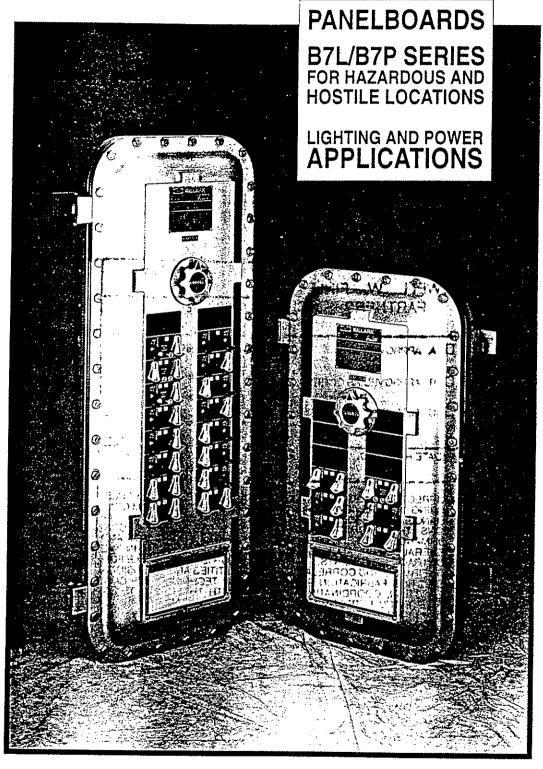

### 프는 해당님 INIT HEATERS

and mouses either horizontally or A. Totany versatire. For factories, ware--grant garages, stores, shipping rooms, power stations, aircraft hangars. Can be used for primary, supplementary, spot, or dual-system

- It is range of optional control kits are field nstallable, increasing the MUM adaptability to the specification market.
- s Friend at unit heater with 10 power ratings; Erker to 50 Kw heating output; 208, 240, 450V, 10.230 to 170,500 BTU/hr.
- 32 compatible models (no need to try to assemble a heating system from 70 or 80 mod-
- · Hanvy gauge die-formed steel housing. Twotoned, smartly styled.
- · Advanced pull-through air flow design draws arrisarross heating element for more even air 35 Mullion and cooler element operation.
- · Specially designed venturi outlet to meet that added throw as required in vertical position.
- Situation circuit fusing (when required).
- Completely enclosed fan motor.
- 1-or 3-phase wiring on 5 through 10 Kw 208/240V and 15 Kw 208V units (field inter-. . . €.

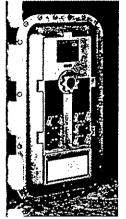
- · Aluminum-finned, copper clad steel sheath heating element has longer useful life, because of cocier sheath temperature and faster heat dissipation.
- · 24V control transformer standard on most models, providing a safer and more accurate means of temperature control. 3 Kw and 5 Kw, 208-277V, have line voltage controls as standard. (24V control available on made-to-order basis.)
- · Automatic reset linear thermal cut-out, capillary type, provides protection over entire length of element area. (Manual reset protection available on made-to-order basis.)
- 2-speed fan selector switch (25 to 50 Kw models).
- · Fan delay feature eliminates cold drafts. Element heats up before fan cuts in, then fan continues to distribute heat after element shuts
- Ruggedly built, yet lighter weight for easier installation. No piping flues, valves, or traps.
- Individually adjustable discharge louvers to . control air flow.
- · Choice of optional diffusers for variety of air patterns, maximizing heat concentration and coverage in the vertical position. 2000 (4)

· Meets all UL, NEC, and OSHA requiremen UL File No. E21609.




### SELECTION CHART

| SELEC      | MOITC          | CHAF | <b>T</b>   |             | ,            |     |         | .•        | <i>i</i> *.; | 2 1.35           | c (c       | ; ,            |                               |     |                           |      |         |          |
|------------|----------------|------|------------|-------------|--------------|-----|---------|-----------|--------------|------------------|------------|----------------|-------------------------------|-----|---------------------------|------|---------|----------|
|            | Designation of |      | TANAR .    |             |              |     |         |           |              | و و درو          |            | <i>_</i>       | !                             |     | ملائدوار<br>#####كامرىدور | al e |         |          |
| , ev. 1000 | 200            | :0   | 3.0        | 10.5        | *4 F         | 472 | 4 4     | - 350     | £U() •••     | 27.<br>7.7       | 1.208.4    | 16001          | ( a. j                        | 8   | a                         | 12   | AW6 12  | -        |
| 4.         | . : .          |      | 3.ú        |             |              |     | li li   | 190       | $\xi A_i$    |                  | 748.540    | 10%            |                               | 5   | - :                       | -    | AWL 12  | 2        |
| Nun63 - 71 | 277            | 10   | 3.0        | .ن.         |              |     | بعبيلية | er spent  | €0/          | ينباتن م         | . 36.      |                | 1 m 🛫                         | ŧ   |                           | 12   | AWG 14  | 2        |
| carbibles. | \$             | 5.7  | 3.0        |             | ٦.           |     |         | , (°5.)   | 607          | 27               | 426        | 1-11           |                               | ç   |                           | :2   | AWG 14  | 2        |
| ROBUS 60   | 2°C            | 1-30 | 5.0        | ٠.,         | ,::          |     |         |           | 1(5)         |                  | 118        | 9,             |                               | ,   | ٠.                        | 12   | AWG 10  | 2        |
| : MUHU5-21 | 208/240        | 1-30 | 37/50      | 376.170     | 18 003 1     |     | 40      |           | 80-1         |                  | Now to     |                |                               |     | 2)                        | . 12 | AWG 10  | 2        |
| HUHUL-71   | 277            | 10   | 5.0        | j ; · ·     | 3.3          |     | 1. 1    |           | -20          | 40.              | · ` ` '    | 1680           |                               | 5   | ;                         | 12   | AWG 10  | 2        |
| MUH05-41   | 48(1           | 30   | 5.0        | 17.5        | 6.6          |     | (J. 44) | 3354      | , 869 · ·    |                  | 480        | il d           | 14 L                          | 8   | 3                         | 12   | AWG 14  | 2        |
| 8-10-HuMI  | 20t.           | 1-30 | 7.5        | 25 6        | 36 (         | 23  |         | . 650     | 1979. +      | 71 <b>1</b> 10 m | 2261       | 1(00)          | . ;                           | 3   | 14                        | 18   | AWG 6   | 3        |
| MUH-37-2   | 208/240        | 1-30 | 5.6/7.5    | 19.1/25.5   | 27.9/31.3    | 24  | 14-     | 650       | 976          | 37               | 208/240 -  | ,1600,         | 173                           | ê   | 14                        | 18   | AWG 8   | 3        |
| MJH-07-7   | 27.7           | 10   | 7.5        | 25.5        | 27 ti        | 2.: | հե      | 650       | 970          | · 37° .          | 277        | 1600           | , 4 <b>1</b>                  | ó   | 14                        | 18   | AWG 8   | 3        |
| MUH-67-4   | 487            | 38   | 7.5        | 25 6        | 9.0          | 24  | 5B      | 650       | /970°        | 37*              | 480 -      | 1600,*         | 7.4                           | 9   | 14                        | 18   | AVG 14  |          |
| 11UH-10-8  | 20€            | 1.33 | 10.0       | 34 :        | 45.0         | 4   |         | +0°767 g  | . 1g:%:      | 4                | - 708      | าเบาก          | $M_{\rm dis}$                 | 9   | 1.0                       | 18   | AWG 4   | :        |
| MUH-10-2   | 208/240        | 1-30 | 7.5/10.0   | 25 6/34 1   | 36 9/42 0    |     | 16.7    | n d       | '9;n''       | 30               | 205,740    | (0:00<br>(4:4) | H14                           | 9   | - 14                      | 18   | AWG 6   | 3        |
| : MUH-10-7 | 277            | 10   | 10.0       | 24.1        | 6 2          | :   |         | tiati     | 974          | .:!1             | 277 1      | 9367           | UT:                           |     | :4                        | 18   | AWG 6   | 1 :      |
| MUH-10-Z   | 450            | 38   | 100        | 34 1        | 12.5         | 798 |         | 7 050°    | 97/1         |                  | 41.74[jene | ه بعقق وافته ا | - <b>100</b> 0 e <sup>2</sup> | 2   | 14                        | 18   | AWG 14  |          |
| MBH-15-E   | 20٤            | 1-30 | 15.0       | 51,2        | 72 5         | 24  | 1.0     | 910       | 1640         | 52*              | 208        | ilao           | 4                             | 11  | 50                        | 35   | AWG 2   | [ :      |
| MUH-15-2   | 205/240        | 50   | 11,2/15.0  | 38.2/51.2   | 31.3/36.1    | 24  | ::      | 910       | 1640         | 52*              | 208:240    | 1530           | 34                            | 1:  | 70                        | 35   | AWG 6   | !        |
| MUH-15-4   | 480            | 30   | 15.0       | 51.2        | 18.0         | 24  | 5C      | 910       | 1640         | 52*              | 480        | 1539           | <i>\</i> /;•                  | 11  | 20                        | 35   | AWG 10  | <u> </u> |
| MUH-20-8   | 208            | 30   | 20.0       | 68.2        | 56           | 74  | 5.5     | 1320      | 2060         | 48"              | 208        | 1590           | 15                            | 12  | 23                        | 41   | AWS 4   | - ₹      |
| MUH: 20-2  | 209/240        | 33   | 15.0/20.0  | \$10.082    | 41 2 48.0    | , 4 | 2       | 1320      | 2060         | 48"              | 208/240    | 1500           | 144                           | 12  | 2.                        | 41   | AWG4    | , C      |
| InUH-20-4  | 480            | 30   | 20.0       | 68.2        | 24.3         | 74  | ′~      | 1320      | 2060         | 12.1             | 180        | 1500           | 14                            | -:7 | 23                        | 41   | AWG 10. | Žu t     |
| MUh -25-2  | 208,240        | 30   | 18.7/25.0  | 63.1785.2   | 52 OHC 0     |     |         | 2100 1300 | 210001931    | 03 44*           | 208/246    | 1600 1075      | 4                             | +3  | ∴*                        | 50   | AWG 3   | - 1      |
| MUH-25-4   | 483            | 30   | 25.0       | \$1.2       | 20.0         | .24 |         | (100-1500 | 2100/2019    | 135 44°          | -580       | 1600 1325      | <u> </u>                      | 12  | 25                        | 50   | 8 awa   | 5        |
| B DC-HLM   | 208            | 30   | 30.0       | 5.23        | E4 ii        | -1  |         | 0105-1899 | 2109/2030    | 451 531          | :'08       | 1006-1376      | 4                             | 121 |                           | 50   | AWG1    |          |
| MUH 36 2   | 2087040        | 20   | 22.5/30.0  | 75 ( 1723   | 63-2,12.2    | 21  |         | 1"        | 21001'030    | 451 53*          | 2087240    | 1600 1375      | 74                            | 12  | 25                        | 50   | AWG 2   |          |
| MUH 30-4   | 430            | 30   | 30.0       | \$47.3      | 36.5         | :-  | L       | 2309 1896 | 2100.2020    | 45° 53°          | 489        | 1690-1375      | i i                           | 12  | ,5°;                      | 50   | AWG 6   |          |
| MUH-40-2   | 208/240        | 3Ø   | 30.0/40.0  | :02.3:156.4 | 83.4.96      | 7.1 | - ;     |           | 3269 (1901)  | 12 19            | 298/240    | 1525 (421)     | ':                            | 15  |                           | 60   | AWG 10  | 1        |
| MUH-40-4   | . 480          | 30   | <b>400</b> | 136.4       | 40 (1        | 72  |         | 3990-2690 | 320071151    | 42 19            | 430        | 1505 1420      | -                             | 15  |                           | υC   | AWG 4   |          |
| MUH-50-8   | 208            | 30   | 50.0       | 1705        | 139.2        | ,48 | - ;;    | 3000 2600 | 3260-290-    | 581951           | 208        | :525 1429      | À                             | 15  | :5                        | 60   | AWG 4/0 | 1        |
| MUH-SD-2   | 208/240        | 3C   | 37.5/50.0  | 127.3/170.5 | 1942 (204    | -4  | ე.      | 3000-2600 | 3260/2900    | 53 °U1*          | 208/740    | 1575-1420      | 4                             | 15  | 25                        | 60   | AWG 3/0 | 1        |
| MUH-50-4   | 480            | 3Ø   | 50.0       | 1705        | <b>6</b> 0 2 | :   | pë.     | 3000/2600 | 326071909    | 53 /61"          | 480        | 1525/1420      |                               | 15  | 75                        | 60   | AWG 3   | 1        |


- All standard units are supplied with a low voltage control transformer and contactor (24V) except MUH-03 & 05, 208, 240, & 277 volt models. Low voltage control on these units is available on made to order. All units armaise available on special order for 120 year control; internal with transformer or external volhout.
- 3. On dual phase units, maximum amp draw is listed for respective voltage. 25 thru 50 Kw models have two speed motors and dual CFM ratings.
- 5A Standard
- 58. Optional made to order amp load unbalanced on 3 Phase
- in the of a major to major a resident in contient in Paragraph







KILLARK'



Circuit breaker panelboards from Killark fill a wide range of explosion-proof and weatherproof installation requirements for circuit protection and equipment control.

### **B7L/B7P SERIES**

CLASS I, DIV 1&2 GROUPS B,C,D CLASS II, DIV 1&2 GROUPS E,F,G CLASS III, DIV 1&2 NEMA 3, 4, 4X, 7BCD, 9EFG EXPLOSION-PROOF DUST-TIGHT WEATHERPROOF

### **APPLICATIONS**

PRISM Panelboards are for use in:

- Hazardous locations due to the presence of flammable gasses or vapors, combustible dust, or easily ignitable fibers and flyings, and areas which are subject to corrosion, weather and dampness.
- Petroleum Refineries, Chemical and Petrochemical plants with indoor and outdoor processes.
- Applications requiring overcurrent and short circuit protection of lighting, appliances, heating and motor circuits.

### PANELBOARD ORDERING INFORMATION

- 1 Select basic panelboard with the following criteria in mind:
  - a) Number of poles (spaces) required.
  - b) Type of breaker desired.
  - c) Type wiring system needed.
  - d) If Main Breaker is desired.
- 2 Select branch breakers from page 6 based on frame, number of poles, amperage and type. Make sure breakers selected are compatible with panelboard selected.
- 3 Refer to page 6 for additional options.
- 4 See page 7 for detailed ordering instructions and example.

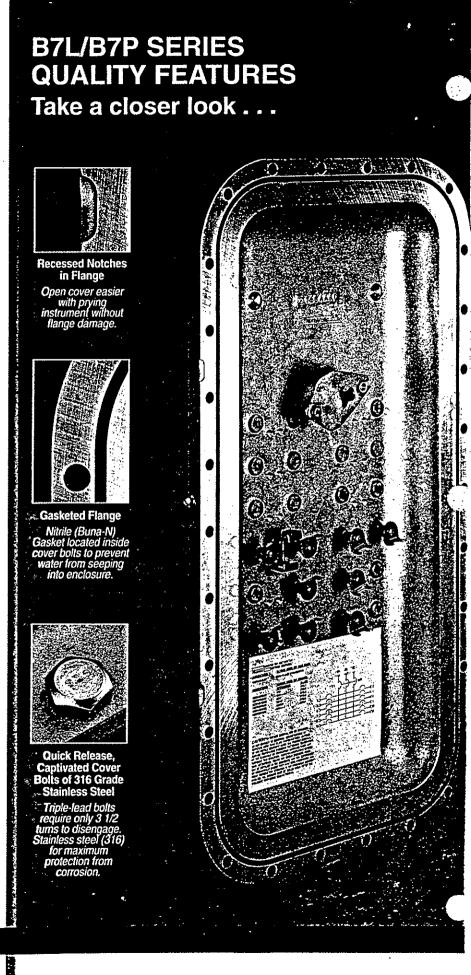
| Panelboard<br>Series | Туре     | Circuit Breaker<br>Frame Type | Maximum<br>Voltage |
|----------------------|----------|-------------------------------|--------------------|
| B7L                  | Lighting | Westinghouse Quicklag         | 240 Volt           |
| B7P                  | Power    | Westinghouse Series C         | 600 Volt           |

### STANDARD MATERIALS

- Enclosure Copper Free Aluminum (less than 4/10 of 1% copper).
- · Main Breaker Handle Copper Free Aluminum.
- · Cover bolts 316 Grade Stainless Steel.
- Flange Gasket "O" Ring Buna-N Nitrile.
- Branch Breaker Operators Valox Thermoplastic Polyester handle molded onto 316 stainless steel shaft with neoprene "O" ring.
- Hinges are Copper Free Aluminum with stainless steel pin and hardware.
- Mounting Lugs 1/4" thick 6061-T651 Aluminum.

### STANDARD FINISH

• Grey Silver Lacquer Paint.


### THIRD PARTY CLASSIFICATIONS



Classified



Certified (CSA Cert. Est.9/93)



# Wiring Room

To meet latest NEC wire bend requirements.

Hinged Cover

### **Top Feed Panel**

Standard. With bottom feed optional.

### **UL Classified and CSA** Certified

CLASS I, DIVISIONS 1&2, GROUPS B.C.D CLASS II, DIVISIONS 1&2, GROUPS E.F.G CLASS III, DIVISIONS 182

### **Rated For Hostile Corrosive Environments; Indoors and Outdoors**

NEMA 3- Protection from falling rain. NEMA 4-4x - Protection from hose directed water and corrosion.

# 6

### **Standard Electrical Components**

B7L - Westinghouse Quicklag Breakers B7P - Westinghouse Series C Breakers

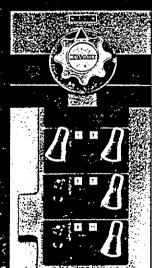
### **Buss Bars**

- B7L Main buss is tinplated aluminum. Copper available as option.
   B7P Copper standard.

Main Lugs Mechanical solderless type, approved for CU or AL conductors.

### **Ductile Mounting Lugs**

High strength yet ductile aluminum alloy. Can adjust to irregular surface. Slotted for easier mounting.


### **Copper-Free Aluminum Construction**

High strength, light weight, corrosion resistant.

### **Conduit Openings Supplied Standard**

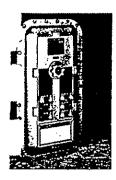
Sufficient quantity and size for incoming power and branch circuits. Optional sizes and locations available. Suitable for field installation of drain and breather.

### Solid Neutral Standard



### MAIN BREAKER HANDLE

- · Provisions for lock "on" or "off" positions. · Minimum number of parts for trouble free operation.
- Spring-loaded to prevent breakage of
- breaker toggle. . "O" ring on shaft.


### **BRANCH BREAKER HANDLE**

- · Provisions to lock all branch breakers in
- on or off positions.

  O' ring gasket on all shafts.

  Spring-loaded so that cover can be closed regardless of breaker/handle position.
- Lifts and rotates into place.
  Identification of On-Trip-Reset-Off is
- positive.
  B7L lighting panel predrilled and factory plugged for maximum number of branch circuits. Permits addition of breaker handles and spaces plus changing of 1-2-3 pole breakers in field.

# B7L SERIES LIGHTING PANELBOARDS



### **B7L SERIES**

CLASS I, DIV 182 GROUPS B,C,D CLASS II, DIV 182 GROUPS E,F,G CLASS III DIV 182 NEMA 3, 4, 4X, 7BCD, 9EFG EXPLOSION-PROOF DUST-TIGHT WEATHERPROOF

Westinghouse type BA circuit breaker 1,2 or 3 pole.

Catalog numbers on this page are for the basic panelboard enclosure only with a

panel interior chassis containing main lugs or main breaker as illustrated. Internal branch breakers and external handles are NOT included in basic enclosure catalog number and must be ordered as separate items. Refer to pages 6 & 7 for part numbers of branch breakers and detailed ordering instructions.

### **BRANCH CIRCUIT LOADS**

The interior panel chassis supplied in B7L panel is limited to a maximum of 140 amperes at any one connection point. Breakers of 50 thru 100 amps must be installed opposite breakers of smaller

amperage so as not to exceed the 140 ampere limitation.

### **CIRCUIT BREAKER RATINGS**

| Sings 4 | ************************************** |                       | Missi.     |
|---------|----------------------------------------|-----------------------|------------|
| BAB     | 1<br>2<br>3                            | 120<br>120/240<br>240 | 10,000 AIC |
| BABSWN  | 1<br>2                                 | 120/240<br>120/240    | 10,000 AIC |
| QBGF    | 1<br>2                                 | 120<br>120/240        | 10.000 AIC |
| QBGFEP  | 1<br>2                                 | 120<br>120/240        | 10,000 AIC |

### PANEL WITHOUT MAIN BREAKER (MAIN LUGS ONLY)

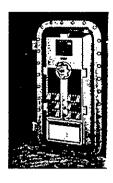
|               | Economi<br>Thing                                            | Openies (* 1971)<br>Openies (* 1971)               | April 10 1                                                  | Base Finelosure de Chastis<br>Camus Agains                                                                                                                                                                  | Gredoure<br>Education    | Convire<br>Tage |
|---------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|
| AKERS         | Single Phase<br>3 Wire<br>with Solid Neutral<br>120/240 VAC | 12<br>18<br>18<br>24<br>24<br>30<br>30<br>36<br>42 | 100<br>100<br>225<br>100<br>225<br>180<br>225<br>225<br>225 | B7L20 - 112 - ML100<br>B7L29 - 118 - ML100<br>B7L41 - 118 - ML225<br>B7L29 - 124 - ML100<br>B7L41 - 124 - ML225<br>B7L41 - 130 - ML100<br>B7L41 - 130 - ML225<br>B7L41 - 136 - ML225<br>B7L41 - 136 - ML225 | A B C B C C C C C        | EGFGFFF         |
| SS BRANCH BRE | Three Phase<br>4 Wire<br>with Solid Neutral<br>120/208 VAC  | 12<br>18<br>18<br>24<br>24<br>30<br>30<br>36       | 100<br>100<br>225<br>100<br>225<br>100<br>225<br>225<br>225 | B7L20 - 312 - ML100<br>B7L29 - 318 - ML100<br>B7L41 - 318 - ML225<br>B7L29 - 324 - ML100<br>B7L41 - 324 - ML225<br>B7L41 - 330 - ML100<br>B7L41 - 330 - ML225<br>B7L41 - 336 - ML225<br>B7L40 - 342 - ML225 | <b>∢</b> B ∪ B ∪ ∪ ∪ ∪ ∪ | EGrGrGrFF       |

### **当 PANEL WITH MAIN BREAKER**

|        |                    | - 1-11 711 7 0-1 1 0-1 1 |                             |                        |                                                 |                       |                                                  |
|--------|--------------------|--------------------------|-----------------------------|------------------------|-------------------------------------------------|-----------------------|--------------------------------------------------|
| SURE   | Cercine):          | Numberok<br>Bandi 20ec   | Maintareaker<br>AMP Halling | Main Breater<br>Graine | Basic Enclosure and Chassis<br>Catalog (tumber) | Enclosure<br>Box Size | Main Wire<br>Range                               |
| က္သ    |                    | 12                       | 100                         | EHD                    | B7L29 - 112 - MBE100                            | В                     | Н                                                |
| Ö      |                    | 18                       | 100                         | EHD                    | B7L41 - 118 - MBE100                            | , ,                   | H                                                |
| 7      | Single Phase       | 24                       | 100                         | EHD                    | B7L41 - 118 - MBE100                            | ,                     |                                                  |
| ENC    | 3 Wire             | 24                       | 225                         | CA                     | B7L41 - 124 - MBC100                            | ) ×                   | H                                                |
| iii i  | with Solid Neutral | 30                       | 100                         | EHD                    | B7L41 - 130 - MBE100                            | , ,                   | 1                                                |
|        | ,                  | 30<br>30                 | 225                         |                        |                                                 | ا م                   | . "                                              |
| RD     | 120/240 VAC        |                          |                             | CA                     | B7L50 - 130 - MBC225                            | ;                     | ! !                                              |
| AF     |                    | 36<br>42                 | 225                         | CA                     | B7L50 - 136 - MBC225                            | D D                   | ! !                                              |
| $\sim$ |                    | 42                       | 225                         | CA                     | B7L50 - 142 - MBC225                            | D                     | 1 1                                              |
| 80     |                    | 12                       | 100                         | EHD                    | B7L29 - 312 - MBE100                            | В                     | Н                                                |
|        | Three Phase        | 18                       | 100                         | EHD                    | B7L41 - 318 - MBE100                            | l č l                 | H I                                              |
| ANEL   | 4 Wire             | 24                       | 100                         | EHD                    | B7L41 - 324 - MBE100                            | l č l                 | н                                                |
| z      | with Solid Neutral | 24                       | 225                         | CA                     | B7L41 - 324 - MBC225                            | Č                     | i i                                              |
| <      | TIALI CONOTICUALE  | 30                       | 100                         | EHD                    | B7L41 - 330 - MBE100                            | ľči                   | i i                                              |
| ٥      | 120/208 VAC        | 30                       | 225                         | CA                     | B7L50 - 330 - MBC225                            | Ĭŏ                    | ''                                               |
| SIC    | 120/200 170        | 36                       | 225                         | CA                     | B7L50 - 336 - MBC225                            | l ŏ l                 | i                                                |
| ភ      |                    | 42                       | 225                         | ČA                     | B7L50 - 342 - MBC225                            |                       | i l                                              |
| BA     | PANEL WITH         | BACK FEED                |                             |                        |                                                 |                       |                                                  |
|        | Single Phase       | 12                       | 100                         | BAB                    | B7L29 - 112 - MBB100                            | В                     | J                                                |
|        | 3 Wire             | 18                       | 100                         | BAB                    | B7L29 - 118 - MBB100                            | В                     | <u>.</u>                                         |
| - 1    | with Solid Neutral | 24                       | 100                         | BAB                    | B7L41 - 124 - MBB100                            | l č l                 |                                                  |
|        | 120/240 VAC        | 30                       | 100                         | BAB                    | B7L41 - 130 - MBB100                            | Č                     | ĭ                                                |
| ŀ      | Three Phase        | 12                       | 100                         | BAB                    | G   B7L29 - 312 - MBB101-40                     | В                     | <del>-                                    </del> |
|        | 4 Wire             | 18                       | 100                         | BAB                    | B7L29 - 318 - MBB100                            | B                     | J                                                |
|        | with Solid Neutral | 24                       | 100                         | BAB                    | B7L41 - 324 - MBB100                            | <b>a</b>              | J,                                               |
| 1      | 120/208 VAC        | 30                       | 100                         | BAB                    |                                                 | 5                     | J                                                |
|        | IZUIZUB VAC        |                          | 100                         | םאם                    | B7L41 - 330 - MBB100                            | C I                   | . J                                              |

Main Breaker Panel includes main breaker and its price in basic enclosures part number.

Note: Refer to Page 6 - For branch breaker. Page 6 - For options. Page 7 - For order information. Page 8 - For dimensions and wire sizes.


# **B7P SERIES POWER PANELBOAR**

### Westinghouse Series "C" Circuit Breakers 1-2 or 3 pole.

Catalog numbers on this page are for the basic panelboard enclosure only with a panel interior chassis containing main lugs or main breaker as illustrated. Internal branch breakers and external handles are NOT included in the basic enclosure

catalog number and must be ordered as separate items. Refer to pages 6 & 7 for part numbers of branch breakers and detailed ordering instructions.

**B7P SERIES** CLASS I, DIV 1&2 GROUPS B.C.D CLASS II, DIV 1&2 GROUPS E,F,G CLASS III, DIV 1&2 NEMA 3, 4, 4X, 7BCD, 9EFG **EXPLOSION-PROOF DUST-TIGHT** WEATHERPROOF



### **CIRCUIT BREAKER RATINGS**

| FORCE | Otto: | . Lice | mer :      |       | \$ 14 Per 1997 | vigee S | minimum! |                |       |
|-------|-------|--------|------------|-------|----------------|---------|----------|----------------|-------|
|       |       | 100    | <u>.</u> E | ZOX.  | 271.0          | F 200.0 | (SOUAT)  | <b>第</b> 2年20年 | 28,0  |
| EHD   | 1     | 277    | 125        |       | 14000          |         |          | 10000          | **    |
| END   | 2&3   | 480    | 250        | 18000 | **             | 14000   |          |                | 10000 |
| FDB   | 2&33  | 250    | 250        | 18000 |                | 14000   | 14000    | •              | 10000 |

### PANEL WITHOUT MAIN BREAKER (MAIN LUGS ONLY)

| visi latino (se si           | Branchikoles &<br>6 | Hatings Amps 1546 | B7P20 - 306 - ML100                        | A BOX-Size | K Hange K |
|------------------------------|---------------------|-------------------|--------------------------------------------|------------|-----------|
| 3 Phase                      | 12                  | 100               | B7P29 - 312 - ML100                        | 8          | K .       |
| 4 Wire<br>with Solid Neutral | 12<br>18            | 225<br>225        | B7P29 - 312 - ML225<br>B7P41 - 318 - ML225 | C          | -         |
| Up to 600 VAC                | 21                  | 100               | B7P41 - 321 - ML100                        | Č          | ĸ         |
|                              | 27                  | 225               | B7P50 - 327 - ML225                        | D          | M         |
|                              |                     |                   |                                            |            | <u> </u>  |

| , <b>==</b>                                              |                                            | _,,                                                  |                                               |                                                      |                                                                                                                                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JCi      |
|----------------------------------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Eponen - s<br>Salum                                      | Numbgrof<br>Benen 20es                     | Max-Volts                                            | in Breake<br>Amos                             | Doverno<br>Parame                                    | Pasio Enclosure and Chassis<br>Catalog Number                                                                                                                                                        | Enclosure<br>Elocsize       | Mam Wire<br>Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NCH      |
| 3 Phase<br>4 Wire<br>with Solid Neutral<br>Up to 600 VAC | 6<br>6<br>12<br>15<br>15<br>18<br>21<br>21 | 480<br>600<br>600<br>480<br>600<br>600<br>480<br>600 | 100<br>100<br>225<br>100<br>100<br>225<br>100 | EHD<br>FDB<br>JDB<br>EHD<br>FDB<br>JDB<br>EHD<br>FDB | B7P29 - 306 - MBE100<br>B7P29 - 306 - MBF100<br>G-B7P41 - 312 - MBJ223 - 200<br>B7P41 - 315 - MBE100<br>B7P41 - 315 - MBF100<br>B7P50 - 318 - MBJ225<br>B7P50 - 321 - MBE100<br>B7P50 - 321 - MBF100 | В В С С С С С С С С С С С С | K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L K K L | BREAKERS |
| ANEL WITH                                                | BACK FEED N                                | IAIN BRE                                             | AKER                                          |                                                      |                                                                                                                                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 3 Phase<br>4 Wire<br>with Solid Neutral<br>Up to 600 VAC | 9<br>9<br>18<br>18<br>24<br>24             | 480<br>600<br>480<br>600<br>480<br>600               | 100<br>100<br>100<br>100<br>100<br>100        | EHD<br>FDB<br>EHD<br>FDB<br>EHD<br>FDB               | B7P29 - 309 - MBE100<br>B7P29 - 309 - MBF100<br>B7P41 - 318 - MBE100<br>B7P41 - 318 - MBF100<br>B7P50 - 324 - MBE100<br>B7P50 - 324 - MBF100                                                         | 880000                      | К<br>К<br>К<br>К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |

Main Breaker Panel includes main breaker and its price in basic enclosures part number.

Note: Refer to Page 6 - For branch breaker. Page 6 - For options. Page 7 - For order information. Page 8 - For dimensions and wire sizes.

**POWER PANEL AVAILABLE OCTOBER 1993** 





### **BRANCH CIRCUIT BREAKERS**

|                        | Eggéne:                                               |                                                                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e de la companya de |                                                                                                                                             |                                                                                                                                |
|------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                       |                                                                                                                                |                                     | A STATE OF THE STA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 心器影響。                                                                                                                                       |                                                                                                                                |
| (1)<br>Single<br>Phase | SPACE<br>15<br>20<br>30<br>40<br>50<br>60<br>70<br>90 | B7BLA1000<br>B7BLA1015<br>B7BLA1020<br>B7BLA1030<br>B7BLA1040<br>B7BLA1050<br>B7BLA1060<br>B7BLA1070<br>B7BLA1070              | G-1<br>G-1                          | B7BLC1000<br>B7BLC1015<br>B7BLC1020<br>B7BLC1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B7BLE1000<br>B7BLE1015<br>B7BLE1020<br>B7BLE1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B7BPK1000<br>B7BPK1015<br>B7BPK1020<br>B7BPK1030<br>B7BPK1040<br>B7BPK1050<br>B7BPK1060<br>B7BPK1070<br>B7BPK1090<br>B7BPK11090             |                                                                                                                                |
| (2)<br>Double<br>Pole  | SPACE<br>15<br>20<br>30<br>40<br>50<br>60<br>70<br>90 | B7BLA2000<br>B7BLA2015<br>B7BLA2030<br>B7BLA2030<br>B7BLA2040<br>B7BLA2050<br>B7BLA2050<br>B7BLA2070<br>B7BLA2090<br>B7BLA2100 | B7BLF2000<br>B7BLF2015<br>B7BLF2020 | B7BLC2000<br>B7BLC2015<br>B7BLC2020<br>B7BLC2030<br>B7BLC2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B7BLE2000<br>B7BLE2015<br>B7BLE2020<br>B7BLE2030<br>B7BLE2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B7BPK2000<br>B7BPK2015<br>B7BPK2020<br>B7BPK2030<br>B7BPK2040<br>B7BPK2050<br>B7BPK2050<br>B7BPK2070<br>B7BPK2090<br>B7BPK2100              | B7BPL2000<br>B7BPL2015<br>B7BPL2020<br>B7BPL2030<br>B7BPL2040<br>B7BPL2050<br>B7BPL2060<br>B7BPL2070<br>B7BPL2090<br>B7BPL2100 |
| (3)<br>Three<br>Pole   | SPACE<br>15<br>20<br>30<br>40<br>50<br>60<br>70<br>90 | B7BLB3000<br>B7BLB3015<br>B7BLB3020<br>B7BLB3030<br>B7BLB3040<br>B7BLB3050<br>B7BLB3060<br>B7BLB3070<br>B7BLB3090<br>B7BLB3100 | B7BLF3000<br>B7BLF3015<br>B7BLF3020 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B7BPK3000<br>B7BPK3015<br>B7BPK3020<br>B7BPK3030<br>B7BPK3050<br>B7BPK3050<br>B7BPK3050<br>B7BPK3050<br>B7BPK3050<br>B7BPK3090<br>B7BPK3100 | B7BPL3000<br>B7BPL3015<br>B7BPL3020<br>B7BPL3030<br>B7BPL3040<br>B7BPL3050<br>B7BPL3050<br>B7BPL3070<br>B7BPL3090<br>B7BPL3100 |
|                        | 110<br>125<br>150                                     |                                                                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             | 878PL3110<br>878PL3125<br>878PL3150                                                                                            |

### Notes:

- B7L panels are factory drilled for maximum number of single pole branch breaker handles and B7P for maximum number of 3 pole branch breaker handles as slandard.
- Part numbers illustrated above include external handle, trip mechanism, locking tab and internal breaker.

Refer to page 7 for complete ordering information and examples.

- Space = External handle, shaft and trip mechanism installed to allow for future installation of breaker.
- Ground Fault & Equipment protection breakers include external pushbutton for each breaker to test ground fault sensing circuit and the mechanical operation of breaker.
- 5) Switch Neutral Breaker note. A two pole breaker has one pole for breaking from main buss and one pole that breaks neutral. Three pole breaker consists of two poles for breaking from main buss and one pole that breaks neutral.

### **ACCESSORIES / OPTIONS**

To be ordered as separate item with notation on order for assembly into enclosure.

| ्रिश्चल्यस्य स्थापन                                                                                                                                                                                                                                                                                                                                                                                                                                          | A SUBJOURNING TO SEE                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Drain & Breather¹ NEMA 3, 7CD, 9 EFG Drain & Breather¹NEMA 3, 7BCD, 9EFG (not CSA) Grounding Kit 100 AMP 225 AMP Special Baked Epoxy Finish Copper Buss and lugs for B7L series Eye bolts for ease of installation 2 Change 100 Amp Buss to 225 amp B7P series Change 225 Amp Buss to 400 amp B7P series Separate Grounded Neutral Terminal (24ckt) Separate Grounded Neutral Terminal (42ckt) Main lugs at bottom Change standard conduit size and location | SU-3 SU-3B SU-3B KIT-251 G-1 KIT-252 G- B7SF B7CU B7EB B7ML225 B7ML400 B7GNT24 B7GNT42 B7MLBTN B7SPNPT |

- Installation of drain and breather will void the NEMA 4-4X Rating of panelboard.
   Drain and breather will be installed into a standard conduit opening provided in box.
- Lifting eyebolts are installed in two conduit openings located in top of box and are to be removed after installation.

# B7L/B7P SERIES PANELBOARDS

### SPECIFICATION AND ORDERING INFORMATION

### PANEL SELECTION FACTORS

Basic information required when specifying panelboards is as follows:

- Environment
- Service (Voltage/Frequency/Phase)
- Interrupting Capacity
- AMP Rating of Main (Lugs Only or Breaker)
- Branch Breaker (Type/Number of Poles/Amperage)

### ORDERING INFORMATION

Specifying and ordering a complete panelboard assembly requires the selection of three components. (1) Basic Panel, (2) Branch Breaker and (3) Options (if required). This method of cataloging permits a wide variety and maximizes circuit flexibility in our panelboard offering. Components supplied in each of these selections include:

- 1) Basic Panelboard Enclosures (pages 4-5)
  - Explosion-proof enclosure consisting of box and cover.
  - Cover predrilled and plugged for maximum number of branch breaker handles. (handles not supplied)
  - Box supplied with conduit openings.
  - Main circuit breaker and external handle. (when specified)
  - Panelboard internal chassis with buss bars but less branch circuit breakers.

- 2) Branch Circuit Breakers (page 6)
  - Internal circuit breaker
  - External handle mechanism with internal tripping mechanism.
  - Test pushbutton for GFI (when ordered)
  - · Lockout shield with on-off-trip-reset identification.
- 3) Options Accessories (page 6)
  - As required

### ORDERING EXAMPLE

Specification is for a 3 phase 120/208 volt panel with 100 Amp main lugs complete with (4) single pole 20 Amp, (2) double pole 20 Amp and (1) three pole 30 Amp branch breakers with a separate grounded neutral terminal.

Branch Breaker Total = (4) 1Pole = 4 Poles Total

(2) 2Pole = 4 Poles Total

(1) 3Pole = 3 Poles Total

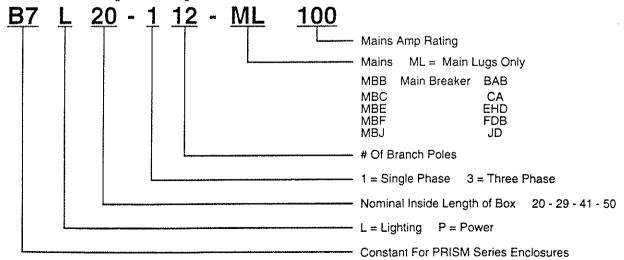
Total 11 Branch Poles

Specification / Ordering Example

B7L20 - 312 - ML100 (Basic panelboard enclosure) with:

(4) B7BLA1020 (2) B7BLA2020 (1 Pole 20 Amp Branch) (2 Pole 20 Amp Branch)

(1) B7BLB3030


(3 Pole 30 Amp Branch)

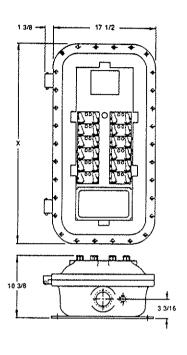
(1) B7GNT24

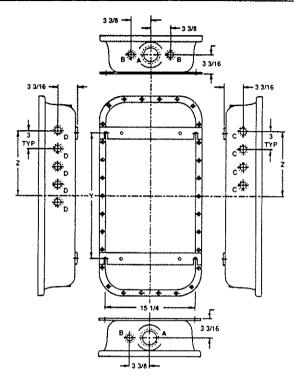
(Separate Grounded Neutral Terminal)

### **CATALOG LOGIC**

Panelboard catalog number logic for basic enclosure.



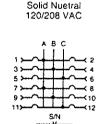



## **B7L/B7P SERIES PANELBOARDS**

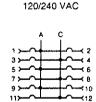
**DIMENSIONAL DATA** 

| an<br>Air | eungenerike<br>Euspress (linger |        |    | LEDIO<br>CA | niestra<br>Filiti | 2      | 40 | ndgi.<br>G |   | iiv |
|-----------|---------------------------------|--------|----|-------------|-------------------|--------|----|------------|---|-----|
| Α         | MXB - 13207                     | 24 3/8 | 13 | 2           | 1                 | 6 7/8  | 2  | 3          | 3 | 4   |
| B         | MXB - 13297                     | 33 3/8 | 21 | 2 1/2       | 1                 | 10 7/8 | 2  | 3          | 4 | 5   |
| С         | MXB - 13417                     | 45 3/8 | 33 | 3           | 1                 | 16 7/8 | 2  | 3          | 5 | 6   |
| D         | MXB - 13507                     | 54 3/8 | 42 | 3           | 1                 | 21 3/8 | 2  | 3          | 6 | 7   |





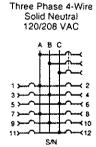

### WIRE INFORMATION


| E E      | iz i        | # G       | SE HESS   | <b>68</b> 136 |          | EX KRIZ  |          | ME ME    | Man Nage |
|----------|-------------|-----------|-----------|---------------|----------|----------|----------|----------|----------|
| #12 - #1 | #6 - 250MCM | #12 - 1/0 | #14 - 1/0 | 2/0 - 250MCM  | #14 - #1 | #6 - 2/0 | #6 - 4/0 | #2 - 4/0 | #2 - 2/0 |

### **WIRING DIAGRAMS**

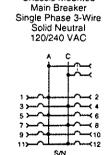


Main Lug Only

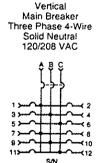

Three Phase 4-Wire

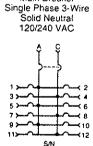


Main Lug Only


Single Phase 3-Wire

Solid Nuetral





Chassis Mounted

Main Breaker



Chassis Mounted





Vertical

Main Breaker

DISTRIBUTED BY:

# HUBBELL KILLARK

### KILLARK ELECTRIC MANUFACTURING COMPANY

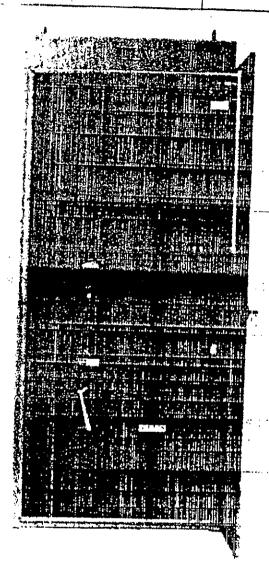
A Subsidiary of Hubbell Incorporated

P.O. BOX 5325 • ST. LOUIS, MISSOURI 63115-0325 • U.S.A. Telephone (314) 531-0460 • FAX: (314) 531-7164

Hubbell Canada Inc. • 870 Brock Road South • Pickering, Ontario L1W 1Z8 Telephone (416) 839-1138 • FAX: (416) 839-9108

# Zenith Product Bulletin

A Product Bulletin Dedicated to Informing the Electrical Community


TB-1212

December, 1992

Some emergency power installations require multiple automatic transfer switches, each feeding a specific load. In many such installations, where non-critical loads are being served, specifications may child for manual or non-automatic transfer switches that are manually operated because operating personnel are present and the loads are not of a critical nature requiring unattended automatic operation.

Because of the less entical function of these non-automatic transfer switches there have been no specific requirements set forth and, as a result, devices such as double throw disconnect switches have been used. Since the non-automatic transfer switches are part of the emergency power supply system they should have the same electrical ratings as the automatic transfer switches feeding the more critical loads. In the event of a short circuit the non-automatic transfer switches must have the same withstand current ratings as the automatic transfer switches and they must be as rugged and dependable.

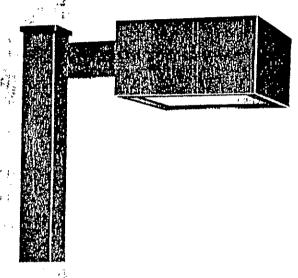
To meet this need. Zenith has developed the ZTSM series electrically operated, mechanically held non-automatic transfer switches. These units feature the same rugged construction as the ZTS series of automatic transfer switches and are supplied with the same electrical ratings and mechanical features. The ZTSM series is electrically operated by means of push buttons or double throw switches mounted on the switch enclosure or at a remote location. Unlike the disconnect switches mentioned above, the ZTSM series offers additional protection by incorporating normal and alternate source voltage sensing relays that will not permit the switch to be manually transferred unless the source to which it is being transferred is at 90% of its rated voltage. In addition, the ZTSM series is tested and listed per UL-1008 standards. Double throw disconnect switches are not.



ZTSM160F 1600 AMP 4 Poly Non-Automatic Transfer Switch

### ZTSM Series Non-Automatic Transfer Switch Features:

- U.L. & C.S.A. Listed
- Amperage sizes, 40, 80, 100, 150, 25, 260, 400, 600, 800, 1000, 1200, 1800, 2000, 3000
- Poles: 2, 3, or 4
- Available for operation on all standard voltage systems
- Withstand Current Ratings: Same as ZTS series automatic transfer switches
- Available in standard and delayed transition versions.
- Bypass/Isolation units (ZBTS Series) also available


# Luxmaster Classic 400

Side Mount

High Pressure Sodium 200 to 400 Watts

Metal Halide <del>250 &</del> 400 Watts

SERIES LM



# **FEATURES**

- One piece formed aluminum housing with clean precision formed edges
- Hydroformed captive and tethered optical assembly
- Easily installed Power-Pad assembly
- Dacron polyester gasketing around optical assembly to provide a barrier to contaminates
- Durable baked-on acrylic enamel finish
- · Ideal for applications:

Parking lots

Harris .

Apartment and condominium complexes Single-store shopping centers

Malls

# Ordering Data

High Pressure Sodium

| Primary<br>Volls   | Baliasi Type | Power<br>Factor | Power<br>Pad | Lamp<br>Housing |
|--------------------|--------------|-----------------|--------------|-----------------|
| LUXM               | STER CLAS    | SIC 200         | WATT HIGH F  | RESSURE SODIUM  |
| 120/208<br>240/277 | *Regulated   | High            | LMS20AM1     | LMSXXXXX3MFSX   |
| 120                | Regulated    | High            | LMS20A12     | LMSXXXXX3MFSX   |
| 208                | Regulated    | High            | LMS20A20     | LMSXXXXXMFSX    |
| 240                | Regulated    | High            | LMS20A24     | LMSXXXXX3MFSX   |
| 277                | Regulated    | High            | LMS20A27     | LMSXXXXX3MFSX   |
| 480                | Regulated    | High            | LMS20A48     | LMSXXXXX3MFSX   |
| LUXMA              | STER CLASS   | SIC 250         | WATT HIGH P  | RESSURE SODIUM  |
| 120/208<br>240/277 | Regulated    | High            | LMS25AM1     | LMSXXXXX3MFSX   |
| 120                | Regulated    | High            | LMS25A12     | LMSXXXXX3MFSX   |
| 208                | Regulated    | High            | LMS25A20     | LMSXXXXX3MFSX   |
| 240                | Regulated    | High            | LMS25A24     | LMSXXXXX3MFSX   |
| 277                | Regulated    | High            | LMS25A27     | LMSXXXXXX3MFSX  |
| 480                | Regulated    | High            | LMS25A48     | LMSXXXXX3MFSX   |
| LUXMA              | STER CLASS   | IC 400          | WATT HIGH P  | RESSURE SODIUM  |
| 120/208<br>240/277 | Regulated    | High            | LMS40AM1     | LMSXXXXX3MFSX   |
| 120                | Regulated    | High            | LMS40A12     | LMSXXXXX3MFSX   |
| 208                | Regulated    | High            | LMS40A20     | LMSXXXXX3MFSX   |
| 240                | Regulated    | High            | LMS40A24     | LMSXXXXX3MFSX   |
| 277                | Regulated    | High            | LMS40A27     | LMSXXXXX3MFSX   |
| 480                | Regulated    | High            | LMS40A48     | LMSXXXXX3MFSX   |

\*MULTI-VOLT LUMINAIRES: All multi-volt luminaires are pre-wired for 120 volt operation, but are easily field-reconnectable for 208, 240, or 277 volt operation.

### NOTES

- STANDARD DISTRIBUTION IS TYPE 3. For IES TYPE 5 DISTRIBUTION change the 3 in the lamp housing catalog number to 5. (Example: LMSXXXXX3MFSX to LMSXXXXX5MFSX.)
- 2. STANDARD FINISH is dard bronze. Other colors available, contact factory if required.
- 4. LAMPS are not included, order separately.
- 5. 50 HERTZ BALLAST is available for all luminaires. Contact factory to information.
- For more information, contact your local American Electric representative.

Thomas Betts

### Metal Halide

|   | Psimáry<br>Volts   | Baltast Type | Power<br>Factor | Power<br>Pad | Eamp<br>Housing |
|---|--------------------|--------------|-----------------|--------------|-----------------|
|   | 10000              | UXMASTER I   | CLASSI          | C 250 WATT N | METAL HALIDE    |
|   | 120/208<br>240/277 | Regulated    | High            | LMH25AM1     | LMHXXXXX3MFSX   |
|   | 120                | Regulated    | High            | LMH25A12     | LMHXXXXX3MFSX   |
|   | 208                | Regulated    | High            | LMH25A20     | LMHXXXXX3MFSX   |
|   | 240                | Regulated    | High            | LMH25A24     | LMHXXXXX3MFSX   |
|   | 277                | Regulated    | High            | LMH25A27     | LMHXXXXX3MFSX   |
|   | 480                | Regulated    | High            | LMH25A48     | LMHXXXXX3MFSX   |
|   |                    | UXMASTER C   | LASSIC          | 400 WATT M   | ETAL HALIDE     |
|   | 120/208<br>240/277 | Regulated    | High            | LMH40AM1     | LMHXXXXX3MFSX   |
| > | 120                | Regulated    | High            | LMH40A12     | LMHXXXXX3MFSX   |
|   | 208                | Regulated    | High            | LMH40A20     | LMHXXXXXX3MFSX  |
|   |                    | 147-         |                 |              |                 |

\*MULTI-VOLT LUMINAIRES: All multi-volt luminaires are pre-wired for 120 volt operation, but are easily field-reconnectable for 208, 240, or 277 volt operation.

Regulated High LMH40A24 LMHXXXXX3MFSX

Regulated High LMH40A27 LMHXXXXX3MFSX

Regulated High LMH40A48 LMHXXXXX3MFSX

### NOTES

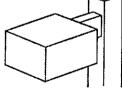
240

277

480

- STANDARD DISTRIBUTION IS TYPE 3. For IES TYPE 5 DISTRIBUTIONchange the 3 in the lamp housing catalog number to 5. (Example: LMHXXXXX3MFSX to LMHXXXXX5MFSX.)
- 2. STANDARD FINISH is dark bronze. Other colors available, contact factory if required.
- 3. LAMPS are not included, order separately.
- 4. 50 HERTZ BALLAST is available for all luminaires. Contact factory for information.
- For more information, contact your local American Electric representative.

### Options / Accessories

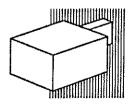

Pole mount, secured with solid steel plate, attaches luminaire directly to round or square pole. Full length mounting screws secure luminaire, arm and pole.

Catalog Number - LMPX

See Links

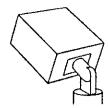
Griff: Recedition 1

5 15 (F)

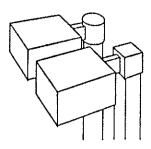



Wall mount arm secures luminaire to wall plate with full length mount screws. Full length mounting screws secure luminaire to arm and wall plate.

Catalog Number -LMWX


ji Pladet John mi

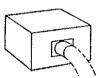
ĵ




Adjustable knuckle for pole attachment of luminaire. Makes a smooth transition from pole to luminaire.

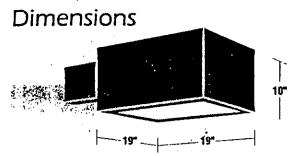
Catalog Number -LMKX




Square/round tenon adaptor mounts on top of round or square pole for luminaire attachment. Makes a smooth transition from pole to luminaire. Available mounting arrangements listed below.



| Catalog<br>Number | Description                      |
|-------------------|----------------------------------|
| LMTX              | Square Tenon with 1 Arm          |
| LM1X              | Square Tenon with 2 Arms at 90°  |
| LM2X              | Square Tenon with 2 Arms at 180° |
| LM3X              | Square Tenon with 3 Arms         |
| LM4X              | Square Tenon with 4 Arms         |
| LM5X              | Round Tenon with 1 Arm           |
| LM6X              | Round Tenon with 2 Arms at 90°   |
| LM7X              | Round Tenon with 2 Arms at 180°  |
| LM8X              | Round Tenon with 3 Arms at 90°   |
| LM9X              | Round Tenon with 3 Arms at 120°  |
| LMOX              | Round Tenon with 4 Arms at 90°   |
|                   |                                  |


Mast arm mount—Luminaire is attached to curved mast arm for mounting to pole or structure.

Catalog Number - LMMX



Field installed **photoelectric control** available, contact factory for more information.

Thomas@Betts



Effective projected area is 2.3 sq.-ft.

# Photometric Test Reports

| Lens<br>Type | Lamp Watts<br>and Type | Socket<br>Position | NEMA<br>Type | Report<br>Number |
|--------------|------------------------|--------------------|--------------|------------------|
| <u> </u>     | LUXMASTE               | R CLASSIC SE       | HES LM       |                  |
| Glass        | 200W-400W HPS          | Fixed              | V-M-C        | AE40001          |
| Glass        | 250W MH                | fixed              | V-M-C        | AE41121          |
| Glass        | 400W MH                | Fixed              | V-M-C        | AE41091          |
| Glass        | 200W-400W HPS          | A-2                | III-M-C      | AE41591          |
| Glass        | 250W MH                | Fixed              | III-M-C      | * AE41511        |
| Glass        | 400W MH                | Fixed              | III-M-C      | AE4149           |

Complete photometric reports are available for all products. Consult your local American Electric representative.

# **SQUARE STRAIGHT** STEEL POLES

For use with floodlight luminaires such as MINILITER®, MAGNULITER®, SPORTSLITER®, as well as Magnu-Series architectural luminaires.

### STEEL SSP SERIES

Square Straight Shaft - One-piece construction, steel tubing.

Pole Top - All poles available with 2%" O.D. tenons or machined to accept side mounted Magnu-Series luminaires.

Handhole - Group I and II poles only have 3" x 4" reinforced frame, Group III poles have 4" x 6" frame. Both include cover. Ground lug standard.

Base — Steel plate type base with two-piece base cover.

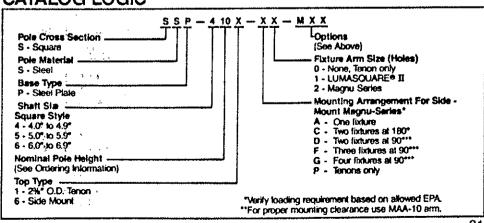
Anchor Bolts - Four "L" shaped bolts per set with two nuts and two washers each. Bolt template included.

Standard Finish - Rust preventive primer.

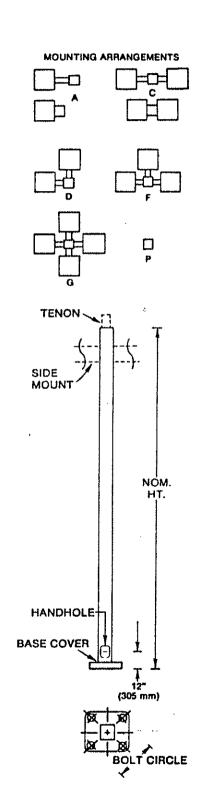
### ORDERING INFORMATION

| ſ  |                  | Po  | ole  | 1    | Mind | Load | Rati | ng (2 | )        |              |        | Anchor       |                | Bolt<br>Projec-<br>tion | P      | Pole  |  |
|----|------------------|-----|------|------|------|------|------|-------|----------|--------------|--------|--------------|----------------|-------------------------|--------|-------|--|
| ١  | Catalog          | He  | ight | 80 1 | ирн  | 100  | MPH  | 120   | MPH      | Pole<br>Size | Base   | Bolt<br>Size | Bolt<br>Circle |                         | Welght |       |  |
| ١  | Number (1)       | Ft. | М    | EPA  | Wt.  | EPA  | Wt.  | EPA   | WL.      | 3128         | Square | (3)          | (3)            | (3)                     | ibs.   | kgs.  |  |
| Γ  | GROUP I          |     |      |      |      |      |      |       |          |              |        |              |                |                         |        |       |  |
| ١ſ | SSP-410X-XX      | 10  | 3.0  | 21.7 | 540  | 13.3 | 330  | 9.3   | 200      | 4.0"         | 9.0*   | %"x30"x3°    | 8.0*           | 3.87                    | 60     | 39,9  |  |
| 1  | SSP-412X-XX      | 12  |      |      | 440  | 10.7 | 265  | 7.0   |          | 4.0*         | 9.0    | 34"x30"x3"   | 8.0*           | 3.87                    | 98     | 44.5  |  |
|    | SSP-414X-XX      | 14  |      | 14.6 |      |      | 215  |       | 130      | 4.0*         | 9.0"   | 34"x30"x3"   | 8.0            | 3.87                    | 110    | 49.9  |  |
|    | SSP-416X-XX      | 16  | 4.9  | 12.2 | 305  | 7.0  | 175  | 3.7   | 100      | 4.0          | 9.0*   | 34"x30"x3"   | 8.0"           | 3.87                    | 122    | 55.3  |  |
|    | SSP-418X-XX      | 18  | 5.5  | 10.3 | 255  | 5.6  | 135  | 25    | 75       | 4.0"         | 9.0"   | % x30 x3     | 8.0            | 3.87"                   | 135    | 61.2  |  |
|    | SSP-420X-XX      | 20  | 6.1  |      | 215  | 4.5  | 105  | _     | - 1      | 4.0"         | 9.0"   | 34"x30"x3"   | 8.0            | 3.87                    | 147    | 66.7  |  |
|    | SSP-425X-XX      | 25  | 7.6  | 6.0  | 150  | 3.2  | 81   |       |          | 4.0*         | 9.0"   | % x30 x3     | 8.0            | 3.87                    | 178    | 80.1  |  |
| 1  | SSP-430X-XX      | 30  | 9.1  | 7.4  | 175  | 2.5  | 100  |       |          | 4.0"         | 11.0"  | 1"x36"x4"    | 10-12          | 4.12                    | 381    | 171.4 |  |
| Ī  | GROUP II         |     | , .  |      |      |      |      |       |          |              |        |              |                |                         |        |       |  |
| Ţ  | SSP-518X-XX      | 18  | 5.5  | 28.3 | 705  | 16.9 | 420  | 10.4  | 250      | 5.0*         | 11.0*  | %"x30"x3°    | 11.0*          | 3.87                    | 239    | 108.4 |  |
| 1: | SSP-520X-XX      | 20  | 6.1  | 24.8 | 620  | 14.5 | 360  |       | 210      | 5.0*         | 11.0"  | 34"x30"x3"   | 11.0           | 3.87                    | 263    | 119.3 |  |
|    | BSP-525X-XX      | 25  | 7.6  | 19.2 | 480  | 10.7 | 265  | 4.2   | 145      | 5.0          | 11.0°  | 34"x30"x3"   | 11.0           | 3.87                    | 322    | 146.1 |  |
| ŀ  | SSP-530X-XX      | 30  | 9.1  | 6.0  | 150  | 4.0  | 150  |       | -        | 5.0"         | 11.0"  | %"x30"x3"    | 11.0           | 3.87                    | 381    | 171,4 |  |
| 1  | GROUP III (1974) |     |      |      |      |      |      |       |          |              |        |              |                |                         |        |       |  |
| Ę  | SP-630X-XX       | 30  | 9.1  | 21.0 | 525  | 11.1 | 285  | 3.7   | 155      | 6.0"         | 13.0"  | 1"x36"x4"    | 12.0           | 4.12"                   | 458    | 207.7 |  |
| 1  | SSP-635X-XX      | 35  | 10.7 | 15.8 | 395  | 7.3  | 180  |       |          | 6.0*         | 13.0*  | 1"x36"x4"    | 120            | 4.12"                   | 530    | 240.4 |  |
| 1  | SSP-640X-XX      | 40  | 12.2 | 124  | 310  | 4.9  | 120  |       | <b>-</b> | 6.0*         | 13.0"  | 1"x36"x4"    | 12.0"          | 4.12"                   | 602    | 273.1 |  |

- (1) Catalog Number, as listed, does not include tenons or machining for side mounting. Desired fixture mounting must be specified by substituting for all X's in Catalog Number.
- (2) Maximum allowable EPA is based on steady winds of 80 and 100 MPH with guits to 104 and 130 MPH respectively, 120 MPH steady winds with 156 MPH gusts. All calculations are based on a minimum yield of 46,000 PSI.


  (3) Factory supplied template must be used when setting anchor bolts. Hubbell Lighting will deny any claim
- for incorrect anchorage piacement resulting from failure to use factory supplied template.

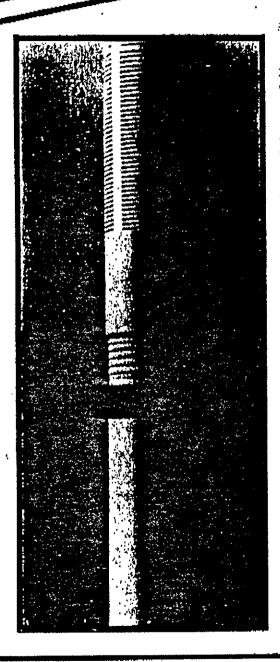
### OPTIONS


Illustrations and complete descriptions can be found on page 34.

| Description                                                                | Suffix                     |
|----------------------------------------------------------------------------|----------------------------|
| Weatherproof receptacle LEKTROCOTE™ finish Hubbell Seal (internal coating) | M18<br>M50 thru M53<br>M55 |

### CATALOG LOGIC




### FLOODLIGHTING **POLES AND BRACKETS**





**Lighting Division** 

MONITORING SCREENS AND CASINGS



FLUSH THREADED POLYVINYL CHLORIDE SCREENS AND CASINGS

PVC Rush Threaded Joints eliminates contamination caused by solvent.

All PVC Products one manufactured without ink to prevent unwarranted contaminated readings.

### SIZES AVAILABLE

Pipe Dim: 1/2" O.D. thru 12" O.D. Screen Lengths: 2.5', 5', 10', 20' Casing Lengths: 25'; 5', 10', 20' Slot Sizes:

.006 and up

**ACCESSORIES AVAILABLE** Flush Threaded Points and Plugs and Caps. Locking Caps. TEFLON®, Vitors, or Neoprene. "O" Rings.

# MORRIS Industries, Inc.



Pompton Plaine, NJ

Machanioville, NY (518) 554-7775 (800) 535-6591 Fax #: (518) 554-2005

Dillaburg, Penn. (717) 432-9851 (800) 637-7724 Fax #: (717) 432-1150

POINTS, PLUGS AND CAPS



SLIP AND FLUSH **JOINT ACCESSORIES** 

**PVC Plugs and Points fit** I.D. of Pipe.

PVC Fittings are itveted into threaded ends.

SIZES AVAILABLE

12" thru 12" I.D. or O.D.



# MORRIS Industries, inc.

Pompton Piains, NJ (201) 836-8800 (800) 836-0777 Fax #: (201) 836-7414

Mechanioville, NY (819) 884-7775 (203) 340-1777 (800) 835-6591 (800) 232-2777 Fax 9: (518) 864-2008 Fax 9: (203) 349-9383

Dillaburg, Penn. (717) 452-9681 (800) 637-7724 Fax #: (717) 498-1150

# PELTONITE® BENTONITE PELLETS

SKALING AGENT

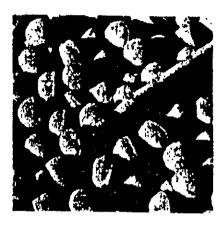
### DESCRIPTION:

PELTONITE is a sealing agent manufactured by ROOTEST offering great possibilities in the treatment of water problems in civil engineering works.

PELTONITE is the commercial name given to pre-formed bentonite balls, the bentonite used being of the high sodium mineral type.

### **APPLICATIONS:**

PELTONITE can certainly find a wide range of applications and its usage is only limited by the ingenuity of those involved with water problems.


Typical applications are:

- sealing of all types of plezomater hotes.
- sealing of large size dewatering wells and of wellpoints. "
- sealing the bottom of open and calazons,
- sealing of detrimental inflitration through rook discontinuities.

### WHY SHOULD YOU USE PELTONITE?

PELTONITE has many advantages:

- scientific proof has been made of the high quality seals obtained with bentonite pallets and this without the need of any special tamping tool.
- the probability of obtaining a satisfactory seal over the old method of using hand-rolled bentonite balls is highly increased,
- the bentonite balls are of uniform size and shape,
- their small size, spherical shape and high density improve their settling characteristics in water.
- jamming problems as they settle are almost eliminated,
- they are easy to handle,
- they considerably cut down the time usually needed to perform a good quality seal and consequently, reduce equipment and labor costs involved in an installation.
- they come in conveniently packed rigid 50 lb, drums which are re-sealable, thus minimizing waste.
- storage of PELTONITE is independent of temperature conditions.



PELTONITE balls are small spheres "in dismeter.

### **Uestal** Information:

The following table gives the weight of PELTONITE needed to perform a 1 foot seal for different borehole dismeters.

| HOLE DIA (In.)       | 2 | 3 | 4 | 8  | •  | 7  | 8  |
|----------------------|---|---|---|----|----|----|----|
| VIETERT OF PELTONITE | ž | 4 | 1 | 11 | 15 | 20 | 27 |

### Specifications:

SIZE:

46" din. (10 mm.)

**DENSITY:** 

1.8

DRY BULK DENSITY:

75 lb/ft\* (1260 kg/m\*)

**SWELL** 

FACTOR:

greater than 10 when unconfined

and fully saturated.

STANDARD PACKAGE:

50 lb (22,7 kg) per barrel



# MORRIS Industries, Inc.

Pompton Plains, NJ (201) 855-6600 (800) 835-0777 Fax #: (201) 835-7414 Mechanicville, NY (619) 984-7775 (800) 835-6591 Fax #: (618) 684-2008

Durham, Conn. (203) 549-1777 (600) 262-2777 Fax #: (203) 649-838 Dillaburg, Penn. (717) 432-9851 (800) 637-7724 Fax #: (717) 432-1150

# MORIE SCREENINGS

### Typical Physical Analysis

### #1 Well Gravel

|        |       | Sieve : | Cum.   |        |         |
|--------|-------|---------|--------|--------|---------|
| Inches | HM.   | No.     | Grame' | x Ret. | % Pass. |
| .0661  | 1.700 | 12 :    | 0.8    | 0.8    | 99.2    |
| .0555  | 1.410 | 14      | 14.2   | 13.4   | 85.8    |
| .0469  | 1,190 | 16      | 45.3   | 31.1   | 54.7    |
| .0394  | 1.000 | 18      | 74.6   | 29.3   | 25.4    |
| .0331  | .850  | 20      | 95.3   | 20.7   | 4.7     |
| .0278  | .710  | 25      | 98.4   | 3.1    | 1.6     |
| .0234  | .600  | 30      | 99.3   | 0.9    | 0.7     |
| .0197  | .500  | 35      | 99.7   | 0.4    | 0.3     |
| .0165  | .425  | 40      | 99.9   | 0.2    | 0.1     |

### Typical Chemical Analysis

| \$102  |   | 99.390 |
|--------|---|--------|
| F0203  | ; | . 240  |
| A1203  | · | .190   |
| T102   |   | .120   |
| CaO    |   | .010   |
| Hg0    |   | .004   |
| L.O.I. |   | .046   |

Acid solubility (1:1 HCL) .08 to .11% Sp. Gr. - 2.64 to 2.66



# MORRIS industries, inc.

Pompton Plains, NJ (201) 835-8600 (800) 835-0777 Fax #: (201) 835-7414 Mechanicville, NY (518) 654-7775 (800) 635-5591 Fax #: (518) 664-2006 Durhum, Conn. (203) 349-1777 (800) 232-2777 Fax #: (203) 349-9363 Dilleburg, Penn. (717) 432-9651 (800) 637-7724 Fax #: (717) 432-1150

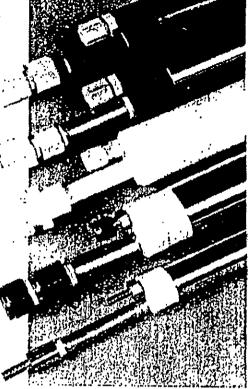
# Pneumatic Bladder Sampling Pumps

Well Wizard pumps come in an unmatched range of sizes and materials—plus a 10-year warranty.

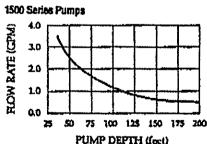
### THE BEST PUMPS FOR YOUR PROJECT-GUARANTEED!

No matter how demanding your application, we've got the pump. Need samples from over 600 feet? Testing in the ppb range? What about other tough sample collection problems—aggressive/corrosive environments, non-standard well casings, difficult site conditions? No matter what the challenge, QED makes a pump that will do the job better.

So much better, we guarantee it. Dedicated Well Wizard bladder pumps with protective intake screens are guaranteed for ten years against pump failure. They'll keep on working or QED will repair or replace them free. Nobody else in the business offers this level of protection.


### PURGE AND SAMPLE WITH THE SAME PUMP

In many situations, a Well Wizard bladder pump can be used for both purging and sampling. For low purge volumes, a standard model (1100, 1200, or 1300-series) may be the choice. Model T1200 is most commonly used. For greater volumes, a high-rate 1500-series Power Pump will cut purging times (and labor costs) by approximately 50%.


The advantages are obvious. A single-pump system is simple to specify and install; extremely economical; and delivers unmatched bladder-pump sample quality. Large purge volumes may require the use of an accessory, such as a Purge Mizer™inflatable packer or a purge pump; see pp. 18-19 for details.

| MODEL NO. | CATIONS: BODY MATERIAL | BLADOER<br>MATERIAL | intake<br>Scheen | HATERIAL" | MAXIMUM<br>LIFT (i.) | LENGTH<br>Colonomics |      | WEICHT<br>Øb.) |
|-----------|------------------------|---------------------|------------------|-----------|----------------------|----------------------|------|----------------|
| T1100     | Teflon                 | Teflon              | Opt              | Teflon    | 250                  | 40,33                | 1.66 | 4              |
| P1101     | PVC                    | Tellon              | 1 ,              | Polypro   | 300                  | 40.85                | 1.66 | 3              |
| P1101\$   | PVC                    | Teflon              | Std              | Palypro   | 300                  | 40.85                | 1.66 | 3              |
| P1101H    | PVC                    | Teflon              | Opt              | 316 S.S.  | 600                  | 40.75                | 1,66 | 3              |
| ST1101P   | 316 S.S.               | Teflon              | Std              | 316 S.S.  | 1000                 | 40,50                | 1.66 | 10             |
| T1200     | Tellon/316 S.S.        | Teflon              | Opt              | 316 S.S.  | 300                  | 41.14                | 1.50 | 5              |
| P1201     | PVC/316 S.S.           | Teflon              | ***              | Polypro   | 300                  | 41.23                | 1.50 | 4              |
| 17201H    | PVC/316 S.S.           | Teflon              | Opt              | 316 S.S.  | 600                  | 41,37                | 1.50 | 4              |
| T1300     | Tellon/316 S.S.        | Teflon              | Opt              | 316 S.S.  | 200                  | 46.75                | 1.00 | 3              |
| Power Pu  | ups                    |                     |                  |           |                      |                      |      |                |
| P1500     | PVC/316 S.S.           | Teflon              | Opt              | 316 S.S.  | 200                  | 93,00                | 1.50 | 9              |
| T1500     | Teflon/316 S.S.        | Teflon              | Opt              | 316 S.S.  | 200                  | 93.00                | 1.50 | 9              |

<sup>\*</sup> T1300 requires Clamy Tool No. 35166 for field attachment of tubing. Clamps are provided w/ pump.







Note: Flow rates are based on pump submergence of 25 feet and operating gas pressure of 100 psi from SITHER Air Source/Controller Call for flow rates under other conditions.

I This musici cannot be retrolitted with screen. If screen is desired, order P1101S.

### **WELL WIZARD**

### TO BUILD THE BEST, START WITH THE BEST MATERIALS

Bladder pump design allows construction of the bighest quality materials, with consistent usage throughout the pump. All parts and fittings that contact the sample are materied for compatibility and better performance. You will achieve accurate sampling with the greatest cost efficiency by choosing the proper pump material.

### Teflon®/PTFE


For maximum sample accuracy at low contaminant levels, and longest pump life in harsh chemical environments, QED uses only the finest duPont Tetion\* and other PTFE resins available.

### Stainless Steel

All stainless steel is not the same. Electropolishing stainless steel has been proven to give the most inert finish for preserving water quality, with lower perceity to help it resist corresion. That's what we use in all QED stainless parts, rather than interior alloys with little or no protective finish. (Stainless steel pumps are not recommended for low metal campling levels, high acid, high disvolved solids, or reducing conditions.)

### **PVC**

Polyvinyl chloride is an economical alternative when monitoring doesn't require stainless steel. We use only NSF-grade PVC, extruded specifically for QED with no markings or lubricants to conteminate the sample.



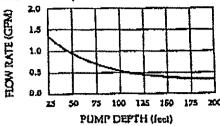


### Lab-Certified Cleaning

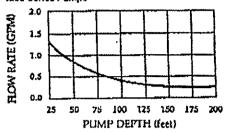
All Well Wizard pumps pass through a rigorous cleaning procedure, and are taboratory-certified to be tree of all EPA 601, 602, base neutral, and acki axtractable contaminants.

Production parts are batch-treated in inhoratory cleaning solution at 130°F and are rinsed with 130°F tap water. Parts are then washed with purified water (filtered, treated with activated carbon and a series of ion exchange columns). Assembly and testing steps also use purified water.

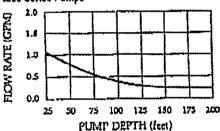
A special 24-hour water extraction test is firm run, and the water analyzed; pumps that don't test clean are run through the procedure again until they do. Preassembled pumps are issued a reference number when they have been cwillied clean and are sealed in polyethylene bags for protection until they are installed.


### The "Secret" Of Bladder Durability

It's no secret. We start with the most inert polymers available. go through all the process variables to find the toughest formulations...test each batch of bladder material for the equivalent of decades of service to assure reliable performance... and protect bladders with easy-to-replace trief screen cartridges to reduce abrasion and wear.


if a blacker does maintantion, QED supplies a quick change kit so you can easily replace just the hisder steeve—in the field, with no walling.

### FLOW PERFORMANCE CURVES:


### 1100 Series Pumps



### 1200 Series Pumps



### 1300 Series Pumps



Note: Flow rates are based on pump submargence of 25 feet and operating gas pressure of 100 psi from \$111HR Air Source/Controller. Call for flow rates under other conditions.

### FIELD REPLACEABLE BLADDERS:

| LON TUNUS KOT | W/ CLAMP 100L | W/O CLAMP TOOL |
|---------------|---------------|----------------|
| T1100         | 14055         | 14065          |
| P1101         | 14057         | 14067          |
| 1200 Series   | 35315         | 35320          |
| 1500 Series   | 35858         | 35857          |

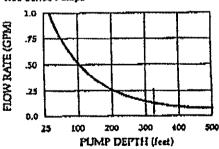
| 14026 | Complete Bladder Cartridge Teflon |
|-------|-----------------------------------|
|       | (for T1100)                       |
| 14002 | Complete Bladder Cartridge        |
|       | PVC/Teflon (for P1101)            |
| 35314 | Bladder Replacement Tool Kit      |
|       | 1 - 35052 Clamp Hand Tool         |
|       | 1 - 35312 Pin Punch               |

Note: All kits contain 2 bladder sleeves and seal replacement sets, 35315 includes pin punch.

### INTAKE SCREENS (Protect Bladders):

| MODEL NO. | DESCRIPTION                                  |      |
|-----------|----------------------------------------------|------|
| 35200     | Optional S.S. Screen for & 1500 Series Pumps | 1200 |

Note: Intake screens must be used to qualify for 10-year sourcesty.


### **WELL WIZARD ON YIDEO**

Well Wizard Operation & Maintenance

A user's manual on video, this 17-minute tape is packed with valuable, easy-to-follow instructions. Sections on installation, operation, and troubleshooting are color-coded for quick reference. Learn from the experts about sample pumps, purge pumps, inflatable packers, and prejunatic controllers, included with every Well Wizard System.

### DEEP WELL FLOW CURVE:

### 1100 Series Pumps



Note: Flow rates based on pump submergence of 25 feet. Depths to 320 feet based on operating gas pressure of 155 psi from 3111HPE Air Source/Controller.

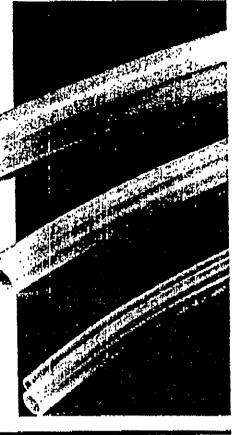
"Even greater depths (to 1000 feet) are possible; consult OED for details.

### **WELL WIZARD**

# Sample and Purge Tubing

A critical component of any monitoring system, tubing assemblies in a variety of materials fulfill every need.

### PROTECT YOUR SAMPLES WITH THE BEST TUBING .


QED has always recognized that ground water monitoring demands the highest material standards. This applies to tubing: a sample is only as good as the tubing it runs through. QED tubing enhancements ensure the ultimate accuracy of ground water samples for monitoring programs.

Twin-line bonded tubing makes handling, installation, and portable water level probe use easier. Economical Teflon-lined polyethylene bonded tubing is our most popular choice, with Teflon on the inside of the sample discharge tubing where it's really needed. Model PT5100 is used most often. Other tubing set choices include all-Teflon bonded, polyethylene bonded, and polypropylene bonded (for deep wells).

All tubing is controlled-quality, virgin-grade material, without printing. Standard tubing assemblies are cut to exact length and pre-assembled to well cap and pump per customer specifications at no extra cost. Bulk tubing is also available; inquire for details.

Tellon is a duPont trademack; material may be an equivalent PTFE.

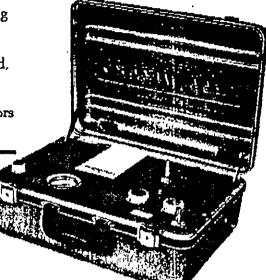
CAPAIRIO MICHALIO



| MODEL<br>Number | MATERIAL        | AIR ST<br>(Inci<br>()1) |       | DISCH<br>Und<br>O.D. |       | MAX OPER<br>PRESSURE<br>PSI | MAX<br>DEPTH<br>(leet) | MINBENE<br>RADIUS<br>(inches) | TUENG<br>BOND TYPE | PUMP<br>TYPE | PUMP MODEL NUMBERS            |
|-----------------|-----------------|-------------------------|-------|----------------------|-------|-----------------------------|------------------------|-------------------------------|--------------------|--------------|-------------------------------|
| P5100           | Polyethylene    | 0.250                   | 0.170 | 0.500                | 0.375 | 200                         | 400                    | 2.50                          | Continuous         | Sampling     | 1100 and 1200 Series          |
| PT5100          | Teflon-lined PE | 0.250                   | 0.170 | 0.500                | 0.375 | 200                         | 400                    | 2.50                          | Continuous         | Sampling     | 1100 and 1200 Series          |
| T5110           | Teflon          | 0.250                   | 0.170 | 0.500                | 0,375 | 240                         | 500                    | 3.00                          | Continuous         | Sampling     | T1100 and T1200 Series        |
| PR5100          | Polypropylene   | 0.250                   | 0,170 | 0.500                | 0.375 | 300                         | 600                    | 2.50                          | Cable Wrap         | Sampling     | P1101H and P1201H Series      |
| P5000           | Polyethylene    | 0.250                   | 0.170 | 0.375                | 0,250 | 300                         | 600                    | 1.25                          | Continuous         | Sampling     | T1300                         |
| PT5000          | Teflon-lined PE | 0.250                   | 0.170 | 0.375                | 0.250 | 300                         | 600                    | 1.25                          | Continuous         | Sampling     | T1300                         |
| T5010           | Teflon          | 0.250                   | 0,170 | 0.375                | 0.250 | 300                         | 600                    | 2.50                          | Continuous         | Sampling     | T1300                         |
| PR5010          |                 | 0.250                   | 0.170 | 0.375                | 0.250 | 300                         | 600                    | 1.25                          | Cable Wrap         | Sampling     | T1300                         |
| P5200           | Polyethylene    | 0.250                   | 0.170 | 0.250                | 0.170 | 300                         | 600                    | 1.00                          | Continuous         | Sampling     | 1100 and 1200 Series          |
| PT5200          | Teflon-lined PE | 0.250                   |       |                      | 0.170 |                             | 600                    | 1.00                          | Continuous         | Sampling     | 1100 and 1200 Series          |
| T5200           | Teflon          |                         | 0.170 | 0.250                | 0.170 | 320                         | 600                    | 1.50                          | Continuous         | Sampling     | 1100 and 1200 Series          |
| P5610           | Polyethylene    | 0.500                   | 0.375 | 0.780                | 0.625 | 150                         | 200*                   | 4.00                          | Continuous         | Purge        | HR4100, HR4500/4500LB, HR4600 |
| PT5610          |                 | 0.500                   |       |                      | 0.625 |                             | 200*                   | 4.00                          | Continuous         | Sampling     | 1500 Series                   |
| T5600           | Teflon          | 0.500                   | 0,375 | 0.750                | 0.625 | 150                         | 200*                   | 9.00                          | Teflon Ring        | Purge        | HR4200, HR4700/HR4700LB       |

Maximum pump depth recommendations reflect limits of efficient purgs pumping.

### **WELL WIZARD**


# Controllers/Air Sources

Workhorse controller/compressor carts provide self-contained portable performance.

### RUGGEDLY CONTRUCTED, EASILY PORTABLE

Most of our customers choose the 3111 series controller/compressor carts. They combine field-proven pneumatic controllers with performance engineered compressors, powered by reliable, fast-starting 4 HP Honda gasoline engines. Model 3111LR is the most popular choice.

The most durable, portable, all-in-one pump-driving system around, the 3111 series operates every sampling and purging system we make. It's simple and self-contained, optimized for maximum performance, reliability, and ease of use. Finishing touches include oilless compressors for maximum contamination protection.



3111LR Controller/Compressor Cart

3013 Preumatic Controller

### SPECIFICATIONS:

| MODEL NO | DESCRIPTION                                                                                                                                                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3111LR   | Standard controller/compressor can drives pumps to 200 ft. lift; 4 HP Honda engine, high output compressor (4.3 SCFM at 100 psi), with model 3013 controller mounted on the anti-vibration braced cart, with easy wheel/handle breakdown; 89 lbs. |
| 3111LH   | High pressure model controller/compressor cart provides lifts to 320 ft. with high pressure compressor (2.1 SCFM at 165 psig) and model 3013H high pressure controller, otherwise similar to model 3111LR above; 93 lbs.                          |

Note: Economy models available with Briggs & Stratton engines: 3111HR standard lift) 3111HIP high pressure.

### THE MOST RELIABLE CONTROLLERS IN THE INDUSTRY

Versatile Well Wizard 3013 series controllers are fully adjustable, can operate high-rate purge pumps at full capacity and still be throttled down to 0 psi for EPA-recommended low flow rates for sampling.

One-person portability, fast set-up, and unattended cycling greatly reduce labor costs, and QED systems come complete—no extra charges for hoses, batteries, chargers or other necessary equipment.

All standard and high pressure models are compatible with a wide range of gas sources. Optional Pump Manifold lets one controller run three sampling pumps within a 20-foot radius. High pressure models allow lifts to 1000 feet. Pneumatic design provides sophisticated control with no batteries or electrical supply. And it's tough: Well Wizard controllers have been left out in the rain, dropped from trucks, even had their lids ripped off—and still kept on working.

### EXTRA CONTROLLER PERFORMANCE BUILT IN

Pneumatic Power

3013 series controllers have all-pneumatic design for maximum reliability. No battery to drain, no long waits for recharging or replacement batteries—If you've got pressure, you've got power. Third-generation pneumatic controls provide inherent shock and moisture resistance for real ruggedness.

### Electronic Efficiency

Model 350 has uniquely efficient circuits that work for 100 hours on one set of inexpensive, reachly available AA batteries, its MIL-SPEC circuit board delivers continued performance in all conditions. Warning light shows a full day's power remaining, so you won't get left out in the field.

### SPECIFICATIONS:

| MODEL NO. | rock      | Maximum<br>Suffly Pressure<br>(PSI) | MAXIMUM<br>PUMP DEFTH<br>(bet) | WEIGHT | LENGTH<br>(Dia | WEDTH<br>seasions in in | HEIGHT<br>shel |
|-----------|-----------|-------------------------------------|--------------------------------|--------|----------------|-------------------------|----------------|
| 3013      | Preumatic | 125                                 | 250                            | 22     | 18             | 14.50                   | 6.75           |
| 3013H     | Pneumatic | 300                                 | 600                            | 26     | 18             | 14.50                   | 6.75           |
| 3013UH    | Pocumatic | 500                                 | 1000                           | 32     | 18             | 14.50                   | 6.75           |

# ACCESSORIES: MODEL NO. DESCRIPTION 3000 Multiple Pump Manifold 3017 Low Submergence Adaptor

SAMPLE PRO

Portable Water Level Meter

Get accurate, repeatable measurements quickly and easily at all depths.

### CONVENIENT, RELIABLE PERFORMANCE

Static water level measurement is faster, easier, and more precise than ever with Sample Pro\* 6000 Series flat tape water level meters.

The compact electronic probe, standard in stainless steel, is specially designed to eliminate false readings caused by cascading water, and fits easily in wells, boreholes, and standpipes. Kinkresistant flat tape is permanently marked in 1/50th ft. increments, allowing repeatable depth measurements accurate to 1/100th ft.

Kevlar strands reinforce the tape for improved stretch resistance; the Kevlar connects to bolted metal for a stronger probe/tape connection and better water-tight seal, protecting against probe failure.



The probe and cable are lowered from the easy-to-carry, free-standing reel. Visual and audio alarms indicate contact with static water; depth measurement is taken directly from the tape. A built-in sensitivity control allows adjustment to fit varying water conductivity conditions. The unit operates for up to a year on a single, easily-replaceable 9 volt battery.

Decontamination is easier than ever. The meter electronics can be removed by disconnecting a single plug; the whole reel/tape/probe assembly can then be simply washed down or even totally immersed for thorough cleaning between wells.

### **OPTIONS AND ACCESSORIES**

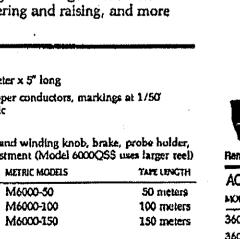
Seven standard models are available with inch or metric markings in a range of cable lengths from 100' to 650' and 50 to 150 meters. Lengths up to 1500' can be special ordered; please inquire.

Accessories include a padded protective carrying bag and a tape guide which keeps the cable from rubbing on the edge of the well casing, for reduced tape wear, easier lowering and raising, and more precise, repeatable measurements.

### SPECIFICATIONS:

Probes: Stainless steel (w/ strain relief), 5/8" diameter x 5" long

Tape: Flat tape, PVC with Keylar and tinned cupper conductors, markings at 1/50


intervals or 1 centimeter intervals for metric

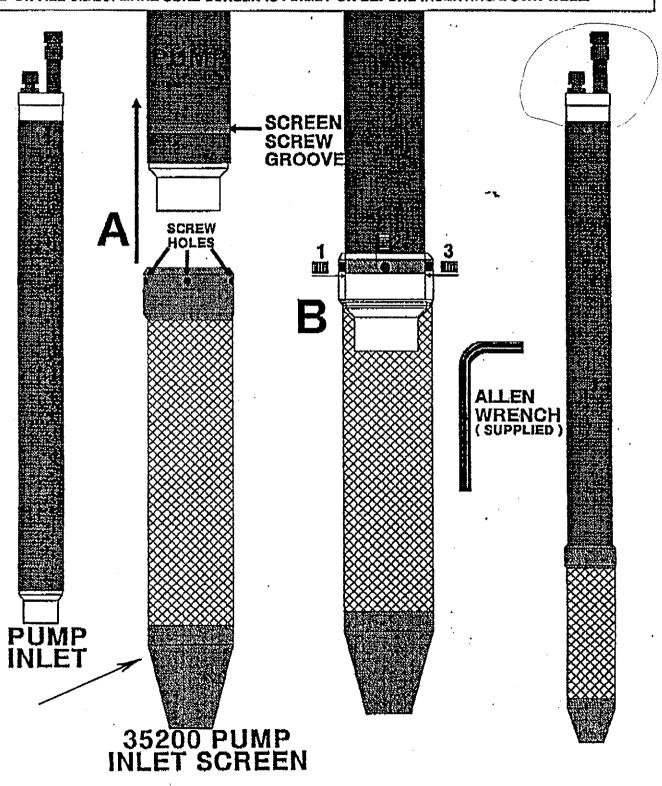
Powers One standard 9V battery

Reel: Small, free-standing with carrying handle and winding knob, brake, probe holder,

battery test, on-off switch, sensitivity adjustment (Model 6000QSS uses larger reel)

Depth MODEL NO. TAPE LENGTH METRIC MODELS Options: 6000YSS 100 ft. M6000-50 6000MSS M6000-100 300 ft. 6000SS 150 ft. M6000-150 6000QSS 650 ft.

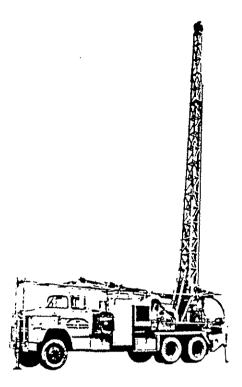







Removable Electronics Assembly

| ACCESS    | ORIES:       |     |
|-----------|--------------|-----|
| MODEL NO. | DESCRIPTION  |     |
| 36059     | Tape guide   |     |
| 36060     | Carrying bag | , . |
|           |              |     |


1200 SERIES PUMP INLET SCREEN ATTACHMENT SLIDE SCREEN OVER PUMP INLET AND ALIGN THE SCREEN'S SCREW HOLES OVER TOP OF THE SCREEN SCREW GROOVE OF THE PUMP'S BODY. HOLD SCREEN IN PLACE WHILE THREADING THE SCREEN'S 3 SET SCREWS, (USING THE PROVIDED ALLEN WRENCH), THROUGH THE SCREEN SCREW HOLES AND INTO THE PUMP SCREEN SCREW GROOVE. TIGHTEN SCREWS AN EQUAL DISTANCE IN ON ALL 3 SIDES TO PROVIDE A FIRM HOLD ON ALL SIDES. MAKE SURE SCREEN IS FIRMLY ON BEFORE INSERTING DOWN WELL.



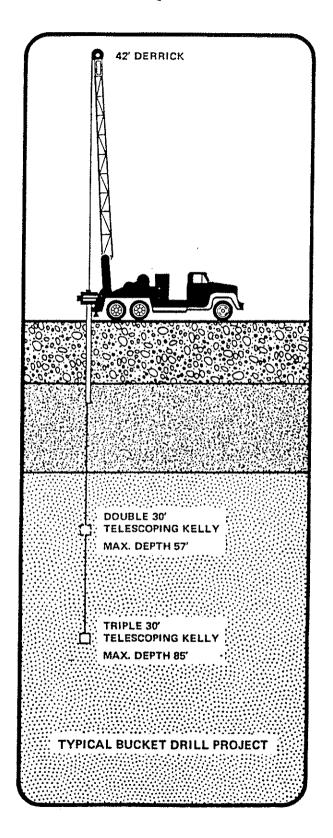
(OPTIONAL)

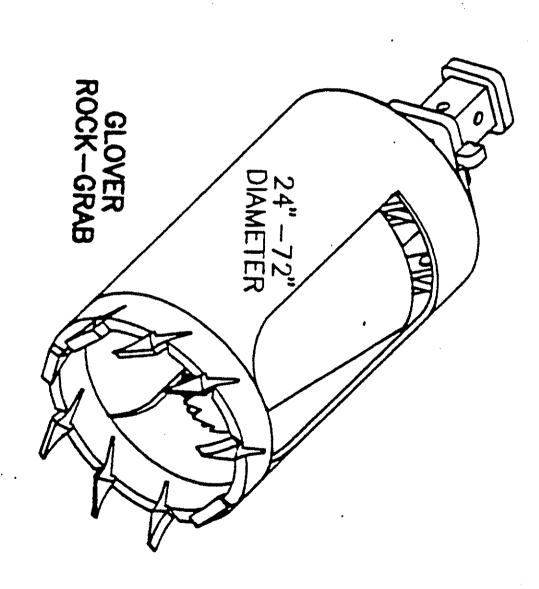
# **BUCKET DRILL RIGS**

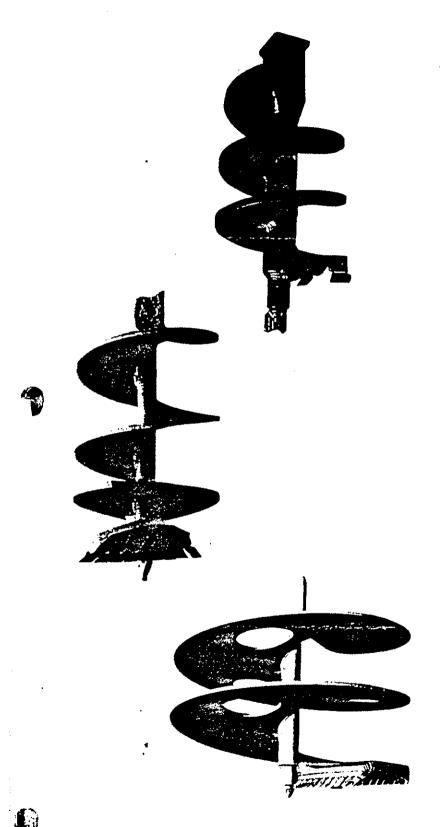
EXTRACTION WELL DRILLING



**BUCKET DRILL** 


A heavy duty model with 7000-pound double drum hoist. The 52-inch ring gear takes buckets to 48 inches in diameter. With a triple telescoping Kelly and 39-foot derrick, depths to 85 feet can be reached. By use of a stem, depths to 105 feet are possible.


Moretrench American uses the Bucket Drill to predrill excavations for the installation of Moretrench dewatering wells.


Revert or bentonite is used as a drilling fluid to support the sides of the excavation.

Moretrench American wellscreens and select sand or gravel filters are installed upon completion of the drilling operation:

Submersible pumps are used as the pumping tool for deep wells.



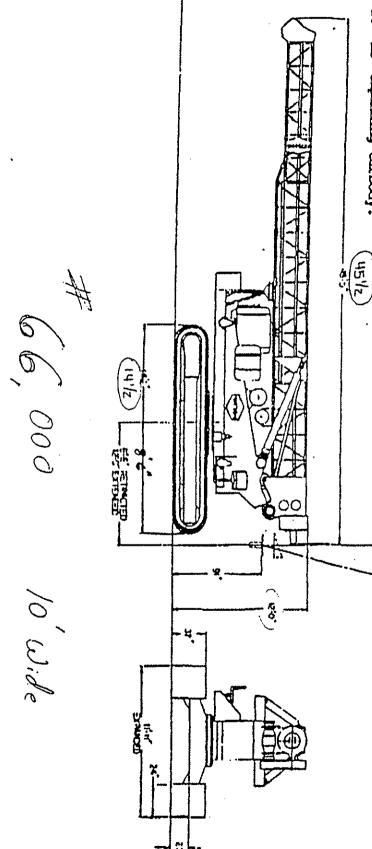




### SPADE TOOTH STEP AUGER

This auger incorporates a step-tooth design minimizing "walking" tendencies. It uses spade type teeth mounted in discrete positions both radially and in elevation. Full contact with the surface being drilled results in stability and continuous penetration in materials such as soft limestone, clay, shale, compacted sand and gravel. Worn teeth are easily removed and replaced. This auger performs well in a wide range of drillable materials that otherwise requires more than one tool for efficient drilling production.

### SINGLE FLIGHT, DOUBLE CUTTING EDGE AUGERS


These augers incorporate features of both the single flight, and double flight augers. The auger has two cutting edges for which a full line of cutting edge configurations is offered. The first leading edge of the flights cuts and conveys material up the auger. The opposing cutting edge is on a partial flight and serves to balance cutting forces when starting a shaft. This auger offers the advantage of double flight augers without reducing efficient conveyance of materials. Less tool weight and lower cost are also advantages to this design when compared to a double flight auger.

### **MUDDING AUGERS**

The principle purpose of a mudding auger is to drill and mix cuttings into a slurry. The openings placed in the auger's flights allow circulation of materials through the tool and complement mixing effects as the auger is rotated while alternately raised and lowered. The openings also provide a vacuum/pressure relief that results in increased speed and ease in which the auger may be raised and lowered in the shaft. Flight holes also serve to eliminate problems which result from pulling a partial vacuum in unstable materials that may result in wall collapse and shaft deformation. Mudding augers may also be used for typical drilling production. They are available in single or double flight configurations and may be equipped with a variety of cutting edges.

Dimensions for standard 60° drill depth unit. Approximate unit weight - 64,000;

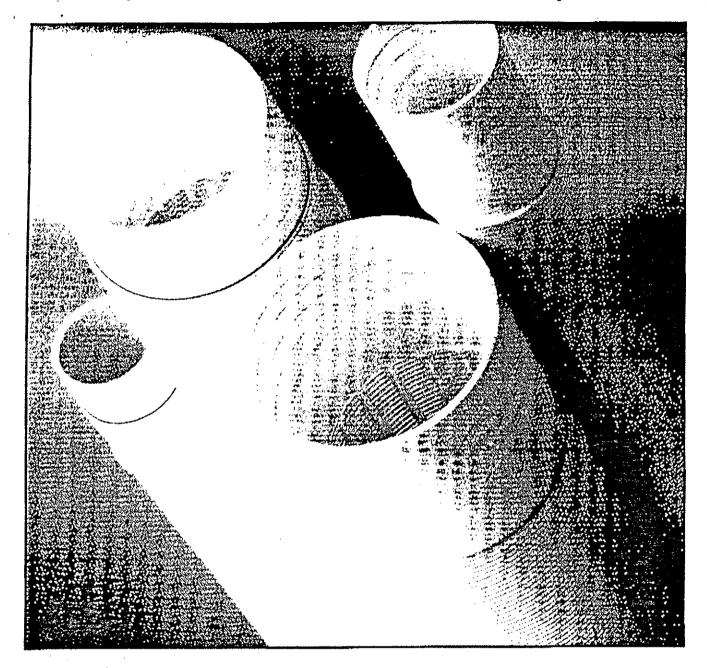
Standard crawler unit has dual swing notors and 10'-12' expanding carbody.



ファニ

gross

### **PROCEDURE**


### I. Piston Tube Sampling

To retrieve samples of the slurry wall backfill, we propose to proceed as outlined below:

- Minimum 8" O.D. hollowstem augers will be advanced to the prescribed depth. The diameter of the hollowstem will be minimum 4 1/4".
- Upon reaching the target depth, a nominal 3" LD. piston tube sampler measuring 24" in length will be pressed to its full depth.
- The tube will be withdrawn and the sample turned over to BET.
- The augered hole will be backfilled with a cement-bentonite grout in the proportion of 1 bag of portland cement, 4 to 6 pounds of dry bentonite to 7 gallons of water.

### II. Piezometer Installation

- Minimum 8" O.D. hollowstem augers will be advanced to depth. The hollowstem will be minimum 4 1/4" I.D. A wooden plug will be placed in the lead auger prior to drilling.
- Upon reaching completion depth, the hollowstem will be flushed with clear water to remove any fines and to stabilize the hole for piezometer construction.
- Minimum 1 1/4" I.D. PVC piezometer assemblies will be inserted in the hollowstem conforming to the depth requirement of the specifications.
- Filter gravel will be placed by tremie as the augers are withdrawn to a point 6" above the screen as specified.
- Above the filter-gravel, cement-bentonite grout will be placed via a grout pump and tremie pipe.
- The piezometer will be completed with cap, protective casing and lean concrete as specified.



### **PVC Vee-Wire\* Screens**

- Only continuous slot, wire-wrapped non-metallic screens available without a restricting pipe base.
- More open area per foot than any other non-metallic screen available. Allows more water to enter at lower velocities, which reduces turbidity and enables a more representative sample to be collected.
- Exceptionally strong due to sonically welded PVC wire and rods.
- Thermally-attached fittings (through 6PS), oliminate solvent welding in the field, which can endanger sampling accuracy.

### **PVC Slotted Pipe**

- Use Johnson screens" slotted PVC pipe when monitoring applications do not require the performance of Vec Wire" screen.
- Meets Wheelabrator Engineered Systems Inc.'s high standards of quality.
- Slots are cleaned to remove stringers and burrs.

### Typical Physical Analysis

### Well Gravel

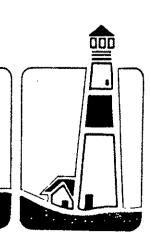
| <b>*</b> |       | Sieve     | Cum.  |        |         |
|----------|-------|-----------|-------|--------|---------|
| Inches   | MM.   | No.       | Grame | % Ret. | % Pass. |
| .0661    | 1.700 | 12        | 0.8   | 0.8    | 99.2    |
| .0555    | 1.410 | 14        | 14.2  | 13.4   | 85.8    |
| .0469    | 1.190 | 16        | 45.3  | 31.1   | 54.7    |
| .0394    | 1.000 | 18        | 74.6  | 29.3   | 25.4    |
| .0331    | .850  | 20        | 95.3  | 20.7   | 4.7     |
| .0278    | .710  | 25        | 98.4  | 3.1    | 1.6     |
| .0234    | .600  | 30        | 99.3  | 0.9    | 0.7     |
| .0197    | .500  | <i>35</i> | 99.7  | 0.4    | 0.3     |
| .0165    | . 425 | 40        | 99.9  | 0.2    | 0.1     |

### Typical Chemical Analysis

| Si02   | 99.390 |
|--------|--------|
| Fe203  | .240   |
| A1203  | .190   |
| Ti02   | .120   |
| Ca0    | .010   |
| MgO    | .004   |
| L.O.I. | .046   |

Acid solubility (1:1 HCL) .08 to .11% Sp. Gr. - 2.64 to 2.66

# THE MORIE COMPANY, INC.


MINERS OF INDUSTRIAL SAND AND GRAVEL

Main Office: 1201 N. High St., Millville, NJ 08332

800/257-7034 • in NJ. 800/521-0485 • Fax # 609/327-4107 GEORGIA SILICA DIVISION

Junction City, GA 31812 404/269-3294 • Fax # 404/269-3191 ALABAMA SILICA DIVISION' TENNESSEE SILICA DIVISION Tuscaloosa, AL 35401 205/758-8353

Camden, TN 38320 901/584-8201



# MORRIS WATERTIGHT MANHOLE

12" inch

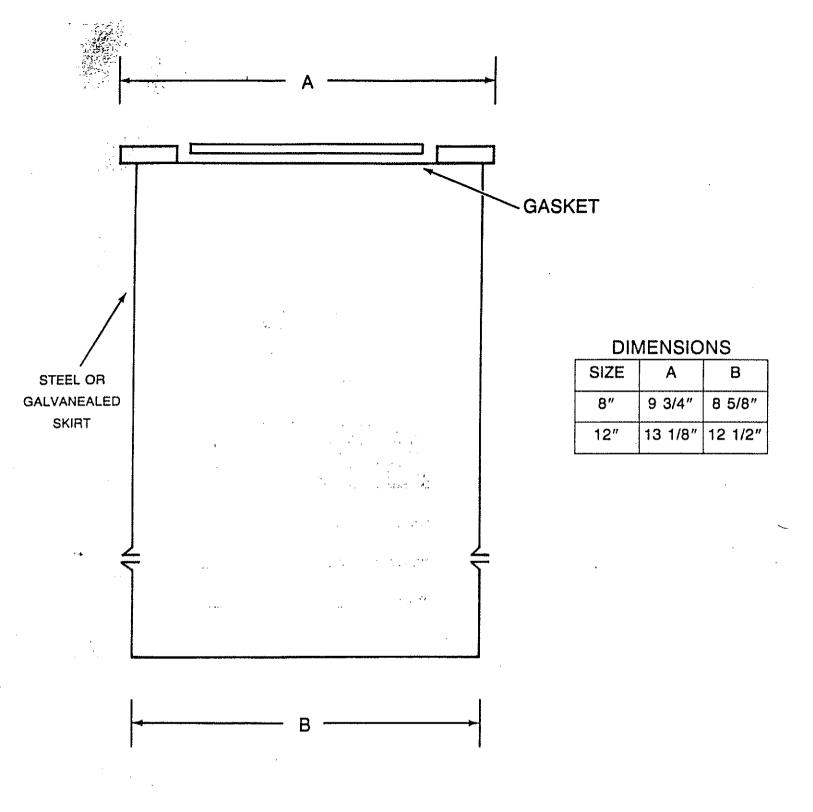
8" inch



- MADE FROM STEEL CONSTRUCTION
  - WATERTIGHT
    - EASY ACCESS
      - INCLUDES MULTI-PURPOSE WRENCH
        - IDENTIFICATION PLATE
          - AVAILABLE WITH STEEL OR 20 GAUGE GALVANEALED SKIRT
            - MANHOLES EXCEED THE H-20 AASHTO LOAD RATING
              - TESTED IN ACCORDANCE WITH FEDERAL SPECIFICATION #RR-F-621D



**MORRIS** industries, inc.


777 Route 23
Pompton Plains, NJ 07444
(800) 835-0777

44 Route 146 Mechanicville, NY 12118 (800) 635-6591 21 Commerce Circle Durham, Conn. 08422 (800) 232-2777 975 West Siddonsburg Road At US 1 Dilisburg, Penna. 17019 (800) 637-7724

"Fax # (518) 664-2008

Fax # (203) 349-9363

Fax # (717) 432-1150



# PRODUCT NUMBERS FOR ORDERING

| PART #    | DESCRIPTION                                     |   |
|-----------|-------------------------------------------------|---|
| 318100600 | 8" WATERTIGHT MANHOLE W/6" STEEL SKIRT          |   |
| 318101200 | 8" WATERTIGHT MANHOLE W/12" STEEL SKIRT         |   |
| 318101800 | 8" WATERTIGHT MANHOLE W/18" STEEL SKIRT         |   |
| 318100751 | 8" WATERTIGHT MANHOLE W/71/2" GALVANEALED SKIRT | - |
|           | 8" WATERTIGHT MANHOLE W/12" GALVANEALED SKIRT   |   |
| 318131201 | 12" WATERTIGHT MANHOLE W/12" GALVANEALED SKIRT  | • |

### BRECO MECHANICAL GROUP, INC.

201 SAW MILL RIVER ROAD YONKERS, NEW YORK 10701

TEL. (914) 963-3600 \* FAX (914) 963-3989

### WELL AND PIEZOMETER ABANDONMENT PROCEDURES

Per Section 02677 of the Specifications, the following describes the proposed method of abandoning the existing wells.

- The wells will be located in the field. The outer protective casing will be removed.
- A mixture of cement, bentonite and water will be used as a grout mixture for grouting the existing wells. The grout mix design will be as follows:

Portland Cement 94 Lbs.
Powdered Bentonite 4-6 Lbs.
Water 8-10 Gals.

- 3. The cement-bentonite grout will be mixed and pumped through a tremie pipe 3 feet from the bottom of the well to the top of the well.
- 4. A well abandonment report will be kept in accordance with Paragraph 1.3.B and Paragraph 1.7 of Section 02677. The report form that will be used is attached.
- 5. After 24 hours the well will be inspected for settlement of the grout previously placed. If any settlement occurred, additional grout will be placed in the well.
- 6. After the wells have been grouted, the inner casing shall be removed to 4 to 5 feet below ground surface. The remaining portion of the hole will be backfilled.

cwpdocs/abandonm

### BRECO MECHANICAL GROUP, INC.

### WELL ABANDONMENT REPORT

PROJECT: 876 HP

SPEC. SECTION: 02677 LOCATION: Pelham Landfill Bronx, N.Y. WELL NO: TYPE WELL: SIZE (DIAMETER): DEPTH OF GROUT LOSS: AMOUNT OF GROUT: DEPTH OF GROUT (STAGES): F.\_\_\_\_ λ.\_\_\_\_ G.\_\_\_\_\_ Н.\_\_\_\_\_ J.\_\_\_\_\_ CASING CONDITIONS: STATIC WATER LEVEL: DEPTH OF SEAL: CHANGES DURING SEALING: REMARKS: DATE OF CLOSURE:\_\_\_\_ TIME STARTED: TIME COMPLETED: COMPLETED BY:

# PureGold®

# **Groundwater Monitoring Products**



# American Colloid Company's PureGold® Product Line

American Colloid Company has specifically engineered the PureGold® product line to meet the strict regulatory requirements of the groundwater monitoring industry. PureGold\* products are produced from the highest quality bentonite clays. Each product consists of a blend of pure, dried bentonite clays without polymers or organic additives. PureGold products are formulated under strict quality control standards. The products have been analyzed for inorganics using the EP Toxicity Test Method, and for organic priority pollutants using U.S. EPA CLP procedures. The analytical results were below EP Toxicity maximum concentration limits for inorganics and below CLP detection limits for organics.

### **PRODUCT NAME**

### USE

PureGold\* Gel

A 90 bbl. yield, polymer free drilling fluid. Used for maintaining borehole integrity in unstable

geologic formations.

PureGold\* Grout

A high solids bentonite grout. A safe substitute for cement. Used for sealing the annulus of groundwater monitoring wells and abandoning boreholes.

PureGold® Tablets

Bentonite tablets available in 1/2", 3/8" and 1/4" diameters. Used for sealing the annulus of groundwater monitoring wells.

PureGold® Doughnut

A bentonite cylinder. Used for sealing the annulus of groundwater monitoring wells.

PureGold\* Chips

Bentonite chips available in two sizes: 1/4" to 3/8" and 3/8" to 3/4". Used for abandoning shallow boreholes. (< 100')

PureGold® Lube

A bentonite based tool joint lubricant. For use in environmental drilling where petroleum based lubricants are not allowed.

PureGold\* Grouter

A grout mixer available in two models. Used for mixing and pumping high solids bentonite grouts.

Marsh Funnel & Cup Mud Balance

Test equipment for measurement of drilling fluids and grout.

1500 W. Shure Drive . Arlington Heights, Illinois 60004-1434 . (708) 392-4600 . Fax (708) 506-8199

### Groundwater Division

### TECHNICAL DATA SHEET

# PureGold® Chips



Description:

PureGold® Chips are natural sodium bentonite screened to 1/4"

to 3/8" in size.

Recommended Use:

For sealing shallow boreholes, decommissioning wells, providing an interface between bentonite grouts and cement, and as a

backfill for ground rod installations.

Characteristics:

 Chemically stable, results from TCLP Metals Analysis are below RCRA limits for hazardous constituents.

• Provides a high solids clay seal.

Prevents infiltration of surface contamination.

• Provides a permanent flexible seal.

 Can be used to seal abandoned holes, conductor pipe and seismic shot holes.

Forms a low resistivity contact to grounding rods.

Mixing and Application:

Bagged material should be screened of fines before placing in hole. Material should be poured slowly down hole to prevent bridging or binding. If installed in the unsaturated zone, water should be added at two foot intervals to assure adequate hydration.

Bulk Density:

69.25 lbs/ft<sup>3</sup>

Packaging:

PureGold<sup>®</sup> Chips are packaged in 50 lb. Multi-wall weather resistant bags, 48 bags per pallet, and shrinkwrapped.

1350 W. Shure Drive • Arlington Heights, Illinois 60004-1440 • (708) 392-5800 • FAX (708) 506-6150

A wholly owned subsidiary of American Colloid Company



### PRODUCT APPLICATION QUANTITIES

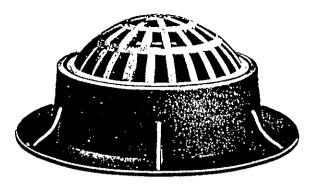
| HOLE<br>DIA.IN.    | CU. FI./<br>LIN.FT. | 1/2"<br>TABLETS<br>LBS/FT. | 3/8"<br>TARLETS<br>LBS /FT. | 1/4"<br>TABLETS<br>LBS./FT. | COURSE<br>CHIPS<br>LBS/FT. | MEĎIUM<br>CHIPS<br>LBS./FT. | VOLCLAY GROUT LBS/FT. | POREGOLI<br>GROUT<br>LBS. FT. |
|--------------------|---------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------|-------------------------------|
| 2                  | 0.02                | 1.56                       | 1.73                        | 1.76                        | 1.47                       | 151                         | 0.31                  | 0.50                          |
| 4                  | 0.09                | 6.63                       | 6.93                        | 7.04                        | 5.87                       | 6.04                        | 1.25                  | 1.98                          |
| 5                  | 0.14                | 10.36                      | 10.83                       | 11.01                       | 9.18                       | 9.44                        | 1.95                  | 3 10                          |
| <b>5</b>           | 0.20                | 14.92                      | 15.59                       | 15.85                       | 13.21                      | 13.60                       | 2.81                  | 4.46                          |
| 7                  | 0.27                | 20,31                      | 21.23                       | 21.57                       | 17.99                      | 18.51 <sup>-</sup>          | 3.82                  | 6.07                          |
| 8                  | 0.35                | 26.53                      | 27.72                       | 28 18                       | 23 49                      | 24 17                       | 4 99                  | 7.93                          |
| þ                  | _ 0.44              | 33,57                      | 35 09                       | 35.66                       | 29.73                      | 30.59                       | 6 31                  | 10.04                         |
| 10                 | 0.55                | 41 45                      | 43 32                       | 44 03                       | 36.71                      | 37 77                       | 7.79                  | 12.40                         |
| 12                 | 0.79                | 59.68                      | . 62 38                     | 63 40                       | 52.86                      | 54.39                       | 11 22                 | 17.85                         |
| 14                 | 1.07                | 81 23                      | 84 90                       | 86.29                       | 71.94                      | 74 03                       | 15.28                 | 24.30                         |
| 16                 | 1.40                | 106 10                     | 110 89                      | 11271                       | 93.97                      | 96.69                       | 19 95                 | 31 74                         |
| 18                 | 1.77                | 134 29                     | 140 35                      | 142.64                      | 118.93                     | 122.37                      | 25 25                 | 40 17                         |
| 20                 | 2.18                | 165 78                     | 173 27                      | 176.10                      | 146.83                     | 151.08                      | 31 18                 | 49 59                         |
| 24                 | 3.14                | 238.73 :                   | 249.51                      | 253.59                      | 211.43                     | 217.56                      | 44 89                 | 71 41                         |
| 30                 | 4.91                | 373.02                     | 389.85                      | 396.23                      | 330.36                     | 339.93                      | 70 15                 | 111 58                        |
| <del>-</del> 36    | 7.07                | 537.14                     | 561.39                      | 570.58                      | 475.72                     | 489.50                      | 101 01                | 160.67                        |
| Density<br>(lbs./c | •                   | 75.99                      | 79.42                       | 80.72                       | 67.30-                     | 69,25                       | 70,32*                | 75.55*                        |

<sup>\*</sup> When mixed with water according to Instructions at 20% solids.

Note: All application rates assume true borehole size. Adjustments should be made for irregular borings and formation loss.

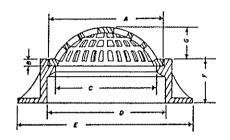


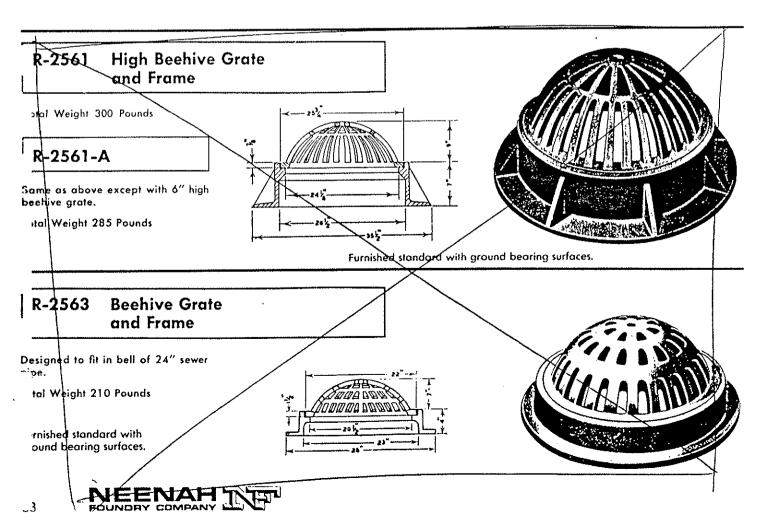
<sup>\*\*</sup> When mixed with water according to instructions at 30% solids.

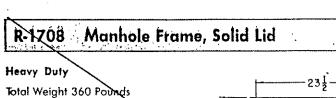

| 1 7 TO 1 | Diameter     |      |      |                                           |        |        | Toting Dies              | a chock  |      |      |                                         |      |
|----------|--------------|------|------|-------------------------------------------|--------|--------|--------------------------|----------|------|------|-----------------------------------------|------|
| Lin. Pt. | (fnches)     | 7:   | 4    | 9                                         | 80     | 93     | Casing Diameter 12       | 14       | 16   | 82   | 22                                      | 39   |
|          |              | ~    |      | reforms form of the Shakes as a said to . |        |        |                          |          |      |      | *************************************** | : •  |
|          |              |      |      |                                           |        | VOLU   | VOLUME OF ANNULU         | NULUS    |      |      |                                         |      |
|          | ı            |      | ·.   |                                           |        | (Cubic | (Cubic Reet/Linear Feet) | ir Feet) |      |      | ٠                                       | . :  |
| 0.02     | 8            | •    | ·:   | ٠.                                        |        |        |                          |          |      |      | ٠                                       |      |
| 0.09     | 4            | 0.07 | 0.0  |                                           |        |        |                          |          |      |      |                                         | :    |
| 0.14     | <b>3</b> 0   | 0.11 | 0.05 | ,                                         |        |        |                          |          |      |      |                                         |      |
| 0.20     | 9            | 0.17 | 0.11 | 0.00                                      |        |        |                          | •        |      |      |                                         |      |
| 0.27     | <b>(</b> **) | 0.25 | 0.18 | 0.07                                      |        |        |                          |          |      |      |                                         |      |
| 0.35     | <b>0</b> 0   | 0.33 | 0.26 | 0.15                                      | 0.00   |        |                          |          | •    |      | <i>:</i> ·                              |      |
| 0.44     | φ.           | 0.42 | 0.35 | 0.25                                      | 0.00   | •      |                          |          | •    |      |                                         | ٠.   |
| 0.55     | 2            | 0.52 | 0.46 | 0.35                                      | 0.20   | 99,0   |                          |          |      |      | • ,                                     |      |
| 0.79     | ឧ            | 0.76 | 0,70 | 0.59                                      | 0.44   | 0.24   | 0.00                     |          | •    |      | • .                                     |      |
| 1.07     | <b>4</b>     | 1.05 | 96'0 | 0.87                                      | 0,72   | 0.52   | 0.28                     | 0.00     | •    |      |                                         | • ;  |
| 1.40     | 91           | 1.37 | 1.31 | 1.20                                      | 1.05   | 0.85   | 0.61                     | 0,33     | 0.00 |      |                                         |      |
| 1.77     | 18           | 1.75 | 1.68 | 1.57                                      | 1.42   | 1.22   | 0.98                     | 0.70     | 0.37 | ,    | :-:                                     |      |
| 2,18     | 8            | 2.16 | 2.09 | 1,99                                      | 1.83   | 1.64   | 1.40                     | 1.11     | 0.79 | 0.00 |                                         |      |
| 3,14     | . 24         | 3.12 | 3.05 | 2,95                                      | 2.79   | 2.60   | 2.36                     | 2.07     | 1.75 | 96.0 | 0.00                                    |      |
| 4.91     | . 30         | 4.89 | 4.82 | 4.71                                      | . 4.56 | 4.36   | 4.12                     | 3.84     | 3.51 | 2:73 | 1.77                                    | 0.00 |
| 7.07     | 36           | 7.05 | 6.98 | 6.87                                      | 6.72   | 6.52   | 6.28                     | 6.00     | £3 * | , A  | 2                                       | 216  |

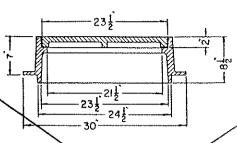
# R-2560 Series Beehive Grates with Frames

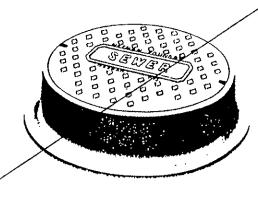
Suitable for drainage in circumstances where clogging of a flat grating is a probim. Excellent for roadside or earth ditch atch basins.


13<sup>1</sup> 2


| Catalog   | l     |      | Dimen  | sions in i | nches |    |      | Wi.  |
|-----------|-------|------|--------|------------|-------|----|------|------|
| No.       | A     | В    | С      | D          | E     | F  | G    | Lbs. |
| -2560-A   | 12    | 1    | 11     | 121/2      | 19    | 4  | 4    | 80   |
| ⊷-2560-B  | 151/2 | 11/4 | 15     | 15         | 21    | 5  | 3    | 120  |
| R-2560-C  | 18    | 134  | 161/2  | 201/2      | 30    | 8  | 4    | 190  |
| P-2560-C1 | 22    | 11/2 | 20     | 23         | 28    | 4  | 41/2 | 195  |
| -2560-C2  | 22    | 11/2 | 201/2  | 24         | 281/4 | 6  | 41/2 | 270  |
| -2560-D   | 22    | 11/2 | 20     | 241/2      | 35    | 9  | 41/2 | 315  |
| R-2560-D1 | 22    | 11/2 | 20     | 23         | 28    | 4  | 7    | 210  |
| R-2560-D2 | 22    | 11/2 | 201/2  | 24         | 281/4 | 6  | 7    | 285  |
| -2560-D3  | 22    | 11/2 | 20     | 241/2      | 35    | 9  | 7    | 345  |
| -2560-E   | 23    | 11/2 | 21     | 251/2      | 36    | 9  | 7    | 340  |
| 2560-EA   | 25¾   | 7∕8  | 241/6  | 261/2      | 351/2 | 4  | 6    | 265  |
| R-2560-EB | 25¾   | 7/8  | 241/8  | 261/2      | 351/2 | 4  | 9    | 285  |
| P-2560-E1 | 25¾   | 7/3  | 241/8  | 261/2      | 351/2 | 7  | 6    | 285  |
| 2560-E2.  | 253/4 | 7/8  | 241/8  | 261/2      | 351/2 | 7  | 9    | 300  |
| 2560-E5   | 25¾   | 7∕6  | 241/8  | 261/2      | 351/2 | 8  | 6    | 345  |
| R-2560-E6 | 25¾   | 7/8  | 241/4  | 261/2      | 351/2 | 8  | 9    | 365  |
| R-2560-E7 | 25¾   | 7∕8  | 24⅓⊪ - | 261/2      | 351/2 | 9  | 6    | 350  |
| 2560 E8   | 253/4 | 7∕8  | 241/6  | 261/2      | 351/2 | 9  | 9    | 365  |
| 2560-E9   | 25¾   | 7/8  | 241/8  | 261/2      | 351/2 | 10 | 6    | 360  |
| 2560-E10  | 25¾   | 7∕8  | 241/61 | 261/2      | 351/2 | 10 | 9    | 385  |
| R-2560-F  | 29    | 13%  | 27     | 38         | 46    | 10 | 6    | 520  |
| P-2560-G  | 32    | 11/2 | 30     | 36         | 46    | 7  | 4    | 535  |
|           |       |      |        |            |       |    |      |      |



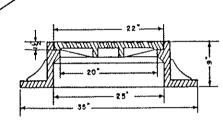


Illustrating R-2560-E

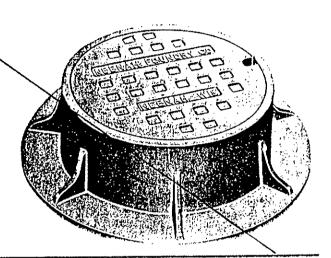

Furnished standard with ground bearing surfaces.










# R-1710 Manhole Frame, Solid Lid

**Heavy Duty** 

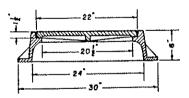
Total Weight 310 Pounds

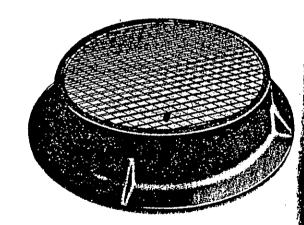




### R-1711-A Manhole Frame, Solid Lid




Heavy Duty

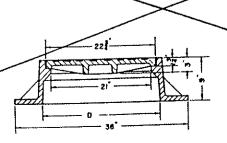

Total Weight 220 Pounds

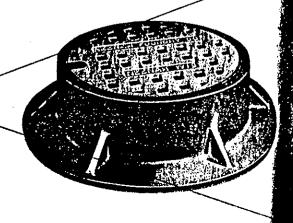


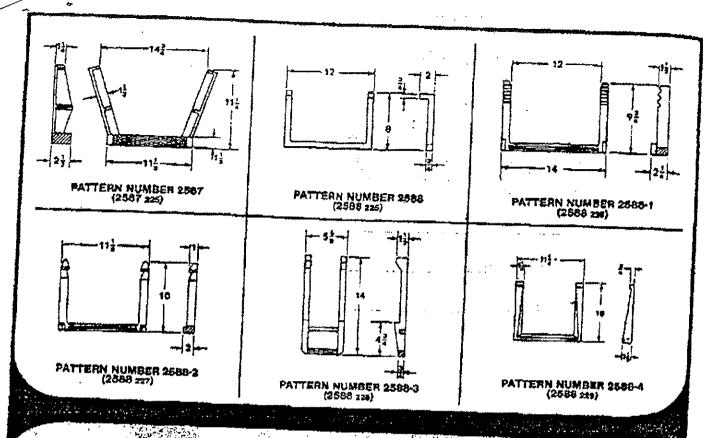
Light But

Total Weight 175 Pounds

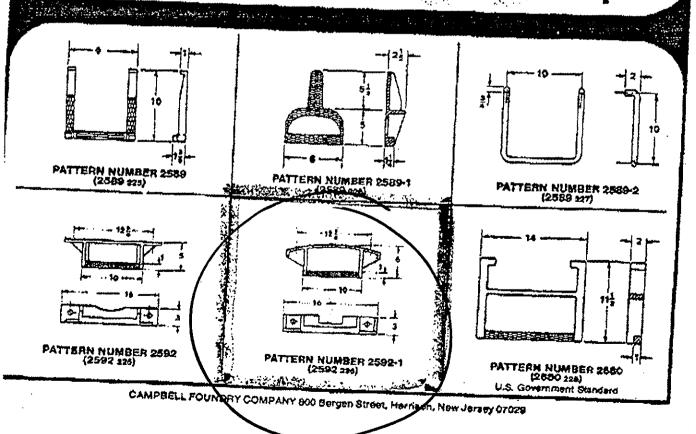






## R-1712 Series Manhole Frames, Solid Lids


**Heavy Duty** 

| Catalog No.        | D           | Wt.        |
|--------------------|-------------|------------|
| R-1712<br>R-1712-B | 24½"<br>26" | 540<br>445 |
| R-1712-C           | 26"         | 390*       |

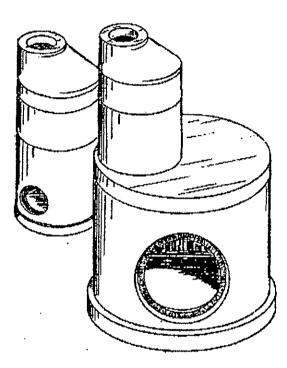

\*Furnished with platen lid, similar to R-1706-1.







# Manhole Steps




TOTAL P.01

Prowing: D-7

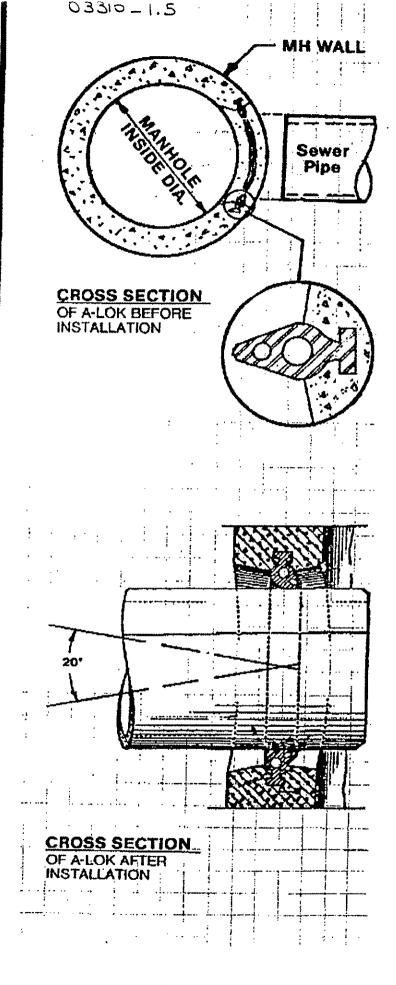


MANHOLE
PIPE
CONNECTOR
FOR
SANITARY SYSTEMS



### **US PATENTS**

3,796,406 3,813,107 3,832,438 4,159,829 4,508,355 4,073,048


CANADIAN PATENTS 996,150 971,997 1,085,889 1,077,692



PRODUCTS INC.

P.O. BOX 1647 TULLYTOWN, PA 19007 1-800-822-ALOK

697 MAIN STREET TULLYTOWN, PA 19007 (215) 547-3366



### DESCRIPTION:

The A-LOK is a high performance flexible connector designed to produce a positive waterlight connection for pipes entering precast manholes and other concrete structures. The rubber connector is compounde from a polyisoprene blend whose performance has been proven to be excellent for use in sanitary systems.

Integral placement of the connector in the concrete wall is achieved by use of a two part precision mandrel with a positive securing system to "lock in" connectors on the correct line and grade.

### **ADVANTAGES:**

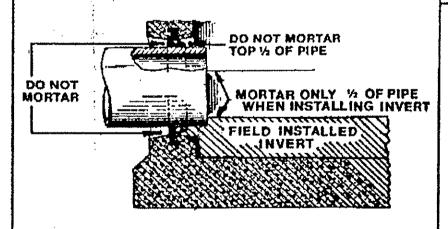
- 1.) A-LOK functions on pure compression, making field installation quick and easy. Clean and lubricate both connector and pipe; center pipe in connector and insert.
- 2.) The A-LOK connector assures a positive watertight connection, providing 10 degrees of omnidirectional deflection to eliminate infiltration and
  shear due to settlement or ground movement. This
  flexibility permits immediate backfill enhancing
  project safety, and overcoming the problems normally encountered with water, running sand and
  other unstable trench conditions.
  - 3.) On larger diameter pipe when size prohibits it being installed in a flat plane the physical configuration of the A-LOK allows it to be cast in a curve with a radi, progression of rotation. This design has resulted from years of extensive research and development and causes no loss in compression or deflection.

### **SPECIFICATIONS & TESTING:**

- 1.) Available for pipes from 4" through 60" inside diameter.
- 2.) The A-LOK meets all material and performance requirements of A.S.T.M. Standard C-923 titled "Resilient Connectors Between Reinforced Concrete Manhole Structures and Pipes." Some of the requirements are given in the attached tables.

| Min. distance between holes approx. ½ of smallest pipe 0.0. | ax. Hole Openir<br>=0.707 x :<br>MH LD. |
|-------------------------------------------------------------|-----------------------------------------|
| eor defl. 45° defl.                                         |                                         |
| PLAN VIEW of MH                                             |                                         |

|                 | MAX. PIPE SIZE O.D.                   |             |  |  |
|-----------------|---------------------------------------|-------------|--|--|
| MANHOLE<br>DIA. | From Straight<br>thru to<br>45° Doll. | Il 90. Dell |  |  |
| 4 ft.           | 31½ in,                               | 25 in       |  |  |
| ) 5 IL          | 42 in.                                | 32 in       |  |  |
| 6 ft.           | -51 in.                               | 38 in       |  |  |
| 7 fL            | 59 ín.                                | 44 in       |  |  |
| 8 ft.           | 73½ in.                               | 50 in.      |  |  |


| Test                                            | Yest Requirements                                                                              | ASTM Method                                              | 1   | j           |               |                                               | <u> </u> |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|-------------|---------------|-----------------------------------------------|----------|
| Chemical resistance:<br>1 Naulfuric seld        | rus wright least                                                                               | D 545, at 22 C for 98 h                                  | Ţ   | <del></del> | j             | <u>.                                     </u> |          |
| I A' bydrochlurie acid<br>I'custle mrength      | the weight been                                                                                | •                                                        | 1   |             |               | į                                             |          |
| Boogation at break                              | 1200 gel or 8.5 MPz; min<br>350%, min                                                          | D 412                                                    | į   |             | •             | :                                             |          |
| fordaces                                        | *5 from the manufacturer's speci-<br>fied hardness                                             | D 22-10 (Share A durchaste                               | •   |             | <u>.</u>      | •                                             | •-       |
| lcontermed over-aging                           | ricereane of 15%, max, of original<br>trendle strength, decrease of 20%,<br>man, of clargetion | D 575. 70 + 1 C for 7 days                               |     |             | •             |                                               |          |
| compression sea                                 | decreme of \$5%, man, of wriginal delicat                                                      | D 395, Method B, m 70 C lin                              | 226 |             | †******<br>}  | ·                                             |          |
| Cateer administration                           | increased them, of them of                                                                     | D 4"1, immerse 0.75 by 2-in.<br>by 25-mm specimen is di- |     | !           | ;<br><b>;</b> | .                                             |          |
| Pagent resistance                               | rating \$                                                                                      | maker at 70 °C for 48 is /                               | 1   | 1           | 1 1           | i È                                           | • • •    |
| am-remperature brittle point<br>fear redisiance | en fracture at —48 5.<br>200 Hel/in. or 34 kN/m                                                | D 746<br>D 629, Method 8                                 | i   | <u> </u>    |               |                                               |          |

### **A-LOK INSTALLATION INSTRUCTIONS**

A-LOK is a compression gasket sized to fit pipe barrel. Entry pipe should have a smooth outside surface and the correct diameter. Clean and lubricate A-LOK and pipe end which will be inserted into A-LOK. Care should be taken to lube the entire portion of pipe which will slide through A-LOK. When pipe barrel is lubricated, pipe can be reversed or deflected without twisting A-LOK rubber. Pipe can be installed in either direction from inside or outside of manhole. If pipe is cul, care should be taken to allow no sharp edges. A slight bevel is preferred as a lead and this should also be lubricated. Entry adapters are available if necessary to enhance centering and coupling of pipe to menhole. Pipe bedding on outside of manhole is critical as non-rigid pipe may ovate if not bedded conwells. Mainting frowal choold by ron belowen play and A. LOK after installing to remove any mud, stone, or excess lubricant.

### WARNING

Because of the A-LOK connector's ability to insure a flexible, watertight joint, it is our strong recommendation that no mortar be placed around the connector at all on the outside of the structure and that no mortar be placed around the top half of the connector on the inside when completing the invert work. The use of mortar in either of these areas would eliminate the flexibility for which the connector is designed, and cause problems of shear.



A.LOK.

PRODUCTS

P.O. BOX 1647 TULLYTOWN, PA 18867 1-800-822-ALOK 697 MAIN STREET TULLYTOWN, PA 19007 (215) 547-3366




1

**CLEAN & LUBRICATE GASKET** 



"L" Inches FROM END

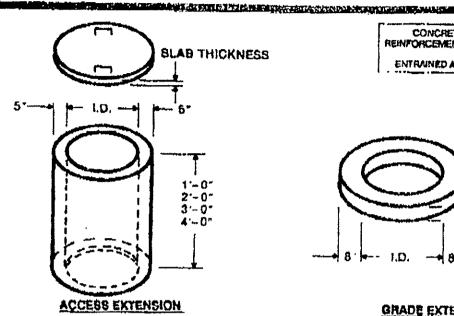
WITH LUBRICANT



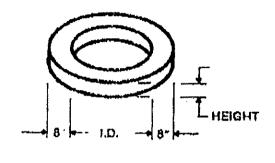
**CENTER UP PIPE & PUSH HOME** 

| PIPE DIA.       | "L" MIN.      |
|-----------------|---------------|
| 4"              | 12"           |
| 6 <sup>rt</sup> | 77            |
| 8"              | 11            |
| 102             | 71            |
| 12"             | 11            |
| 15"             | <b>11</b> .   |
| 16"             | 18"           |
| 18"             | 17            |
| 21"             | 24"           |
| 24"             | 55            |
| 27"             | 71            |
| 30"             | 11            |
| 33"             | 579           |
| 36"             | 72            |
| 42"             | . ••          |
| 48"             | **            |
| 54"             | **            |
| 60"             | <del>71</del> |
|                 |               |

A-LOK PIPE TO MANHOLE CONNECTOR INSTALLATION


6893

FORT MILLER THE FORT MILLER CO., INC.

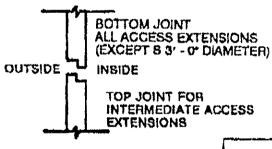

Precast MH Extension.



# Grade & Access (\*) Extensions



4000 P8I ASTM A616 - GRADE 00 ASTM A165 - GRADE 05 5.0% - 9.0% CONCRETE: REINFORCEMENT: ENTRAINED AIR:




FAX NO. 9145652888

### (INTERMEDIATE EXTENSIONS AVAILABLE)

### **GRADE EXTENSION**

DESIGNED FOR AASHTO H-20 LOADING 30% IMPACT SOIL PRESSURE 120 PCF



ACCESS EXTENSION JOINT DETAIL

WEIGHTS, LOS

|         | GRADE EXTENSION   | 1\$                       |
|---------|-------------------|---------------------------|
| LD.     | HEIGHTS AVAILABLE | LBS PER INCH OF<br>HEIGHT |
| 5, - 0, | 47. 67. 87, 197   | 68                        |
| 2' - 6' | 3", 5", 7", 9"    | 80                        |

**DESIGN CASE 1** (TRAFFIC)

| [  |         | ACCESS E       | XTENSIONS   |                 |
|----|---------|----------------|-------------|-----------------|
|    | I,D.    | SLAB THICKNESS | SLAB WEIGHT | LBS PER<br>FOOT |
| 44 | 2' - 0" | 3.             | 238         | 480             |
|    | 2' - 6' | 4"             | 433         | 578             |
|    | 3'-0"   | 4*             | 570         | 665             |

B-74

03310-15

SHEET NO. 4.50

## EPOLON 22 BLACK MASTIC

PRODUCT DESCRIPTION:

A heavy duty, interior/exterior, multi-mil, two component, coal far epoxy compound. Specifically designed for the protection of steel and concrete in immersion service or where unusual resistance to severe humidity, corrosion, fresh or salt water immersion, abrasion, impact or general chemical attack is required.

RECOMMENDED USES:

For use on: property prepared steel and concrete surfaces such as concrete pipes, plant equipment, sewerage plants, cooling towers, underground tanks, barges, bulkheads, bridges, conveyors or studge vessels and various chemical plants. Do not use for potable water service.

PERFORMANCE STANDARDS:

APPLICABLE STANDARDS: Meets performance requirements of Steel Structures Painting Council SSPC-16-68T and Corps of Engineers

CHEMICAL RESISTANCE:

Immersion
Salt Solutions
Fresh Water
Crude Oil
Alkalles

Frequent Contact
Solvents
Alcohols
Vegetable Oils
Petroleum Products

Occasional Contact Organic Acids Mineral Acids Oxidizing Agents

GENERIC TYPE: Coal Tar Epoxy-Polyamide

FINISH: Semi-aloss

RECOMMENDED FILM THICKNESS:

Wet: 11 - 14 Mils Dry: 8 - 10 Mils

THEORETICAL COVERAGE: 115 - 145 Sq. Ft./Gallon at 8 - 10 Mils Dry Film Thickness

DRYING TIME @ 75.F HUMIDITY 50%:

To Touch: 4 Hours
To Handle: 8 Hours
To Recoal: 18 Hours

To Recoat: 18 Hours and within 72 Hours Maximum

MIXING RATIO: 4:1 By Volume

DRY HEAT RESISTANCE:

Continuous: 200°F Intermittent: 250°F

REDUCER: EPOLON 145 REDUCER

APPLY BY: Airless Spray Recommended Brush or Roller for small areas.

APPLICATION CONDITIONS:

Relative Humidity: Up to 85% Temperature: 50° - 100°F

Surface Temp.: 5°F above Dew Point

COLOR: Black

NUMBER OF COATS RECOMMENDED: Two

TOTAL SOLIDS:

Volume: 71 - 73% Weight 81 - 83%

NUMBER OF COMPONENTS: Two

INDUCTION TIME @ 75°F:30 Minutes

POT LIFE @ 75°F (Mixed): Up to 8 Hours

FLASH POINT (Mixed): 80°F (TCC)

VOLATILE ORGANIC COMPOUND: Less than 2.0 Pounds Per Gallon

WEIGHT PER GALLON (Mixed): 10.6 lbs average

VISCOSITY @ 77° F (Mixed): 100 - 110 Krebs Units

SHELF LIFE: Up to 24 Months at Recommended Storage Conditions

STORAGE CONDITIONS: Indoors at 45° - 100°F

PACKAGED: One and Five Gallon Kits

One Gallon Kit:1 Gallon Container Component A part filled @ .8 Gallon 1 Quart Container Reactor B

Five Gallon Kit. 5 Gallon Container Component A

part filled @ 4 Gallons 1 Gallon Container Reactor B

"ENGINEERED PRODUCTS FOR HEAVY-DUTY INDUSTRIAL & COMMERCIAL PROTECTION"

### EPOLON 22 BLACK MASTIC

#### MIXING

Mix contents of each component thoroughly to obtain a uniform consistency and insure no pigment remains on bottom of can. Pour the contents of the container marked "Reactor B" into the slack filled container marked "Component A" or in the ratio of 4 parts "Component A" to 1 part "Reactor B" by volume while under agitation. Continue agitation until the two components are thoroughly mixed. Allow to stand 30 minutes prior to application. Re-stir before using. Do not use mixed material beyond recommended pot lite. Temperatures above 75°F will

SURFACE PREPARATION

Prepare surface by method suitable for service and exposure. All surfaces must be dry, clean and free of all paint, rust and other foreign matter. Do not paint in dampness or temperatures below 50°F.

STEEL: All surface contamination including rust, mill scale, loose paint, old coatings, and all other foreign matter must be removed by dry abrasive blasting and coated within 8 hours or before visible rusting occurs. Surface profile of blast not to exceed 2 mils. Prior to blast cleaning, remove all visible deposits of oil and grease in accordance with Solvent Clean SP-1, Round off all rough welds and sharp edges and remove weld spatter. Minimum surface preparation: Immersion service - Near White Blast SP-10. Non-immersion service - Commercial Blast SP-6. CONCRETE: New concrete must age at least 60 days before coating. Form release agents, curing compounds, satts, all previous coatings, hardeners, and other toreign matter will interfere with adhesion and must be removed and surface properly prepared by mechanical abrasion, abrasive blast, or acid etching. Surface must be swept or vacuumed to remove all spent abrasives, dust and other foreign matter. Minimum surface preparation is acid etch

with a 15% muriatic acid solution creating a grainy surface texture, flush and rinse completely and allow to dry

**SPECIFICATION** 

STEEL, IMMERSION, (Near-White Blast SP-10):

2 coats: EPOLON 22 BLACK MASTIC. Total dry film thickness: 16 mils minimum.

STEEL, NON-IMMERSION, (Commercial Blast SP-6):

1st coat: EPOLON RUST INHIBITOR 15 RED. Finish with: 1 coat: EPOLON 22 BLACK MASTIC.

GALVANIZED METAL OR NON FERROUS METALS, RUST FREE (Solvent Clean SP-1):

1st coat: METAL BOND 47 PRIMER.

Finish with: 2 coats: EPOLON 22 BLACK MASTIC.

CONCRETE, NEW OR UNPAINTED WOOD:

1st coat: EPOLON 22 BLACK MASTIC (reduced 1 quart per gallon with EPOLON 146 REDUCER).

Finish with: 1 coat: EPOLON 22 BLACK MASTIC. Total dry film thickness: 18 mils minimum.

Allow 5 days curing time at recommended temperature and humidity before putting tank in service. Do not apply over

If thinning is required:

REDUCER

Up to one pint per gallon of EPOLON 143 REDUCER.

RECOMMENDED EQUIPMENT (or Equivalent)

AIRLESS SPRAY:

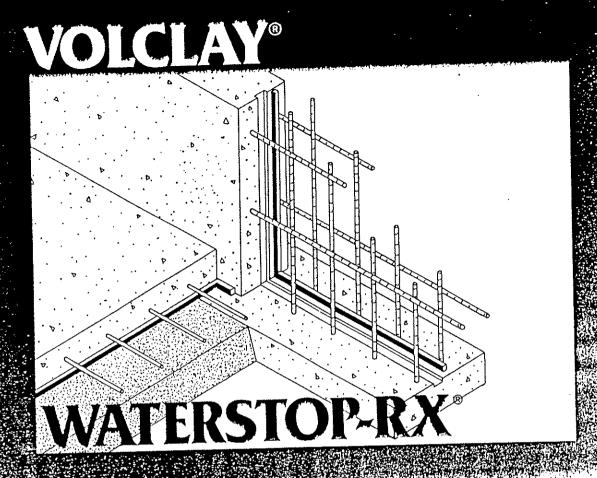
Standard airless equipment such as the Graco President or Bulldog 30:1 pump ratio. Inbound pressure 80 -

Use a 50% overlap with each pass of gun. Airless spray recommended for best film build and to minimize spray dust. EPOLON 22 BLACI: MASTIC may be applied, if required, to small areas only by brush and roller. Film build obtained will depend primarily upon the skill and technique of the applicator. In most cases when using brush or roller, a second coat will be necessary to achieve recommended film thickness. Use a short bristle brush or medium nap roller (do not use long nap lambs wool cover). Keep roller saturated with material, working coating into all irregularities. Be sure proper film thickness is obtained. Special attention should be given to sharp edges, boltheads. flanges, rivets, corners, welds and other irregular surfaces to insure they receive proper film thickness equivalent to that recommended for all other adjacent ereas.

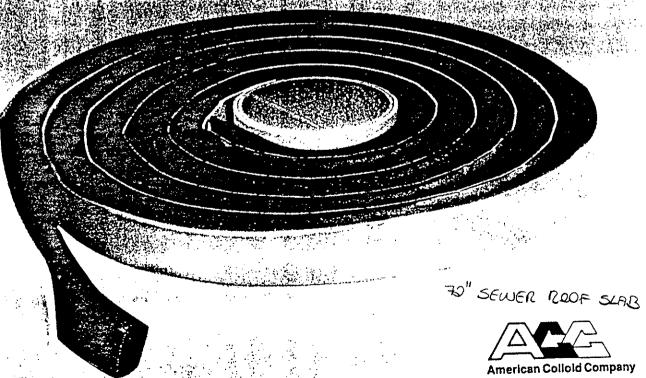
When applying two coats, be sure first goat is properly cured. Excessive film thickness or conditions of poor ventilation require longer dry times. Excessive humidity or condensation on the surface during curing may result in a surface haze or blush. This should be removed by water washing before recoating. When recoating after 72 hours of application of initial first coat, surface coating must be brush blasted or abraded prior to application.

NOTE: Curing time is extended at temperatures below 70°F and shortened above 70°F. At low temperatures (50°F)

WARNING: FLAMMABLE. Contains xylene, glycol others and epoxy resin. Keep away from heat, sparks and open flame. Do not take internally. Explosion proof and non-sparking equipment should be used. May irritate eyes and skin. Prolonged breathing of vapors may irritate respiratory tract causing headache, nausea and dizziness. Use only with adequate ventilation. Avoid contact with skin and breathing of vapors of spray mist. Close container tightly and wash hands properly after each use. Keep out of reach of children. Refer to Material Safety Data Sheet prior to use.


FOR INDUSTRIAL USE ONLY . BY PROFESSIONAL APPLICATORS

FOR INDUSTRIAL USE UNLT # BY PROPESSIONAL APPLICATORS


follows to lour knowledge, the technical information contained herein is accurate All CON-LUX products are warranted to contorm to durative specifications and equal registering as products. Because tiers conditions very, the information set from annot be constitued to be occurred and equal registering as products are intended in a contormal techniques. CON-LUX products are intended for the by individuals have obtained in a contormal state of controlling and another than the industry at their sole described in a controlled to the products are intended for the by individuals having state and another how in the industry at their sole described in a product is in products.

CON-LUX assumes no healthly for any potent intringement which may size from the use of its products.

CON·LUX Coatings, Inc. Telmedge Road, Box 847 Edison, N.J. 08818-0847



lasti effective, permanent sealing for concrete joints:



# Vaterstop-RX helps save time, money... Ind concrete structures.

stalling conventional waterstops in conste joints is an important (but normally timeconsuming) part of concrete construction. It can also be very labor-intensive, reducing a profitability of the job. Most important, nventional waterstops offer only a partial dution to water infiltration, leaving architects, engineers, and contractors open to liability problems.

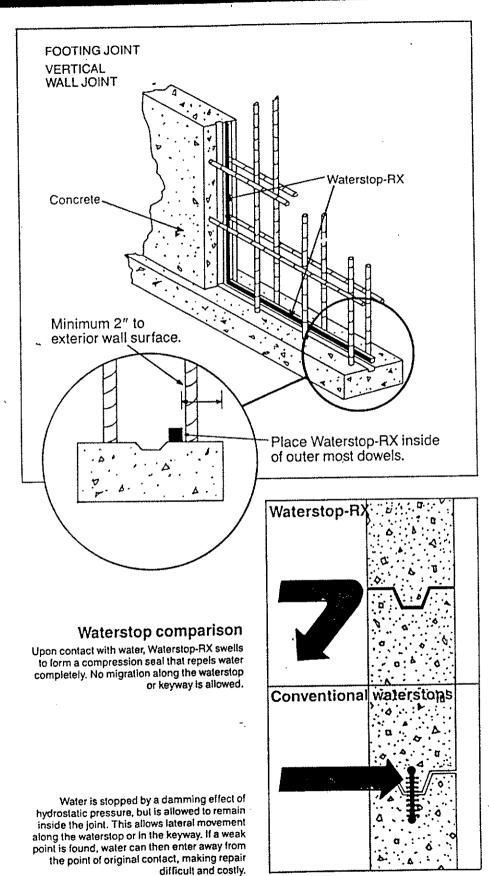
niclay® Waterstop-RX® solves water infiltration oblems. It's easy to apply even by a single, inexperienced laborer, cutting installation time in half. It eliminates split-forming and plicing. And, its self-healing properties issure that concrete joints remain protected ...armanently.

P-Iow Waterstop-RX works ne key to Waterstop-RX is its western odium bentonite base. Specified for more than 20 years for foundation waterproofing, bentonite swells in contact with water, forming

bentonite swells in contact with water, forming impenetrable gel. This property also llows bentonite products to fill in small racks in concrete.

Waterstop-RX comes in a coil. It is applied y adhering the material to the butt end of ne concrete with RX Primer or concrete cut ails—an operation that requires a single laborer. Then pour or place the next section of concrete to complete the joint. No split

orming, splicing, or bonding is required as ith conventional waterstops.


Upon hydration, Waterstop-RX swells to form a self-healing compression seal that completely locks out water. This action also revents water migration along the waterstop and in keyways as an extra protection against penetration.

All-weather application

Naterstop-RX has been engineered for use under virtually all temperature conditions. Unlike other popular joint sealants, Waterstop-RX does not become stiff and brittle in cold weather nor spongy and difficult to work with in hot weather. As a result, Waterstop-RX does not have to be heated in cold weather, saving time and money. It also remains totally lexible without shrinking, hardening, or oxitizing regardless of the length of time it is exposed to the elements.

Safe to use

Because Waterstop-RX is non-toxic, no special handling equipment is required. It is clean to the touch, and does not contain any material which can discolor or irritate the skin, helping eliminate lost man-hours.



# Installation procedures Surface preparation

Joint surfaces should be clean and dry. For best results, Waterstop-RX Primer should be applied to the joint surface prior to adhering Waterstop-RX, especially on vertical joints. The primer creates a tacky surface which allows for excellent adhesion to the concrete.

### **Positioning**

Waterstop-RX is adhered to the butt end of the previous concrete pour and should be positioned a minimum of 2" from the exterior joint surface. Concrete cut nails, Waterstop-RX Primer, or both must be used to secure Waterstop-RX in place to prevent displacement of the material during the pour.

Waterstop-RX may also be installed in a cast in place recess at the exterior side of the joint. In this situation, precautions must be taken to protect Waterstop-RX from hydration prior to backfilling and backfill must be compacted to 85% modified proctor minimum, adjacent to the joint. The recess at the exterior of the joint should match the dimension of Waterstop-RX.

The ends of individual Waterstop-RX coils should be butted together—never overlapped.

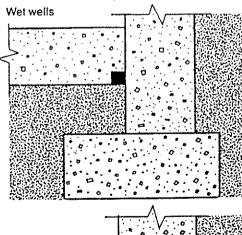
### **Applications**

Waterstop-RX is ideal for use on many types of poured in place and below grade precast concrete applications. There should be a minimum of 2" of concrete cover separating the exterior face of the Waterstop-RX from the exterior side of the joint.

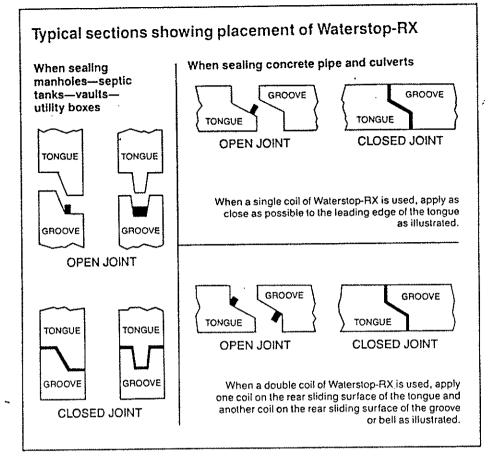
NOTE: In cases of lightweight concrete or insufficient coverage, consult the manufacturer.

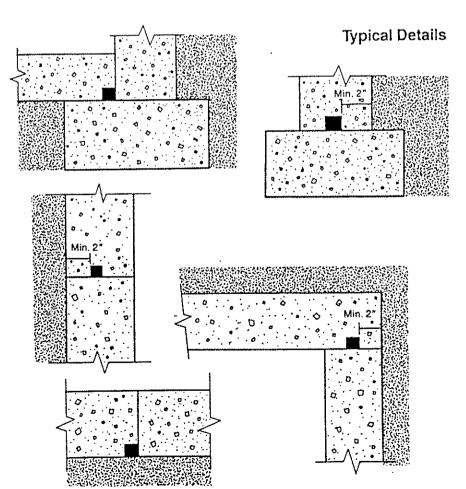
#### Use On:

Precast concrete wall panel systems


Septic tanks and sewage treatment plants

Sanitary and storm sewer manholes


Pipe (round, oval, flatbase, elliptical, and arch types)


Cold joints in foundation slabs or walls below grade

Burial vaults Utility vaults Box culverts



Min. 2





# Waterstop-RX Technical Information

volclay Waterstop-RX ois a flexible strip of bentonite waterproofing compound, coiled in two sizes. Dimensions and other specifications are as follows:

| 1" × 3/4" × 16'6"   | 3/4" × 3/4" × 25'0"                                 |
|---------------------|-----------------------------------------------------|
| 50 lbs./ft. minimum | .165 lbs./ft. minimum                               |
| 100 L/F             | 150 L/F 《答》。                                        |
| 50 lbs.             | 25 lbs ""                                           |
| 14" × 14" × 10"     | 14" × 14" × 10"                                     |
| 4' × 4'             | 4' × 4'                                             |
|                     | 50 lbs./ft. minimum 100 L/F 50 lbs. 14" × 14" × 10" |

### **Chemical Composition**

| Material                                      | Test Method * * | Waterstop-RX Results |
|-----------------------------------------------|-----------------|----------------------|
| Butyl Rubber-<br>Hydrocarbon<br>(% by weight) | ASTM D-297      | 24.9%                |
| Bentonite                                     | SS-S-210-A      | 75.0%                |
| Volatile matter                               | ASTM D-6        | Below 1%             |

NOTE: Contains no asbestos libers or asphaltics.

### **Physical Properties**

| Property                                     | Test Method                                            | Waterstop-RX Results  |
|----------------------------------------------|--------------------------------------------------------|-----------------------|
| Specific gravity<br>at 77°F                  | ASTM D-71                                              | 1.57                  |
| Softening point                              | ASTM D-30                                              | N/A                   |
| Penetration                                  | ASTM D-217<br>150 GTL<br>300 GTL                       | 58<br>85              |
| Flash point                                  | ASTM D93-97                                            | 365                   |
| Min. head pressure Hydrostatic pressure test |                                                        | 231 ft. (100 psi)     |
| Accelerated aging                            | (Mechanical oven<br>4 hrs. @ 212° F)                   | Maintained 99% solids |
| Flow resistance                              | (¾" overhead<br>joint exposed to<br>135° F for 7 days) | No flow               |
| Storage life                                 |                                                        | Indefinite            |
| Adhesion to clean,<br>dry concrete           |                                                        | Excellent             |
| Application temperature range                |                                                        | 5° to 125°F           |
| Service temperature range                    |                                                        | -40° to 212°F         |

Notice: The information presented here is believed to be correct. However, since it is provided without charge and without specific knowledge of the intended use or application of its product, American Colloid Company assumes no obligation or liability with respect to such use or application, and makes no warranty, either expressed or implied, as to the application or use of such product, or to the use or infringement of any patent or other proprietary rights of American Colloid Company or others with respect to such application or use.

Seal concrete joints quickly and permanently with the waterstop that heals itself—Waterstop-RX. For more information, contact your American Colloid Company distributor, or contact us direct.

| Distributed by: |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |
|                 |  |

### Limitations

In conditions where severe ground water contamination is expected, please consult the manufacturer for compatibility information. Waterstop-RX should be confined within a concrete joint with a minimum 2" concrete cover to the exterior of the joint surface. Waterstop-RX may also be installed in a cast-in-place recess at the exterior side of the joint. In this situation, precautions must be taken to protect Waterstop-RX from hydration prior to backfilling and backfill must be compacted to 85% of modified proctor minimum adjacent to the joint. The cast in place recess should match the dimension of the Waterstop-RX being used.

An exposed length of coil should not be submerged for extended periods of time. If Waterstop-RX exhibits considerable swelling prior to confinement in the joint, it must be replaced with new material. To avoid displacement of Waterstop-RX during or prior to concrete placement, cut nails and/or Waterstop-RX Primer must be used to hold the material in place. Proper care should be taken during concrete placement to avoid displacing the Waterstop-RX strip. Waterstop-RX is not an expansion joint product and should not be used as such.

NOTE: In cases of lightweight concrete or insufficient coverage, consult the manufacturer.

### Warranty

American Colloid Company warrants its materials to be of good quality and will replace material proved to be defective. In no instance will American Colloid Company be liable for labor costs or incidental damage associated with the use of this product, unless stated in a warranty for a specific project.

### Document

This brochure contains information to supplement information service available from American Colloid Company's Building Materials Division and from local distributors.

### **Application Assistance**

Local distributors of Waterstop-RX are qualified to aid in solving problems related to use of this product. In the event that your needs are special or you have an unusual situation, your local Waterstop-RX distributor will arrange to have a factory representative contact you for personal assistance.



American Colloid Company
Building Materials Division
1500 W. Shure Drive
Arlington Heights, IL 60004
1-312-392-4600 FAX 1-312-506-6199
1-708-392-4600 TELEX ITT 4330321
\*(After Nov. 1st, 1989)
Sales Offices:
440 Lexington Street, Room 8
Newton, MA 02166 • 1-617-965-0895
Suite 400 • 6525 Corners Parkway
Norcross, GA 30092 • 1-404-263-7601
23015 Del Lago Drive, Suite 1014
Laguna Hills, CA 92653 • 1-714-380-7420



### TECHNICAL DATA SHEET

RECEIVED A STREET STREET

A production of the control of the con

## CoRezyn VE8319

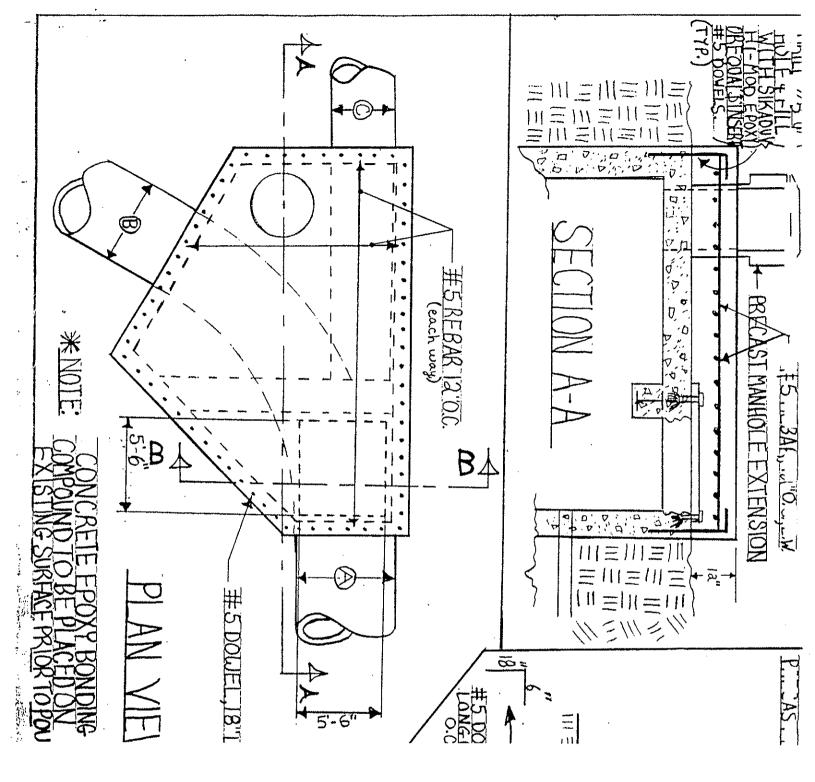
CoRezyn VE8319 is a thixotropic, non-promoted, corrosion resistant, Bisphenol-A Epichlorohydrin based vinyl ester resin formulated for Insituform.

### TECHNICAL DATA

TYPICAL LIQUID RESIN PROPERTIES:

Viscosity, (Brookfield Model LVT) #3 spindle @ 20 rpm, cps 3,200 Thixotropic Index 3.6 SPI Gel Time, 1.0% Active BPO, 180°F Oil Bath Gel Time, 150 to 190°F, minutes 16 Percent Non-Volatile 59 Weight per gallon, pounds 8.75

### TYPICAL PROPERTIES OF A 1/8TH INCH THICK CLEAR CASTING:


| Flexural Strength, psi, ASTM D790      | 18,000 |
|----------------------------------------|--------|
| Flexural Modulus, psi x 105, ASTM D790 | 4.5    |
| Tensile Strength, psi, ASTM D638       | 11,600 |
| Tensile Modulus, psi x 105, ASTM D638  | 4.7    |
| Percent Elongation, ASTM D2583         | 5.0    |
| Barcol Hardness, 934-1, ASTM D2583     | 54     |
| Heat Distortion, °F, ASTM D648         | 210    |

TYPICAL PROPERTIES OF A 6mm INSITUFORM FELT LAMINATE

| Esperox 570P, weight percent                                                                                                                                                                             | 1.0                                   | 0.0                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|
| Percadox 16N, weight percent                                                                                                                                                                             | 0.0                                   | 1.0                                   |
| Trigonox C, weight percent                                                                                                                                                                               | 0.5                                   | 0.5                                   |
| Flexural Strength, psi, ASTM D790 Flexural Modulus, psi x 10 <sup>5</sup> , ASTM D790 Tensile Strength, psi, ASTM D638 Tensile Modulus, psi x 10 <sup>5</sup> , ASTM D638 Percent Elongation, ASTM D2583 | 11,300<br>4.9<br>7,100<br>5.2<br>2.13 | 11,200<br>5.0<br>7,000<br>5.4<br>2.00 |

All specifications and properties specified above are approximate. Specification: and properties of material delivered may very slightly from those given above. Interplastic Corporation makes no representations of fact regarding the material except those specified above. No person has any authority to bind interplastic Corporation to any representation except those specified above. Final determination of the suitability of the material for the use contemplated is the sole responsibility of the Buyer. Commercial Resins sales representatives will assist in developing procedures to fit individual requirements.

This Technical Data Sheet supersedes any issued prior to 10/1/91. DJH



# McMASTER-CARR supply company

P.O. BOX 440 • NEW BRUNSWICK, NJ 08903-0440

**NET PRICES** 





Serving industry since 1901

### TELEPHONE

Sales Desk & Customer Service All Other Departments (908) 329-3200 -(908) 329-6666 -

FAX

(908) 329-3772

PLANT LOCATION

Dayton, New Jersey, U.S.A.

MAIL ADDRESS

P.O. Box 440 New Brunswick, NJ 08903-0440 U.S.A.

# Neoprene Rubber

### High-Grade Neoprene Rubber Sheeting

The high tensile strength of 1500 psi makes this premium grade rubber a great choice for the most demanding applications. It takes rough handling with minimal abrasion and maintains its resiliency after extended compression. This neoprene has better resistance to oil, heat, ozone, oxidation, and

flame than natural rubber. Applies as include beiting, mountings, seals, diaphoses, and insulation. Reoprane has all the provision to general chemicals, except on a frated acids, as natural rubber. Meets AC 2000-86E, Type BC and military specification of the control of the co

|                                         |          | 2011             |           | 1          | Hedium            |         | -lem      |       | Hard                               |
|-----------------------------------------|----------|------------------|-----------|------------|-------------------|---------|-----------|-------|------------------------------------|
| Thio                                    | No       | 4457             | PACH      |            | NET EACH          |         | NET EACH  | No.   | HET EAC                            |
| 7hio<br>12" × 12. YEETS<br>1/10"        | 140.     | ***              |           |            |                   |         |           |       |                                    |
| 12 x 12                                 | ****     | (511             | \$2.84    | 8568K      | 611<br>61296      | 8588K7  | 11\$2.36  | 85507 | 811\$2.4                           |
| 710                                     |          | (512             | A 14      | BSBBK      | 612               |         | 12 3.64   | 8556  | 612 3.6                            |
| 732                                     | 03007    | \J   4<br>/E   7 | 4 82      | RSSSK      | 4,18              | 8568K7  | 13 , 4.50 |       | 813 4.2                            |
| W                                       | - 001    | (513             | 8.50      | 8569       | 5.01              |         | 14 5.88   |       | (814 5. <u>5</u>                   |
| 7t*                                     |          | 314              | 7.03      | 2          | 615 6.50          | 8568K7  | 15 7.47   |       | (815 6.7                           |
| V4                                      | ,,.62001 |                  | 9.22      | 400        | 616 8.59          | 8568K7  | 15 10.08  |       | (816 \$.7                          |
| 34"                                     | 00001    | 1375             |           | 05401      | 81711.59          | 8568K7  | 17 13.38  |       | (817 \$1.6                         |
| 1/2"                                    | U356!    |                  |           | 8588M      | 61815.43          |         | 18 17.85  |       | (81813.5                           |
| %*                                      |          | . 116            |           | 03000      | £1920.55          |         | 1923.62   | 85681 | (81917.3                           |
| 1"                                      |          | (4)              | - i->     | @30BX      | 415               |         |           | .,    |                                    |
| 12" x 24" SHEETS                        |          |                  | `         | <b>T</b> . | 621 4.55          | 858867  | 21 4.29   | 85681 | (821 4.4                           |
| 1/10°                                   | 85       | ۰۰ (ک            | 4.77      | 0          | 92 7.13           | BSERK7  | 22 6.55   |       | (822 6.6                           |
| 12" x 24" SHEETS  9'4"  14"             |          | . 52Z            | 8.25      | 8300       | 7.58              |         | 23 8.10   |       | (823 7.                            |
| 13                                      | 50.8     | K523             | 8.55      | #305F      | 10.30             |         | 2410.80   | 85681 | (82410.1                           |
| *19*                                    | 8588     | K524             | 31.89     | 83007      | 624               |         | 2513.59   | 84881 | (82512.                            |
|                                         |          |                  |           | 6300       |                   |         | 2618.68   |       | (826 16.2                          |
| 34                                      | 8568     | K 528            | .,.,17.10 | #500F      | 62615.            |         | 2724.75   | REAR  | (82721.                            |
| 7.                                      | 65661    | K527             | 23.30     |            | 62721.48          | 3/1     | 2833.36   | 9555  | (828 30.                           |
|                                         | 85681    | K528             | 30.38     | 85657      | (62828.82         | 0.50    | 2633.30   |       | (82938.                            |
| *************************************** | 6568     | K529             | 39.98     | 8558)      | (62938.42         | \$568KY | 44.16     | 93001 |                                    |
|                                         |          |                  |           |            |                   |         |           | ala.  | NET/LIN. F                         |
| Thick.                                  | No.      | NET/             | LIN. FT.  | No.        | NET/LIN. FT.      | NO. P   | ET/LIM    | NO.   | MENTING                            |
| 36" WIDE ROLLS                          |          |                  |           |            |                   |         |           |       | K41\$6.0                           |
| V. *                                    | 8588     | K11              | \$6.43    |            | <31\$6. <u>12</u> |         | 9\$5.77   |       | 2 8.1                              |
| 34."                                    | 8588     | K 12             | 10.05     | 8568       | (32 9.62          |         | 1 , 8.84  | 8304  |                                    |
| 14."                                    | 8558     | K 13             | 11.71     | 4568)      | (3310.20          |         | 210.93    | 6500  | 10.                                |
| 714                                     | 8588     | K14              | 15.60     | 85681      | (34,13.95         |         | 314.15    | 8555  | 444.5                              |
| Y*                                      | . 856B   | K15              | 20.52     | 85681      | (3515.60          | 8588K2  | 417.95    | 6588  | 10.<br>34.<br>3.<br>3.<br>3.<br>3. |
| 36                                      | R568     | K16              | 22.78     | 85681      | <3621.22          | 8568K2  | 524.89    | 8568  | K45214                             |
| 79                                      | RSSR     | K 17             | 31.07     | 85681      | (3728.62          |         | 833.00    | 8568  | K4728.                             |
| ¥4",                                    | BEER     | KER              | 44.20     | 85661      | (6844.20          |         | 844.20    |       | K8844.:                            |
| 1                                       | 0300     | T 2 4            | ED 20     | 4548       | (6959.90          |         | 959,90    | 8568  | K8959.1                            |

### Commercial-Grade Neoprene Rubber Sheeting



Tensile strength of 1000 psi gives this commercial-grade reoprene the ability to handle most general purpose applications. It is great for gaskets, pump and tank flanges, diaphragms.

12"x12" Sheets No. NET EACH N

### industrial-Grade Cloth-Inserte Meoprene Rubber Sheeti

- Color: Temperature Range: -20" to +2
- Tensile Sm. 1000 psl Durometer Hard 4, Shore A: 45-55

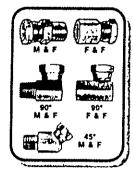
| 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.7  |   |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---------|
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 344  |   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7    |   |         |
| 2011.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | • | ≈ ∖     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   | ~ _     |
| 20.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   | _       |
| with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | حويد | _ |         |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |   |         |
| The state of the s |      |   | <b></b> |

Fabric inforcement provides the single needed for stress an allions such as geskeling disphragm packing. A 6.7-oz. The control of thickness. Sheets resistable poli, and weather. Meets ASTM: 10-75E, Type BC.

| Thick, No. 12 Cate | 12"×24" Sheets<br>No. NET EACH  | 46" Wide Rolfs<br>NET/LIN, FT. |
|--------------------|---------------------------------|--------------------------------|
| Vis*\$51\$5.63     | 8698K51 \$9.88<br>8698K52 14.30 | 50 1\$12.55<br>8696 18.18      |
| 352" 0K72 8.17     | 8698K5319.05                    | 8898KJ 24.23                   |
| 3414.63            | 8698K5426.00                    | 8598K34                        |

# emium-Grade Nylon-Inserted

- Color: Bla Temperature Range: -40\* to -220\* F
- Tensile Strein \$500 psi Durometer mess, Shore A: 65-75




Inserts give rubber reier tensile strength and despility than cloth plice, meking a better for disphragm packing. A 2-oz. nylon ply is inserted for Vie" of thickness. Resistantic about, oil, and weather. Meets AST. 2000-28E715.

| 12° x Sheets     | 12" x 24" She 34 48" Wide Rolls |  |
|------------------|---------------------------------|--|
| hick No TET EACH | No. NET EACH No. NET/LIN. FT.   |  |
| 4\$6.89          | \$599K51\$12.05 QK11\$20.43     |  |
| 53 59K32 8.88    | 8599K52 15.76 85 17 28.71       |  |
| 6599K3311.99     | 8599K53 21.40 8595 38.29        |  |
| 8599K3415.27     | 8599K54 27.50 8599R 48.64       |  |
|                  | TARREST OF THE STREET           |  |

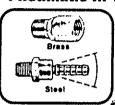
McMASTER-CAR

# Hose Accessories



### **Hydraulic Hose Swivel Adapters**

Designed to prevent hose stress due to twisting during essembly, these easy-to-assemble adapters are excellent for confined areas.


Adapters are made of steel with a corrosion-resistant finish. To minimize piping leaks, the swivel ends of each adapter have dry seal pipe threads.

Adapters are available

pipe threads.
Adapters are available
in straight or angle styles,
male pipe - female pipe
swivet, or female pipe female pipe swivet.

| Threads     | Straight       | Straight        | 90° Elbows    |
|-------------|----------------|-----------------|---------------|
| Pipe Swive! | Male & Female  | Female & Female | Male & Female |
| NPT × NPS   | No. NET EACH   | No. NET EACH    | No. NET EACH  |
| 16" x 16"   | \$340X11\$0.87 | 5340K21\$0.96   | 5340K31\$1.9  |
| 34" + 15"   | 5340K12 1,11   | 5340K22 1.21    | 5340K32 1.9   |
|             | 5340K13 1.49   | 5340K23 1.51    | 5340K33 2.3   |
|             | 5340K14 1.87   | <del></del>     | 5340K34 2.8   |
|             | 5340K15 1.89   |                 | 5340K35 2.9   |
|             | 5340K17 3.23   | 5340K27 2.96    | 5340K37 4,9;  |
| Threads     |                | 80, Elpows      | 45" Elbows    |
| Pipe Swivel | Fer            | male & Female   | Male & Female |
| NPT × NPS   | No.            | NET EACH        | No. NET EACH  |
| 3 a 1 a     | 534            | 0K41\$1.95      | 5340K51\$1.68 |
| 74 × 14     |                | OK 42 1.87      | 5340K52 1.8   |
| ₹#* * ₹#*   | 534            | OK43 2.38       | 5340K53 2.26  |
| 32° N 30°   |                |                 | 5340K54 3.11  |
|             | 534            |                 | 5340K55 3.00  |
| 3." 3."     | 514            | 0K47 4 79       | 5340¥57 4 64  |

### Pneumatic In-Line Hose Swivels



Full 350° hose swivel helps eliminate the negging problem of hose twisting and kinking, . . es-pecially at critical connection points in air lines. Choose from brass or steel construction. BRASS CONSTRUCTION— In-

clude lineaded male on one end and female on the other end. Pres-sure rating is 300 psi.

| NP           | T |    |        |     |         |
|--------------|---|----|--------|-----|---------|
| M            | × | F  | No.    | NET | EACH    |
| <b>'</b> /4' | × | ٧4 | 4480K1 | 1   | .\$2.59 |
| ₩.           | × | 35 | 4480K1 | 2   | 5.29    |

STEEL CONSTRUCTION-Have threaded W male NPT on one end, Description
Male V.\* NPT × Swivel Barb for V.\* ID Hose ......
Male V.\* NPT × Swivel Barb for 3s\* ID Hose ...... ..5302K64.



### 316 Stainless Steel Unperforated **Worm Drive** Hose Clamps

Extra-wide band threads are stamped, leaving the unperforated clamps amouth on the inside—the risk of damage to your hose is elimi-

nated,
Made of 316 stainless steel, these clamps are ideal for use in environments with an aggressive atmosphere and high risk of corrosion. The joining of the band to the housing is arranged so that the least possible deviation from a circular shape arises while the clamps are being lightened. The bands and screw threads are properly pitched-virtually immune to vibration back-off. Band width is 31/4-7. Stotted hex head screws are \$1/4-7. Clamps are sold in packages of 10.

the thing systems and attended to the second

| Clamp I | Diameter<br>:hes | Renge         |        |                 |
|---------|------------------|---------------|--------|-----------------|
| Min.    | Max.             | mm<br>MinMax. | No.    | NET/PKG         |
| 7/1€    |                  | 11- 17        | 45945) | (61 \$13.26     |
| ₩       |                  | 13- 20        | 45945> | (62 13.92       |
| ₩       | 1744             | 15- 24        | 45945  | (63 13.92       |
| ₹4      | 1710             | 19- 28        | 45945H | 64 14.64        |
| 76      | 1%               | 22- 32        | 459458 | 65 14.64        |
| 1 1/16  | 156              | 26- 38        | 459458 | 66 15.38        |
| 1 1/4   | 174              | 32· 44        | 45945H | 67 15.78        |
| 11/2    | 21/16            | 30- 50        | 45945K | 68 10.40        |
| 134     | 236              | 44- 56        | 45945X | 69 16.80        |
| 2       | 211/16           | 50- 85        | 45945H | 71 17.29        |
| 2715    | 3¼               | 58- 75        | 45945K | 72 16.15        |
| 211/14  | 31/2             | 68- 85        | 45945K | 73 18.94        |
| 3       | 374              | 77- 95        | 45945K | 74 19.67        |
| 37:     | 470              | 87-112        | 45945K | 75, 21.19       |
| 475     | 59/18            | 104-138       | 45945K | .76 22.70       |
| 57      | 674.,            | 130-165       | 45945K | 77 22.91        |
| _ 6½    | 71/4             | 155-181       | 45945X | 78 25.50        |
| 7/51    | B¼               | 180-206       | 45945K | 79 27.45        |
| 81/14   | 93/32            | 205-232       | 45945K | 81 29.10        |
| 9312    | 10¼              | 231-572       | 45945K | 82 31.34        |
| 10%,    | 111/4            | 256-283       | 45945K | <b>83 32.93</b> |
| 11%     | , 121/6          | 282-308       | 45945K | 84 34.66        |

### 360° Hydraulic Hose Swivel Joints



Designed for a 90° angle connection with a full 360° swivel, these joints eliminate annoying hose twisting and kinking. Joints prevent excessive flexing which means no more long radius bends, ideal for use in most applications where hose moves, bends, and twists.

Plated steel construction. Threaded male on one and and female on the other end. May be used for hydraulic applications up to 3000 psi.

| RPI |     | 1690  | applications up to 3000 psi.              |
|-----|-----|-------|-------------------------------------------|
| М×  |     |       | epplications up to 3000 psi. No. NET EAC! |
| 147 |     | T 47. | 5381K15\$28.5                             |
| ٦,, | •   |       | 5381816 23.61                             |
| ' 7 | •   | ٠,٠   |                                           |
| 34" |     |       |                                           |
| 1"  | - 1 | أأ    | 5381K36 49 13                             |

### Flexible Braided Sleeving



Protect hose, wire bundles, end cable from abrasion with this flexible, aturdy braided sleeving. Cut sleeving with scissors... no heat, chemicals, or other loois are needed for installation. TINNED COPPER—Furnished in an expanded form, the sleeving does not have to inch-lits-way over the material to be protected, the material cabeve. The sleeve's diameter is reduced when it is pulled lengthwise over the material for a neat, smooth fill.

2's shielding over the nominal diameter is provided.

DLYESTER— Material is impervious to salt water, fuels, most ining solvents, hydraulic fluids, fubricating oils, and entificeze, ving is also lungus-resistant. Supplied in a nonexpanded form, aximum recommended service temperature is 257' F.

NET/FOOT NET/ FOOT

| NED COPPER                              | 110.    |        | 30-OP  |
|-----------------------------------------|---------|--------|--------|
|                                         |         |        | \$0.52 |
| ****** ******** *********************** | 5537K27 | . 96   | .76    |
| YESTER                                  |         |        | 1.03   |
| *************************************** | 5547K26 | 67     | .56    |
| *************************************   | 5547K27 | . 1.07 | .89    |
| *************************************** | 5547K28 | 1.25   | 1.04   |

### Bi-Directional 360° **Pneumatic Hose Swivels**



improve tool maneuverability and Improve tool meneuverability and extend hose life. Units swivel 360° at two locations to allow air hose to drop straight to the floor . . . no matter how the tool is held. The male pipe litread screws directly into most air tools and accepts male pipe thread hose littings and standard quick-change adapters. Maximum pai: 150.

NOTE: Do NOT use these swivels on percussion tools or in areas of high mechanical abuse.

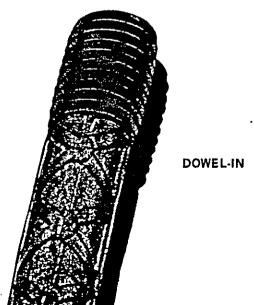
Size No NET FACH

| Size    | No.    | <b>NET EACH</b> |
|---------|--------|-----------------|
| W NPT   | 91095K | 81\$12.68       |
| 35" NPT | 91095K | 82 22.83        |
| 15" NPT | 91095K | 83 36.87        |

McMASTER-CARR

BRECO MECHANICAL GROUP, INC. 201 Saw Mill River Road YONKERS, NEW YORK 10701 CALCULATED BY\_\_ SCALE Neoprene Boot Connections 12 McMaster-Carr Stainless WALL OF Steel Clamp Part No. 4594K78,79 48 HOPE MH 8"HOPE PIPE CORR. INFIL DRAIN McMaster-Carr Neopiene
Rubber Sheet wrapped
around pipe at joint.
Part No. 9455 K24 Dectional view showing overlap of neoprere sheet


DOWEL BAR SUBSTITUTION


BAFFLED OUTLET

RECHMOND DOWEL

BAR SPLICES

DB-SAE SPLICER SYSTEM





### INTRODUCTION:

Richmond published the first dowel bar substitution brochure in 1974. Since that time Richmond has continued to study, develop and manufacture anchorages and splice devices to meet the ever increasing demands from the construction industry. This brochure is the fruition of that effort, a second generation dowel bar substitution system with improved design, strength and economics.

### DEVELOPMENT:

As good as the initial dowel bar substitution system is, the continuing study revealed unexpected barriers and hesitancies among engineers against a system based on wire insert splice mechanisms. To remove these objections a system was needed that would be readily identified, familiar to handle, easy to use and compatible to standard codes and practices. From this reasoning came the Dowel Bar Splicer, manufactured from standard deformed rebar... a simple, yet unique, splice connection.

### DESIGN:

The Dowel Bar Splicer and Dowel-In are fabricated from standard rebar material and are designed to achieve full rebar loads, threading does not reduce bar area. Dowel-Ins are furnished with rolled UNC threads in nominal diameters of 5/8", 3/4", 7/8", 1" and rolled UN threads in nominal diameters of 1-1/8", 1-1/4", 1-7/16" and 1-9/16". Splicers are furnished in corresponding sizes and threads. These sizes are suitable for splicing # 4 through # 11 bars and/or substituting for # 4 through # 11 protruding dowels. The Splicer is available in straight or hooked configurations with single or double receivers. Dowel-Ins are available straight or hooked. Both the Splicer and Dowel-In are available cut to required length.

### HOW TO USE THE CHARTS:

The Splicer data and Dowel Bar Substitution information is presented in Tables 1, 2, 3, 4 and 5. Table 1 is a quick comparison of dowel diameters to appropriate dowel substitution options. For example, specification documents might require No.4 dowels. To find the proper substitution, enter Table 1 at No. 4 and proceed across the Table noting that the substitution will be composed of a No. 5 bar Splicer with 5/8" diameter internal thread and a No. 4 bar Dowel-In with 5/8" diameter external rolled thread. This simple procedure can be repeated for any given dowel size.

To determine proper lap splice lengths, use Tables 2 and 3. When hooked bars are specified, use Table 4 for load requirements. Tension splices may be achieved by adhering to Table 5 or Table 1.

NOTE: All illustrated applications lend themselves to any continuous splice requirement.

|   | SPECIF   | IED OR RI<br>BAR            |                     | DOWEL            |  |  |  |  |
|---|----------|-----------------------------|---------------------|------------------|--|--|--|--|
| V | BAR SIZE | GRADE 60 REBAR LOADS – Ibs. |                     |                  |  |  |  |  |
|   |          | Py                          | 1.25 P <sub>y</sub> | P <sub>ult</sub> |  |  |  |  |
|   | #4       | 12,000                      | 15,000              | 18,000           |  |  |  |  |
|   | #5       | 18,600                      | 23,250              | 27,900           |  |  |  |  |
|   | #6       | 26,400                      | 33,000              | 39,600           |  |  |  |  |
|   | #7       | 36,000                      | 45,000              | 54,000           |  |  |  |  |
|   | #8       | 47,400                      | 59,250              | 71,100           |  |  |  |  |
|   | #9       | 60,000                      | 75,000              | 90,000           |  |  |  |  |
|   | # 10     | 76,200                      | 95,250              | 114,300          |  |  |  |  |
|   | # 11     | 93,600                      | 117,000             | 140,400          |  |  |  |  |

| REC              | RECOMMENDED DOWEL BAR SPLICER AND DOWEL - IN SIZES |            |                  |                |                     |                   |  |  |  |  |
|------------------|----------------------------------------------------|------------|------------------|----------------|---------------------|-------------------|--|--|--|--|
| SYSTEM<br>THREAD | DB - SAE                                           | DOWEL - IN | SYSTEM<br>STRESS | GRADE 6        | O REBAR LO          | DADS - Ibs.       |  |  |  |  |
| SIZE             | BAR SIZE                                           | BAR SIZE   | AREA<br>(min.)   | P <sub>Y</sub> | 1.25 P <sub>y</sub> | P <sub>ult.</sub> |  |  |  |  |
| 5/8'' -<br>11UNC | #5                                                 | #4         | .20              | 12,000         | 15,000              | 18,000            |  |  |  |  |
| 3/4" -<br>10 UNC | #6                                                 | #5         | .31              | 18,600         | 23,250              | 27,900            |  |  |  |  |
| 7/8" -<br>9 UNC  | #7                                                 | #6         | .44              | 26,400         | 33,000              | 39,600            |  |  |  |  |
| 1" ·<br>8UNC     | #8                                                 | #7         | .60              | 36,000         | 45,000              | 54,000            |  |  |  |  |
| 1-1/8" -<br>8UN  | #9                                                 | #8         | .79              | 47,400         | 59,250              | 71,100            |  |  |  |  |
| 1-1/4" -<br>8UN  | # 10                                               | #9         | 1.00             | 60,000         | 75,000              | 90,000            |  |  |  |  |
| 1-7/16" -<br>8UN | # 11                                               | # 10       | 1.27             | 76,200         | 95,250              | 114,300           |  |  |  |  |
| 1·9/16" ·<br>8UN | #11                                                | # 11       | 1.56             | 93,600         | 117,000             | 140,400           |  |  |  |  |

FABI E 1: Recommended Dowel Bar Splicer and Dowel In Sizes

| CR. OF      |                | í'c =              | 3,000 p           | ışi.               |               | f <sub>c</sub> = 5,000 psi |                          |                   |                    |               | MIN.    |
|-------------|----------------|--------------------|-------------------|--------------------|---------------|----------------------------|--------------------------|-------------------|--------------------|---------------|---------|
| 'S          | TEN            | SION DE            | VELOP             | MENT               | COMP.<br>DEV. | TEN                        | TENSION DEVELOPMENT COMP |                   |                    | COMP.<br>DEV. | COMP.   |
| BAR<br>SIZE | ۴ <sub>d</sub> | 1.3 ₽ <sub>d</sub> | 1.7£ <sub>d</sub> | 2.0 P <sub>d</sub> | ٤d            | ٤ď                         | 1.3 L <sub>d</sub>       | 1.7£ <sub>d</sub> | 2.0 P <sub>d</sub> | ٤٩            | S- FICE |
| 4           | 12             | 12                 | 14                | 16                 | 8             | 12                         | 12                       | 14                | 16                 | 8             | 12      |
| 5           | 12             | 13                 | 17                | 20                 | 9             | 12                         | 13                       | 17                | 20                 | 8.            | 13      |
| 6           | 13             | 17                 | 22                | 26                 | 11            | 12                         | 16                       | 20                | 24                 | 9             | 15      |
| 7           | 18             | 23                 | 30                | 35                 | 13            | 14                         | 18                       | 24                | 28                 | 11            | 18      |
| 8           | 23             | 30                 | 39                | 46                 | 15            | 18                         | 23                       | 30                | 36                 | 12            | 20      |
| 9           | 29             | 38                 | 5()               | 58                 | 17            | 23                         | 29                       | 38                | 45                 | 14            | 23      |
| 10          | 37             | 48                 | 63                | 74                 | 19            | 29                         | 37                       | 49                | 57                 | 15            | 25      |
| 11          | 46             | 59                 | 78                | 91                 | 20            | 35                         | 46                       | 60                | 71                 | 17,           | 28      |

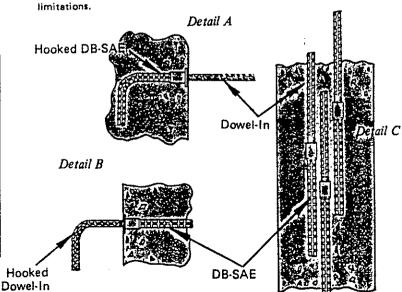
TAbl E 2: Required Development and Lap Lengths — Grade 40

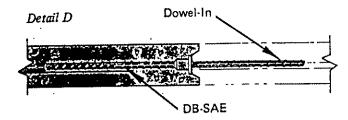
| Se Se       |     | f <sub>c</sub> = 3,000 psi |                    |                    |               |     | f <sub>c</sub> = 5,000 psi |       |                    |               | MIN.            |
|-------------|-----|----------------------------|--------------------|--------------------|---------------|-----|----------------------------|-------|--------------------|---------------|-----------------|
| e, 2        | TEN | SION DE                    | VELOPA             | 4ENT               | COMP.<br>DEV. | TEN |                            |       |                    | COMP.<br>DEV. | COMP.           |
| BAR<br>SIZE | ٤đ  | 1.3£ <sub>d</sub>          | 1.7 L <sub>d</sub> | 2.0 L <sub>d</sub> | ٤a            | ٤ď  | 1.3₽ <sub>d</sub>          | 1.7 g | 2.0 L <sub>d</sub> | ٤d            | \$ <b>PLICE</b> |
| 4           | 12  | 16                         | 20                 | 24                 | 11            | 12  | 16                         | 20    | 24                 | 9             | 12              |
| 5           | 15  | 20                         | 26                 | 30                 | 14            | 15  | 20                         | 26    | 30                 | 11            | 13              |
| 6           | 19  | 25                         | 33                 | 38                 | 16            | 18  | 23                         | 31    | 36                 | 14            | 15              |
| 7           | 26  | 34                         | 45                 | 53                 | 19            | 21  | 27                         | 36    | 42                 | 15            | 18              |
| 8           | 35  | 45                         | 59                 | 69                 | 22            | 27  | 35                         | 45    | 54                 | 18            | 20              |
| 9           | 44  | 57                         | 74                 | 88                 | 25            | 34  | 44                         | 58    | 68                 | 20            | 23              |
| 10          | 56  | 72                         | 94                 | 111                | 28            | 43  | 56                         | 73    | 86                 | 23            | 25              |
| 11          | 68  | 89                         | 116                | 137                | 31            | 53  | 69                         | 90    | 106                | 25            | 28              |

YABI E 3: Required Development and Lap Lengths — Grada 60

Table 1 is a direct comparison of dowel diameters and appropriate substitution options.

Tables 2 and 3 summarize required development and lap lengths for concrete strengths of 3,000 and 5,000 psi per ACI Standard 318-77.


Tension:  $\ell_d = .04A_b \frac{f_y}{\sqrt{f_c}}$ ; min. .0004 $f_y d_b$  or 12 inches.


Vac Compression Development Length:  $\ell_d = .02 f_y \frac{d_b}{\sqrt{f_c'}}$ ; min.

.0003f<sub>V</sub>d<sub>b</sub> or 8 inches.

Compression Splice: Compression  $\mathfrak{L}_d$ ; min. .0005 $f_y d_b$  or 12 inches.

Consult ACI Standard 318-77, Chapter 12, for multipliers and





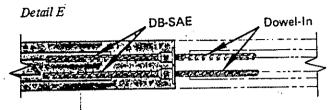
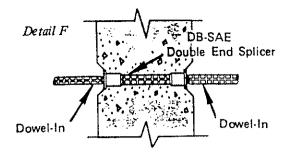



Table 4 identifies the maximum tensile force for hooked rebar as a function of concrete compressive strength. These values were generated by applying the equations and information found in Chapter 12 of ACI Standard 318-77.


Table 5 is arranged to address tension splices such as depicted in Detail F. The other details show but a few examples of the many splice configurations possible.

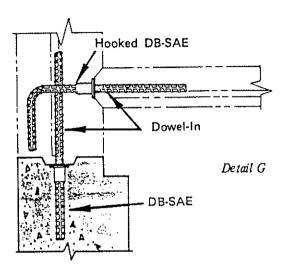
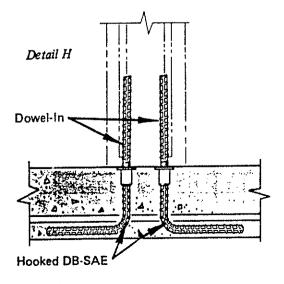

|                        |          | (       | CONCRETE | TRENGTH |           |        |  |
|------------------------|----------|---------|----------|---------|-----------|--------|--|
| GRADE 40               | 2,00     | 0 PSI   | 4,00     | 0 P\$!  | 5,000 PSI |        |  |
| REBAR SIZE             | ALL      | BARS    | ALL      | EARS    | ALL BARS  |        |  |
| 4                      | 3,9      | 144     | 4,3      | 554     | 5,0       | 91     |  |
| 5                      | 6,1      | 13      | 7,0      | ×58     | 7,5       | 191    |  |
| 6                      | 8,6      | 76      | 10,0     | 18      | 11,2      | 201    |  |
| 7                      | 11,8     | 31      | 13,€     | 61      | 15,2      | 274    |  |
| В                      | 15,5     | 77      | 17,9     | 87      | 20,1      | 10     |  |
| 9                      | 19,718   |         | 22,7     | 68      | 25,456    |        |  |
| 10                     | 25,0     | 142     | 28,9     | 16      | 32,329    |        |  |
| 11                     | 30.7     | 60      | 35,5     | 19      | 39,711    |        |  |
| GRADE 60<br>REBAR SIZE | TOP BARS | OTHER\$ | TOP BARS | OTHERS  | TOP BARS  | OTHERS |  |
| 4                      | 5,915    | 5,915   | 6,831    | 6,831   | 7,637     | 7,637  |  |
| 5                      | 9,169    | 9,169   | 10,589   | 10,587  | 11,837    | 11,837 |  |
| 6                      | 10,845   | 13,014  | 12,523   | 15,027  | 14,001    | 16,801 |  |
| 7                      | 11,831   | 17,746  | 13,661   | 20,492  | 15,274    | 22,910 |  |
| 8                      | 15,577   | 23,366  | 17,987   | 26,981  | 20,110    | 30,165 |  |
| 9                      | 19,718   | 29,577  | 22,768   | 34,153  | 25,456    | 38,184 |  |
| 10                     | 25,042   | 33,389  | 28,916   | 38,554  | 32,329    | 43,105 |  |
| 11                     | 30,760   | 35,887  | 35,519   | 41,438  | 39,711    | 46,330 |  |

TABLE 4: Grades 40 and 60 Rebar Maximum Tensile

|                |                   |                      | <b>[</b> | J PASSE  | OADS - Hs.          |  |
|----------------|-------------------|----------------------|----------|----------|---------------------|--|
| SPLICER THREAT | SPLICER<br>THREAD | SPLICER<br>ULT, LOAD | DOWEL-IN | GRADE 60 |                     |  |
| \$12E          | \$12E \$2E        |                      |          | Py       | 1.25 P <sub>y</sub> |  |
| * 5            | 5/8" - 11UNC      | 20.340               | F4       | 12,000   | 18,000              |  |
| * 6            | 34" - 10 UNC      | 30.060               | # 5      | 18,800   | 23,250              |  |
| # 7            | 7/8" - 9UHC       | 41,490               |          | 26,400   | 33,000              |  |
| # B            | F" - BUNC         | 54,450               | #7       | 36,000   | 48,000              |  |
| * 9            | 1-1/8" - BUN      | 71,100               | -8       | 47,400   | 59,250              |  |
| <b>= 10</b>    | 1-1:4"- EUN       | 10,000               | -,       | 90,000   | 75,000              |  |
| # \$1          | 1-7/16" - BUN     | 114,300              | # t0     | 76,200   | 95,250              |  |
| = 11           | 1-9/16" - BUN     | 140,400              | = 13     | #3,800   | 117,000             |  |

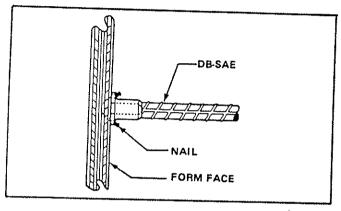

**TABLE 5: Direct Splice Comparisons** 

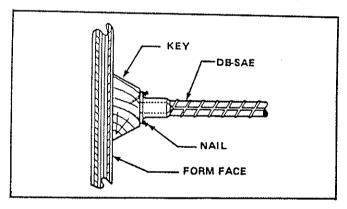


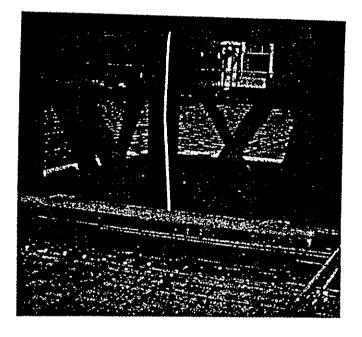


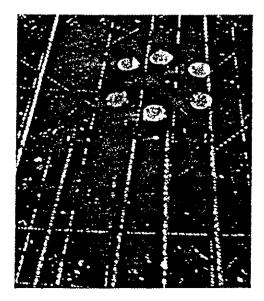
| BAR SIZE              | WEIGHT             | NOMINA             | L DIAMETER                         |
|-----------------------|--------------------|--------------------|------------------------------------|
| DESIGNATION<br>NUMBER | POUNDS PER<br>FOOT | DIAMETER<br>INCHES | CROSS SECTIONAL<br>AREA Sq. Inches |
| 3                     | 0.376              | 0.375              | 0.11                               |
| 4                     | 0.668              | 0.500              | 0.20                               |
| 5                     | 1.043              | 0.625              | 0.31                               |
| 6                     | 1.502              | 0.750              | 044                                |
| 7                     | 2.044              | 0.875              | 0.60                               |
| 8                     | 2.670              | 1.000              | 0.79                               |
| 9                     | 3.400              | 1.128              | 1.00                               |
| 10                    | 4.303              | 1.270              | 1.27                               |
| 11                    | 5.313              | 1.410              | 1.56                               |

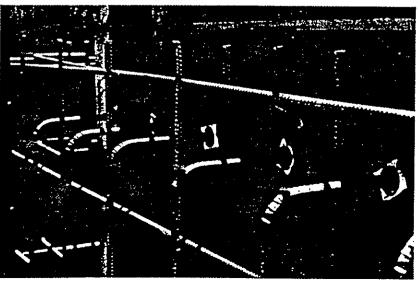
TABLE 6: Reinforcing Steel Date





## TTPICAL SETTING METHODS:


Setting methods for the Dowel Bar Splicer are simple and straight forward. The unit can easily be nailed directly to the form face utilizing the nail holes in the integral flange. See sketch below.


To incorporate a keyway it is again easily accomplished - no holes to drill, no dowels to drive in. Simply gang the DB-SAE Splicers to the keyway and nail the keyway to the form. See sketch below.


On metal faced modular forms small screws are often used to firmly set and position the splicer units.

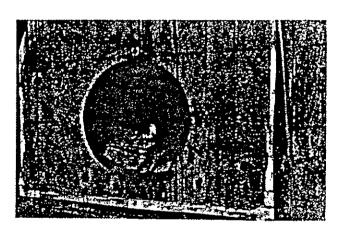


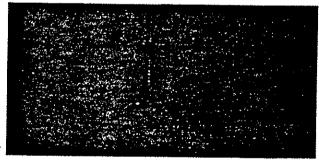


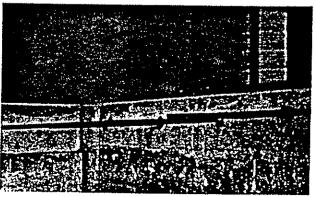







### REBAR SPLICE SPECIFICATIONS:


In order to facilitate ease of construction and to provide continuity of reinforcing steels through construction joints and routine splices, the appropriate authority may at their option utilize the Dowel Bar Substitution and Splice System as manufactured by Richmond Screw Anchor Co., Inc. or and approved equal.

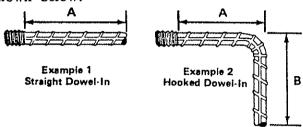

For dowel bar substitution and rebar splice systems, other than Richmond Screw Anchor Co., Inc.'s DB-SAE Splicer, the contractor shall submit manufacturer's literature, product samples and certified test reports to the appropriate authority.

Test reports shall show yield and ultimate tensile load capacities. All male threads shall be rolled (UN or UNC), cut threads are not permitted.

Tension failure must occur in the nominal bar diameter of the Dowel-In.





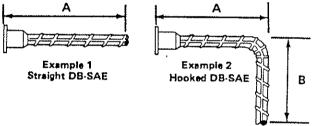



### HOW TO ORDER:

Reference Table 1 on page 3 for correct Dowel-In/DB-SAE sizes.

### DOWEL-IN (DI)

Give desired bar size (should be equivalent to rebar being substituted for on the structural drawings), length, symbol and name. If a hooked configuration is required also give A and B dimensions shown below.

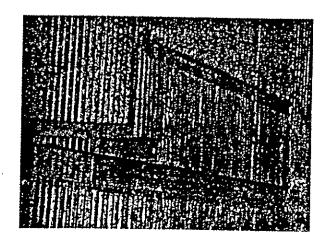


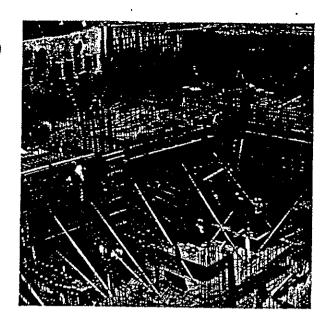

Example 1: #6 bar, 24" DI Dowel-In

Example 2: #6 bar, 12" x 9", DI Hooked Dowel-In

### DOWEL BAR SPLICER (DB-SAE)

Give bar size of DB-SAE required (normally one size larger than the Dowel-In, check Table 1 for correct size), length, symbol, name and size of Dowel-In to be used in conjuction with the splicer. If a hooked configuration is required also give dimensions A and B shown below.





Example 1: # 7 x 24" DB-SAE Dowel Bar Splicer for a # 6 Dowel-in.

Example 2: #7 x 12" x 9" hooked DB-SAE Dowel Bar Splicer for #6 Dowel-In.

### NOTE:

All tolerances per CRSI Design Manual criteria. All bends assumed 90° unless otherwise stated.





### ADVANTAGES:

Richmond's Dowel Bar Splicer has been engineered, tested and proven to meet, or exceed, field standards and design/engineering practices. It achieves excellent compatibility with normal procedures and has the rewarding benefits of improved costs and time saving.

The unit is strong, easy to use and readily identified as rebar material. The application requires no special tools, the easy installation accomplishes forming simplicity. No extra elements, such as mechanical wedges, nuts, collars, couplers or thermite material, are required. Routine cutting, threading, bending, etc., can easily be handled in the field.

The "bottom line"—the Dowel Bar Splicer assures strong, safe and fast dowel bar substitutions. Broken-off and/or bent dowel bars are eliminated and bruised shins, gouged backs and scraped scalps will be less likely. Best of all, though, you will improve forming costs and reduce forming and form stripping hassles.

Call or write for additional information, Richmond provides engineered layouts and details for dowel bar substitution requirements.

"QUALITY CONCRETE ACCESSORIES."



# RICHMOND

SCREW ANCHOR CO., INC.

7214 Burns St., Richland Hills,

Ft. Worth, Tex. 76118

Telephone 817/284-4981





### 1. PRODUCT NAME

Richmond Screw Anchor Company Rebar Splicing Systems: DB-SAE—Dowel Bar Splicer System\* Coupler Splice System\*\* Half Coupler (for welding) Splice System\*\*

#### 2. MANUFACTURER

Richmond Screw Anchor Company 7214 Burns Street Fort Worth, Texas 76118 Phone: (817) 284-4981 FAX: (817) 284-4504

### 3. PRODUCT DESCRIPTION

Mechanical connection devices for splicing reinforcement bars in concrete structures. The DB-SAE Dowel Bar Splicer System is a twopiece, standard splicing technique (splicing bars of equal size) that eliminates protruding dowels. The Coupler Splice System and Half Coupler Splice System are a means to achieve standard splicing (equal bar sizes) and/or transition splicing (bars of different sizes).

Richmond Rebar Splice Systems are manufactured in the USA from domestic rebar material and are composed of a Splicer (DB-SAE or Coupler) and a Dowel-in (DI).

Basic Use: Richmond mechanical connections are suitable for joining reinforcement bars end to end. The mechanical connections accommodate bar sizes #4 through #14. Mechanical connections are a convenient alternative to lap splicing and/or butt welding. Typical applications include the splicing of reinforcement bars in monolithic structures, rebar anchorage, future expansion and dowel bar substitution at construction joints.

Composition and Materials: Richmond mechanical connections are manufactured from deformed or smooth bar meeting ASTM A615 material specifications; other grades are available upon request. Mechanical connections and reinforcement bars

### \*Patented \*\*Patent pending

The ten-point Spec-Data\* formal has been reproduced from profications copyrighted by CS1, 1964, 1965, 1966, 1967, and used by permission of The Construction Specifications Institute, Alexandria, VA 22314.

may be epoxy coated to meet applicable corrosion resistant crlteria.

Limitations: Usage of mechanical connections may be controlled by governing building

### 4. TECHNICAL DATA

Applicable Standards/Guides/ Codest (ACI 318 Building Code Requirements for Reinforced Concrete) American Concrete Institute; (ICBO) International Conference of Building Officials; City of Los Angeles Department of Building and Safety; New York Board of Standards and Appeals; (AASHYO) American Association of State Highway and Transportation Officials; (ASTM A615) American Society for Testing and Materials; Corp of Engineers CW-93210 Civil Works Construction Guide for Steel Bars; (CRSI) Concrete Reinforcing Steel Insti-

Load Test Data: Richmond Screw Anchor Company provides test data and appropriate test reports. Static, dynamic, fatigue and seismic test data is available. Such data is derived from tests performed in accordance with ACI, ICBO, AASHTO, ASTM and CRSI.

Safety Factors: The ACI building code establishes the minimum splice capacity as follows: "A full mechanical connection shall develop in tension or compression, as required, at least 125 percent of specified yield strength (fy) of the bar." For mechanical anchorage, the ACI code establishes the following safety criteria: "Any mechanical device capable of developing the strength of the reinforcement without damage to concrete may be used as anchorage." Splicing or anchorage, Richmond Screw Anchor Company mechanical connections achieve full strength of the bars connected. For ASTM A615 grade 60 material the full capacity is at least 150 percent of the specified yield (fy).

### 5. INSTALLATION

Monolithic: Rebar mats/cages may be placed or prefabricated; individual reinforcement bars may be mechanically spliced, incorporating various Richmond splice devices. The mechanical connection is achieved by screw-



ing the male (Dowel-In) into the female (Splicer or Coupler). Pretorque is not necessary; however, all elements must be fully en-

gaged and secure.

Dowel Bar Substitution and Anchoring: The female (Spliced will be positioned and secured formwork, rebar or bulk ads prior to placing concrete. After concrete has cured, the formulare removed. Prior to a secondary pour, the Dowel-In (DI) will be threaded into the Spliger. Wrench-tightening is not required; however, all elements must be fully engaged and appropriately aligned.

### 6. AVAILABILITY AND COST

Availability: Richmond Screw Anchor Company splice devices are available worldwide. See page 6 for the nearest plant and/or sales office.

Cost: Prices are available at the branch office locations.

### 7. WARRANTY

Richmond Screw Anchor Company splice devices are manufactured according to strict quality assurance specifications. They are warranted to be free from manufacturing defects and to perform as represented in writing (provided that the product is installed and used in accordance with the manufacturer's instructions).

### 8. MAINTENANCE

No special requirements.

### 9. TECHNICAL SERVICES

Additional product information or technical information is available by contacting Richmond.

### 10. FILING SYSTEMS

Electronic SPEC-DATA® SPEC-DATA® II Concrete Construction Source





₩0.





The DB-SAE Splicer is a one-plece unit integrally forged from grade 60 rebar material. It is available in #4 through #11 sizes and is designed to achieve 150 percent of specified yield (full mechanical ultimate). DB-SAEs are available straight (cut to length), hooked, double-ended, thread-ended or bolt-headed in plain or epoxy coated. It is also possible to order the Splicer with a reduced washer and/or a clipped washer.

### Dowel-In (DI)

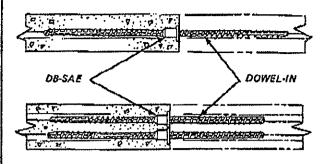


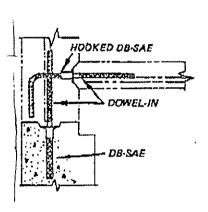
DI Dowel-In - #4, #5 and #6 configuration with chamfered nose,



DI Dawel-In - # 7 through # 11 aonfiguration with pilot nosa,

The Dowel-In (DI) is manufactured from grade 60 rebar material and is available in sizes corresponding to the DB-SAE Splicer. The end of the Dowel-In is enlarged by forging before threading so that the cross-sectional area of the bar is not reduced during threading operations, thus assuring a strength capacity of 150 percent of the specified yield. Dowel-Ins are configured to facilitate easy installation of the splice. They can be easily assembled by hand. On large projects, such as highway paving, a centrifugal chuck on an electric or air powered drill motor will speed installation.


Dowel-Ins are available straight or hooked, plain or epoxy coated.

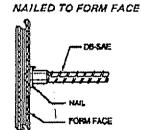

### Completed Splice

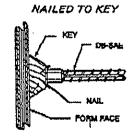


Both pieces of the completed splice are manufactured from equal size bar stock.

### Typical Applications







Splice Size Recommendations

| SPECIF   | DO OR RE | CONTRED T | POWEL .  | nte                       | OMMENDE  | D DONEL  | LAR EPLK | ER AND E | OVICE - EN          | 812X#   |
|----------|----------|-----------|----------|---------------------------|----------|----------|----------|----------|---------------------|---------|
| SAM SIZE | 4mr#£ 44 | PERMIT    | M89 - Ma | SYSTEM                    | DO - EAE | DOWEL IN | SYTYEM   | UNAME SI | ************        | ADE - D |
|          | *7       | san Py    | Ppt.     | THATE ALS                 | -        | H-M H-06 | APTA     | P.y      | 1.55 P <sub>V</sub> | Pate    |
| #4       | 12,000   | 15,000    | 18,000   | ME"<br>TIUNC              | #4       | *4       | .20      | 12,000   | 15.000              | 18,000  |
| #5       | 18,660   | 73.250    | \$7.30a  | 3/4"<br>10 UNG            | * 5      | #5       | .31      | 16,600   | 23,750              | 27,900  |
| + 5      | 26,400   | 33.000    | 38,600   | 778°<br>Sitriac,          |          | # 5      | ,44      | 28,400   | 30,000              | 39,600  |
| #7       | 36,000   | 45,000    | \$4,000  | BUNC                      | 47       | #7       | .00      | 36.000   | 45,000              | H,000   |
| #\$      | 47,400   | £8,26ô    | 71,100   | 1-1/8"<br>\$ÇM            | **       | 11       | .te      | 47,400   | 38,250              | 71,100  |
| 40       | 10,000   | 73.000    | MY 2000  | 1.17A <sup>M</sup><br>MUH | 7.0      | #1       | 1,00     | EC/000   | 75,000              | 90,000  |
| #10      | 75,200   | 95.250    | 114,300  | 1-7/15"<br>60/H           | P 10     | F 10     | 1.77     | 10,210   | 94,340              | 114,00  |
| 441      | 93,500   | 117,000   | 140,400  | HAVIST<br>BUN             | #11      | # 11     | 1.56     | 93,600   | 117,000             | 140.40  |

TABLE 1: Recommended Dowel Bar Splicer and Dowel-In Sizes

### **Typical Setting Methods**





#### Test Data

Supportive test data consists of static tensile testing, static compression testing, progressive step function, cyclic tensile tests and fatigue tests suitable for establishing S-N curves.

| (D8-SAE)<br>SPLICER<br>SIZE | (DI)<br>DOWEL-IN<br>SIZE | Cross sect.<br>Area<br>(84 m.) | THREAD<br>SIZE | AVERAGE<br>YIELD LOAD<br>(Ibs.) | AVERAGE<br>U.T. LOAD<br>(DIL) |
|-----------------------------|--------------------------|--------------------------------|----------------|---------------------------------|-------------------------------|
| #4                          | **                       | 0.20                           | W-11 UNC       | 18,220                          | 19,300                        |
| <b>#</b> 5                  | <b>#</b> 5               | 0.31                           | 14"-10 UNC     | 20,700                          | 31,47D                        |
| <b>#</b> 5                  | <b>₽</b> 6               | 0.44                           | 7/7-9 UNC      | 36,450                          | 48,700                        |
| <b>#</b> 7                  | #7                       | 0.80                           | 1,0"-8 UNC     | 48,570                          | 81,750                        |
| #8                          | #6                       | 0.79                           | 179°-8 UN      | 51,840                          | 77,800                        |
| #9                          | #9                       | 1.00                           | 11458 UN       | 62,800                          | 94,850                        |
| #10                         | <b>#</b> 10              | 1.27                           | 1746"-8 UN     | 83,020                          | 124,540                       |
| #11                         | <b>∌</b> 11              | 1.56                           | 19/16"-8 UN    | 100,160                         | 145,830                       |

TABLE 9: DB-SAEIDowel-In Splice Static Test Summary

Static tensile tests are continuously being compiled to insure quality. These test programs easily exceed known building code requirements.

| SUBER                 | 3 LEVET             | .55fy  | .75Ny                | .90ty                          | 1.00fy | RESERVE STATIC<br>TENSILE LOAD |
|-----------------------|---------------------|--------|----------------------|--------------------------------|--------|--------------------------------|
| CACIT                 | SASEC.              | 8-26   | 8-20                 | 8-2B                           | 8-28   | :                              |
| cyc                   | LES                 | 25,000 | 12,500               | 4,000                          | 1,000  |                                |
| CUMUI                 | LATIVE<br>LES       | 25,000 | 37,600               | 41,500                         | 42,500 |                                |
| DO-SAE<br>Bar<br>Size | DX<br>BAAR<br>SIZIE |        | er of Cy<br>Is numbi | RESERVE STATIC<br>TENSILE LOAD |        |                                |
| #4                    | #4                  | 6/5    | 6/6                  | 6/6                            | 6/6    | 19,800                         |
| <b>#</b> 5            | #5                  | 6/6    | 5/5                  | 5/5                            | 6/6    | 28,700                         |
| #8                    | #5                  | 8/6    | 6/6                  | 6/8                            | 6/6    | 40,500                         |
| ₽7                    | #7                  | 6/6    | 6/6                  | 6/6                            | 6/6    | 48,900                         |
| 18                    | 79                  | 575    | 5/6                  | 3/8                            | 3/6    | 55,800                         |
| #8                    | #9                  | 6/6    | 6/6                  | 3/6                            | 3/6    | 86,700                         |
| <b>₽</b> 10           | <b>#1</b> 0         | 5/5    | E/5                  | 0/5                            | 0/5    | -                              |
| #11                   | #11                 | 5/6    | 5/B                  | 6/6                            | 6/6    | 135,100                        |

TABLE 10: DB-SAE/Dowel-In Dynamic Test Summary

The purpose of the progressive cyclic tests was to demonstrate the seismic resistance capacities of the Richmond Splice System. Cyclic testing began at 55 percent of the specified yield (60,000 psi) for 25,000 cycles, stepping to 75 percent (fy) for an additional 12,500 cycles, stepping again to 90 percent (fy) for another 4,000 cycles, finally stepping to 100 percent

(fy) for 1,000 cycles. As a result of this test series, each splice reached a stress range of 90-100 percent of the specified yield (60,000 psi) and the total number of cycles of each splice exceeded 41,500 cycles. Units exceeding 42,500 cycles were further tested to evaluate the reserve static tensile load.

0100

| Number of Cycles | S                  | #5                     | ₹6          | #8          | #11          |  |
|------------------|--------------------|------------------------|-------------|-------------|--------------|--|
| @                | 15,000 psi         | 2,000,000              | 2,000,000   | 2,000,000   | 2,000,000    |  |
| •                |                    | R                      | eserve st   | ATIC TENS   | ILE.         |  |
|                  |                    | 27,900 Rys.            | 42,600 lbs. | 80,190 lbs. | 144,900 ltm. |  |
|                  |                    |                        |             |             |              |  |
| Number of Cycles | 25% F <sub>Y</sub> | 2,000,000+             | 2,000,000+  | 2,000,000+  |              |  |
| Ø                | 50% Fy             | 103,710                | 216,510     | 179,290     | COMP         |  |
|                  | 75% Fy             | 59,540                 | 45,240      | 29,765      |              |  |
|                  |                    | RESERVE STATIC TENSILE |             |             |              |  |
|                  |                    | 0                      | D           | ٥           | ٥            |  |

TABLES 11 AND 12: DB-\$AEIDowel-In Fabgue Test Summary

The fatigue test programs were performed to illustrate the merits of the Richmond Splice System design philosophy of upset and upsized threads relative to the nominal rebar area. All specimens exceeded 2,000,000 cycles at 15,000 psi, 25 percent of the specified yield (60,000 psi). Upon completing 2,000,000 cycles; the tests were stopped and the specimens were statically tensiled to failure to evaluate the reserve strength capacity. A second test series was initiated to develop S-N behavior characteristics of the splice system.



### SCHWOND SCREW ANCHOR CO.

7214 Burns Street, Fort Worth, Texas 7611B (817) 284-4981

PLANTS, WAREHOUSES AND SALES OFFICES:

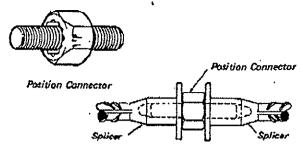
1376 Hills Place, N.W. Atlanta, GA 30318 Phone 404/355-4232 Toll Free 800/229-7722

P.O. Drawer 660 Cemereach, NY 11720 Phone 516/732-0880 Plant (Metro NYC) 212/772-0654

7053 Brookdale Drive Elkridge, MD 21227 Phone 301/199-7121

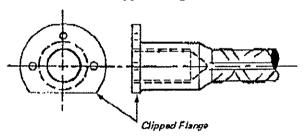
25585 Clover Road Hayward, CA 94542 Phone 415/886-6688

5025 Easton Road St. Joseph, MO 64507 Phone 816/233-0278 Toll Free 800/748-1490 30-R Manning Road Billerica, MA 01821 Phone 508/663-5236 Toll Prec 800/969-3399


17051 Green Drive City of Industry, CA,91745 Phone 818/964-8890, Toll Free 800/869-0519

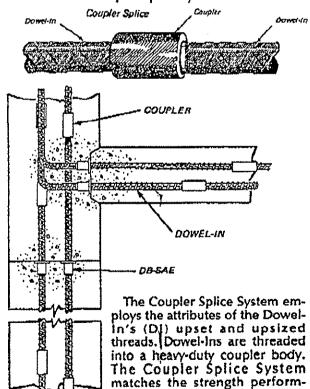
7216 Burns Street Fort Worth, TX 76118 Phone 817/284-9341 Toll Free 800/729-9048

504 East Kercher Stroet Miamisburg, OH 45342 Phone 513/866-5936 Toll Prec 800/869-8437


55 North Pine Street Tremoat, PA 17981 Phone 717/695-3163, Tall Free 800/669-3163

### Position Connector




The Position Connector is a left and right hand threaded stud with a free fit hex nut keyed to the hex bar stock of the stud. Right hand and left hand DB-SAE Splicers may be connected and drawn together, using this method, when hooked bar alignment is critical.

### Clipped Flange



The Splicer's flange may be supplied clipped as needed to Insure adequate concrete cover or to avoid interferences with other objects. Flange may be clipped in more than one direction as required.

### **Coupler Splice System**



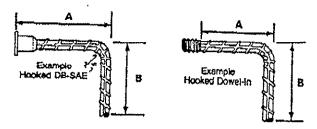
ance criteria of the DB-SAE Splice

System in all aspects. A unique advantage of the Coupler is that it also behaves as a position connector. The Coupler can be advanced beyond the thread region of the Dowel-In and then returned to final position, joining a second Dowel-In to the first.

|            | COU            | plea selection cl | HDC             |        |  |
|------------|----------------|-------------------|-----------------|--------|--|
| DI<br>Size | Thread Size    | COUPLER Size      | STRENGTH (Ros.) |        |  |
| 3115       | 7              | COOTCETTORY       | 1,25fy          | Po     |  |
| H          | 5/8" -11UNC    | 7/8" x 2"         | 15000           | 18000  |  |
| #5         | 3/47 -10UNC    | 1- 1/8" × 2-1/4"  | 23260           | 27900  |  |
| <b>#</b> 6 | 7/8" - DUNG    | 1-1/4" H Z 1/2"   | 23000           | 30800  |  |
| . 87       | 1" - BUNC      | 1- 1/2" × 4"      | 45000           | 64000  |  |
| \$18       | 1-1/8" + 8 UN  | 15/8" ×4-3/8"     | 59250           | 71100  |  |
| #9         | 1-1/4" - 0 UN  | 1-7/8" × 4-5/9"   | 75000           | 90000  |  |
| #10        | 1-7/16" - 8 UN | 2-1/8" × 5-1/4"   | 95250           | 114200 |  |
| #11        | 1-9/15" 8 UN   | 2-1/4" ±5-1/2"    | 117000          | 140400 |  |
| #14        | 1-7/5" - 8 UN  | 2· 7/6" × 6"      | 168750          | 202500 |  |

TABLE 7: Coupler Selection Guide

### Half Coupler Splice For Welding



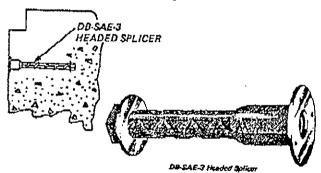

|                  | HALF O         | OUPLEA SELECTION | GUIDE          |        |  |
|------------------|----------------|------------------|----------------|--------|--|
| Di<br>Sire Dares | Thread Size    | COUPLER Size     | Strength (ID.) |        |  |
|                  | 1 MENG 21SE    | WUTLER alse      | 1.25fy         | Pu     |  |
| 和                | 5/8" -71UNC    | 7/8" x 1-1/8"    | 15000          | 18000  |  |
| <b>4</b> 5       | 3/4" \ -10UNC  | 1-1/8" + 1-1/4"  | 23260          | 27900  |  |
| ₽¢.              | 7/0" · \$UNG   | 1-1/4" × 1-3/6"  | 12000          | 39000  |  |
| <b>8</b> 7       | 1" · BUNC      | 1· 1/2" ± 2·3/4" | 45000          | 54000  |  |
| #9               | 1-1/8" - B UN  | 1-5/8" ± 3#      | 69250          | 71100  |  |
| <b>53</b>        | 1-1/4" - 8 UN  | 1- 7/ሴ። ። ውነ/6"  | 75000          | 90000  |  |
| #10              | 1-7/18" - ¥ UN | 3.1/8" + 3.1/2"  | 96260          | 114300 |  |
| #11              | 1-9/167 - B UN | 2-1/4" × 2-3/4"  | 117000         | 140400 |  |
| #14              | 1-7/8" - 8 UN  | 2- 7/8" × 3-7/8" | 168750         | 202500 |  |

TABLE 8: Half Coupler Selection Guide

The Half Coupler Splice is simply a shorter version of the Coupler Splice, suitable for welding to steel components such as soldier piles, weld plates, steel frame structure and special bulkheads. A Half Coupler accommodates only one Dowel-In. The capacity of the Half Coupler may be limited by field welding conditions.

### Hooked Splicer and Hooked Dowel-In




Hooked dowels may be substituted with a hooked DB-SAE or hooked Dowel-In. Hooked DB-SAEs and DIs will meet or exceed those requirements as defined in ACI 318. All bars are bent using the appropriate pin diameter. (See the table for dimensions). The "B" dimension can be any length necessary to meet building requirements.

| Ber Size              | ¢ 4 | я 5 | = 6 | æ 7 |    | + 9 | * 10 | <b>₩</b> 12 |
|-----------------------|-----|-----|-----|-----|----|-----|------|-------------|
| Min. "A"<br>Direction | 5"  | 5"  | €"  | 7** | 9" | 12" | 14"  | 15"         |
| Sand<br>Diameter      | €d  |     |     |     |    |     | 841  |             |

TABLE 2: Hooked Rebar Bend Dimensions

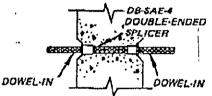
The "A" dimension may be reduced, using bending pin diameters less than ASTM and code requirements.

### **Headed Splicer**



| REC              | OWNENDE  | DELSA!          | 3 SPLICE | R AND DO | WEL-IN                     | SIZES   |  |
|------------------|----------|-----------------|----------|----------|----------------------------|---------|--|
| EYSTÉM<br>CASHIT | DB-SAE-3 | EMBED<br>LENGTH | LOAD     | DOWEL-2N | DOWFI -IN LOAD<br>CAPACITY |         |  |
| SIZE             | BARSIZE  | (150)           | CAPACITY | SAR SIZE | 1.25Py                     | 1.5Py   |  |
| 56°<br>11UNC     | **       | •               | 18,000   | #4       | 15,000                     | 18,900  |  |
| 94"<br>16 UNC    | #5       | #5 7,5°         |          | #š       | \$3.k90                    | 27,000  |  |
| 7/6"<br>B UNC    | £4       | 9"              | 39,600   | 78       | 33.000                     | 39,800  |  |
| T"<br>BUNKO      | εī       | 10.5"           | \$4,000  | 97       | 45.000                     | \$4,000 |  |
| Tige<br>ALNi     | **       | 12"             | 71,100   | 48       | <b>89.25</b> 0             | 71,100  |  |

TABLE 3: Recommended DB-SAE-3 Headed Splicer and Dowel-In-Sizes


The I leaded Splicer is a convenience connector. It is designed to eliminate hooked bar congestion. It

also provides excellent end anchorage and may be used for common structural anchorage provisions for light standards, signs, posts, fixtures, etc. The anchor may be modified to support greater loads than shown.

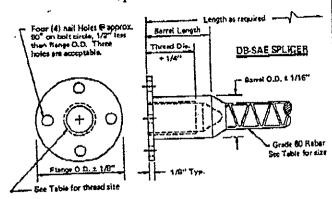
**Double-Ended Splicer** 

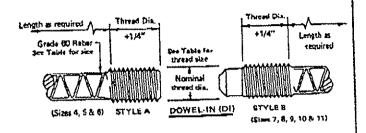
The Double-Ended Splicer is a device for establishing a direct load path through a concrete section, thus avoiding multiple hooked bars or protruding dowels. It also helps to eliminate bar congestion. Oftentimes it is configured in a "U" shape for special applications. See miscellaneous components.





Typical Specification

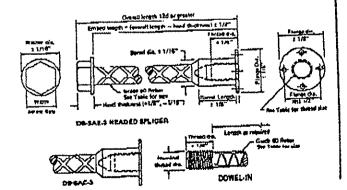

The Richmond Dowel Bar Splicer System, consisting of the Dowel Bar Splicer (DB-SAE) and Dowel-In (DI), shall be used in splicing of rebar. The Dowel Bar Splicer (DB-SAE) shall be forged from ASTM A615 Grade 60 deformed rebar material, free of external welding or machining. It shall be furnished with an Integral nailing flange and threaded with UNC or UN thread to a depth equal to 1.0 times the nominal thread diameter plus 14". The Dowel-In (DI) shall be fabricated from ASTM A615 grade 60 deformed rebar material with thread corresponding to the DB-SAE Splicer. The completed splice, utilizing the Dowel Bar Splicer and Dowel-14 shall meet 150 percent of the specified bar yield strength (fy) exceeding tensile requirements of American Concrete Institute (ACI) Specification 318, "Building Code Requirements for Reinforced Concrete" and the Corp of Engineers Specification CW-03210, "Civil Works Construction Guide Specification for Steel Bars, Welded Steel Wire Fabric and Accessories for Concrete Reinforcement."


Compliance

Richmond Dowel Bar Splicer System compiles with the following standards, guides, codes and/or specifications:

- American Concrete Institute ACI 318
- ◆ International Conference of Building Officials (ICBO) Report #4028
- City of Los Angeles Research Report RR24518
- State Departments of Transportation
- Corp of Engineers Specification CW03210
- Concrete Reinforcing Steel Institute

### **Splicer Dimensions**






|             | DE           | DOV              | DOWELIN (DI) |                 |             |                |  |
|-------------|--------------|------------------|--------------|-----------------|-------------|----------------|--|
| Ber<br>Cire | Thread Size  | Barrel<br>Lenoth | Berrell O.D. | Flance<br>O.D.* | Bar<br>Size | Tiwesd \$10 s. |  |
| * 4         | 5/8 - 11 UNC | 1-1/4"           | 7/8"         | 1.7/8"          | 14          | 5/8 - 11UNC    |  |
| j 5         | 3/4 - 10UNC  | 1-1/2"           | 1"           | 2"              | 0.5         | 3/4 - 10UNC    |  |
| <b>#</b> 6  | 7/6 - 9UNG   | 1-3/4"           | 1 1/4"       | 2.3/8"          | # 6         | 7/8 - 9UNC     |  |
| <b>2</b> 7  | 1-8UNC       | 1-15/16"         | 1-3/8"       | 2-1/2"          | ₹7          | 1-8UNC         |  |
| # 2         | 1-1/8 - 8UN  | 2-1/16"          | 1-9/16"      | 2-1/2"          | f 8         | 1-1/8 - 8UN    |  |
| 1 0         | 1-1,4 - BUN  | 2.1/4"           | 1-11/16"     | 2-3/4"          |             | 1.1/4 BUN      |  |
| 110         | 1-7/16 - BUN | 2-5/0**          | 1-15/19"     | 3"              | # 10        | 1-7/16 - 8UN   |  |
| ŧ 11        | 1 9/18 - BUN | 2-17/15"         | 2-1/8"       | 3-1/8"          | <b>8</b> 11 | 1-9/18 - 803   |  |

<sup>&</sup>quot;DB-SAE Splitter may be manufactured with reduced flange,

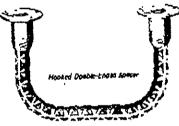
TABLE 4: DB-SAE Splicer and Dowel-In Dimensions



|                   | DB-\$AE     | HEX HEAD |               |                |                                |                          |           |        |
|-------------------|-------------|----------|---------------|----------------|--------------------------------|--------------------------|-----------|--------|
| Bar<br>Sim<br>(d) | Thread Size | Berni    | Narret<br>Oir | Flange<br>Oir. | Minimum<br>Coptoity*<br>(17:d) | Wideh<br>Runori<br>Flats | Section 1 | X Hand |
| #4                | 5/8"-11UNC  | 1-1/4    | 7/8           | 1-7/2          | 18,000                         | 1/8                      | 19/8      | 112    |
| # 5               | 3/47-10UNC  | 1-1/2    | ١             | 2              | 27,900                         | 7/8                      | 1-5/3     | 1/2    |
| 4 0               | 7/9"-QUNC   | 1.9/4    | 11/4          | 2-3/2          | \$9,600                        | 1-1/16                   | 1-7/6     | 1/8    |
| # 7               | 1"-8UNC     | 1-15/1\$ | 1-3/5         | 2-1/2          | 54,000                         | 1-1/15                   | 2         | 5/0    |
| # 5               | 1-1/8"-BUN  | 2-1/16   | 19/16         | 2-1/2          | /1,100                         | 1-5/16                   | 2-1/9     | \$/8   |

<sup>\*</sup> Hornelised for 3,000 pel normal weight concern and restricted to mechanical cape city at her and further limited to Dowel-In capacity, d. Nominal diameter of bar.

TABLE 5: DB-SAE-3 Headed Splicer Dimensions


| DE-SAE-3<br>Bar Sizer | Edge(Shear)*<br>(424) | Edge (Tension)*<br>(5d) | Apening (140) |
|-----------------------|-----------------------|-------------------------|---------------|
| # 4                   | 6.0"                  | 2.5                     | 8,0"          |
| # 5                   | 7.5**                 | \$,125"                 | ነዉሮነ          |
| * 5                   | 9.0"                  | 3.750"                  | 12.0"         |
| # 7                   | 10.5"                 | 4,375"                  | 14,0"         |
| # B                   | 12.0"                 | \$,000                  | 16,0"         |

Share and tension refers to the loading condition, If the Dowel-In is subjected to both shear and tension loading, the edge distances for these well govern.

TABLE 6: DB-SAE-3 Headed Splicer Setting

## Miscellaneous Components

Hooked Double-Ended Splicer



Hooked Double-Ended Splicer is used to alleviate restrictive concrete space envelopes, such as narrow beams and columns, etc. Other applications may be performed, i.e., insert or anchor cages for attaching sign posts, light poles or other structural fittings. These units may be laced together to provide patterns for 2, 4 or more bolts.



The Thread-Ended Splicer is used to provide a continuous mechanical splice connector to insure reinforcement continuity. The mechanical connector sultable for attaching to the thread end is shown in Table 7, Coupler Selection Guide.

25 11

İs

1



# **DELTA TESTING LABO'**

23 SOUTH MACQUESTEN PARKWAY . MOUN PHONE: (914) 699-0056 . FAX

| Post-it* Fax Note 7671 | Date 6/23   December 3 |
|------------------------|------------------------|
| TO FRANK BAKBELLA      | From D. Keitenban      |
| Carbert AARCELLA       | Co. DEL                |
| Phone #                | Phone #                |
| Fax + 908-534-1697     | Fax                    |

SLURGY MIXING PLANT

#### DESIGN MIX REPORT

L-138-02168

Date: June 23, 1994

Project No. KD-]

02168

CLIENT:

Barbella Environmental Technology, Inc.

P.O. Box 273

Salem Industrial Park, Bldg. 8

Whitehouse, NJ 08888 Att: Mr. Fred Barbella

PROJECT: Pelham Bay Landfill Remediation, NYC

Trial Mix Design in accordance with NYC Building Code SUBJECT:

Section C27-605.

STRENGTH REQUIRED: 4000 + 1200 psi 528 days

SUPPLIER: Casa Redimix Concrete Co.

WATERIALS: Typical as submitted by supplier:

CEMENT: Norval Type II (Cal. No. 236-59-SM)

FINE AGGREGATE: L.I. Natural

COARSE AGGREGATE: New York Traprock, Clinton Point ADMIXTURE: W.R. Grace Daravair Air Entrainment ADMIXTURE: W.R. Grace WRDA Hycol - Water Reducer

PASSING SIEVE SIZE F.A. C.A. (#67 stone) (sand) 1 \*\* 100 3/4" 97.6 3/8" 100 21.3 96.3 4.8 #8 81.5 116 71.5 #30 51.1 #50 26.6 1100 7.7 Fineness Modulus 2.71 6.76 Specific Gravity 2.64 2-81 Unit Woight Dry Rodded 105.6# 99.0#

cc: bet(2),file,blg.

# DELTA TESTING LABORAT RIES, INC.

23 South MacQuesten Parkway Mount Vernon, New York 10550 Phone: (914) 699-0056

| PROJECT 1 | PELHAN BAY LANDWILL | KEHEI | DIATION, NYC | _ |
|-----------|---------------------|-------|--------------|---|
|           | 3                   |       |              |   |
| SHEET MUL | BS Y Y Y Y Y        | DATE  | 6/23/94      |   |
|           |                     |       |              |   |
| CHECKED & | Y                   | UAIC  |              | • |

|            |                       | •                  |           | Mo       |                |                                       |             | lew '         |                 |             | 50            |         |              |      |              |                   |          | ULATE    |             | *************************************** |          |                                                  |          |           |          |             |       |             |                                                  |                                              |                                               |
|------------|-----------------------|--------------------|-----------|----------|----------------|---------------------------------------|-------------|---------------|-----------------|-------------|---------------|---------|--------------|------|--------------|-------------------|----------|----------|-------------|-----------------------------------------|----------|--------------------------------------------------|----------|-----------|----------|-------------|-------|-------------|--------------------------------------------------|----------------------------------------------|-----------------------------------------------|
| ٠          | Phone: (914) 699-0056 |                    |           |          |                |                                       |             |               | CHECKED BY DATE |             |               |         |              |      |              |                   |          |          |             |                                         |          |                                                  |          |           |          |             |       |             |                                                  |                                              |                                               |
|            |                       |                    |           |          |                |                                       |             |               |                 |             |               |         |              |      |              |                   | SCAL     | E        |             |                                         |          |                                                  |          |           |          |             |       |             |                                                  |                                              | ,                                             |
|            | ].                    | T                  | ~_        | •        | <u> </u>       |                                       |             |               | ::.             | :::::       | 1 1 1         | 12.1    | i            |      |              | Ti.               |          | ·.:      |             |                                         | ::-      |                                                  |          |           | <u> </u> | : ::        | :     |             | <u> </u>                                         | <u> </u>                                     |                                               |
|            |                       | - <del>  -</del> - |           | ::::     |                |                                       | : : :       | 1             | ,               | .:::        | 111           | . : : : |              |      |              | 1:::              | 1        | :        |             | .; ;                                    |          |                                                  |          | ;<br>;    | <u> </u> | 11111       | ::    | <u>:</u> :  | <u>  : : </u>                                    |                                              | <u> </u>                                      |
| ٠          | 1::                   |                    |           |          | <del>;;;</del> |                                       | 1111        | 1             |                 | :::::       | :::::         | :: ;    |              |      |              | 117               |          |          |             | 1111                                    |          |                                                  |          |           | : : :    | ::::        | : : : | ::          | : :                                              |                                              | 7                                             |
| -          | 1                     | +                  |           |          | 1111           | 1                                     | 1           |               |                 | ::::        | ::::          | 1111    | 1            |      | 1            | 1                 | - 1      | : ::     |             |                                         |          | 111.                                             |          |           |          | ::::        | : :   | :::::       |                                                  |                                              | ļ :                                           |
| ::::       |                       | +                  |           | ::.      | 1 1 1          | 1111                                  | 7111        | 1::::         | 771             | 1111        | 1111          | 1712    |              |      |              |                   | E J      |          | 1           | ::::                                    | <b> </b> |                                                  |          |           | 1        |             | ::::  | ::::        | 11111                                            | 1:1:                                         | 1:::                                          |
| ;; ;       | 1                     |                    | 4         |          | 1111           |                                       | 1111        | 1             | 1111            |             | 1111          | CO      | PRI          | SS   | V K          |                   | 1        | 11       |             |                                         |          |                                                  |          |           | 1        |             | 1111  | ::::        |                                                  |                                              | 111                                           |
| ٠          | -                     |                    |           | 1        |                |                                       | 1111        | 1             |                 | 1111        |               | 1:2     | 1115         |      |              |                   |          | 131      | 1111        |                                         | 1::-     |                                                  |          | 1         | 1111     |             | ::::  | .:-:        | 1::1                                             | 1                                            |                                               |
| -          |                       |                    | :::       | 1111     | 1              |                                       |             | 7500          | ļ               | 3000        | 1111          | 3500    |              | 1000 |              |                   | 1 2      | ģ        | 1111        | 500                                     | 7.33     | 000                                              |          | 6500      | 222      | 7111        | 1111  | :::::       | 1                                                | 1::::                                        |                                               |
|            | 1:2                   |                    | _         | <u> </u> | 11:::          | ļ::::                                 |             | 8.            | 1               | 8           |               | 8       | 1111         | 8    |              | 8                 | 1122     | 000      |             | 5                                       |          | ĕ                                                |          | Ď.        | 17       | 11:1        | : ::  | 1111        | 1                                                | · · · ·                                      | 1                                             |
| ::-        | 1:::                  |                    |           | ::::     | 1              |                                       | 3 : 3 :     | <u> :::</u> : | 1               |             | <u>;</u> ;::: | ::::    |              |      |              |                   |          | 111      | :::::       | 7                                       | 1::::    | 1212                                             |          | 1111      |          | 1127        | 11:22 | i           | 111                                              | <u>                                     </u> | +:-                                           |
| ::         |                       | : :                |           | 11:1     | Ö              |                                       |             |               | 1111            | :::         | ::::          | 1: :    | 1351         | -:   | Ш            | 7                 | 3:3:     | 111      | ز :: ا      | /                                       |          | 15.                                              |          |           | 1        |             | 1     | -           | 1                                                | 1                                            | <del> </del> -                                |
| :          |                       |                    |           | <u> </u> |                | 1                                     |             | 1::::         |                 | 1111        |               |         | 1            |      | 12           | - :               |          |          | 1           | ::::                                    | <u> </u> |                                                  | <u> </u> |           | 1::::    | Z           |       |             | <b>∤</b> ∷∷                                      | 4-                                           | <del> </del>                                  |
|            | :                     |                    |           | ::::     | 4              |                                       |             | ::::          |                 | ::::        |               |         | 1111         |      | 133          |                   |          |          |             |                                         |          | l i                                              |          | 1111      | 12       | ]::::       |       | <u>::::</u> |                                                  | Ŀ                                            | 1:                                            |
| ::         |                       |                    |           | 1111     | 44             | 1:.                                   | i           | ::::          |                 | ::::        | ;; <u>;</u> ; | 1       |              | 115  |              |                   | /        |          |             | 13.                                     |          |                                                  |          | 2         | <u> </u> |             | :: :  | <u>.</u>    | <u>  : </u>                                      | <u></u>                                      | ļ                                             |
|            | 1                     | 2                  |           | ::::     | 13             |                                       | 1           | 1             |                 | :::.        | ::::          | ::::    | 155          |      |              |                   | /        |          | i           |                                         |          | ]                                                |          | /         | <u> </u> | 1: 1:       | ::::  |             | <u> </u>                                         | <u> </u>                                     |                                               |
| ::         | 1                     |                    |           | :::::    | 2              | ::::                                  |             | . : : :       | 1::             |             | 1,12          | ;;:::   | ::::         | 1111 | -            | 1                 | ===      |          |             | 12                                      |          | 17.                                              | /        | ļ.:       |          |             |       | :::.        | <u>  : : :</u>                                   | <u> </u>                                     | 1:                                            |
| ::         | 1                     | : ::               |           | :::      | W              |                                       |             | 1::::         |                 | 1111        | 1111          | 7111    | 1111         |      |              | <i>Y</i>          | 125      | 11.      | 1111        |                                         | -:-      | 1                                                | 1        |           | 1::-     | 1           |       | ::::        |                                                  |                                              | . [                                           |
|            | 1                     |                    |           |          | <b> </b>       | <u> </u>                              | 1           | 1::::         | ::.             | <del></del> | 11111         |         | 1            | 12   | 1            |                   | =:       | <u> </u> | 7           | 1                                       | 1        | 1                                                |          | 1         |          | ÷÷          | 1111  |             |                                                  |                                              | 1                                             |
|            | ļ.,                   | Mark SX - CS PER   |           | ::::     | 45°.           |                                       | 1:::        | 1 7 3 3       | 1:::            | 2:::        | ::::          | +:::    |              | 1/   | TAX S        |                   | 1        |          |             |                                         | /-       | -:-                                              | -        |           |          | =           | 1.50  |             | 134 - 0007                                       |                                              | 1                                             |
| ::-        | <del> </del>          | -15                | <u> </u>  | ***      | 1::            | <del> </del>                          | <del></del> | 1: ::         | 1               | 1           | 11111         |         |              | ĽΞ.  | 1            |                   | 1        |          | 3           | 1                                       |          | <del>                                     </del> | 1        | -         |          | <u> </u>    | 1.    |             | <b>D</b>                                         | <u>                                     </u> | <del>  ::-</del>                              |
|            | 1                     |                    | <u> </u>  | 1111     | p-             |                                       | 1::::       | 1             | -               | 141.        | 11111         | 4       | 1            |      | <u>-</u> ;   |                   | 1 1      |          |             | <b>/</b> :::                            |          |                                                  | Ŀ        |           | -        | 1111        |       | : ::        | 4                                                | 1                                            | 1                                             |
| -:::       | 111                   | :                  | <u> </u>  | <u> </u> |                | 1 ::                                  | ļ           |               | 1 1 1           | -214        | ļ             | 7       | 4:::         | 聖    |              | E                 | 1;:::    | 111      | /           |                                         |          |                                                  |          | 223       | 1:::     |             |       |             | <del>                                     </del> | 1.1                                          | +                                             |
| ::::       | :::                   |                    |           |          | 14:<br>00:     |                                       |             | 1::1:         | 1 2 3 2         |             |               | 1       | 15.15        |      |              |                   | -        |          |             | 17                                      |          |                                                  |          |           | 1:2::    |             | 1277  | 1           | 1:::::                                           | 122                                          | 1                                             |
|            |                       | #                  | ‡ : <br>} |          | 6              |                                       | 1::::       | : : : ·       | 12:12           | 11111       | 1             |         | U            |      | 77           |                   | 1:-:     | Ζ.,      |             |                                         |          |                                                  |          |           | 321      | 1222        | 1211  | 1111        | 111                                              | 1                                            | 1:::                                          |
|            |                       | 10.7(39)           |           | 13:1     | -4             | 1111                                  |             | 1:::          | 1::::           | 11:5        | <i>/</i>      | 15.1    | 1111         | Ш    | <u>  Li</u>  | 1112              | V        | 33       | 1           | (2::                                    | 1:::     |                                                  | 1.2      | 11.       |          |             | 1911  | 1           | <u> </u>                                         | 1::-                                         | 1                                             |
|            | 11.                   |                    |           | ΪŢ       | 1 y 1          |                                       |             |               |                 | ز د         | ::::          |         |              | 11.  |              | **                | <b>/</b> |          | <u>.</u>    | 1111                                    |          |                                                  |          |           |          | -           | 12.1  |             |                                                  | ļ:                                           | 1:::                                          |
|            | 1                     | 4 **               | · · i     |          | 8              | <u>.</u>                              | 1111        | : ::          | j               | Ź           | 1111          | :::=    |              |      | 11:5         | 1/                |          | :::      | <b>ğ</b> †∷ |                                         |          | 1                                                |          |           |          |             |       | :::::       | <u> </u>                                         | 1                                            | 1:::                                          |
| :: .       | <u> </u>              | / Bakel            | 5         |          |                |                                       |             |               |                 |             |               |         |              | ===  |              | 1                 |          |          |             | 1::::                                   |          |                                                  | <u> </u> |           | :::      |             | :: :  | ::::        | <u> </u>                                         | <u>  : :</u>                                 | -                                             |
| :::::      | .:                    |                    |           |          | 9 5.0          | i:::                                  |             |               | /               | 1:::        | 11.1          | 37.     | LIE.         | 1    | 7            | 1:5               | į÷:      |          | 1:-         |                                         |          | 1:                                               |          |           |          | <u>;:::</u> | ::::  | <u>:::</u>  | ::::                                             | <u>  :::</u>                                 | <u>  :                                   </u> |
| :: .       | 11                    |                    |           |          | ٠.             |                                       | : : :       | 1             |                 | :77         | 15.           |         | 147          | 型    |              | 1                 |          |          | 720         |                                         | ::::     | 131.                                             |          |           | X        | -           |       |             |                                                  |                                              | <u> </u>                                      |
| <u>:</u> ; |                       | 1                  |           |          | , a            | i ::                                  | ::::        | 7             |                 | : -:        | 1,11          | 1111    |              | Æ    | 47.7         |                   |          |          | 5           |                                         | 1        |                                                  |          |           | 1        |             | W.    |             | <u> </u>                                         |                                              | <u> </u>                                      |
| ::         |                       |                    |           |          | O              |                                       | ,           |               | 1111            | :           |               | 11 :    |              | ii.  |              | T                 | Ξ:       |          | *           | 1111                                    |          |                                                  |          | 1         | <u>"</u> |             | X     | <i>[[</i> ] |                                                  | :                                            |                                               |
| ;:         |                       |                    |           |          | je             |                                       | 7           | : :::         | ::::            |             |               | 1 ; 1 ! | 7            |      | H            |                   |          |          | 111         |                                         |          |                                                  |          |           | 1        |             | Ħ¢.   | 19          |                                                  | 11:                                          |                                               |
|            |                       | 1                  | 1         |          |                |                                       | <b>/</b> :. | 1111          | 11:2            | ::::        |               | ::::    | <b>/</b> ::: | :3:: | :#:          |                   | :::;     |          |             |                                         |          |                                                  | H        | 80 0<br>0 |          |             |       |             |                                                  | ::::                                         |                                               |
| :          | _                     | 1:                 | :         |          | 11 1           | :::/                                  | . : : :     |               |                 |             | 111           | 7       | ::::         |      | ::::         |                   |          |          | 1::         |                                         |          |                                                  | E        | (         | 77       |             | NO.   |             |                                                  | .:                                           | 1                                             |
|            |                       | 1                  | †         |          | 1111           | : : : : : : : : : : : : : : : : : : : | : : : :     | ::::          | ::::;           | ::<br>:: .  | تحدث<br>. ت:  | 1       | :::          |      | ::1:         | :::::<br>  :::::: | -        |          |             | <u> </u>                                |          | 11111                                            | 1        | 3         | 1        | 63          | >3    | 8%          | , — i                                            |                                              | <u> -</u>                                     |
|            |                       | †                  | +         |          |                | · · ·                                 | نند<br>داد  |               | :               |             | : 1           | ::::    |              |      |              |                   |          | اننا     |             |                                         | : :      | 11.1                                             |          | N. S.     | 即        | 2           |       |             |                                                  | ::                                           |                                               |
|            |                       | 1::                | -         |          |                |                                       |             |               |                 | .:          | ا<br>ا        |         |              |      | ;;;;<br>;;;; |                   |          |          |             | • • • •                                 |          | 1111                                             |          | •         |          | ::::        | -     | $\vdots$    |                                                  |                                              | -                                             |
| `          |                       | 1                  | 1         |          |                |                                       |             |               | ::.:            | ::::        |               |         |              |      | • • •        | <u>::::</u>       |          | •        |             |                                         | <u> </u> |                                                  |          |           |          |             |       | $\dashv$    |                                                  |                                              | <b>;</b>                                      |

## WEIGHTS PER CUBIC YARD

| _                        | 1                                       | 2      | 2      | 4           |
|--------------------------|-----------------------------------------|--------|--------|-------------|
| Coment, lbs.             | 564                                     | 611    | 658    | 705         |
| Sand, lbs.               | 1380                                    | 1310   | 1250   | 1240        |
| Stone, 1bs.              | 1800                                    | 1800   | 1800   | 1800        |
| Total Water, gala (lbs.) |                                         |        |        | 31.9(265.7) |
| Admir. DARAY, oz. *      | 4.8                                     | 5.2    | 5.6    | 6.0         |
| Admix. WRDA ex.*         | 16.9                                    | 18.3   | 19 7   | 21 2        |
| Air Content, %           | 5.5                                     | 6.0    | 6.5    | 6.5         |
| Simmp, inches            | 3.0                                     | 3.5    | 3.75   | 4.0         |
| Unit Weight, #/c.f.      | 147.95                                  | 147.29 | 146.99 | 148.54      |
| W/C Ratio, gals./bag     | 5.02                                    | 4.72   | 4.47   | 4.25        |
| lbs./lbs.                | .44                                     | .42    | .40    | .38         |
| *Based on manufacturer's | *************************************** |        | • •    |             |

## COMPRESSIVE STRENGTHS

| 7 Days PSI  | 3000 | 3930 | 3840 | 4730 |
|-------------|------|------|------|------|
|             | 3010 | 3400 | 3910 | 4640 |
| Average     | 3005 | 3395 | 3875 | 4685 |
| 28 Days PSI | 4200 | 4640 | 5310 | 6370 |
|             | 4220 | 4780 | 5380 | 6510 |
|             | 4340 | 4710 | 5420 | 6460 |
|             | 4270 | 4680 | 5330 | 6430 |
| Average     | 4260 | 4700 | 5360 | 6440 |

Based on the above results, we suggest mix #3, for 4000 psi concrete +1200 psi.



New York City Department of Environmental

July 1, 1994

Re:

Contract 875 H.P.

Pelham Bay

Landfill Remediation Concrete Mix Design

**BUMOU of** Environmental

BARBELLA

Environmental Technology, Inc.

P.O. Box 273, Salem Industrial Park.

Whitehouse, New Jersey 08888

96-05 Horace Harding Expressway Corona NY 11368-6107 7.18-595-5001

Attention:

Mr. Michael Lattiers

Project Manager

#### Gentlemen:

Reference is made to your Letter of Transmittal, dated Marilyn Gelber 6/23/94, (telefaxed copy received on 6/29/94) requesting communication approval of Normal Weight (4000 psi + 30%), Size #67 Coarse Aggregate, Concrete Mix for approval. We have reviewed the four trial runs of this mix that were run at the approved Delta Testing Laboratories, Inc.. Mix Run #3 is approved for use on the referenced contract as follows:

GLENE, VOGEL, P.E. Detrity Commissioner

## Normal Weight 875 H-P (Run #3)

#### Materials Waight, per cubic yard Cement, Norval, Type II ASTM C150: 658 Lbs. Pine Aggregate, SSD L.I. Natural: 1250 Lbs. (ASTM C33) Coarse Aggregate, SSD N.Y. Trap Rock (ASTM C33) Clinton Point: 1800 Lbs. Admixtures 1. Air Entraining Agent, WR Grace 5.6 QZ. Daravair, 6.5% (ASTM C260) and (ASTM C185) 2. WRA, WR Grace WRDA Hycol ASTM C494, Type A: 19.7 oz.

Contract 875 H.P. Pelham Bay Landfill Remediation Concrete Mix Design Page 2

| Slump, in. (ASTM C187)            | 3.75 in.     |
|-----------------------------------|--------------|
| Unit Weight pcf                   | 146.99 pcf   |
| Water Cement Ratio gals/Bag Lb/Lb | 4.47<br>0.40 |
| Yield, cu. ft.                    | 27.13        |

#### Compressive Strength, psi (ASTM C109)

7 day, Average of 2 cylinders: 3875 psi 28 day, Average of 4 cylinders: 5360 psi

Please note that the mix as indicated above is approved subject to full compliance with the pertinent specifications of the contract.

Very truly yours ORIGINAL SIGNED BY

George Cakiades, P.E. Chief, Division of Safety and Materials Assurance

#### JPS/GC/im

xc: Ramaglia/Durig

Gordon

Gelfand/Meakin

Ciancia (Woodward Clyde)

Cakiades Bhagtani Stein Sehgal File

|               | ,                | Made in USA                             | 1975- HP TELHAM LOW<br>REINFORCED SLAB FOR SWERY WALL CAP       | Prepared By                                       |
|---------------|------------------|-----------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|
|               |                  | CONSTRUCTION                            | DETAILS                                                         | Approved By                                       |
|               |                  |                                         | 3 = 3 = 3 = 3                                                   |                                                   |
|               |                  |                                         |                                                                 | ]                                                 |
|               |                  |                                         | BARBELLA ENVIRONMENTAL TECHNOLOCY, IN                           |                                                   |
|               | ··               |                                         | I I I I I I I I I I I I I I I I I I I                           |                                                   |
|               |                  |                                         |                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           |
|               |                  | FORMWORK -                              | ═╫╏╫┼┼┼┼┼═╫╶┼┼┼┼┼╁┰╫╌┼┼┼┼┼┼┼┼┼┼                                 | <del></del>                                       |
|               |                  | 1 OICH WORCK.                           | WOODEN STAKED 4 PLUED @ \$45 EXES                               |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  | FINISH -                                | SKREED FLOAT TROWEL BROOM                                       |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  | MATERIALS .                             |                                                                 |                                                   |
| -             | 1                | IIIAI BRIACO                            | CONGRETE IN ACCORDANCE WITH NYC BUIL                            | ·Pillus                                           |
|               | <del>- -</del> - |                                         | CODE PECTION CZT. GOS                                           | 4-4-4-                                            |
| ·             | -                |                                         | Appo PSI 628 DAYS                                               |                                                   |
|               | -                |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
| _             |                  | CONSTRUCTION JO                         |                                                                 | 1 1 1 1 1 1 1                                     |
|               | 1                | 1014                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                          | 1 1 2 1                                           |
|               | +                |                                         | MAXIMUM SPACING @ 201 by SAWCUT ME                              | THUD @ 14 De                                      |
|               | +                |                                         | ╫ <del>╸</del> ┼┼┼┼┼┼                                           | <u> </u>                                          |
|               | ļ.               | <del>-</del>                            | AT GO LUTERUALS USE HORMEDATED (ASPHALE                         | T MPTEDIAN                                        |
|               | ļ                |                                         | EXPLANTION JOINT FLITSO                                         |                                                   |
| •             |                  |                                         |                                                                 |                                                   |
|               |                  |                                         | $\dagger$                                                       | <del>1                                     </del> |
|               | †                |                                         | ╫ <del>┈╎╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒</del>             | <del>                                      </del> |
|               | +                |                                         | <del>                                      </del>               | <u> </u>                                          |
| _             | -                |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               | 1                |                                         |                                                                 |                                                   |
| -             | <del> </del>     |                                         | ╫╌┼┼┼┼┼                                                         |                                                   |
| <del></del> - | -                | <u> </u>                                | <del>{</del>                                                    | <del>     -  </del>                               |
|               | .,               |                                         |                                                                 |                                                   |
|               | <u> </u>         |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  | V                                       | ┢═┼┼┼┼┼┼                                                        | ┉┈╫┈┼┦╌╀┈┤┼┼                                      |
|               |                  | ¥                                       | <del>┞╶┆╘</del> ┼┼┼┼                                            |                                                   |
|               | <u> </u>         | ]                                       | <del>┞╌┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋</del>               |                                                   |
| _             |                  |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
| 7             | -1               |                                         | <del>╒╒┋╒╒┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒</del>                |                                                   |
| +             |                  |                                         | ┝═╄╇╃╃╇╇╇═╫═╇╇╈╫┼┼┼┼┈╫═╄╀┼┼┼┼┼┼┼┼┼┼┼┼┼┼                         |                                                   |
| +             |                  |                                         | <u></u>                                                         | 7/14                                              |
| 1             | <del></del>      | · · · · · · · · · · · · · · · · · · ·   |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
|               |                  |                                         |                                                                 |                                                   |
| +             | <u>.</u> : !     | · ·                                     | <del>╶┼┞┢┼╋╏╂╸╫┈┝╃┞┊┠</del> ╂ <del>╒┈╢╶┞╿┩┞┩╎╏┈╢╌┞┡</del> ╬╎┼┤┼ |                                                   |
| í,            |                  | , · · · · · · · · · · · · · · · · · · · |                                                                 |                                                   |



# BARA-KADE® 90 Slurry Trench Soil Sealing Grade - 200 Mesh

## Typical Physical and Chemical Properties\*

| X-RAY ANALYSIS                                                                                                                                    | CHEMICAL ANALYSIS                                                  |                                                                        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|
| 94% Montmorillonite 4% Quartz 1% Feldspars 1% Calcite                                                                                             | $SiO_2$ $Al_2O_3$ $Fe_2O_3$ $CaO$ $MgO$ $Na_2O$ $K_2O$ Bound Water | 63.31%<br>21.43%<br>3.83%<br>0.63%<br>2.32%<br>2.45%<br>0.31%<br>5.72% |  |  |  |  |  |
| SCREEN ANALYSIS                                                                                                                                   | TYPICAL                                                            | SPECIFICATION                                                          |  |  |  |  |  |
| Dry Screen, percent minus 200 mesh<br>Wet Screen, percent plus 200 mesh<br>Wet Screen, percent plus 325 mesh<br>SLURRY PROPERTIES (6% Suspension) | 77<br>1.9<br>3.2                                                   | 70 min<br>4 max<br>5 max                                               |  |  |  |  |  |
| Viscosity, FANN® 600 rpm Apparent Viscosity, cps Plastic Viscosity (PV) Yield Point, lb/100 ft² Filtrate, 30 minutes @ 100 psi                    | 37<br>18.5<br>12<br>13<br>12                                       | 30 min<br>3 x PV max<br>15.0 cm <sup>3</sup> max                       |  |  |  |  |  |
| Yield - 42 gal bbl of 15 cps slurry/ton Filter Cake Marsh Funnel, seconds/quart                                                                   | 95<br>3/32<br>36                                                   | 91 min                                                                 |  |  |  |  |  |
| OTHER PROPERTIES                                                                                                                                  |                                                                    |                                                                        |  |  |  |  |  |
| Moisture, percent Free Swell (ml) Specific Gravity pH, 6% suspension Bulk Density (lbs per ft³) compacted                                         | 8.0<br>25<br>2.79<br>9.2<br>72                                     | 10 max                                                                 |  |  |  |  |  |

The typical physical and chemical values listed are not to be construed as rigid specifications. Metals listed in the chemical analysis are complexed in the mineral. They do not necessarily exist as free exides.

BARA-KADE® 90 meets or exceeds API specification 13A, Section 4.

SFANN is a registered trademark of Baroid Technology, Inc.
SBARA-KADE is a registered trademark of Bentonite Corporation.

11/4/93.tpcp.23

New York City

July 1, 1994

Contract 875 H.P.

Pelham Bay

Landfill Remediation Concrete Mix Design

**Buttoou** of Environmental

BARBELLA

Environmental Technology, Inc.

P.O. Box 273, Salem Industrial Park,

Whitehouse, New Jersey 08888

96-05 Horace Harding Expressivoy Cotonia, MY 1.1368-6107 7(8-595-600)

Attention:

Mr. Michael Lattiers

Project Manager

Gentlemen:

Reference is made to your Letter of Transmittal, dated Marilyn Gelber 6/23/94, (telefaxed copy received on 6/29/94) requesting commissioner approval of Normal Weight (4000 psi + 30%), Size #67 Coarse Aggregate, Concrete Mix for approval. We have reviewed the four trial runs of this mix that were run at the approved Delta Testing Laboratories, Inc.. Mix Run #3 is approved for use on the referenced contract as follows:

CLEME VOGEL P.E. Decuty Commissioner

1 2 to 10 mg.

Sam Williams . \_ -

TEXT. STATE

THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

## Normal Weight 875 H-P (Run #3)

## Materials Maight, per cubic yard Cament, Norval, Type II ASTM C150: 658 Lbs.

Fine Aggregate, SSD L.I. Natural: 1250 Lbs. (ASTM C33)

Coarse Aggregate, SSD N.Y. Trap Rock (ASTM C33) Clinton Point: 1800 Lbs.

### Admixtures

Air Entraining Agent, WR Grace 5.6 QZ, Daravair, 6.5% (ASTM C260) and (ASTM C185)

2. WRA, WR Grace WRDA Hycol ASTM C494, Type A: 19.7 oz. Contract 875 H.P. Pelham Bay Landfill Remediation Concrete Mix Design Page 2

| Slump, in. (ASTM C187)                  | 3.75 in.     |
|-----------------------------------------|--------------|
| Unit Weight pcf                         | 146.99 pcf   |
| Water Cement Ratio<br>gals/Bag<br>Lb/Lb | 4.47<br>0.40 |
| Yield, cu. ft.                          | 27.13        |

### Compressive Strength, psi (ASTM C109)

7 day, Average of 2 cylinders: 3875 psi 28 day, Average of 4 cylinders: 5360 psi

Please note that the mix as indicated above is approved subject to full compliance with the pertinent specifications of the contract.

ORIGINAL SIGNED BY

George Cakiades, P.E. Chief, Division of Safety and Materials Assurance

### JPS/GC/im

xc: Ra

Ramaglia/Durig

Gordon

Gelfand/Meakin

Ciancia (Woodward Clyde)

Cakiades Bhagtani Stein Sehgal File

|             | . ,              | 45-605 Eye-Ease <sup>®</sup><br>45-305 2 · Pack<br>Made in US | sa Ki         | EID                                              | FOR                                              | CE                | D 5                                              | LA                                               | 8 F             | OK                | <u>5u</u>                                        | PR           | 1            | Vai                     |           | ے               | P        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     | Prepai                      | *0 BY               | Jour               | <u>a - L</u>            |
|-------------|------------------|---------------------------------------------------------------|---------------|--------------------------------------------------|--------------------------------------------------|-------------------|--------------------------------------------------|--------------------------------------------------|-----------------|-------------------|--------------------------------------------------|--------------|--------------|-------------------------|-----------|-----------------|----------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|---------------------|--------------------|-------------------------|
|             | LON              | STRUCTION                                                     | D.            | BT                                               | 4                                                | <u>د</u>          | ···                                              | ·                                                |                 |                   |                                                  |              |              | ·····                   |           |                 |          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }_           |                             | ed By               | +                  |                         |
|             | 1                |                                                               |               | T                                                |                                                  | E 1 =             |                                                  | 71                                               |                 | ₹ 2               |                                                  |              | <u> </u>     |                         | 3 ≡       |                 | ===      |                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                             |                     |                    | . =                     |
| •           |                  |                                                               |               | <del>  -</del>                                   |                                                  |                   | ······                                           |                                                  |                 |                   |                                                  |              |              |                         |           |                 |          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                     |                    | <u></u> ر               |
| ·           |                  |                                                               | <del></del>   | <b>#</b> 5                                       | AL                                               | BE                | LLA                                              | E                                                | NY              | Raj               | ЯΜ                                               | EN7          | AL           |                         | 5         | H J/c           | 240      | ربك                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC           |                             |                     |                    |                         |
| <b></b>     | <del>   </del>   | <del></del>                                                   |               | <b>⊬</b> ÷                                       | ]l                                               | 7 /               | 1-7-                                             |                                                  | - T             | <u></u>           | 1 T''                                            | ,            | . ,          | r c                     |           |                 |          | , /<br>, ,                                       | e de la companya de l | . • .        |                             |                     |                    |                         |
|             | E.,              | 2.40. 1.55.                                                   |               |                                                  | ++-                                              | +                 | -                                                | -#-                                              |                 |                   | $igert_{oldsymbol{\iota}}$                       |              |              | Ц                       |           |                 | Щ.       | <u>                                     </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                     |                    |                         |
| <u>-</u> -  | 101              | cmwork -                                                      |               | W.                                               | φφι                                              | DE                | Ν,                                               | 41                                               | ÀΚ              | EЪ                | 4                                                | 7            | ED           | (e                      | 3         | la              | J 6      | X                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                             |                     |                    |                         |
|             | ₩ <u>.</u> ,     |                                                               |               |                                                  | $\coprod$                                        |                   |                                                  |                                                  |                 |                   |                                                  |              |              |                         |           | 1               | 1        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                     |                    |                         |
|             | -   FLD          | UŠI -                                                         |               | 74                                               | KEI                                              | žD.               | h                                                | Ap.                                              | 1               | 78                | ON                                               | 151          |              | 3 Kc                    | χ         | ۸_              |          |                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                             |                     |                    |                         |
|             | Μ                |                                                               |               | <i>A</i>                                         |                                                  |                   | -                                                |                                                  | - -'            |                   | - -                                              | $-\parallel$ |              | $-\Box$                 | 44        | -               |          |                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>     |                             |                     |                    |                         |
|             | MAT              | ERIALS.                                                       |               |                                                  |                                                  |                   |                                                  | 1/4                                              |                 | 44                | *                                                | KA           | -            | My                      | 17-       | 4 1             | 140      | -1                                               | 3 <sub>U</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 477          | IW                          | >                   |                    |                         |
| $\dashv$    |                  |                                                               |               | م                                                | DE                                               | 7                 | 80                                               | 1/0                                              | V               | <b></b>           | 27                                               | . 6          | H            | $\perp \perp$           | 11        | ļ               |          | $\perp \downarrow$                               | $\bot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ш            | $\perp \parallel$           |                     |                    |                         |
|             |                  |                                                               |               | 40                                               | 20                                               | P                 | 4                                                | @ 2                                              | 8               | DA                | Y                                                | _  .         | $\bot \bot$  | 44                      | 44        |                 |          | $\perp \downarrow$                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                             |                     |                    |                         |
| +           |                  |                                                               |               |                                                  | ++                                               | +                 | +                                                | -                                                | +               | +                 | $\downarrow \downarrow$                          |              | 44           | 11                      | $\coprod$ |                 | _        | $\downarrow \downarrow$                          | Ц.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\coprod$    |                             |                     |                    |                         |
| +           | 1                |                                                               |               |                                                  | +                                                | +                 |                                                  | #                                                | +               | +                 | #                                                | _#_          | $\perp \mid$ | $\coprod$               | 1         | <u> </u>        |          | 4                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11           |                             |                     | $\prod$            |                         |
|             | LONE             | MUKTION J                                                     | DIN           | 15                                               | 4                                                | +                 | +-                                               |                                                  | +               | #                 | 11                                               | _#           | 44-          | $\downarrow \downarrow$ | -         |                 |          | 11                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1            | _  _                        | Ш                   |                    | $\perp$                 |
| -           |                  |                                                               | -#            | ΗM                                               | ΑX                                               | Ŋ                 | ųΜ                                               | Pi                                               | 4               | ψÇ                |                                                  | 22           | 01           | b                       | 1         | SA              | WC       | VΤ                                               | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ETH          | <u>ַלְש</u>                 | c 3                 | y 'D               | æ                       |
|             |                  |                                                               |               |                                                  |                                                  |                   | 1                                                |                                                  | 11              |                   |                                                  | - 11         | 11           |                         | //   ·    | Į               |          |                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                             |                     |                    | ı                       |
|             |                  |                                                               |               | A                                                |                                                  | P                 | 1.1                                              | TCI                                              | 44              | 1                 | 1                                                | SEL          | 14           | RN                      | Bo        | A727            | 1        | A£,                                              | PHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4            | IN                          | VE.                 | الرباند            | 1                       |
| -           |                  |                                                               |               | +                                                | ++                                               | HAI               | VÀ                                               | \$14                                             | 45              | 01                | M                                                | TL           | 1            | K)                      |           |                 | <b> </b> |                                                  | ╁╁.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | _  _'                       | <u> </u>            |                    |                         |
| -           |                  |                                                               |               | ++                                               | +                                                | +-                | -                                                | $\parallel \perp \mid$                           | +-              | H                 | -                                                | _#_          | ╁-}-         |                         |           |                 |          | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                     |                    | Ш                       |
| +           |                  |                                                               | $-\parallel$  | +                                                | -                                                | $+\!\!+$          |                                                  | +                                                | -               |                   | -                                                |              |              |                         |           | 7               |          |                                                  | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | _                           |                     |                    |                         |
| _           |                  |                                                               |               | -                                                | <del>                                     </del> |                   | <del> </del>                                     |                                                  | +               |                   |                                                  |              |              |                         | _         | 4               | 4        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                     |                    |                         |
| `           |                  |                                                               |               | +                                                | +                                                | $\vdash$          | <del> </del>                                     |                                                  | $\vdash$        | H                 |                                                  |              | <u> </u>     |                         |           |                 |          | <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1-                          |                     | _                  | $\downarrow \downarrow$ |
| +           |                  |                                                               | -             |                                                  |                                                  | +                 | -                                                | -                                                | +               |                   | -                                                | -  -         |              |                         | - -       |                 |          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                     | 4                  | $\coprod$               |
|             | #                |                                                               |               | +                                                | -                                                | $\vdash$          | -                                                |                                                  | -               |                   | -                                                | -            |              |                         | $\dashv$  |                 | _ _      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |                             | H                   |                    |                         |
| -           | -                |                                                               | $- \parallel$ | +-                                               | $\vdash$                                         | -                 | <del>                                     </del> | -                                                | $\vdash \vdash$ |                   | +                                                |              |              | $\parallel$             | +         |                 |          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            | -  -                        | $\sqcup \downarrow$ |                    | $\downarrow \downarrow$ |
| -           | <del> </del>     |                                                               |               |                                                  |                                                  | -                 | <del>  </del>                                    | - -                                              |                 | +                 | +                                                | #-           |              | -                       | $\dashv$  |                 | $\dashv$ | -                                                | - -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | $\bot$                      |                     | 4-                 | $\coprod$               |
| <del></del> | <del>-   `</del> |                                                               |               |                                                  | $\left  \cdot \right $                           |                   |                                                  | <del>                                     </del> |                 | +                 | - -                                              | #-           |              | +                       | $\dashv$  |                 |          | - -                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                     | $\bot \!\!\! \bot$ | $\sqcup$                |
| +           |                  |                                                               |               | ++-                                              | $\left  \cdot \right $                           | $\dashv$          |                                                  | $\vdash \vdash$                                  |                 | +                 |                                                  | -            | -++          |                         |           |                 |          |                                                  | - -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | -                           |                     |                    |                         |
| +           | #                |                                                               | -  -          | ++                                               | $\dashv$                                         | +                 |                                                  |                                                  |                 | ++                | +                                                |              | +            | +                       | ++        |                 |          | - -                                              | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | #-                          |                     |                    |                         |
| $\top$      | -                |                                                               |               | ╂┼┼┤                                             |                                                  |                   |                                                  |                                                  | ++              |                   |                                                  |              | -            | 11                      |           |                 |          |                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | -                           | -                   |                    |                         |
| 1           | 1 .              |                                                               | ¥             |                                                  | +                                                |                   |                                                  |                                                  | +               | ╫                 | +                                                |              | +            | ++                      | +         | #               |          | +                                                | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | -                           | ++                  |                    |                         |
| +           |                  | Y                                                             | 7             |                                                  | ++                                               | ++                |                                                  |                                                  | +               | $\dag \uparrow$   | -                                                | #            | +            | +                       | ++        |                 |          | +                                                | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del> </del> | $\parallel \cdot \parallel$ | ++                  | +++                | -[                      |
|             |                  |                                                               |               |                                                  | 1                                                | $\dagger$         |                                                  |                                                  | +               | $\dagger \dagger$ |                                                  |              | ++           | +                       | ┿         | <del>-   </del> | ++       | +                                                | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┼            | #-                          | ++                  | <del> - - </del>   | 4                       |
|             |                  |                                                               |               | <del>                                     </del> | ++                                               | +                 | $-\parallel$                                     |                                                  | ++              | +                 | +                                                | +            | ++,          | ,                       | ++        | #-              | +        | ++                                               | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +            | ╫┼                          | -+-+-               | ┼┼┼                | +                       |
| 1           |                  |                                                               |               |                                                  | 11                                               | $\prod$           |                                                  |                                                  | 11              |                   | †                                                | 1            | \$           | -                       |           |                 | 1        | ++                                               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                             | ++                  | +++                | +                       |
| 1           |                  |                                                               | #             |                                                  | +                                                | $\dagger \dagger$ |                                                  | +                                                | ++              | +                 | +                                                | #+           | +            | ++                      | ++-       |                 | ++       | <del>                                     </del> | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del> | $\parallel +$               | ++                  | +++                | -                       |
| 7           |                  | ······································                        |               | ++                                               | +                                                | $\dagger \dagger$ | -#                                               | +                                                | +               | $\dagger \dagger$ |                                                  | ╫┼           | ††           | ++-                     | †+        | $+\!\!\!\!+$    | +        | ++                                               | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del> </del> | ╫╌┼                         | +                   | +++                | +                       |
| 1.          | 1                |                                                               | #             |                                                  | $\dagger \dagger$                                | ++                |                                                  | $\dashv \uparrow$                                | +               | #                 | <del>                                     </del> | ╫┼           | +-           | +                       | +-        | -  -            | ++       | +                                                | ╁╁,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _            | - 1                         | ++                  | +++                | +                       |
| 1           | 1                |                                                               | #             | ++                                               | $\dagger \dagger$                                | +                 | #                                                | +                                                | +               | ++                | -                                                | +            | +            | +-                      |           | -#-             | ++-      | -                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/           | 14                          | -                   |                    | +                       |
|             | 1                |                                                               | #+            | ++                                               | +                                                | +                 |                                                  | ++                                               | +               | +                 | <del> </del>                                     | ╫┼           | +            | ++-                     | -         |                 | ++       | +                                                | Н-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | <b>├</b> -├-                |                     | H                  | +                       |
| 1.2         |                  |                                                               | #+            | ++                                               | +                                                | +                 |                                                  | +                                                | ++              | +-                | -                                                | #-           | +            |                         | -         | -#-             | ++-      | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | - -                         | }-                  | ++                 | <del> </del>            |
| 1. 3        | #                |                                                               | +             | ++                                               | ++-                                              | +-                |                                                  | +                                                | 1 1             |                   |                                                  | #-           | }-           | $\ \cdot\ $             | -         |                 | ++-      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             | : -                 | ++                 | _                       |
| 1 :         | H                |                                                               |               |                                                  | 1.1.                                             |                   | II                                               |                                                  | 1 !             |                   | 1                                                |              |              |                         | 1         | 11              |          | 1 1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I,           |                             | l i i               | Į I                | 1                       |



| Date:_ | 10/5/    | 94    |   |
|--------|----------|-------|---|
| Calcul | ations b | Y:_MA |   |
| MISCY  | Q DY:    |       |   |
| nare c | hecked:_ |       | - |

Project: Barbella Environmental Technology Road. \* PELHAM BAY LANDERL

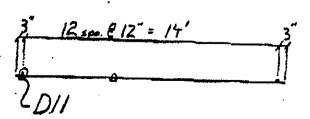
Given: #4018, Grade 60

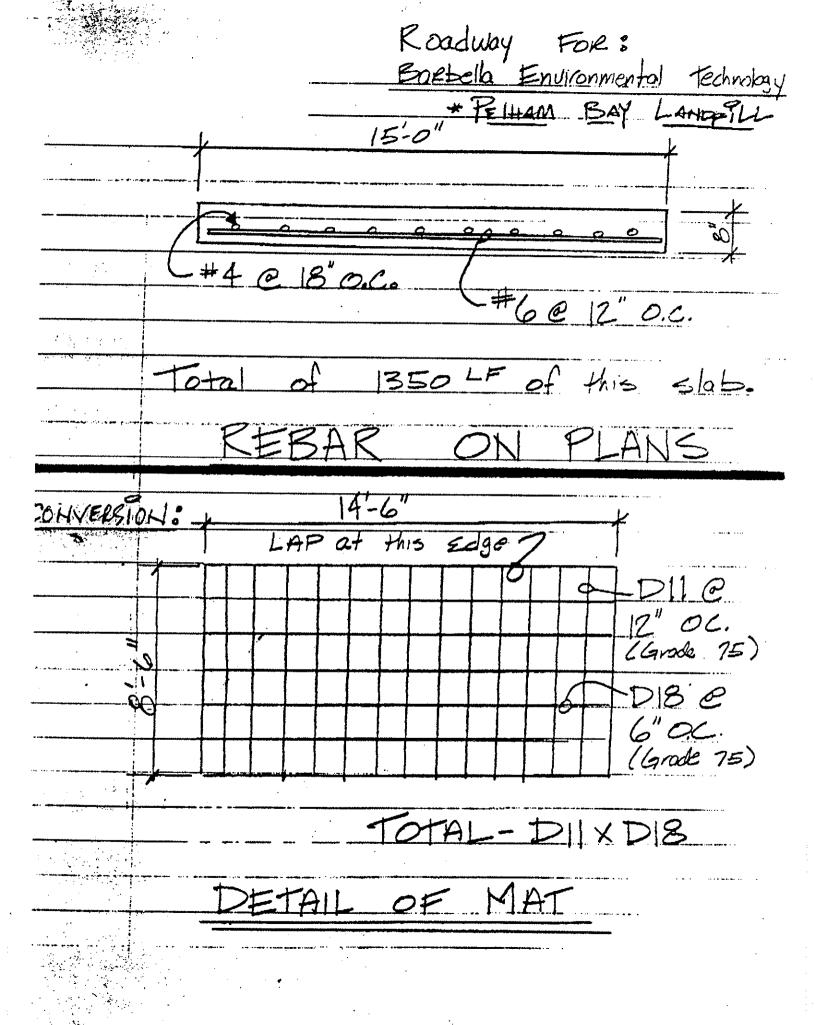
.20~ . 8-.16~ . 107~

Equals: DII C 12, Grade 75

Grea: -6012" Grade 60

· 竹n2·号·352m2·左·176m2


Equals D18 C6. Grade 75


Sheet Style: 6:12" D18/D11 8-6" x 14'-6" (3.3)

Sheet Sketch :



Structural Politicicaent







| Calculations<br>Checked by:<br>Date checked | by:     |              |
|---------------------------------------------|---------|--------------|
| . *                                         | BARBENA | ENVIROMENTAL |

18 LAP SPLICE DETAIL

| 18 LA  | <u>P</u> |  |
|--------|----------|--|
|        |          |  |
|        | 9        |  |
| 6 O.H. | D18 C 6" |  |

Structural Baileforcement



## HORNBOARD

Asphalt Impregnated Fiber Expansion Joint Filler

## DESCRIPTION

HDRNBOARD Asphalt impregnated Fiber Expansion Filler is composed of tough, resilient, cellulose fibers securely bonded together with a uniform impregnation of bituminous binder and performed into strips or sheets. The material is strong but lightweight; cuts and handles easily; resists breakage. It will not extrude from the joint under normal compression and service temperatures, and does not embrittle in cold weather.

Installation is easy: HORNBOARD will not twist, break or deform with ordinary handling. It cuts cleanly, places readily, stays strong and sound through many years of repeated expansion / contraction cycles.

## USE

HORNBOARD is a general, multi-purpose filler for expansion joints in all types of heavy concrete construction. It is specifically engineered for commercial, industrial and public works applications.

LIMITED WARRANTY HOYICE

## LIMITATIONS

HORNBOARD should not be used in conjunction with polysulfide, acrylic or other polymer-base joint sealants.

### **SPECIFICATIONS**

Designed to comply with:
AASHTO Spec. M 213-74
ASTM Spec. D 1751-83
Fed. Spec. H H-F-341f, Type I
Corps of Engineers Spec. CRD C 508-72
FAA Spec. P 501-2.4-8 P610-2.7 (1968)

#### SIZES

Lengths: 10' & 5'

Widths: 3" to 48" in 1/2" increments

Thickness: 3/8", 1/2", 3/4", 1"

B-1085-21

The Mansalion contained harsin is, for Missterine purposes only and is, is our best knowledge, true and incourate, but all resemble desires or suggestions are made without guerantes, we werrant our products to be of good quality and will replace or at our election related the purchase price of any products proved delective. Since A.C. Horri, inc. has no control over the use to which chairs may but like products, it is recommended that the products be tented to determine it suitable for a specific application and/or our information is valid in a particular allournatenes. Therefore, escapt for such replacement or return, A.C. HORN, INC. MAKES NO WARRANTY OR GUARANTEE, EXPRESS OR MAPLIED, INCLUDING WARRANTIES OF FITNESS OR MERCHANTABILITY, RESPECTING ITS PRODUCTS AND A.C. HORN shall have no other liability in respect thereto. Any claim regarding product delect must be reached in writing within three months from the date of shipment. An claim will be considered without such written notice or after the specified line interval.

**EHOPN**ix

Atlanta, Dallas, Los Angeles, Passaic, NJ Bensenville, IL, Beitsville, MD

NEADQUARTERS: 12116 CONWAY ROAD, SELTSVILLE, 400 20705-1202
TELEPHONE: (301) 470-3377 TOLL FREE: 800-654-0402

591 Printed in USA



# BARA-KADE® 90 Slurry Trench Soil Sealing Grade - 200 Mesh

Typical Physical and Chemical Properties\*

| X-RAY ANALYSIS                                                                                                                                                                     | CHEMICAL ANALYSIS                                                                                                                     |                                                                        |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|
| 94% Montmorillonite 4% Quartz 1% Feldspars 1% Calcite                                                                                                                              | SiO <sub>2</sub> Al <sub>2</sub> O <sub>3</sub> Fe <sub>2</sub> O <sub>3</sub> CaO MgO Na <sub>2</sub> O K <sub>2</sub> O Bound Water | 63.31%<br>21.43%<br>3.83%<br>0.63%<br>2.32%<br>2.45%<br>0.31%<br>5.72% |  |  |  |  |  |
| SCREEN ANALYSIS                                                                                                                                                                    | TYPICAL                                                                                                                               | SPECIFICATION                                                          |  |  |  |  |  |
| Dry Screen, percent minus 200 mesh<br>Wet Screen, percent plus 200 mesh<br>Wet Screen, percent plus 325 mesh<br>SLURRY PROPERTIES (6% Suspension)                                  | 77<br>1.9<br>3.2                                                                                                                      | 70 min<br>4 max<br>5 max                                               |  |  |  |  |  |
| Viscosity, FANN® 600 rpm Apparent Viscosity, cps Plastic Viscosity (PV) Yield Point, lb/100 ft² Filtrate, 30 minutes @ 100 psi Yield - 42 gal bbl of 15 cps slurry/ton Filter Cake | 37<br>18.5<br>12<br>13<br>12<br>95<br>3/32                                                                                            | 30 min 3 x PV max 15.0 cm <sup>3</sup> max 91 min                      |  |  |  |  |  |
| Marsh Funnel, seconds/quart OTHER PROPERTIES                                                                                                                                       | 36                                                                                                                                    |                                                                        |  |  |  |  |  |
| Moisture, percent Free Swell (ml) Specific Gravity pH, 6% suspension Bulk Density (lbs per ft³) compacted                                                                          | 8.0<br>25<br>2.79<br>9.2<br>72                                                                                                        | 10 max                                                                 |  |  |  |  |  |

The typical physical and chemical values listed are not to be construed as rigid specifications. Metals listed in the chemical analysis are complexed in the mineral. They do not necessarily exist as free exides.

BARA-KADE® 90 meets or exceeds API specification 13A, Section 4.

11/4/93.tpcp.23

FANN is a registered trademark of Baroid Technology, inc. BARA-KADE is a registered trademark of Bentonite Corporation.