00026	JT	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	υŏ	0.00093	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	UÜ	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00012	JJ	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00038	J	0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.00013	J	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0032		0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00021	J 🕥	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00034	J	0.00093	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00040	J	0.00093	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	U U	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00029	J B() ((M3 0.00093	0.000062
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	υÜ	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0026	В	0.00093	0.000072
335-77 - 3	Perfluorodecanesulfonic acid (PFDS)	0.00012	JJ	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00010	J 3	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061	υŎ	0.0093	0.0061
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	U U	0.0093	0.0018

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-CR002-A-M DL Lab Sample ID: 320-32834-1 DL Lab File ID: 2018.01.14LLA 007.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:26 Date Extracted: 12/19/2017 18:59 Extraction Method: SHAKE Sample wt/vol: 1.07(g) Date Analyzed: 01/14/2018 10:08 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 203826 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0036	U U	0.093	0.0036
39108-34-4	8:2 FTS	0.0064	U	0.093	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	184	*	25-150
STL02280	M2-8:2 FTS	189	*	25-150

OCT 1 8 2019

Initials: @2

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR002-B-M Lab Sample ID: 320-32834-3

Matrix: Tissue

Lab File ID: 2017.12.29LLB 036.d Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:27

Extraction Method: SHAKE

Date Extracted: 12/19/2017 18:59

Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)

Date Analyzed: 12/29/2017 19:49

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000093	Ŭ ()	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	Ū	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	Ū	0.00093	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	U 🗸	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00015	JT	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00028	J	0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.000086	J	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0021		0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00023	JT	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00040	J	0.00093	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00062	J 🗸	0.00093	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	UU	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00013	JВ().00	0930 0.00093	0.000062
375-92 - 8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	υV	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0027	В	0.00093	0.000072
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000055	UU	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000094	J ブ	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061	υÜ	0.0093	0.0061

OCT 1 8 2019

Initials: ex

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR002-B-M DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL)

Analysis Batch No.: 203826

Injection Volume: 2(uL)

% Moisture:

Lab Sample ID: 320-32834-3 DL

Lab File ID: 2018.01.14LLA 009.d

Date Collected: 10/12/2017 08:27

Date Extracted: 12/19/2017 18:59

Date Analyzed: 01/14/2018 10:24

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	U U	0.093	0.018
27619-97-2	6:2 FTS	0.0036	U	0.093	0.0036
39108-34-4	8:2 FTS	0.0064	U	0.093	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	121		25-150
STL02279	M2-6:2 FTS	176	*	25-150
STL02280	M2-8:2 FTS	130		25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-CR002-D-M Lab Sample ID: 320-32834-7 Matrix: Tissue Lab File ID: 2017.12.29LLB_040.d Date Collected: 10/12/2017 08:29 Analysis Method: 537 (modified) Date Extracted: 12/19/2017 18:59 Extraction Method: SHAKE Sample wt/vol: 1.00(g) Date Analyzed: 12/29/2017 20:21 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) % Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00010	UU	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000069	Ū	0.0010	0.000069
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000052	Ū	0.0010	0.000052
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000060	U V	0.0010	0.000060
335-67-1	Perfluorooctanoic acid (PFOA)	0.00050	J 5	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00057	J ブ	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.000073	UU	0.0010	0.000073
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0019		0.0010	0.000074
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00023	JT	0.0010	0.000059
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00044	J	0.0010	0.000051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00051	J	0.0010	0.000066
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	υU	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00020	J B 0.0010	0.0010	0.000066
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000072	U U	0.0010	0.000072
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0016	В	0.0010	0.000077
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000059	UU	0.0010	0.000059
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000071	Ü	0.0010	0.000071
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0065	Ū	0.010	0.0065
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	υ 🗸	0.010	0.0020

OCT 18 2019

Initials: @

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-CR002-D-M DL Lab Sample ID: 320-32834-7 DL Matrix: Tissue Lab File ID: 2018.01.14LLA 013.d Date Collected: 10/12/2017 08:29 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 12/19/2017 18:59 Sample wt/vol: 1.00(g) Date Analyzed: 01/14/2018 10:55 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 203826 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0039	U U	0.10	0.0039
39108-34-4	8:2 FTS	0.0068	U U	0.10	0.0068

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	175	*	25-150
STL02280	M2-8:2 FTS	119		25-150

OCT 1 8 2019

SDG No.:

Client Sample ID: BC-CR002-E-M

Lab Sample ID: 320-32834-9

Matrix: Tissue

Lab File ID: 2017.12.29LLB_043.d

Analysis Method: 537 (modified)

Date Collected: 10/12/2017 08:30

Extraction Method: SHAKE

Date Extracted: 12/19/2017 18:59

Sample wt/vol: 1.03(g) Date Analyzed: 12/29/2017 20:44

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000097	UU	0.00097	0.000097
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000067	U	0.00097	0.000067
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	U	0.00097	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000058	U L	0.00097	0.000058
335-67-1	Perfluorooctanoic acid (PFOA)	0.00013	JT	0.00097	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00031	J	0.00097	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00012	J	0.00097	0.000071
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0016		0.00097	0.000072
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00023	J 7	0.00097	0.000057
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00022	J Š	0.00097	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000064	UU	0.00097	0.000064
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000097	υU	0.00097	0.000097
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00011	J В ().00	09700.00097	0.000064
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000070	UV	0.00097	0.000070
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0012	В	0.00097	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000057	υV	0.00097	0.000057
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000069	U	0.00097	0.000069
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0063	Ū	0.0097	0.0063
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	□ ↓	0.0097	0.0019

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR002-E-M DL Lab Sample ID: 320-32834-9 DL

Matrix: Tissue

Con. Extract Vol.: 10.00(mL)

Lab File ID: 2018.01.14LLA 016.d Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:30

Date Extracted: 12/19/2017 18:59 Extraction Method: SHAKE

Sample wt/vol: 1.03(g) Date Analyzed: 01/14/2018 11:19

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203826 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0038	U U	0.097	0.0038
39108-34-4	8:2 FTS	0.0066	U U	0.097	0.0066

Dilution Factor: 10

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	147		25-150
STL02280	M2-8:2 FTS	126		25-150

OCT 18 2019

Lab File ID: 2017.12.29LLB_045.d

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR002-F-M Lab Sample ID: 320-32834-11

Matrix: Tissue

Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:31

Extraction Method: SHAKE Date Extracted: 12/19/2017 18:59

Sample wt/vol: 1.02(g) Date Analyzed: 12/29/2017 21:00

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: Geminic18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000098	UU	0.00098	0.000098
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	Ū	0.00098	0.000068
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	U	0.00098	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	Ū	0.00098	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	U 🗸	0.00098	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00011	JT	0.00098	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00013	J	0.00098	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0011		0.00098	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00039	J 5	0.00098	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00058	J	0.00098	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00057	J 🗸	0.00098	0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000098	U U	0.00098	0.000098
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00015	ЈВ (). 0(0.00098	0.000065
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000071	C	0.00098	0.000071
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.00084	J B 0.00	0. 00098	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000058	UU	0.00098	0.000058
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00015	ょう	0.00098	0.000070
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	υÛ	0.0098	0.0064
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	u V	0.0098	0.0019

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Lab Sample ID: 320-32834-11 DL Client Sample ID: BC-CR002-F-M DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.02(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203826

Lab File ID: 2018.01.14LLA 018.d

Date Collected: 10/12/2017 08:31

Date Extracted: 12/19/2017 18:59

Date Analyzed: 01/14/2018 11:34

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0038	U U	0.098	0.0038
39108-34-4	8:2 FTS	0.0067	U U	0.098	0.0067

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	191	*	25-150
STL02280	M2-8:2 FTS	133		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Lab Sample ID: 320-32834-13 Client Sample ID: BC-CR002-G-M Matrix: Tissue Lab File ID: 2017.12.29LLB_049.d Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:32 Extraction Method: SHAKE Date Extracted: 12/19/2017 18:59 Sample wt/vol: 1.08(g) Date Analyzed: 12/29/2017 21:31 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000093	Ū ()	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	U	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000048	U	0.00093	0.000048
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	U	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00022	JT	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00045	J	0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.00013	J 🗸	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0027		0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00026	J 7	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00033	J	0.00093	0.000047
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00040	J 🗸	0.00093	0.000061
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	UU	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00030	JB(),00	0.00093	0.000061
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	υÛ	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0015	В	0.00093	0.000071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000055	U U	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000066	U	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0060	Ū	. 0.0093	0.0060
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	U V	0.0093	0.0018

OCT 1 8 2019

Initials: CR

% Moisture:

Analysis Batch No.: 202096

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Lab Sample ID: 320-32834-13 DL Client Sample ID: BC-CR002-G-M DL Matrix: Tissue Lab File ID: 2018.01.14LLA 022.d Date Collected: 10/12/2017 08:32 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 12/19/2017 18:59 Sample wt/vol: 1.08(g) Date Analyzed: 01/14/2018 12:06 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0036	UU	0.093	0.0036
39108-34-4	8:2 FTS	0.0063	U U	0.093	0.0063

Units: mg/Kg

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	146		25-150
STL02280	M2-8:2 FTS	122		25-150

OCT 1 8 2019

Initials: @2

Analysis Batch No.: 203826

 SDG No.:

 Client Sample ID: BC-CR002-H-M
 Lab Sample ID: 320-32834-15

 Matrix: Tissue
 Lab File ID: 2017.12.29LLB_051.d

 Analysis Method: 537 (modified)
 Date Collected: 10/12/2017 08:33

 Extraction Method: SHAKE
 Date Extracted: 12/19/2017 18:59

 Sample wt/vol: 0.96(g)
 Date Analyzed: 12/29/2017 21:47

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00010	ט ט	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000072	U	0.0010	0.000072
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000054	Ū	0.0010	0.000054
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000063	U 🗸	0.0010	0.000063
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	JT	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00025	J	0.0010	0.000045
335-76-2	Perfluorodecanoic acid (PFDA)	0.00014	J 🗸	0.0010	0.000076
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0027		0.0010	0.000077
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00035	J 7	0.0010	0.000061
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00037	J	0.0010	0.000053
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00042	J	0.0010	0.000069
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	UU	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.000094	J B(),00	0.0010	0.000069
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000075	υÜ	0.0010	0.000075
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0022	В	0.0010	0.000080
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000082	JJ	0.0010	0.000061
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000074	UU	0.0010	0.000074
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0068	Ü	0.010	0.0068
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U V	0.010	0.0020

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR002-H-M DL Lab Sample ID: 320-32834-15 DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 0.96(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203826

Lab File ID: 2018.01.14LLA 024.d

Date Collected: 10/12/2017 08:33

Date Extracted: 12/19/2017 18:59

Date Analyzed: 01/14/2018 12:21

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0041	U U	0.10	0.0041
39108-34-4	8:2 FTS	0.0071	U U	0.10	0.0071

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	169	*	25-150
STL02280	M2-8:2 FTS	128		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Lab Sample ID: 320-32834-17 Client Sample ID: BC-CR002-I-M Lab File ID: 2017.12.29LLB 054.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:34 Date Extracted: 12/19/2017 18:59 Extraction Method: SHAKE Sample wt/vol: 0.97(g) Date Analyzed: 12/29/2017 22:10 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00010	U U	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000071	U	0.0010	0.000071
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000054	U	0.0010	0.000054
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000062	U J	0.0010	0.000062
335-67-1	Perfluorooctanoic acid (PFOA)	0.00020	J ブ	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00040	J	0.0010	0.000044
335-76-2	Perfluorodecanoic acid (PFDA)	0.00011	J 🗸	0.0010	0.000075
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0019		0.0010	0.000076
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00024	J	0.0010	0.000061
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00037	J	0.0010	0.000053
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00036	J 🗸	0.0010	0.000068
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	UU	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00030	J В (),()	0.0010	0.000068
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000074	U V	0.0010	0.000074
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0013	В	0.0010	0.000079
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000061	U V	0.0010	0.000061
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000073	U	0.0010	0.000073
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0067	Ū	0.010	0.0067
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U V	0.010	0.0020
27619-97-2	6:2 FTS	0.00040	עט ט	0.010	0.00040
39108-34-4	8:2 FTS	0.00070	U 155	0.010	0.00070

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR002-J-M Lab Sample ID: 320-32834-19

Matrix: Tissue Lab File ID: 2017.12.29LLB 060.d

Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:35

Extraction Method: SHAKE Date Extracted: 12/19/2017 18:59

Sample wt/vol: 1.03(g) Date Analyzed: 12/29/2017 22:57

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202096 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000097	U U	0.00097	0.000097
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000067	Ū	0.00097	0.000067
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	Ū	0.00097	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000058	U 🗸	0.00097	0.000058
335-67-1	Perfluorooctanoic acid (PFOA)	0.00018	JJ	0.00097	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00038	J	0.00097	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00013	J	0.00097	0.000071
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0036		0.00097	0.000072
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00028	J 5	0.00097	0.000057
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00052	J	0.00097	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00054	J	0.00097	0.000064
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000097	UU	0.00097	0.000097
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00053	J B O DO	0.00097	0.000064
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000070	U U	0.00097	0.000070
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0016	В	0.00097	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00012	JT	0.00097	0.000057
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000069	UU	0.00097	0.000069
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0063	U	0.0097	0.0063
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	U V	0.0097	0.0019

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR002-J-M DL Lab Sample ID: 320-32834-19 DL

Matrix: Tissue

Lab File ID: 2018.01.14LLA 033.d Analysis Method: 537 (modified) Date Collected: 10/12/2017 08:35

Extraction Method: SHAKE Date Extracted: 12/19/2017 18:59

Date Analyzed: 01/14/2018 13:32 Sample wt/vol: 1.03(g)

Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203826 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0038	u O	0.097	0.0038
39108-34-4	8:2 FTS	0.0066	U V	0.097	0.0066

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	138		25-150
STL02280	M2-8:2 FTS	111		25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR001-A-M Lab Sample ID: 320-32834-21

Matrix: Tissue Lab File ID: 2018.01.03LLAX 006.d

Analysis Method: 537 (modified) Date Collected: 10/12/2017 09:05

Extraction Method: SHAKE Date Extracted: 12/20/2017 18:47

Sample wt/vol: 0.99(g) Date Analyzed: 01/03/2018 20:51

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202579 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00010	U U	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000070	U	0.0010	0.000070
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000053	Ü	0.0010	0.000053
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000061	U	0.0010	0.000061
335-67-1	Perfluorooctanoic acid (PFOA)	0.00019	JJ	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00070	J	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00018	J 捷	0.0010	0.000074
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0036		0.0010	0.000075
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00025	J 5	0.0010	0.000060
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00030	J	0.0010	0.000052
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00044	J 捷	0.0010	0.000067
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	υU	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00054	J В О. О	0.0010	0.000067
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000073	U U	0.0010	0.000073
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0047		0.0010	0.000078
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00015	J 5	0.0010	0.000060
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00012	JŠ	0.0010	0.000072
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0066	U U	0.010	0.0066

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento

SDG No.:

Client Sample ID: BC-CR001-A-M DL

Matrix: Tissue

Lab File ID: 2018.01.12LLC_036.d

Analysis Method: 537 (modified)

Date Collected: 10/12/2017 09:05

Extraction Method: SHAKE

Date Extracted: 12/20/2017 18:47

Sample wt/vol: 0.99(g)

Date Analyzed: 01/13/2018 00:20

Con. Extract Vol.: 10.00(mL)

Dilution Factor: 10

Injection Volume: 2(uL) GC Column: Geminic18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203809

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0039	u O	0.10	0.0039

Units: mg/Kg

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	187	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR001-A-M DL2 Lab Sample ID: 320-32834-21 DL2

Matrix: Tissue

Con. Extract Vol.: 10.00(mL)

Lab File ID: 2018.01.23LLC 002.d Analysis Method: 537 (modified) Date Collected: 10/12/2017 09:05

Extraction Method: SHAKE Date Extracted: 12/20/2017 18:47

Sample wt/vol: 0.99(g) Date Analyzed: 01/23/2018 19:23

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 205291 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.20	U U	1.01	0.20
39108-34-4	8:2 FTS	0.069	U U	1.01	0.069

Dilution Factor: 100

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	134		25-150
STL02280	M2-8:2 FTS	112		25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-CR001-C-M Lab Sample ID: 320-32834-25 Lab File ID: 2018.01.03LLAX 010.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/12/2017 09:07 Extraction Method: SHAKE Date Extracted: 12/20/2017 18:47 Sample wt/vol: 1.00(g)____ Date Analyzed: 01/03/2018 21:22 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) GPC Cleanup:(Y/N) N % Moisture: Analysis Batch No.: 202579 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00010	U U	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000069	Ū	0.0010	0.000069
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000052	U	0.0010	0.000052
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000060	U 🗸	0.0010	0.000060
335-67-1	Perfluorooctanoic acid (PFOA)	0.00016	J	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00060	J	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00022	J₩	0.0010	0.000073
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0039		0.0010	0.000074
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00022	J 7	0.0010	0.000059
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00026	J	0.0010	0.000051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00028	J V	0.0010	0.000066
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	υV	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00021	J B O .00	0.0010	0.000066
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000072	U	0.0010	0.000072
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0044		0.0010	0.000077
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00030	J 3	0.0010	0.000059
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000071	UU	0.0010	0.000071
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0065	Ū	0.010	0.0065
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U V	0.010	0.0020

OCT 18 2019

Between the case of the Ble security is being a suit.

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR001-C-M DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.00(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203809

Lab Sample ID: 320-32834-25 DL

Lab File ID: 2018.01.12LLC_040.d

Date Collected: 10/12/2017 09:07

Date Extracted: 12/20/2017 18:47

Date Analyzed: 01/13/2018 00:51

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0039	υŲ	0.10	0.0039
39108-34-4	8:2 FTS	0.0068	Ū	0.10	0.0068

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	159	*	25-150
STL02280	M2-8:2 FTS	125		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Lab Sample ID: 320-32834-27 Client Sample ID: BC-CR001-D-M Lab File ID: 2018.01.03LLAX 013.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/12/2017 09:08 Extraction Method: SHAKE Date Extracted: 12/20/2017 18:47 Sample wt/vol: 0.99(g) Date Analyzed: 01/03/2018 21:46 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 202579 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00010	U U	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000070	U	0.0010	0.000070
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000053	U	0.0010	0.000053
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000061	U	0.0010	0.000061
335-67-1	Perfluorooctanoic acid (PFOA)	0.00018	JT	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00053	J	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00023	J	0.0010	0.000074
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0050		0.0010	0.000075
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00032	JJ	0.0010	0.000060
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00030	JJ	0.0010	0.000052
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000067	UU	0.0010	0.000067
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	υŮ	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00042	J В () Д	0100 0.0010	0.000067
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000073	U U	0.0010	0.000073
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0032		0.0010	0.000078
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00017	J 5	0.0010	0.000060
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000072	ŪŪ	0.0010	0.000072
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0066	U U	0.010	0.0066

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-CR001-D-M DL Lab Sample ID: 320-32834-27 DL Matrix: Tissue Lab File ID: 2018.01.12LLC 043.d Date Collected: 10/12/2017 09:08 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 12/20/2017 18:47 Sample wt/vol: 0.99(g) Date Analyzed: 01/13/2018 01:15 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) GPC Cleanup:(Y/N) N % Moisture: Units: mg/Kg Analysis Batch No.: 203809

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.020	υΥ	0.10	0.020
27619-97-2	6:2 FTS	0.0039	U	0.10	0.0039
39108-34-4	8:2 FTS	0.0069	U	0.10	0.0069

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	127		25-150
STL02279	M2-6:2 FTS	168	*	25-150
STL02280	M2-8:2 FTS	128		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Lab Sample ID: 320-32834-35 Client Sample ID: BC-CR001-H-M Lab File ID: 2018.01.03LLAX_021.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/12/2017 09:12 Date Extracted: 12/20/2017 18:47 Extraction Method: SHAKE Sample wt/vol: 1.07(g) Date Analyzed: 01/03/2018 22:49 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202579 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00078	J	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	UU	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	U	0.00093	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	U	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.0013		0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.00024	JT	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0049		0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00024	JT	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00027	JT	0.00093	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000062	U Ú.	0.00093	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	U	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00044	J BO.0	0.00093	0.000062
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	U U	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0049		0.00093	0.000072
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00016	JJ	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000066	U V	0.00093	0.000066

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR001-H-M DL Lab Sample ID: 320-32834-35 DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203809

Lab File ID: 2018.01.12LLC_051.d

Date Collected: 10/12/2017 09:12

Date Extracted: 12/20/2017 18:47

Date Analyzed: 01/13/2018 02:18

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.061	UV	0.093	0.061
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	U	0.093	0.018
27619-97-2	6:2 FTS	0.0036	Ū	0.093	0.0036
39108-34-4	8:2 FTS	0.0064	U 🕹	0.093	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02118	d3-NMeFOSAA	119		25-150
STL02117	d5-NEtFOSAA	123		25-150
STL02279	M2-6:2 FTS	175	*	25-150
STL02280	M2-8:2 FTS	113		25-150

OCT 1 8 2019

Initials: €₽

Lab File ID: 2018.01.03LLAX 024.d

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR001-I-M Lab Sample ID: 320-32834-37

Matrix: Tissue

Analysis Method: 537 (modified) Date Collected: 10/12/2017 09:13

Extraction Method: SHAKE Date Extracted: 12/20/2017 18:47

Sample wt/vol: 1.01(g) Date Analyzed: 01/03/2018 23:12

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202579 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000099	U V	0.00099	0.000099
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	Ū	0.00099	0.000068
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	Ū	0.00099	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	U	0.00099	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00019	JT	0.00099	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00056	J	0.00099	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00012	J	0.00099	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0029		0.00099	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00017	JJ	0.00099	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00020	J 5	0.00099	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000065	U	0.00099	0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000099	U	0.00099	0.000099
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00053	J B 0.00	0900.00099	0.000065
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000071	U V	0.00099	0.000071
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0027		0.00099	0.000076
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000058	U U	0.00099	0.000058
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00014	J 5	0.00099	0.000070
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	U U	0.0099	0.0064

OCT 18 2019

Initials: €₽

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.01(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203809

Client Sample ID: BC-CR001-I-M DL Lab Sample ID: 320-32834-37 DL

Lab File ID: 2018.01.12LLC_054.d

Date Collected: 10/12/2017 09:13

Date Extracted: 12/20/2017 18:47

Date Analyzed: 01/13/2018 02:41

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.019	U Y	0.099	0.019
27619-97-2	6:2 FTS	0.0039	ט	0.099	0.0039
39108-34-4	8:2 FTS	0.0067	U	0.099	0.0067

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	121		25-150
STL02279	M2-6:2 FTS	171	*	25-150
STL02280	M2-8:2 FTS	120		25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-CR001-J-M Lab Sample ID: 320-32834-39

Matrix: Tissue Lab File ID: 2018.01.03LLAX 026.d

Analysis Method: 537 (modified) Date Collected: 10/12/2017 09:14

Extraction Method: SHAKE Date Extracted: 12/20/2017 18:47

Sample wt/vol: 1.05(g) Date Analyzed: 01/03/2018 23:28

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 202579 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000095	υŲ	0.00095	0.000095
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000066	Ū	0.00095	0.000066
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	U	0.00095	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	U	0.00095	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.00017	JJ	0.00095	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00052	J	0.00095	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00016	J	0.00095	0.000070
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0040		0.00095	0.000070
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00020	J 7	0.00095	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00022	J 🕎	0.00095	0.000049
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000063	υÚ	0.00095	0.000063
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000095	υV	0.00095	0.000095
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00038	J B ().(Y	(%) 0.00095	0.000063
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000069	UU	0.00095	0.000069
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0024		0.00095	0.000073
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00011	J 5	0.00095	0.000056
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000081	JS	0.00095	0.000068
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0062	U V	0.0095	0.0062

OCT 18 2019

Bergerand and the second of th

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.05(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203809

Client Sample ID: BC-CR001-J-M DL Lab Sample ID: 320-32834-39 DL

Lab File ID: 2018.01.12LLC 056.d

Date Collected: 10/12/2017 09:14

Date Extracted: 12/20/2017 18:47

Date Analyzed: 01/13/2018 02:57

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.019	U	0.095	0.019
27619-97-2	6:2 FTS	0.0037	Ū	0.095	0.0037
39108-34-4	8:2 FTS	0.0065	U	0.095	0.0065

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	122		25-150
STL02279	M2-6:2 FTS	187	*	25-150
STL02280	M2-8:2 FTS	117		25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Lab Sample ID: 320-32834-42 Client Sample ID: BC-FR001-A-H

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.08(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Lab File ID: 2017.01.06LLX 006.d

Date Collected: 10/13/2017 08:15

Date Extracted: 01/02/2018 14:56

Date Analyzed: 01/06/2018 18:29

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Analysis Batch No.: 202962 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0017	* B ()	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	UU	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.0035	В	0.00093	0.000048
335-67-1	Perfluorooctanoic acid (PFOA)	0.00022	JJ	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00022	J	0.00093	0.000040
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00035	J 🗸	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000047	υV	0.00093	0.000047
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000061	0 UJ	0.00093	0.000061
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	Ü (/	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.000061	U	0.00093	0.000061
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	u 🗸	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0090		0.00093	0.000071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00020	JT	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00017	JŚ	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0060	U 🗸	0.0093	0.0060

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	25		25-150
STL01893	13C5 PFPeA	54		25-150
STL00993	13C2 PFHxA	50		25-150
STL00990	13C4 PFOA	63		25-150
STL00995	13C5 PFNA	90		25-150
STL00998	13C2 PFDoA	130	-	25-150
STL02116	13C2 PFTeDA	4	*	25-150
STL02337	13C3 PFBS	72	-	25-150
STL00994	1802 PFHxS	58		25-150
STL00991	13C4 PFOS	136		25-150
STL01056	13C8 FOSA	93		25-150
STL02118	d3-NMeFOSAA	131		25-150

FORM I 537 (modified)

OCT 18 2019

Angle of the state
Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-FR001-A-H DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.08(g)

Con. Extract Vol.: 10.00(mL)

% Moisture:

Injection Volume: 2(uL)

Analysis Batch No.: 203857

Lab Sample ID: 320-32834-42 DL

Lab File ID: 2018.01.14LLB_006.d

Date Collected: 10/13/2017 08:15

Date Extracted: 01/02/2018 14:56

Date Analyzed: 01/14/2018 16:24

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.00056	ט ט	0.0093	0.00056
335-76-2	Perfluorodecanoic acid (PFDA)	0.00068	U	0.0093	0.00068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00069	U	0.0093	0.00069
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	U 🗸	0.093	0.018
27619-97-2	6:2 FTS	0.0061	J D B O	.093U 0.093	0.0036

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL01892	13C4 PFHpA	36		25-150
STL00996	13C2 PFDA	96		25-150
STL00997	13C2 PFUnA	102		25-150
STL02117	d5-NEtFOSAA	135		25-150
STL02279	M2-6:2 FTS	412	*	25-150

OCT 1 8 2019

Initials: ex

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-FR001-A-H DL2 Lab Sample ID: 320-32834-42 DL2 Lab File ID: 2018.01.23LLB 046.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/13/2017 08:15 Date Extracted: 01/02/2018 14:56 Extraction Method: SHAKE Sample wt/vol: 1.08(g) Date Analyzed: 01/23/2018 17:33 Con. Extract Vol.: 10.00(mL) Dilution Factor: 100 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 205283 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
39108-34-4	8:2 FTS	0.063	U U	0.93	0.063

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02280	M2-8:2 FTS	99		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-FR001-E-H

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.08(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 202962

Lab Sample ID: 320-32834-50

Lab File ID: 2017.01.06LLX_016.d

Date Collected: 10/13/2017 08:19

Date Extracted: 01/02/2018 14:56

Date Analyzed: 01/06/2018 19:48

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0049	* B U 7	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	UU	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000048	U ()	0.00093	0.000048
335-67-1	Perfluorooctanoic acid (PFOA)	0.0011		0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00020	J 7	0.00093	0.000040
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00049	J	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00011	J 🗸	0.00093	0.000047
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000061	U US	0.00093	0.000061
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00088	JT	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.000061	Ū	0.00093	0.000061
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00039	J	0.00093	0.000066

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	35		25-150
STL01893	13C5 PFPeA	82		25-150
STL00993	13C2 PFHxA	90		25-150
STL00990	13C4 PFOA	96		25-150
STL00995	13C5 PFNA	141		25-150
STL00998	13C2 PFDoA	143		25-150
STL02116	13C2 PFTeDA	20	*	25-150
STL02337	13C3 PFBS	113		25-150
STL00994	1802 PFHxS	41		25-150
STL01056	13C8 FOSA	121		25-150

OCT 1 8 2019

你们最大好人,一一一一年晚中的一个一个一个一个一个

Initials: @2

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-FR001-E-H DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.08(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203857

Lab Sample ID: 320-32834-50 DL

Lab File ID: 2018.01.14LLB 016.d

Date Collected: 10/13/2017 08:19

Date Extracted: 01/02/2018 14:56

Date Analyzed: 01/14/2018 17:42

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.00056	UU	0.0093	0.00056
335-76-2	Perfluorodecanoic acid (PFDA)	0.00068	U	0.0093	0.00068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00069	U	0.0093	0.00069
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00067	U V	0.0093	0.00067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.019	D 3	0.0093	0.00071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00055	UU	0.0093	0.00055
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.060	U	0.093	0.060
27619-97-2	6:2 FTS	0.0036	U	0.093	0.0036

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL01892	13C4 PFHpA	37		25-150
STL00996	13C2 PFDA	110		25-150
STL00997	13C2 PFUnA	116		25-150
STL00991	13C4 PFOS	100		25-150
STL02118	d3-NMeFOSAA	123		25-150
STL02279	M2-6:2 FTS	681	*	25-150

OCT 1 8 2019

And the state of the second se

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-FR001-E-H DL2

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.08(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 205291

Lab Sample ID: 320-32834-50 DL2

Lab File ID: 2018.01.23LLC_015.d

Date Collected: 10/13/2017 08:19

Date Extracted: 01/02/2018 14:56

Date Analyzed: 01/23/2018 21:05

Dilution Factor: 100

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.18	U U	0.93	0.18
39108-34-4	8:2 FTS	0.063	U	0.93	0.063

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	97		25-150
STL02280	M2-8:2 FTS	121		25-150

OCT 1 8 2019

Initials: @2

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-FR001-F-H

offene bampre 1D. De Intoli i

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

2

Matrix: Tissue

% Moisture:
Analysis Batch No.: 202962

Lab Sample ID: 320-32834-52

Lab File ID: 2017.01.06LLX 019.d

Date Collected: 10/13/2017 08:20

Date Extracted: 01/02/2018 14:56

Date Analyzed: 01/06/2018 20:11

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0025	* B ()1	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	UU	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	U	0.00093	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	U	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00016	J 5	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.000071	J	0.00093	0.000040
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00060	J	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000048	U	0.00093	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000062	υŬ	0.00093	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	υυ	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.000062	υV	0.00093	0.000062
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000074	JT	0.00093	0.000066

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	35		25-150
STL01893	13C5 PFPeA	72		25-150
STL00993	13C2 PFHxA	59		25-150
STL01892	13C4 PFHpA	27		25-150
STL00990	13C4 PFOA	80		25-150
STL00995	13C5 PFNA	136		25-150
STL00998	13C2 PFDoA	130		25-150
STL02116	13C2 PFTeDA	22	*	25-150
STL02337	13C3 PFBS	96		25-150
STL00994	1802 PFHxS	82		25-150
STL01056	13C8 FOSA	93		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-FR001-F-H DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 203857

Lab Sample ID: 320-32834-52 DL

Lab File ID: 2018.01.14LLB_019.d

Date Collected: 10/13/2017 08:20

Date Extracted: 01/02/2018 14:56

Date Analyzed: 01/14/2018 18:06

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
335-76-2	Perfluorodecanoic acid (PFDA)	0.00068	UU	0.0093	0.00068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00069	U	0.0093	0.00069
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00067	U V	0.0093	0.00067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0084	JDJ	0.0093	0.00072
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00055	U V	0.0093	0.00055
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.061	Ū	0.093	0.061
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	U	0.093	0.018
27619-97-2	6:2 FTS	0.0036	U	0.093	0.0036

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00996	13C2 PFDA	103		25-150
STL00997	13C2 PFUnA	87		25-150
STL00991	13C4 PFOS	93		25-150
STL02118	d3-NMeFOSAA	80		25-150
STL02117	d5-NEtFOSAA	101		25-150
STL02279	M2-6:2 FTS	6538	*	25-150

OCT 1 8 2019

The second secon

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-FR001-F-H DL2 Lab Sample ID: 320-32834-52 DL2 Matrix: Tissue Lab File ID: 2018.01.23LLB 050.d Analysis Method: 537 (modified) Date Collected: 10/13/2017 08:20 Extraction Method: SHAKE Date Extracted: 01/02/2018 14:56 Sample wt/vol: 1.07(g) Date Analyzed: 01/23/2018 18:05 Con. Extract Vol.: 10.00(mL) Dilution Factor: 100 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 205283 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
39108-34-4	8:2 FTS	0.064	U U	0.93	0.064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02280	M2-8:2 FTS	62		25-150

OCT 18 2019

 SDG No.:

 Client Sample ID: BC-GA001-D-M
 Lab Sample ID: 320-32834-63

 Matrix: Tissue
 Lab File ID: 2018.01.11LLC_011.d

 Analysis Method: 537 (modified)
 Date Collected: 10/16/2017 08:33

Dilution Factor: 1

Extraction Method: SHAKE Date Extracted: 01/05/2018 16:48

Sample wt/vol: 1.06(g) Date Analyzed: 01/11/2018 19:36

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 203635 Units: mg/Kg

Con. Extract Vol.: 10.00(mL)

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00053	JВ *6.	0094D . 00094	0.000094
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000065	ָּטָ טַ	0.00094	0.000065
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	Ü	0.00094	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	Ü	0.00094	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U	0.00094	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.000041	U	0.00094	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00019	JT	0.00094	0.000069
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00075	J	0.00094	0.000070
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00069	J	0.00094	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00050	J *	0.00094	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00074	J	0.00094	0.000062
375 - 73-5	Perfluorobutanesulfonic acid (PFBS)	0.000094	UU	0.00094	0.000094
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.000099	JT	0.00094	0.000062
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000068	U V	0.00094	0.000068
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0010		0.00094	0.000073
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00011	J	0.00094	0.000056
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00014	J 3	0.00094	0.000067
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061	U Ŭ	0.0094	0.0061

OCT 1 8 2019

the manufacture of the state of the same manufaction from

Initials: @

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA001-D-M DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.06(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 204428

Lab Sample ID: 320-32834-63 DL

Lab File ID: 2018.01.17LLD_008.d

Date Collected: 10/16/2017 08:33

Date Extracted: 01/05/2018 16:48

Date Analyzed: 01/18/2018 01:31

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	U V	0.094	0.018
27619-97-2	6:2 FTS	0.021	JBD,	0.094	0.0037
39108-34-4	8:2 FTS	0.0064	U V	0.094	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	108		25-150
STL02279	M2-6:2 FTS	121	· · · · · · · · · · · · · · · · · · ·	25-150
STL02280	M2-8:2 FTS	107		25-150

OCT 18 2019

more a residence - more recommendation of the comments.

 SDG No.:

 Client Sample ID: BC-GA001-D-H
 Lab Sample ID: 320-32834-64

 Matrix: Tissue
 Lab File ID: 2018.01.11LLC_012.d

 Analysis Method: 537 (modified)
 Date Collected: 10/16/2017 08:33

 Extraction Method: SHAKE
 Date Extracted: 01/05/2018 16:48

Sample wt/vol: 1.04(g) Date Analyzed: 01/11/2018 19:44

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

Analysis Batch No.: 203635 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0028	в * 03	0.00096	0.000096
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000066	n n2	0.00096	0.000066
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	עט ד	0.00096	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000058	עט ד	0.00096	0.000058
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	עט יי	0.00096	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.000041	UUS	0.00096	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00078	J	0.00096	0.000070
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0021		0.00096	0.000071
307-55-1	Perfluorododecanoic acid (PFDoA)	0.0013		0.00096	0.000057
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000049	U * U	0.00096	0.000049
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000063	UUT	0.00096	0.000063
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000096	U W	0.00096	0.000096
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0022		0.00096	0.000063
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000069	U U	0.00096	0.000069
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00033	JΣ	0.00096	0.000057
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00052	J 5	0.00096	0.000068
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0063	U Ú	0.0096	0.0063
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	υ U	0.0096	0.0019
27619-97-2	6:2 FTS	0.00038	U * U	0.0096	0.00038
39108-34-4	8:2 FTS	0.00065	U 📆	0.0096	0.00065

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-GA001-D-H DL Lab Sample ID: 320-32834-64 DL Lab File ID: 2018.01.17LLD 009.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/16/2017 08:33 Date Extracted: 01/05/2018 16:48 Extraction Method: SHAKE Date Analyzed: 01/18/2018 01:38 Sample wt/vol: 1.04(g) Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 204428 Units: mg/Kg CAS NO. RESULT O MDT. COMPOUND NAME

C715 NO.	CONTOONS WILL	TODOLL.	2	1(1)	ПЪЦ
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.11	D	0.0096	0.00074

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	94		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA001-E-H Lab Sample ID: 320-32834-66

Matrix: Tissue Lab File ID: 2018.01.11LLC_016.d

Analysis Method: 537 (modified) Date Collected: 10/16/2017 08:34

Extraction Method: SHAKE Date Extracted: 01/05/2018 16:48

Sample wt/vol: 1.05(g) Date Analyzed: 01/11/2018 20:15

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203635 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0046	B * ()]	0.00095	0.000095
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000066	U 05	0.00095	0.000066
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	ע עד	0.00095	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	עט יי	0.00095	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.00044	J 3	0.00095	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00020	JT	0.00095	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00045	J 5	0.00095	0.000070
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00093	J	0.00095	0.000070
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00083	J 🕏	0.00095	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000049	U * U	0.00095	0.000049
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000063	U U	0.00095	0.000063
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000095	υω	0.00095	0.000095
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.000063	UU	0.00095	0.000063
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000069	U	0.00095	0.000069
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000056	Ŭ 🗸	0.00095	0.000056
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000069	JT	0.00095	0.000068
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0062	U	0.0095	0.0062
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	Ü	0.0095	0.0019
39108-34-4	8:2 FTS	0.00065	U	0.0095	0.00065

OCT 1 8 2019

a transfer to the Constitution of the wide in

Initials: €₹

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-GA001-E-H DL Lab Sample ID: 320-32834-66 DL Lab File ID: 2018.01.17LLD_014.d Matrix: Tissue Date Collected: 10/16/2017 08:34 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 01/05/2018 16:48 Date Analyzed: 01/18/2018 02:18 Sample wt/vol: 1.05(g) Dilution Factor: 10 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 204428 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.14	D	0.0095	0.00073
27619-97-2	6:2 FTS	0.0084	JBD.	0.095	0.0037

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	93		25-150
STL02279	M2-6:2 FTS	439	*	25-150

OCT 1 8 2019

The state of the second of the state of the

 SDG No.:
 Client Sample ID: BC-GA002-A-H
 Lab Sample ID: 320-32834-74

 Matrix: Tissue
 Lab File ID: 2018.01.11LLC_024.d

Analysis Method: 537 (modified) Date Collected: 10/16/2017 09:35

Extraction Method: SHAKE Date Extracted: 01/05/2018 16:48

Sample wt/vol: 1.06(g) Date Analyzed: 01/11/2018 21:18

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

Analysis Batch No.: 203635 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0079	B * U	7 0.00094	0.000094
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000065	עט ט	0.00094	0.000065
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	עט יי	0.00094	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	עט ט	0.00094	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.0014		0.00094	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00038	ょう	0.00094	0.000041
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00031	J	0.00094	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000048	U * Ú	0.00094	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000062	U US	0.00094	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000094	Ŭ (,	0.00094	0.000094
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0067		0.00094	0.000062
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00019	J 5	0.00094	0.000067
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061	υÚ	0.0094	0.0061

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	6	*	25-150
STL01893	13C5 PFPeA	11	*	25-150
STL00993	13C2 PFHxA	11	*	25-150
STL01892	13C4 PFHpA	10	*	25-150
STL00990	13C4 PFOA	39		25-150
STL00995	13C5 PFNA	95		25-150
STL00998	13C2 PFDoA	110		25-150
STL02116	13C2 PFTeDA	17	*	25-150
STL02337	13C3 PFBS	69		25-150
STL00994	1802 PFHxS	68		25-150
STL01056	13C8 FOSA	127		25-150
STL02118	d3-NMeFOSAA	149		25-150

OCT 1 8 2019

Accepted of lightfurning a company was not now one or a largery

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-A-H DL

C-GAUUZ-A-H DL

Matrix: Tissue

Lab File ID: 2018.01.17LLD_025.d

Lab Sample ID: 320-32834-74 DL

Analysis Method: 537 (modified)

Date Collected: 10/16/2017 09:35

Extraction Method: SHAKE

Date Extracted: 01/05/2018 16:48

Sample wt/vol: 1.06(g)

Date Analyzed: 01/18/2018 03:44

Con. Extract Vol.: 10.00(mL)

Dilution Factor: 10

Injection Volume: 2(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 204428

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
335-76-2	Perfluorodecanoic acid (PFDA)	0.00069	υγ	0.0094	0.00069
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00070	U	0.0094	0.00070
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00068	Ū	0.0094	0.00068
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.079	D	0.0094	0.00073
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00056	UU	0.0094	0.00056
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	U U	0.094	0.018
27619-97-2	6:2 FTS	0.024	јво ј	0.094	0.0037
39108-34-4	8:2 FTS	0.0064	U (/	0.094	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00996	13C2 PFDA	91		25-150
STL00997	13C2 PFUnA	99		25-150
STL00991	13C4 PFOS	105		25-150
STL02117	d5-NEtFOSAA	85		25-150
STL02279	M2-6:2 FTS	375	*	25-150
STL02280	M2-8:2 FTS	81		25-150

OCT 1 8 2019

Many and the state of the state

Lab File ID: 2018.01.11LLC 028.d

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-B-H Lab Sample ID: 320-32834-76

Matrix: Tissue

Analysis Method: 537 (modified) Date Collected: 10/16/2017 09:36

Extraction Method: SHAKE Date Extracted: 01/05/2018 16:48

Sample wt/vol: 1.00(g) Date Analyzed: 01/11/2018 21:49

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 203635 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0053	в * U]	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.00037	J B 3	0.0010	0.000069
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000052	U UT	0.0010	0.000052
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000060	ע טס־	0.0010	0.000060
335-67-1	Perfluorooctanoic acid (PFOA)	0.0015		0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00034	JT	0.0010	0.000043
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00027	J 🕇	0.0010	0.000059
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000051	U * U	0.0010	0.000051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00068	J	0.0010	0.000066
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	U ()	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0047		0.0010	0.000066
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000072	U U	0.0010	0.000072
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.055		0.0010	0.000077
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000059	υυ	0.0010	0.000059
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000071	U ()	0.0010	0.000071

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	4	*	25-150
STL01893	13C5 PFPeA	14	*	25-150
STL00993	13C2 PFHxA	16	*	25-150
STL01892	13C4 PFHpA	12	*	25-150
STL00990	13C4 PFOA	70		25-150
STL00995	13C5 PFNA	113		25-150
STL00998	13C2 PFDoA	140		25-150
STL02116	13C2 PFTeDA	26		25-150
STL02337	13C3 PFBS	54		25-150
STL00994	1802 PFHxS	50		25-150
STL00991	13C4 PFOS	144		25-150
STL01056	13C8 FOSA	106		25-150

OCT 1 8 2019

Initials: €₽

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-B-H DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.00(g)

Con. Extract Vol.: 10.00(mL)

Analysis Batch No.: 204428

Injection Volume: 2(uL)

% Moisture:

Lab Sample ID: 320-32834-76 DL

Lab File ID: 2018.01.17LLD 027.d

Date Collected: 10/16/2017 09:36

Date Extracted: 01/05/2018 16:48

Date Analyzed: 01/18/2018 03:59

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
335-76-2	Perfluorodecanoic acid (PFDA)	0.00073	ט ט	0.010	0.00073
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00074	U	0.010	0.00074
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.065	U	0.10	0.065
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.020	U L	0.10	0.020
27619-97-2	6:2 FTS	0.020	JBD 5	0.10	0.0039

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00996	13C2 PFDA	106		25-150
STL00997	13C2 PFUnA	118		25-150
STL02118	d3-NMeFOSAA	95		25-150
STL02117	d5-NEtFOSAA	127		25-150
STL02279	M2-6:2 FTS	316	*	25-150

OCT 18 2019

Initials: CR

The section of the se

Lab Name: Eur	ofins TestAmerica, Sacramento	o Job No.: 320-32834-1				
SDG No.:						
Client Sample	ID: BC-GA002-B-H DL2	Lab :	Sample ID:	320-32	834-76 DL2	
Matrix: <u>Tissu</u>	е	Lab 1	File ID: 2	018.01.	23LLB_013.d	
Analysis Meth	od: 537 (modified)	Date Collected: 10/16/2017 09:36			6	
Extraction Method: SHAKE			Extracted	: 01/0	5/2018 16:	48
Sample wt/vol: 1.00(g)		Date Analyzed: 01/23/2018 13:15				
Con. Extract Vol.: 10.00(mL)		Dilution Factor: 100				
Injection Volume: 2(uL)		GC C	olumn: <u>Gem</u>	iniC18	3x100 ID: 3	(mm)
% Moisture:		GPC (Cleanup:(Y	/N) <u>N</u>		14-1-4
Analysis Batc	h No.: 205154	Units: mg/Kg				
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
39108-34-4	8:2 FTS		0.068	U V	1.00	0.068

ISOTOPE DILUTION

OCT 1 8 2019

%REC

94

Q

LIMITS

25-150

Initials: CR

CAS NO.

STL02280

M2-8:2 FTS

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-C-H Lab Sample ID: 320-32834-78

Matrix: Tissue

Lab File ID: 2018.01.11LLC_030.d

Analysis Method: 537 (modified) Date Collected: 10/16/2017 09:37

Extraction Method: SHAKE Date Extracted: 01/05/2018 16:48

Sample wt/vol: 1.06(g) Date Analyzed: 01/11/2018 22:05

Dilution Factor: 1 Con. Extract Vol.: 10.00(mL)

GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL)

% Moisture: _____ GPC Cleanup: (Y/N) N

Analysis Batch No.: 203635 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL OH U	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00090	J B *().	00010.00094	0.000094
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000065	עט ט	0.00094	0.000065
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	ע עד	0.00094	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	U W	0.00094	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.0042		0.00094	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00077	J 5	0.00094	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00047	J	0.00094	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00041	J	0.00094	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00026	J *	0.00094	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000062	U 05	0.00094	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.0028		0.00094	0.000094
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0063		0.00094	0.000062
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000068	U U	0.00094	0.000068
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.084		0.00094	0.000073
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00011	JJ	0.00094	0.000056
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00032	J 5	0.00094	0.000067
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061	U J	0.0094	0.0061

OCT 18 2019

かいかかいしょうかい いっとういういかい とうちゅう しゃかいから しままないかん かんかん

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-C-H DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.06(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 204428

Lab Sample ID: 320-32834-78 DL

Lab File ID: 2018.01.17LLD_029.d

Date Collected: 10/16/2017 09:37

Date Extracted: 01/05/2018 16:48

Date Analyzed: 01/18/2018 04:15

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00070	U U	0.0094	0.00070
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	Ū	0.094	0.018
27619-97-2	6:2 FTS	0.0037	Ū	0.094	0.0037
39108-34-4	8:2 FTS	0.0064	U	0.094	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00997	13C2 PFUnA	106		25-150
STL02117	d5-NEtFOSAA	103		25-150
STL02279	M2-6:2 FTS	1243	*	25-150
STL02280	M2-8:2 FTS	120		25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-E-H

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL)

% Moisture:

Injection Volume: 2(uL)

Analysis Batch No.: 204081

Lab Sample ID: 320-32834-82

Lab File ID: 2018.01.15LLB_023.d

Date Collected: 10/16/2017 09:39

Date Extracted: 01/05/2018 19:00

Date Analyzed: 01/16/2018 02:49

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00030	JВ ().00	M300.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	υŸ	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	Ū	0.00093	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	UV	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00040	J B ().000	930 0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00011	JT	0.00093	0.000040
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00046	J	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00079	J	0.00093	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00091	J 🗸	0.00093	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	υV	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0016	В	0.00093	0.000062
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00017	J	0.00093	0.000066

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	35		25-150
STL01893	13C5 PFPeA	75		25-150
STL00993	13C2 PFHxA	65		25-150
STL01892	13C4 PFHpA	40		25-150
STL00990	13C4 PFOA	101		25-150
STL00995	13C5 PFNA	146		25-150
STL00998	13C2 PFDoA	111		25-150
STL02116	13C2 PFTeDA	54		25-150
STL02337	13C3 PFBS	91		25-150
STL00994	1802 PFHxS	95		25-150
STL01056	13C8 FOSA	82		25-150

OCT 1 8 2019

Stranger of the second section of the secti

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-E-H DL Lab Sample ID: 320-32834-82 DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 204078

Lab File ID: 2018.01.15LLAX 046.d

Date Collected: 10/16/2017 09:39 Date Extracted: 01/05/2018 19:00

Date Analyzed: 01/15/2018 22:38

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup:(Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
335-76-2	Perfluorodecanoic acid (PFDA)	0.00068	U U	0.0093	0.00068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00069	Ū	0.0093	0.00069
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00067	U L	0.0093	0.00067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0091	J D B O	00930 0.0093	0.00072
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00055	υυ	0.0093	0.00055
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.061	Ū	0.093	0.061
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.018	Ū	0.093	0.018
27619-97-2	6:2 FTS	0.0036	U * U	0.093	0.0036

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00996	13C2 PFDA	111		25-150
STL00997	13C2 PFUnA	93		25-150
STL00991	13C4 PFOS	93		25-150
STL02118	d3-NMeFOSAA	106		25-150
STL02117	d5-NEtFOSAA	119		25-150
STL02279	M2-6:2 FTS	2724	*	25-150

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eu	rofins TestAmerica, Sacramento	Job No.: 320-32834-1				
SDG No.:						
Client Sampl	e ID: BC-GA002-E-H DL2	Lab Sample ID: 320-32834-82 DL2				
Matrix: Tiss	ue	Lab File ID: 2018.01.23LLB_018.d				
Analysis Met	hod: 537 (modified)	Date Collected: 10/16/2017 09:39				
Extraction M	ethod: SHAKE	Date Extracted: 01/05/2018 19:00				
Sample wt/vo	l: 1.07(g)	Date Analyzed: 01/23/2018 13:54				4
Con. Extract	Vol.: 10.00(mL)	Dilution Factor: 100				
Injection Volume: 2(uL)		GC Column: GeminiC18 3x100 ID: 3(mm)			3 (mm)	
% Moisture:		GPC	Cleanup: (Y	/N) <u>N</u>		
Analysis Bat	ch No.: 205154	Units: mg/Kg				
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
39108-34-4	8:2 FTS		0.064	U	0.93	0.064
CAS NO. ISOTOPE DILUTION)N		%REC	; Q	LIMITS

OCT 1 8 2019

25-150

Initials: CR

STL02280

M2-8:2 FTS

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

2706-90-3

307-24-4

375-85-9

335-67-1

375-95-1

307-55-1

376-06-7

375-73-5

355-46-4

754-91-6

72629-94-8

Client Sample ID: BC-GA002-F-H Lab Sample ID: 320-32834-84

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA)

Perfluoroheptanoic acid (PFHpA)

Perfluorododecanoic acid (PFDoA)

Perfluorotridecanoic acid (PFTriA)

Perfluorotetradecanoic acid (PFTeA)

Perfluorobutanesulfonic acid (PFBS)

Perfluorooctanesulfonamide (FOSA)

Perfluorohexanesulfonic acid (PFHxS)

Citent Sample ID: BC-GAUUZ-F-H			Lab Sample ID: <u>320-32834-64</u>						
Matrix: Tissu	e	Lab File ID: 2018.01.15LLB_025.d							
Analysis Method: 537 (modified) Date Collected: 10/16/2017 09:40				0					
Extraction Method: SHAKE			e Extracted	: 01/0	5/2018 19:	00			
Sample wt/vol: 1.08(g)			Date Analyzed: 01/16/2018 03:04						
Con. Extract Vol.: 10.00(mL)			Dilution Factor: 1						
Injection Volume: 2(uL)			GC Column: GeminiC18 3x100 ID: 3(mm)						
% Moisture: _		GPC Cleanup:(Y/N) N							
Analysis Bato	ch No.: 204081	Units: mg/Kg							
			Y						
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL			
375-22-4	Perfluorobutanoic acid (PFBA)		0.0046	В	0.00093	0.000093			

0.000064

0.000048

0.000056

0.00069

0.00022

0.00052

0.00060

0.00077

0.0064

0.000066

0.000093

U

U

U

J

J

J

Ū

В

U

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	40		25-150
STL01893	13C5 PFPeA	73		25-150
STL00993	13C2 PFHxA	63		25-150
STL01892	13C4 PFHpA	31		25-150
STL00990	13C4 PFOA	106		25-150
STL00995	13C5 PFNA	129		25-150
STL00998	13C2 PFDoA	121		25-150
STL02116	13C2 PFTeDA	36		25-150
STL02337	13C3 PFBS	95		25-150
STL00994	1802 PFHxS	75		25-150
STL01056	13C8 FOSA	114		25-150

OCT 18 2019

0.00093

0.00093

0.00093

0.00093

0.00093

0.00093

0.00093

0.00093

0.00093

0.00093

Ј В **().0()) (3)**0.00093

0.000064

0.000048

0.000056

0.00010

0.000040

0.000055

0.000047

0.000061

0.000093

0.000061

0.000066

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-F-H DL Lab Sample ID: 320-32834-84 DL

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.08(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 204078

Lab File ID: 2018.01.15LLAX_048.d

Date Collected: 10/16/2017 09:40

Date Extracted: 01/05/2018 19:00

Date Analyzed: 01/15/2018 22:53

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
335-76-2	Perfluorodecanoic acid (PFDA)	0.00068	UU	0.0093	0.00068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00069	U	0.0093	0.00069
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00067	n 🔨	0.0093	0.00067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.051	DB	0.0093	0.00071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00055	UU	0.0093	0.00055
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.060	Ū	0.093	0.060
27619-97-2	6:2 FTS	0.0036	U *	0.093	0.0036

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00996	13C2 PFDA	119		25-150
STL00997	13C2 PFUnA	113		25-150
STL00991	13C4 PFOS	109		25-150
STL02118	d3-NMeFOSAA	141		25-150
STL02279	M2-6:2 FTS	1995	*	25-150

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-GA002-F-H DL2 Lab Sample ID: 320-32834-84 DL2 Matrix: Tissue Lab File ID: 2018.01.23LLB_019.d Analysis Method: 537 (modified) Date Collected: 10/16/2017 09:40 Extraction Method: SHAKE Date Extracted: 01/05/2018 19:00 Sample wt/vol: 1.08(g) Date Analyzed: 01/23/2018 14:01 Con. Extract Vol.: 10.00(mL) Dilution Factor: 100 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) % Moisture: GPC Cleanup: (Y/N) N

COMPOUND NAME	RESULT	Q	RL	MDL
Wethylperfluorooctanesulfonamidoace	0.18	U U	0.93	0.18
3:2 FTS	0.063	U ./	0.93	0.063
-	ic acid (NEtFOSAA)	ic acid (NEtFOSAA)	ic acid (NEtFOSAA)	ic acid (NEtFOSAA)

Units: mg/Kg

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	105		25-150
STL02280	M2-8:2 FTS	97		25-150

OCT 1 8 2019

Initials: CR

Analysis Batch No.: 205154

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-G-M Lab Sample ID: 320-32834-85

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.00(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 204081

Lab File ID: 2018.01.15LLB_026.d

Date Collected: 10/16/2017 09:41

Date Extracted: 01/05/2018 19:00

Date Analyzed: 01/16/2018 03:12

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00078	JB().0	0100 0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000069	UV	0.0010	0.000069
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000052	ט 📗	0.0010	0.000052
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000060	Ŭ 🗸	0.0010	0.000060
335-67-1	Perfluorooctanoic acid (PFOA)	0.00085	J B O (X	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00016	JJ	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00022	J	0.0010	0.000073
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00087	J	0.0010	0.000074
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00036	J ,	0.0010	0.000059
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00045	J 🗸	0.0010	0.000051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00050	J 7	0.0010	0.000066
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	U	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0018	В	0.0010	0.000066
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00025	J	0.0010	0.000072
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0035	В	0.0010	0.000077
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00012	J	0.0010	0.000059
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.00018	J	0.0010	0.000071

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-G-M DL

Matrix: Tissue

Extraction Method: SHAKE

Sample wt/vol: 1.00(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture: Analysis Batch No.: 204078 Lab Sample ID: 320-32834-85 DL

Lab File ID: 2018.01.15LLAX 049.d

Analysis Method: 537 (modified) Date Collected: 10/16/2017 09:41

Date Extracted: 01/05/2018 19:00

Date Analyzed: 01/15/2018 23:01

Dilution Factor: 10

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.065	υY	0.10	0.065
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.020	u 🗸	0.10	0.020
27619-97-2	6:2 FTS	0.011	J D ВО.	100 0.10	0.0039
39108-34-4	8:2 FTS	0.0068	U	0.10	0.0068

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02118	d3-NMeFOSAA	111		25-150
STL02117	d5-NEtFOSAA	115		25-150
STL02279	M2-6:2 FTS	153	*	25-150
STL02280	M2-8:2 FTS	115		25-150

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-J-H

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.02(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

Lab Sample ID: 320-32834-92

Lab File ID: 2018.01.15LLB_035.d

Date Collected: 10/16/2017 09:44

Date Extracted: 01/05/2018 19:00

Date Analyzed: 01/16/2018 04:23

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0023	В	0.00098	0.00009
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	U	0.00098	0.00006
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	U	0.00098	0.00005
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	U L	0.00098	0.00005
335-67-1	Perfluorooctanoic acid (PFOA)	0.0024	В	0.00098	0.0001
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000065	UU	0.00098	0.00006
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000098	UU	0.00098	0.00009
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0062	В	0.00098	0.00006
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000070	U 1/	0.00098	0.00007

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA	54		25-150
STL01893	13C5 PFPeA	101		25-150
STL00993	13C2 PFHxA	79		25-150
STL01892	13C4 PFHpA	32		25-150
STL00990	13C4 PFOA	104		25-150
STL02116	13C2 PFTeDA	25		25-150
STL02337	13C3 PFBS	129		25-150
STL00994	1802 PFHxS	81		25-150
STL01056	13C8 FOSA	133		25-150

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1

SDG No.:

Client Sample ID: BC-GA002-J-H DL Lab Sample ID: 320-32834-92 DL

Matrix: Tissue

Lab File ID: 2018.01.15LLAX 057.d Date Collected: 10/16/2017 09:44

Analysis Method: 537 (modified)

Date Extracted: 01/05/2018 19:00

Extraction Method: SHAKE

Date Analyzed: 01/16/2018 00:04

Sample wt/vol: 1.02(g)

Dilution Factor: 10

Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 204078

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-95-1	Perfluorononanoic acid (PFNA)	0.00042	U ()	0.0098	0.00042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00072	U	0.0098	0.00072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00073	U	0.0098	0.00073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00058	U	0.0098	0.00058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00050	U	0.0098	0.00050
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00071	U V	0.0098	0.00071
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.092	DB	0.0098	0.00075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00058	U	0.0098	0.00058
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.064	U	0.098	0.064
27619-97-2	6:2 FTS	0.0038	U *	0.098	0.0038

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00995	13C5 PFNA	111		25-150
STL00996	13C2 PFDA	134		25-150
STL00997	13C2 PFUnA	127		25-150
STL00998	13C2 PFDoA	116		25-150
STL00991	13C4 PFOS	119		25-150
STL02118	d3-NMeFOSAA	135	-	25-150
STL02279	M2-6:2 FTS	933 *		25-150

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-32834-1 SDG No.: Client Sample ID: BC-GA002-J-H DL2 Lab Sample ID: 320-32834-92 DL2 Lab File ID: 2018.01.23LLB_023.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 10/16/2017 09:44 Extraction Method: SHAKE Date Extracted: 01/05/2018 19:00 Date Analyzed: 01/23/2018 14:33 Sample wt/vol: 1.02(g) Con. Extract Vol.: 10.00(mL) Dilution Factor: 100 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 205154 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.19	U U	0.98	0.19
39108-34-4	8:2 FTS	0.067	U	0.98	0.067

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	109		25-150
STL02280	M2-8:2 FTS	158	*	25-150

OCT 18 2019

LDC #: 42369C96 SDG #: 320-32834-1

VALIDATION COMPLETENESS WORKSHEET

Category B

Page: of Page: of Page: of Page: Of Pag

Laboratory: <u>Test America, Inc.</u>

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	AA	\$50<25/0.Y True/ICV = 30/0
IV.	Continuing calibration	A	CCV= 30/0
V.	Laboratory Blanks	Siv	
VI.	Field blanks	N,	Best 1800/
VII.	Surrogate spikes	\mathcal{N}	
VIII.	Matrix spike/Matrix spike duplicates	A/A	QV
IX.	Laboratory control samples	w	LESO SPM
X.	Field duplicates	N	,
XI.	Internal standards	w	
XII.	Compound quantitation RL/LOQ/LODs	\triangleleft	
XIII.	Target compound identification	A	
XIV.	System performance	4	
XV.	Overall assessment of data	\$	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BC-CR002-A-M (1/16 X - FS high)	320-32834-1	Tissue	10/12/17
2	U.R.S BC-CR002-B-M	320-32834-3	Tissue	10/12/17
3	BC-CR002-D-M	320-32834-7	Tissue	10/12/17
4	BC-CR002-E-M	320-32834-9	Tissue	10/12/17
5	BC-CR002-F-M	320-32834-11	Tissue	10/12/17
6	BC-CR002-G-M	320-32834-13	Tissue	10/12/17
7	BC-CR002-H-M	320-32834-15	Tissue	10/12/17
8	BC-CR002-I-M	320-32834-17	Tissue	10/12/17
9	BC-CR002-J-M (1/10x-#S ligh)	320-32834-19	Tissue	10/12/17
10	BC-CR001-A-M (1/0/100x)	320-32834-21	Tissue	10/12/17
11	BC-CR001-C-M (1/10x ~ 75)	320-32834-25	Tissue	10/12/17
12	U, R. 3 BC-CR001-D-M	320-32834-27	Tissue	10/12/17
13	T.U.や.ラ BC-CR001-H-M	320-32834-35	Tissue	10/12/17
14	BC-CR001-I-M	320-32834-37	Tissue	10/12/17

LDC #: 42369C96 SDG #: 320-32834-1

Laboratory: Test America, Inc.

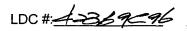
VALIDATION COMPLETENESS WORKSHEET

Category B

2nd Reviewer:

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

Client ID	Lab ID	Matrix	Date
15 BC-CR001-J-M (1/10× - IS out)	320-32834-39	Tissue	10/12/17
16 BC-FR001-A-H (1/10/100x)	320-32834-42	Tissue	10/13/17
17 BC-FR001-E-H	320-32834-50	Tissue	10/13/17
18 , BC-FR001-F-H	320-32834-52	Tissue	10/13/17
19 BC-GA001-D-M ((/ (0 ×)	320-32834-63	Tissue	10/16/17
20 BC-GA001-D-H	320-32834-64	Tissue	10/16/17
21 BC-GA001-E-H	320-32834-66	Tissue	10/16/17
22 BC-GA002-A-H	320-32834-74	Tissue	10/16/17
23 BC-GA002-B-H	320-32834-76	Tissue	10/16/17
24 BC-GA002-C-H	320-32834-78	Tissue	10/16/17
25 BC-GA002-E-H	320-32834-82	Tissue	10/16/17
26 BC-GA002-F-H	320-32834-84	Tissue	10/16/17
27 BC-GA002-G-M	320-32834-85	Tissue	10/16/17
28 BC-GA002-J-H	320-32834-92	Tissue	10/16/17
29 BC-CR002-F-MDUP	320-32834-11DUP	Tissue	10/12/17
30 BC-CR002-I-MMS	320-32834-17MS	Tissue	10/12/17
31 BC-CR002-I-MMSD	320-32834-17MSD	Tissue	10/12/17
32 BC-FR001-E-HDUP	320-32834-50DUP	Tissue	10/13/17
33			
34			
35			
Notes:			


MB-320-200601/1X MB-3=0-20=83=	11-1	_	
MB 30-200806/74			
MB 320-2021 86/14			
NB 320-202824/1A			

LDC # 40369196

VALIDATION FINDINGS CHECKLIST

Method: LCMS (EPA Method 537)

Validation Area	Yes	No	NA	Findings/Comments
I Technical holding times				
Were all technical holding times met?				-
Was cooler temperature criteria met?				
ill-LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
Illiar limital calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) <20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		•		
Were all percent differences (%D) ≤ 30%?				
IV Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?		A2134 August (1975		
W Laboratory Blanks, st.				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?			<u> </u>	
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
Mi Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?			_	
VIII-Matrix spike/Matrix spike dudlicates		i i		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX Laboratory control samples (Fig. 25)				
Was an LCS analyzed for this SDG?	/			

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		(
X Reld duplicates				
Were field duplicate pairs identified in this SDG?			_	
Were target compounds detected in the field duplicates?.				
XI. Internal stangards				
Were internal standard area counts within \pm 50% of the associated calibration standard?				·
XII. Compound grentifation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Targer compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?			20.42000 22.6000	
XIV. System performances				
System performance was found to be acceptable.				
XIII. Overall assessment of data.				
Overall assessment of data was found to be acceptable.		<u> </u>		

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WIETHOUT PROSIPFOAS			
A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)	·		
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)		·	
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)		·	
Q. Perfluoropentanoic acis (PFPeA)			
R. 6:2FTS			
S. 8:2 FTS			
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			
		,	•

LDC # 1534-96

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	(of/_
Reviewer:	<u>a</u>
2nd Reviewer:	2

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

MN N/A Were all samples associated with a given method blank?

YN N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

N N/A Was a method blank performed with each extraction batch?

W N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 13/18 Blank analysis date: 14/18
Conc. units: 18/18 Associated samples: 16-18

oono. unito. Maria		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iatea sampie	, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>			
Compound	Blank ID	* (10×)	*(10x)	San	nple Identificatio	n		
" " MB3	0-202186/1-A	16	it	18				
P	0.00157	0.001	0.0049	0.0025/				
R	003	éene	60,004	50,009				
	0.0341	0,006/	0.619/				: 	
		0. 593	1 AL	~				

Blank extraction date: 1/5/8 Blank analysis date: 1/1/18 Associated samples: 19-34 Conc. units: M3/5

Compound	Blank ID	*(lox)			#(/0×)san	nple Identificati	Pu *(DX))		
WB3	20-2028-24/	A 19	20		21	22	23	74		
Þ	0.00481	0,000052/	0.00>8/1.50	g/a	0.0046/	0000	00053/	0000g	0 00094	U
'A	0.00162				00045	Livery 1	~ AD 5000			
Q	0.000241	.4				M2 - 1	0.00077	u		
R	0.00167	0.021/-	<u> </u>		0.0094*/	0.024*/	0.020*	<i>'</i>		
		0.094H	L		-0.095U	-0,094U	0.104	1	gral J	

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	
Reviewer:	R
2nd Reviewer:	<u>~</u>

METHOD: LC/MS PFCs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y N N/A Was a method blank performed with each extraction batch?

Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 01/05/18 Blank analysis date: 01/15/18

Conc. units: mg/Kg Associated samples: 25-28

The state of the s		Accordance carrieron To To						
Compound	Blank ID		Sample Identification					
Company of the Compan	MB 320-202832/1-A	25 (10X*)	26	27(10X*)	228			
R	0.0400			0.011*/0.10U	-0.0023/0.00098 U	Q		
Р	0.000490	0.00030/0.00093U		0.00078/0.0010U				
Q	0.000254							
С	0.000147	0.00040/0.00093U	0.00069/0.00093U	0.00085/0.0010U				
κ	0.000112							
М	0.000291	0.0091*/0.0093U						
	<ri< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ri<>							

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	<u>i</u> of /
Reviewer:_	84
nd Reviewer:	

METHOD: LC/MS PFCs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

X N N/A Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y N/A Was a method blank performed with each extraction batch?

Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 12/19/17 Blank analysis date: 12/29/17

Conc. units: mg/Kg Associated samples: 1-9

Compound	Blank ID		Sample Identification					
	MB 320-200601/1-A	1	2	3	4	5	6	7
К	0.0000834	0.00029/0.00093U	0.00013/0.00093U	0.00020/0.0010U	0.00011/0.00097U	0.00015/0.00098U	0.00030/0.00093U	0.000094/ 0.0010U
М	0.0000864					0.00084/0.00098U		
R	0.000396							
	<ri< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ri<>							

Compound	Blank ID	Sample Identification						
	MB 320-200601/1-A	8	9					
K	0.0000834	0.00030/0.0010U	0.00053/0.00097U					
M	0.0000864							
R	0.000396							
	<ri< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ri<>							

VALIDATION FINDINGS WORKSHEET Blanks

Page: lof Reviewer: 2 2nd Reviewer:

METHOD: LC/MS PFCs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>✓ N N/A</u> Were all samples associated with a given method blank?

Y\N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y N N/A Was a method blank performed with each extraction batch?

√/ N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 12/20/17 Blank analysis date: 01/03/18

Conc. units: mg/Kg Associated samples: 10-15

Compound	Blank ID		Sample Identification					
	MB 320-200806/1-A	10	11	12	13	14	15	
κ	0.0000701	0.00054/0.0010U	0.00021/0.0010U	0.00042/0.0010U	0.00044/0.0093U	0.00053/0.00099U	0.00038/0.00095U	
М	0.000077							
	<ri< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ri<>							

VALIDATION FINDINGS WORKSHEET Duplicate Analysis

	Page:_	_1of(
	Reviewer:	X
2nd	Reviewer:	0

METHOD: LC/MS PFAS (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a duplicate sample analyzed for each matrix in this SDG?

Y/N) N/A Were all duplicate sample relative percent differences (RPD) < QC limits?

	Date	Duplicate ID	Compound	RPD (Limits)	Associated Samples	Qualifications
		32	M	78 (=30)	17 (dek)	Joels 14
				70 \ 20	((((((((((((((((((((1000 2 /
				0.000		
					····	
					555555	
						

Comments:		

LDC #: 42369096

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	<u>/</u> of_/
Reviewer:	<u> </u>
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a LCS required?

(N N/A Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

	NVA Were the	LC3 percent reci	overies (%R) and relati	ve percent difference (RPD) Within the QC II	mils?	
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	LCS \$ 320-202	P4 P	182 (81-133)	HT (8H33)	()	19-24.MB	Vote P
			()	()	()	19-24.MB (dets=20-23)	
			()	(.)	()	/	
			()	()	(')		
			()	()	()		
			()	()	()		
			()	()	()		
ļ			()	()	()		
	-		()	()	()		
	1003- 30	10 12	243 81-133)		(11 10 110	* / /
	LCS 320-20	486 P	147 (31-133)	()	()	16-18 MB	Jack /P
			()	()	()	(dels)	
			()	()	()	 	
 			()	()	()		
 		-	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			. (.)	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
	<u>,</u>		()	()	()		
\parallel			,				
			()	()	()		
<u> </u>			<u> </u>	()	()		

LDC #: 4-369090

VALIDATION FINDINGS WORKSHEET Internal Standards

	Page:_	1054
	Reviewer:	4
2nd	Reviewer.	

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N/A Were all internal standard area counts within 50-150% limits?

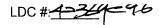
N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

vvere the retention times	s or the internal s <u>t</u> andard	is within +/- 30 seconds of	the retention time	s of the associated ca	libration standard?	
Sample ID	Internal Standard	Area (Limits)		RT (Limits)	Qu	alifications
MB 320-20060 1/1			25)		Y	ULP
	13C5PFRe A	(8)				$\underline{V}_{\underline{}}$
30 (NS)	M2-12	216			100	ana l
	M2-5	207			, No	Lanax
		,				
3) (MSO)						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	244				<u> </u>
MB 30-200806/-1	d3-T	158			14	14
	M2-R	304				
	M2-S	585				
1 13-20-2021 866	A BY DERA	09				
MDR 2021091	13C5 PFTOA	2				
	13C2 PFHXA	3				
	1304-PF11-A	5				
						<u></u>
	BC3-PFBS	10	·			
		135				
						
	d5-U	19				
	M2-R	5				
	M2-5	8			\checkmark	
	Sample ID NB 320-200601/1 30 (MS) 3) (MSD) MB 320-200806/-/	Sample ID Standard MB 320-200601/1-A 324 PPBA 306 (MG) M2-PR M2-S MB 30-200806/1-A M3-T MB 30-200806/1-A M3-T MB 30-202186/A M2-PR M2-S MB 30-202186/A M2-PR M2-S MB 30-202186/A M2-PR M2-S MB 30-202186/A M3-T M3-PPBA M3	Sample ID Standard Area (Limits) MB 320-20060 MA 1324 MB 4 25 18 30 MS M2 - R 216 M2 - S 207 31 (MSD) 236 MB 30-20080 MA AFE AFE AFE MB 30-20080 MA AFE AFE AFE MB 30-202186 AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE AFE	Sample ID Internal Standard Area (Limits) MB 320-200601/A 1347774 9 (25-1-25) 13C57776 18 18 18 30 (MS) M2-R 216 M2-S 207 31 (MSD) 236 MB 30-200806/A d3-T 15 8 MB 30-200806/A d3-T 15 8 MB 30-202186/A 134 PFBA 0.9 134 PFBA 6 135 PFBA 13 136 PFBA 23 14 15 15 16 16 17 17 19 18 18 18 18 18 18 18 18	Sample D	Sample ID Standard Area (Limits) RT (Limits) Que

LDC #45369096

VALIDATION FINDINGS WORKSHEET Internal Standards

	Page:_	$\stackrel{ op}{\longrightarrow}$ of_	4
	Reviewer:	4	
2nd	Reviewer:		


METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

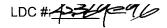
YN/N/A Were all internal standard area counts within 50-150% limits?

YNA Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard			RT (Limits)	Qualifications
		MB 320-202824-	A 13CA PTBA	3	(25-125)		JAHA
			13/SPFPOA	4			
			13C2 PFHXA	6	_		
			13C4-2FH=A	8			
			BC4 PFOA				
			13C5 PFNA	احـ			
			13C3-17TBS	15			
			W2-R	15			
		MB 320-20=833/1		3			
			BC5 PFROA	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
			1302 PTHXX	4			
			13C4-PFHpA	6			
\perp			BCAPFOX	7			
			13C5 DENA	11			
			13c3-PFBS		/		
			M2~R	7	V		V
		:29 (cab dup)	112- R	177	(15-175)		to tend !
							- MAD
		1					<u> </u>
		32 (Lab dus)	42-R	573			VIN/P
		1		· · · · · · · · · · · · · · · · · · ·			
\perp						·	·
\bot	·					· ·	

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: 3 of 4 Reviewer: 2 2nd Reviewer: 2


METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were all internal standard area counts within 50-150% limits?

Y N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

, N	N/A I	T vvere the retention times	T	ds within +/- 30 seconds of the	le retention times of the a	ssociated calibration sta	andard?
#	Date	Sample ID	Internal Standard	Area (Limits)	RT (L	Limits)	Qualifications
		1-3,5,7,10,11	NO-R	out			No Cenal (210x)
		12-18,21-28	M2-S	d			
		•					
		- (2)			(4.5)		
		8 (ND)	µ2-R	214 (25-12	<i>5D</i>)		My P (R)
			M2-5	214			V (5)
		16 (ND)	13C2-PFTeDA	4			MAD (E)
		IT (NO)		20		,	
	<u> </u>	Tre CNO					
	 	18 (ND)	1/	22			-
							
		20 (kots+ND)	BC4 PFBA	3			M/ (A-D)
		, , , , , , , , , , , , , , , , , , ,	BC5 HROA	6		7	I T.P.A
			13C2DFHXX	4			5
			13C4 DFHDA	4			
			BC4 PFOA	5			
			125DANA	8			
			BCO-FFEDA	8			
			12:3-PFBS	15			<i>y</i>
			M2-5	≥0 ↓			<u> </u>
						(A	ual A-D.I.J.P.B
		<u> </u>					

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:	4 of /
Reviewer:_	9
2nd Reviewer:	a

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN/N/A

Were all internal standard area counts within 50-150% limits?

Y/N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

		T			1	tion times of the associated call	- Tation standard:
#	Date	Sample ID	Internal Standard		Area (Limits)	RT (Limits)	Qualifications
		21 (deterno)	13C4 PABA	5	(25-150)		LAD FJ
		/	13CS PFFeA	1			P-Q)
			13C2-DFHXA	8			
			13C4PFHDA	5			
			13C4 PFOX	13			
			BCS PFNA	22			
			13C2PFTEDA	14			
			13C3-7FBS	20			√
		101.1141	in the section of			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
		22 (dots+NO)	13C4 PTBA	6			1/4/D(A-B.=,PQ
			13CS PFPeA				- '
		 	13C2PFHXA	11		Mark the second	
			13c4-PFHpA 13c2-PFTebA				
			12271 10011	1			V
		23 (lets+NO)	13C4 PFBA	4			JAJA (AB.PA
			13C5 TATO A	14			
			BODTHX A	16			
			BC4 PTHOA	12			
			, , ,				
		24 (ND)	13C4 PTBA	2			MAP (AB. I, PA
			BC5 PFRed	8			
			13C2 PEHXA	9			
			1324-PF1-A	17,	·		
 			130-DFTeDA	(خـ ا			
 							
<u></u>		<u> </u>	<u> </u>	<u> </u>			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	1 of /
Reviewer:	4
2nd Reviewer:	<u>a</u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	1/3/18	PFOA	(1st internal standard)	1.1336	- 1.1336	1.1474	1.1474	4.8	4.8
	(A8_N)		PFOS	(2nd internal standard)	1.1137	1.1137	1.1371	1.1371	3.4	3.4
				(3rd internal standard)	,					
2	ICAL	1/17/18	PFOA	(1st internal standard)	1.1344	1.1344	1.1721	1.1721	6.9	6.9
	(A8_N)		PFOS	(2nd internal standard)	1.1321	1.1321	1.1194	1.1194	3.4	3.4
				(3rd internal standard)						
3	ICAL	12/26/17	PFOA	(1st internal standard)	1.0465	1.0465	1.0586	1.0586	5.6	5.6
			PFOS	(2nd internal standard)	1.0482	1.0482	1.0732	1.0732	2.6	2.6
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of	the recalculated
results.	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	1 of \$
	Reviewer:	4
2nd	Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

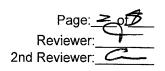
% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x = Area of compound,$

A_{is} = Area of associated internal standard


 $C_x = Concentration of compound,$

C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Re	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2017.01.29_030	12/29/17	PFOA	(1st internal standard)	1.0586	1.061	1.061	0.2	0.2
			PFOS (2nd internal standard)		1.0732	1.112	1.112	3.6	3.6
			(3rd internal standard)						
2	2017.01.29_041	12/29/17	PFOA	(1st internal standard)	1.0586	1.063	1.063	0.4	0.4
			PFOS (2nd internal standard)		1.0732	1.042	1.042	2.9	2.9
			(3rd internal standard)						
3	2017.12.29_052	12/29/17	PFOA	(1st internal standard)	1.0586	1.078	1.078	1.8	1.8
			PFOS	(2nd internal standard)	1.0732	1.047	1.047	2.5	2.5
4	2018.01.03_001	1/3/18	PFOA	(1st internal standard)	1.1474	1.069	1.069	6.8	6.8
			PFOS	(2nd internal standard)	1.1371	1.095	1.095	3.7	3.7

Comments:	Refer to Continuing	Calibration findings v	worksheet for list o	of qualifications and	associated sar	nples when repor	ted results do not a	<u>agree within 1</u>	0.0% of the
recalculated r	results								
							,		

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

RRF = continuing calibration RRF

 A_x = Area of compound, A_{is} = Area of associated internal standard

 $C_{\rm s}$ = Concentration of compound, $C_{\rm is}$ = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (R	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2017.01.03_012	1/3/18	PFOA	(1st internal standard)	1.1474	1.134	1.134	1.2	1.2
			PFOS (2nd internal standard)		1.1371	1.092	1.092	4.0	4.0
				(3rd internal standard)					
2	2017.01.03_023	1/3/18	PFOA	(1st internal standard)	1.1474	1.047	1.047	8.8	8.8
			PFOS (2nd internal standard)		1.1371	1.096	1.096	3.6	3.6
			(3rd internal standard)						
3	2017.01.06_001	1/6/18	PFOA	(1st internal standard)	1.1474	1.094	1.094	4.7	4.7
			PFOS	(2nd internal standard)	1.1371	1.110	1.110	2.4	2.4
4	2017.01.06_012	1/6/18	PFOA	(1st internal standard)	1.1474	1.106	1.106	3.6	3.6
			PFOS (2nd internal standard)		1.1371	1.128	1.128	0.8	0.8

Comments:	Refer to 0	Continuing	Calibration fir	ndings wor	rksheet for	list of q	ualificatio	ns and	associated	samples	when r	eported	results o	lo not agi	ree within	10.0% d	of the
recalculated r	results																

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	<u> </u>
Reviewer:	
2nd Reviewer:	<u>a</u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x =$ Concentration of compound,

C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (R	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.11_004	1/11/18	PFOA	(1st internal standard)	1.1474	1.111	1.111	3.2	3.2
			PFOS (2nd internal standard)		1.1371	1.020	1.020	10.3	10.3
				(3rd internal standard)					
2	2018.01.11_015	1/11/18	PFOA (1st internal standard)		1.1474	1.130	1.130	1.5	1.5
			PFOS (2nd internal standard)		1.1371	1.104	1.104	2.9	2.9
				(3rd internal standard)					
3	2018.01.11_026	1/11/18	PFOA	(1st internal standard)	1.1474	1.093	1.093	4.8	4.8
			PFOS	(2nd internal standard)	1.1371	1.058	1.058	7.0	7.0
4	2018.01.12_031	1/12/18	PFOA (1st internal standard)		1.1474	1.111	1.111	3.2	3.2
			PFOS (2nd internal standard)		1.1371	1.127	1.127	0.9	0.9
							·		

Comments:	Refer to Continui	<u>ng Calibration findin</u>	gs worksheet for his	st of qualifications	and associated :	<u>samples when i</u>	<u>reported results do</u>	not agree within	<u>10.0% of the</u>
ecalculated r	esults								
	<u> </u>								

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

	Page:_	1018
F	Reviewer:_	1
2nd F	Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound,

Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (R	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2017.01.12_042	1/13/18	PFOA	(1st internal standard)	1.1474	1.079	1.079	6.0	6.0
			PFOS (2nd internal standard)		1.1371	1.034	1.034	9.0	9.0
				(3rd internal standard)					
2	2017.01.12_053	1/13/18	PFOA (1st internal standard)		1.1474	1.137	1.137	0.9	0.9
			PFOS (2nd internal standard)		1.1371	1.173	1.173	3.2	3.2
				(3rd internal standard)					
3	2018.01.14_002	1/14/18	PFOA	(1st internal standard)	1.1474	1.102	1.102	3.9	3.9
			PFOS	(2nd internal standard)	1.1371	1.094	1.094	3.8	3.8
					-				
4	2018.01.14_014	1/14/18	PFOA (1st internal standard)		1.1474	1.144	1.144	0.3	0.6
			PFOS (2nd internal standard)		1.1371	1.095	1.095	3.7	3.7

Comments:	Refer to	Continuing	Calibration	findings v	<u>vorksheet f</u>	<u>or list of</u>	qualification	s and	associated	samples who	en reported	<u>results do</u>	not agree	within	<u>10.0% c</u>	<u>f the</u>
recalculated r	results															

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

2nd Reviewer

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x = Concentration of compound,$

C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (F	Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.14_025	1/14/18	PFOA	(1st internal standard)	1.1474	1.074	1.074	6.4	6.4
			PFOS	(2nd internal standard)	1.1371	1.037	1.037	8.8	8.8
				(3rd internal standard)					
2	2018.01.14B_001	1/14/18	PFOA	(1st internal standard)	1.1474	1.118	1.118	2.6	2.6
			PFOS	(2nd internal standard)	1.1371	1.117	1.117	1.8	1.8
				(3rd internal standard)					
3	2018.01.14B_012	1/14/18	PFOA	(1st internal standard)	1.1474	1.143	1.143	0.4	0.4
			PFOS	(2nd internal standard)	1.1371	1.118	1.118	1.6	1.6
4	2018.01.15 041	1/15/18	PFOA	(1st internal standard)	1.1474	1.099	1.099	4.2	4.2
,	2515.51.15_541		PFOS	(2nd internal standard)	1.1371	1.118	1.118	1.7	1.7

Comments: Re	efer to Continuing	Calibration findings	worksheet for I	ist of qualifications	and associated	l samples when	reported results	do not agree withi	n 10.0% of the
recalculated res	ults								

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	6,013
Reviewer:	
2nd Reviewer:	9

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x = Concentration of compound,$

C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (R	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.15_021	1/16/18	PFOA	(1st internal standard)	1.1474	1.135	1.135	1.0	1.0
	/		PFOS	(2nd internal standard)	1.1371	1.097	1.097	3.5	3.5
				(3rd internal standard)					
2	2018.01.15_032	1/16/18	PFOA	(1st internal standard)	1.1474	1.126	1.126	1.9	1.9
			PFOS	(2nd internal standard)	1.1371	1.062	1.062	6.6	6.6
				(3rd internal standard)					
3	2018.01.17_001	1/18/18	PFOA	(1st internal standard)	1.1721	1.100	1.100	6.1	6.1
			PFOS	(2nd internal standard)	1.1194	1.055	1.055	5.8	5.8
4	2018.01.17_012	1/18/18	PFOA	(1st internal standard)	1.1721	1.159	1.159	1.1	1.1
			PFOS	(2nd internal standard)	1.1194	1.121	1.121	0.1	0.1

Comments:	Refer to C	<u>ontinuing C</u>	alibration t	<u>inaings wo</u>	rksneet for	list of qua	alifications	and assoc	ciated sam	pies when	геропеа ге	esuits do n	<u>ot agree w</u>	<u>itnin 10</u>	<u> </u>
recalculated	results														
			,												

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	7 of \$
Reviewer:	
2nd Reviewer:	<u>a</u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Re	eference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.17_023	1/18/18	PFOA	(1st internal standard)	1.1721	1.105	1.105	5.7	5.7
			PFOS	(2nd internal standard)	1.1194	1.054	1.054	5.9	5.9
2	2018.01.23_006	1/23/18	PFOA	(1st internal standard)	1.1721	1.127	1.127	3.8	3.8
			PFOS	(2nd internal standard)	1.1194	1.114	1.114	0.4	0.4
3	2018.01.23_017	1/23/18	PFOA	(1st internal standard)	1.1721	1.101	1.101	6.0	6.0
			PFOS	(2nd internal standard)	1.1194	1.094	1.094	2.2	2.2
4	2018.01.23_045	1/23/18	PFOA	(1st internal standard)	1.1721	1.147	1.147	2.1	2.1
			PFOS	(2nd internal standard)	1.1194	1.106	1.106	1.2	1.2

Comments:	Refer to Continuir	<u>ng Calibration f</u>	<u>indings worksheet fo</u>	<u>r list of qualificatio</u>	ns and associated	<u>l samples when r</u>	reported results do	<u>not agree within</u>	10.0% of the
recalculated r	results								

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	8 of 8
Reviewer:	9
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x = Concentration of compound,$

C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.01.23C_012	1/23/18	PFOA	(1st internal standard)	1.1721	1.108	1.108	5.5	5.5
			PFOS	(2nd internal standard)	1.1194	1.095	1.095	2.2	2.2
2	2018.01.15_052	1/15/18	PFOA	(1st internal standard)	1.1474	1.091	1.091	4.9	4.9
			PFOS	(2nd internal standard)	1.1371	1.116	1.116	1.9	1.9
3									
4									

Comments:	Refer to Continuing	Calibration fin	dings worksheet for	list of qualifications	and associated	samples when	<u>reported results do</u>	o not agree withi	<u>n 10.0% of the</u>
recalculated i	results								

VALIDATION I INDINGS VYORASTICET Matrix Spike/Matrix Spike Duplicates Results Verification

Раде: <u>/</u> от_/_
Reviewer:
2nd Reviewer:

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration

SC = Sample concentation

RPD = IMSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

SA = Spike added

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

Compound	Spike Added (M315-)		Sample Concentration	Spiked Sample Concentration		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
100 mg	MS	MSD	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PFOA	0.00735	0.0096=	0.0020	0.00908	0.00917	25	97	93	asn.	1.	
DF 05	0.00867	0.00962	0.0013	0.00997	0.0102	99	99	99	100		2
		!									
											!
	. ,										
	,					<u> </u>					
		· ·									

of the recalculated results.	Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0%
	of the recalculated results.

VALIDATION I INDINGS WORKSHILLT

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

rage: <u></u> or_/_
Reviewer:
2nd Reviewer:

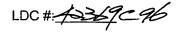
METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added


RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 320-20060)

Compound	Spike Added (WS (S)		Spike Concentration (MS/S)		L CS Percent Recovery		LCSD Percent Recovery		I CS/I CSD RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recaic.	Reported	Recalc.	Reported	Recalculated
AFOA	0.0100	NA	0.0960	NĂ	96	96,				
2706	0.09=8	V	0.0100	4	108	108				
						:				
			<u> </u>	·						

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicates findings worksheet	for list of qualifications and associate	d samples when reported
results do not agree within 10.0% of the recalculated results		•	

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer.	4
2nd reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Factor of 2 to account for GPC cleanup

K	y	N/A
Y	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $(A_s)(I_s)(V_s)(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
s	=	Amount of internal standard added in nanograms (ng)	Conc. = (4586)(2.39)(/0.00) ()()()()()()()()()()()()(
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	70/050/100/ 1.0/52 /000
V _i	=	Volume of extract injected in microliters (ul)	= 0.00 26 MB/F
V _t	=	Volume of the concentrated extract in microliters (ul)	7.8
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
		DFO S	0.00-26		
i					
				444	
				· · · · · · · · · · · · · · · · · · ·	
<u> </u>					
ļ					
ļ					

P.W. Grosser Consulting 630 Johnson Ave, Suite 7 Bohemia, NY 11716 October 18, 2019

ATTN: Ms. Heather Moran-Botta. https://htmoran-botta@pwgrosser.com

SUBJECT: Revised Suffolk County Biota Sampling Evaluation, SHD1705, Data Usability

Summary Report

Dear Ms. Moran-Botta,

Enclosed are the revised validation reports for the fraction listed below. These SDGs were received on August 21, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

 The laboratory re-issued the reports to correct for a prep factor correction. The detection limits were lowered.

LDC Project #42956_RV1:

SDG # Fraction

320-31604-1, 320-39893-1 320-39933-1, 320-40237-1 320-40241-1, 320-40365-1 320-40607-1, 320-40641-1 Fluorinated Alkyl Substances

The data validation was performed under Category B guidelines using quality control summaries provided by the laboratory. The analyses were validated using the following documents, as applicable to each method:

 USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002; January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

heistina Rink

Project Manager/Senior Chemist

5,311 pages-ADV (Validate 20% per SDG) Attachment 1 LDC #42956 (P.W. Grosser Consulting - Bohemia, NY / Suffolk County Biota Sampling Evaluation, SHD1705) NY DUSR Category B **PFCs PFCs** -Mod DATE DATE -Mod LDC SDG# REC'D DUE (537M) (537M) ws Т Matrix: Water/Soil/Tissue 320-31604-1 08/21/18 09/12/18 08/21/18 09/12/18 0 В 320-39893-1 0 С 320-39933-1 08/21/18 09/12/18 3 D 320-40237-1 08/21/18 09/12/18 0 5 F 320-40241-1 08/21/18 09/12/18 0 320-40365-1 08/21/18 09/12/18 1 0 0 G 320-40607-1 08/21/18 09/12/18 Н 08/21/18 09/12/18 6 0 320-40641-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J/CR Total

Site:

Suffolk County Biota Sampling Evaluation

Laboratory:

TestAmerica, Inc., Edison, NY

Report No.:

320-31604-1

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

September 7, 2018

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
SP002 FB001 SP002MS SP002MSD	320-31604-2 320-31604-3 320-31604-2MSD	Perfluorinated Hydrocarbons Perfluorinated Hydrocarbons Perfluorinated Hydrocarbons Perfluorinated Hydrocarbons

Associated QC Samples(s):

Field/Trip Blanks:

FB001

Field Duplicate pair:

None Associated

The above-listed soil and water samples were collected on September 12, 2017 and were analyzed for perfluorinated hydrocarbons by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Labeled Compounds
- Field Duplicate Results
- Moisture Content
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

Initial calibration:

Compounds that did not meet criteria are summarized in the following table.

	Instrument		IC	·	
Date	ID	Compound	%D	Associated Samples	Validation Action
9/18/17	IC-7	Perfluorobutanesulfonic acid	32.9	SP002	UJ nondetects
9/28/17	IC-7	Perfluorobutanesulfonic acid	34.5	FB001	UJ nondetects

X = Initial calibration (IC) relative standard deviation (%RSD) > 35; estimate (J/UJ) positive and nondetect results.

The perfluorobutanesulfonic acid results were estimated due to true value exceedances. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

XX = Continuing calibration (CC) percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.

SS = Second source verification percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.

⁺⁼ Response factor (RRF) < validation criteria; estimate (J/UJ) positive and nondetect results.

Continuing calibration:

	Instrument		CC			
Date	ID	Compound	%D	Associated Samples		Validation Action
09/23/17	2017.09.23A.004	13C2-Perfluorodecanoic acid		SP002	XX	J detects/UJ nondetects
		d3-N-Methyl perfluorooctanesulfonamidoacetic acid			XX	J detects/UJ nondetects
		13C2-Perfluoroundecanoic acid			XX	J detects/UJ nondetects
		d5-N-Ethyl perfluorooctanesulfonamidoacetic acid			XX	J detects/UJ nondetects
		13C2-Perfluorododecanoic acid	46.4		XX	J detects/UJ nondetects
09/28/17	2017.09.28A.037	13C2-Perfluorododecanoic acid	43.1	FB001	XX	UJ nondetects

- X = Initial calibration (IC) relative standard deviation (%RSD) > 20; estimate (J/UJ) positive and nondetect results.
- XX = Continuing calibration (CC) percent difference (%D) > 20; estimate (J/UJ) positive and nondetect results.
- SS = Second source verification percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.
- += Response factor (RRF) < validation criteria; estimate (J/UJ) positive and nondetect results.

The perfluorodecanoic acid, n-methyl perfluorooctanesulfonamidoacetic acid, perfluoroundecanoic acid, n-ethyl perfluorooctanesulfonamidoacetic acid, and perfluorododecanoic acid results for the samples listed above were estimated due to continuing calibration exceedances. The bias cannot be determined. The results can be used for project objectives as estimated values (J) or nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Blanks

Contamination was detected in the associated perfluorinated hydrocarbons method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-186052/1-A	Perfluorononanoic acid	1.672 ng/L	RL	FB001
	Perfluorodecanoic acid	0.641 ng/L	RL	
	Perfluoroundecanoic acid	1.243 ng/L	RL	
	Perfluorododecanoic acid	0.663 ng/L	RL	
	Perfluorotridecanoic acid	0.708 ng/L	RL	
	Perfluorotetradecanoic acid	0.671 ng/L	RL	

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
FB001	Perfluorotetradecanoic acid	0.20 ng/L	1.97U ng/L

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Contamination was detected in the field blank sample FB001 for the perfluorinated hydrocargons analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
FB001	Perfluorotetradecanoic acid	0.20 ng/L	RL	SP002
	Perfluorohexanesulfonic acid	2.16 ng/L	RL	FB001
	Perfluorooctanesulfonic acid	2.22 ng/L	RL	

No samples were qualified since the associated sample results were greater than the action level.

MS/MSD Results

MS/MSD analyses were performed on sample SP002 for perfluorinated hydrocarbons analysis. All criteria were met.

LCS Results

The following table lists the compounds recovered outside of control limits in the fluorinated alkyl substances analysis and the resulting validation actions.

LCS ID	Compound	LCS %R (Limits)	LCS/D %R (Limits)	RPD (Limits)	Affected Sample	Validation Action
LCS/D 320-186052	Perfluorotridecanoic acid	-	-	39 (≤30)	FB001	UJ nondetects

⁻ Within control limits

The perfluorotridecanoic acid result was estimated due to LCS/LCSD relative percent difference exceedance. The bias cannot be determined. The result can be used for project objectives as a nondetect with an estimated quantitation limit (UJ) which may have a minor impact on the data usability.

Labeled Compounds

The following table lists the labeled compounds recovered outside of control limits and the resulting actions.

		%R	Affected	
Sample	Labeled Compound	(Limits)	Compounds	Validation actions
SP002	13C2-Perfluoroundecanoic acid	168 (25-150)	Perfluoroundecanoic acid	J detects/UJ nondetects
	13C2-Perfluorododecanoic acid	168 (25-150)	Perfluorododecanoic acid	J detects/UJ nondetects
	d3-N-Methyl perfluorooctanesulfonamidoacetic acid	154 (25-150)	N-Methyl perfluorooctanesulfonamidoacetic acid	J detects/UJ nondetects
	d5-N-Ethyl perfluorooctanesulfonamidoacetic acid	167 (25-150)	N-Ethyl perfluorooctanesulfonamidoacetic acid	J detects/UJ nondetects

The perfluoroundecanoic acid, perfluorododecanoic acid, n-methyl perfluorooctanesulfonamidoacetic acid, and n-ethyl perfluorooctanesulfonamidoacetic acid results were estimated due to labeled compounds percent recovery exceedances. The bias cannot be determined. The results can be used for project objectives as estimated values (J) or nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Moisture Content

All criteria were met.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the perfluorinated hydrocarbons analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for perfluorinated hydrocarbons analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento Job No.: 320-31604-1

SDG No.:

Client Sample ID: SP002 Lab Sample ID: 320-31604-2

Matrix: Solid Lab File ID: 2017.09.23A_011.d

Analysis Method: 537 (modified) Date Collected: 09/12/2017 09:35

Extraction Method: SHAKE Date Extracted: 09/19/2017 11:59

Sample wt/vol: 4.98(g) Date Analyzed: 09/23/2017 13:03

Con. Extract Vol.: 1.0(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: 8.4 GPC Cleanup:(Y/N) N

Analysis Batch No.: 186086 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000078	UU	0.00022	0.000078
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000096	UÜ	0.00022	0.000096
335-67-1	Perfluorooctanoic acid (PFOA)	0.00013	J	0.00022	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00011	J	0.00022	0.000091
335-76-2	Perfluorodecanoic acid (PFDA)	0.00013	JJ	0.00022	0.000062
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00035	2	0.00022	0.00012
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00013	U UJ	0.00022	0.00013
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	0.00022		0.00022	0.00010
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000064	UU	0.00022	0.000064
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00011	U 05	0.00022	0.00011
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00044		0.00022	0.00013
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.0023		0.00022	0.00014
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	0.0014	υ υ υ	0.0022	0.0014
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	0.00043	U 105	0.0022	0.00043

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00993	13C2 PFHxA	114		25-150
STL00990	13C4 PFOA	121		25-150
STL00995	13C5 PFNA	137		25-150
STL00996	13C2 PFDA	136		25-150
STL00997	13C2 PFUnA	168	*	25-150
STL00998	13C2 PFDoA	168	*	25-150
STL00994	1802 PFHxS	102		25-150
STL00991	13C4 PFOS	107		25-150
STL01892	13C4-PFHpA	122		25-150
STL02116	13C2-PFTeDA	126		25-150
STL02118	d3-NMeFOSAA	154	*	25-150
STL02117	d5-NEtFOSAA	167	*	25-150
STL02337	13C3-PFBS	101		25-150

STATE OF THE PROPERTY OF THE P

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento Job No.: 320-31604-1

SDG No.:

Client Sample ID: FB001 Lab Sample ID: 320-31604-3

Matrix: Water Lab File ID: 2017.09.28A 046.d

Analysis Method: 537 (modified) Date Collected: 09/12/2017 09:45

Extraction Method: 3535 Date Extracted: 09/25/2017 09:46

Sample wt/vol: 254(mL) Date Analyzed: 09/28/2017 07:55

Con. Extract Vol.: 0.50(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 186780 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid (PFHxA)	0.77	UU	1.97	0.77
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.79	Ū	1.97	0.79
335-67-1	Perfluorooctanoic acid (PFOA)	0.74	U	1.97	0.74
375-95-1	Perfluorononanoic acid (PFNA)	0.64	Ū	1.97	0.64
335-76-2	Perfluorodecanoic acid (PFDA)	0.43	Ū	1.97	0.43
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.74	Ū 🗸	1.97	0.74
307-55-1	Perfluorododecanoic acid (PFDoA)	0.57	UU	1.97	0.57
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	0.54	U * US	1.97	0.54
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.20	J B19	70 1.97	0.20
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.90	U (5	1.97	0.90
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	2.16		1.97	0.86
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	2.22		1.97	1.26
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	4.94	υυ	19.7	4.94
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	5.55	υU	19.7	5.55

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00993	13C2 PFH×A	83		25-150
STL00990	13C4 PFOA	90		25-150
STL00995	13C5 PFNA	88		25-150
STL00996	13C2 PFDA	97		25-150
STL00997	13C2 PFUnA	90		25-150
STL00998	13C2 PFDoA	106		25-150
STL00994	1802 PFHxS	.79		25-150
STL02116	13C2-PFTeDA	134		25-150
STL00991	13C4 PFOS	82		25-150
STL02337	13C3-PFBS	73		25-150
STL01892	13C4-PFHpA	92		25-150
STL02118	d3-NMeFOSAA	74		25-150
STL02117	d5-NEtFOSAA	73		25-150

the second secon

LDC #: 42956A96

VALIDATION COMPLETENESS WORKSHEET

SDG #:	320	<u>)-316</u>	04-1	
Laborate	ory:_	Test	America,	Inc.

Category B

2nd Reviewer

METHOD: LC/MS Perfluorinated Hydrocarbons (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	WA	7500350. TWE/ICV < 30/0
IV.	Continuing calibration	W	CCV 5 30/0
V.	Laboratory Blanks	W	,
VI.	Field blanks	w	FB=2
VII.	Surrogate spikes	N/	
VIII.	Matrix spike/Matrix spike duplicates	AGOT	
IX.	Laboratory control samples	av	1050
Χ.	Field duplicates	N,	
XI.	Labeled Compounds	W	
XII.	Compound quantitation RL/LOQ/LODs	w	usults < Re- Slots/A
XIII.	Target compound identification	A	/
XIV.	System performance	\$	
XV.	Overall assessment of data	1	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

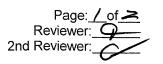
FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

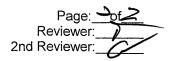
SB=Source blank


OTHER:

	Client ID	·	Lab ID	Matrix	Date
1	SP002		320-31604-2	Soil	09/12/17
2	FB001		320-31604-3	Water	09/12/17
3	SP002MS		320-31604-2MS	Soil	09/12/17
4	SP002MSD		320-31604-2MSD	Soil	09/12/17
5					
6					
7				·	
8					
lote	3:				

Note	S:			

VALIDATION FINDINGS CHECKLIST



Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.		TOTAL COMMUNICATION	**************************************	
II. LC/MS Instrument performance check		١,		
Were the instrument performance reviewed and found to be within the specified criteria?	/			# ·
Were all samples analyzed within the 12 hour clock criteria?				
IIIa Initial calibration		1.0		
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD)	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
Were the S/N ratio for all compounds within validation criteria?		-		
Were all analytes within 70-130% or percent differences (%D) \leq 30% of their true value for each calibration standard?				
IIIb Initial Calibration Verification		ı		
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			,
Were all percent differences (%D) ≤ 30%				
IV. Continuing calibration	1			
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) ≤ 30%			ļ	
Were the S/N ratio for all compounds within validation criteria?	/		-	
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks		1	ı	
Was a method blank associated with every sample in this SDG?			ļ	
Was a method blank analyzed for each matrix and concentration?			<u> </u>	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Field blanks were identified in this SDG.	/			
Target compounds were detected in the field blanks.		†		
VII. Surrogate spikes	7	1	or or or	
Were all surrogate %R within the QC limits?	<u> </u>	ļ	1	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?		a program for the		
VIII. Matrix spike/Matrix spike duplicates	10 (E) 17 E	10		

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IV. Laboratory control samples			4.5	
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates	10.10			
Field duplicate pairs were identified in this SDG.			_	
Target compounds were detected in the field duplicates.				
XI. Internal standards		. /		
Were internal standard area counts within acceptance limits?				
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		<u> </u>		
XIV. System performance		e inter		
System performance was found to be acceptable.				
XV. Overall assessment of data			1.10	
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WILLINGS, FFOSIFFOAS			
A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)		·	
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)		·	
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)	·		
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)	·		
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. 6:2FTS			
S. 8:2 FTS			
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			

VALIDATION FINDINGS WORKSHEET Initial Calibration

METHOD: LCMS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A

Did the laboratory perform a 5 point calibration prior to sample analysis?

N N/A

Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?

Were all percent relative standard deviations (%RSD) ≤ 20%? → 35 %?

Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?

M W	T	. o, o an analytoo man	1	diπerences (%D) ≤30% of	True Value		1
#	Date	Standard ID	Compound	Finding %RSD/r ²	Finding %D	Associated Samples	Qualifications
	9/18/17	1C-7	7		32.9	A1/50:/s	-VM/\$P(J)
	, ,					(ND)	
	abola	10-7	_		34.5	A-11 H=0s	1 (181 (186/17)
	9/29/17	16-7	T		34.3	717725	V/W/AP(J)
					-		
				<u> </u>		1	
	·						

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	
Reviewer:_	9
2nd Reviewer:	\bigcirc

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed after every 10 injections for each instrument?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>≤</u> 30.0%)	Finding RRF (Limit:)	Associated Samples	Qualifications
	4/3/17	2017.09.334.009	813C a				
	9Þ3/17	2017.09.234.004	13C2-FFDA	31.0		A1/SO:\S (detst)	D) VW =
	, ,		13-NMEFOSHA 13-C2-PFUNA 15-NE+FOSHA	51.1 49.7 53.9			
			13C2-PFDOA	53.9 46.4			
							(qual €, F, €.T.U
	9/-8/17	20/7.09.28A.026	13C2-PFD0A 13C2-PFTeDA	82.6 34.5	V	MB	YU F
	9/-8/17	2017.09.28h.03	1302-17 Dol	43./		A11 Had = (NO)	YMX (F)
		· · · · · · · · · · · · · · · · · · ·					
\dashv							

VALIDATION FINDINGS WORKSHEET Blanks

Page:	Lof
Reviewer:	9
2nd Reviewer:	

METHOD: L	C/MS PFO:	S/PFOAs (F	PA Method	1 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Blank extraction date: Blank analysis date:

N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Mas a method blank performed with each extraction batch?

Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 45/4 Blank analysis date: 95/7
Conc. units: 18/4 Associated samples:

Compound	Blank ID	Sample Identification					
MB3	20-18605-/1-	A 2					
カ	1.672						
E	0.641						
F	1.243						
4	0.663						
H	0.708						
Į.	0.671	0.20/1.974					

Associated samples:

onc. units:										
Compound	Blank ID	Sample Identification							-	

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u>

Page:_	10f1
Reviewer:	<u> </u>
2nd Reviewer:	

METHOD: LC/MS PFOS/PFO	OAs (EPA Me	ethod 537M)								
	N N/A Were field blanks identified in this SDG? N N/A Were target compounds detected in the field blanks?									
Y/N N/A VVere target	compounds (detected in the fi	ield blanks?							
Blank units: <u>//8/</u> As Sampling date: <u>9//-</u> //7	Socialed Sai	npie units. 777	9.2							
ield blank type: (circle one) Trip Blank/F	Field Blank / Rins	sate / Other:	B	Asso	ciated Sample	es: 🗡 //			
Compound	Blank ID				Sa	ample Identifica	tion			
	2									
キ	0.20									
K	216	·								
M	2.22									
							. 1			
							,			
Blank units: Asso Sampling date:	ciated samp	le units:								
ield blank type: (circle one) Field Blank	/ Rinsate / Othe	r:	Associate	ed Samples:_	- Co ₁₀₁ .				
Compound	Blank ID				Sa	mple Identifica	tion			
				<u>'</u>						

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	1 of 1
Reviewer:	<u> </u>
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a LCS required?

Y IN N/A Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	105 720-186052	H	()	()	39 (530)	All Hals (ND)	VIHAP
			()	()	()	/	7 7 7
			(')	()	()		
			()	. ()	()		
			()	()	()		
			()	()	()	/	
			()	()	()		
			()	()	()		
			(//)	()	. ()		
			()	(()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()			
							·
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	(')		
			()	()	()		:
			()	()	()		
			()	()	()		
			(()	()		

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	of
Reviewer:	9
2nd Reviewer:	9

METHOD: LC/MS PFAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within 50-150% limits?

Y)N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		1 (dots+ND)	13C2-PFUNA	168 (25-150) 168 154 167		1/4/F(F)
		/	13C2-PFDA d3-NMEFOSAA d5-NZ+FOSA	154		(f)
			15-NZ+FOSAX	167		V (u)
		3(NS)	13C2-DFUnA	153 (25-150)		Noteral
			1			Nocenas
		4 (NSD)	V	153 V		
		UB-320-18605-2/4	13C2-PFD0A	161 (25-150) 167 V		1 MJAP
		/ .	1302-PFT@DA	167 V		- V
	····					
		L				

LDC #: 42956A96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	10f
Reviewer:	4
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (50 std)	RRF (50 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	9/18/17	PFOA	(1st internal standard)	1.0503	1.0503	1.0761	1.0761	10.1	10.1
	(A8_N)		PFOS	(2nd internal standard)	1.0325	1.0325	1.0914	1.0914	12.8	12.8
				(3rd internal standard)						
2	ICAL	9/28/17	PFOA	(1st internal standard)	1.0707	1.0707	1.0815	1.0815	9.9	9.9
	(A8_N)		PFOS	(2nd internal standard)	1.0481	1.0481	1.0415	1.0415	5.5	5.5
				(3rd internal standard)					AND THE RESERVE OF THE PERSON	
3				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						

Comments:	Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not a	gree within 10.0% of the recalculated
results.		

LDC #: 42956A96

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	l of /
Reviewer:_	
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2017.09.23A.004	9/23/17	PFOA	(1st internal standard)	1.0761	1.075	1.075	0.1	0.1
			PFOS	(2nd internal standard)	1.0914	1.044	1.044	4.4	4.4
2	2017.09.28A.026	9/28/17	PFOA	(1st internal standard)	1.0815	1.039	1.039	3.9	3.9
			PFOS	(2nd internal standard)	1.0415	1.042	1.042	0.0	0.0
3	2017.09.28A.037	9/28/17	PFOA	(1st internal standard)	1.0815	1.103	1.103	2.0	2.0
			PFOS	(2nd internal standard)	1.0415	1.048	1.048	0.6	0.6
4									

Comments:	Refer to Continuing	Calibration findings	<u>s worksheet for list c</u>	<u>if qualifications an</u>	<u>d associated</u>	samples when reported	results do not agr	<u>ee within</u>	<u>10.0% of the</u>
recalculated r	esults								

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:(_ot_ _
Reviewer:
2nd Reviewer

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference	e (RPD) of the matrix spike and matrix spike duplicate were recalculated for the	ne compounds identified below
using the following calculation:		· ·

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration

SC = Sample concentation

RPD = IMSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

SA = Spike added

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

Compound	Spike Added (M		Sample Spiked Sample Concentration (MSA)		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD		
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PFOA	0.00438	0.0041	0.00013	0.00464	0.00465	103	10>	102	10-2	0	0
PF0S	0.00406	0.00409	0.00013	0.00647	0.006	102	103	105	106	2	2
								<u></u>		t :	
				-							<u>:</u>
						:					

Comments: Refer to Matrix Spike/Matrix Spike Duplicates f	<u>indings worksheet for list of qualificat</u>	<u>ions and associated samples when reporte</u>	<u>ed results do not agree within 10.0%</u>
of the recalculated results.			
			

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

rage:_	191
Reviewer:	4
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 320-186052

Compound	Spike Added (M5 /)		Spike Concentration		LCS Percent Recovery		I CSD Percent Recovery		LCS/LCSD RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PFOX	40.0	40.0	AT.61	4640	119	119	116	116	_3	3
F105	3T.1	37.1	44.74	43,39	1-/	121	117	117	3	3
					<u>-</u>					
					*		<u> </u>			
			· ·							

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicates findings worksheet for I	ist of qualifications and a	associated samples when report
results do not agree within 10.0% of the recalculated results			

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:	9
2nd reviewer:	
_	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Factor of 2 to account for GPC cleanup

M	N	N/A
V	Ň	N/A

2.0

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	ale and the control of the control o	Example:
\ x .	=	$(A_{is})(RRF)(V_o)(V_i)(\%S)$ Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, FFOA :
is	=	Area of the characteristic ion (EICP) for the specific internal standard	
•	=	Amount of internal standard added in nanograms (ng)	Conc. = (13006) (D.) ()
' 。	,=	Volume or weight of sample extract in milliliters (ml) or grams (g).	(10373858)(1.976) 4.98 (0.9 16 (000)
/ _i	=	Volume of extract injected in microliters (ul)	=0.000/28 m8/c
/ _t	=	Volume of the concentrated extract in microliters (ul)	1112/28
)f	=	Dilution Factor.	/
6S	=	Percent solids, applicable to soil and solid matrices only.	

#	Sample ID	Compound	Reported Concentration (MD/F)	Calculated Concentration ()	Qualification
	1	PFOA	0 00013		
	,				
				the state of the s	
	· · · · · · · · · · · · · · · · · · ·				
			,		
					· · · · · · · · · · · · · · · · · · ·
<u> </u>			And and Additional Section (1999) and the sec		
<u> </u>					

Site:

Suffolk County Biota Sampling Evaluation

Laboratory:

TestAmerica, Inc., Edison, NY

Report No.:

320-39893-1

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

September 7, 2018

Samples Reviewed and Evaluation Summary

FIELD ID

LAB ID

FRACTIONS VALIDATED

MW-CR001-B

320-39893-1

Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks:

EB004, FB004

Field Duplicate pair:

None Associated

The above-listed water sample was collected on May 3, 2018 and was analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Labeled Compounds
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Blank ID Compound Level Detect		Action Level	Associated Samples	
MB 320-227661/1-A	Perfluorobutanoic acid	0.567 ng/L	RL	MW-CR001-B	
	Perfluorohexanesulfonic acid	0.268 ng/L	RL		

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and \le the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID Compound		Level Detected	Validation Action	
MW-CR001-B	Perfluorobutanoic acid	1.79 ng/L	1.99U ng/L	

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Contamination was detected in the equipment blank sample EB004 and field blank sample FB004 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
EB004	04 Perfluorobutanoic acid 0.62 ng/L		RL	MW-CR001-B
FB004	B004 Perfluorobutanoic acid		RL	MW-CR001-B
	Perfluorohexanoic acid	1.19 ng/L	RL	
	6:2FTS	8.26 ng/L	RL	

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and < the Action Level, qualify the result as not detected (U) at the reported concentration.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action	
MW-CR001-B	Perfluorobutanoic acid	1.79 ng/L	1.99U ng/L	

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

LCS Results

All criteria were met.

Labeled Compounds

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento Job No.: 320-39893-1 SDG No.: Client Sample ID: MW-CR001-B Lab Sample ID: 320-39893-1 Matrix: Water Lab File ID: 2018.06.18LLAA_059.d Date Collected: 05/30/2018 10:15 Analysis Method: 537 (modified) Extraction Method: 3535 Date Extracted: 06/06/2018 15:54 Sample wt/vol: 251.6(mL) Date Analyzed: 06/18/2018 18:21 Con. Extract Vol.: 10(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 229705 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.79	J B 199	O 1.99	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.88		1.99	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	3.96		1.99	0.58
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.53	J 5	1.99	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	3.09		1.99	0.84
375-95-1	Perfluorononanoic acid (PFNA)	1.84	J 5	1.99	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	0.31	UU	1.99	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.09	U	1.99	1.09
307-55-1	Perfluorododecanoic acid (PFDoA)	0.55	U	1.99	0.55
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.29	U	1.99	1.29
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.29	U V	1.99	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.42	J 5	1.99	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	5.89	В	1.99	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.22	J 5	1.99	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	10.5		1.99	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.32	UU	1.99	0.32
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.35	U	1.99	0.35
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.08	U	19.9	3.08
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.89	Ū	19.9	1.89
27619-97-2	6:2 FTS	1.99	U	19.9	1.99
39108-34-4	8:2 FTS	1.99	U	19.9	1.99

SEP 11 2010

Initials: CE

LDC #: 42956B96

VALIDATION COMPLETENESS WORKSHEET

SDG #: 320-39893-1 Laboratory: Test America, Inc.

Category B

2nd Reviewer

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	Å	
111.	Initial calibration/ICV	AA	150=3570. Y THE /1CV = 3070
IV.	Continuing calibration	4	ect = 30%
V.	Laboratory Blanks	M	7
VI.	Field blanks	W	TB004, ZB004
- VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	\mathcal{N}	C5
IX.	Laboratory control samples	4	acs/b
X.	Field duplicates	N	,
XI.	Labeled Compounds	A	
XII.	Compound quantitation RL/LOQ/LODs	*	usults < RL - State /B
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

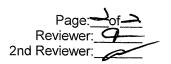
SB=Source blank

OTHER:

	I		 		_		T
	Client ID		 	Lab ID	М	atrix	Date
1	MW-CR001-B			320-39893-1	w	ater	05/30/18
2							
3							
4							
5							
6							
7							
8							
lotes							

LDC #: 4-956896

VALIDATION FINDINGS CHECKLIST


Page:__of_2 Reviewer:_____ 2nd Reviewer:_____

Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 26%?	/	.,,		
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
Were the S/N ratio for all compounds within validation criteria?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				
IIIb Initial Calibration Verification	I			The state of the s
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		•		
Were all percent differences (%D) ≤ 30%				
IV. Continuing calibration			•	
Was a continuing calibration analyzed daily?	(
Were all percent differences (%D) ≤ 30%				
Were the S/N ratio for all compounds within validation criteria?	/			
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks		1		
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/	D		
VI. Field blanks	j.			
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				
VII. Surrogate spikes	Completely.	•		
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates			ri, i sar	

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.			-	
Was a MS/MSD analyzed every 20 samples of each matrix?			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IV. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XI. Internal standards				
Were internal standard area counts within acceptance limits?				
XII. Target compound identification	En C			The production of the proof that the second
Were the retention times of reported detects within the RT windows?			Anomia de monocera	
XIII. Compound quantitation/CRQLs				A STATE OF THE STA
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIV. System performance		•		
System performance was found to be acceptable.	/			
XV. Overall assessment of data	\mathcal{A}	/	Ī	
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WETHOD: PFOS/PFOAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		·
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)	·	
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 6:2FTS		
S. 8:2 FTS		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		

Blank extraction date:

VALIDATION FINDINGS WORKSHEET Blanks

Page: <u>/</u> of <u>/</u>
Reviewer:
2nd Reviewer

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see o	ualifications	below for all	questions answered	"N". Not a	oplicable o	uestions are	identified as "N/A".

MN N/A Were all samples associated with a given method blank?

WN N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

M N/A Was a method blank performed with each extraction batch?

Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 6/6/18 Blank analysis date: 6/8/18

Conc. units: 18/4		Asso	ciated sample	s:	All				
Compound	Blank ID		Sample Identification						
NB	320-227661/1	A 1							
P	0.567	179/991	1						
K	0.268	/							
1	1]							ł

Conc. units:	onc. units:									
Compound	Blank ID		Sample Identification							

Associated samples:

Blank analysis date:

LDC#	12956B9	6

VALIDATION FINDINGS WORKSHEET Field Blanks

	Page:_	
	Reviewer:	9
2nd	Reviewer:	0

	lanks identifie compounds d sociated san	d in this SDG letected in the nple units:	e field blanks?		_ Asso	ciated Sampl	es: 🛧	, /	Zila Kovi	
Compound	Blank ID	BAID			S	ample Identifica	ation			
	FECO 4	ZB004		1		-				
P	0.67	0.62		179/99	'U					
A	1.19									
R	8.26									
Blank units: Asso Sampling date: Field blank type: (circle one	_			Associat	ed Samples:					
Compound	Blank ID				Sa	ample Identifica	ition	·		
· ***										
			-							
								,		

LDC #: 42956B96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_ Reviewer:	1 of 1
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 A_x = Area of compound,

C_x = Concentration of compound, S = Standard deviation of the RRFs

X = Mean of the RRFs

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	6/5/18	PFOA	(1st internal standard)	1.1508	1.1508	1.2025	1.2025	9.9	9.9
	(A8_N)		PFOS	(2nd internal standard)	1.1740	1.1740	1.1873	1.1873	4.4	4.4
				(3rd internal standard)						
2				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
3				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)	•					
				(3rd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated

VALIDATION FINDINGS WURKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ tor
Reviewer:
2nd Reviewer

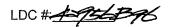
METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added


RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 320-2766

Compound	Spike Added		Added Concentr		Spike LCS Concentration (WS/4) Percent Recovery			L GSD Percent Recovery		L CS/L CSD RPD	
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated	
\$TOA	400	40.0	34.93	36.20	87	87	90	90	4	4	
405	31.1	37.	33.53	34.14	90	90	92	92	>	2	
						6.1					
				-							

Comments: Refer to Laboratory Control Sample/Laboratory (Control Sample Duplicates findings worksheet for list	of qualifications and associat	ed samples when reported
results do not agree within 10.0% of the recalculated results.			

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:	9_
2nd reviewer:	~
•	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

<u>Y N N/A</u>	Were all reported results recalculated and verified for all level IV samples?
Y N N/A	Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conc	entratio	on = $(A_{\cdot})(I_{\cdot})(V_{\cdot})(DF)(2.0)$ $(A_{is})(RRF)(V_{\circ})(V_{i})(\%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, PTOS
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (438460)(2.37)(10)(1)() (3715642)(1.1873(0.7516)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
V _i	=	Volume of extract injected in microliters (ul)	= 10.5 n8/L
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df ·	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices only.	
2.0	.	Factor of 2 to account for GPC cleanup	

		it tot GPG cleanup	Reported Concentration	Calculated Concentration	
#	Sample ID	Compound	W15/L)	()	Qualification
		pto s	10.5		
		the state of the s		<u> </u>	<u> </u>
	<u> </u>		<u> </u>		
ļ			<u> </u>		
 					
<u> </u>					
 					
ļ					
	And the second s				
 					THE RESERVE THE PROPERTY OF TH
<u> </u>					

Site:

Suffolk County Biota Sampling Evaluation

Laboratory:

TestAmerica, Inc., Edison, NY

Report No.:

320-39933-1

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

September 7, 2018

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
FW-SP003-B MW-SP002-B	320-39933-3 320-39933-4	Fluorinated Alkyl Substances Fluorinated Alkyl Substances
FW-FR004-B	320-39933-13	Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks:

EB005, FB005

Field Duplicate pair:

None Associated

The above-listed water samples were collected on May 31, 2018 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Labeled Compounds
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

Initial calibration:

Compounds that did not meet criteria are summarized in the following table.

Date	Instrument ID	Compound	IC %D (Limits)	Associated Samples	Validation Action
06/22/18	ICL1	Perfluorooctanoic acid	53.0 (≤50)	FW-SP003-B MW-SP002-B FW-FR004-B	J detects

X = Initial calibration (IC) relative standard deviation (%RSD) > 35; estimate (J/UJ) positive and nondetect results.

The perfluorooctanoic acid results were estimated due to percent difference exceedance. The bias cannot be determined. The results can be used for project objectives as estimated values (J) which may have a minor impact on the data usability.

Continuing calibration:

All criteria were met.

XX = Continuing calibration (CC) percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.

SS = Second source verification percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.

⁺⁼ Response factor (RRF) < validation criteria; estimate (J/UJ) positive and nondetect results.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-227761/1-A	Perfluorohexanesulfonic acid	0.264 ng/L	RL	FW-SP003-B
	6:2FTS	8.335 ng/L	RL	MW-SP002-B FW-FR004-B

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
FW-SP003-B	6:2FTS	4.85 ng/L	20.7U ng/L
MW-SP002-B	Perfluorohexanesulfonic acid 6:2FTS	0.49 ng/L 4.07 ng/L	1.99U ng/L 19.9U ng/L
FW-FR004-B	Perfluorohexanesulfonic acid 6:2FTS -	1.46 ng/L 2.53 ng/L	2.03U ng/L 20.3U ng/L

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Contamination was detected in the equipment blank sample EB005 and field blank sample FB005 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
EB005	Perfluorohexanesulfonic acid	0.31 ng/L	RL	FW-SP003-B
				MW-SP002-B
				FW-FR004-B
FB005	Perfluorohexanesulfonic acid	0.26 ng/L	RL	FW-SP003-B
				MW-SP002-B
				FW-FR004-B

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and < the Action Level, qualify the result as not detected (U) at the reported concentration.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
MW-SP002-B	Perfluorohexanesulfonic acid	0.49 ng/L	1.99U ng/L
FW-FR004-B	Perfluorohexanesulfonic acid	1.46 ng/L	2.03U ng/L

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

LCS Results

All criteria were met.

Labeled Compounds

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento	Job No.: 320-39933-1
SDG No.:	
Client Sample ID: FW-SP003-B	Lab Sample ID: 320-39933-3
Matrix: Water	Lab File ID: 2018.06.24LLA_033.d
Analysis Method: 537 (modified)	Date Collected: 05/31/2018 10:00
Extraction Method: 3535	Date Extracted: 06/07/2018 10:52
Sample wt/vol: 241.2(mL)	Date Analyzed: 06/25/2018 02:28
Con. Extract Vol.: 10.0(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture: GPC Cleanup:(Y/N) N	
Analysis Batch No.: 230707	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.97	J -5	2.07	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	2.23		2.07	0.51
307-24-4	Perfluorohexanoic acid (PFHxA)	2.45		2.07	0.60
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.51	J 5	2.07	0.26
335-67-1	Perfluorooctanoic acid (PFOA)	4.24	5	2.07	0.88
375-95-1	Perfluorononanoic acid (PFNA)	0.99	J 5	2.07	0.28
335-76-2	Perfluorodecanoic acid (PFDA)	0.66	J 5	2.07	0.32
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.14	UU	2.07	1.14
307-55-1	Perfluorododecanoic acid (PFDoA)	0.57	U	2.07	0.57
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.35	U	2.07	1.35
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.30	U	2.07	0.30
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.04	J	2.07	0.21
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.70	В	2.07	0.18
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.22	J 2	2.07	0.20
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	11.7		2.07	0.56
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.33	UV	2.07	0.33
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.36	U	2.07	0.36
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.21	U	20.7	3.21
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.97	U V	20.7	1.97
27619-97-2	6:2 FTS	4.85	J В 20.	7U 20.7	2.07
39108-34-4	8:2 FTS	2.07	UU	20.7	2.07

SEP 1 1 2018

Initials: 巴军

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento Job No.: 320-39933-1 SDG No.: Lab Sample ID: 320-39933-4 Client Sample ID: MW-SP002-B Matrix: Water Lab File ID: 2018.06.24LLA 034.d Date Collected: 05/31/2018 10:50 Analysis Method: 537 (modified) Extraction Method: 3535 Date Extracted: 06/07/2018 10:52 Sample wt/vol: 251.5(mL) Date Analyzed: 06/25/2018 02:36 ___ Dilution Factor: 1 Con. Extract Vol.: 10.0(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 230707 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.77	J	1.99	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.49	U	1.99	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	0.58	UU	1.99	0.58
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.0	J	1.99	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	0.84	J 5	1.99	0.84
375-95-1	Perfluorononanoic acid (PFNA)	0.35	JJ	1.99	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	0.31	UU	1.99	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.09	U	1.99	1.09
307-55-1	Perfluorododecanoic acid (PFDoA)	0.55	U	1.99	0.55
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.29	U .	1.99	1.29
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.29	U	1.99	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.25	J 5	1.99	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.49	J B I.9	9U 1.99	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.19	UU	1.99	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.78	JJ	1.99	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.32	UU	1.99	0.32
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.35	U	1.99	0.35
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.08	Ü	19.9	3.08
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.89	U V	19.9	1.89
27619-97-2	6:2 FTS	4.07	J B 19.	90 19.9	1.99
39108-34-4	8:2 FTS	1.99	UU	19.9	1.99

SEP 1 1 2018

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento	Job No.: 320-39933-1				
SDG No.:					
Client Sample ID: FW-FR004-B	Lab Sample ID: 320-39933-13				
Matrix: Water	Lab File ID: 2018.06.24LLA_046.d				
Analysis Method: 537 (modified)	Date Collected: 05/31/2018 14:20				
Extraction Method: 3535	Date Extracted: 06/07/2018 10:52				
Sample wt/vol: 246.2(mL)	Date Analyzed: 06/25/2018 04:14				
Con. Extract Vol.: 10.0(mL)	Dilution Factor: 1				
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)				
% Moisture:	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 230707	Units: ng/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.42	JT	2.03	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	1.50	J	2.03	0.50
307-24-4	Perfluorohexanoic acid (PFHxA)	1.77	J	2.03	0.59
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.92	J	2.03	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	2.49	5	2.03	0.86
375-95-1	Perfluorononanoic acid (PFNA)	1.57	J J	2.03	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	0.31	UU	2.03	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.12	Ū	2.03	1.12
307-55-1	Perfluorododecanoic acid (PFDoA)	0.56	U	2.03	0.56
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.32	Ū	2.03	1.32
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.29	U	2.03	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.72	JJ	2.03	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	1.46	J B 2,0	2.03	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.19	U	2.03	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	1.84	J	2.03	0.55
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.32	U	2.03	0.32
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.36	Ū	2.03	0.36
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	3.15	Ü	20.3	3.15
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.93	U V	20.3	1.93
27619-97-2	6:2 FTS	2.53	J B 70	3U 20.3	2.03
39108-34-4	8:2 FTS	2.03	UU	20.3	2.03

SEP 11 2010

Initials: ピズ

LDC #: 42956C96

VALIDATION COMPLETENESS WORKSHEET

Category B

SDG #: 320-39933-1 Laboratory: Test America, Inc.

Reviewer: 2nd Reviewer

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

F			
	Validation Area		Comments
1.	Sample receipt/Technical holding times	1	
II.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	A VIII	+50×35%. The /10/ = 30/0
IV.	Continuing calibration	A	COV & 3070
V.	Laboratory Blanks	w	
VI.	Field blanks	W	EBOOS, FBOOS
∀II.	Surrogate spikes		
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	\triangle	105
X.	Field duplicates	N	
XI.	Labeled Compounds	A	
XII.	Compound quantitation RL/LOQ/LODs	3M	usults -RL- Vote/A
XIII.	Target compound identification	A	/
XIV.	System performance	A	
XV.	Overall assessment of data	1	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

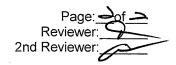
EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	·				Lab ID	Matrix	Date
1	FW-SP003-B		W-2-4			320-39933-3	Water	05/31/18
2	MW-SP002-B		·····			320-39933-4	Water	05/31/18
3	FW-FR004-B					320-39933-13	Water	05/31/18
4								
5								
6								
7								
8				•				
lotes	S:							
					1			

LDC #: 4-956096


VALIDATION FINDINGS CHECKLIST

Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		4		
All technical holding times were met.				
Cooler temperature criteria was met.		- The Control of the	Section 198	
II. LC/MS Instrument performance check	erada es			
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa. Initial calibration	Aik.		i i	
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were the S/N ratio for all compounds within validation criteria?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				
IIIb Initial Calibration Verification	i Palaini I	(alle s	1	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%				
IV. Continuing calibration	ı		ı	
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) < 30%				
Were the S/N ratio for all compounds within validation criteria?				
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks	Ι _	l	i i	T
Was a method blank associated with every sample in this SDG?			ļ	
Was a method blank analyzed for each matrix and concentration?			<u> </u>	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/			
VI. Field blanks				T
Field blanks were identified in this SDG.			ļ	
Target compounds were detected in the field blanks.				
VII. Surrogate spikes	T	ı	Topics Topics	
Were all surrogate %R within the QC limits?	<u> </u>	/	1	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates				

VALIDATION FINDINGS CHECKLIST

Validation Anna	V	N-	NA	Findings/Comments
Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				, and the second
IV. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates		al.		The State of the S
Field duplicate pairs were identified in this SDG.			-	
Target compounds were detected in the field duplicates.				
XI. Internal standards	90			
Were internal standard area counts within acceptance limits?				
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Compound quantitation/CRQLs		15 (1.7		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data			Ti.	
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

METHOD: PFOS/PFOAs			
A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)		·	
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)	·		
Q. Perfluoropentanoic acis (PFPeA)			
R. 6:2FTS			
S. 8:2 FTS			
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			
		,	
			4

LDC #1295696

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: __of __ Reviewer: ____ 2nd Reviewe

METHOD: LCMS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Did the laboratory perform a 5 point calibration prior to sample analysis?

Did the initial calibration meet the curve fit acceptance criteria of > 0.990?

Were all percent relative standard deviations (%RSD) \leq 20%?

N/A Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?

	IN N/A vere all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?							
#	Date	Standard ID	Compound	Finding %RSD/r²	True Value Finding %D	Associated Samples	Qualifications	
	42/18	(lowest std)	<u> </u>		53.0 (50)	3)	1/11 & Od	
	, ,	(lowest std)			•	/	/ / '	
<u> </u>								
						_		
-								
-								
					·			
	L <u>.</u> [

LDC #42956c96

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	<u></u>
Reviewer:	9
2nd Reviewer:	0

METHOD: LC/MS PFOS/P										
Please see qualifications be	elow for all questio	ons answered			ons are identif	fied as "N/A".				
<u>Ŷ N N/A</u> Were all samples associated with a given method blank?										
N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?										
YN N/A Were any	V N N/A Were any contaminants found in the method blanks? If yes, please see findings below.									
Blank extraction date:	<u> </u>	nalysis date:	6/25/18	3	-	1		ęr		
Conc. units: <u>n8/L</u> Associated samples: <u>\$1</u> U										
	T				_					
Compound	Blank ID	17			San	nple Identificati	on			
MB3	320-227761/	V-A		2	3					
K	0.364			0.49/1.99	146/203					
R	8.335		4.85/20.7	4.01/199	253/20=					
•										
Blank extraction date:	Blank anal	lysis date:		Δς,	sociated sam	nnles.				
Conc. units:		y 515 date				ipies				
Compound	Blank ID				San	nple Identification	on			
	-									

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	
Reviewer:_	9
nd Reviewer:	

								2nd Revie	ewer:
METHOD: LC/MS PFOS/ MYN N/A Were field	/PFOAs (EPA Me ld blanks identifie		29						-
N N/A Were tard	aet compounds d	detected in the	e field blanks?						
Blank units: 1/5/4 Sampling date: 5/3//	Associated san	nple units:_/	115/L						
Field blank type: (circle of	one) Trip Blank/F	ield Blank / F	Rinsate / Other:	Asso	ciated Sampl	es: <u> </u>			
Compound	Blank ID	BAID		Si	ample Identifica	ation /			
	EB005	FB005	2	3					
K	0.31	0.26	0.49/1.99/	146503U					
Plank unitar A	istad camp	le unite:							
Blank units: As Sampling date:									
Field blank type: (circle o	one) Field Blank /	/ Rinsate / Oth	her: Associa	ated Samples:_					
Compound	Blank ID		Sample Identification						
					ļ				

LDC #: 42956C96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	[of]
Reviewer:	9
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 A_x = Area of compound,

 $C_x = Concentration of compound,$

S = Standard deviation of the RRFs

X = Mean of the RRFs

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	6/22/18	PFOA (1st internal standard)	1.1686	1.1686	1.2202	1.2202	12.5	12.5
	(A8_N)		PFOS (2nd internal standard)	1.1307	1.1307	1.1375	1.1375	3.9	3.9
			(3rd internal standard)						
2			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
3			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
4			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						

Comments:	Refer to Initial Calibratio	<u>n findings worksheet for l</u>	<u>ist of qualifications and </u>	<u>associated samples when </u>	<u>reported results do not ag</u>	<u>ree within 10.0% of t</u>	<u>he recalculated</u>
results.							
				. , , , , , , , , , , , , , , , , , , ,			

LDC #: 42956C96

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	Lot 1
Reviewer:	4
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_{x} = Area of compound, C_{x} = Concentration of compound, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compou	nd (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.06.24.028	6/25/18	PFOA	(1st internal standard)	1.2202	1.199	1.199	1.7	1.7
			PFOS	(2nd internal standard)	1.1375	1.175	1.175	3.3	3.3
2	2018.06.24.039	6/25/18	PFOA	(1st internal standard)	1.2202	1.060	1.060	13.1	13.1
			PFOS	(2nd internal standard)	1.1375	1.119	1.119	1.7	1.7
3									
					· ·				
4									

Comment	9. <u>176161 1</u>	o Continuing	J Calibration	HILLINGS WOLK	SHEEL IOL IIS	<u>t oi quaiilicatic</u>	nis and associa	ateu sampies i	when reported	results do not	agree willin	10.0 % OF LITE
recalculate	ed results											

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: <u></u> (oτ_ /
Reviewer:
2nd Reviewer:

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 320-22776/

Compound	Sp Ad (<i>U.</i> 2	nike ded 5/C-)	Spike Concentration		LCS Percent Recovery		L CSD. Percent Recovery		I CS/I CSD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
#FOX	40.0	NA	3581	NA	89	89				
PFOS	37.1	V	35.81 34.45	V	93	93				
		·								

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample	Control Sample	<u> Duplicates</u>	findings works	sheet for list of qualifica	tions and associated	samples when reported
results do not agree within 10.0% of the recalculated results.		·				

only.

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

of
9

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Factor of 2 to account for GPC cleanup

M	N	N/A
\mathbb{Y}	N	N/A

2.0

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

			1
Conce	entratio	$n = (A_{*})(I_{*})(V_{*})(DF)(2.0)$	Example:
		$(A_{is})(RRF)(V_o)(V_i)(\%S)$	MAN CONTRACTOR
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
Is	=	Amount of internal standard added in nanograms (ng)	Conc. = (2/1961)(2.5)(10.)(1)(1)
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	1400/X1.202011-
V,	=	Volume of extract injected in microliters (ul)	= 4.34 N8/L
V_{t}	=	Volume of the concentrated extract in microliters (ul)	118/2
Df	=	Dilution Factor.	, · · · · ·
%S	=	Percent solids, applicable to soil and solid matrices	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	/	FRA	4.24		
		,			
			- Control of the section of	<u> </u>	
ļ					
-			7		
				the state of the s	
				· · · · · · · · · · · · · · · · · · ·	
					·
ļ					
				And the second s	

Site:

Suffolk County Biota Sampling Evaluation

Laboratory:

Eurofins, Inc., Edison, NY

Report No.:

320-40237-1

Reviewer:

Stella Cuenco, Pei Geng and Christina Rink/Laboratory Data Consultants

for P.W. Grosser Consulting

Date:

October 18, 2019

Samples Reviewed and Evaluation Summary

LAB ID	FRACTIONS VALIDATED
320-40237-1	Fluorinated Alkyl Substances
320-40237-6	Fluorinated Alkyl Substances
320-40237-11	Fluorinated Alkyl Substances
320-40237-6MS	Fluorinated Alkyl Substances
320-40237-6MSD	Fluorinated Alkyl Substances
	320-40237-1 320-40237-6 320-40237-11 320-40237-6MS

Associated QC Samples(s):

Field/Trip Blanks:

None Associated

Field Duplicate pair:

None Associated

The above-listed water samples were collected on May 18 through May 31, 2018 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS)/Standard Reference Materials (SRM) Results
- Labeled Compounds
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-230549/1-A	Perfluorobutanoic acid	0.000265 mg/Kg	RL	CL-SP001-A
	Perfluorononanoic acid	0.0000616 mg/Kg	RL	CL-FR001-A
	Perfluorodecanoic acid	0.000114 mg/Kg	RL	CL-GA002-A
	Perfluorotetradecanoic acid	0.000135 mg/Kg	RL	
	Perfluorohexanesulfonic acid	0.000164 mg/Kg	RL	
	Perfluorooctanesulfonic acid	0.000251 mg/Kg	RL	
	6:2FTS	0.000513 mg/Kg	RL	

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and \le the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table	e below.
--	----------

Sample ID	Compound	Level Detected	Validation Action
CL-SP001-A	Perfluorodecanoic acid	0.00020 mg/Kg	0.00093U mg/Kg
	Perfluorohexanesulfonic acid	0.000091 mg/Kg	0.00093U mg/Kg
	Perfluorooctanesulfonic acid	0.00014 mg/Kg	0.00093U mg/Kg
CL-FR001-A	Perfluorobutanoic acid	0.00016 mg/Kg	0.00093U mg/Kg
	Perfluorohexanesulfonic acid	0.00011 mg/Kg	0.00093U mg/Kg
CL-GA002-A	Perfluorobutanoic acid	0.00012 mg/Kg	0.00095U mg/Kg
	Perfluorononanoic acid	0.000044 mg/Kg	0.00095U mg/Kg
	Perfluorohexanesulfonic acid	0.00016 mg/Kg	0.00095U mg/Kg
	Perfluorooctanesulfonic acid	0.00052 mg/Kg	0.00095U mg/Kg

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

A field blank was not associated with this sample set. Validation action was not required on this basis.

MS/MSD Results

MS/MSD analyses were performed on sample CL-FR001-A for fluorinated alkyl substances analysis. All criteria were met.

LCS/SRM Results

The following table lists the compounds recovered outside of control limits in the fluorinated alkyl substances analysis and the resulting validation actions.

SRM ID	Compound	SRM %R (Limits)	Affected Sample	Validation Action
LCSSRM 320-2305219	Perfluorooctanesulfonic acid	84.5 (93.4-106.6)	CL-SP001-A CL-FR001-A	UJ nondetects
			CL-GA002-A	

The perfluorooctanesulfonic acid results may be biased low due to low SRM percent recovery. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Labeled Compounds

The following table lists the labeled compounds recovered outside of control limits and the resulting actions.

Sample	Labeled Compound	%R (Limits)	Affected Compounds	Validation actions
CL-FR001-A	M2-6:2FTS	282 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	322 (25-150)	8:2FTS	UJ nondetects

The 6:2FTS and 8:2FTS results were estimated due to labeled compounds percent recovery exceedances. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Due to high target compound levels or difficult sample matrix, select samples were analyzed at dilutions. The following table lists the sample dilutions which were performed and the results reported. RLs were elevated accordingly.

Sample	Fluorinated Alkyl Substances Analysis Reported			
CL-SP001-A CL-GA002-A	10-fold dilution for select analytes due to high target compound levels			

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

SDG No.:

Client Sample ID: CL-SP001-A

Lab Sample ID: 320-40237-1

Matrix: Tissue

Lab File ID: 2018.07.01LLB_053.d

Analysis Method: 537 (modified)

Date Collected: 05/31/2018 12:00

Extraction Method: SHAKE Date Extracted: 06/22/2018 19:24

Sample wt/vol: 1.07(g) Date Analyzed: 07/01/2018 22:13

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40237-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 232017 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.000093	U U	0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	U	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	Ū	0.00093	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	U	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	J 3	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.000040	UU	0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.000068	UU	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00020	JB(),00	0931) 0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.000055	UU	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000048	U	0.00093	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000062	U	0.00093	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	U V	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.000091	J В О.0 (0073 6.00093	0.000062
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	υV	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.00014	JВ *6.	0.00093	0.000072
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000055	UU	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000066	U	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061	Ū	0.0093	0.0061
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	U V	0.0093	0.0018

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40237-1 SDG No.: Client Sample ID: CL-SP001-A DL Lab Sample ID: 320-40237-1 DL Matrix: Tissue Lab File ID: 2018.07.05LLA 042.d Analysis Method: 537 (modified) Date Collected: 05/31/2018 12:00 Extraction Method: SHAKE Date Extracted: 06/22/2018 19:24 Sample wt/vol: 1.07(g) Date Analyzed: 07/06/2018 09:46 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 232681 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0036	UV	0.093	0.0036
39108-34-4	8:2 FTS	0.0064	UU	0.093	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	172	*	25-150
STL02280	M2-8:2 FTS	196	*	25-150

OCT 1 8 2019

Marie fil Standardonner or morne and the

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40237-1

SDG No.:

Client Sample ID: CL-FR001-A Lab Sample ID: 320-40237-6

Matrix: Tissue

Lab File ID: 2018.07.01LLB 060.d Analysis Method: 537 (modified) Date Collected: 05/18/2018 12:00

Extraction Method: SHAKE Date Extracted: 06/22/2018 19:24

Date Analyzed: 07/01/2018 23:08 Sample wt/vol: 1.07(g)

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 232017 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT .	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00016	J В (, ())	73U 0.00093	0.000093
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	UU	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	U	0.00093	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	Ū	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.00010	U	0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.000040	U	0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.000068	Ü	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.000069	U	0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.000055	U	0.00093	0.000055
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000048	Ŭ	0.00093	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.000062	U	0.00093	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	U 🗸	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00011	J ВО ОО	930 0.00093	0.000062
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	υV	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.000072	ע * ס	0.00093	0.000072
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000055	UU	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000066	U	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061	U	0.0093	0.0061
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018	U V	0.0093	0.0018
27619-97-2	6:2 FTS	0.00036	υ ω Σ	0.0093	0.00036
39108-34-4	8:2 FTS	0.00064	U U	0.0093	0.00064

OCT 18 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40237-1 SDG No.: Client Sample ID: CL-GA002-A Lab Sample ID: 320-40237-11 Matrix: Tissue Lab File ID: 2018.07.01LLB 067.d Analysis Method: 537 (modified) Date Collected: 06/07/2018 12:00 Date Extracted: 06/22/2018 19:24 Extraction Method: SHAKE Sample wt/vol: 1.05(g) Date Analyzed: 07/02/2018 00:03 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) GPC Cleanup: (Y/N) N % Moisture: Units: mg/Kg Analysis Batch No.: 232017

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00012	J B 0.00	295U 0.00095	0.000095
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000066	UU	0.00095	0.000066
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	U	0.00095	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	U	0.00095	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.00011	J 3	0.00095	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.000044	J B ().00 (0.00095	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.000070	UU	0.00095	0.000070
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.000070	U	0.00095	0.000070
307-55-1	Perfluorododecanoic acid (PFDoA)	0.000056	Ū	0.00095	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000049	U	0.00095	0.000049
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000095	U	0.00095	0.000095
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00016	J В0.00	095U 0.00095	0.000063
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000069	U	0.00095	0.000069
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.00052	JВ *().	00095	0.000073
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000056	UU	0.00095	0.000056
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000068	U	0.00095	0.000068
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0062	U .	0.0095	0.0062
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	U V	0.0095	0.0019

OCT 1 8 2019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

 SDG No.:

 Client Sample ID: CL-GA002-A DL
 Lab Sample ID: 320-40237-11 DL

 Matrix: Tissue
 Lab File ID: 2018.07.05LLA_055.d

 Analysis Method: 537 (modified)
 Date Collected: 06/07/2018 12:00

 Extraction Method: SHAKE
 Date Extracted: 06/22/2018 19:24

 Sample wt/vol: 1.05(g)
 Date Analyzed: 07/06/2018 11:28

Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40237-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: _____ GPC Cleanup:(Y/N) N

Analysis Batch No.: 232681 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL	
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00063	υŲ	0.0095	0.00063	
27619-97-2	6:2 FTS	0.0037	Ū	0.095	0.0037	
39108-34-4	8:2 FTS	0.0065	U	0.095	0.0065	

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02116	13C2 PFTeDA	27		25-150
STL02279	M2-6:2 FTS	131		25-150
STL02280	M2-8:2 FTS	155	*	25-150

OCT 18 2019

LDC #: 42956D96 VALIDATION COMPLETENESS WORKSHEET SDG #: 320-40237-1 Category B Laboratory: Test America, Inc.

Date: 9/6/8
Page: 1 of /
Reviewer: 2nd Reviewer:

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

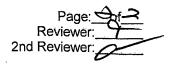
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

		 	Comment	<u> </u>
Sample receipt/Technical holding times	A			
GC/MS Instrument performance check	4			
Initial calibration/ICV	AIA	\$5000 3°	70. me/	1CV=30/0
Continuing calibration	A	= V <	30/0	
Laboratory Blanks	SWSA		, 	
Field blanks	N			
Surregate spikes	N			
Matrix spike/Matrix spike duplicates	A			
Laboratory control samples	XV	LCS.	SRM	
Field duplicates	N			·
Labeled Compounds	w/			
Compound quantitation RL/LOQ/LODs	A			
Target compound identification	A			
System performance	A			
Overall assessment of data	A			
	Initial calibration/ICV Continuing calibration Laboratory Blanks Field blanks Surrogate spikes Matrix spike/Matrix spike duplicates Laboratory control samples Field duplicates Labeled Compounds Compound quantitation RL/LOQ/LODs Target compound identification System performance	Initial calibration/ICV Continuing calibration Laboratory Blanks Field blanks Matrix spike/Matrix spike duplicates Laboratory control samples Field duplicates Labeled Compounds Compound quantitation RL/LOQ/LODs Target compound identification System performance	Initial calibration/ICV Continuing calibration Laboratory Blanks Field blanks Surregate spikes Matrix spike/Matrix spike duplicates Laboratory control samples Field duplicates Labeled Compounds Compound quantitation RL/LOQ/LODs Target compound identification System performance	Initial calibration/ICV Continuing calibration Laboratory Blanks Field blanks Surrogate spikes Matrix spike/Matrix spike duplicates Laboratory control samples Field duplicates Labeled Compounds Compound quantitation RL/LOQ/LODs Target compound identification System performance

	SW = See worksheet	FB = Field blank		EB = Equipment blar	nk	
	Client ID			Lab ID	Matrix	Date
1	CL-SP001-A (1/10 x)			320-40237-1	Tissue	05/31/18
2	CL-FR001-A			320-40237-6	Tissue	08/18/18
3	CL-GA002-A (1/10x)			320-40237-11	Tissue	06/07/18
4	CL-FR001-AMS			320-40237-6MS	Tissue	08/18/18
5	CL-FR001-AMSD			320-40237-6MSD	Tissue	08/18/18
6						
7						
8		· · · · · · · · · · · · · · · · · · ·				
Votes	:					
\vdash			T			

LDC #: 43956 DAG

VALIDATION FINDINGS CHECKLIST


Page: of 2
Reviewer: 2nd Reviewer:

Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
Is Technical holding times			a de la companya de	
All technical holding times were met.				
Cooler temperature criteria was met.				
III LC/MS Instrument performance check.				
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?		188	apar en cas	
IIIa Initial calibration				Company of the Compan
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) < 20%?	4			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were the S/N ratio for all compounds within validation criteria?	/			
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				
IIIb Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				`
Were all percent differences (%D) <u>≤</u> 30%				
IV. Continuing calibration				Section 1
Was a continuing calibration analyzed daily?			ļ	
Were all percent differences (%D) ≤ 30%	/			
Were the S/N ratio for all compounds within validation criteria?				
Were all the retention times within the acceptance windows?				
V/Laboratory:Blanks/s	Ī		T	
Was a method blank associated with every sample in this SDG?			-	
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		7	2	
VI: Field blanks	T.	I	T	
Field blanks were identified in this SDG.			<u> </u>	
Target compounds were detected in the field blanks.				†
VIII. Surrogate spikes				
Were all surrogate %R within the QC limits?	<u> </u>			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?		200 Facility		St. Mr. Charles and Commission of Commission
VIII: Matrix spike/Matrix spike duplicates				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IV. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			SPW
Was an LCS analyzed per extraction batch?				,
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X!Field duplicates				A 14.36 A 14.3
Field duplicate pairs were identified in this SDG.			-	
Target compounds were detected in the field duplicates.				
XII. linternal standards	E.			
Were internal standard area counts within acceptance limits?				
XIII Trarget compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Compound quantitation/CRQLs				444
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data.				10 miles
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)	·	
D. Perfluorononanoic acid (PFNA)	·	
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 6:2FTS		
S. 8:2 FTS		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		
	,	
		•

VALIDATION FINDINGS WORKSHEET Blanks

Page:i	of
Reviewer:	T'
2nd Reviewer:	

METHOD: LC/MS PFCs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\sqrt{\text{N N/A}}$ Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y/N N/A Was a method blank performed with each extraction batch?

Y N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 06/22/18 Blank analysis date: 07/01/18

Conc. units: mg/Kg Associated samples: All

- Ingrig				siatoa oampiooi_	7 (1)		
Compound	Blank ID	Blank ID Sample Identification					
	MB 320-230549/1-A	1	2	3			
Р	0.000265		0.00016/0.00093U	0.00012/0.00095U			
D	0.0000616			0.000044/0.00095U			·
F	0.000114	0.00020/0.00093U					
1	0.000135						
К	0.000164	0.000091/0.00093U	0.00011/0.00093U	0.00016/0.00095U			
м	0.000251	0.00014/0.00093U		0.00052/0.00095U			
R	0.000513						
	<ri< td=""><td></td><td></td><td></td><td></td><td></td><td></td></ri<>						

Blank extraction date: Conc. units:	Blar 	nk analysis date:	ciated samples:		 	
Compound	Blank ID		 S	ample Identification		
	∠RI					

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	of
Reviewer:	Q-
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A

Was a LCS required?

YN N/A Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS SRM/ %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	LOSSRM	M	845 93,4066) ()	()	A1/ (NO)	VINA
	2055RM 320-230019		()	()	()		
			()	()	()		
			()	()	()		·
			. ()	()	()		
			()	()	()	•	
·	· · ·		()	()	()		
			()	()			
			()		()		
				()	(
				()			
				()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
							
			()	()	()		
			()	()	()	<u> </u>	

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_		_
Reviewer:	7	
2nd Reviewer:		

METHOD: LC/MS PFAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A

Were all internal standard area counts within 50-150% limits?

ľ	ΥJ	A\N K	Were the retention times of the internal standards within +/- 30 s	econds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		1	N2-6:2FTS	172 (25-150)		No Cenal (NOX)
			M2-8-2 F75	196		
		2 (ND)	N2-6-2FTS	<i>බ</i> හිට		1/11/B(R)
			M2-8=2FTS	322		(5)
				4		
		3	M2-8=2 FTS	155 V		No Cenal 100x)
\parallel		48720-2799	2/1-1 1/0 (22)	5 199 (25-15		1611
		10720-27-71	1/2 8:25	5 777 (23-13 15 314 V		
			1304-PFBA	10		
			17011111111			- V
	_	4 (MS)	13C2-PFTebA	24 (35-15)		No Oual
			MOBOFTS	24 (25-19) 285		7
			M2-8-2FTS	285		
		5 (MSD)	M2-6=2FTS	256		
			M2-8WFTS	285		- V
		1377 0A OU	et in 2-	3. No assid TCL		
<u></u>		<u> </u>	<u> </u>			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	/ of /	
	Reviewer:	4	
2nd	Reviewer:		

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	6/29/18	PFBA	(1st internal standard)	1.0109	1.0109	1.0174	1.0174	4.9	4.9
	(A8_N)		PFOS	(2nd internal standard)	1.1612	1.1612	1.1628	1.1628	3.0	3.0
				(3rd internal standard)						
2	ICAL	7/5/18	PFBA	(1st internal standard)	1.0130	1.0130	1.0214	1.0214	6.4	6.4
	(A8_N)		PFOS	(2nd internal standard)	1.1768	1.1768	1.1681	1.1681	4.6	4.6
				(3rd internal standard)						
3				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do no	agree within 10.0% of the recalculated
results.	

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:_	/of /
Reviewer:	7
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

A_x = Area of compound,

A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compou	nd (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.07.01.049	7/1/18	PFBA	(1st internal standard)	1.0174	0.9710	0.9710	4.6	4.6
			PFOS	(2nd internal standard)	1.1628	1.128	1.128	3.0	3.0
2	2018.07.01.059	7/1/18	PFBA	(1st internal standard)	1.0174	0.997	0.997	2.0	2.0
			PFOS	(2nd internal standard)	1.1628	1.157	1.157	0.5	0.5
3	2018.07.05.038	7/6/18	PFBA	(1st internal standard)	1.0214	1.000	1.000	2.1	2.1
			PFOS	(2nd internal standard)	1.1681	1.185	1.185	1.5	1.5
4	2018.07.05.049	7/6/18	PFBA	(1st internal standard)	1.0214	0.9853	0.9853	3.5	3.5
			PFOS	(2nd internal standard)	1.1681	1.112	1.112	4.8	4.8

Comments:	Refer to Continuing	g Calibration findings	worksheet for list of	of qualifications and	associated samp	les when reported	results do not ag	ree within	<u>10.0% of the</u>
recalculated i	results								

AMPINATION I HADINGS MODUSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Differ	rence (RPD) of the matrix spike an	nd matrix spike duplicate were recalculated for	or the compounds identified below
using the following calculation:			The state of the s

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: 4/5

Compound	Sp Ad (<i>M</i> E	pike deel	Sample Concentration	Spiked Concer VW2		Matrix Percent F		Matrix Spike		MS/N	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PFOA	0.00981	0.0/0/	NB	0.0086	0.00930	58	33	90	Q)	8	8
7F05	0.00910	0.010	V	0.0086	0.0080	9/	91	74	94	8	6
			•								
						·					

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet fo</u>	<u>or list of qualifications and associated samples when rep</u>	orted results do not agree within 10.0%
of the recalculated results.		

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

raye/_01/	
Reviewer:	
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 320-2

Compound	Ad (M.	oike ded/	Sp Concer <i>VM</i>	ike ntration	L C Percent F			SD Recovery		/I CSD PD
The second secon	LCS	/ LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PTOX	0.0100	NA	0.00957	NA	96	96				
7705	0.0100		0.008-23		89	89				
					/		1			
						· · · · · · · · · · · · · · · · · · ·				
						d :				

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicates	s findings worksheet fo	or list of qualifications a	nd associated samp	les when reported
results do not agree within 10.0% of the recalculated results			<u> </u>		

LDC #: 4295659V

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Example:

Page:_		
Reviewer:	_ 'ନ୍	
2nd reviewer:	0	

METHOD: LC/MS PFAS (EPA Method 537M)

4	N	N/A
M	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $\frac{(A_{s})(I_{s})(V_{t})(DF)(2.0)}{(A_{ts})(RRF)(V_{o})(V_{t})(%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
Is	=	Amount of internal standard added in nanograms (ng)
V_{\circ}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
V_{i}	=	Volume of extract injected in microliters (ul)
V_{t}	=	Volume of the concentrated extract in microliters (ul)
Df	=	Dilution Factor.
%S	=	Percent solids, applicable to soil and solid matrices only.
2.0	=	Factor of 2 to account for GPC cleanup

5	Sample I.D. PFOS
0	Conc. = $(24911)(2.39)(10)(3.04261)(1.1628)(1.07)(1000)$
	= 0.000/36 mg/g

#	Sample ID	Compound	Reported Concentration (V)	Calculated Concentration (IN CL)	Qualification
	1	PFOS	0.00014	0.00014	-
			, , , , ,		,
ļ					

Site: Suffolk County Biota Sampling Evaluation

Laboratory: Eurofins, Edison, NY

Report No.: 320-40241-1

Reviewer: Stella Cuenco, Pei Geng, and Christina Rink/Laboratory Data Consultants

for P.W. Grosser Consulting

Date: October 18, 2019

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
AE-CR001-A	320-40241-11	Fluorinated Alkyl Substances
AE-CR001-B	320-40241-12	Fluorinated Alkyl Substances
AE-CR001-C	320-40241-13	Fluorinated Alkyl Substances
AE-CR001-D	320-40241-14	Fluorinated Alkyl Substances
AE-CR002-D	320-40241-23	Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks: None Associated Field Duplicate pair: None Associated

The above-listed tissue samples were collected on May 30 through June 6, 2018 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS)/Standard Reference Materials (SRM) Results
- Labeled Compounds
- Field Duplicate Results
- Moisture Content
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-230329/1-A	Perfluorononanoic acid	0.0000613 mg/Kg	RL	AE-CR001-A
	Perfluorohexanesulfonic acid	0.0000777 mg/Kg	RL	AE-CR001-B
	6:2FTS	0.000528 mg/Kg	RL	AE-CR001-C
				AE-CR001-D

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

6:2FTS was detected in samples AE-CR001-B and AE-CR001-C at less than the RL. Using professional judgment, no data were qualified for these samples due to 20X dilution performed to this compound.

A field blank was not associated with this sample set. Validation action was not required on this basis.

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

LCS/SRM Results

The following table lists the compounds recovered outside of control limits in the fluorinated alkyl substances analysis and the resulting validation actions.

SRM ID	Compound	SRM %R (Limits)	Affected Sample	Validation Action
LCSSRM 320-230337	Perfluorooctanesulfonic acid	93.3 (93.4-106.6)	AE-CR002-D	J detects

The perfluorooctanesulfonic acid result may be biased low due to low SRM percent recovery. The result can be used for project objectives as an estimated value (J) which may have a minor impact on the data usability.

Labeled Compounds

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Moisture Content

All criteria were met.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Due to high target compound levels or difficult sample matrix, select samples were analyzed at dilutions. The following table lists the sample dilutions which were performed and the results reported. RLs were elevated accordingly.

	Fluorinated Alkyl Substances Analysis
Sample	Reported
AE-CR001-A	10-fold dilution for select analytes due to high target compound levels
AE-CR001-D	
AE-CR001-B	20-fold dilution for select analytes due to high target compound levels
AE-CR001-C	
AE-CR002-D	

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

 SDG No.:

 Client Sample ID: AE-CR001-A
 Lab Sample ID: 320-40241-11

 Matrix: Tissue
 Lab File ID: 2018.07.01LLB_023.d

 Analysis Method: 537 (modified)
 Date Collected: 06/06/2018 10:30

Extraction Method: SHAKE Date Extracted: 06/21/2018 16:53

Sample wt/vol: 0.98(g) Date Analyzed: 07/01/2018 18:18

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1

Injection Volume: 2(uL) GC Column: Geminic18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 232013 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00088	J 3	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000070	UV	0.0010	0.000070
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000053	Ū	0.0010	0.000053
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000061	U	0.0010	0.000061
335-67-1	Perfluorooctanoic acid (PFOA)	0.00014	1 2	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.0015	В	0.0010	0.000044
335-76-2	Perfluorodecanoic acid (PFDA)	0.00046	JJ	0.0010	0.000074
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.011		0.0010	0.000076
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00040	J 3	0.0010	0.000060
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00056	J 2	0.0010	0.000052
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	U U	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0013	В	0.0010	0.000067
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00030	J 3	0.0010	0.000073
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.028		0.0010	0.000079
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.0010		0.0010	0.000060
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000072	UU	0.0010	0.000072
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0066	U	0.010	0.0066
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U	0.010	0.0020

OCT 1 8 2019

*Agi

Job No.: 320-40241-1

 SDG No.:

 Client Sample ID: AE-CR001-A DL
 Lab Sample ID: 320-40241-11 DL

 Matrix: Tissue
 Lab File ID: 2018.07.02LLBB_022.d

 Analysis Method: 537 (modified)
 Date Collected: 06/06/2018 10:30

 Extraction Method: SHAKE
 Date Extracted: 06/21/2018 16:53

 Sample wt/vol: 0.98(g)
 Date Analyzed: 07/03/2018 05:01

Con. Extract Vol.: 10.00(mL) Dilution Factor: 10

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 232191 Units: mg/Kg

Lab Name: Eurofins TestAmerica, Sacramento

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00067	U V	0.010	0.00067
27619-97-2	6:2 FTS	0.0040	U	0.10	0.0040
39108-34-4	8:2 FTS	0.0069	U L	0.10	0.0069

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02116	13C2 PFTeDA	32		25-150
STL02279	M2-6:2 FTS	154	*	25-150
STL02280	M2-8:2 FTS	187	*	25-150

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1

SDG No.:

Client Sample ID: AE-CR001-B Lab Sample ID: 320-40241-12

Matrix: Tissue Lab File ID: 2018.07.01LLB_024.d

Analysis Method: 537 (modified) Date Collected: 06/06/2018 10:32

Extraction Method: SHAKE Date Extracted: 06/21/2018 16:53

Sample wt/vol: 0.99(g) Date Analyzed: 07/01/2018 18:26

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 232013 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0019		0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.00015	JT	0.0010	0.000070
307-24-4	Perfluorohexanoic acid (PFHxA)	0.00039	J	0.0010	0.000053
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000080	J	0.0010	0.000061
335-67-1	Perfluorooctanoic acid (PFOA)	0.00036	J 🗸	0.0010	0.00011
375-95 - 1	Perfluorononanoic acid (PFNA)	0.0014	В	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00029	J 2	0.0010	0.000074
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0066		0.0010	0.000075
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00020	J J	0.0010	0.000060
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00035	J	0.0010	0.000052
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00045	J	0.0010	0.000067
375-73 - 5	Perfluorobutanesulfonic acid (PFBS)	0.00010	UU	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0019	В	0.0010	0.000067
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00022	1 2	0.0010	0.000073
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.030		0.0010	0.000078
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.0010		0.0010	0.000060
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000072	U U	0.0010	0.000072
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0066	Ü	0.010	0.0066
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U	0.010	0.0020

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1 SDG No.: Client Sample ID: AE-CR001-B DL Lab Sample ID: 320-40241-12 DL Lab File ID: 2018.07.04LLA_027.d Matrix: Tissue Date Collected: 06/06/2018 10:32 Analysis Method: 537 (modified) Extraction Method: SHAKE Date Extracted: 06/21/2018 16:53 Sample wt/vol: 0.99(g) Date Analyzed: 07/04/2018 06:59 Con. Extract Vol.: 10.00(mL) Dilution Factor: 20 GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 232418 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.012	J D B	0.20	0.0079
39108-34-4	8:2 FTS	0.014	U	0.20	0.014

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	103		25-150
STL02280	M2-8:2 FTS	148		25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1

SDG No.:

Client Sample ID: AE-CR001-C Lab Sample ID: 320-40241-13

Matrix: Tissue

Lab File ID: 2018.07.01LLB_025.d Date Collected: 06/06/2018 10:34 Analysis Method: 537 (modified)

Extraction Method: SHAKE Date Extracted: 06/21/2018 16:53

Sample wt/vol: 1.00(g) Date Analyzed: 07/01/2018 18:34

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 232013 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00089	J 5	0.0010	0.00010
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000069	U U	0.0010	0.000069
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000052	Ū	0.0010	0.000052
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000060	U	0.0010	0.000060
335-67-1	Perfluorooctanoic acid (PFOA)	0.00022	J	0.0010	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.0029	В	0.0010	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00044	J 2	0.0010	0.000073
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0082		0.0010	0.000074
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00027	J 7	0.0010	0.000059
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00032	J	0.0010	0.000051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00037	J	0.0010	0.000066
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00010	U	0.0010	0.00010
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0019	В	0.0010	0.000066
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00023	2 D	0.0010	0.000072
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.039		0.0010	0.000077
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00075	J 2	0.0010	0.000059
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000071	UU	0.0010	0.000071
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0065	U	0.010	0.0065
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0020	U V	0.010	0.0020

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1 SDG No.:

Client Sample ID: AE-CR001-C DL Lab Sample ID: 320-40241-13 DL

Matrix: Tissue

Lab File ID: 2018.07.05LLA 020.d Analysis Method: 537 (modified) Date Collected: 06/06/2018 10:34

Sample wt/vol: 1.00(g)

Extraction Method: SHAKE Date Extracted: 06/21/2018 16:53

Con. Extract Vol.: 10.00(mL) Dilution Factor: 20

GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 232613 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.012	J D B	0.20	0.0078
39108-34-4	8:2 FTS	0.014	U	0.20	0.014

Date Analyzed: 07/05/2018 17:56

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	129		25-150
STL02280	M2-8:2 FTS	175	*	25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1

SDG No.:

Client Sample ID: AE-CR001-D Lab Sample ID: 320-40241-14

Matrix: Tissue

Lab File ID: 2018.07.01LLB 028.d Analysis Method: 537 (modified) Date Collected: 06/06/2018 10:36

Extraction Method: SHAKE Date Extracted: 06/21/2018 16:53

Sample wt/vol: 1.01(g) Date Analyzed: 07/01/2018 18:58

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 232013 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0018		0.00099	0.000099
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	J 5	0.00099	0.000068
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	UU	0.00099	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	U	0.00099	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00026	J	0.00099	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.0022	В	0.00099	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00075	JT	0.00099	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.024		0.00099	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00038	JJ	0.00099	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00038	J	0.00099	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00044	J	0.00099	0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000099	U	0.00099	0.000099
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0014	В	0.00099	0.000065
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00058	J 2	0.00099	0.000071
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.067		0.00099	0.000076
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.0038		0.00099	0.000058
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000070	U U	0.00099	0.000070
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	Ü	0.0099	0.0064
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019	u 🖊	0.0099	0.0019

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1 SDG No.: Client Sample ID: AE-CR001-D DL Lab Sample ID: 320-40241-14 DL Lab File ID: 2018.07.02LLBB 025.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 06/06/2018 10:36 Extraction Method: SHAKE Date Extracted: 06/21/2018 16:53 Sample wt/vol: 1.01(g) Date Analyzed: 07/03/2018 05:25 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 232191 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	6:2 FTS	0.0039	U V	0.099	0.0039
39108-34-4	8:2 FTS	0.0067	υV	0.099	0.0067

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02279	M2-6:2 FTS	155	*	25-150
STL02280	M2-8:2 FTS	191	*	25-150

OCT 1 8 2019

territaria de la companya della companya della companya de la companya della comp

SDG No.:

Client Sample ID: AE-CR002-D Lab Sample ID: 320-40241-23

Matrix: Tissue Lab File ID: 2018.07.01LLB_044.d

Analysis Method: 537 (modified) Date Collected: 05/30/2018 10:06

Extraction Method: SHAKE Date Extracted: 06/21/2018 18:03

Sample wt/vol: 1.01(g) Date Analyzed: 07/01/2018 21:03

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 232015 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00080	J 3	0.00099	0.000099
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	UU	0.00099	0.000068
307-24-4	Perfluorohexanoic acid (PFHxA)	0.0027		0.00099	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	UU	0.00099	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00056	JT	0.00099	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.0020	В	0.00099	0.000043
335-76-2	Perfluorodecanoic acid (PFDA)	0.00084	JT	0.00099	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.017	В	0.00099	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00046	JJ	0.00099	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00040	J	0.00099	0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00032	J	0.00099	0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000099	υÙ	0.00099	0.000099
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0041		0.00099	0.000065
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00043	1 T	0.00099	0.000071
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.037	* 7	0.00099	0.000076
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.0059		0.00099	0.000058
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000070	UU	0.00099	0.000070
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	υV	0.0099	0.0064

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40241-1

SDG No.:

Lab Sample ID: 320-40241-23 Client Sample ID: AE-CR002-D

Matrix: Tissue

Lab File ID: 2018.07.09LLB 008.d Date Collected: 05/30/2018 10:06 Analysis Method: 537 (modified)

Date Extracted: 06/21/2018 18:03 Extraction Method: SHAKE

Date Analyzed: 07/09/2018 19:58 Sample wt/vol: 1.01(g)

Con. Extract Vol.: 10.00(mL) Dilution Factor: 20

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 233100 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.039	υΥ	0.20	0.039
27619-97-2	6:2 FTS	0.0077	Ü	0.20	0.0077
39108-34-4	8:2 FTS	0.013	U	0.20	0.013

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02117	d5-NEtFOSAA	126		25-150
STL02279	M2-6:2 FTS	155	*	25-150
STL02280	M2-8:2 FTS	164	*	25-150

OCT 1 8 2019

along the recent of the second section of the second section of the second section section sections and the second section sec

VALIDATION COMPLETENESS WORKSHEET

Category B

SDG #: 320-40241-1 Laboratory: Test America, Inc.

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

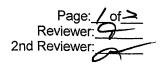
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1,	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
Ш.	Initial calibration/ICV	AA	7500350, Aul/10/=30/0
IV.	Continuing calibration	\triangleleft	ec/ < 30%
V.	Laboratory Blanks	SWAA	
VI.	Field blanks	\mathcal{N}_{i}	
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	A	itsufficient sample (1
IX.	Laboratory control samples	KW	LESTO, SEM
Χ.	Field duplicates		
XI.	Labeled Compounds	N	
XII.	Compound quantitation RL/LOQ/LODs	/w/	Maults < RL - Idets/A
XIII.	Target compound identification	4	
XIV.	System performance	4	
XV.	Overall assessment of data		

N	0	te	:	

SW = See worksheet

FB = Field blank


EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	AE-CR001-A (/10×)	320-40241-11	Tissue	06/06/18
2	AE-CR001-B (1/20 X)	320-40241-12	Tissue	06/06/18
3	AE-CR001-C	320-40241-13	Tissue	06/06/18
4	AE-CR001-D (/ / / X)	320-40241-14	Tissue	06/06/18
₅ ≻	AE-CR002-D (1/20x)	320-40241-23	Tissue	05/30/18
6				
7				
8				

	NB 320-230329			
2	1-270337			

LDC #: 4-956-296

VALIDATION FINDINGS CHECKLIST

Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
ITechnical holdingtimes	100			1 many section chief
All technical holding times were met.				`
Cooler temperature criteria was met.	1/			
III. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
III a Initial calibration		10.0		
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
Were the S/N ratio for all compounds within validation criteria?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?	/			
Illb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%			an engalementaria	
IV Continuing calibration		T T		4
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 30%	/			
Were the S/N ratio for all compounds within validation criteria?	1/	<u> </u>		
Were all the retention times within the acceptance windows?				h e
V. Laboratory Blanks		i di	Ī	
Was a method blank associated with every sample in this SDG?	/_			
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI: Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.			/	
VII. Surrogate spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII: Matrix spike/Matrix spike duplicates				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?		/	·.	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IV Laboratory.control samples				and the second s
Was an LCS analyzed for this SDG?	/			=PM
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Fieldscuplicates:				100
Field duplicate pairs were identified in this SDG.		/		
Target compounds were detected in the field duplicates.			/	
XI). Internal standards				
Were internal standard area counts within acceptance limits?				Nonlinediano de la companya de la companya de la constitución de la co
XIII. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII, Gompound quantifation/CRQLs				A CONTRACTOR OF THE CONTRACTOR
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIV System performance	T			The later to the same of the s
System performance was found to be acceptable.	/			
XV: Overall/assessment of data	_/			
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WIETHOD: Prosiproas		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		·
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		·
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 6:2FTS		
S. 8:2 FTS		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		
	·	

VALIDATION FINDINGS WORKSHEET Blanks

	Page:	_(of_	1
	Reviewer:_	N	
2nd	Reviewer:	\cong	

METHOD: LC/MS PFCs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y N N/A Was a method blank performed with each extraction batch?

Y N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 06/21/18 Blank analysis date: 07/01/18

Conc. units: mg/Kg Associated samples: 1-4

7.000011101 0111111111111111111111111111						
Compound	Blank ID	(20X)	(>o×)	Sample Identification		
	MB 320-230329/1-A	2	3			
D	0.0000613					
κ	0.0000777					
R	0.000528	0.012	0.012	2 PL but DOX dilution performed		
				are to this eye. No once		
				using 1201 judgment		
				0 (0) 0		
	<ri< td=""><td></td><td></td><td></td></ri<>					

Blank extraction date: 06/21/18 Blank analysis date: 07/01/18

Conc. units: mg/Kg Associated samples: 5

Compound	Blank ID	Sample Identification					
	MB 320-230337/1-A						
D	0.0000870						
F	0.0000792						
	<ri.< td=""><td></td><td></td><td></td><td></td><td></td><td></td></ri.<>						

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	1 _of _ _
Reviewer:	4_
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y)N N/A Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#		Compound	%R (Limits) 93.3 934-1066)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	Lessay	M	93.3 934-1066)	()	(5. MP (dols)	JAHAP
	320-230337		()	()	(7 7 7
			()	()	()	
			()	. ()	(
			()	()	()	
			()	(.)	()	
			()	())	
			()	()	()	
			()	()	()	
	<u> </u>						
			()	())	
			()	())	
		<u></u>	()	()	()	
			()	())	
			 			,	
			 	()	(
				()	(
			()	()	(
			()	()	(
			()	()		···	
			1 1		()		
			()	()	()		
			-()	()	()	<u> </u>	
			()	()	()		
			()	()	()	·	
			()	()	()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	(of)
Reviewer:	7
2nd Reviewer:	0_

METHOD: LC/MS PFAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within 50-150% limits?

Y/N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)		RT (Limits)	Qualifications
		IND	12-6:2FIS	154 (25-	150)		No Qual (10x)
			M2-8=2 FTS	IST	<u> </u>		
		2 (1/4)	1,	1			
		3 (ND)	V	175	· · · · · · · · · · · · · · · · · · ·		(20x)
		4 (NO)	42-6:2FTS	155			(10x)
			M2-8=2 FIS	191			
		\$ (ND)	1	164			(20x)
			V	104			
		MB 320-23032	P/A 1	270 410	-1		1/11/4
			[V	410	V		
				,	<u> </u>		
		BATOA	out in	some spl.	No	assid TCL.	
\dashv							
	····						
-							

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_) of 1
Reviewer:	9
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x = Concentration of compound,$ S = Standard deviation of the RRFs C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	6/29/18	PFBA	(1st internal standard)	1.0109	1.0109	1.0174	1.0174	4.9	4.9
	(A8_N)		PFOS	(2nd internal standard)	1.1612	1.1612	1.1628	1.1628	3.0	3.0
				(3rd internal standard)						
2	ICAL	7/5/18	PFBA	(1st internal standard)	1.0130	1.0130	1.0214	1.0214	6.4	6.4
	(A8_N)		PFOS	(2nd internal standard)	1.1768	1.1768	1.1681	1.1681	4.6	4.6
				(3rd internal standard)						
3				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)						
<u> </u>				(3rd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculate	<u>b£</u>
results.	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:	9
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_{ν} = Area of compound,

A_{is} = Area of associated internal standard Cis = Concentration of internal standard

C_v = Concentration of compound,

Reported Recalculated Reported Recalculated Calibration **RRF RRF** %D Compound (Reference Internal Standard) Average %D Standard ID Date RRF (initial) (CC) (CC) 2018.07.01.005 7/1/18 **PFBA** (1st internal standard) 1.0174 0.9924 0.9924 2.5 2.5 **PFOS** 1.1628 1.143 1.7 (2nd internal standard) 1.143 1.7 2018.07.01.016 7/1/18 **PFBA** (1st internal standard) 1.0174 1.015 1.015 0.2 0.2 0.6 **PFOS** (2nd internal standard) 1.1628 1.155 1.155 0.6 0.9709 2018.07.01.027 7/1/18 **PFBA** (1st internal standard) 1.0174 0.9709 4.6 4.6 **PFOS** (2nd internal standard) 1.1628 1.141 1.141 1.9 1.9 2018.07.01.037 7/1/18 **PFBA** (1st internal standard) 1.0174 1.002 1.002 1.5 1.5 **PFOS** 1.1628 1.146 1.146 1.4 1.4 (2nd internal standard)

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: <u></u>	≥ _{of} >
Reviewer:_	4
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x =$ Area of compound, $C_{x} = Concentration of compound,$ A_{is} = Area of associated internal standard Cis = Concentration of internal standard

Reported Recalculated Reported Recalculated Calibration Compound (Reference Internal Standard) RRF RRF Average %D %D # Date RRF (initial) Standard ID (CC) (CC) 2018.07.02.016 7/2/18 **PFBA** (1st internal standard) 1.0174 1.007 1.007 1.0 1.0 **PFOS** (2nd internal standard) 1.1628 1.159 1.159 0.3 0.3 **PFBA** 2018.07.05.014 7/5/18 0.9759 (1st internal standard) 1.0214 0.9759 4.5 4.5 **PFOS** (2nd internal standard) 1.1681 1.085 1.085 7.1 7.1 **PFBA** 2018.07.09.005 7/9/18 (1st internal standard) 1.0214 0.9803 0.9803 3 4.0 4.0 **PFOS** (2nd internal standard) 1.1681 1.122 1.122 3.9 3.9

Comments:	Refer to Continu	<u>uing Calibration fin</u>	dings worksheet for lis	<u>it of qualifications an</u>	<u>d associated sa</u>	mples when repo	<u>rted results do not</u>	agree within 1	<u>10.0% of the</u>
recalculated r	esults								

VALIDATION I HADHAGO VACINAGILLE

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:
Reviewer:
2nd Reviewer:

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 320-230329

Compound	Sp Ad (M=	oike ded	Spike Concentration		LCS Percent Recovery		LCSD Percent Recovery		L CS/I CSD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PEBA	0.0100	NX	0.00919	NA	98	98				
\$F05	0.0100		0.00857	V	89	89				
	•						:			
						·				
									e e e e e e e e e e e e e e e e e e e	

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample	Duplicates findings worksheet for list of	of qualifications and	associated samples v	when reported
results do not agree within 10.0% of the recalculated results.				

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	/of_/
Reviewer:_	9
2nd reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Factor of 2 to account for GPC cleanup

$\langle \hat{Y} \rangle$	N	N/A
Y	N	N/A

2.0

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	ntratio	$n = (A_{\bullet})(I_{\circ})(V_{\bullet})(DF)(2.0)$ $(A_{\circ})(RRF)(V_{\circ})(V_{\bullet})(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. 2 , FF254:
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (381644)(2.5)(10) (/)() 5/07/87 (1.0774)(0.99)(1030)()
V _o	. =	Volume or weight of sample extract in milliliters (ml) or grams (g).	
V_1	=	Volume of extract injected in microliters (ul)	= 0.00/85 M8/45
V_{t}	=	Volume of the concentrated extract in microliters (ui)	775
Df ·	= .	Dilution Factor.	_
%S	=	Percent solids, applicable to soil and solid matrices only.	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	6	TT-BA	0.0019		
.,					
	<u></u>				
				<u> </u>	
	·		· · · · · · · · · · · · · · · · · · ·	 	
					-
				<u> </u>	

Site: Suffolk County Biota Sampling Evaluation

Laboratory: TestAmerica, Inc., Edison, NY

Report No.: 320-40365-1

Reviewer: Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date: September 7, 2018

Samples Reviewed and Evaluation Summary

FIELD ID LAB ID FRACTIONS VALIDATED

FB007 320-40365-1 Fluorinated Alkyl Substances

Associated QC Samples(s): Field/Trip Blanks: FB007

Field Duplicate pair: None Associated

The above-listed water sample was collected on June 11, 2018 and was analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Labeled Compounds
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-229812/1-A	Perfluorobutanoic acid	0.435 ng/L	RL	FB007
	Perfluorohexanesulfonic acid	0.279 ng/L	RL	

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and \le the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID Compound		Level Detected	Validation Action
FB007 Perfluorobutanoic acid		0.78 ng/L	1.82U ng/L
	Perfluorohexanesulfonic acid	0.27 ng/L	1.82U ng/L

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Contamination was detected in the field blank sample FB007 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
FB007	Perfluorobutanoic acid	0.78 ng/L	RL	No associated samples
	Perfluorohexanesulfonic acid	0.27 ng/L	RL	in this SDG

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

LCS Results

All criteria were met.

Labeled Compounds

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento	Job No.: 320-40365-1
SDG No.:	
Client Sample ID: FB007	Lab Sample ID: 320-40365-1
Matrix: Water	Lab File ID: 2018.06.29LLC_072.d
Analysis Method: 537 (modified)	Date Collected: 06/11/2018 11:00
Extraction Method: 3535	Date Extracted: 06/19/2018 11:06
Sample wt/vol: 274.6(mL)	Date Analyzed: 06/30/2018 15:29
Con. Extract Vol.: 10(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 231925	Units: na/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.78	J B 1.87	1.82	0.32
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.45	UU	1.82	0.45
307-24-4	Perfluorohexanoic acid (PFHxA)	0.53	U	1.82	0.53
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.23	U	1.82	0.23
335-67-1	Perfluorooctanoic acid (PFOA)	0.77	U	1.82	0.77
375-95-1	Perfluorononanoic acid (PFNA)	0.25	U	1.82	0.25
335-76-2	Perfluorodecanoic acid (PFDA)	0.28	U	1.82	0.28
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.00	Ū	1.82	1.00
307-55-1	Perfluorododecanoic acid (PFDoA)	0.50	U	1.82	0.50
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.18	Ū	1.82	1.18
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.26	U	1.82	0.26
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.18	U	1.82	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.27	JB 1.80	1.82	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.17	υ γ	1.82	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.49	U	1.82	0.49
335-77 - 3	Perfluorodecanesulfonic acid (PFDS)	0.29	U	1.82	0.29
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.32	U	1.82	0.32
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2.82	U	18.2	2.82
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.73	U	18.2	1.73
27619-97-2	6:2 FTS	1.82	Ü	18.2	1.82
39108-34-4	8:2 FTS	1.82	U	18.2	1.82

SEP 1 1 2018

Initials: EX

VALIDATION COMPLETENESS WORKSHEET

Category B

SDG #:_	<u>320</u>	<u>-403</u>	65-1	
Laborato	ory:_	Test	America,	Inc.

2nd Reviewer:

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	I	Comments
1.	Sample receipt/Technical holding times	A	XXXIII XXXIII XXXII XXXI
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	AA	RSD < 3570. True/101=3070
IV.	Continuing calibration	A	cel = 20%
V.	Laboratory Blanks	1001	
VI.	Field blanks	W	FB=/
∨H .	Surrogate spikes-	N	
VIII.	Matrix spike/Matrix spike duplicates	N	moufficient sp
IX.	Laboratory control samples	A	105/0
X.	Field duplicates	$ \mathcal{N} $	/
XI.	Labeled Compounds	A	
XII.	Compound quantitation RL/LOQ/LODs	an	USULTS < RL - Vlots/A
XIII.	Target compound identification	4	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

N	ot	~	
ı٧	w	ᅠ	

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

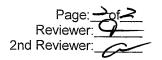
EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	 		Lab ID	Matrix	Date		
1	FB007			 320-40365-1	Water	06/11/18		
2								
3								
4								
5								
6								
7								
8								
Votes	:							

LDC #4954596


VALIDATION FINDINGS CHECKLIST

Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
Cooler temperature criteria was met.				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?		(
Were all samples analyzed within the 12 hour clock criteria?				
IIIa Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
Were the S/N ratio for all compounds within validation criteria?	/			
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				
IIIb.Initial Calibration Verification	I		1	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤ 30%			100000000000000000000000000000000000000	
IV. Continuing calibration			T	
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) ≤ 30%	/			
Were the S/N ratio for all compounds within validation criteria?	/			
Were all the retention times within the acceptance windows?			de de la constituit de	
V. Laboratory Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/			
VI. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.		+		
VII. Surrogate spikes				
Were all surrogate %R within the QC limits?	<u> </u>		_	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IV. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	//			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XI. Internal standards				
Were internal standard area counts within acceptance limits?				
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Compound quantitation/CRQLs	1			A second
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data	,	/		
Overall assessment of data was found to be acceptable.	/			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

METHOD: PFOS/PFOAs			
A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)	·	·	
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)	·		
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. 6:2FTS			
S. 8:2 FTS			
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			

LDC # 10951596

VALIDATION FINDINGS WORKSHEET Blanks

Page: _/_of /_ Reviewer: _____ 2nd Reviewer: _____

METHOD: LC/MS PFOS/F	PFOAs (EPA Metho	od 537M)										
Please see qualifications b			"N". Not appl	licable question	ons are identif	fied as "N/A".						
N N/A Were all s	samples associated											
N N/A Was a me	ethod blank perform				nple extraction	n procedure v	vas performe	d?				
N N/A Was a me	ethod blank perform				•	•						
	contaminants foun				see findinas b	elow.						
Blank extraction date:	19/18 Blank a	nalvsis date:	6/30/18									
Conc. units: MS/L				iated sample	es:	All	<u> </u>					
Compound	Blank ID		Sample Identification									
MB	320-229812/	1-4										
P	0.435		0.78/1.8									
K	0.2T9		027/182									
										·		
Blank extraction date: Conc. units:	Blank anal	ysis date:		Ass	sociated san	nples:						
Compound	Blank ID				San	nple Identificati	on					
	7 (5) (6)											
									-			

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:___of__ Reviewer:_____ 2nd Reviewer:____

	lanks identified compounds of ssociated said	ed in this SDG detected in the mple units:	e field blanks'		A 2 2 2	ciated Comple	a No	nl	Zild Novic	, , , , , , , , , , , , , , , , , , ,		
	111 (0000000001100 200001100	Telu blank / r										
Compound	Blank ID		Sample Identification									
	/											
P	0.78											
P K	0.27											
				·								
en e												
Sampling date:	Blank units: Associated sample units: Sampling date: Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples:											
	e) Field Blank	/ Rinsate / Ot	ther:	Associat	ed Samples:							
Compound	e) Field Blank Blank ID	/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					
Compound		/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					
Compound		/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					
Compound		/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					
Compound		/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					
Compound		/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					
Compound		/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					
Compound		/ Rinsate / Ot	ther:	Associat	-	ample Identifica	ation					

LDC #: 42956F96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	1 of 1
Reviewer:	4
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 A_x = Area of compound,

 $\hat{C_x} = \text{Concentration of compound},$

S = Standard deviation of the RRFs

X = Mean of the RRFs

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	6/29/18	PFBA (1st internal standard)	1.0109	1.0109	1.0174	1.0174	4.9	4.9
	(A8_N)		PFOS (2nd internal standard)	1.1612	1.1612	1.1628	1.1628	3.0	3.0
			(3rd internal standard)						
2			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
3			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
4			(1st internal standard)						
		•	(2nd internal standard)						
			(3rd internal standard)						

Comments:	Refer to Initial	Calibration f	findings work	sheet for list o	f qualifications	s and associated	samples who	en reported re	esults do not ag	gree within 1	10.0% of the	erecalculated
results.												

LDC #: 42956F96

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	/of/
Reviewer:	7
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compou	und (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.06.29.068	6/30/18	PFBA	(1st internal standard)	1.0174	1.000	1.000	1.7	1.7
			PFOS	(2nd internal standard)	1.1628	1.109	1.109	4.6	4.6
2									
3									
4									

Comments:	Refer to Continuing	Calibration findings	worksheet for li	ist of qualifications and	associated samples when	<u>n reported results do not agre</u>	e within 10.0% of the
recalculated r	results						
		· · · · · · · · · · · · · · · · · · ·					

VALIDATION FINDINGS WORKSMEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: <u></u> _or_/_
Reviewer:
2nd Reviewer:

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: ___

Compound	Sp Ad (<i>1)</i>	oike Ided 5/C)	Conce	oike Intration		CS Recovery		SD Recovery		Y CSD PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
##O-A	400	40.0	38,53	35.65	96	96	89	89	8	8
PFOS	37.1	31.1	32,30	31.96	87	87	86	36		1
							:			
		·				1				
		¥1								·
									1	

Comments: Refer to Laboratory Control Sample/Laboratory Comments:	Control Sai	mple Duplicates	findings worksheet fo	<u>r list of qualificatio</u>	ns and associat	ted samples w	nen reported
results do not agree within 10.0% of the recalculated results.							
				·			

only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	<u></u>
2nd reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Factor of 2 to account for GPC cleanup

M	Ν	N/A
M	Ν	N/A
V		

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $(A_{\circ})(I_{\circ})(V_{\circ})(DF)(2.0)$ $(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(V_{\circ})$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, \(\frac{\mathcal{PFBA}}{} \)
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (575/2, 2.50)(10) (/)(6610164 (1.0174) (0.7746) ())
V _o	, =	Volume or weight of sample extract in milliliters (ml) or grams (g).	,
V _i	=	Volume of extract injected in microliters (ul)	= 0.78 n8/L
V_t	=	Volume of the concentrated extract in microliters (ul)	1/2
Df	=	Dilution Factor.	'
%S	=	Percent solids, applicable to soil and solid matrices	

7.0		III for GFC cleanup	_		
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
		PFBA	0.78		
				in a standard and the s	
<u> </u>			<u> </u>		
	· ·				
			1		
	<u></u>				

Site:

Suffolk County Biota Sampling Evaluation

Laboratory:

TestAmerica, Inc., Edison, NY

Report No.:

320-40607-1

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

September 10, 2018

Samples Reviewed and Evaluation Summary

FIELD ID

LAB ID

FRACTIONS VALIDATED

FB009

320-40607-1

Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks:

FB009

Field Duplicate pair:

None Associated

The above-listed water sample was collected on June 21, 2018 and was analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Labeled Compounds
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-2325031/1-A	Perfluorobutanoic acid	0.452 ng/L	RL	FB009
	Perfluorohexanesulfonic acid	0.320 ng/L	RL	

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and \le the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
FB009	Perfluorobutanoic acid	0.59 ng/L	1.75U ng/L
	Perfluorohexanesulfonic acid	0.22 ng/L	1.75U ng/L

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

Contamination was detected in the field blank sample FB009 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
FB009	Perfluorobutanoic acid	0.59 ng/L	RL	No associated samples
	Perfluorohexanesulfonic acid	0.22 ng/L	RL	in this SDG

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

LCS Results

All criteria were met.

Labeled Compounds

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento	Job No.: 320-40607-1
SDG No.:	
Client Sample ID: FB009	Lab Sample ID: 320-40607-1
Matrix: Water	Lab File ID: 2018.07.07LLA_021.d
Analysis Method: 537 (modified)	Date Collected: 06/21/2018 14:00
Extraction Method: 3535	Date Extracted: 07/05/2018 09:56
Sample wt/vol: 286.2(mL)	Date Analyzed: 07/07/2018 17:19
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No · 232822	Uniter na/I

CAS NO.	COMPOUND NAME	RESULT	· Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.59	JВ 1.7	5 0 1.75	0.31
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.43	UU	1.75	0.43
307-24-4	Perfluorohexanoic acid (PFHxA)	0.51	U	1.75	0.51
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.22	U	1.75	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	0.74	Ū	1.75	0.74
375-95-1	Perfluorononanoic acid (PFNA)	0.24	U	1.75	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	0.27	Ū	1.75	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.96	U	1.75	0.96
307-55-1	Perfluorododecanoic acid (PFDoA)	0.48	Ū	1.75	0.48
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.14	Ū	1.75	1.14
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.25	Ū ,	1.75	0.25
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.17	U 🖤	1.75	0.17
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.22	J B 7	5U 1.75	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.17	U Y	1.75	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.47	U	1.75	0.47
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.28	Ŭ	1.75	0.28
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.31	U	1.75	0.31
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2.71	Ŭ	17.5	2.71
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.66	Ü	17.5	1.66
27619-97-2	6:2 FTS	1.75	U	17.5	1.75
39108-34-4	8:2 FTS	1.75	U	17.5	1.75

SEP 1 1 2010

Initials: 🕰

LDC #: 42956G96

VALIDATION COMPLETENESS WORKSHEET

Category B

SDG #:_	320	-406	607-1	
Laborate	orv:	Test	America.	Inc.

2nd Reviewer

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	AA	\$500 75%. The /101 4300
IV.	Continuing calibration	A	ea/ < 3070
V.	Laboratory Blanks	W	
VI.	Field blanks	W/	FB=1
VII.	Surrogate spikes -	N.	
VIII.	Matrix spike/Matrix spike duplicates		msufficient st
IX.	Laboratory control samples	A	105/0
X.	Field duplicates	N	
XI.	Labeled Compounds	-A	
XII.	Compound quantitation RL/LOQ/LODs	W	USULTS < RL- Nots/A
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate

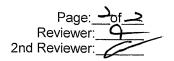
TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID		Lab ID	Matrix	Date
1	FB009	 	320-40607-1	Water	06/21/18
2					
3					
4					
5					
6					
7					
3					
otes):				

LDC #: 12956496

VALIDATION FINDINGS CHECKLIST


Page: / of > Reviewer: 2nd Reviewer:

Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			Section 1	
All technical holding times were met.				
Cooler temperature criteria was met.				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) < 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
Were the S/N ratio for all compounds within validation criteria?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				
IIIb Initial Calibration Verification	ı		ı	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%				
IV. Continuing calibration		ı		
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) < 30%				
Were the S/N ratio for all compounds within validation criteria?				
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks		J	1	T
Was a method blank associated with every sample in this SDG?			ļ	
Was a method blank analyzed for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI, Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.		<u> </u>		
VII. Surrogate spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates	in phi			

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
·	162	NO	IVA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
IV. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates		1	7.00	
Field duplicate pairs were identified in this SDG.			<u> </u>	
Target compounds were detected in the field duplicates.				
XI. Internal standards				A CONTRACT OF THE PARTY OF THE
Were internal standard area counts within acceptance limits?				
XII. Target compound identification		4		
Were the retention times of reported detects within the RT windows?	$\overline{/}$			
XIII. Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIV. System performance	1			
System performance was found to be acceptable.				
XV. Overall assessment of data		/	T	
Overall assessment of data was found to be acceptable.	/			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WILTHOD, FFO3/FFOAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)	·	
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 6:2FTS		
S. 8:2 FTS		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		

LDC #: 4295496

VALIDATION FINDINGS WORKSHEET Blanks

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Page:_	<u>of</u>
Reviewer:	9
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

N N/A	N N/A Were all samples associated with a given method blank?									
√ N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?										
Was a method blank performed with each extraction batch?										
VN N/A Were any contaminants found in the method blanks? If yes, please see findings below.										
Blank extraction date: 7/5/18 Blank analysis date: 7/7/18										
Conc. units: //	18/4			Assoc	iated sam	ples:	<u> </u>			
Compo		Blank ID					Sample Identificat	ion		
	MB	0.452 0.320	31/1-1	/						
P		0.452		0.59/1.75	- U					
`K		0.320		0.25/1.75	4					
				,	1					
Blank extraction	on date:	Blank analy	/sis date:		F	ssociated s	amples:			

onc. units:							
Compound	Blank ID	 	 San	nple Identificati	on	 	
考表 4. 4. 4.	3.						

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	_ / of <u>/</u>
Reviewer:	9
2nd Reviewer:	_

METHOD: LC/MS PFOS/PF	OAs (EPA Me	ethod 537M)							
YN N/A Were field blanks identified in this SDG? YN N/A Were target compounds detected in the field blanks?									
YN N/A Were target compounds detected in the field blanks?									
Blank units: 115/2 A Sampling date: 4/24//5	ssociated sar	mple units:_							
Sampling date: 4/24//5	8						_		
Field blank type: (circle on	e) Trip Blank/F	Field Blank / F	Rinsate / Othe	er:	_ Asso	ciated Sampl	es:		 _
Compound	Blank ID				s	ample Identifica	ation		
	1								
P	0.59								
K	0.22								
	,								
Blank units: Asso Bampling date: Field blank type: (circle one	_			Associat	ted Samples:				
Compound	Blank ID				S	ample Identifica	ation		
						1			
	<u> </u>						<u> </u>		

LDC #: 42956F96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	l of 1
Reviewer:	·
2nd Reviewer:	\mathcal{C}

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

 $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Int	ternal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/5/18	PFBA (1st in	ternal standard)	1.0130	1.0130	1.0214	1.0214	6.4	6.4
	(A8_N)		PFOS (2nd in	nternal standard)	1.1768	1.1768	1.1681	1.1681	4.6	4.6
			(3rd ir	nternal standard)						
2			(1st i	nternal standard)						
			(2nd i	nternal standard)						
			(3rd ir	nternal standard)						
3			(1st i	nternal standard)						
			(2nd i	nternal standard)						
			(3rd ir	nternal standard)						
4			(1st ii	nternal standard)						
			(2nd i	nternal standard)						
			(3rd ir	nternal standard)						

Comments:	Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within	10.0% of the recalculated
results.		

LDC #: 42956G96

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	Lef_
Reviewer:	7
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

pound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compou	ınd (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.07.07.005	7/7/18	PFBA	(1st internal standard)	1.0214	0.9738	0.9738	4.7	4.7
			PFOS	(2nd internal standard)	1.1681	1.091	1.091	6.6	6.6
2	2018.07.07.016	7/7/18	PFBA	(1st internal standard)	1.0214	1.017	1.017	0.4	0.4
			PFOS	(2nd internal standard)	1.1681	1.190	1.190	1.9	1.9
							-	·	
3									
4					·				
			-						

Comments:	Refer to Continuing	<u>g Calibration findings</u>	worksheet for	<u>list of qualifications</u>	and associated	<u>l samples when</u>	reported results	<u>do not agree with</u>	<u>in 10.0% of the</u>
recalculated	results								

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	/ OT_/
Reviewer:	
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC | * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 320 - 23×503

Compound	Spike Added (<i>MS/</i> -)		Spike Concentration		I C.S Percent Recovery		LCSD Percent Recovery		I CS/I CSD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
DFBA	40.0	40.0	3641	36.75	91.	91	92	92	/	/
PFOS	37.1	37.1	34.98	36.75 33.67	94	94	91	91	4	4
		:								
			*							

Comments:	Refer to Laboratory	Control Sample/Lab	oratory Contr	ol Sample Duplicate	<u>s findings works</u>	sheet for list of q	ualifications and	associated s	samples when	reported
results do no	ot agree within 10.0%	of the recalculated	results.							
									• .	
										

only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:_	9
2nd reviewer:_	-

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Factor of 2 to account for GPC cleanup

M Y	N/A
y∕ N	N/A

2.0 -

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

_		(A) (I) (A () (B E) (A ())	1
Conce	entratio	on = $(A_{s})(I_{s})(V_{s})(DF)(2.0)$ $(A_{ls})(RRF)(V_{o})(V_{s})(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, PFBA
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
s	=	Amount of internal standard added in nanograms (ng)	Conc. = 4206)(2.5)([0.0) ())((611610)(1.024)(02862)()()
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	,
v ,	=	Volume of extract injected in microliters (ul)	= 0.59 n8/L
V_{t}	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
		PFBA	0.59		
			/		
					· · · · · · · · · · · · · · · · · · ·
					
	Minimus code MFM Mychology Marrison In CO COd Pryma, and aphymation 30 of Maria (2) proper to material				

Site: Suffolk County Biota Sampling Evaluation

Laboratory: Eurofins, Edison, NY

Report No.: 320-40641-1

Reviewer: Stella Cuenco, Pei Geng, and Christina Rink/Laboratory Data Consultants

for P.W. Grosser Consulting

Date: October 18, 2019

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
AE-GA002-A	320-40641-1	Fluorinated Alkyl Substances
AE-GA002-B	320-40641-2	Fluorinated Alkyl Substances
AE-GA002-E	320-40641-5	Fluorinated Alkyl Substances
AE-GA002-G	320-40641-7	Fluorinated Alkyl Substances
AE-FR-003-B	320-40641-12	Fluorinated Alkyl Substances
AE-FR-003-C	320-40641-13	Fluorinated Alkyl Substances
AE-GA002-AMS	320-40641-1MS	Fluorinated Alkyl Substances
AE-GA002-AMSD	320-40641-1MSD	Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks: None Associated Field Duplicate pair: None Associated

The above-listed tissue samples were collected on June 8 through June 13, 2018 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS)/Standard Reference Material (SRM) Results
- Labeled Compounds
- Field Duplicate Results
- Moisture Content
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

Initial calibration:

All criteria were met.

Continuing calibration:

	Instrument		CC		Affected		
Date	ID	Compound	%D	Associated Samples	Compound		Validation Action
07/19/18	2018.07.19_043	M2-8:2FTS	74.8	AE-FR-003-C	8:2FTS	XX	UJ nondetects

- X = Initial calibration (IC) relative standard deviation (%RSD) > 20; estimate (J/UJ) positive and nondetect results.
- XX = Continuing calibration (CC) percent difference (%D) > 20; estimate (J/UJ) positive and nondetect results.
- SS = Second source verification percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.
- += Response factor (RRF) < validation criteria; estimate (J/UJ) positive and nondetect results.

The 8:2FTS result was estimated due to continuing calibration exceedance. The bias cannot be determined. The result can be used for project objectives as a nondetect with an estimated quantitation limit (UJ) which may have a minor impact on the data usability.

Blanks

Contamination was detected in the associated fluorinated alkyl substances method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-233298/1-A	Perfluoroundecanoic acid	0.000109 mg/Kg	RL	AE-GA002-A
	Perfluorohexanesulfonic acid	0.0000890 mg/Kg	RL	AE-GA002-B
<u> </u>	6:2FTS	0.000827 mg/Kg	RL	AE-GA002-E
				AE-GA002-G
				AE-FR-003-B
				AE-FR-003-C

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

Qualified sample results are listed in the table below.

Sample ID	Compound	Level Detected	Validation Action
AE-GA002-A	Perfluoroundecanoic acid	0.00049 mg/Kg	0.00094U mg/Kg
AE-GA002-B	Perfluoroundecanoic acid	0.00050 mg/Kg	0.00096U mg/Kg
AE-GA002-E	Perfluoroundecanoic acid	0.00050 mg/Kg	0.00098U mg/Kg
	6:2FTS	0.00064 mg/Kg	0.0098U mg/Kg
AE-GA002-G	Perfluoroundecanoic acid	0.00056 mg/Kg	0.00096U mg/Kg
AE-FR-003-B	Perfluorohexanesulfonic acid	0.00043 mg/Kg	0.00093U mg/Kg
AE-FR-003-C	Perfluoroundecanoic acid	0.00073 mg/Kg	0.00093U mg/Kg
	Perfluorohexanesulfonic acid	0.00037 mg/Kg	0.00093U mg/Kg

These results can be used for project objectives as nondetects (U) which may have a minor impact on the data usability.

A field blank was not associated with this sample set. Validation action was not required on this basis.

MS/MSD Results

MS/MSD analyses were performed in sample AE-GA002-A in fluorinated alkyl substances analysis. All criteria were met.

LCS/SRM Results

All criteria were met.

Labeled Compounds

The following table lists the labeled compounds recovered outside of control limits and the resulting actions.

		%R	Affected	
Sample	Labeled Compound	(Limits)	Compounds	Validation actions
AE-GA002-A	M2-6:2FTS	200 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	235 (25-150)	8:2FTS	UJ nondetects
AE-GA002-B	M2-6:2FTS	228 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	291 (25-150)	8:2FTS	UJ nondetects
AE-GA002-E	M2-6:2FTS	261 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	231 (25-150)	8:2FTS	UJ nondetects
AE-GA002-G	M2-6:2FTS	205 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	335 (25-150)	8:2FTS	UJ nondetects
AE-FR-003-B	M2-6:2FTS	191 (25-150)	6:2FTS	UJ nondetects
	M2-8:2FTS	250 (25-150)	8:2FTS	UJ nondetects
AE-FR-003-C	M2-6:2FTS	295 (25-150)	6:2FTS	UJ nondetects

The 6:2FTS and 8:2FTS results for the samples listed above were estimated due to labeled compounds percent recovery exceedances. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Moisture Content

All criteria were met.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1

SDG No.:

Lab Sample ID: 320-40641-1 Client Sample ID: AE-GA002-A

Matrix: Tissue

Lab File ID: 2018.07.18LLB 032.d

Analysis Method: 537 (modified) Date Collected: 06/13/2018 09:00

Extraction Method: SHAKE Date Extracted: 07/10/2018 15:57 Date Analyzed: 07/18/2018 19:02 Sample wt/vol: 1.06(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

Dilution Factor: 1

GPC Cleanup: (Y/N) N % Moisture:

Analysis Batch No.: 234758 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT Q RL		MDL	
375-22-4	Perfluorobutanoic acid (PFBA)	0.00099	0.000094		
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000065	0.000065		
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	Ū	0.00094	0.000049
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000057	U	0.00094	0.000057
335-67-1	Perfluorooctanoic acid (PFOA)	0.00036	J 7	0.00094	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00023	J	0.00094	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00030	J	0.00094	0.000069
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00049	JВ ()	0.00094	0.000070
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00047	J .7	0.00094	0.000056
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00078	J	0.00094	0.000048
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00086	J	0.00094	0.000062
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00016	J	0.00094	0.000094
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0068	В	0.00094	0.000062
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000068	υU	0.00094	0.000068
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.036		0.00094	0.000073
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00023	JT	0.00094	0.000056
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000067	UÜ	0.00094	0.000067
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0061			0.0061
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018 U 0.0094		0.0018	
27619-97-2	6:2 FTS	0.00037	υ U2	0.0094	0.00037
39108-34-4	8:2 FTS	0.00064	UUT	0.0094	0.00064

OCT 18 2019

Marine Service of

Lab File ID: 2018.07.19LLC_027.d

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1

SDG No.:

Client Sample ID: AE-GA002-B Lab Sample ID: 320-40641-2

Matrix: Tissue

Analysis Method: 537 (modified) Date Collected: 06/13/2018 09:05

Extraction Method: SHAKE Date Extracted: 07/10/2018 15:57

Sample wt/vol: 1.04(g) Date Analyzed: 07/19/2018 20:14

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: _____ GPC Cleanup:(Y/N) N

Analysis Batch No.: 235043 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT Q RL			MDL	
375-22-4	Perfluorobutanoic acid (PFBA)	0.0056	0.0056 0.00096			
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000066	0.000066 U U 0.00096			
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	U	0.00096	0.000050	
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000058	U V	0.00096	0.000058	
335-67-1	Perfluorooctanoic acid (PFOA)	0.00023	JJ	0.00096	0.00011	
375-95-1	Perfluorononanoic acid (PFNA)	0.00019	J	0.00096	0.000041	
335-76-2	Perfluorodecanoic acid (PFDA)	0.00025	J 🗸	0.00096	0.000070	
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00050	J B 0.00	MW0.00096	0.000071	
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00038	JT	0.00096	0.000057	
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00048	J	0.00096	0.000049	
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00091	J 0.00096		0.000063	
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00014	J	0.00096	0.000096	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0031	В	0.00096	0.000063	
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00023	1 2	0.00096	0.000069	
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00011	J 7	0.00096	0.000057	
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000068	UÜ	0.00096	0.000068	
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0063	0.0096		0.0063	
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019 U 0.0096		0.0019		
27619-97-2	6:2 FTS	0.00038	U UJ	0.0096	0.00038	
39108-34-4	8:2 FTS	0.00065	U U5	0.0096	0.00065	

OCT 1 8 2019

機能

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1 SDG No.: Client Sample ID: AE-GA002-B DL Lab Sample ID: 320-40641-2 DL Lab File ID: 2018.07.20LLBBB_064.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 06/13/2018 09:05 Extraction Method: SHAKE Date Extracted: 07/10/2018 15:57 Sample wt/vol: 1.04(g) Date Analyzed: 07/21/2018 01:03 Dilution Factor: 10 Con. Extract Vol.: 10.00(mL) Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 235302 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.16	D	0.0096	0.00074

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL00991	13C4 PFOS	84		25-150

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1

SDG No.:

Client Sample ID: AE-GA002-E Lab Sample ID: 320-40641-5

Matrix: Tissue

Analysis Method: 537 (modified)

Extraction Method: SHAKE

Sample wt/vol: 1.02(g)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture: _____

0.00

Analysis Batch No.: 235043

Lab Sample ID: 320-40641-5

Lab File ID: 2018.07.19LLC_033.d

Date Collected: 06/13/2018 09:20

Date Extracted: 07/10/2018 15:57

Date Analyzed: 07/19/2018 21:01

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	RESULT Q RL		
375-22-4	Perfluorobutanoic acid (PFBA)	0.0013		0.00098	0.000098
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000068	0.000068		
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000051	U	0.00098	0.000051
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000059	U	0.00098	0.000059
335-67-1	Perfluorooctanoic acid (PFOA)	0.00023	J 7	0.00098	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00013	J	0.00098	0.000042
335-76-2	Perfluorodecanoic acid (PFDA)	0.00019	J	0.00098	0.000072
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00050	J В ().())	ARU 0.00098	0.000073
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00051	J 7	0.00098	0.000058
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00076	76 J 0.00098		0.000050
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00067	67 J 0.00098		0.000065
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.00013	J 🗸	0.00098	0.000098
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0018	В	0.00098	0.000065
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00016	1 2	0.00098	0.000071
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.014		0.00098	0.000075
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.000071	J フ	0.00098	0.000058
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000070	U U	0.00098	0.000070
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0064	U 0.0098		0.0064
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)			0.0019	
27619-97-2	6:2 FTS	0.00064	J B ().00	794() 0098	0.00038
39108-34-4	8:2 FTS	0.00067	U UJ		0.00067

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1

SDG No.:

Client Sample ID: AE-GA002-G Lab Sample ID: 320-40641-7

Matrix: Tissue Lab File ID: 2018.07.19LLC_035.d

Analysis Method: 537 (modified) Date Collected: 06/08/2018 09:30

Extraction Method: SHAKE Date Extracted: 07/10/2018 15:57

Sample wt/vol: 1.04(g) Date Analyzed: 07/19/2018 21:17

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 235043 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT Q RL			MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0016		0.00096	0.000096
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000066	0.000066		
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000050	Ū	0.00096	0.000050
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000058	U	0.00096	0.000058
335-67-1	Perfluorooctanoic acid (PFOA)	0.00030	JT	0.00096	0.00011
375-95-1	Perfluorononanoic acid (PFNA)	0.00024	J	0.00096	0.000041
335-76-2	Perfluorodecanoic acid (PFDA)	0.00030	J 🗸	0.00096	0.000070
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00056	J В (),(У	09600.00096	0.000071
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00048	J 5	0.00096	0.000057
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.000049	UŬ	0.00096	0.000049
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00074	JT	0.00096	0.000063
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000096	U	0.00096	0.000096
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.0017	В	0.00096	0.000063
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.00016	ュケ	0.00096	0.000069
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.016		0.00096	0.000074
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00013	J	0.00096	0.000057
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000068	UU	0.00096	0.000068
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0063			0.0063
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0019 U L 0.0096		0.0019	
27619-97-2	6:2 FTS	0.00038	ぜって	0.0096	0.00038
39108-34-4	8:2 FTS	0.00065	U U J	0.0096	0.00065

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1

SDG No.:

Client Sample ID: AE-FR-003-B Lab Sample ID: 320-40641-12

Matrix: Tissue Lab File ID: 2018.07.19LLC_040.d

Analysis Method: 537 (modified) Date Collected: 06/13/2018 09:05

Extraction Method: SHAKE Date Extracted: 07/10/2018 15:57

Sample wt/vol: 1.08(g) Date Analyzed: 07/19/2018 21:56

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 235043 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT Q RL			MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.00096		0.000093	
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	U	0.00093	0.000064
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000048	UU	0.00093	0.000048
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.00013	J	0.00093	0.000056
335-67-1	Perfluorooctanoic acid (PFOA)	0.0012		0.00093	0.00010
375-95-1	Perfluorononanoic acid (PFNA)	0.00068	J 5	0.00093	0.000040
335-76-2	Perfluorodecanoic acid (PFDA)	0.00029	J ナ	0.00093	0.000068
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.0012	В	0.00093	0.000069
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00043	JJ	0.000055	
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00042	J	0.000047	
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00033	J 🗸	0.000061	
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	υU	0.00093	0.000093
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00043	J B ().00	V93U 0.00093	0.000061
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000090	٦ ك	0.00093	0.000067
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.059		0.00093	0.000071
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00011	J J	0.00093	0.000055
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000066	UU	0.00093	0.000066
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	0.0060	Ŭ	0.0060	
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	0.0018 U 0.0093 0.			
27619-97-2	6:2 FTS	0.00036	U VJ	0.0093	0.00036
39108-34-4	8:2 FTS	0.00063	UU	0.0093	0.00063

OCT 1 8 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1

SDG No.:

Client Sample ID: AE-FR-003-C Lab Sample ID: 320-40641-13

Matrix: Tissue

Lab File ID: 2018.07.19LLC 060.d

Analysis Method: 537 (modified)

Date Extracted: 07/10/2018 15:57

Extraction Method: SHAKE

Date Analyzed: 07/20/2018 00:33

Date Collected: 06/13/2018 09:10

Sample wt/vol: 1.07(g)

Injection Volume: 2(uL)

Dilution Factor: 1

Con. Extract Vol.: 10.00(mL)

GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 235043

Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT Q R			MDL		
375-22-4	Perfluorobutanoic acid (PFBA)	0.00049	0.000093				
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.000064	υŬ	0.00093	0.000064		
307-24-4	Perfluorohexanoic acid (PFHxA)	0.000049	Ū	0.00093	0.000049		
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.000056	U	0.00093	0.000056		
335-67-1	Perfluorooctanoic acid (PFOA)	0.00052	JJ	0.00093	0.00010		
375-95-1	Perfluorononanoic acid (PFNA)	0.00041	J	0.00093	0.000040		
335-76-2	Perfluorodecanoic acid (PFDA)	0.00029	J 🗸	0.00093	0.000068		
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.00073	J В (() /	ЈВ ().0003() 0.00093 0.000			
307-55-1	Perfluorododecanoic acid (PFDoA)	0.00040					
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.00048	0.00048 J 0.00093				
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.00039 J U 0.00093			0.000062		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.000093	0.000093 U O 0.00093 (
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.00037	JВ((Y)	(93() 0.00093	0.000062		
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.000067	U U	0.00093	0.000067		
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.018		0.00093	0.000072		
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.00014	JJ	0.00093	0.000055		
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.000066	UU	0.00093	0.000066		
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)			0.0061			
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	e 0.0018 U 0.0093		0.0018			
27619-97-2	6:2 FTS	0.00036	u v	0.0093	0.00036		

OCT 18 2019

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-40641-1 SDG No.: Client Sample ID: AE-FR-003-C DL Lab Sample ID: 320-40641-13 DL Lab File ID: 2018.07.19LLC 044.d Matrix: Tissue Analysis Method: 537 (modified) Date Collected: 06/13/2018 09:10 Date Extracted: 07/10/2018 15:57 Extraction Method: SHAKE Sample wt/vol: 1.07(g) Date Analyzed: 07/19/2018 22:28 Con. Extract Vol.: 10.00(mL) Dilution Factor: 10 Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 235043 Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
39108-34-4	8:2 FTS	0.0064	л n 2	0.093	0.0064

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02280	M2-8:2 FTS	232	*	25-150

OCT 18 2019

VALIDATION COMPLETENESS WORKSHEET

Category B

Date:	5/18
Page:_/c	Ĺ
Reviewer:	<u> </u>
2nd Reviewer:	

SDG #: 320-40641-1 Laboratory: Test America, Inc.

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	ANA	750 < 35%. The /10 < 30% o
IV.	Continuing calibration	W	cc/=30/0
V.	Laboratory Blanks	<u> </u>	/
VI.	Field blanks	I N	
∇ 11.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	W	7/8: M YOR out >4×3/
IX.	Laboratory control samples	A	LCS, SRM
X.	Field duplicates	N	, , , , , , , , , , , , , , , , , , ,
XI.	Labeled Compounds	WV	
XII.	Compound quantitation RL/LOQ/LODs	W	usults = FL - Ilate/A
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

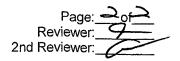
D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	AE-GA002-A	320-40641-1	Tissue	06/13/18
2	AE-GA002-B (1/10x) light and)	320-40641-2	Tissue	06/13/18
3	AE-GA002-E	320-40641-5	Tissue	06/13/18
4	AE-GA002-G	320-40641-7	Tissue	06/08/18
5	AE-FR-003-B	320-40641-12	Tissue	06/13/18
6	AE-FR-003-C (1/10 X)	320-40641-13	Tissue	06/13/18
7	AE-GA002-AMS	320-40641-1MS	Tissue	06/13/18
8	AE-GA002-AMSD	320-40641-1MSE) Tissue	06/13/18
9				
10				

VALIDATION FINDINGS CHECKLIST


Page: / of A Reviewer: 9 2nd Reviewer:

Method: LCMS (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
F Technical holding times	17.0			4.16
Were all technical holding times met?				
Was cooler temperature criteria met?			Jan V seessa	
III. LC/MS instrument performance check			4	118
Were the instrument performance reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?			aSpaGas Acception From	
Illacinitial calibration.				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 29%?		-		
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?			_	
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard	0		.	
IIIb Initial Calibration Verification				31 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?	/			
IV Continuing calibration				
Was a continuing calibration analyzed daily?				·
Were all percent differences (%D) of the continuing calibration ≤ 30%?	- Section Control Control		-	
V, Laboratory Blanks:	6			de la companya de la Companya de la companya de la compa
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?			<u> </u>	
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII: Matrix spike/Matrix spike duplicates		I		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	2000		A CONTRACT OF STATE O	
IX. Laboratory control samples	T 7	Also I		
Was an LCS analyzed for this SDG?	/	<u></u>		

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	/			g
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?.			/	
XI. Labeled standards			V4.7	
Were internal standard area counts within ± 50% of the associated calibration standard?		/		
XII. Compound quantitation			4	
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII: Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	_			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	/	A STATE OF THE STA		
XIV System performance	1	•	T	
System performance was found to be acceptable.				
XIII. Overall, assessment of data	1		di.	
Overall assessment of data was found to be acceptable.	/			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WETHOD: PFOS/PFOAS			
A. Perfluorohexanoic acid (PFHxA)	·		
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)			
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)			
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		·	
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)			

VALIDATION FINDINGS WORKSHEET Continuing Calibration

2nd Reviewer:

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". AVA WAY Was a continuing calibration standard analyzed after every 10 injections for each instrument? Were all continuing calibration percent differences (%D) ≤30 %?

<u>۔</u> بر	B-4-	Ctdd ID		Finding %D (Limit: <u><</u> 30.0%)	Finding RRF (Limit:)		
#	Date	Standard ID	Compound	(Limit: <u><</u> 30.0%)	(Limit:)	Associated Samples	Qualifications
	1/19/13	2018.07.19.04	7 4				
	, ,						
	7/0/18	2018.07.19.04	1/2-8-257	5 74.8		6 (ND)	-11/11/m
	417/100	10.01.11.07	142 0-2//	14.0		6 (NB)	
_							(8.2 +15)
	, 						
-							
	<u> </u>						
_							
			1				
_							
_							
						İ	
\dashv							
4							
ı							
4							
\neg							
4							
							<u> </u>

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	lof
Reviewer:_	
2nd Reviewer:_	~

METHOD: LC/MS PECs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all samples associated with a given method blank?

Y/N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

YN N/A Was a method blank performed with each extraction batch?

Y N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: 07/10/18 Blank analysis date: 07/18/18

Conc. units: mg/Kg	Associated samples:	All

Compound	Blank ID		Sample Identification					
	MB 320-233298/1-A	1	2	3	4	5	6	
F	0.000109	0.00049/0.00094U	0.00050/0.00096U	0.00050/0.00098U	0.00056/0.00096U		0.00073/0.00093U	
κ	0.0000890					0.00043/0.00093U	0.00037/0.00093U	٠.
R	0.000827			0.00064/0.0098U				
						· · · · · · · · · · · · · · · · · · ·		
	<ri< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ri<>							

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	
Reviewer:	4
2nd Reviewer:	9

METHOD: LC/MS PFAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within 50-150% limits?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
	-	1 (NO)	M2-6:2FTS	200 (25-150)		WHAIR
_	····		M2-8=2FTS	235		$- \left(\begin{array}{c} (5) \end{array} \right)$
		= (NO)		228		
				291		
		3 (ND)		26		
_ -		1 (6/2)		ا ا ا ا		
		A (ND)				
		4 (ND)		205		
				335		
		6 (5)				
		5 (ND)	 	19/		
			V	250		
		6 (ND)	M2-6:2FTS	295		V (R
	***************************************		·			
		6 (ND)	M2-8=2FTS	232		No Qual (10x)
_	· · · · · · · · · · · · · · · · · · ·	MB32=33298/H	13C4-19BA	5 (25-150)		VIND
十		1	13CS OF Real	10		707
			130- THXA	15		
			13C+ P+1++A	19		
			13C4-0F04	22		
+		7,8 (NS/15) /5	out		No anal

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	of
Reviewer:	, d
2nd Reviewer:	<u> </u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/11/18	PFBA	(1st internal standard)	0.9987	0.9987	0.9856	0.9856	1.8	1.8
	(A8_N)		PFOS	(2nd internal standard)	1.1467	1.1467	1.1332	1.1332	2.3	2.3
				(3rd internal standard)						
2	ICAL	7/19/18	PFBA	(1st internal standard)	0.9973	0.9973	1.0041	1.0041	3.6	3.6
	(A8_N)		PFOS	(2nd internal standard)	1.1399	1.1399	1.1836	1.1836	8.1	8.1
				(3rd internal standard)						
3	ICAL	7/20/18	PFBA	(1st internal standard)	0.9911	0.9911	0.9892	0.9892	2.5	2.5
	(A8_N)		PFOS	(2nd internal standard)	1.1307	1.1307	1.1618	1.1618	4.5	4.5
				(3rd_internal_standard)						
4				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						

Comments:	Refer to Initial	Calibration findin	gs worksheet for	list of qualification	<u>ns and associated</u>	<u>d samples whe</u>	n reported result	<u>s do not agree within :</u>	<u>10.0% of the reca</u>	lculated
results.					_					
						,			***************************************	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	1052
Reviewer:	
2nd Reviewer:	_

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 C_x = Concentration of compound,

C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)		Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.07.18.027	7/18/18	PFBA	(1st internal standard)	0.9856	0.9690	0.9690	1.7	1.7
			PFOS	(2nd internal standard)	1.1332	1.130	1.130	0.3	0.3
2	2018.07.19.021	7/19/18	PFBA	(1st internal standard)	1.0041	0.9818	0.9818	2.2	2.2
			PFOS	(2nd internal standard)	1.1836	1.106	1.106	6.6	6.6
3	2018.07.19.032	7/19/18	PFBA	(1st internal standard)	1.0041	0.9938	0.9938	1.0	1.0
			PFOS	(2nd internal standard)	1.1836	1.156	1.156	2.3	2.3
4	2018.07.19.043	7/19/18	PFBA	(1st internal standard)	1.0041	0.9560	0.9560	4.8	4.8
			PFOS	(2nd internal standard)	1.1836	1.141	1.141	3.6	3.6
							·		

Comments:	Refer to	Continuing	Calibration	findings wo	rksheet for	<u>list of q</u>	<u>ualifications</u>	and	associated	samples v	<u>when rep</u>	orted r	<u>results do </u>	not agree	within	<u>10.0% (</u>	<u>of the</u>
recalculated i	results																

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	<u>Dof 2</u>
Reviewer:	4
2nd Reviewer:	<u>a</u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 $C_x = Concentration of compound,$

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compou	and (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.07.19.054	7/19/18	PFBA	(1st internal standard)	1.0041	0.9736	0.9736	3.0	3.0
			PFOS	(2nd internal standard)	1.1836	1.197	1.197	1.1	1.1
<u></u>			X						
2	2018.07.20.063	7/21/18	PFBA	(1st internal standard)	0.9892	0.9891	0.9891	0.0	0.0
			PFOS	(2nd internal standard)	1.1618	1.134	1.134	2.4	2.4
3									
4									

Comments:	Refer to Continuing	<u>Calibration findir</u>	ngs worksheet for	<u>list of qualificatio</u>	ns and associate	<u>ed samples when</u>	reported results	<u>do not agree withir</u>	<u> 10.0% of the</u>
recalculated r	results								

VALIDATION I INDINGS VYOINGHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	1 01 /
Reviewer:_	4
2nd Reviewer:	9

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration

SC = Sample concentation

RPD = IMSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

SA = Spike added

MSDC = Matrix spike duplicate concentration

MS/MSD samples: 7/3

Compound	Ade	ike ded	Sample Concentration (MSCS)	Spiked Sample Concentration		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
**************************************	MS	MSD	******	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PFBA	0.00009	0.00935	0.00099	0.0109	00106	109	109	103	103	3	3
40 5	0.008#	0.00861	0.00099	0.043	0.0409	70	75	51	ST	4	4
										•	

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0%
f the recalculated results.

VALIDATION I HADHAGO MONNOHELT

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

⊬age:_ /	_0T
Reviewer:_	9
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 320-233-98

Compound	Sp Ad (<i>MS</i>	like ded	Sp Concer W	ike ntration	Percent I	CS Recovery	L C	SD Recovery	LCS/LCSD RPD			
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated		
DFBA	0.0100	NA	0.0108	NA	108	108				·		
FOS	0.009=8	V	0.00941	V	(0)	101						
	•							<u> </u>				
							·					

results do not agree within 10.0% of the recalculated results.	ple/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported
	culated results.

LDC #: 1-9561496

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	9
2nd reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

R	h	N/A
W	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	$n = \frac{(A_{\circ})(I_{\circ})(V_{\circ})(DF)(2.0)}{(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(%S)}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, P
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (1/2071)(8.5)(10) (1)() 271716 0.986 (0.6)(100)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	· ·
V_{i}	=	Volume of extract injected in microliters (ul)	= 0.000 987 m8/2
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices only.	
2.0	=	Factor of 2 to account for GPC cleanup	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration — ()	Qualification
		PFBA	0.000 99		
			,		
-					
-					

2701 Lokel Ave. West, Suite 220, Calisbau, CA 92010 Bus. 700-027-1100 Pax. 700-027-1099

October 10, 2018

P.W. Grosser Consulting 630 Johnson Ave, Suite 7 Bohemia, NY 11716

ATTN: Ms. Heather Moran-Botta

SUBJECT: Suffolk County Firematics, Data Usability Summary Report

Dear Ms. Moran-Botta,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on September 20, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #43168:

SDG # Fraction

320-42479-1 Fluorinated Alkyl Substances 320-42512-1

The data validation was performed under Category B guidelines using quality control summaries provided by the laboratory. The analyses were validated using the following documents, as applicable to each method:

 USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002; January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink

Project Manager/Senior Chemist

reiotina Prink

	1,145 pages-Al	DV	(Valida	te 20)% pe	er SD	G)							At	tach	mer	nt 1																				
DUS	SR Category B		LDC #4	431	68	(P.\	W. (Gro	SS	er (Cor	ารน	ltin	g -	Во	hei	mia	, N	Υ/	Su	ffol	k C	ou	nty	Fi	ren	nati	cs	Sit	e)							
LDC	SDG#	DATE REC'D	(3) DATE DUE	PF (53	As 7M)																																
Matrix	x: Water/Soil	_		W		W	S	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	S	W	s	W	s	W	s	W	S	W	S
Α	320-42479-1	09/20/18	10/11/18		1	ш																											Ш	Ш	Ш		
В	320-42512-1	09/20/18	10/11/18	3	0																												\square		\square		
		-																															\square	igwdap	\square		
						-																											$\vdash\vdash$	$\vdash\vdash$	$\vdash\vdash$	$\overline{}$	
		1																															$\vdash \vdash$	$\vdash\vdash$	$\vdash \vdash$		
\parallel		+		\vdash																													$\vdash \vdash$	Н	$\vdash \vdash$	\dashv	\dashv
$\parallel \rightarrow \parallel$		+				1																											$\vdash \vdash$	\vdash	$\vdash \vdash$	\dashv	-
																																	$\vdash \vdash$	\vdash	$\vdash \vdash$		
		†																															\Box	\Box	\Box		
																																	П		П		
		1																															П	П	П		
																																	Ш	Ш	Ш		
																																	\square	\bigsqcup	\square		
		-																															\square	igwdap	\square		
		<u> </u>																															$\vdash\vdash$	$\vdash\vdash$	$\vdash\vdash$	$\overline{}$	
		1																															$\vdash \vdash$	$\vdash\vdash$	$\vdash \vdash$		
╠┼		+																															$\vdash \vdash$	H	$\vdash \vdash$	\dashv	_
\parallel		†																															$\vdash \vdash$	Н	$\vdash \vdash$		-
																																	\Box	Н	\Box		
		†																															\Box		\Box		
		1																																			
		İ																																			
																																	Ш	Ш	Ш	<u> </u>	
Total	T/CR			4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4

Suffolk County Firematics, NYSDEC Project Number: 152246

Site:

Suffolk County Firematics

Laboratory:

TestAmerica, Inc., Edison, NY

Report No.:

320-42479-1

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

October 9, 2018

Samples Reviewed and Evaluation Summary

FIELD ID

LAB ID

FRACTIONS VALIDATED

FW-YC001-C

320-42479-2

Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks:

EB011, FB011

Field Duplicate pair:

None Associated

The above-listed water samples were collected on August 23, 2018 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review*, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Labeled Compounds
- Field Duplicate Results
- Ouantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All technical holding time requirements were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was detected in the associated pesticide method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-244082/1-A	Perfluorohexanesulfonic acid	0.294 ng/L	RL	FW-YC001-C

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

No samples were qualified since the associated sample results were greater than the action level.

Contamination was detected in the equipment blank EB011 and field blank sample FB011 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples			
EB011	Perfluorohexanesulfonic acid	0.28 ng/L	RL	FW-YC001-C			
FB011	Perfluorohexanesulfonic acid	0.24 ng/L	RL	FW-YC001-C			

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and < the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and < the Action Level, qualify the result as not detected (U) at the reported concentration.

No samples were qualified since the associated sample results were greater than the action level.

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

LCS Results

All criteria were met.

Labeled Compounds

The following table lists the labeled compounds recovered outside of control limits and the resulting actions.

	Labeled	%R	Affected	
Sample	Compound	(Limits)	Compounds	Validation actions
FW-YC001-C	M2-6:2FTS	185 (25-150)	6:2FTS	UJ nondetects

The 6:2FTS result was estimated due to labeled compounds percent recovery exceedance. The bias cannot be determined. The result can be used for project objectives as a nondetect with an estimated quantitation limit (UJ) which may have a minor impact on the data usability.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Lab Name: TestAmerica Sacramento	Job No.: 320-42479-1					
SDG No.:						
Client Sample ID: FW-YC001-C	Lab Sample ID: 320-42479-2					
Matrix: Water	Lab File ID: 2018.09.06LLB_040.d					
Analysis Method: 537 (modified)	Date Collected: 08/23/2018 13:45					
Extraction Method: 3535	Date Extracted: 09/06/2018 03:43					
Sample wt/vol: 266.8(mL)	Date Analyzed: 09/06/2018 23:11					
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1					
Injection Volume: 20(uL)	GC Column: Acquity ID: 2.1(mm)					
% Moisture:	GPC Cleanup: (Y/N) N					
Analysis Batch No.: 244264	Units: ng/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	35.2		1.87	0.33
2706-90-3	Perfluoropentanoic acid (PFPeA)	10.6		1.87	0.46
307-24-4	Perfluorohexanoic acid (PFHxA)	32.8		1.87	0.54
375-85-9	Perfluoroheptanoic acid (PFHpA)	13.4		1.87	0.23
335-67-1	Perfluorooctanoic acid (PFOA)	36.3		1.87	0.80
375-95-1	Perfluorononanoic acid (PFNA)	1.89		1.87	0.25
335-76-2	Perfluorodecanoic acid (PFDA)	0.39	J 3	1.87	0.29
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.03	UU	1.87	1.03
307-55-1	Perfluorododecanoic acid (PFDoA)	0.52	U	1.87	0.52
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.22	U	1.87	1.22
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.27	U	1.87	0.27
375-73-5	Perfluorobutanesulfonic acid (PFBS)	2.69		1.87	0.19
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	9.52	В	1.87	0.16
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.48	J 2	1.87	0.18
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	12.8		1.87	0.51
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.30	UU	1.87	0.30
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.57	J	1.87	0.33
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2.90	UU	18.7	2.90
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	5.46	J 7	18.7	1.78
27619-97-2	6:2 FTS	1.87	U W	18.7	1.87
39108-34-4	8:2 FTS	1.87	U ()	18.7	1.87

OCT 1 0 2018

LDC #: 43168A96 SDG #: 320-42479-1

Laboratory: Test America, Inc.

VALIDATION COMPLETENESS WORKSHEET

Category B

Date: 19/8/18	_
Page: of // Reviewer:	
2nd Reviewer:	

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537 Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	\$	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	AA	\$50=35/0.8°. Trull 700=390.101=3
IV.	Continuing calibration	A	acv = 3070
V.	Laboratory Blanks	W	7
VI.	Field blanks	w	FB011, EB011
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	N	C 5
IX.	Laboratory control samples	4	109
Χ.	Field duplicates	N	
XI.	Labeled Compounds	w	
XII.	Compound quantitation RL/LOQ/LODs	A	usults=PL - Slots/A
XIII.	Target compound identification	A	/
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

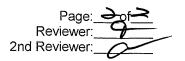
TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	 	Lab ID	Matrix	Date
1 1	FW-YC001-C		320-42479-2	Water	08/23/18
2					
3					
4					
5					
3					
7					
3					
otes:		 			

VALIDATION FINDINGS CHECKLIST


Page: /of >
Reviewer: 2nd Reviewer:

Method: LCMS (EPA Method 537M)

Will the A	T., 7	T		F: 1: 10
Validation Area	Yes	No	NA_	Findings/Comments
I. Technical holding times Wors all trapping holding times mot?				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check		#11 (2000) 		
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?	Contraction in	and Decres		
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?		100 at 10	- 1.1. 1.0 Bay	
V. Laboratory Blanks			10	
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		3442-1543		
VI. Field blanks			143, 143,	
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples	· · · · ·			
Was an LCS analyzed for this SDG?			1	

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates		e mana Managaran		
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?.				
XI. Labeled standards			1	
Were internal standard area counts within ± 50% of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	1			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WETHOD: PFOS/PFOAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		·
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 6:2FTS		
S. 8:2 FTS		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		

Blank extraction date:

VALIDATION FINDINGS WORKSHEET Blanks

Page: <u>)</u> of <u>/</u>	
Reviewer:	_
nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A	
Please see qualifications below for all questions answered. IN - Not abolicable questions are identified as - N/A	: "N/A"

MN N/A Were all samples associated with a given method blank?

VN N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Was a method blank performed with each extraction batch?

Were any contaminants found in the method blanks? If yes, please see findings below.

Blank extraction date: Blank analysis date: 9/6/8

Conc. units: NS/x	/		Assoc	iated sample	es: 1	c > Re	<u></u>		
Compound	Blank ID				San	nple Identificati	on		
MB3	24408-	17							
K	0.24408-								

Associated samples:

. units:									
Compound	Blank ID				San	nple Identificati	on		

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

Blank analysis date:

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	_ of_/_
Reviewer:	<u>a</u>
2nd Reviewer:	2

METHOD: LC/MS PFOS	/PFOAs (EPA Me	ethod 537M)							ZIIG Nevie	wei.
N N/A Were tar	ld blanks identifie get compounds o	detected in the	e field blanks	?						
Blank units: <u>VIS/4</u> Sampling date: <u>8</u> 23	Associated sar	mple units: <u> <i>l</i></u>	15/2							
Field blank type: (circle	one) Trip Blank/F	Field Blank / R	insate / Othe	er:	Asso	ciated Sample	es:	1		
Compound	Blank ID	Bac 1 8 Sample Identification								
	#Boll	EB0 11								
*	0.24	0.⊇5								
				!						
Blank units: A	ssociated samp	ole units:								
Sampling date:	 one) Field Blank	/ Rinsate / Ot	her	Associa	ted Samples:					
Compound	Blank ID									
Compound	Diank ID					ampie identine				

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	(of_/	
Reviewer:	9	
nd Reviewer	0	

METHOD: LC/MS PFAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within 50-150% limits?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications (R)
		1 (ND)	W2-6=2FTS	Area (Limits) 185 (25-150)		WHA (R)
		,				/ / / /
	<u></u>					
<u> </u>						
						-
	1					
 -						

LDC #: 43168A96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	l of l
Reviewer:	9
2nd Reviewer:	<u></u>

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	(Reference Internal Standard)	RRF (2.5 std)	RRF (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	8/28/18	PFOA	(1st internal standard)	0.9894	0.9894	1.0762	1.0762	13.6	13.6
	(A9_N)		PFOS	(2nd internal standard)	1.0737	1.0737	1.0551	1.0551	4.6	4.6
				(3rd internal standard)						
2				(1st internal standard)						
				(2nd internal standard)						
<u> </u>										
3				(1st internal standard)						
				(2nd internal standard)					·	
				(3rd internal standard)						
4				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						

Comments: Refer to	<u>o Initial Calibration findin</u>	gs worksheet for list of qu	<u>ıalifications and associ</u>	<u>ated samples when i</u>	<u>reported results do n</u>	<u>ot agree within 10</u>	0.0% of the recalculated
results.							

LDC #: 43168A96

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	l of l
Reviewer:	9
2nd Reviewer:	a

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 C_{is}^{s} = Concentration of internal standard C_x = Concentration of compound,

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compou	nd (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.09.06.027	9/6/18	PFOA	(1st internal standard)	1.0762	1.057	1.057	1.8	1.8
			PFOS	(2nd internal standard)	1.0551	1.074	1.074	1.8	1.8
2	2018.09.06.038	9/6/18	PFOA	(1st internal standard)	1.0762	1.099	1.099	2.1	2.1
			PFOS	(2nd internal standard)	1.0551	1.063	1.063	0.7	0.7
3			PFOA	(1st internal standard)					
			PFOS	(2nd internal standard)					
4			PFOA	(1st internal standard)					
			PFOS	(2nd internal standard)					

Comments:	Refer to Continuing	g Calibration findings	<u>worksneet for list o</u>	<u>r qualifications and</u>	associated samples	when reported results	<u>s do not agree within</u>	10.0% of the
recalculated r	results					·		

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC 1 * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 720-24

Compound	Spike Added (NS/)		Spike Concentration (<i>M</i> 7		I CS Percent Recovery		I CSD Percent Recovery		L CS/L CSD RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
DFOA	40.0	NA	39.83	NA	99	99				
PFOS	37.	·	34.85	. 4	94	94				
						'				
						·				

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicates findings worksheet for	or list of qualifications and associate	d samples when reported
results do not agree within 10.0% of the recalculated results			

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	<u>(</u> of_/
Reviewer:_	9
2nd reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Percent solids, applicable to soil and solid matrices

M	Ν	N/A
Y	N	N/A

%S

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)$ $(A_{\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)$	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D,
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	0. 7.4.29 1
I _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (9-1865)(2,37)(10)(/)(
V_{\circ}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
V_{i}	=	Volume of extract injected in microliters (ul)	=12.8/n8/L
V_{t}	=	Volume of the concentrated extract in microliters (ul)	1/4
Df	=	Dilution Factor.	·

2.0	= Factor of 2 to accou	nt for GPC cleanup			
#	Sample ID	Compound	Reported Concentratio	Calculated Concentration	Qualification
	1	PFOS	12.8	3	
		110			
	-				
_					
				·	
-					
	· · · · · · · · · · · · · · · · · · ·				
					ļ

Site: Suffolk County Firematics
Laboratory: TestAmerica, Inc., Edison, NY

Report No.: 320-42512-1

Reviewer: Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date: October 9, 2018

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
MW-CR001-C FW-CR006-C	320-42512-1 320-42512-4	Fluorinated Alkyl Substances Fluorinated Alkyl Substances
MW-GA002-C	320-42512-8	Fluorinated Alkyl Substances

Associated QC Samples(s):

Field/Trip Blanks: EB012, FB012 Field Duplicate pair: None Associated

The above-listed water samples were collected on August 24, 2018 and were analyzed for fluorinated alkyl substances by method 537 modified. The data validation was performed in accordance with the USEPA *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review*, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Labeled Compounds
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All technical holding time requirements were met.

LC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

Initial calibration:

All criteria were met.

Continuing calibration:

Date	Instrument ID	Compound	CC %D	Associated Samples	Affected Compound		Validation Action
09/07/18	2018.09.07.006	M2-8:2FTS	30.6	MW-CR001-C FW-CR006-C MW-GA002-C	8:2FTS	XX	UJ nondetects

X = Initial calibration (IC) relative standard deviation (%RSD) > 35; estimate (J/UJ) positive and nondetect results.

The 8:2FTS results were estimated due to continuing calibration exceedance. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

XX = Continuing calibration (CC) percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.

SS = Second source verification percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.

⁺⁼ Response factor (RRF) < validation criteria; estimate (J/UJ) positive and nondetect results.

Blanks

Contamination was detected in the associated pesticide method blank samples. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Blank ID	Compound	Level Detected	Action Level	Associated Samples
MB 320-244321/1-A	Perfluorohexanesulfonic acid	0.247 ng/L	RL	MW-CR001-C FW-CR006-C MW-GA002-C

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the RL and > the Action Level, qualification of the data was not required.

No samples were qualified since the associated sample results were greater than the action level.

Contamination was detected in the equipment blank EB012 and field blank sample FB012 for fluorinated alkyl substances analysis. The presence of blank contamination indicates that false positives may exist for these compounds in the associated samples. Action Levels (ALs) were established at the reporting limit (RL) for contaminants. The following table summarizes the contamination detected.

Field Blank ID	Compound	Level Detected	Action Level	Associated Samples
EB012	Perfluorohexanesulfonic acid	0.20 ng/L	RL	MW-CR001-C
				FW-CR006-C
				MW-GA002-C
FB012	Perfluorohexanesulfonic acid	0.27 ng/L	RL	MW-CR001-C
				FW-CR006-C
				MW-GA002-C

Sample results were qualified as follows:

- If sample concentration was < the reporting limit (RL) and ≤ the Action Level, qualify the result as a nondetect (U) at the RL.
- If sample concentration was > the RL and < the Action Level, qualify the result as not detected (U) at the reported concentration.

No samples were qualified since the associated sample results were greater than the action level.

MS/MSD Results

MS/MSD analyses were not associated with this sample set. Validation action was not required on this basis.

Suffolk County Firematics, NYSDEC Project Number: 152246

LCS Results

All criteria were met.

Labeled Compounds

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL) in the fluorinated alkyl substances analysis. These results were qualified as estimated (J) by the laboratory.

Dilutions were not required for fluorinated alkyl substances analysis.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento Job No.: 320-42512-1 SDG No.: Lab Sample ID: 320-42512-1 Client Sample ID: MW-CR001-C Matrix: Water Lab File ID: 2018.09.07LLAAAA_010.d Analysis Method: 537 (modified) Date Collected: 08/24/2018 10:00 Date Extracted: 09/07/2018 05:19 Extraction Method: 3535 Date Analyzed: 09/07/2018 17:36 Sample wt/vol: 292.4(mL) Dilution Factor: 1 Con. Extract Vol.: 10.00(mL) GC Column: GeminiC18 3x100 ID: 3(mm) Injection Volume: 2(uL) GPC Cleanup:(Y/N) N % Moisture: Analysis Batch No.: 244451 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.66	J 5	1.71	0.30
2706-90-3	Perfluoropentanoic acid (PFPeA)	4.00		1.71	0.42
307-24-4	Perfluorohexanoic acid (PFHxA)	3.93		1.71	0.50
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.51	J 5	1.71	0.21
335-67-1	Perfluorooctanoic acid (PFOA)	3.03		1.71	0.73
375-95-1	Perfluorononanoic acid (PFNA)	1.82		1.71	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	0.27	UU	1.71	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.94	U	1.71	0.94
307-55-1	Perfluorododecanoic acid (PFDoA)	0.47	U	1.71	0.47
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.11	U	1.71	1.11
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.25	U	1.71	0.25
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.44	J 5	1.71	0.17
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	4.68	В	1.71	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.16	υU	1.71	0.16
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	8.51		1.71	0.46
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.27	UU	1.71	0.27
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.30	Ū	1.71	0.30
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2.65	U	17.1	2.65
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.62	Ü	17.1	1.62
27619-97-2	6:2 FTS	1.71	U 🗸	17.1	1.71
39108-34-4	8:2 FTS	1.71	U U5	17.1	1.71

OCT 1 0 2018

Initials: CR

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento	Job No.: 320-42512-1
SDG No.:	
Client Sample ID: FW-CR006-C	Lab Sample ID: 320-42512-4
Matrix: Water	Lab File ID: 2018.09.07LLAAAA_013.d
Analysis Method: 537 (modified)	Date Collected: 08/24/2018 11:00
Extraction Method: 3535	Date Extracted: 09/07/2018 05:19
Sample wt/vol: 279.6(mL)	Date Analyzed: 09/07/2018 17:56
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 244451	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.44	J 5	1.79	0.31
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.05		1.79	0.44
307-24-4	Perfluorohexanoic acid (PFHxA)	3.34		1.79	0.52
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.12	J 5	1.79	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	2.36		1.79	0.76
375-95-1	Perfluorononanoic acid (PFNA)	1.51	J ~	1.79	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	0.28	UU	1.79	0.28
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.98	U	1.79	0.98
307-55-1	Perfluorododecanoic acid (PFDoA)	0.49	Ū	1.79	0.49
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.16	U	1.79	1.16
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.26	U 🗸	1.79	0.26
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.24	J 5	1.79	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.02	В	1.79	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.17	υU	1.79	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	3.19		1.79	0.48
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.29	U U	1.79	0.29
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.31	U	1.79	0.31
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2.77	U	17.9	2.77
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.70	U	17.9	1.70
27619-97-2	6:2 FTS	1.79	U 🗸	17.9	1.79
39108-34-4	8:2 FTS	1.79	UUS	17.9	1.79

OCT 1 0 2018

The second of th

Initials: CR

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento	Job No.: 320-42512-1
SDG No.:	
Client Sample ID: MW-GA002-C	Lab Sample ID: 320-42512-8
Matrix: Water	Lab File ID: 2018.09.07LLAAAA_016.d
Analysis Method: 537 (modified)	Date Collected: 08/24/2018 11:45
Extraction Method: 3535	Date Extracted: 09/07/2018 05:19
Sample wt/vol: 294.7(mL)	Date Analyzed: 09/07/2018 18:15
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 244451	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.58	J 5	1.70	0.30
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.80		1.70	0.42
307-24-4	Perfluorohexanoic acid (PFHxA)	4.98		1.70	0.49
375-85-9	Perfluoroheptanoic acid (PFHpA)	2.34		1.70	0.21
335-67-1	Perfluorooctanoic acid (PFOA)	4.01		1.70	0.72
375-95-1	Perfluorononanoic acid (PFNA)	0.65	JS	1.70	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	0.29	JΚ	1.70	0.26
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.93	U ט	1.70	0.93
307-55-1	Perfluorododecanoic acid (PFDoA)	0.47	U	1.70	0.47
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	1.10	U	1.70	1.10
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.25	U V	1.70	0.25
375-73-5	Perfluorobutanesulfonic acid (PFBS)	2.17		1.70	0.17
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	10.8	В	1.70	0.14
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.62	J	1.70	0.16
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	25.7		1.70	0.46
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.27	UU	1.70	0.27
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.30	U	1.70	0.30
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2.63	U	17.0	2.63
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	1.61	U	17.0	1.61
27619-97-2	6:2 FTS	1.78	J	17.0	1.70
39108-34-4	8:2 FTS	1.70	U U S	17.0	1.70

OCT 1 0 2018

Initials: CR

LDC #: 43168B96 SDG #: 320-42512-1

Laboratory: Test America, Inc.

VALIDATION COMPLETENESS WORKSHEET

Category B

Date:	ne	3/12
Page:_ Reviewer:	Æ	1
2nd Reviewer:_	Ç	

METHOD: LC/MS Fluorinated Alkyl Substances (EPA Method 537 Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	4	
H.	GC/MS Instrument performance check	A	_
III.	Initial calibration/ICV	AA	RSD = 75/0. Y . Two TOD = 390.101=3
IV.	Continuing calibration	w	ecv=300
V.	Laboratory Blanks	W	7
VI.	Field blanks	w	EB0(2, 7B0 (2
VII.	Surrogate spikes	1	,
VIII.	Matrix spike/Matrix spike duplicates	AH	mostli saute o
IX.	Laboratory control samples	A	105
Χ.	Field duplicates	N	
XI.	Labeled Compounds	-A	
XII.	Compound quantitation RL/LOQ/LODs	4	results - xx - Stats/A
XIII.	Target compound identification	A	/
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank

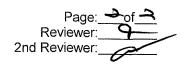
EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-CR001-C	320-42512-1	Water	08/24/18
2	FW-CR006-C	320-42512-4	Water	08/24/18
3	MW-GA002-C	320-42512-8	Water	08/24/18
4				
5				
6				
7				
8				

Note	8.				
	MB 320-2443=V	A			


VALIDATION FINDINGS CHECKLIST

Method: LCMS (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ₹20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				
IIIb. Initial Calibration Verification			(2) (3)	February States (States States (States States (States States States (States States States States States States States (States States St
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?			<u> </u>	
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?		-		
VIII. Matrix spike/Matrix spike duplicates	21.00			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		-		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples			T	
Was an LCS analyzed for this SDG?	/		1	

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		,		
X, Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?.			/	
XI. Labeled standards				
Were internal standard area counts within <u>+</u> 50% of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification	i de	9	li.	
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WIETHOD. FFUS/FFUAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		·
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)	-	
R. 6:2FTS		
S. 8:2 FTS		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		

Y(N N/A

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:of	_
Reviewer:	_
2nd Reviewer:	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed after every 10 injections for each instrument?

Were all continuing calibration percent differences (%D) ≤30 %?

#	Date	Standard ID	Compound	Finding %D (Limit: <30.0%)	Finding RRF (Limit:)	Associated Samples	Qualifications
	4/18	2018.09.07.006	M2-S	30.6		All (ND)	YW/\$ (3)
							/ /
				-			

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1 of /
Reviewer:	9
2nd Reviewer:	0

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)


Please see qua	alifications below for all question	ons answered "N". Not applicable questions are identified as "N/A".								
N N/A N N/A	Were all samples associated with a given method blank?									
	N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?									
N N/A N N/A	Was a method blank perform	ned with each extraction batch?								
₩N N/A	Were any contaminants four	nd in the method blanks? If yes, please see findings below.								
Blank extracti	on date: <u>タ/ア// ゟ</u> Blank a	nalysis date: 9/7/18								
Conc. units:	18/2	Associated samples:								

Compound	Blank ID	Sample Identification									
MB3	0-244321/1	A		- W - I							
K	0.247										

Associated samples:

Blank extraction date: Conc. units:	Blank ana	ank analysis date: Associated samples:											
Compound	Blank ID		Sample Identification										
				, ,									
										,			

Blank analysis date:

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	of
Reviewer:	9
2nd Reviewer:	

IETHOD: LC/MS PFOS/PFOAs (EPA Method 537M)													
<u>Y∖N_N/A</u> Were field blanks identified in this SDG?													
Were target compounds detected in the field blanks?													
Blank units: 18/4	Blank units:												
ampling date: 8/24/18													
Field blank type:/(circle o													
Compound	Blank ID	Bok 10											
	ZB0 ≥	FB012											
K	0.20	0.27			,								
			:										
									<u> </u>				
Blank units: As Sampling date:Field blank type: (circle o				Associa	ed Samples:			·					
Compound	Blank ID				S	ample Identifica	ition						
		<u> </u>											

LDC #: 43168B96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	<u></u> of_/
Reviewer:	9
2nd Reviewer:_	2

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 C_x = Concentration of compound, S = Standard deviation of the RRFs

%RSD = 100 * (S/X)

X = Mean of the RRFs

				Reporte	d Recalculate	d Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound (Reference Internal Standa	RRF ard) (2.5 st	RRF d) (2.5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	8/29/18	PFOA (1st internal standa	rd) 1.0473	1.0473	1.1303	1.1303	9.9	9.9
	(A8_N)		PFOS (2nd internal stand	ard) 1.1107	1.1107	1.0998	1.0998	2.0	2.0
			(3rd internal standa	ard)					
2			(1st internal stand	ard)			: :		
			(2nd internal stand	ard)					
<u> </u>									
3			(1st internal stand	ard)					
			(2nd internal stand	ard)					
			(3rd internal standa	ard)					
4			(1st internal stand	ard)					
			(2nd internal stand	ard)					
			(3rd internal stand	ard)					

Comments:	Refer to Initial	<u>Calibration fir</u>	<u>ndings worksh</u>	eet for list of q	<u>ualifications an</u>	<u>ıd associated</u>	<u>samples whe</u>	<u>in reported re</u>	<u>esults do not a</u>	<u>agree within 1</u>	<u>10.0% of the</u>	<u>recalculated</u>
results.												
												

LDC #: 43168B96

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	<u>l</u> of <u>l</u>
Reviewer:_	A
2nd Reviewer:_	_

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compoun	d (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	2018.09.17.006	9/7/18	PFOA	(1st internal standard)	1.1303	1.083	1.083	4.1	4.1
			PFOS	(2nd internal standard)	1.0998	1.087	1.087	1.2	1.2
2			PFOA	(1st internal standard)					
			PFOS	(2nd internal standard)					
3			PFOA	(1st internal standard)					
			PFOS	(2nd internal standard)					
4			PFOA	(1st internal standard)					
			PFOS	(2nd internal standard)					

Comments: _F	Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the
recalculated re	sults

LDU #: 4316057 6

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:/_of/_
Reviewer:
2nd Reviewer:

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 320-2443-1

Compound	Spike Added (VS/C-)		Spike Spike Added Concentration		I CS Percent Recovery		LCSD. Percent Recovery		L CS/L CSD RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
FOA	40.0	NA	39.25	NA	98	98				
PF05	37.		39.75 36.58	V	99	99				
					<u>'</u>					
						·				

Comments:	Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported
results do no	ot agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: Reviewer: 2nd reviewer:___

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

1	N	N/A
∇	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_x)(I_s)(V_t)(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(\%S)$

Area of the characteristic ion (EICP) for the compound to be measured

Area of the characteristic ion (EICP) for the specific internal standard

Amount of internal standard added in nanograms (ng) =

= Volume or weight of sample extract in milliliters (ml) or grams (g).

Volume of extract injected in microliters (ul)

= Volume of the concentrated extract in microliters (ul)

Df Dilution Factor.

Percent solids, applicable to soil and solid matrices only.

2.0 Factor of 2 to account for GPC cleanup

Example:

Sample I.D. ______, ____

Conc. = (150253) = .5)(10) ()()

= 3.03 N 3/2

	T	Intrior of o clearup		1	
#_	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	1	DFO A	3.05		
I 	 	TTO A	3.		
ļ					
			 		
<u> </u>					
ļ					
			<u> </u>		
	<u> </u>			<u> </u>	