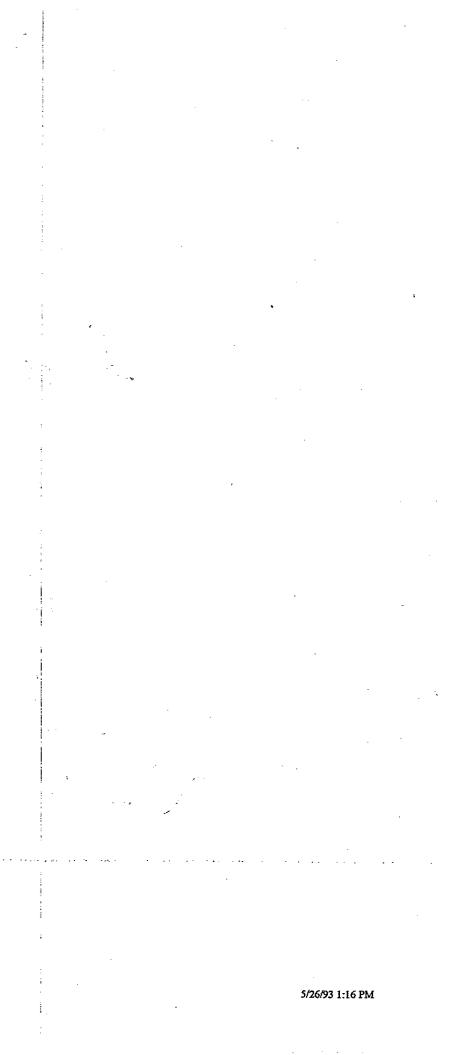
TABLE 5 SOIL - PESTICIDE/PCB DATA ANALYSIS PELHAM BAY SRI 92C4087

Location:			AREA 1		
Sample ID:	SRI-1	SRI-1RE	SRI-2	SRI-3	SRI-4
Date:	4/1/93	4/1/93	4/1/93	4/1/93	4/1/93
Matrix: Units: Depth:		soil ug/kg 0-4"	soil ug/kg 0-4"	soil ug/kg 0-4"	soil ug/kg 0-4"
Pesticides					
4,4'-DDT					
Total:	0	0	0	0	0

Location:				 		AREA 2			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Sample ID:	SR1-5A	SRI-5B	SRI-6A	SRI-6B	SRI-7A	SRI-7B	SRI-8A	SRI-8B	SRI-9A	SRI-9B	SRI-DUP
Date:	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	4/1/93
Matrix:	soil	soil	soil	soil	soil	soil	soil	soil	soil	soil	soil
Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Depth:	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"
Pesticides		· ·	_								•
4,4'-DDT.						· ·					
Total:	0	1 0	0	0	0	0	0	0	0	1 0	0


• .	BACKG	ROUND	
SRI-10	SRI-11	SRI-12	SRI-13
3/31/93	4/1/93	4/1/93	4/1/93
soil ug/kg 0-4"	soil ug/kg 0-4"	soil ug/kg 0-4"	soil ug/kg 0-4"
	-	180 J	
0	0	180	0
	3/31/93 soil ug/kg 0-4"	SRI-10 SRI-11 3/31/93 4/1/93 soil soil ug/kg ug/kg 0-4" 0-4"	3/31/93 4/1/93 4/1/93 soil soil soil ug/kg ug/kg ug/kg 0-4" 0-4"

DUP taken at location SRI-9B

• •

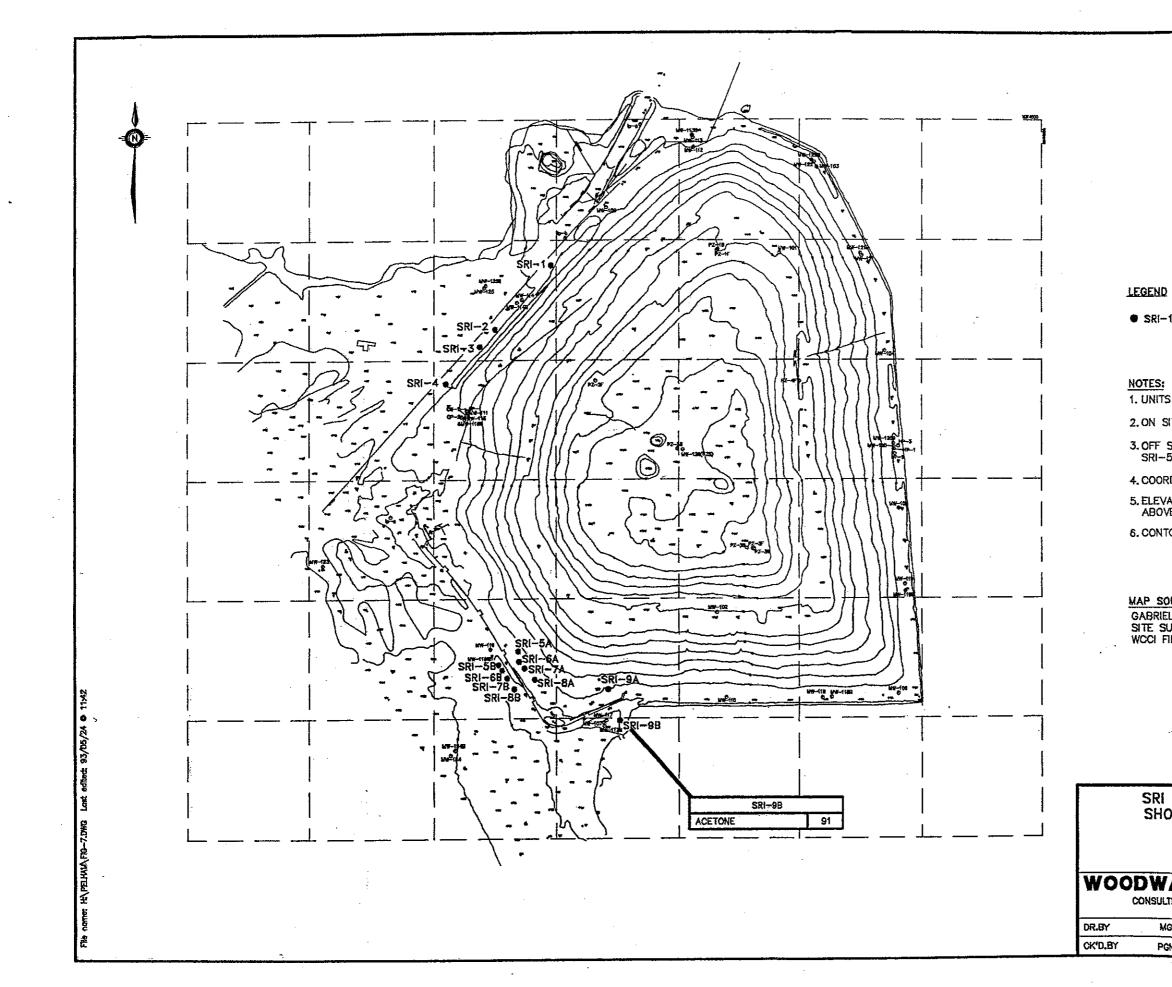
Prepared by: DAJ Checked by: CAH

Page 1 of 1

TABLE 6 SOIL - INORGANIC DATA SUMMARY PELHAM BAY SRI 92C4087

<u></u>	Leastical		ARE	Δ 1							AREA 2					. 1
· · · · ·	Location:	ODT 1	SRI-2	SRI-3	SRI-4	SR1-5A	SRI-5B	SRI-6A	SRI-6B	SRI-7A	SRI-7B	SRI-8A	SRI-8B	SRI-9A	SRI-9B	SRI-DUP
	Sample ID:	SRI-1		4/1/93	4/1/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	3/31/93	4/1/93
	Date:	4/1/93	4/1/93				soil	soil	soil	soil	soil	soil	soil	soil.	soil	soil '
	Matrix:	soil	soil	soil	soil	soil				-		-	L .	1	1	1 1
	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 0-4"	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 0-4"	mg/kg	mg/kg 0-4"
	Depth:	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4"	0-4	0-4"	0-4.
		13600	11000	5960	6980	7550	11000	7830	6340	8870	3900	6480	10000	6930	4630	4060
Aluminum		13000	11000				12.6 B									
Antimony		3.9		2.3 B	1.8 B	2.4 · B	2.9	1.5 B	· · · · · · · · · · · · · · · · · · ·		1.5 B	1,8 B	1.6 B	1.5 B		1.3 B
Arsenic		127	33.8 B	74.8	89.6	87	60	63.1	54.3	76.3	34.5 B	59.5	145	52.7	40.7 B	
Barium		the second s	D	/4.0	07.0	0.83 B				10.5	<u> </u>	1.1 B			10.7 2	55.1 2
Beryllium		0.91 B	13800	46700	7940	4880	3920	5300	11300	10800	5620	4300	11300	2940	9510	60400
Calcium		4950				24.8	24.1	28	20.5	22.1	7.3	24	30.8	20	13.1	15.2
Chromium		45	4.5	15.1	23.5			7 B			4.7 B	7.5 B	9.7 B	7.2 B	4.3 B	4.3 B
Cobalt		13.4 B	13.8 B	6.5 B	9.6 B	10.1 B	6.2 B		5.9 B	7.9 B						
Copper		29 U	119	51.7 U	72.3 U	31.9 U	18.1 U	15.5 U	16.1 U	20.1 U	8.6 U	22.5 U	29.7 U		19.2 U	28.7 U
Iron		21800	23400	13000	13900	19200	15400	17100	12300	16900	7450	20100	20500	18000	12200	11600
Lead		99.2	32.6	91.7	102	101	63.8	69.3	40.2	93.9	35.8	60.4	122	61	38.7	161
Magnesium		7070	.6470	19300	4550	3980	3510	4570	6660	4120	3230	3310	6660	2760	6120	35600
Manganese		309	217	258	367	268	231	262	197	251	106	252	407	182	189	207
Mercury					0.28	0.27				0.15						
Nickel		82.6	15.7	13.9	22.5	23	22.1	23.7	12.4	17.7	10.7	19.2	25	48.3	13.7	10.7 B
Potassium		2300	642 B	1050 B	1360 B	1410	899 B	1600	1120 B	1650	733 B	<u>1110</u> B		873 B	658 B	728 B
Sodium		420 U	2530 U	272 U	470 U	237 U	565 U	194 U		227_U	330 U	281 U	400 U		310 U	398 U
Vanadium	_	41.2	37.5	30.3	31.5	29.8	32.2	30	25.1	28.4	12.5	24.6	39.7		· 19.2	19.5
Zinc		1060	197	785	1710	168	81.7	98,5	64.6	128	36.4 U	88.2	177	87.9	81.2	85.2

5/26/93 1:18 PM


TABLE 6 SOIL - INORGANIC DATA SUMMARY PELHAM BAY SRI 92C4087

Location:		BACKG	ROUND	
Sample ID:	SRI-10	SRI-11 '	SRI-12	SRI-13
Date:	3/31/93	4/1/93	4/1/93	4/1/93
Matrix:	soil	soil	soil	soil
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Depth:	0-4"	0-4"	0-4"	0-4"
Aluminum	14100	13200	14200	14200
Antimony				
Arsenic	5.2	4.3	13	5
Barium	67.7	61.4	103	136
Beryllium	1.2 B		0.93 B	1.3 B
Calcium	1530	1120	15500	6730
Chromium	30.3	30.8	22.7	38.4
Cobalt	9.2 B	8.3 B	8.5 B	9 B
Copper	33.9 U	37.6 U	52 U	41.3 U
Iron	18400	16600	20500	18200
Lead	132	112	413	204
Magnesium	3370	2940	3830	5300
Manganese	394	367	485	355
Mercury	0.16		0.35	
Nickel	39.4	33.7	22.6	42
Potassium	1050 B	593 B	1160 B	1400
Sodium	. 377 U	138 U	211 U	875 U
Vanadium	58.6	42.4	50.9	51.2
Zinc	91.3	96.9	247	154

Notes: B = detected above the Instrument Detection Limit but below the Contract Detection Limit

U = Compound Detected in Blank

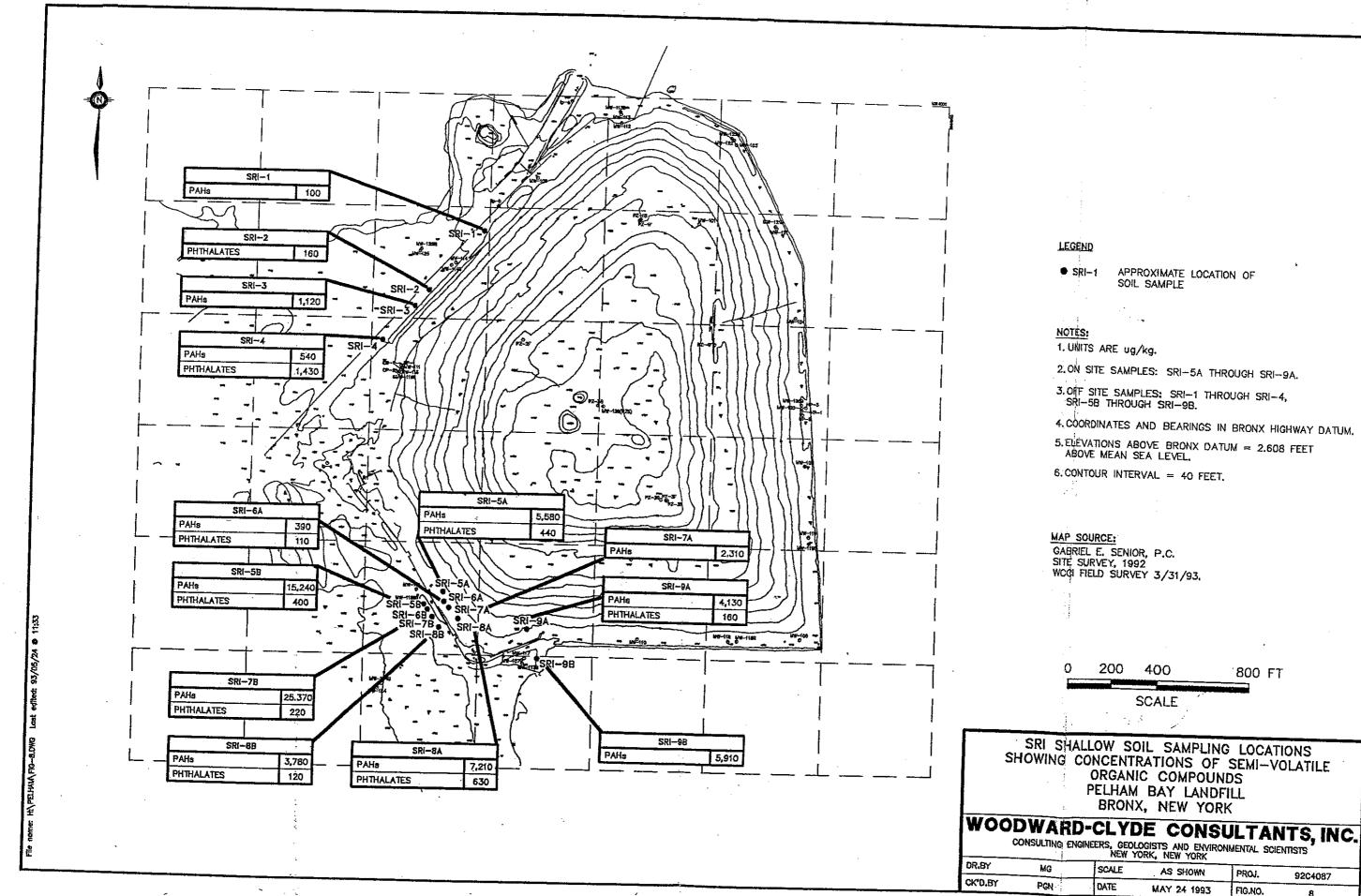
Prepared by: DAJ Checked by: PGN

SRI-1 APPROXIMATE LOCATION OF SOIL SAMPLE

1. UNITS ARE ug/kg.

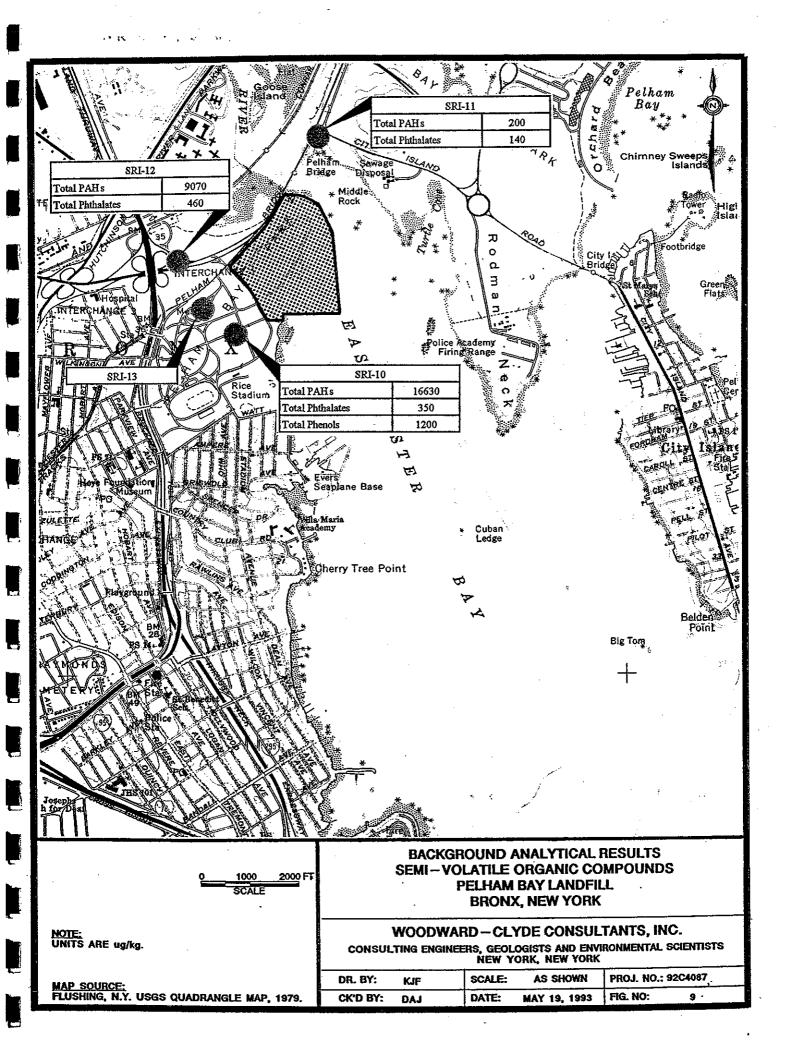
2. ON SITE SAMPLES: SRI-5A THROUGH SRI-9A.

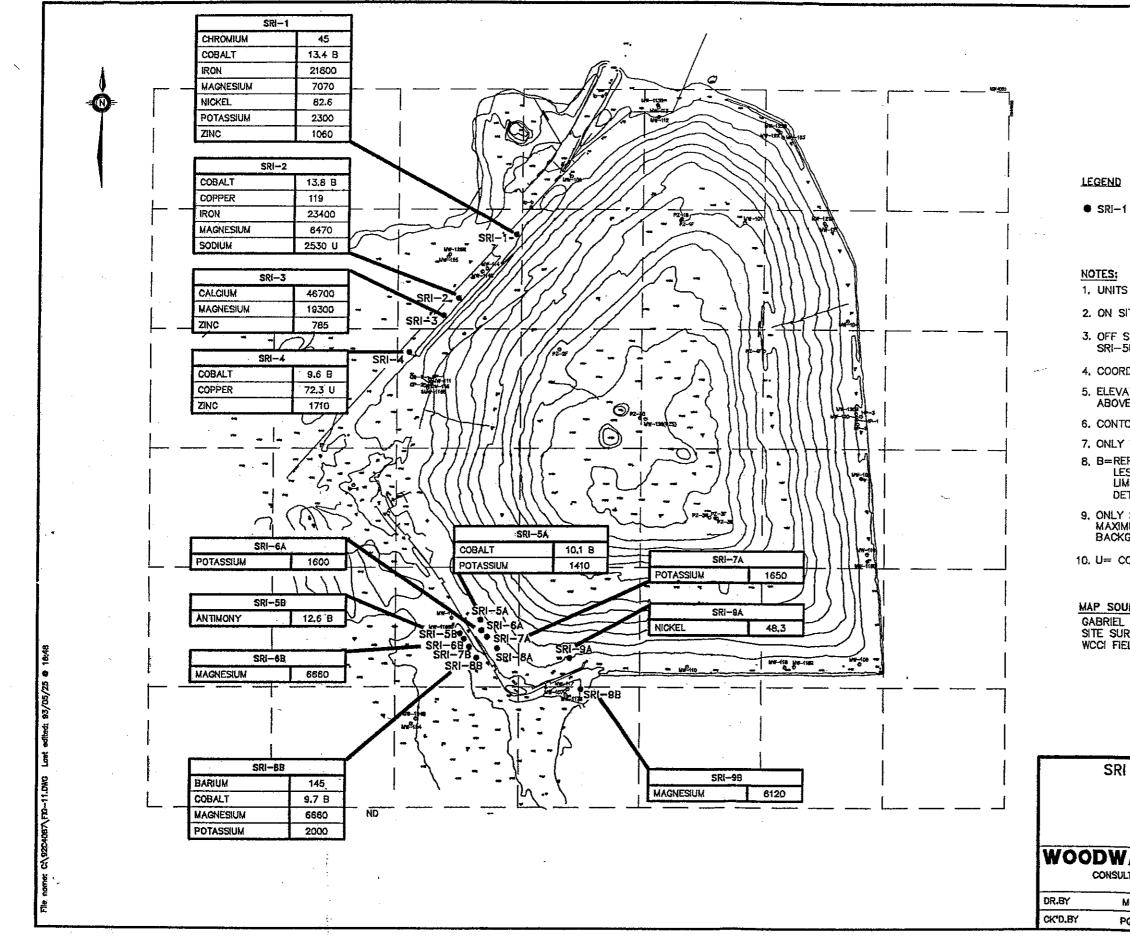
3. OFF SITE SAMPLES: SRI-1 THROUGH SRI-4, SRI-5B THROUGH SRI-9B.


4. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATUM.

5. ELEVATIONS ABOVE BRONX DATUM = 2.608 FEET ABOVE MEAN SEA LEVEL.

6. CONTOUR INTERVAL = 40 FEET,


MAP SOURCE: GABRIEL E SENIOR, P.C. SITE SURVEY, 1992 WCCI FIELD SURVEY 3/31/93.


			•	
0	200	400	800 F	т
		SCALE		
HOWING	CONCE ORGANI PELHAM	NIL SAMPLIN NTRATIONS C COMPOU BAY LAND X, NEW YO	OF VOLA NDS FILL	
:	FERS. GEOL	DE CONS OGISTS AND ENVIR E, NEW JERSEY		NTS, INC.
MG	SCALE	AS SHOWN	PROJ.	92C4087
PGN	DATE	MAY 24 1993	FIG.NO.	7

-

9204087 FIG.NO. 8

1

APPROXIMATE LOCATION OF SOIL SAMPLE

1. UNITS ARE mg/kg.

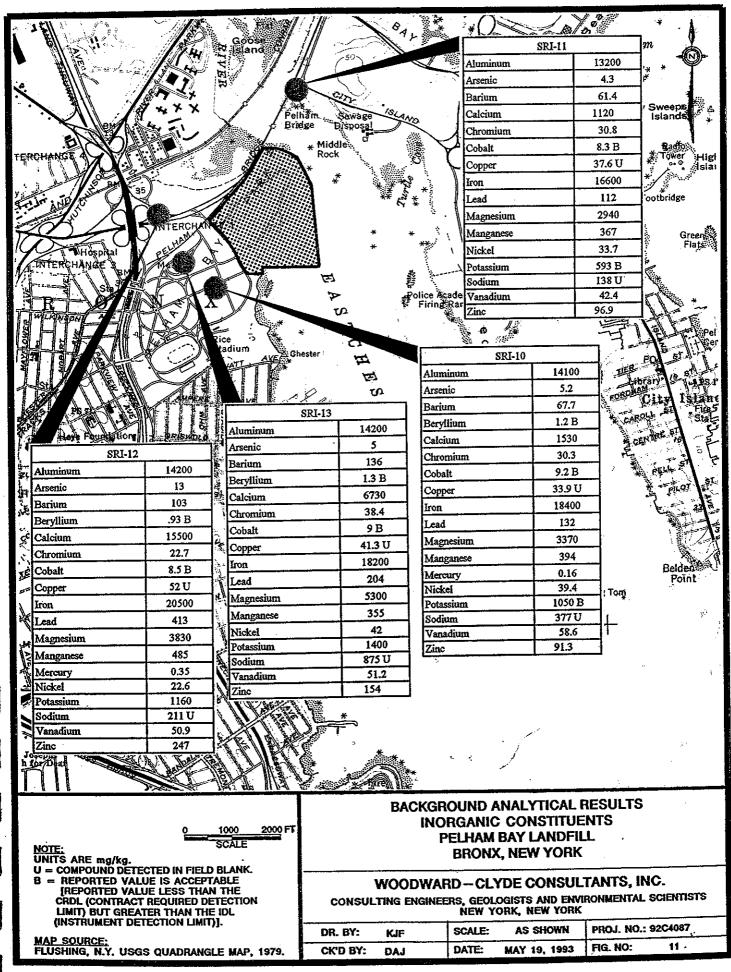
2. ON SITE SAMPLES: SRI-5A THROUGH SRI-9A.

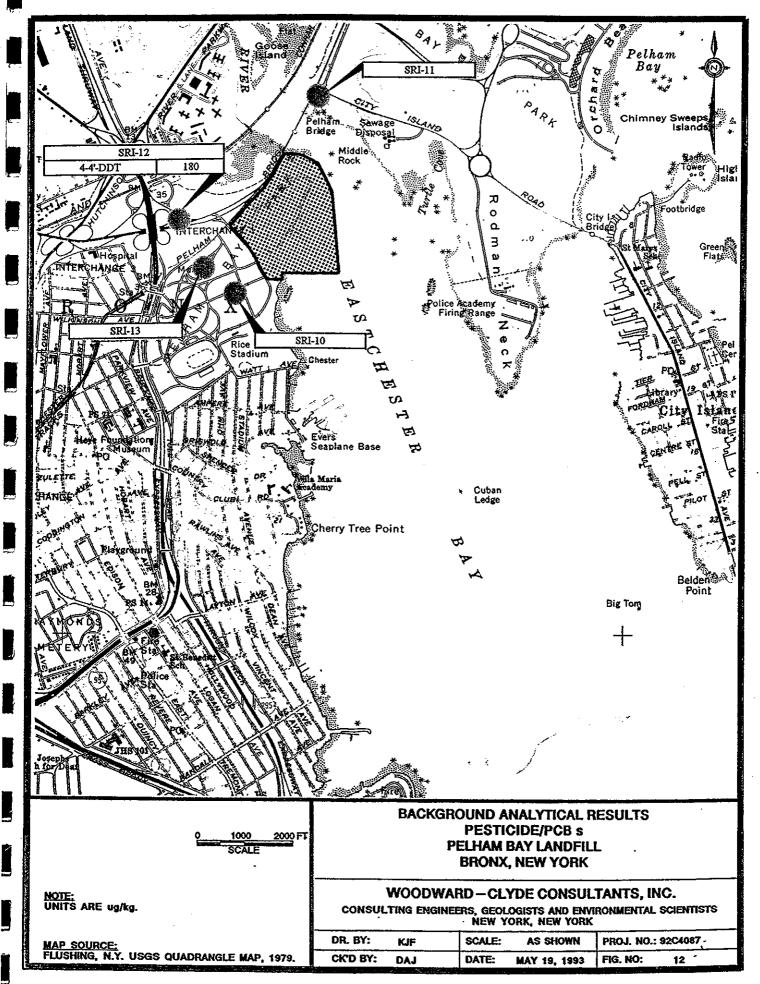
3. OFF SITE SAMPLES: SRI-1 THROUGH SRI-4, SRI-5B THROUGH SRI-9B.

4. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATUM.

5. ELEVATIONS ABOVE BRONX DATUM = 2,608 FEET ABOVE MEAN SEA LEVEL.

6. CONTOUR INTERVAL = 40 FEET.


7. ONLY VALUES >200 ppm WERE REPORTED FOR LEAD.


8. B=REPORTED VALUE IS ACCEPTABLE (REPORTED VALUE LESS THAN THE CRDL (CONTRACT REQUIRED DETECTION LIMIT) BUT GREATER THAN THE IDL (INSTRUMENT DETECTION LIMIT).

9. ONLY SAMPLE CONCENTRATIONS WHICH EXCEED THE MAXIMUM BACKGROUND CONCENTRATIONS FROM THE BACKGROUND SOIL SAMPLES ARE SHOWN.

10. U= COMPOUND DETECTED IN FIELD BLANK.

MAP SOURCE: GABRIEL E. SENIOR, P.C. SITE SURVEY, 1992 WCCI FIELD SURVEY 3/31/93. 200 400 800 FT SCALE • 3 SRI SHALLOW SOIL SAMPLING LOCATIONS SHOWING CONCENTRATIONS OF INORGANIC CONSTITUENTS PELHAM BAY LANDFILL BRONX, NEW YORK WOODWARD-CLYDE CONSULTANTS, INC. CONSULTING ENGINEERS, GEOLOGISTS AND ENVIRONMENTAL SCIENTISTS NEW YORK, NEW YORK MG SCALE AS SHOWN PROJ. 9204087 DATE PGN MAY 11 1993 FIG.NO. 10

Appendix E

Remedial Investigation Report -Groundwater Tables and Figures

Table 4-19Monitoring Wells - Volatile Organic Compounds Data Summary
Pelham Bay Landfill
Bronx, New York

	102 102	104	105	XAU 102	MW 107	MW 100	MW-110	MW_111	N/W_112	MW.113	MW_113B	MW-114	MW_114B	MW-115	MW-115B	M
data	1VIW-103	20 Jul 02	1VI W-105	20_In1_02	8-Aug-02	28-Inl-02	29-Jul-92	30_Ini_02	28-Jul-02	28-In1-02	5-A110-97	30-In1-97	30-In1-97	31-In1-07	31-Iul-02	14-
	20-JUI-92	30-Jui-92	20-301-92	29-301-92	0=Aug=72	20-301-92	29-301-92	J0-Jui-J2	20-300-32	20-50-72	J-Aug-72	J0-JUI-J2	50-301-72	J1-Ju1-72	51-501-52	1
Halogenated Aliphatic Compounds		· · · ·										· •				_
1,1-Dichloroethylene																<u> </u>
1,2-Dichloroethylene			1 J						ļ							
Chloroform						2 J										
Methylene chloride	2 BJR#	2 BJR#	2 BJR#		12 BJR#	2 BJR#		2 BJR#	3 BJR#	2 BJR#	1 BJ	3 BJR#	3 BJR#	2 BJR#	12 BR#	
Tetrachloroethylene																
Trichloroethylene																
Total			1			2										
Ketones							· .	-								
2-Butanone																
2-Hexanone																
2-Propanone															8 J	
4-Methyl-2-pentanone								-								
Total															8	
Monocyclic Aromatic Hydrocarbons																
enzene		2 J	4 J	3 J			3 JBR#	2 J		1 J	3 J					
lorobenzene		7	1 J	2 J			5	18	11	16	28	14		3 J		
Ethylbenzene			8					3 J								
Toluene																
Xylenes (total)														*		
Total		9	13	5			5	23	11	17	31	14		3		
Miscellaneous																
Carbon Disulfide		1 J	·													[
Total		1														
Grand Total	200000000000000000000000000000000000000	10	14	5		2	5	23	11	17	31	14		3	8	

Notes:

All concentrations in micrograms per liter (ppb)

Blank indicates compound was not detected

Totals do not include compounds with "R#" qualifier

B = Blank contaminant

D= Result reported from a diluted sample or sample extract

E = Estimated value (Reported concentration exceeded the calibration range)

J ----Estimated value

R#=Negated

					MW-117B
I-Aug-92	12-Aug-92	3-Aug-92	7-Aug-92	31-Jul-92	7-Aug-92
	4 J	15 BJR#	9 BJR#	9 BR#	2 BJR#
-			6 J		
			5 J		
	4		11		
					-
				5 J	
			47		
			47	5	
			62		
,					
			36		
			230		
			200		
			528		
	4		586	5	

Prepared by: SMM Checked by: TRP 92C4087

10:11 AM 2/11/93

Table 4-19 Monitoring Wells - Volatile Organic Compounds Data Summary Pelham Bay Landfill Bronx, New York

· · · · · · · · · · · · · · · · · · ·	MW-118	MW-118B	MW_110	MW 110D	LOUILOPP	1 1 111 100	1								·				
date	: 29-Jul-92	6-Aug-92	5-Aug-02	7 410 02	MW119BD	MW-120	MW-120B	MW-120F	I MW-120L	MW-121	MW-121B	MW-122	MW-122B	MW-123	MW-124	MW-124B	1 101/ 105	D GIVE LO CD	
lalogenated Aliphatic Compounds		0-11ug-72	0-Aug-92	7-Aug-92	7-Aug-92	4-Aug-92	4-Aug-92	20-Aug-92	2 20-Aug-92	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92		3-Aug-92				MW-1
,1-Dichloroethylene		<u> </u>													5 Hug-52	3-Aug-92	30-Jul-92	30-Jul-92	6-Aug
,2-Dichloroethylene		<u> </u>																	I
hloroform		11 J	<u> </u>			1 J											ļ	ļ]	Ĺ
fethylene chloride	┨─────										20 J		·		····		'		L
etrachloroethylene		120 BR#		2 BJR#	150 BDJR#	12 BJR#	12 BJR#	2 BJR#	1 BJR#	11 BJR#	99 BJR#	8 BJR#	3 BJR#		16 000		I		I
richloroethylene	 			6								DJAG.	5 15107		15 BJR#	15 BJR#	1 BJR#	3 BJR#	· 3 E
Total				3 J													-		
tones		11		9		1					20								1
Butanone																			1
Hexanone		·																	
Propanone																			51
Methyl-2-pentanone		1700 B		1800 EJ	1500 D	24 JR#		18	20 B	9 JR#	2100 BJ	120 J							
								-			2100 DJ	120 J	26		62	s	8 J		87
Total		1700		1800	1500			18	20		2100	120							9
onocyclic Aromatic Hydrocarbons nzene						1					2100	120	26		62		8		147
Vorobenzene						3 J		4 J	5	11							-	-	
vibenzene			T			12		14	17			4 J	3 J						1
				8		5		6	7	3 J		25	46				3 J	2 J	
luene				2		8		9	11			5 J	5 J						2
lenes (total)				40		9		5	14	· · · · · · · · · · · · · · · · · · ·			2						. 8
Total				50		37		38	54	4									6
scellaneous										*		35	56				3	2	17
bon Disulfide		-									ļ_								
Total													İ						
Grand Total		1711		859	1500	38		56	74		21.04					l-			
			· · ·						74	4	2120	155	82		62		11	2	165
Notes:	All concentration	s in micrograms	ner liter (neb)																11/2/00

Blank indicates compound was not detected Totals do not include compounds with "R#" qualifier

D= Result reported from a diluted sample or sample extract

E = Estimated value (Reported concentration exceeded the calibration range)

B = Blank contaminant

J ----Estimated value R#=Negated

SMMOKBE0/92C4087/GRNDWATR/GWVOA.XLS

Table 4-20 Monitoring Wells - Semi-volatile Organic Compounds Data Summary Pelham Bay Landfill Bronx, New York

	MW-103	MW-104	MW-105	MW-106	MW-107	MW-109	MW-110	MW-111	MW-112	MW-113	MW-113B	MW-114	MW-114B	MW-115	MW-115B RE	MW-116	MW-116B
date:	28-Jul-92	30-Jul-92	28-Jul-92	29-Jul-92	3-Aug-92	28-Jul-92	29-Jul-92	31-Jul-92	28-Jul-92	28-Jul-92	1			31-Jul-92			7-Aug-92
PAHs												-	<u>_</u>				
2-Methylnaphthalene			33 J														2 J
Acenaphthene		4 J	18	3 J										8 J			
Acenaphthylene	-					·											
Anthracene			8 J														
Benzo(a) anthracene		· · · · ·	2 J							1							·
Chrysene									·								·
Dibenzofuran			12						· · · ·					3 J			I
Fluoranthene	-	2 J	10								· * · · · · · · · · · · · · · · · · · ·						
Fluorene		2 J	15	3 J									· · ·				
Naphthalene		6 J	140 J	8 J													8 J
Phenanthrene			35	· ·							· · · · · · · · · · · · · · · · · · ·						
Ругепе		2 J	9 J														
Total		to	282	14										11			
Phenols															·	· .	
2-Methylphenol			•				-										
2,4-Dimethylphenol			73						•								
4-Methylphenol					-												
Total			73														
Phthalates				•			· ·	-				-		1		ĺ	
Bis(2-Ethylhexyl) Phthalate		4 J	13						··· ·····		2 J	•]
Di-n-butyl phthalate	3 JR#		3 BJR#	3 J	3 BJR#	4 BJR#	· ·		3 BJR#					2 J	······		
Di-n-octyl phthalate			-				·				-			-			
Total		4	13	3							.2			2			
Ethers								·				· .				1	
bis(2-Chloroisopropyl) ether						4 J			-		3 J		:				
Total						4					3						
Chlorinated Hydrocarbons												-			1		
1,4-Dichlorobenzene	•	•	•								6 J						
Total											6						
Amines/Nitroarenes	•												1		1		
N-Nitrosodi-n-propylamine											24			· .			
N-Nitrosodiphenylamine						,											
Total											24						
Grand Total		20	368	17		4					35			13			10
																•••••••••••••••••••••••	

Notes:

All concentrations in micrograms per liter (ppb)

Blank indicates compound was not detected

Totals do not include compounds with "R#" qualifier

- B = Blank contaminant
- J = Estimated value
- RE = Reanalysis R# = Negated result

SMMOKBE0/92C4087/GRNDWATR/GWBNA_XLS

Table 4-20Monitoring Wells - Semi-volatile Organic Compounds Data Summary
Pelham Bay Landfill
Bronx, New York

	MW-117	MW-117B	MW-118	MW-118B	MW-119	MW-119B	MW-120	MW-120B	MW-121	MW-121B	MW-122	MW-122B	MW-123	MW-124	MW-124B	MW-125	MW-125B	MW-126
date:	31-Jul-92	7-Aug-92	29-Jul-92	29-Jul-92	5-Aug-92	7-Aug-92	4-Aug-92		4-Aug-92			6-Aug-92		3-Aug-92			30-Jul-92	
PAHs			2.											<u> </u>				s trug / t
2-Methylnaphthalene			-			2 J	4 J											6 J
Acenaphthene			>	-			4 J		2 J							· · · · · · · · · · · · · · · · · · ·		8J
Acenaphthylene			*			2 J	•						<u>.</u>		· · · · · · · · · · · · · · · · · · ·	<u></u>		
Anthracene							3 J		2 J									5 J
Benzo(a) anthracene															· · · · · · · · · · · · · · · · · · ·			3 J
Chrysene			-										·······					3 J
Dibenzofuran																		5 J
Fluoranthene			•				3 J											10 J
Fluorene					•		3 J											5 J
Naphthalene						4 J	35		2 J									45
Phenanthrene							4 J						-		-			19
Pyrene																		9 J
Total						8	56		6									118
Phenols																		
2-Methylphenol							51					·				· ·		49 J
2,4-Dimethylphenol							68		5 J									290
4-Methylphenol			4 J					-									· · · · · · ·	
Total			4				119		5									339
Philialates	. •	·	.u.*											1				
Bis(2-Ethylhexyl) Phthalate		•	· .	28 J	•	17 J	6 J	2 J ·										38
Di-n-butyl phthalate	2 J		· .	4 J								2 J	2 J		2 BJR#			
Di-n-octyl phthalate																		10 J
Total	2			32		17	6	2				2	2					48
Ethers																		
bis(2-Chloroisopropyl) ether		5 J	3 J								·							
Total		5	3															
Chlorinated Hydrocarbons			· .															1
1,4-Dichlorobenzene]	,				4 J											
Total							4											
Amines/Nitroarenes																		
N-Nitrosodi-n-propylamine			<u>;</u>		.									i		· .	-	
N-Nitrosodiphenylamine	.		<u>`</u>	· 11 J		17 J	.			4 J				1				
Total Grand Total	•			11		17				4								
Grand Total	2	5	7	43		42	185	2	11	4		2	2					505

Notes:

All concentrations in micrograms per liter (ppb)

Blank indicates compound was not detected

Totals do not include compounds with "R#" qualifier

B = Blank contaminant

J = Estimated value

RE = Reanalysis R# = Negated result

Page 2 of 2

Table 4-21 Monitoring Wells - Pesticides and PCBs Data Summary Pelham Bay Landfill Bronx, New York

l 8	MW-103	MW-104	MW-105	MW-106	MW-106AR	MW-107	MW-109	MW-110AR	MW-111	MW-112	MW-113	MW-113B	MW-114	MW-114B	MW-115	MW-115B	MW-116	MW-116B
date:	28-Jul-92	30-Jul-92	28-Jul-92	29-Jul-92	29-Jul-92	3-Aug-92	28-Jul-92	29-Jul-92	31-Jul-92	28-Jul-92	28-Jul-92	5-Aug-92	10-Aug-92		31-Jul-92		3-Aug-92	
4,4'-DDD	0.013 JV	0.012 J		0.024 JV		<u> </u>		0.015 J				· ·						
4,4'-DDE	0.013 JV	0.015 J	0.067 JV	0.027 JV	0.01 JV			0.011 J			· · · ·							0.014 J
alpha-BHC		1	0.1 V								· · · · · ·	0.02 JV		· · ·				0.032 J
alpha-Chlordane	0.056 JV										-			-				···· · · ·
delta-BHC		0.017 J	0.068 V		0.058 VR#			0.018 JVR#					0.02 J					
Dieldrin	0.18 V	0.0063 J	0.47 V	0.04 JV					0.011 J	0.042 JV	0.033 JV							0.044 J
Endosulfan II			2.1 V	1 1							0.053 JV							
Endosulfan sulfate	0.04 BJVR#				······		0.051 BJVR#		· ·	0.047 BJVR#	0.031 BJVR#		,			0.011 JR#	1	·
Endrin							•			0.023 JV			-					
Endrin ketone															-			
gamma-BHC									-		-						· · ·	
Methoxychlor			0.27 JV	0.15 JV			-											
PCB-1016			0.84 J			· ·										-	•	
· · · · · · · · · · · · · · · · · · ·			1 J						-					-				
PCB-1260		<u> </u>						· · ·		<u> </u>								
PCB-1260	MW-117	MW-117B		 MW-118B	MW-119	MW-119B	MW-120	MW-120B	MW-121	MW-121B	MW-122	MW-122B	MW-123AR	MW-124	MW-124B	MW-125	MW-125B	MW-126
PCB-1260 date:	MW-117 31-Jul-92	MW-117B 7-Aug-92	MW-118AR 29-Jul-92	MW-118B 29-Jul-92	MW-119 5-Aug-92	MW-119B 7-Aug-92	MW-120 4-Aug-92	MW-120B 4-Aug-92	MW-121 4-Aug-92	MW-121B 4-Aug-92		MW-122B 6-Aug-92	MW-123AR 29-Jul-92		MW-124B 29-Jul-92	MW-125 30-Jul-92	MW-125B 30-Jul-92	
date:		1	MW-118AR															
date: 4,4'-DDD		1	MW-118AR		5-Aug-92				4-Aug-92									
date: 4,4'-DDD 4,4'-DDE alpha-BHC		1	MW-118AR		5-Aug-92		4-Aug-92	4-Aug-92	4-Aug-92									6-Aug-92
date: 4,4'-DDD 4,4'-DDE		1	MW-118AR		5-Aug-92		4-Aug-92	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92							6-Aug-92
date: 4,4'-DDD 4,4'-DDE alpha-BHC		1	MW-118AR	29-Jul-92	5-Aug-92		4-Aug-92	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92							6-Aug-92
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC Dieldrin		1	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92		4-Aug-92	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92						6-Aug-92
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC		1	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92	7-Aug-92	4-Aug-92 0.013 J	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92						6-Aug-92 0.052 J
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC Dieldrin		1	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92	7-Aug-92	4-Aug-92 0.013 J	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92						6-Aug-92 0.052 J
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan sulfate Endrin	31-Jul-92	7-Aug-92	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92	7-Aug-92 0.014 J	4-Aug-92 0.013 J	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92	29-Jul-92					6-Aug-92 0.052 J
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan sulfate Endrin Endrin ketone	31-Jul-92	7-Aug-92	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92	7-Aug-92 0.014 J	4-Aug-92 0.013 J	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92	29-Jul-92					6-Aug-92 0.052 J
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan sulfate Endrin Endrin ketone gamma-BHC	31-Jul-92	7-Aug-92	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92	7-Aug-92 0.014 J 0.052 J	4-Aug-92 0.013 J 0.03 J	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92	29-Jul-92					6-Aug-92 0.052 J
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan sulfate Endrin Endrin ketone gamma-BHC Methoxychlor	31-Jul-92	7-Aug-92	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92 0.011 JV	7-Aug-92 0.014 J 0.052 J	4-Aug-92 0.013 J	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92	29-Jul-92					6-Aug-92 0.052 J 0.091 J
date: 4,4'-DDD 4,4'-DDE alpha-BHC alpha-Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan sulfate Endrin Endrin ketone gamma-BHC	31-Jul-92	7-Aug-92	MW-118AR 29-Jul-92	29-Jul-92	5-Aug-92 0.011 JV	7-Aug-92 0.014 J 0.052 J	4-Aug-92 0.013 J 0.03 J	4-Aug-92 0.017 JV	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92	29-Jul-92					6-Aug-92 0.052 J 0.091 J

Notes:

Blank indicates compound was not detected

AR=Archived portion of sample reanalyzed

All concentrations in micrograms per liter (ppb)

B=Blank contaminant

J = Estimated value

R# = Negated result

V = Reported results for this compound could not be verified during data validation

Table 4-22 Monitoring Wells - Inorganics Data Summary **Pelham Bay Landfill** Bronx, New York

	MW-103	MW-104	MW-105	MW-106	MW-107	MW-109	MW-110	MW-111	MW-112	MW-113	MW-113B	MW-114	MW-114B
date:	28-Jul-92	30-Jul-92	28-Jul-92	29-Jul-92	3-Aug-92	28-Jul-92	29-Jul-92	31-Jul-92	28-Jul-92	28-Jul-92	5-Aug-92	10-Aug-92	30-Jul-92
Aluminum	460	874			30300 N	305	1170	351	156 B	9510	3460 N	2040	1080
Antimony					51.2 B	56.3 BJR#	52.5 BJR#			-			
Arsenic		7.2 BJ	13.4	2.3 BW	10.1 B			6.2 B	2 B	3.7 B	6.2 B	15.8 J	1.8 BJ
Barium	57 B	983	1030	946	908 EN	167 B	539.	-129 B	891	393	1110 EN	164 B	210
Beryllium	· · · · · · · · · · · · · · · · · · ·	-			0.6 B			-					4
Cadmium			9.6	6.6									
Calcium	259000	122000	57700	147000	79900 E	100000	180000	150000	87400	99900	437000 E	53600	338000
Chromium		110	.312	56	165		25.4	18.6	13.7	39.9	23.2	36.5	
Cobalt		16 BJR#	39.9 B	8.3 B	42.3 BJNR#	78.7		29.2 BJR#	24.4 B	23.2 B	59 N	19.3 BJR#	8 BJR#
Copper	590	50.6 S	471	182	173	13.3 BJR#	52.5	20.7 B	61.9	43.9	771	7.3 B	
Cyanide		10.8		24.6						22.6			
Iron	2160	6110	11200	15100	62600 E	657	9770	19200	11900	18800	10300 E	12100	1210
Lead	40.2	51.9	65.1 S	9.5 B+	36.3 J	•	68.3	2.8 BJR#	7.7	26.2 S	30.3	3.6 B	1.2 B
Magnesium	921000	252000	44300	296000	104000	43700	288000	201000	50800	45800	220000	54500	56500
Manganese	162	111	75.8	98.8	2030 E	5100	121	8920	630	3060	24500 E	691	147
Mercury	1.2	-		0.2 BJ									
Nickel		26 BJ	73.3	14.9 B	246	483	18.3 B	227	106	182	267	67.4 J	
Potassium	300000	331000	563000	309000	84300	5850	170000	97000	129000	94400	50200	243000	17100
Selenium		13.6 BN	-										
Silver		8.6 BNWJR#									4.8 B	4.1 BNJR#	
Sodium	8764000	3053000	3154000	3836000	566000	116000	3150000	2268000	316000	428000	790000	709000	1151000
Thallium													
Vanadium	5.7 B	244	869	102	109		46.3 B	9.6 B	5.2 B	23.7 B	14.5 BJR#	33.8 B	
Zinc	70.2	45	139	43.9	141 E	34.9	99	15.9 BJR#	24.4 JR#	39.9	88.9 E	17.3 B	28.2

All concentrations in microgram per liter (ppb) Notes:

Blank indicates compound was not detected

B = Reported value is acceptable. Reported value is less than the CRDL (Contract Required Detection Limit) but greater than the IDL (Instrument Detection Limit)

E = Estimated value due to matrix interference

J = Estimated value.

N= Estimated value (Spiked sample recovery was not within quality control limits)

R = Rejected result

R# = Negated result

S = Reported value is acceptable, Reported value was determined by the Method of Standard Additions (MSA)

W = Estimated value (Post-digestion spike sample results were reported outside quality control limits, while sample absorbance is less than 50% of spike absorbance)

+ = Estimated value (The correlation coefficient reported for the MSA is less than 0.995)

Prepared by: CLH Checked by: TRP 92C4087

10:13 AM 2/11/93

Table 4-22Monitoring Wells - Inorganics Data Summary
Pelham Bay Landfill
Bronx, New York

····	MW-115	MW-115B	MW-115BP	MW-115P	MW-116	MW-116B	MW-117	MW-117B	MW-118	MW-118B	MW-119	MW-119B	MW-120
date:	31-Jul-92	31-Jul-92	14-Aug-92	12-Aug-92	3-Aug-92	7-Aug-92	31-Jul-92	7-Aug-92	29-Jul-92	6-Aug-92	5-Aug-92	7-Aug-92	4-Aug-92
Aluminum	19900	1390	48.7 B	87.3 B	3930 N	14000	6840		253	46200	7110 N	7320	3150 N
Antimony													
Arsenic	2.3 B	1.6 B				2.8 B	21.2		7.9 B	53.2	· · ·	16.7	7.4 B+
Barium	551	572	575	154 B	60 BEN	367	746	272	199 B	1120	314 EN	313	731 EN
Beryllium							0.6 BJR#			0.9 B			
Cadmium												5.4	5.8 N
Calcium	197000	376000	309000	147000	7740 E	360000	124000	199000	232000	2752000	240000 E	2312000	98400 E
Chromium	92.3	8.8 B	9.9 B	11.1	13.4	59.6	60.3		39.7	217	21.6	64.1	338
Cobalt	57.4	52.2	46.8 B	46.8 B	16.2 BJNR#		39.2 B		8.1 B	48.9 B	18.3 BN		42.8 BNJR#
Copper	80.1	95.3	99.9	37.3	22.7 BJR#	70.7	74.6	15.5 B	33 JR#	1130	44 JR#	297	40.3 JR#
Cyanide			-				-		267				
Iron	40200	8400	389	689 E	6300 E	18400	22200	165	978	194000	17200	46800	13000 E
Lead	17.3 J	2.1 BJR#				39 JR#	6.1 JR#	11.9 JR#	17.2 B	252	134	41.4	23.9
Magnesium	216000	289000	244000	177000	5290	6670	75900	144000	740000	1936000	803000	894000	258000
Manganese	10100	13800	9720	6370	554 E	286	1910	173	263	29600	1230	7700	316 E
Mercury												0.62	
Nickel	328	283	248	176		25.4 BJ	164	47.4 J	29.6 B	94.9		·	73.1 J
Potassium	77500	18500	16200	21200	2950 B	93800	165000	21900	344000	107000	312000	136000	684000
Selenium						· · · · · · · · · · · · · · · · · · ·							
Silver	7.2 BNJR#	5.6 BNJR#										5.4 B	
Sođium	1215000	1312000	1070000 EJ	986000 EJ	70000	93300	1000000	462000	7592000	3539000	7496000	6164000	5362000
Thallium	2.8 B		-						13.5 B				
Vanadium	51.3		8.6 B	12.2 B	15.7 B	47.7 B	37.6 B		81.2	120	33.8 B	12.8 B	989
Zinc	64.2 JR#	14.4 BJR#	65.1	49.1	15.3 BE	154	30.7 JR#	6.5 B	89.2	7110	142	3220	136 E

Notes: All concentrations in microgram per liter (ppb)

Blank indicates compound was not detected

B = Reported value is acceptable. Reported value is less than the CRDL (Contract Required Detection Limit) but greater than the IDL (Instrument Detection Limit)

E = Estimated value due to matrix interference

J = Estimated value.

N= Estimated value (Spiked sample recovery was not within quality control limits)

R = Rejected result

R# = Negated result

S = Reported value is acceptable. Reported value was determined by the Method of Standard Additions (MSA)

W = Estimated value (Post-digestion spike sample results were reported outside quality control limits, while sample absorbance is less than 50% of spike absorbance)

+ = Estimated value (The correlation coefficient reported for the MSA is less than 0.995)

Table 4-22 Monitoring Wells - Inorganics Data Summary Pelham Bay Landfill Bronx, New York

	MW-120B	MW-120H	MW-120L	MW-121	MW-121B	MW-122	MW-122B	MW-123	MW-124	MW-124B	MW-125	MW-125B	MW-126
date:	4-Aug-92	20-Aug-92	20-Aug-92	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92	29-Jul-92	3-Aug-92	3-Aug-92	30-Jul-92	30-Jul-92	6-Aug-92
Aluminum		234	534 J	1430 N	2300 N	941 N		2450	11000 N	3670 N	3930	2010	3230
Antimony											55,5 BJ	· · · · ·	1
Arsenic	4.5 B			11 B	4.4 B	21.9	3.3 B	2.1 BW	4.5 B	2.1 B	• 7 BJ	1.8 BJ	63.4
Barium	70 BEN	782 J	973 J	437 EN	547 EN	807 EN	441	111 B	218 EN	73 BEN	112 B	163 B	3090
Beryllium		4.5 B	8.7				· · · · · · · · · · · · · · · · · · ·		-				1
Cadmium							6.8 R				5.2 WR#		7.5 R
Calcium	547000 E	94100 J	67100 J	60600 E	943000 E	158000 E	141000	35300	55400	54100	93100	1297000	19100
Chromium		297 J	409 J	42.1	23.6	33.8	21	15.4	72.7	•	26.6	15.7	1240
Cobalt	13.8 BNJR#	67.6	60.8	42.2 BNJR#	13.8 BNJR#	45.7 BNJR#	34.4 B	17 B	28.7 BNJR#	11.2 BNJR#	23.3 BJR#	22.3 BJR#	77.3
Copper	13.7 BJR#	32.5	45.8	34.1 JR#	50.7	47.7	20.5 B	14.6 BJR#	75.3 BJR#	12.1 BJR#	16.2 B	24.3 B	356
Cyanide	-		-	-									30.4
lron	3760 E	3660 EJ	6350 EJ	8540 E	6450 E	63300 E	10800	4440	26600 E	4390 E	24200	10800	39400
Lead				2.9 B	34	14.2	11.3 JR#	7.2	23.1	3.4 B	6.1	16.1 +	423
Magnesium	901000	255000 J	142000 J	275000	98200	319000	328000	23500	63500	8940	250000	829000	13700
Manganese	2200 E	678	312 J	1640 E	117 E	6870 E	2220	2100	4310 E	93.6 E	1040 .	2240	265
Mercury		0.26	0.39	0.24 N						· · · · · · · · · · · · · · · · · · ·			1.1
Nickel		216 J	158	328		414	322	65	168	1	304	126 J	213
Potassium	137000	558000 J	668000 J	246000	47500	100000	101000	5390	9790	17800	100000	93300	1431000
Selenium						-	· ·			•		· .	
Silver				3.5 B		3.7 B				5.4 B	7.1 BNJR#	5.7 BNJR+	
Sodium	7449000	4440000 J	3567000 J	4242000	1224000	1786000	2505000	36300	404000	10700	2449000	6909000	6924000
Thallium										•		•	[
Vanadium	5 B	955 J	1370 J	19.7 B	11.1 B	16.6 B	9.9 B	8.9 B	29.8 B	14.3 B	11.9 B	4.6 B	2860
Zinc	20.2 E	66.6 EJ	123 J	8.5 BE	37.5 E	30.7 E	37.9	15.1 BJR#	48.8 E	53.4 E	20.6	50	1390

Notes: All concentrations in microgram per liter (ppb)

Blank indicates compound was not detected

B = Reported value is acceptable. Reported value is less than the CRDL (Contract Required Detection Limit) but greater than the IDL (Instrument Detection Limit)

E = Estimated value due to matrix interference

J = Estimated value.

N= Estimated value (Spiked sample recovery was not within quality control limits)

R = Rejected result

R# = Negated result

S = Reported value is acceptable. Reported value was determined by the Method of Standard Additions (MSA)

W = Estimated value (Post-digestion spike sample results were reported outside quality control limits, while sample absorbance is less than 50% of spike absorbance)

+ = Estimated value (The correlation coefficient reported for the MSA is less than 0.995)

Prepared by: CLH Checked by: TRP 92C4087

10:13 AM 2/11/93

Table 4-23 Monitoring Wells - Conventional Parameters (Modified BMW List) Data Summary Pelham Bay Landfill

Bronx, New York

	MW-103	MW-104	MW-105	MW-106	MW-107	MW-109	MW-110	MW-111	MW-113	MW-113B	MW-114	MW-114B	MW-115	MW-115D DUP	MW-115B	MW-115BP	MW-115P	MW-116	MW-116B	MW-117
	28-Jul-92	30-Jul-92	28-Jul-92	29-Jul-92	3-Aug-92	29-Jul-92	29-Jul-92	31-Jul-92	28-Jul-92	5-Aug-92	10-Aug-92	30-Jul-92	31-Jul-92	31-Jul-92			12-Aug-92			31-Jul-92
Alkalinity as Bicarbonate	225	2760	5880	2040	780	34	1064	1640	1350	1470	2000	41	950	970	570			106	1480	1580
Alkalinity as Carbonate			•	•	•				· ·										720	1,000
Ammonia Nitrogen	4.86	320	234	159	64	3.00	113	82.9	77.8	26.7	240	0.37	59.6	60.8	2.95				0.17	221
Chemical Oxygen Demand	258 J	997	3250	724 J	177		394 J	421 J	181	517	509				i					428 J
Chloride	14700	3720	6040	4270 J	780	468	5120	3160	514	- 1130	638	2460	2110	1950	2440	2550	2170	30	105	1990
Nitrate Nitrogen	0.22		0.23	0.23	0.04		1.81	0.05		0.02		0.02	0.04	0.03	0.03			0.11	0.104	0.02
Sulfate	1490	356	277	.542	224	125	435	315	102	69	55	177	120	110	158			80	42	128
Total Dissolved Solids	26000	9230	10500	9870 J	2250	1170	10540	6920	1620	4270	2680	5320	4700	4680	6370		· · · ·	304	1130	3710
Total Kjeldahl Nitrogen	9.37 J	451 J	1010 J	335 J	68.7	0.36 J	168 J	134	156 J	52	372 J	1.1 J	73.6 J		8.52			0.28	0.72	281 J

			MW-118B	MW-119	MW-119B	MW-119D	MW-120	MW-120B	MW-120H	MW-120L	MW-121	MW-121B	MW-122	MW-122B	MW-123	MW-124	MW-124B	MW-125	MW-125B	MW-126
date:	7-Aug-92	29-Jul-92	6-Aug-92	5-Aug-92	7-Aug-92	7-Aug-92	4-Aug-92	4-Aug-92	20-Aug-92	20-Aug-92	4-Aug-92	4-Aug-92	4-Aug-92	6-Aug-92	29-Jul-92	3-Aug-92		30-Jul-92		6-Aug-92
Alkalinity as Bicarbonate	332	924	35	574	190	594	5050	724			2780	60	1780	2370	1100	70	69	1560	1030	1346
Alkalinity as Carbonate			10														6		1050	900
Ammonia Nitrogen		96.8	1.83	40.6	3	37.9	604	3.28		[91.8		16.9	0.93		· · · · · · · · · · · · · · · · · · ·		0.34	0.52	1260
Chemical Oxygen Demand		480 J	1380 J	620 J	635		2360	628 J			997	170 J	805					436 J	580 J	8170
Chloride	2150	10570	10460 J	11240	11740	11360	5320	13560	5500	3740	4980	3210	1840	3050 J	179	590	11	2940	11980	5140
Nitrate Nitrogen	0.084	23		0.23		0.24	_										0.01	4740	11200	5140
Sulfate	149	594	599	1680	520	1720	713	494			336	364	86	98	. 30	102	60	161	408 J	759
Total Dissolved Solids	3110	24500	24250	25200	27100	25300	15200	28300			13000	7380	5730	8640	334	1410	194	7360	26300	12200
Fotal Kjeldahl Nitrogen	0.29	151 J	4.27	52.6	3.83		1640	4.95	· · ·		132	2.4	35.1	24.9	0.32 J	1110	0.37	10.7 J	20300 9.79 J	12200

Notes:

All concentrations in milligrams per liter (ppm)

Blank indicates compound was not detected

D = Laboratory QA/QC duplicate DUP = Duplicate sample

J = Estimated value

SMMOKBE0192C4087\GRNDWATR\GWPARM_XLS

Prepared by: CLH Checked by: TRP 92C4087

10:13 AM 2/11/93

Ì

:-

Table 4-33 Comparison of Monitoring Well and Seep Samples to NYSDEC Groundwater Standards Pelham Bay Landfill Bronx, New York

:

Compound	NYSDEC SCG ¹ (ug/l)	Range of Concentrations (ug/l) 1 to 62	Samples tuat Exceed Standards 104, 105, 106, 111, 113, 113B, 116B, 120, 121, 122, 122B, 125,
Benzene	0.7		125B, LS-1, LS-9, LS-10
Chlorobenzene	۰. ۲	,	104, 111, 112, 113, 113B, 114, 120, 122, 122B, LS-4, LS-9
Ethylbenzene	in i	3 to 36 1 to 150	105, 1105, 1175, 120, 120, 120, 120, 120, 120, 120, 120
Methylene Chloride	n v		116B, 120, 126, LS-1, LS-9
Toluene	су ку 1		116B, 119B, 120, 126, LS-1, LS-9
Acenaphthene	20*	2 to 18	· · ·
Anthracene	20s	2 to 10	•
Fluoranthene	50*	2 to 15	
Nanhthalene	10*	2 to 140	105, 120, 126, LS-9
Phenanthrene	50*	3 to 35	
Pyrene	50* A 7	4 5	LS-4
1,2-Dichlorobenzene	÷ 10	о к о	
1,3-Dichlorovenzene	4.7	4 to 9	113B, LS-4
N-Nitrosodiphenylamine	50*	4 to 17	
bis(2-Ethylhexyl)phthalate	50	2 to 38	T C_2
Aldrin Dieldrin	Non-detect Non-detect	0.0063 to 0.64	103, 104, 105, 106, 111, 112, 113, 116B, 119B, 120, 126,
	Nov. detect	0.011 to 0.078	LS-2, LS-3, LS-9, LS-10 103, 104, 106, 110, 119, 121, LS-1, LS-2, LS-5
4,4' DDD 4,4' DDE	Non-detect	0.01 to 0.078	103, 104, 105, 106, 110, 116B, 120, 120B, 126, LS-2, LS-5, 1 S-10
	*"	51.2 to 56.3	107, 125, LS-5
Antimony	25	2.3 to 89.1	118B, 126, LS-1, LS-5
Barium	1,000	60 to 8470	105, 113B, 118B, 126, L3-1, L3-2, L3-2, L3-1 1 2-1 1 3-2 1 3-2 LS-4, LS-5, LS-7, LS-9, LS-10 (3)
Boron	1,000	5.4 to 29.1	LS-2
Cadmum	20	18.6 to 1240	104, 105, 106, 107, 115, 116B, 117, 118B, 119B, 120, 124,
			126, LS-1, LS-2, LS-5, LS-9, LS-10 1 c 1 t c - 7 t c - 0 1 C-10 (3)
Hexavalent Chromium	50	20 to 560 8.1 to 77.3	105, 109, 113B, 115, 115B, 117, 118B, 126, LS-1, LS-2, LS-5
Cobalt	200	7.3 to 1130	103, 105, 113B, 118B, 126, LS-2, LS-5
Copper	300	165 to 860,000	All monitoring well and seep samples except 1112
Lead	25	7.7 to 2,780	105, 104, 103, 107, 110, 113, 113, 112, 112, 112, 112, 112, 112
	34 000*	5.290 to 1.936,000	All monitoring well and seep samples except 116, 116B, 124B
Magnesium Manganese	300	75.8 to 29,600	107, 109, 111, 112, 113, 113B, 114, 115, 115B, 116, 117,
			118b, 119, 119b, 120, 1205, 121, 121, 121, 121, 125, 125B, LS-2, LS-4, LS-5, LS-9
Marcurv	6	0.2 to 5	L-S-1
Selenium	10	13.6	104 Att monitoring well and seep samples except 124B
Sodium	20,000	10,/00 to 8,000,000	118. LS-7
Thallium	300	6.5 to 7,110	118B, 119B, 126, LS-2, LS-5
SUIT	500,000	304,000 to 27,100,000	All monitoring well and seep samples except 110,
A mmonia	2,000	170 to 1,260,000	All monitoring well and seep samples except 114B, 116, 116B,
			117B, 121B, 123, 124, 124, 124, 129, 129, 129, 129 A11 monitoring well and seep samples except 116, 116B, 124B
Chloride	250,000	11,000 to 12,250,000 10.8 to 267	
Cyanide Nitrate	10.000	20 to 23,000	
Sulfate	250,000	46,000 to 1,690,000	
			121, 121B, 126, LS-1, LS-2, LS-3, LS-3, LS-9, LS-7, LS-7, T S-0 T S-10

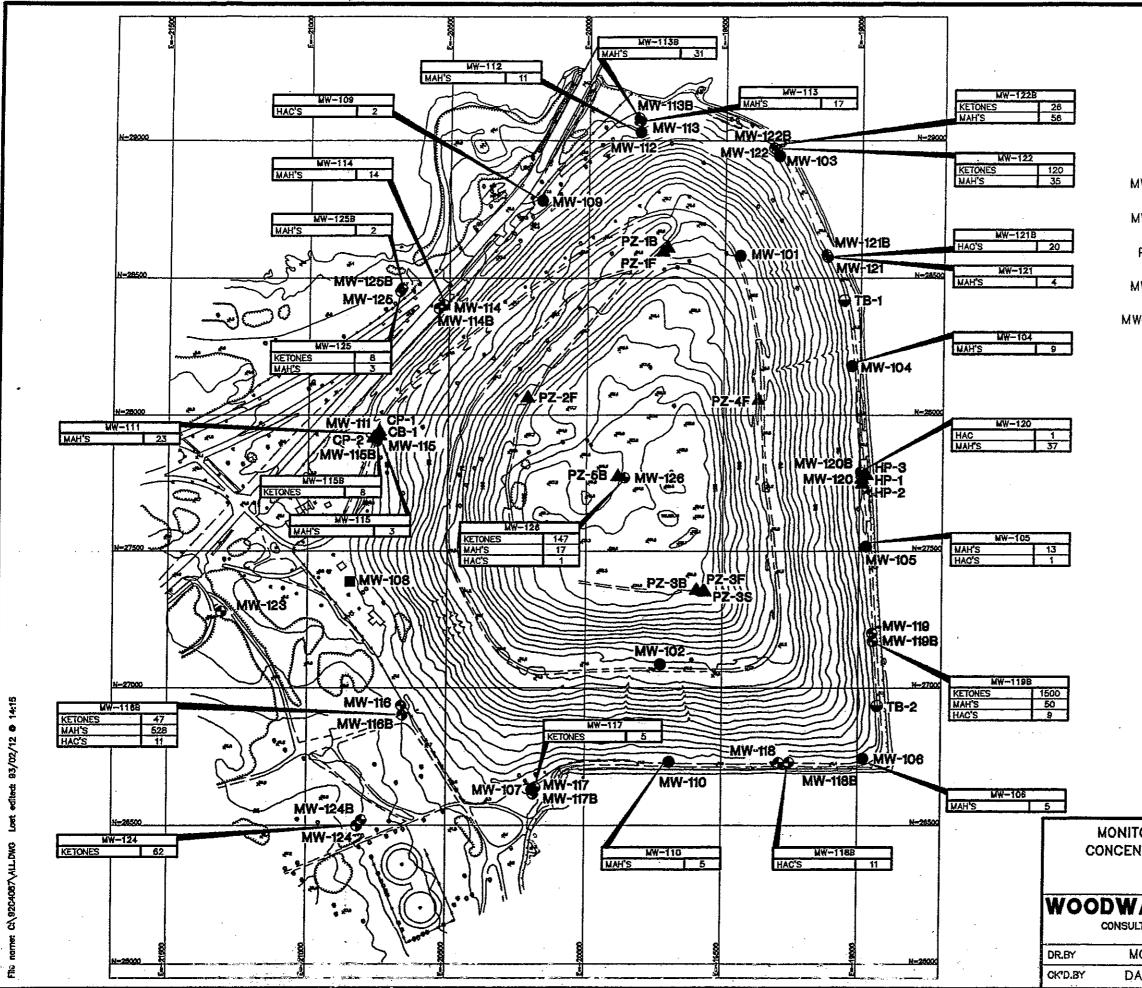
	Frepared by: SMM Checked by: TRP 92C4087	01:42 PM 2/11/93
LS-9, LS-10	 * Guidance value, regulated standard for this chemical is not available 1. New York State Department of Environmental Conservation, Water Quality Standards and Guidance Values, September 25, 1990, 6NYCRR Part 700-705 2. Compound was also detected in blank sample 3. Indicates compound was only analyzed in the leachate seep samples 	Page 1 of 1
	Notes: * Guidance value, regu 1. New York State Der September 25, 1990 2. Compound was also 3. Indicates compound	SMMOKBE092C4087\GRNDWATR\COMPARSN.XLS

4' DDD, 4,4' DDE, dieldrin, copper, lead, iron, magnesium, sodium, TDS, chloride, ammonia 4' DDD, 4,4' DDE, benzene, chlorobenzene, dieldrin, chromium, iron, lead, magnesium, selenium, sodium, TDS, ammonia, chloride, sulfate 4' DDE, benzene, ethylbenzene, naphthalene, dieldrin, barium, chromium, cobalt, copper, iron, lead, magnesium, sodium, TDS, chloride, 4,4' DDD, 4,4' DDE, aldrin, dieldrin, barium, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, magnesium, manganese sodium, iron, magnesium, manganese, sodium, TDS, chloride , toluene, xylenes, naphthalene, dieldrin, arsenic, barium, chromium, cobalt, copper, iron, lead, magnesium, manganese, sodium, sodium, TDS, ammonia, chloride 4,4' DDD, benzene, toluene, xylenes, arsenic, boron, chromium, hexavalent chromium, iron, lead, magnesium, sodium, TDS, ammonia, chlorobenzene, I,4-dichlorobenzene, boron, iron, magnesium, manganese, sodium, TDS, ammonia, chloride, sulfate 4,4' DDD, 4,4' DDE, dieldrin, antimony, barium, boron, chromium, cobalt, copper, iron, magnesium, manganese, sodium, zinc, TDS, 1,4' DDD, iron, lead, magnesium, manganese, sodium, TDS, ammonia, chloride, sulfate 1,4' DDD, ethylbenzene, xylenes, dieldrin, chromium, iron, magnesium, manganese, sodium, zinc, TDS, ammonia, chloride, sulfate 1,4' DDE, benzene, chlorobenzene, ethylbenzene, toluene, xylenes, naphthalene, dieldrin, chromium, iron, magnesium, manganese, Compounds that Exceed NYSDEC Groundwater Standards by Sampling Location sodium, TDS, chloride, sulfate o, 4,4' DDE, iron, lead, magnesium, sodium, TDS, chloride, sulfate, ammonia chlorobenzene, dieldrin, iron, magnesium, manganese, sodium, TDS, ammonia, chloride, sulfate iron, lead, magnesium, manganese, enzene, chlorobenzene, dieldrin, iron, lead, magnesium, manganese, sodium, TDS, chloride, ammonia Compounds that Exceed NYSDEC Groundwater Standards magnesium, manganese, sodium, TDS, ammonia, chloride penzene, chlorobenzene, iron, magnesium, manganese, sodium, TDS, ammonia, chloride, sulfate penzene, chlorobenzene, iron, magnesium, manganese, sodium, TDS, chloride, sulfate con, manganese, sodium ,4' DDE, benzene, ethylbenzene, toluene, xylenes, dieldrin, chromium, iron, sodium, TDS benzene, iron, magnesium, manganese, sodium, ammonia, chloride, sulfate ron, magnesium, sodium, thallium, TDS, chloride, cyanide, nitrate, sulfate, ammonia sulfate ammonia, chloride sodium, TDS, ammonia, chloride magnesium, manganese, cobalt, iron, magnesium, manganese, sodium, ammonia, chloride ammonia ammonia, chloride, **Pelham Bay Landfill** enzene, antimony, iron, magnesium, manganese, sodium, TDS, chloride Bronx, New York obalt, iron, magnesium, manganese, sodium, TDS, ammonia, chloride chlorobenzene, 1,4-dichlorobenzene, barium cobalt, copper boron, iron, magnesium, sodium, TDS, ammonia, chloride, sulfate rron, magnesium, sodium, TDS, chloride cobalt, iron, lead, magnesium, manganese, sodium, TDS, chloride, iron, magnesium, manganese, sodium, chloride chromium, iron, magnesium, manganese, sodium, TDS, chloride sodium, TDS, I,4' DDE, iron, magnesium, manganese, sodium, TDS, I,4' DDD, benzene iron moment chloride, sulfate barium, chromium, cobalt, copper, iron, lead, on, magnesium, manganese, sodium, TDS, chloride tromium, cobalt, iron, magnesium, manganese, zinc, TDS, ammonia, chloride, sulfate fhlorobenzene, iron, magnesium, manganese, TDS, ammonia, chloride, sulfate iron, lead, magnesium, sodium, TDS, chloride rDS, ammonia, chloride, sulfate cobalt, ,4' DDE, toluene, xylenes, chloride, sulfate TOS, sodium chromium, sodium, sulfate nagnesium, hromium, ammonia, on, lead, 1,4' DDD, intimony, chloride, sodium, nzene, enzene, zinc. ' <u>5</u> .S-2/LS-2DUP Samples MW-125B MW-120B [W-121B **W-124B** 168 **W-119B MW-122B fW-118B** 5B MW-113B **fW-114B** MW-123 MW-124 **AW-126 AW-120** fW-118 MW-121 **AW-122 WW-125** MW-110 9 **W-119** MW-104 MW-105 AW-106 **fW-108** 5 AW-107 MW-109 MW-103 III-Wh **MW-113** LS-3 LS-4 LS-5 I-WI S-1 Ň

Table 4-34

Checked by: TRP 92C4087 Prepared by: SMM

benzene, chlorobenzene, toluene, xylene, naphthalene, dieldrin, boron, chromium, hexavalent chromium, iron, lead, magnesium, manganese, sodium, TDS, ammonia, chloride, sulfate


4,4' DDE, benzene, dieldrin, boron, chromium, hexavalent chromium, iron, lead, magnesium, sodium, TDS, ammonia, chloride, sulfate

ooron, iron, magnesium, sodium, thallium, TDS, ammonia, chloride, sulfate

TDS, ammonia,

LS-7 LS-9

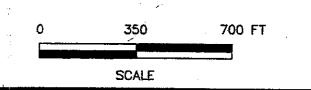
I0:19 AM SMMOKBE0/92C40

LEGEND:

MW-103 MONITORING WELLS INSTALLED 1989

- MW-108 MONITORING WELL DESTROYED DURING IRM
- PZ-38 🔺 PIEZOMETERS INSTALLED 1992
- MW--113 🕒 MONITORING WELLS INSTALLED 1992
- MW-1168 🚱 BEDROCK WELLS INSTALLED 1992

TEST BORING ADVANCED 1992 TB-1 👄

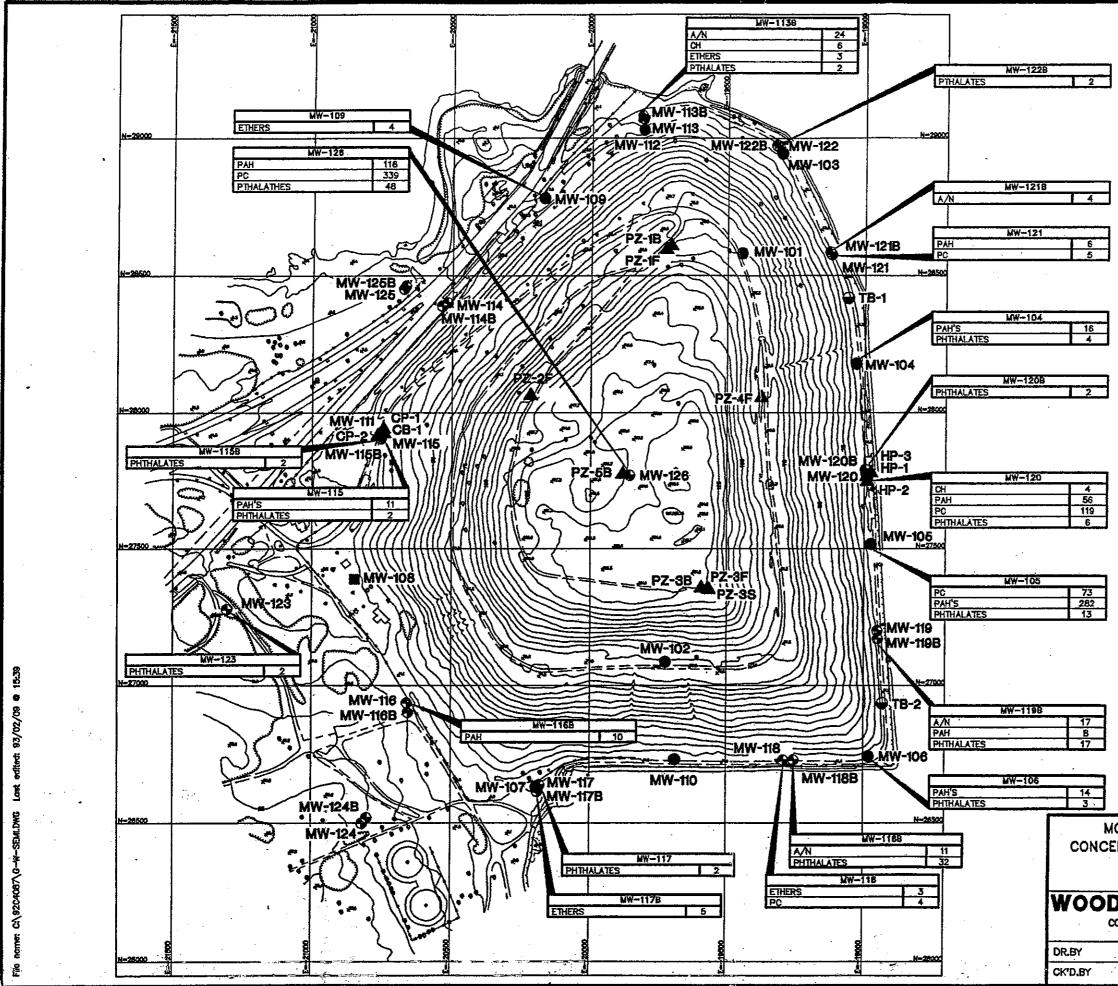

NOTES:

- 1. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATUM.
- 2, ELEVATIONS ABOVE BRONX DATUM = 2.608 FT ABOVE MEAN SEA LEVEL.
- 3. CONTOUR INTERVAL = 5 FEET
- 4, ALL CONCENTRATIONS ARE IN ug/I

MAH'S - MONOCYCLIC AROMATIC HYDROCARBONS HAC'S - HALOGENATED ALIPHATIC COMPOUNDS

MAP SOURCE:

ETTLINGER & ETTLINGER DRAWING NUMBER 87541 ETTLINGER & ETTLINGER SITE SURVEY 1992.



MONITORING WELL SAMPLING LOCATIONS SHOWING CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS PELHAM BAY LANDFILL BRONX, NEW YORK

ARD-CLYDE	CONSUL	TANTS	INC.
TING ENGINEERS, GEOLOGIST			

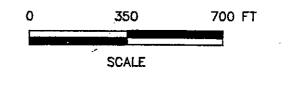
NEW YORK, NEW YORK

MG	SCALE	AS SHOWN	PROJ.	92C4087	
DAD _	DATE	NOV. 23, 1993	FIG.NO.	4-17	

LEGEND:

MW-103 • MONITORING WELLS INSTALLED 1989

- MW-108 MONITORING WELL DESTROYED DURING IRM
- PZ−3B ▲ PIEZOMETERS INSTALLED 1992
- MW-113
 MONITORING WELLS INSTALLED 1992

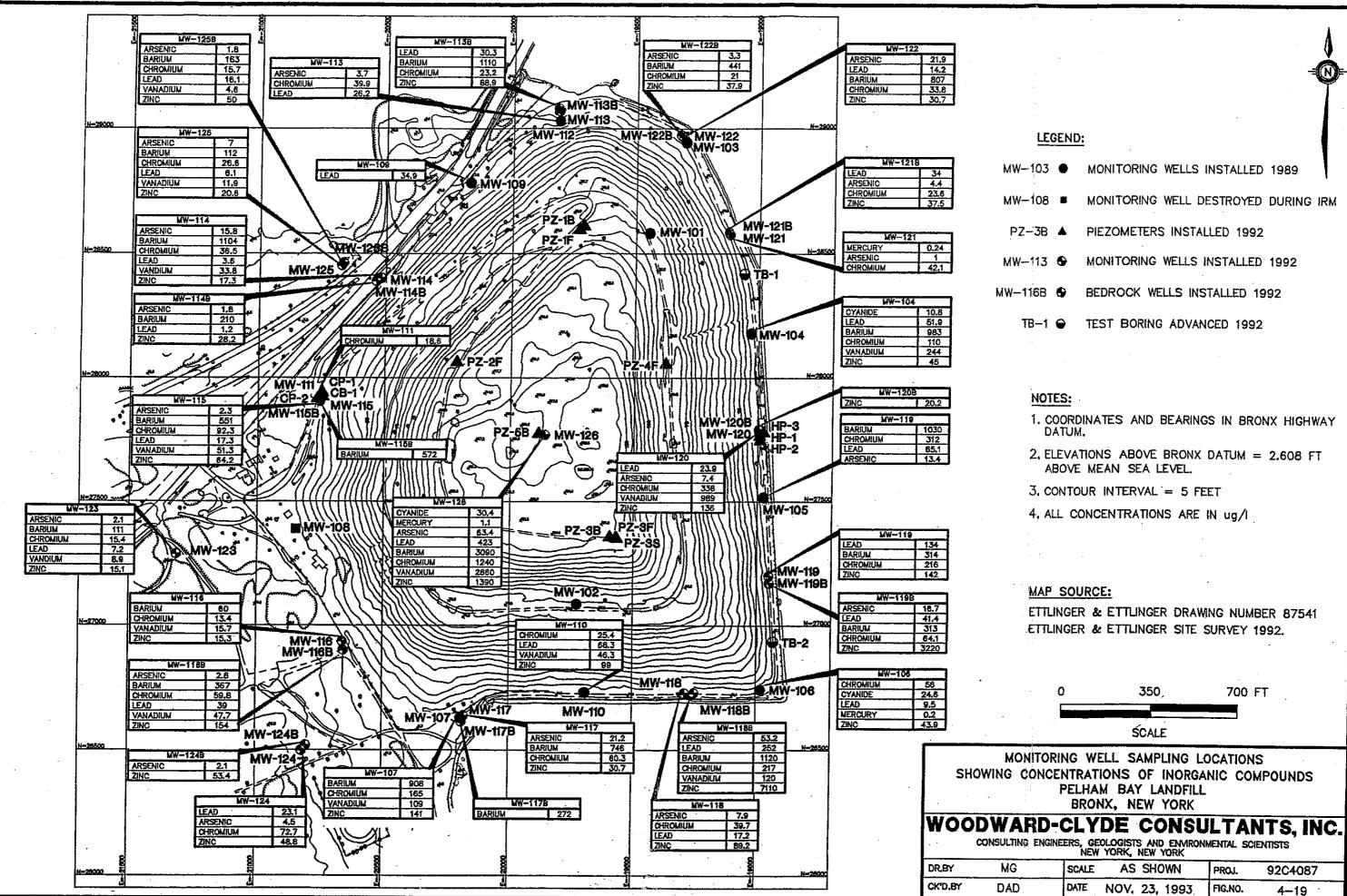

MW-1168 • BEDROCK WELLS INSTALLED 1992

- NOTES:
- 1. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATUM.
- 2. ELEVATIONS ABOVE BRONX DATUM = 2.608 FT ABOVE MEAN SEA LEVEL.
- 3. CONTOUR INTERVAL = 5 FEET
- 4. ALL CONCENTRATIONS ARE IN ug/I
- CH CHLORINATED HYDROCARBONS
- PC PHENOLIC COMPOUNDS

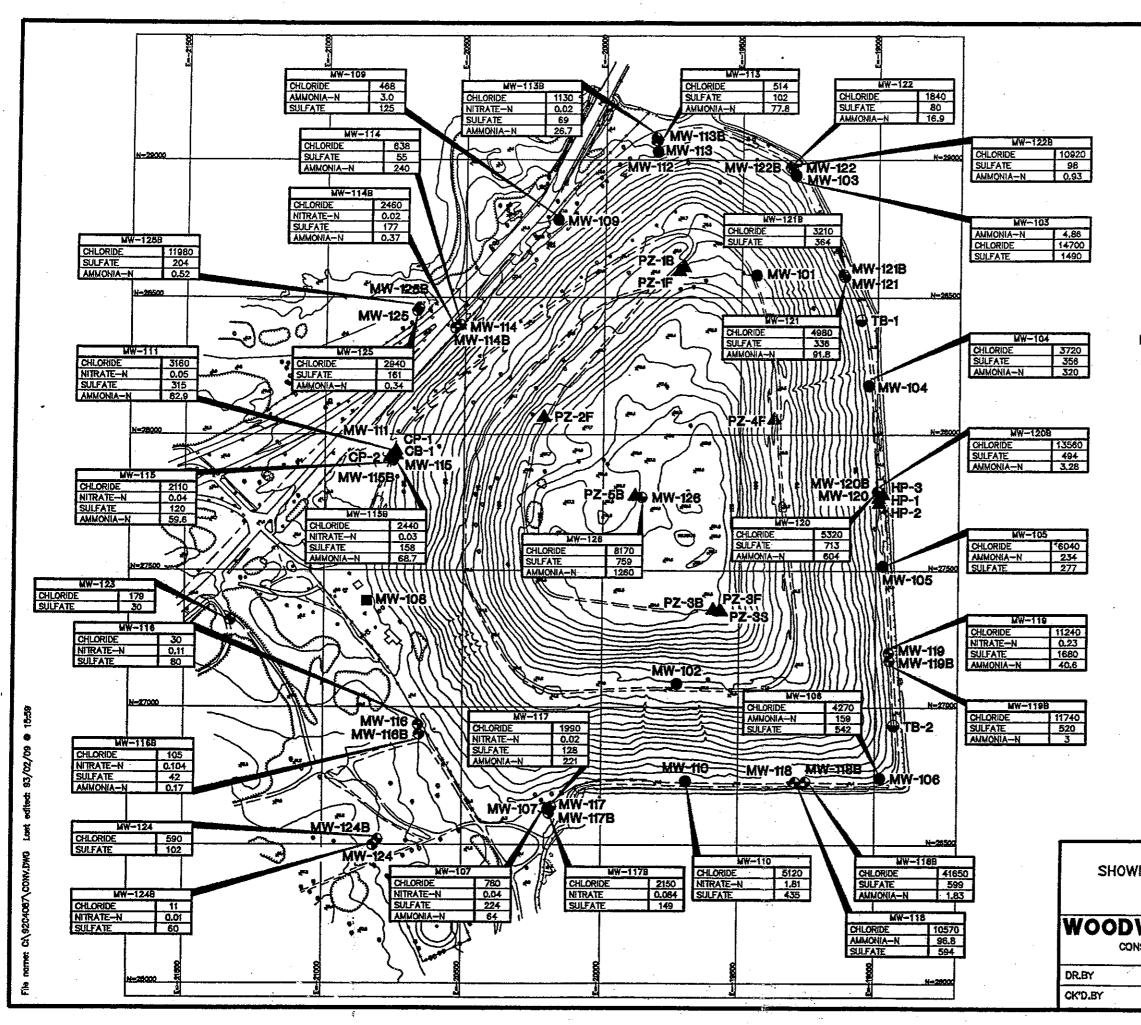
PAH'S – POLYNUCLEAR AROMATIC HYDROCARBONS A/N - AMINES/NITROARENES

MAP SOURCE:

ETTLINGER & ETTLINGER DRAWING NUMBER 87541 ETTLINGER & ETTLINGER SITE SURVEY 1992.



MONITORING WELL SAMPLING LOCATIONS SHOWING CONCENTRATIONS OF SEMI-VOLATILE ORGANIC COMPOUNDS PELHAM BAY LANDFILL BRONX, NEW YORK

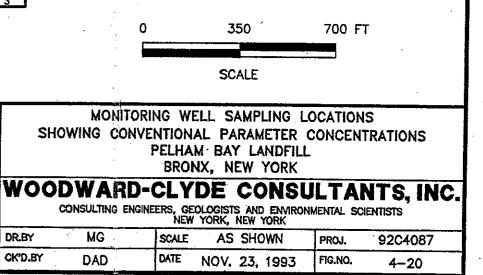

KONX,	NEW	YORK	

1	WOODWARD-	AI 1/16 M /			
-		6LIUC \	AVNEALL I		
			/ * ! ! ¥ ¥ ¥ 🖬 i	ART OF	
-		TOC ACALAAIATA	SHIP, PHE EPOPLE (PD)		
	CONSULTING ENGINE		AND ENVIRONMENTA	SCIENTISTS	

	NEW	YORK, NEW YORK		
MG	SCALE	AS SHOWN	PROJ.	9204087
DAD	DATE	NOV. 23, 1993	FIG.NO.	4-18
i la				

MW-103 ●	MONITORING WELLS INSTALLED 1989
MW-108 🛎	MONITORING WELL DESTROYED DURING IRM
PZ-3B ▲	PIEZOMETERS INSTALLED 1992
MW113 🕒	MONITORING WELLS INSTALLED 1992
WW-1168 🕒	BEDROCK WELLS INSTALLED 1992
TB−1 😜	TEST BORING ADVANCED 1992

LEGEND:


- MW-103 MONITORING WELLS INSTALLED 1989
- MW-108 MONITORING WELL DESTROYED DURING IRM
- PZ-3B ▲ PIEZOMETERS INSTALLED 1992
- MW-113 MONITORING WELLS INSTALLED 1992
- MW-116B BEDROCK WELLS INSTALLED 1992

NOTES:

- 1. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATUM.
- 2. ELEVATIONS ABOVE BRONX DATUM = 2.608 FT ABOVE MEAN SEA LEVEL.
- 3. CONTOUR INTERVAL = 5 FEET
- 4. ALL CONCENTRATIONS ARE IN mg/I

MAP SOURCE:

ETTLINGER & ETTLINGER DRAWING NUMBER 87541 ETTLINGER & ETTLINGER SITE SURVEY 1992.

Indit ppb 35000* Magnesium ppb 35000* Manganese ppb 300 Sodium ppb 20000 Dieldrin ppb Non-detect	Image: second	Chlorideppm2501840CopperTotal Dissolved Solidsppm5005730IronBenzeneppb0.7104 JLeadChlorobenzeneppb525MagnesiumEthylbenzeneppb300400063300 E4,4-DDDMagnesiumppb35000*3190004,4-DDEManganeseppb3007506870 EDieldrinSodiumppb200001786000Dieldrin	ppm 250 14700 ppm 250 1490 lved Solids ppm 500 26000 ppb 200 400 590 ppb 300 4000 2160 ppb 35000* 921000 ppb 35000* 921000 ppb 35000* 921000 ppb Non-detect 0.013 JV ppb Non-detect 0.13 JV ppb Non-detect 0.18 V date: 4-Aug-92 Ammonia Nitrogen ppm 2 26.4 91.8 Chloride ppm 250 336 Total Dissolved Solids ppm 500 13000 Berzerie ppb 300 4000 8540 E Magnesium ppb 3000 750 1640 E Sodium ppb 300 750 1640 E	
23000 Ammonia Nitrogen ppin 2 28.4 Chiolde ppp 250 1 Total Diseolved Solide pppn 250 1 Cobait ppb 34 400 Lon ppb 344 400 Magnesium ppb 35000* 1 Magnesium ppb 35000* 1 Magnesium ppb 2000 1 Magnesium ppb 2000 1 Magnesium ppb 2000 1 Ammonia Nitrogen ppm 2 28.4 Admonia Nitrogen ppm 2 28.4 Chiolde ppm 250 638 Total Dissolved Solids ppm 500 2880 Chiolde ppb 300 4000 12100 Magnesium ppb 300 2000 750	3 468 1170 1170 1877 657 43700 5100 118000 118000 118000 118000 118000 118000 118000 118000 118000 118000 118000 118000 118000 118000 118000 118000 1180	2 2 2 2 2 2 2 2 2 2 2 2 2 2	99000 NYSDEC (1) Effluent MW-126 date: 6-Aug-92 Concentration date: 6-Aug-92 Ammonia Nitrogen ppm 2 28.4 1260 Chloride ppm 250 5140 J J Sulfate ppm 250 759 J Total Dissolved Solide ppm 500 12200 Benzene ppb 5 100 8 Xylenee (total) ppb 5 100 6 Arsenic ppb 250 1240 6 Cobalt ppb 34 400 77.3 Copper ppb 200 400 356 Cyanide ppb 100 10 30.4 Iron ppb 300 4000 339400 Lead ppb 2000 69240000 2369 Zinc ppb 300 400 1390 Non-detect 0.052.J 0.052.J	unit NYSDEC (1) Effluent Limitations (2) MW-104 Concentration date: 30-Jul-92 Ammonia Nitrogen ppm 2 26.4 320 Choirde ppm 250 3720 Sulfate ppm 250 356 Total Dissolved Solide pph 500 9230 Behzene ppb 5 7 Chromium ppb 50 1000 10 Cyanide ppb 300 4000 6110 Lesd ppb 250 252000 Selenium ppb 3000 10 10.8 100 Charoberzane ppb 100 10 13.6 Kon ppb 250 200 51.9 Magnesium ppb 10 13.6 BN Solium ppb 20000 3053000 44-DDD Ad-DDD ppb Non-datect 0.012 J 4.4-DDE
Instrume jpb 20000 2449000 3 Sodium jpb 20000 2449000 3 5	x x x x x x x x x x x x x x x x x x x	PZ-4F PZ	-28000 -28000	Dieldrin ppb Non-tdetect 0.0063 J unit WYSDEC (1) Effluent LS-9 unit GW Standard Limitations (2) Concentration date: 29-Jul-92 Ammonia Nitrogen ppm 2 26.4 404 Chioride ppm 250 6830 Sulfate ppm 250 599 Total Dissolved Solide ppm 500 17460 Benzene ppb 5 10 5 Total Dissolved Solide ppm 5 12 Ethylbenzene ppb Total Dissolved Solide ppb 5 100 5 12 Ethylbenzene ppb 5 100 7 Xyleries (total) ppb 50 1000 293 Cobatt ppb 344 400 34.8 8 100 12 Lead ppb 35000* 333000 12500 12 12 Lorinum ppb
Image: state of the s	C () () () () () () () () () () () () ()	12 CC 12 CC 12 CC 12 CC 13 CC 19 CCC	=27500 unit NYSDEC (1) Effluent MW-105 Gencentrations (2) Concentrations (2) Concentrations Ammonia Nitrogen ppm 2 Ammonia Nitrogen ppm 2 Chloride ppm 250 6040 Suffate ppm 250 2277 Total Dissolved Solide ppm 500 10500 Benzene ppb 0.7 10 4.J. Ethylbenzene ppb 5 100. 8 Barium ppb 50 1000 10300 Chromium ppb 50 1000 312 Cobalt ppb 34 400 39.9 B Copper ppb 200 400 4711 Iron ppb 300 4000 11200 Lead ppb 25. 200 65.1 S Magnesium ppb 300. 44300 Sodium ppb 300. 44300 Sodium ppb 300. 4000 11200 Lead ppb 25. 200 65.1 S Magnesium ppb 10° 10 140.J Sodium ppb Non-detect 0.037.J Dieldrin ppb Non-detect 0.047.V Unit GW St	Suitate ppm 200 15200 Total Dissolved Solids ppm 500 15200 Benzene ppb 0.7 10 3J Chlorobenzene ppb 5 100 5 Toluene ppb 5 100 8 Xylenes (total) ppb 5 100 9 Chromium ppb 500 1000 338 Iron ppb 50 1000 9 Chromium ppb 500 1000 338 Iron ppb 35000* 258000 Magnesium ppb 300 750 316 E Sodium ppb 20000 5382000 Napatiese ppb 10* 10 35 Jeb Non-detect 0.013 J Jeb Jeb Non-detect 0.03 J Jeb Jeb 30-Jul-92 30-Jul-92 30-Jul-92
Image: constraint of the second sec	0 0 0 0 0 0 0 0 0 0 0 0 0 0	unitGW Standadate:Ammonia Nitrogenppm250Chlorideppm250Sulfateppm250Total Dissolved Solidsppm500Benzeneppb0,7Chromiumppb500Cyanideppb100Ironppb3000Magnesiumppb35000*Sodiumppb20004,4-DDDppbNon-detect4,4-DDEppbNon-detectDieldrinppbNon-detectDieldrinppb	rd Limitations (2) Concentration 29-Jul-92 29-Jul-92 26.4 159 4270 J Sulfate ppm 250 542 10 542 10 3 J Iron ppb 300 4000 100 56 Maganese ppb 300 750 10 24.6 Sodium ppb 300 750 10 296000 Sodium ppb 20000 750 3836000 3836000 0.024 JV yv yv yv	11680 1690 10 24400 10 24400 10 2820 10 2970 E 10 795000 2 5 100 7587000 11 7587000 11 1680 11240 1680 15200 17200 134 803000
L883 ppb 35000* 104000 Manganese ppb 300 .750 2030 E Sedium ppb 20000 566000 566000 Sedium ppb 20000 566000 566000 Manganese ppb 20000 566000 566000 Ammonia Nitrogen ppm 2 26.4 121 Chloride ppm 250 1000 60.3 Chonium ppb 300 4000 32.2 100 Chonium ppb 300 4000 32.2 100 Maganesium ppb 3600* 750 1910 500 Maganesium ppb 3600* 750 1910 500 Sodium ppb 20000 1000000 500 26.4 5.4 Maganesium ppb 20000 1000000 500 1000000 200.4 Sodium ppb 20000 10000000 10000000 200.4	unit GW Standard Limitations (2) Common date: date:	centration unit GW Standard Limitations 637 3740 379 1	ations (2) Concentration 29-Jul-92 26,4 96,8 10570 23 1. NEW YORH 23 594 96,8 23 1. NEW YORH WATER QU 24500 10 267 10 267 978 2. NYSDEC I 740000 978 2. NYSDEC I (NOVEMB 7592000 13.5 B 3. ARCHIVED PCB DATA LEGEND: B- BLANK C 113 120 5120 J- ESTIMAT V- REPORT VERIFIE 10540 V- REPORT VERIFIE E- ESTIMAT	ONTAMINANT

.

ppm (000			- 1
	3*		51.2 B	
	50	1000	165	
	300	4000	62600 E	
	25	200	36.3 J	
	35000*		104000	-
	300	750	2030 E	
	20000		566000	
and the second s		· · · · · · · · · · · · · · · · · · ·		
	ppm ppb ppb ppb ppb ppb ppb ppb	ppb 3* ppb 50 ppb 300 ppb 25 ppb 35000* ppb 300	ppb 3* ppb 50 1000 ppb 300 4000 ppb 25 200 ppb 35000*	ppb 3* 51.2 B ppb 50 1000 165 ppb 300 4000 62600 E ppb 25 200 36.3 J ppb 35000* 104000 ppb 300 750 2030 E ppb 20000 566000

	T	NYSDEC (1)	Effluent	MW-117	
	unit	GW Standard	Limitations (2)	Concentration	
date				31-Jul-92	
Ammonia Nitrogen	ppm	2	26.4	221	
Chloride	ppm	250		1990	
Total Dissolved Solids	ppm	500		3710	
Chromium	ppb	50	1000	60.3	
Cobalt	ppb .	34	400 ⁷	39.2 B	
Iron	ppb	300	4000	22200	
Magnesium	ppb	35000*		75900	
Manganese	ppb	300	750	1910	
Sodium	ppb	20000		100000	

· · · ·	unit	GW Standard	Limitations (2)	Concentration
date:			•	30-Jul-92
Ammonia Nitrogen	ppm	2	26.4	5.54
Chloride	ppm	250		11,400
Sulfate	ppm	250	1	1770
Total Dissolved Solids	ppm	500		26100
Boron	ppb	1000		2520
Iron	ppb	300	4000	4070 E
Magnesium	ppb	35000*		899000
Sodium	ppb	20000	·	. 7912000

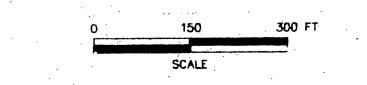
. j		NYSDEC (1)	Effluent	LS-1
	unit	GW Standard	Limitations (2)	 Concentration
date	:	· · · · · · · · · · · · · · · · · · ·		30-Jul-92
Ammonia Nitrogen	ppm	2	26.4	637
Chloride	ppm	250	·	3740
Sulfate	ppm	250		379
Total Dissolved Solids	ppm	500		12900
Benzene	ppb	0.7	10	4 J
Chlorobenzene	ppb	5		5 J
Ethylbenzene	ppb	5	100	15
Toluene	ppb	5	100	81
Xylenes (total)	ppb	5	100	65
Arsenic	ppb	25	70	40.3 +
Barium	ppb	1000	4000	1060
Boron	ppb	1000		8900
Chromium	ppb	50	1000	289
Cobalt	ppb	34 ·	400	54.2
Iron	ppb	300	4000	9760 E
Lead	ppb	25	200	104
Magnesium	ppb	35000*		80200
Sodium	ppb	20000		4146000

KEY	

X	FENCE	

FENCE	MW-103 MONITORING WELLS INSTALLED 1989
SITE BOUNDARY	MW-108 MONITORING WELL DESTROYED DURING IRM
	PZ-38 PIEZOMETERS INSTALLED 1992
	MW-113 HONITORING WELLS INSTALLED 1992

L1 O LEACHATE SEEP LOCATION


LEGEND:

NOTES: 1. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATE: "AL 2. ELEVATIONS ABOVE BRONX DATUM = 2.608 FT ABOVE MSL 3. CONTOUR INTERVAL = 5 FEET

+ - ESTIMATED VALUE (THE CORRELATION COEFFICIENT REPORTED FOR THE MSA IS LESS THAN 0.995)

na-NOT ANALYZED

*- GUIDANCE VALUE, REGULATED STANDARD FOR THIS CHEMICAL IS NOT AVAILABLE

COMPARISON OF CONSTITUENT LEVELS TO NYSDEC GROUNDWATER STANDARDS AND EFFLUENT LIMITATIONS IN SHALLOW WELL AND SEEP SAMPLES

PELHAM BAY LANDFILL BRONX, NEW YORK WOODWARD - CLYDE CONSULTANTS, INC.

CONSULTING ENGINEERS, GEOLOGISTS AND ENVIRONMENTAL SCIENTISTS NEW YORK, NEW YORK SCALE: AS SHOWN PROJ. NO.:92C4087 DR. BY: KJF DATE: APR. 13, 1993 FIG. NO.: 4-25A CK'D BY: TRP

2990 E

46300

546

11

862000 5 J 5 J 9 J

4000

750

4.7

5

ppb 300

ppb 35000*

ppb 300 ppb 20000

ppb 4.7

bpb

Manganese

1,2 Dichlorobenzene

1.4-Dichlorobenzene

1.3 Dichlorobenzer

Sodium

Boron Chromium Cobalt

Copper

iron Lead

Magnesium Manganese Mercury Sodium Zinc 4,4-DDD 4,4-DDE

Dieldrin

34

daa

ppb

ppb

 ppb
 25

 ppb
 35000*

 ppb
 300

 ppb
 2

 ppb
 20000

 ppb
 300

 ppb
 300

 ppb
 Non-detect

 ppb
 Non-detect

 ppb
 Non-detect

2260

5931000 1330 0.015 JV 0.026 V 0.24 V

1

MAP SOURCE: ETTLINGER & ETTLINGER DRAWING NUMBER 87541 ETTLINGER & ETTLINGER SITE SURVEY 1992.

MW-116B 🕤 BEDROCK WELLS INSTALLED 1992

TB-1 - TEST BORING ADVANCED 1992

ppb 300 4000 4390 E	30.4 4 50			Banum	ppp	1000	4000	1120	Ethylbenzene
	x30.4 Cumper			Chromium	ppb	50	1000	217	Xylenes (total)
		(000	Cobalt	ppb	34	400	48.9 B	Chromium
	1 G		3						Iron
	3 ×27.0			Copper	ppb	200	400	1130	Lead
				Iron	ppb	300	4000	194000	Magnesium
			*	Lead	ppb	25	200	252	Manganese
		1 P no		Magnesium	ppb	35000*		1936000	Sodium
ار مەمۇرىي ئىيىدە باردىيە بىر بىرى ئەرىپ مەرىپىدە قارىيا مەمۇرى بىرىغان بىرىغان بىرىغان بىرىغان بىرىغان بارىغان يىلىمىرىي) \tage at		Manganese	ppb	300	750	29600	Zinc
				Sodium					Dieldrin
				Sodium	ppb	20000	L	3539000	and the second sec
	8			ol					
N=26000 20 .	2	<u> </u>		8				20	<u>o</u> g
								<u> </u>	
<u>ــــــــــــــــــــــــــــــــــــ</u>	<u>ٿ</u>			,å.)					
				ш				ا ت	Ľ
									· ·
	NYSDEC (1)					*			
	unit GW. Standard	d Limitations (2) Concentration							

		100	40
ppb	50	1000	64.1
ppb	300	4000	46800
ppb	25	200	41.4
ppb	35000*		894000
ppb	300	750	7700
ppb	20000		6164000
ppb	300	. 400	3220
ppb -	Non-detect		0.014 J
	ррb ррb ррb ррb ррb ррb ррb ррb	ppb 50 ppb 300 ppb 25 ppb 35000* ppb 300 ppb 20000 ppb 300	ppb 50 1000 ppb 300 4000 ppb 25 200 ppb 35000*

N=26000

and the

KEY ---- FENCE

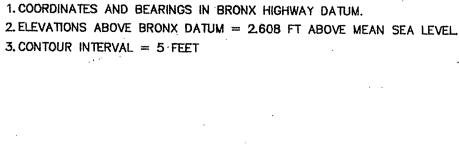
MAP SOURCE:

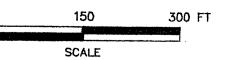
-	FENCE	1	MW103 🔴	MONITORING WELLS INSTALLED 198	9
	SITE BOUNDARY		MW-108	MONITORING WELL DESTROYED DUE	

	-					
W-108		MONITORING	WELL	DESTROYED	DURING	IRM

PZ-3B A PIEZOMETERS INSTALLED 1992

LEGEND:


NOTES:


MW--113 HONITORING WELLS INSTALLED 1992

MW-116B BEDROCK WELLS INSTALLED 1992

TB-1 TEST BORING ADVANCED 1992

L1 O LEACHATE SEEP LOCATION

COMPARISON OF CONSTITUENT LEVELS TO NYSDEC GROUNDWATER STANDARDS AND EFFLUENT LIMITATIONS IN BEDROCK WELL SAMPLES PELHAM BAY LANDFILL **BRONX, NEW YORK** WOODWARD-CLYDE CONSULTANTS, INC. CONSULTING ENGINEERS, GEOLOGISTS AND ENVIRONMENTAL SCIENTISTS NEW YORK, NEW YORK

ETTLINGER & ETTLINGER DRAWING NUMBER 87541				N, NEW TORK		
ETTLINGER & ETTLINGER SITE SURVEY 1992.	DR. BY:	KJF	SCALE:	AS SHOWN	PROJ. NO.:920	24087
	CK'D BY:	TRP	DATE:	APR. 13, 1993	FIG. NO.: 4-	-25B

NOTES:

7-Aug-92

2150

3110

144000

462000

date:

ppm

daa

ppb

250

500

35000*

20000

Chloride

Magnesium

ö

Total Dissolved Solids

- 1. NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, WATER QUALITY STANDARDS AND GUIDANCE VALUES, SEPTEMBER 25, 1990, NYCRR PART 700-705
- 2. NYSDEC DRAFT SURFACE WATER DISCHARGE EFFLUENT LIMITATIONS (NOVEMBER 23, 1992).
- 3. ARCHIVED PORTION OF SAMPLE REANALYZED FOR PESTICIDE AND PCB DATA.
- LEGEND:
- **B** BLANK CONTAMINANT
- J- ESTIMATED VALUE
- V- REPORTED RESULTS FOR THIS COMPOUND COULD NOT BE VERIFIED DURING DATA VALIDATION
- E- ESTIMATED VALUE DUE TO MATRIX INTERFERENCE
- N- ESTIMATED VALUE (SPIKED SAMPLE RECOVERY WAS NOT WITHIN QUALITY CONTROL LIMITS)
- + ESTIMATED VALUE (THE CORRELATION COEFFICIENT REPORTED FOR THE MSA IS LESS THAN 0.995)
- na-NOT ANALYZED
- *- GUIDANCE VALUE, REGULATED STANDARD FOR THIS CHEMICAL IS NOT AVAILABLE

Appendix F

Remedial Investigation Report -Leachate Seeps Tables and Figures Table 4-24 Seeps - Volatile Organic Compounds Data Summary Pelham Bay Landfill Bronx, New York

Ĉ

ĺ

í

	TS-1	LS-2	LS-3	LS-4	LS-5	LS-7	LS-9	LS-10	LS-2 DUP
date:	30-Jul-92	28-Jul-92	30-Jul-92	30-Jul-92	30-Jul-92	30-Jul-92	29-Jul-92	29-Jul-92	30-Jul-92
Halogenated Alinhatic Compounds									
Methylene chloride	2 JBR#	2 JBR#	2 JBR#	19 JBR#	12 JBR#	11 JBR#	2 JBR#	1 JBR#	2 JBR#
Total									
<u>Ketones</u>									
2-Butanone	62	ан -							
2-Propanone	13 JR#						12		
Total	62						12		
Monocyclic Aromatic Hydrocarbons									
Benzene	4 J			•			4 J	2 J	
Chlorobenzene	5]	2 J		10	2 J		12	4 J	2 J
Ethylbenzene	15				11		S	2 J	
Toluene	81						2		
Xvienes (total)	65						8	4 J	
Total	024	2		10	60		36	12	rs
Miscellaneous									
Carbon Disulfide	3 J						1 J		
Total	E]1						1		
Grand Total	1 235	N		10	3		49	12	2

All concentrations in micrograms per liter (ppb) Blank indicates compound was not detected Totals do not include compounds with "R#" qualifier B = Blank contaminant J = Estimated value R# = Negated

Notes:

Prepared by: CLH Checked by: TRP 92C4087 10:14 AM 2/11/93

Page I of 1

SMMOKBE0/92C4087/LEACHATE/LVOA.XLS

Table 4-25 Seeps - Semi-volatile Organic Compounds Data Summary Pelham Bay Landfill Bronx, New York

	LS-1	LS-2	LS-3	LS-4	LS-5	LS-7	LS-9	LS-10	LS-2 DUP
date:	30-Jul-92	28-Jul-92	30-Jul-92	30-Jul-92	30-Jul-92	30-Jul-92	29-Jul-92	29 - Jul-92	30-Jul-92
PAHS									
2-Methylnaphthalene	5 J						4 J		
Acenaphthene	12						3 J		
Anthracene	8 J								
Dibenzofuran	9 J	10							
Fluorene	12								
Naphthalene							33	3 J	
Phenanthrene	24						3 J		
Ругепе	4 J								
Total	74	10					43	3	
Phenois									
2,4-Dimethylphenol	7 J						51		
4-Methylphenol	8 J							•	•
4-Nitrophenol		4 J							
Total	15	4					51		
Phthalates				· .					
Bis(2-Ethylhexyl) Phthalate	13	5 J					5 J	3 J	7 J
Di-n-butyl phthalate							3 J	2 J	
Di-n-octyl phthalate	2 J				_				
Total	15	5					8	5	7
Chlorinated Hydrocarbons									
1,2-Dichlorobenzene				5 J					
1,3-Dichlorobenzene				5 J					
1,4-Dichlorobenzene				9 J			4 J		
Total				19			4		
Miscellaneous	[<u>_</u>			
Benzoic Acid		33 J							
Total		33							
Grand Total	104	52		19			106	8	7

Notes:

(

Ŧ

77 N All concentrations in micrograms per liter (ppb) Blank indicates compound was not detected

J = Estimated value

Table 4-26Seeps - Pesticides and PCBs Data SummaryPelham Bay LandfillBronx, New York

	LS-1	LS-2AR	LS-3	LS-4	LS-5	LS-7	LS-9	LS-10	LS-2 DUP
date:	30-Jul-92	28-Jul-92	30-Jul-92	30-Jul-92	30-Jul-92	30-Jul-92	29-Jul-92	29-Jul-92	30-Jul-92
4,4'-DDD		0.042 JV			0.015 JV				0.078 JV
4,4'-DDE		0.049 JV			0.026 V			0.078 JV	
Aldrin			•						0.058 JV
alpha-Chlordane		0.025 JV							
beta-BHC		0.033 JV		•					
delta-BHC		0.047 JV		0.01 JV	0.028 JV	0.0099 J			0.03 JV
Dieldrin					0.24 V		0.23 V	0.64 V	0.024 JV
Endosulfan II							1.5 V		
Endosulfan sulfate		0.042 BJVR#			0.028 BJVR#				
Endrin	0.023 JV							0.062 JV	
Methoxychlor								0.65 V	
PCB-1016		0.88 J							

Notes:

All concentrations in micrograms per liter (ppb)

Blank indicates compound was not detected

B = Blank contaminant

J = Estimated value

V = Reported results for this compound could not be verified during data validation

R# = Negated result

Table 4-27Seeps - Inorganics Data SummaryPelham Bay LandfillBronx, New York

	· · · · · · · · · · · ·	····			· · · · · · · · ·	·····		· · · · · · · · · · ·	
	LS-1	LS-2	LS-3	LS-4	LS-5	LS-7	LS-9	LS-10	LS-2 DUP
date:	30-Jul-92	28-Jul-92	30 - Jul-92	30-Jul-92	30-Jul-92	30-Jul-92	29-Jul-92	29-Jul-92	30-Jul-92
Aluminum	2380	1300	839		65800	501	4480	3410	60300
Antimony					70.3				
Arsenic	40.3 +	7.5 B	2.7 BW	8.3 B	89.1		18.7 B+	14.5	1.6 B
Barium	1060	660	104 B	287	1490	123 B	590	844	8470
Beryllium					1 B				1.2 BJ
Boron	8900	4200	2520	1570	4680	2820	6910	6800	4330
Cadmium									29.1
Calcium	35600	76500	282000	65600	218000	228000	134000	116000	301000
Chromium	289	62.3		27.2	390	26	293	180	483
Cobalt	54.2	16.2 B		12.5 B	61.7		34.8 B	24.4 B	57.4
Copper	56.8	41.6	20.7 B	6.1 B	977	11.7 B	54.8	70.7	852
Cyanide		20.4							26.2
Iron	9760 E	44400 E	4070 E	2990 E	136000 E	2970 E	12500 E	24900 E	860000 E
Lead	104	146	17.4	3 B	707	7 B+	58.5	88.7	2780
Magnesium	80200	66400	899000	46300	481000	795000	333000	175000	120000
Manganese	130	259	140	546	2260	162	523	239	4290
Mercury		0.34			2	.5			1.6
Nickel	127 J	25.4 BJ		46.8 J	137 J		54 J	48.7 J	161 J
Potassium	650000	269000	306000	101000	402000	282000	562000	456000	256000
Silver					12.1				
Sodium	4146000	743000	7912000	862000	5931000	7587000	5676000	2781000	672000
Thallium						16.77			
Vanadium	562	29.8 B	4.9 B	34.2 B	368	46 B	822	397	367
Zinc	226	201	48.8	48.4	1330	28.1	136	177	3710

Notes: All concentrations in micrograms per liter (ppb)

Blank indicates compound was not detected

B = Reported value is acceptable. Reported value is less than the CRDL (Contract Required Detection Limit) but greater than the IDL (Instrument Detection Limit)

J = Estimated value

E = Estimated value due to matrix interference

W = Estimated value (Post-digestion spike results were reported outside quality control limits,

while sample absorbance is less than 50% of spike absorbance)

+ = Estimated value (The correlation coefficient reported for the MSA is less than 0.995)

Prepared by: CLH Checked by: TRP 92C4087

SMMOKBE0\92C4087\LEACHATE\LMET.XLS

Table 4-28

(

(

Seeps - Conventional Parameters (Modified BMW List) Data Summary Pelham Bay Landfill

Bronx, New York

tre: $30-Jul-92$ $28-Jul-92$ $28-Jul-92$ $30-Jul-92$	30-Jul-92 30-1 200 1 5.54 <	30-Jul-92 1190	30-Jul-92				
inity as Bicarbonate 5900 2300 200 1 inity as Carbonate 637 74.8 5.54 5.54 inity as Carbonate 637 74.8 5.54 5.54 ical Oxygen Demand 190 41 < 3.54 5.54 itcal Oxygen Demand 716 1 < 3 11400 ide 3740 1420 11400 1 ide 3740 1420 1440 1 ide 3740 1420 1440 1 ide 370 200 200 60 ide 370 200 0.08 4410 ide 0.4 0.08 0.44 ide 0.12 1 0.44 ics 0.12 1 0.12 ics 0.12 1 10 ics 12900 2850 1 ics 0.12 1200 2850 36100 ic 1200 2850 1700 ic 12900 2850 1700	200 1 5.54 <3	1190		30-Jul-92	29-Jul-92	29-Jul-92	30 -Jul-92
inity as Carbonate80845.54inity as Carbonate 637 74.8 5.54 5.54 ical Oxygen Demand 190 41 <3 5.54 itcal Oxygen Demand 716 716 <3 <3740 ide 3740 1420 11400 1 ide 370 200 200 60 716 1420 11400 1 ide 370 200 200 60 11420 102 0.08 4410 ness 419 465 4410 ness 0.12 10 0.71 0.44 0.12 10 10 10 110 1770 $0ics$ 0.12 110 10 1770 60 0.12 1200 2850 170 26100 3 0.12 1200 2850 100 37 26100 3	5.54 <3		1030	610	801	3320	6000
conia Nitrogen 637 74.8 5.54 ical Oxygen Demand 190 41 < 3 rical Oxygen Demand 716 < 3 < 3 ride 3740 1420 11400 1 ride 3740 1420 11400 1 ride 3740 1420 11400 1 ride 3740 2000 60 60 1 ride 3740 1020 0.71 0.4410 0.44 0.60 0.144 0.144 0.12 0.12 1 0.12 1 0.12 1 1 1 1 0.12 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>86</td><td></td></td<>						86	
19041 <3 vical Oxygen Demand 716 $<<$		161	373	44.2	404	85.1	317
al Oxygen Demand 716 1 e 3740 1420 11400 v/Co 300 200 60 v/Co 300 200 60 v/Co 300 200 60 s 419 465 4410 sisent Chromium 0.4 0.08 60 Nitrogen 0.06 0.71 0.44 Nitrogen 10 10 1 cs 0.12 1 1 issolved Solids 12900 2850 26100			277	7	157	101	NA
e 3740 1420 11400 1 2VCo 300 200 60 60 60 ss 419 465 4410 60	- 209 J		2040 J	295 J		1230 J	2370 J
Y/Co 300 200 60 ss 419 465 4410 ss 419 465 4410 lent Chromium 0.4 0.08 <0.01	11400 1170	1140	12250 J	11680	6830	2860 J	1310
ss 419 465 44100 4410 4410 44	60 200		240	200	300	200	NA
lent Chromium 0.4 0.08 < 0.01 0 Nitrogen 0.06 0.71 0.44 1 Nitrogen 0.06 0.71 0.44 1 O.N 10 10 1 1 1 Solved 0.12 J 10 1770 1770 issolved Solids 12900 2850 J 26100 3	4410 354	. 332	2520	3840	1710	0101	1240
Nitrogen 0.06 0.71 0.44 O.N 10 10 1 O.N 10 10 1 Construction 0.12 1 1 Construction 0.12 1 1 Construction 0.12 1 10 1 Construction 12900 2850 1 26100 3	< 0.01 0.03		0.02	0.02	0.56	: 0.21	NA
.O.N 10 10 10 1 cs 0.12 J 1 1770 1770 issolved Solids 12900 2850 J 26100 3	0.44 1.02	1.01	6.26 J	0.24	0.35	0.35.	0.22
cs 0.12 J 10 1770 379 110 1770 issolved Solids 12900 2850 J 26100 3	1 10		50	10	10	10	NA
379 110 1770 issolved Solids 12900 2850 1 26100 3				1	0.1 J		
12900 2850 J 26100 3	1770 157	155	1680	1690	599	335	320
	26100 3190	3180	24300	24400	17460	8420	3250
	6.27 J 175 J		506 J	75.6 J	718 J	542 J	408 J
Total Organic Carbon 1900 450 14 14	14 140	140	110	59		780	360
Total Volatile Solids 1480 641 3560 30	3560 307	314	4500	3170	2120	1060	2510

Notes:

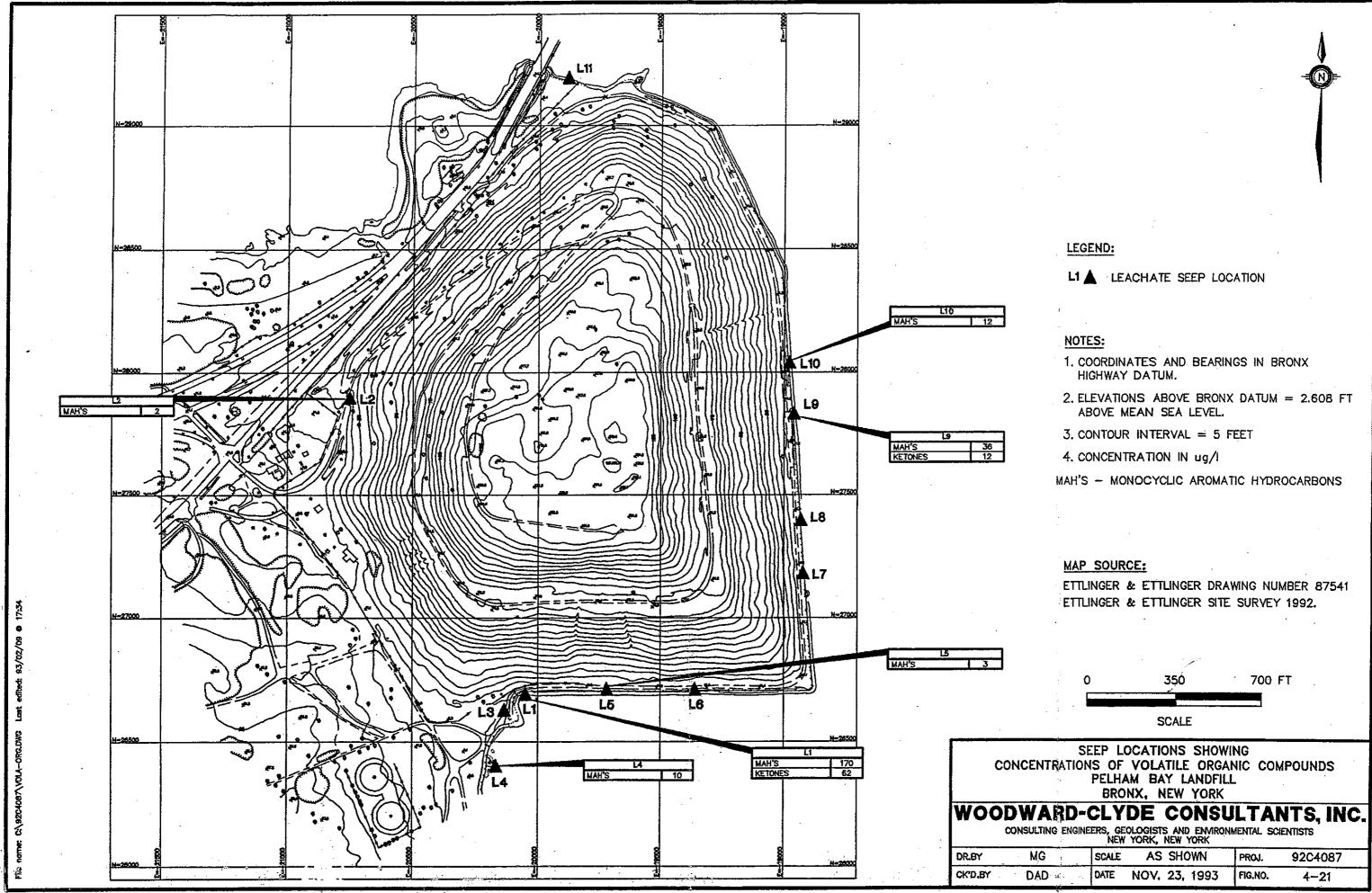
All concentrations in milligrams per liter (ppm) except for color and odor

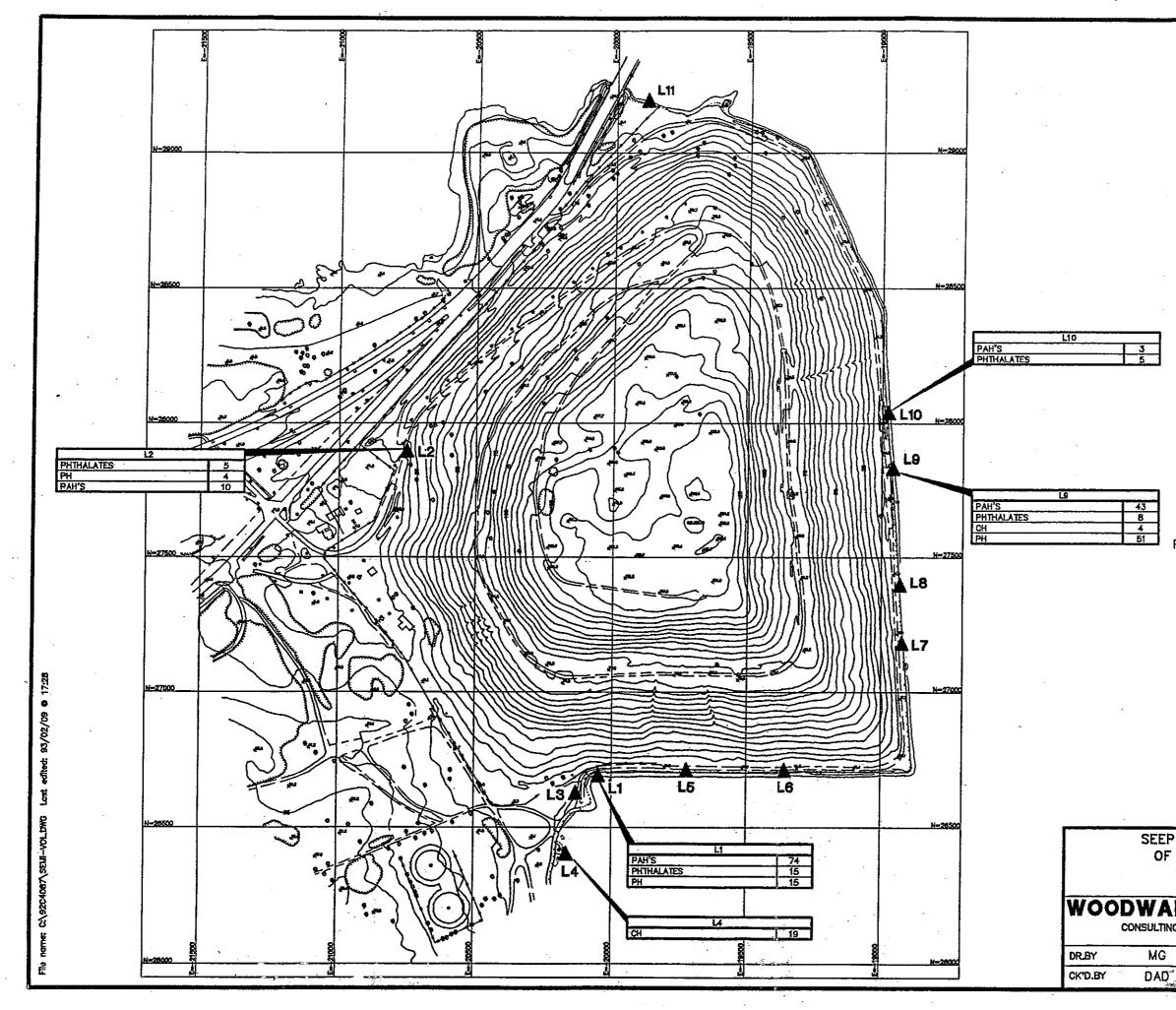
Prepared by: CLH Checked by: TRP

92C4087

Blank indicates compound was not detected

D = Laboratory QA/QC duplicate


J = Estimated value


NA = Not Analyzed

Page 1 of 1

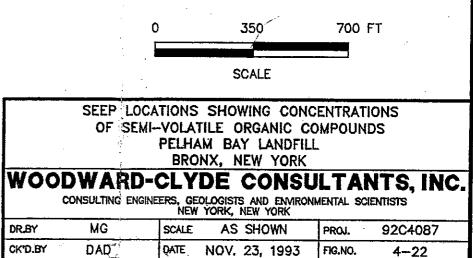
SMMOKBE0/92C4087LEACHATEU.SPARM.XLS

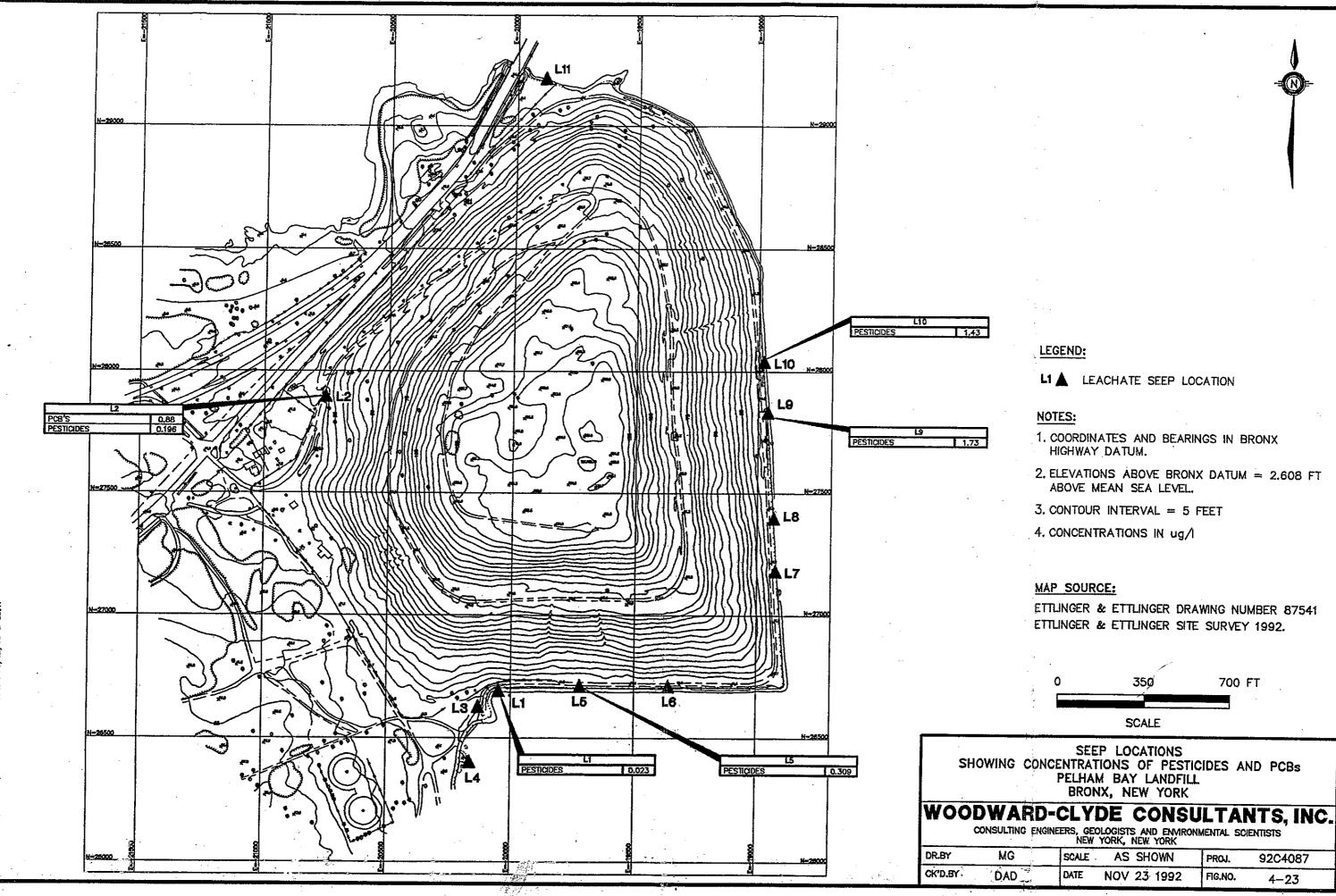
10:15 AM 2/11/93

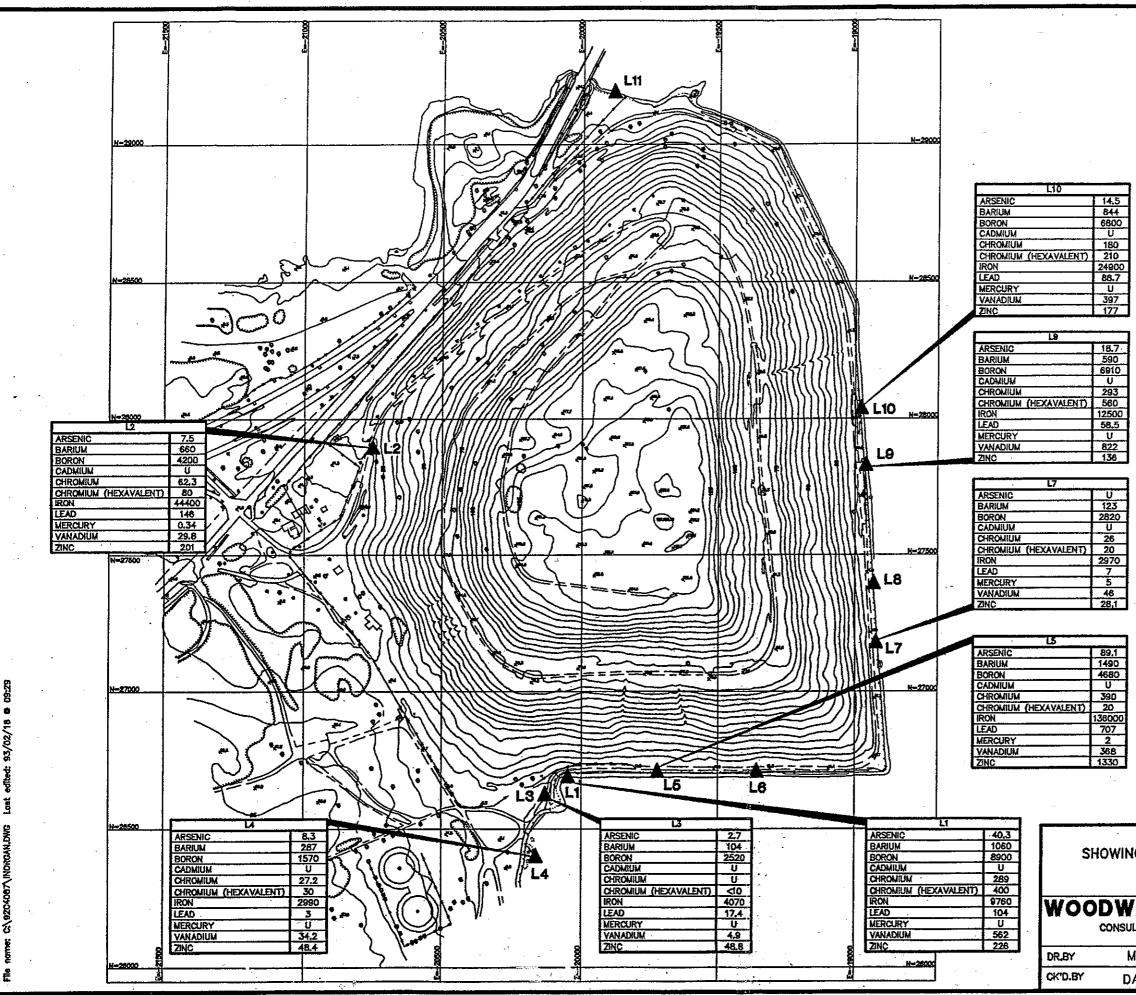
LI LEACHATE SEEP LOCATION

NOTES:

- 1. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATUM.
- 2. ELEVATIONS ABOVE BRONX DATUM = 2.608 FT ABOVE MEAN SEA LEVEL.
- 3. CONTOUR INTERVAL = 5 FEET
- 4, CONCENTRATIONS IN ug/I


PAH'S - POLYNUCLEAR AROMATIC HYDROCARBONS


CH - CHLORINATED HYDROCARBONS


PH - PHENOLIC COMPOUNDS

MAP SOURCE:

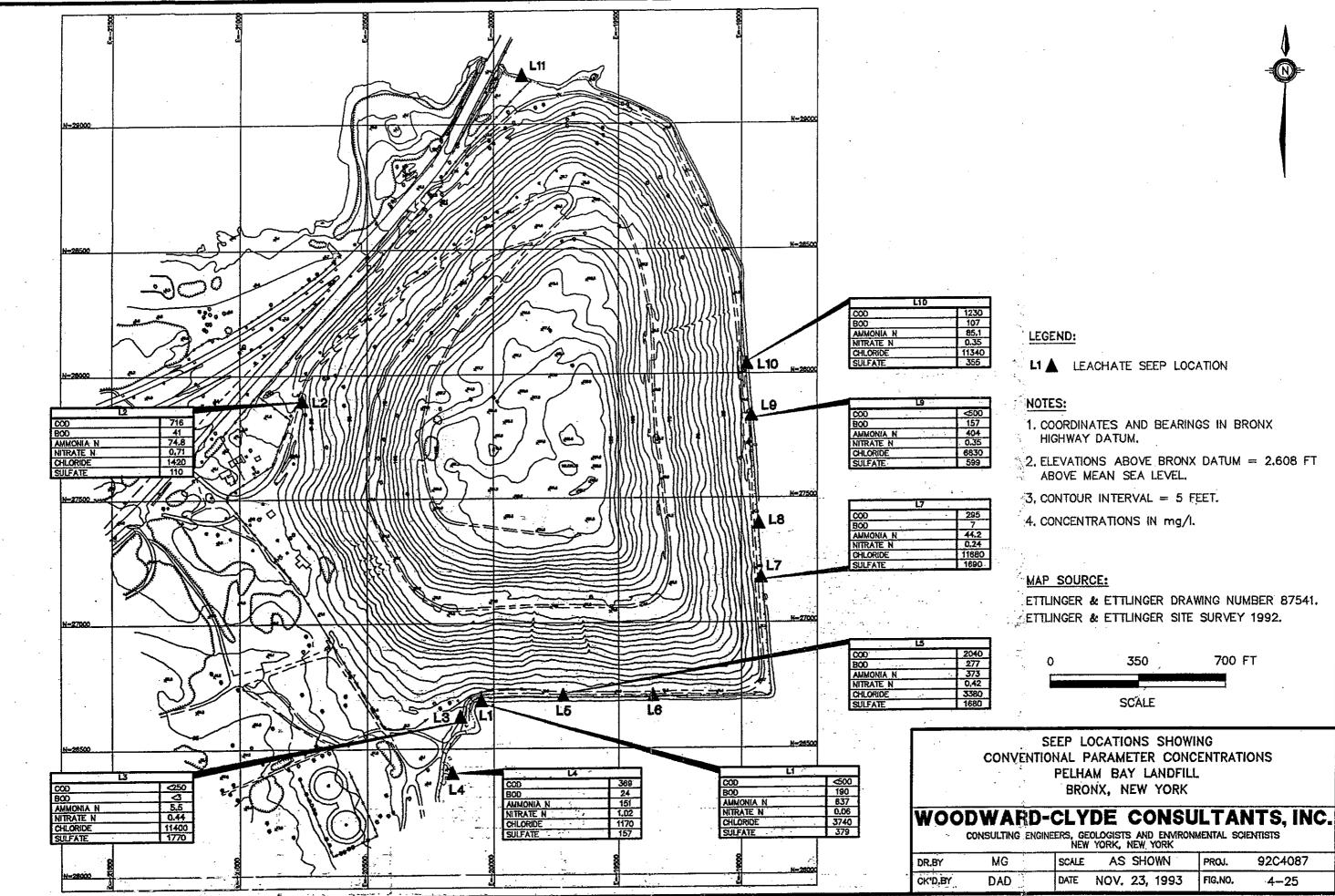
ETTLINGER & ETTLINGER DRAWING NUMBER 87541 ETTLINGER & ETTLINGER SITE SURVEY 1992.

1

1.

LEGEND:

LI LEACHATE SEEP LOCATION


NOTES:

- 1. COORDINATES AND BEARINGS IN BRONX HIGHWAY DATUM.
- 2. ELEVATIONS ABOVE BRONX DATUM = 2.608 FT ABOVE MEAN SEA LEVEL.
- 3. CONTOUR INTERVAL = 5 FEET
- 4. CONCENTRATIONS IN ug/I
- 5, U=NOT DETECTED

MAP SOURCE:

ETTLINGER & ETTLINGER DRAWING NUMBER 87541 ETTLINGER & ETTLINGER SITE SURVEY 1992.

	Ċ)	350		70	O FT	
-							
	· ·		SCAL	E			
NG	CONCE	NTRAT PELHA	EP LOCAT IONS OF M BAY L NX, NEW	INORGAN ANDFILL	NIC	COMPOU	NDS
		ERS, GEO	DE CO	ENMRONME			, INC.
MG		SCALE	AS SHO	DWN	PROJ.	9204	1087
DẠD		DATE	NOV. 23,	1993	FIG.NC). 4-	24
	· ·						•

Appendix G

Remedial Investigation Report - Soil Gas Tables and Figures

Table 4-79 Results of Perimeter Soil Gas Survey Pelham Bay Landfill Bronx, New York

.

į

											<u> </u>
PPM H2S	(measured)	0.5	0.5	0.5	0.5	0.2	0.5	0.2	0.0	1.2	0.1
PPM H2S	(background)	0.0	0.3	0.4	0.3	0.0	0.0	0.2	0.0	0.0	0,1
%02	(measured)	21.0	20.8	20.2	16.0	16.0	20.5	20.3	20.6	2.2	20.6
%02	(background)	21.0	21.0	20.8	21.3	21.0	21.0	20.3	21.0	21.0	20.6
%TEL	(measured)	0	0	10	>100	>100	0	0	15	>100	1
%TEL	(background)	0	0	0	1	0	0	0	0	0	1
Time		1100	1106	1110	1120	1130	1140	1200	1330	1335	1350
Date		9/2/92	9/2/92	9/2/92	9/2/92	9/2/92	9/2/92	9/2/92	9/2/92	9/2/92	9/2/92
Depth	(inches)	19.75	26.25	37.00	38.50	43.00	43.00	30.50	0.00	0.00	0.00
Sample	Number	SG92-1	SG92-2	SG92-3	SG92-4	SG92-5	SG92-6	SG92-7	VENT-1	VENT-1A	VENT-2

Notes: LEL = Lower Explosive Limit ppm = Parts per million.

Prepared by: DA Checked by: PGN 92C4087

SMMOKBE0/92C4087/SOIL/SGMEAS.XLS

Page 1 of 1

02:34 PM 2/13/93

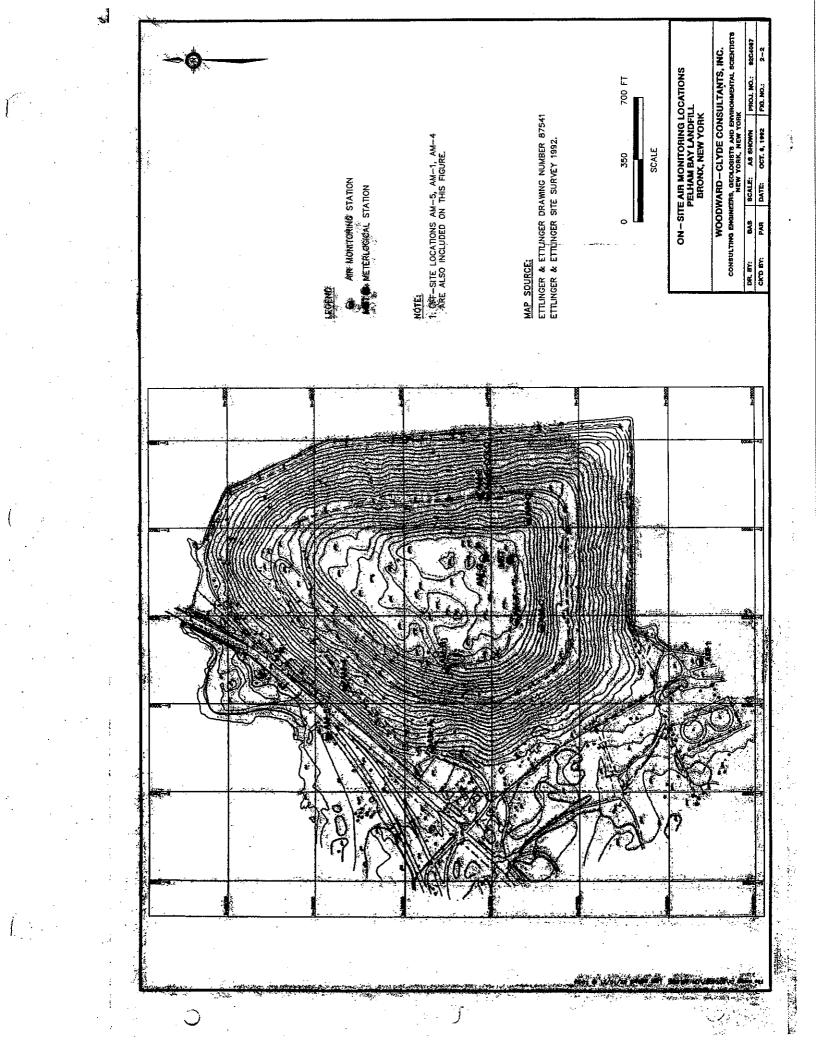
Table 4-80 EIFC Compound Emission Rates Pelham Bay Landfill Bronx, New York

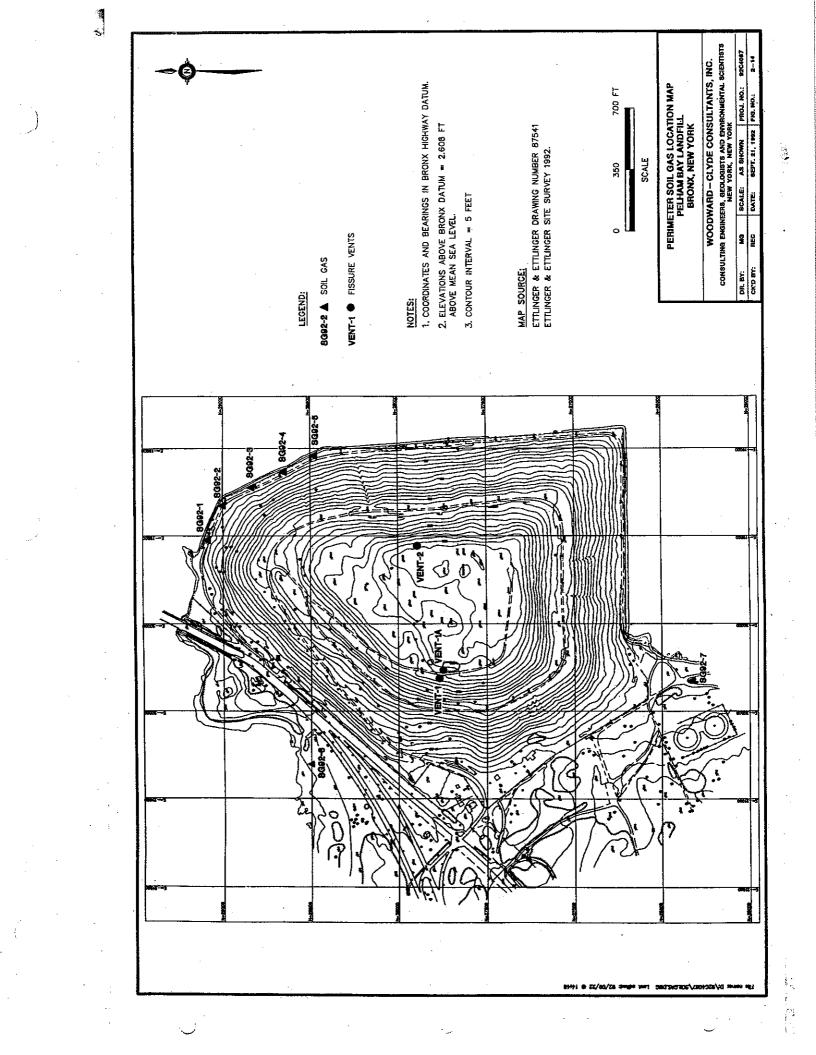
1

.)

.....

Compound	AM-A	AM-B	AM-C	C-MA	AM-E	AM-F	AM-G	AM-1
1,1,1-1 richloroethane	0.004	0.0045	0.0014	1.2483	6000.0	<000.0 >	1.4405	0.0006
1,2,4-Trichlorobenzene	< 0.0011	0.0035	< 0.0013	< 0.0016	< 0.0006	0.0007	< 0.0010	< 0.0004
1,2,4-Trimethylbenzene	0.0029	0.0439	0.0791	< 0.0011	0.0558	0.0016	0.0035	0.0015
1,2-Dichlorobenzene	< 0.0004	< 0.0014	0.0426	0.0152	0.0720	< 0.0005	< 0.0008	< 0.0003
1,2-Dichloroethylene	< 0.0003	0.0042	< 0.0031	< 0.0009	0.0046	< 0.0003	< 0.0005	< 0.0002
1,3,5-Trimethylbenzene	0.0009	0.0151	0.0348	0.0175	0.0260	0,0006	0.0038	0.0004
1,3-Dichlorobenzene	< 0.0008	0.0069	0.0309	0.0120	0.0261	< 0.0005	0.0019	< 0.0003
1,4-Dichlorobenzene	0.0025	0.1458	0.1973	0.0338	0.0833	0.0005	0.0248	0.0021
2-Propanone	0600.0	0.0379	0.0520	0.0316	0.1362	0.0197	0.0224	0.0076
Ammonia Nitrogen	10.2633	< 0.2349	< 0.2533	< 0.2454	< 0.2578	< 0.2648	< 0.2429	< 0.2836
Benzene	0.0006	0.0245	0.1007	0.0131	0.2013	0.0005	0.0086	0.0005
Bromoform	0.0007	0.0030	0.0019	< 0.0027	0.0009	0.0010	0.0015	0.0006
Carbon Disulfide	0.0020	0.0022	0.0017	0.0023	0.0029	0.0014	0.0011	0.0006
Chlorobenzene	0.0019	0.0353	0.7109	0.0500	1.1312	< 0.0004	0.0325	0.0007
Cumene	0.0011	0.0085	0.0981	< 0.0011	0.0310	0.0006	0.0021	< 0.0002
Ethylbenzene	0.0007	0.0277	0.3074	0.0029	0.0438	0.0004	0.0066	0.0006
Freon 11	0.0011	0.0024	0.0012	0.0014	0.0015	0.0013	< 0.0012	0.0010
Freon 113	0.0160	< 0.0018	< 0.0014	< 0.0017	< 0.0006	< 0.0006	< 0.0010	0.0006
Freon 114	< 0.0004	0.0085	< 0.0049	< 0.0015	0.0128	< 0.0006	< 0.0009	< 0.0003
Freon 12	< 0.0003	< 0.0012	< 0.0009	0.0221	< 0.0004	< 0.0004	< 0.0006	0.0009
Heptane	< 0.0003	0.0419	0.0040	0.0021	< 0.0003	< 0.0003	0.0013	< 0.0002
Hexachlorobutadiene	< 0.0020	< 0.0025	< 0.0019	< 0.0023	< 0.0009	0.0014	< 0.0014	< 0.0005
Hydrogen Sulfide	< 0.0013	< 0.0007	0.0213	< 0.0009	< 0.0009	< 0.0014	< 0.0009	< 0.0009
Methane	< 0.8284	4606.1000	6331.9000	1624.1000	9093.5000	< 1.0457	965.4000	< 0.6457
Methylene Chloride	0.0006	< 0.0008	< 0.0006	< 0.0008	< 0.0003	0.0007	< 0.0004	< 0.0002
Styrene	0.0180	0.0139	0.0060	0.0098	0.0062	0.0024	0.0075	0.0105
Tetrachloroethylene	< 0.0004	0.0031	< 0.0012	< 0.0015	< 0.0006	< 0.0006	0.0022	0.0006
Toluene	0.0809	0.0722	0.0242	0.0432	0.0332	< 0.0004	0.0184	0.0121
Trichloroethylene	< 0.0003	0.0015	< 0.0010	< 0.0012	< 0.0004	< 0.0004	< 0.0007	< 0.0003
Xylenes	0.0025	0.0665	0.0503	0.0147	0.0224	0.0019	0.0064	0.0016
Notes:	All values are ug/m²-seo	g/m²-seo					Prepared by: BW	BW


Prepared by: BW Cheeked by: RJM 92C4087


3

This table lists only those compounds detected at least once The value following the "<" indicates the minimum level of detection for that compound These numbers have not been reviewed

Page 1 of 1.

SMMOKBE0/92C4087/AIR/EIFCDET.XLS

Appendix H

Deed Restriction

TO BE PROVIDED

;

Appendix I

Record of Decision

Appendix J

Pelham Bay Landfill Closure and Final Remediation Construction Certification Report

ELECTRONIC VERSION OF CCR IS AVAILABLE ON THE CD PROVIDED IN APPENDIX I

Appendix K

Operation, Maintenance and Monitoring Manual – Volumes I, II, and III

ELECTRONIC VERSION OF OM&M MANUAL IS AVAILABLE ON THE CD PROVIDED IN APPENDIX I

Appendix L

Pelham Bay Landfill As-Built Drawings

Appendix M

NYSDEC-Acceptable Electronic Database Site Information

TO BE PROVIDED FOLLOWING PREPARATION OF DEED RESTRICTION

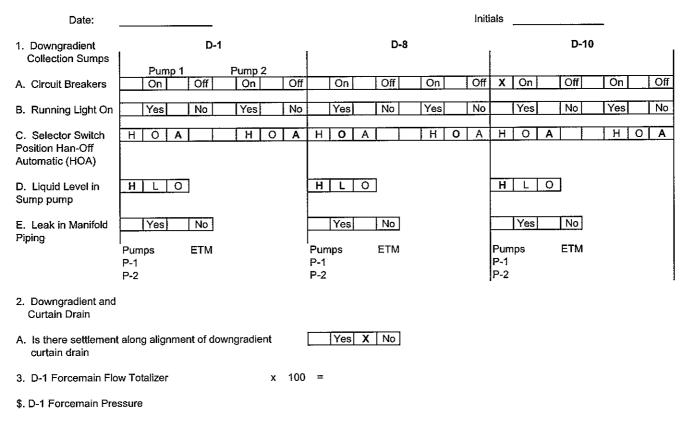
Appendix N

Inspection Checklist Forms

FORM FCS-1 **PERIODIC* INSPECTION CHECKLIST** FINAL COVER SYSTEM PELHAM BAY LANDFILL, BRONX, NEW YORK

(Reference Volume III, Figure 2-1)

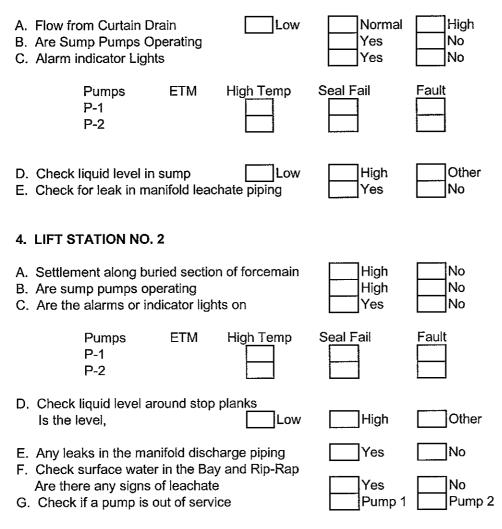
Item	Item						Z	one N	umbe	r					
No.	Title	1	2	3	4	- 5 -	6	- 7	8	9	10	11	12	13_	14
1	Surface Cracks														
2	Vegetative Growth				<u> </u>										
3	Vector Penetration														L
4	Settlement														
5	Erosion														
6	Slope Stability														
7	Seepage														
8	Vandalism														


Notes:

* Inspection will be conducted following grass mowing per the DEP approved schedule

- 1. Use a check in the checkbox to indicate that the specific item number in the zone has been inspected and no problems were noted.
- 2. Use "NS" (Not Satisfactory) where problems are noted.
- 3. For boxes checked NS, on Form DP-1, a description of deficiency/problem. Attach additional sheets if necessary

Date


FORM GWL-1 WEEKLY (TWICE WEEKLY) O & M INSPECTION CHECKLIST GROUNDWATER/LEACHATE MANAGEMENT SYSTEM PELHAM BAY LANDFILL (REFERENCE VOLUME III SECTION 4)

A-1

FORM GWL-1 (continued)

3. LIFT STATION NO. 1

FORM GWL-1 (continued)

5. LEACHATE STORAGE CONTAINMENT AREA AND SUMP

Β.	Flow through sump weep holes Are sump pumps operating Alarm indicator Lights		Normal Yes Yes	High No No
	Pumps ETM P-1 P-2	High Temp	Seal Fail	Fault
D.	Check liquid level in sump	Low	High	Other
E.	Is there any leak in the storage manifold discharge piping	tanks and	Yes	No
G.	Check if a pump is out of service	ce	Pump 1	Pump 2
6.	CARBON ADSROPTION SYST	ГЕМ		
	Air Compressors on Activated carbon canisters ope (On Line) ETM Blower 1 Blower 2	rating	Yes Yes	No No
7.	CONTRACT HP-877 FORCE	AIN DISCHAR	GE TO POTW	

A. Leakage from pipwork in valve box beside Lift Station No. 1

B. Settlement along alignment of forcemain to Burr Avenue manhole

	No
	No

Yes Yes

8. MOTOR CONTROL CENTER (MCC)

A. Are all breakers, for the following equipment, in the ON position:

Lift Station No. 1	Yes	No
Lift Station No. 2	Yes	No
Decontamination Sump	Yes	No
Storage Containment Sump	Yes	No
Site Lighting	Yes	No

Notes: For noted deficiencies and problems provide description on form DP-1. Attached additional sheets if necessary.

FORM GWL-2 MONTHLY INSPECTION CHECKLIST MANHOLE AND SUMPS GROUNDWATER/LEACHATE MANAGEMENT SYSTEM PELHAM BAY LANDFILL (REFERENCE VOLUME III SECTION 4)

D-10 <u>0-0</u> D-8-0 **Manhole and Sump Number** D-1 D-6 INITIALS: D-S **D-4** D-3 D-7 **D**-1 Flow into manhole Silt Accumulation Settlement Along **Pipe Connections** Inspection Manhole Cover Curtain Drain Item Settlement DATE: or sump Item No. 4 ŝ 9 35

Item	Inspection					Manhole and Sump Number	and Sum	o Number	ŧ.			
.02	Item	LS-1	LS-2	DS-1	DS-2	LS-2 DS-1 DS-2 TS-1 U-1	U-1	U-2		U-3 U-4 U-5 U-6	U-5	U-6
1	Manhole Cover				-							
2	Silt Accumulation				- P - 47							
n	Settlement											
4	Pipe Connections											
5	Settlement Along											
	Curtain Drain											
9	Flow into manhole											
	or sump											

GROUNDWATER/LEACHATE MANAGEMENT SYSTEM SEMI-ANNUAL INSPECTION CHECKLIST (REFERENCE VOLUME III SECTION 4) **PELHAM BAY LANDILL** MONITORING WELL FORM GWL-3

		WM	119				
			-		_		
		MM	118				
		MM	115B				
	tion	MM	115				
ALS:	ll Designa	MW	114				
INITIALS:	pling We	MM	113				
	Sam	MM	110				
			109				
		MM	106				
		MM	104				
DATE:	Check	For		1. Damage/Vandalism	2. Settlement	3. Accessibility	

Check				Samplin	g Well Des.	ignation			
For	MM	MM	MM	MM	WW WM MM	ΜM	MM	MM	MM
	120	120B	121	122	126	117	117B	124	124B
1. Damage/Vandalism									
2. Settlement							-		
3. Accessibility									

Check					ļ
For	PZ-A	PZ-B	PZ-C	PZ-C PZ-D PZ-F	PZ-F
1. Damage/Vandalism	5				
2. Settlement					
3. Accessibility					

Notes: Use a check in the checkbox to indicate that the specific item number in the zone has been inspected and no problems were noted. 1. Use "NS" (Not Satisfactory) where problems are noted.

2. For boxes checked NS, on Form DP-1, a description of deficiency/problem. Attach additional sheets if necessary

FORM LFG-1 WEEKLY(TWICE WEEKLY) INSPECTION CHECKLIST LANDFILL GAS MANAGEMENT SYSTEM PELHAMBAY LANDFILL (REFERENCE VOLUME III, SECTION 5)

Date				
Time				
Technician				
OPERATING BLOWER 1 OR 2	1	2	1	2
. Noise or Vibration	Ok	N/A	Ok	N/A
. Measureable or Oderiferous Gas Leaks	No	Yes	No	Yes
C. Upstream Vacuum-Inches WC	0		0	
). Downstream Pressure -Inches WC				
. Inlet Temperature-Degree F				
. Discharge Temperature-Degree F				
BLOWER CONTROL PANEL				
A. Disconnect Blower 1 and 2 Switch				
Flow Meter-CFM, Min & Max				
C. Hour Meter Blower 1 (Zero=)				
Blower 2 (Zero=)				
 Blower 1 or Blower 2 Running Light 	<u> </u>	2	11	2
. The Blower Hand-Off_Auto Switch	Off	Auto	Off	Auto
. Blower 1 or 2 Current Alarm	Off	On	Off	On
3. High Motor Current Alarm	Off		Off	
I. Reset Alarm				
5. FLARE CONTROL PANEL				
A. Panel Power Switch	Off	On	Off	On
3. Panel Power Light	Off	On	Off	On
C. Start-Up Sequence Switch	Auto			
D. Local Unit Control Switch	Start/Run	Stop	Start/Run	Stop
E. Unit Stop				
F. Security Light	Off	On	Off	On
G. Purge Start				
H. Low Purge Air Flow, Red Indicator Light	Off	On	Off	On
Purging, Blue Indicator Light	Off	On	Off	On
J. Purge Complete, Amber Indicating Light	Off	On	Off	On
< Ignition Start				
. Pilot Gas On, Green Indicator Light	Off	On	Off	On
M. Flame Proved, Green Indicator Light	Off	On	Off	<u> </u>
N. Waste Inlet Valve	C	O Auto	C	O Auto
O. Waste Gas On, Green Indicator Light	Off	On	Off	Ön
P. Flare Reset	[
Q. Waste Gas Blower Failure, Red Indicator Light	Off	On	Off	On
R. High Flare Temperature, Red Indicator Light	Off	On	Off	On
S. Flare Failure, Red Indicator Light	Off	On	Off	On
4. FLARE			l	
A. Flame Condition	Good	N/A	Good	N/A
B. Abnormal Burner Hotspots	Yes	No	Yes	No
C. Unusual Sounds or Odors	Yes	No	Yes	No
D. Damper Motor Running	Yes	No	Yes	No
Manual Damper Postion				
5. PIPING				
A. General Condition	OK		OK	
B. Propane Tank Pressure/Level-PSIG				
C. Inlet Valve Position		% Open		% Op
D. LFG Flowrate-CFM			1	
E. Gauges Operational?	Yes	No	Yes	No
F. Nitrogen Pressure-PSIG			1	
6. SITE CONDITION	· · · · ·			
			Good	Bac
Vandalism, Cleanliness	Good	Bad	1 9000	Dut

Comments

MONTHLY MONITORING LANDFILLL GAS MANAGEMENT SYSTEM PELHAM BAY LANFDFILL **REFERENCE VOLUME III SECTION 5**

.

-

	Remarks																								
Date:	Pressure	Differential		t gen																909 r.					
	Static	Pressure									0.048														
	Temp	(F)																							
	Volume	Oxygen											-												
	Concentration by %	CO_2																							
ctor:	Concentra	Methane																							
Inspector:	Location		Flare Inlet	Well Head No. 1	Well Head No. 2	Well Head No. 3	Well Head No. 4	Well Head No. 5	Well Head No. 6	Well Head No. 7	Well Head No. 8	Well Head No. 9	Well Head No. 10	Well Head No. 11	Well Head No. 12	Well Head No. 13	Well Head No. 14	Well Head No. 15	Well Head No. 16	Well Head No. 17	Well Head No. 18	Well Head No. 19	Well Head No. 20	Well Head No. 21	Well Head No. 22

FORM LFG-3

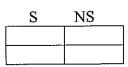
QUARTERLY* CHECKLIST GAS COLLECTION SYSTEM, BELOW GROUND PIPING LANDFILL GAS MANAGEMENT SYSTEM PELHAM BAY LANDFILL, BRONX NEW YORK (REFERENCE VOLUME 1 FIGURE 2-11)

PERFORATED HORIZONTAL GAS COLLECTION

- TOP OF LANFILL, HORIZONAL GAS COLLECTION
- BOTTOM OF LANFILL, HORIZONTAL GAS COLLECTION

LATERALS SOLID PIPING

- FROM EW-4 TO EW-10 AND MAIN HEADER
- FROM EW-7 TO EW-10
- FROM EW-11 TO MAIN HEADER
- FROM EW-12 TO MAIN HEADER
- FROM EW-13 TO MAIN HEADER
- FROM EW-14 TO MAIN HEADER
- FROM EW-15 TO MAIN HEADER
- FROM EW-17 TO MAIN HEADER
- FROM EW-20 TO MAIN HEADER


MAIN HEADER SOLID PIPING

- FROM VB-1 TO VB-2
- FROM VB-2 TO VB-3 AND VB-6
- FROM VB-1 TO VB-5
- FROM VB-5 TO VB-4 AND VB-6
- FROM VB-6 TO FLARE STATION

Notes:

*: Inspection will be conducted following periodic grass mowing as approved by the DEP

- 1. The inspection or the belowground gas collection and conveyance piping from well head to flare station the operator shall check for pipe settlement, landfill gas leak and any exposed piping.
- 2. Use an "S" check box to indicate that the specific item has been inspected and no problems were noted.
- 3. Use "NS" (not satisfactory) where problems are noted, and provide a description of the deficiency problem on Form DP-1. Attach additional sheets if necessary.

FORM SMS-1 MONTHLY INSPECTION CHECKLIST STORMWATER DRAINAGE DITCHES STORMWATER MANAGEMENT SYSTEM PELHAM BAY LANDFILL, BRONX, NEW YORK (Reference Volume I, Figures 2-2 and 2-3

Item	Item						Z	one N	umbe	er					
	Title	1	2	3	4	5	6	7	8	9	10	11	12	13	14
No.	Drainage Ditch Road A														
1	Overgrown Vegetation														
2	Standing Water								L						
3	Sediments and Debris														
4	Erosion/Washouts														
5	Sinkholes														
6	Culvert Road A to Road B														
7	Flapgate at 6" pipe Outlet														
	Drainage Ditch, Road B														
1	Overgrown Vegetation														
2	Standing Water														
3	Sediments and Debris														
4	Erosion/Washouts														
5	Sinkholes														
6	Culvert Road B to Road C														
	Drainage Ditch, Road B ²														
1	Overgrown Vegetation				<u> </u>										<u> </u>
2	Standing Water														ļ
3	Sediments and Debris							ļ	L			<u> </u>			<u> </u>
4	Erosion/Washouts							ļ							<u> </u>
5	Sinkholes														
6	Culvert Road B to Road C														
	Drainage Ditch, Road C														
1	Overgrown Vegetation								1					ļ	
2	Standing Water									<u> </u>	ļ				──
3	Sediments and Debris										ļ				<u></u>
4	Erosion/Washouts				<u> </u>			ļ						<u> </u>	<u> </u>
5	Sinkholes														

Notes:

1. Use a check in the checkbox to indicate that the specific item number in the zone has been inspected and no problems were noted.

2. Use "NS" (Not Satisfactory) where problems are noted.

3. For boxes checked NS, on Form DP-1, a description of deficiency/problem. Attach additional sheets if necessary

Date:

FORM SMS-2 MONTHLY INSPECTION CHECKLIST STORMWATER DRAINAGE DITCHES STORMWATER MANAGEMENT SYSTEM PELHAM BAY LANDFILL, BRONX, NEW YORK (Reference Volume I, Figures 2-2 and 2-3

Stormwater Collection Manholes (SP Series) Manhole Number Item Item SP2 SP4 **SP11** SP3 SP5 SP6 SP7 SP8 SP9 SP10 SP1 No. Title Trashracks 1 Silt Accumulation 2 Pipe Connections to Manhole 3 Flow From 8" HDPE Inlets 4 5 Debris/Silt Blockage in 24" Pipe Settlement Along 24" Pipe 6 Settlement Around Manhole 7 **Baffles Inside Manhole** 8

	Pond Collection Manholes (CP Series)												
Item	Item	Manhole Number											
No.	Title	CP1	CP2	CP3	CP4	CP5							
1	Grates												
2	Silt Accumulation												
3	Flow Through Manhole												
4	Settlement Above 30" Pipe												

	Baffled Outlets (BO Series)											
Item	Item	Manhole Number										
No.	Title	BO1	BO2	BO3	BO4							
1	Silt Accumulation											
2	Connection to 24" Pipe											
3	Erosion Around Structure											
4	Spalling, Cracking, etc.											
5	Weep Holes											
6	Guard Rails											

Notes:

- 1. Use a check in the checkbox to indicate that the specific item number in the zone has been inspected and no problems were noted.
- 2. Use "NS" (Not Satisfactory) where problems are noted.
- 3. For boxes checked NS, on Form DP-1, a description of deficiency/problem. Attach additional sheets if necessary

Date:

FORM SMS-3 MONTHLY INSPECTION CHECKLIST SEDIMENTATION PONDS STORMWATER MANAGEMENT SYSTEM PELHAM BAY LANDFILL, BRONX, NEW YORK

(Reference Volume I, Figure 2-3)

	Inspection Item	Check Box			Check Box
S	Sedimentation Pond A			Sedimentation Pond C	
	Pond			Pond	
1	Minimum 2 ft. Freeboard		1	Minimum 2 ft. Freeboard	
2	Silt Accumulation		2	Silt Accumulation	
3	Slope Erosion/Stability		3	Slope Erosion/Stability	
4	Debris		4	Debris	
	Outlet Structure		5	Riprap	
1	Debris/Silt Blockage			Inlet Structure	
2	Connections to Pipe		1	Debris/Silt Blockage	
3	Erosion Around Structure		2	Connections to Pipe	
4	Spalling, Cracking, etc.		3	Erosion Around Structure	
			4	Spalling, Cracking, etc.	
	Sedimentation Pond B		5	Riprap	
	Pond			RCP Inlet Section	
1	Minimum 2 ft. Freeboard		1	Debris/Silt Blockage	
2	Silt Accumulation		2	Connections to Pipe	
3	Slope Erosion/Stability		3	Erosion Around Structure	
4	Debris		4	Spalling, Cracking, etc.	
	Inlet Structure		5	Weepholes	
1	Debris/Silt Blockage		6	Trashrack	
2	Connections to Pipe		7	RC Pipe	
3	Erosion Around Structure			RCP Outlet Section	
4	Spalling, Cracking, etc.		1	Debris/Silt Blockage	
	Outlet Structure		2	Connections to Pipe	
1	Debris/Silt Blockage		3	Erosion Around Structure	
2	Connections to Pipe		4	Spalling, Cracking, etc.	
3	Erosion Around Structure		5	Trashrack	
4	Spalling, Cracking, etc.		6	Flapgate	
			7	Spillway Riprap	

Notes:

1. Use a check in the checkbox to indicate that the specific item number in the zone has been inspected and no problems were noted.

2. Use "NS" (Not Satisfactory) where problems are noted.

3. For boxes checked NS, on Form DP-1, a description of deficiency/problem. Attach additional sheets if necessary

FORM AS-1 MONTHLY INSPECTION CHECKLIST ANCILLARY SYSTEMS PELHAM BAY LANDFILL, BRONX, NEW YORK

(Reference Volume I, Section 2.2 and Volume III, Section 6)

	Description	Check Box	If N/S or NI, description and location
IRM Ro	adway		
1	Rutting		
2	Depressions/Settlement		
3	Washout		
4	Pavement Condition		
5	Reflectors		
Road A			
1	Rutting		
2	Depressions/Settlement		
3	Washout		
4	Pavement Condition		
5	Reflectors		
Road B			
1	Rutting		
2	Depressions/Settlement		
3	Washout		
4	Pavement Condition		
5	Reflectors		
Road B ²			
1	Rutting		
2	Depressions/Settlement		
3	Washout		
4	Pavement Condition		
5	Reflectors		
Road C			
1	Rutting		
2	Depressions/Settlement		
3	Washout		
4	Pavement Condition		
5	Reflectors		
Perimete	r Fence, Gates, Locks		
Seawall	Condition		

Notes:

1. Use a check in the checkbox to indicate that the specific item number in the zone has been inspected and no problems were noted.

2. Use "NS" (Not Satisfactory) where problems are noted.

3. For boxes checked NS, on Form DP-1, a description of deficiency/problem. Attach additional sheets if necessary

Date:

FORM NO, DP-1 **DESCRIPTION OF DEFICIENCIES AND PROBLEMS** PELHAM BAY LANDFILL, BRONX, NEW YORK

Form No.	Location	Description of Deficiency/Problem	Corrective Action Taken	÷
				i.
		· · · · · · · · · · · · · · · · · · ·		
<u> </u>		······································		
·····	•	-		
				· .
			·····	
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	•			
			·	
			· · · · · · · · · · · · · · · ·	<i>*</i> •
····				

Date _____

Weather _____

Inspected by _____

Signature

1. 1.

.

Appendix O

Sewer Discharge Permit Table A

TABLE	А
-------	---

				Monthly	Average Leachate	Maximum Leachate
Parameter ¹	Daily Limit	Units	Sample Type ⁹	Limit	Concentrations ⁶	Concentration 7
Non-polar Material ²	50	mg/L	Instantaneous		<5.0	<5.0
pH	5-11	\$U's	Instantaneous	_	7.56	7.97
Temperature	<150	Degree F	Instantaneous		1	-
Flash Point	>140	Degree F	Instantaneous		>212	>212
	2	mg/L	Instantaneous			
Cadmium	0.69	mg/L	Composite		0.0010	0.0012
Chromium (VI)	5	mg/L	Instantaneous		<0.02	<0.02
Copper	5	mg/L	Instantaneous	_	0.0294	0.0570
Lead	2	mg/L	Instantaneous		0.0254	0.0402
Mercury	0.05	mg/L	Instantaneous	_	<0.01	<0.02
Nickel	3	mg/L	Instantaneous	_	0.0133	0.0253
Zinc	5	mg/L	Instantaneous		0.79	2.94
Benzene	134	ppb	Instantaneous	57	0.72	0.72
Carbontetrachloride	-	ppb	Composite		<10	<10
Chloroform		ppb	Composite		0.95	0.95
1,4 Dichlorobenzene	-	ppb	Composite	-	<10	<10
Ethylbenzene	380	ppb	Instantaneous	142	<10	<10
MTBE (Methyl-Tert-Butyl-Ether)	50	ppb	Instantaneous	-	<10	<10
Naphthalene	47	ppb	Composite	19	<10	<10
Phenol		ppb	Composite		<10	<10
Tetrachloroethylene (Perc)	20	ppb	Instantaneous		<10	<10
Toluene	74	ppb	Instantaneous	28	<10	<10
1,2,4 Trichlorobenzene		ppb	Composite	—	<10	<10
1,1,1 Trichloroethane	_	ppb	Composite		<10	<10
Xylenes (Total)	74	ppb	Instantaneous	28	<10	<10
PCB's (Total) ³	1	ppb	Composite		<0.065	< 0.065
Total Suspended Solids (TSS)	350 4	mg/L	Instantaneous		48.45	191.00
CBOD5 5,8	_	mg/L	Composite		13.30	20.20
Chloride ⁵	. <u></u>	mg/L	Instantaneous		479.83	1100.00
Total Nitrogen 5		mg/L	Composite		45.20	123.90
Total Solids 5			Instantaneous	-	600.00	600.00
Other						_

LIMITATIONS FOR EFFLUENT TO SANITARY OR COMBINED SEWERS

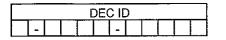
- 1. All handling and preservation of collected samples and laboratory analyses of samples shall be performed in accordance with 40 C.F.R. pt. 136. If 40 C.F.R pt. 136 does not cover the pollutant in question, the handling, preservation, and analysis must be performed in accordance with the latest edition of "Standard Methods for the Examination of Water and Wastewater." All analyses shall be performed using a detection level less than the lowest applicable regulatory discharge limit. If a parameter does not have a limit, then the detection level is defined as the least of the Practical Quantitation Limits identified in NYSDEC's <u>Analytical Detectability and Quantitiation Guidlines for Selected Environmental Parameters</u>, December 1988.
- Analysis for non-polar materials must be done by EPA method 1664 Rev. A. Non-Polar Material shall mean that portion of the oil and grease that is not eliminated from a solution containing N-Hexane, or any other extraction solvent the EPA shall prescribe, by silica gel absorption.
- Analysis for PCB's is required if *both* conditions listed below are met:
 if proposed discharge ≥ 10,000 gpd;

if duration of discharge > 10 days

Analysis for PCBs must be done by EPA method 608 with MDL=<65 ppt. PCB's (total) is the sum of PCB-1242 (Arochlor 1242), PCB-1254 (Arochlor 1254), PCB-1221 (Arochlor 1221), PCB-1232 (Arochlor 1248), PCB-1260 (Arochlor 1260) and PCB-1016 (Arochlor 1016)

4. For discharge ≥10,000 gpd, the TSS limit is 350 mg/L. For discharge < 10,000 gpd, the limit is determined on a case by case basis.

- Analysis for Carbonaceous Biochemical Oxygen Demand (CBOD), Chloride, Total Solids, and Total Nitrogen are required if proposed discharge is ≥ 10,000 gpd.
- 6. The average leachate concentrations were determined by averaging analytical laboratory sample results from May of 2004 to December of 2006. Five samples were taken over this time period. Analysis for total PCBs, non-polar materials, total solids, and flashpoint was done only for the December 5, 2006 sample.
- 7. The maximum leachate concentration is the highest analytical result for the specified analyte during the period from May 2004 to December 2006.
- 8. CBOD5 concentrations are the analytical sample results for BOD5.


9. All samples were collected as grab samples from the pumping station before discharged to the sewer. Leachate concentrations are not

Appendix P

NYSDEC Air Facility Registration and Air Facility Registration Certificate

New York State Department of Environmental Conservation Air Facility Registration

Name

		Owner/Firm					Taxpayer ID 6 4 0 0 4 3 4
Name	New York City Department o	f Environmental Pr	otection				
Street Address	96-05 Horace Harding Expre	ssway, 2 nd Floor					
City / Town / Village	Corona	State or Province	New York	Country	USA	Zip	11368

Owner/Firm Contact Douglas S. Greeley, P.E., Deputy Commissioner

Phone No. (718) 595-6389

	Facility	
Name	Pelham Bay Landfill	
Location Address	301 Shore Road	
📕 City / 🗆 Town / 🗀 Village	Bronx, New York	Zip 10465

Facility Information Total Number of Emission Points: 1 (Flare) Cap by Rule Description The Pelham Bay Landfill (PBL) is currently closed and, in accordance with the August 1993 Record of Decision, the following remedial program was implemented with the ongoing operation, maintenance and monitoring of the remedial program: (1) conduct a remedial design program; (2) re-grade portions of the Site to ensure proper drainage and minimize erosion; (3) install an actively vented cover, consistent with Part 360 requirements, to minimize surface infiltration of precipitation and collect gases generated by the waste: (4) install a landfill gas collection and treatment system (see details below) to recover and treat gases generated at the Site and prevent off-site migration; (5) install a groundwater management system, consisting of a slurry wall and upgradient collection trench along the southwestern Site boundary (i.e., the upgradient system), to minimize the migration of groundwater onto the Site; (6) install a leachate collection system and a force-main to transmit leachate to the Hunts Point Water Pollution Control Plant; (7) installation of fencing to limit Site access; and (8) implementation of a post-closure monitoring program to evaluate performance of the remedial program. The volume of the landfill, including waste, and cover soil is approximately 8,130,000 cubic yards (Figure 1). The PBL gas collection, monitoring and treatment system consists of 22 gas extraction wells, 4 gas monitoring wells, and 10 surface monitoring points, a gas venting layer at the surface of the landfill, a perimeter gas collection pipe around the base of the landfill, and an enclosed flare system. Extracted gas is conveyed, via polyethylene piping, to the enclosed flare system. The gas flare system consists of two centrifugal blowers and a burner management system. Each blower is designed to operate at a flow rate of 1,500 standard cubic feet per minute (SCFM); however, the maximum gas flow rate through the system during the year 2005

was approximately 1,150 SCFM. During normal operation, one blower is on-line while the other is in standby mode. The approximately 7-feet in diameter and 40-feet in height gas flare is operated at approximately 1,600 degrees Fahrenheit (deg F).

Staluard industrial classification codes					
4953	(Refuse System)				

HAP CAS Numbers				
See				
Table 1				

Applicable Federal and New York State Requirements (Part Nos.)					
201-4 (3) and (5)					

Certification					
l certify that this facility will be operated in conformance with all provisions of existing regulations.					
Responsible Official Douglas S. Greeley, P.E., Deputy Commissioner	Title	Deputy Commissioner			
Signature	Date	/			

New York State Department of Environmental Conservation

Registration ID: 2-6006-00127/00001

Facility DEC ID: 2-6006-00127

Fuel Sachs

2006

d I NOW

J

 \sim

င္ တ

Xc Sporgel

AIR FACILITY REGISTRATION CERTIFICATE in accordance with 6NYCRR Part 201-4

Registration Issued to:

Contact:

NYC DEPT OF ENVIRONMENTAL PROTECTION 96-05 HORACE HARDING EXPWY FLUSHING,NY 11368 DOUGLAS S GREELEY NYCDEP/BWT 96-05 HORACE HARDING EXPWY 2ND FL CORONA,NY 11368

Facility:

PELHAM BAY LANDFILL 301 SHORE RD BRONX,NY 10465

(718) 595-5050

Description:

The Pelham Bay Landfill (PBL) is currently closed and, in accordance with the August 1993 Record of Decision, the following remedial program was implemented with the ongoing operation, maintenance and monitoring of the remedial program :(1) Conduct a remedial design program; (2) re-grade portions of the site to ensure proper drainage and minimize erosion; (3) install an actively vented cover, consistent with Part 360 requirements, to minimize surface infiltration of precipitation and collect gases generated by the waste; (4) install a landfill gas collection and treatment system (see details below) to recover and treat gases generated at the site and prevent off-site migration; (5) install a ground water management system, consisting of a slurry wall and up gradient collection trench along the south western site boundary(i.e. the up gradient system), to minimize the migration of ground water onto the site; (6) install a leachate collection system and a force -main to transmit leachate to the Hunts Point Water Pollution Control Plant; (7) Installation of fencing to limit site access; and (8) implementation of a post closure monitoring program to evaluate of the remedial program. The volume of the landfill, including the waste and cover soil is approximately 8,130,000 Cubic Yards.

The PBL gas collection, monitoring and treatment system consists of 22 gas extraction wells, 4 gas monitoring wells and 10 surface monitoring points, a gas venting layer at the surface of the landfill, a perimeter gas collection pipe around the base of the land fill and an enclosed flare system. Extracted gas is conveyed, via polyethylene piping to the enclosed flare system. The gas flare system consists of two centrifugal blowers and a burner management system. Each blower is designed to operate at a flow rate of 1500 standard cubic feet per minute (SCFM): however maximum gas flow rate through the system during the year 2005 was approximately 1150SCFM. During normal operation, one blower is on-line while other is standby mode. The approximately 7 feet in diameter and 40 feet in height gas flare is operated at approximately 1,600deg F.

Total Number of Emission Points:

Cap By Rule: No

FINAL

10/24/2006

New York State Department of Environmental Conservation

Registration ID: 2-6006-00127/00001

Facility DEC ID: 2-6006-00127

AIR FACILITY REGISTRATION CERTIFICATE in accordance with 6NYCRR Part 201-4

Authorized Activity By Standard Industrial Classification Code:

4953 - REFUSE SYSTEMS

Registration Effective Date: 10/24/2006

Registration Expiration Date: (Not Applicable)

List of Regulations in Application: 6NYCRR 200 General Provisions Permits and Certificates **6NYCRR 201**

SAM LIEBLICH **REGION 2 AIR POLLUTION CONTROL ENGINEER** NYSDEC - REGION 2 47-40 21ST STREET LONG ISLAND CITY, NY 11101

FINAL

10/24/2006

This registrant is required to operate this facility in accordance with all air pollution control applicable Federal and State laws and regulations. Failure to comply with these laws and regulations is a violation of the ECL and the registrant is subject to fines and/or penalties as provided by the ECL. If ownership of this facility changes, the registrant is required to notify the Department at the address shown below using the appropriate forms and procedures within 30 days after the transfer takes place. The present registrant will continue to be responsible for all fees and penalties until the Department has been notified of any change in ownership.

Appendix Q

· • .

Stormwater Permitting Evaluation Correspondence

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Emily Lloyd Commissioner

Douglas S. Greeley, P.E. Deputy Commissioner

Bureau of Wastewater Treatment

Tel· (718) 595-5330 Pax. (718) 595-6950 DGreeley@dep.nyc/gov Angus Eaton, P.E. Section Chief, General Permits Section New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-3505

> Subject: Storm Water Permitting Evaluation, Pelham Bay Landfill, Bronx, New York

June 15, 2006

Dear Mr. Eaton:

The purpose of this letter is to confirm our consultant's, ARCADIS G&M, telephone conversations and e-mail correspondence with the New York State Department of Environmental Conservation (NYSDEC) regarding storm water permitting for capped and closed landfills. ARCADIS was contracted by the New York City Department of Environmental Protection (NYCDEP) to evaluate the storm water permitting requirements for the Pelham Bay Landfill, located in the Bronx, New York. After an initial evaluation of permitting requirements was completed, ARCADIS held a meeting on March 23, 2006 with NYCDEP and NYSDEC's case manager, Nigel Crawford, to review findings and discuss storm water permitting at the Pelham Bay Landfill.

Based on the summary provided below, we believe that the Pelham Bay Landfill is not subject to General Permitting requirements for storm water.

Site Background

22

The Pelham Bay Landfill was opened in 1963 to mainly handle the waste (municipal waste, commercial waste and demolition debris) from the Bronx. The landfill ceased operations in 1978 and has remained inactive since that date. New York City conducted a Remedial Investigation/Feasibility Study (RI/FS) in 1992, and thereafter the site was closed and capped in accordance with a Record of Decision (ROD) issued by NYSDEC in 1993 and NYSDEC regulations. Currently, the site is undergoing post-closure monitoring.

As a part of the landfill closure, the landfill was capped and a storm water management system was installed. Storm water runoff from the landfill is diverted through a series of swales, baffled outlets and drainage pipes. The storm water is directed to one of three sedimentation ponds located around the landfill and then flows by gravity to an outfall located on the northeast side of the landfill into Eastchester Bay.

ŝ.

Storm Water Permitting Evaluation

The National Pollutant Discharge Elimination System (NPDES) Program under Sections 318, 402, and 405 of the Clean Water Act (CWA) provides that storm water discharges associated with industrial activity from a point source to waters of the United States are unlawful, unless authorized by a NPDES permit. In New York, which is a NPDES delegated state, this is accomplished through the administration of the State Pollutant Discharge Elimination System (SPDES) program.

Pursuant to Article 17, Titles 7, 8 and Article 70 of the Environmental Conservation Law, Permit No. GP-98-03 is required for a storm water discharge associated with industrial activity. As defined in 40 CFR 122.26(b)(14), landfills, land application sites, and open dumps that receive or have received any industrial wastes (waste that is received from any of the facilities described under this subsection) including those that are subject to regulation under Subtitle D of Resource Conservation and Recovery Act (RCRA) are considered to be engaging in an "industrial activity".

Based on ARCADIS' discussions with your Department, the NYSDEC interprets the rule to not include requirements for permits for capped and closed landfills, unless the NYSDEC explicitly designates the landfill as requiring a permit.

As ARCADIS discussed with your department, 40 CFR 122.26(b)(14)(v) covers landfills, land application sites, and open dumps (non-compliant landfills) that receive or have received industrial wastes (i.e., waste that is received from any of the facilities described under categories(i)-(xi)) including those subject to the regulations under Subtitle D of RCRA. Additionally, the monitoring requirements for GP-98-03, for land disposal units/incinerators, refers to "storm water discharges from any active or inactive landfill, land application site or open dump without a stabilized final cover that has received industrial waste . . . "The Sector L benchmark monitoring requirements in Environmental Protection Agency's (EPA's) multi-sector general permit apply to all landfills, land application sites and open dumps, except for municipal solid waste landfill (MSWLF) areas closed in accordance with 40 CFR 258.60 (which is the MSWLF closure and post closure care requirements). Also, Sector L of EPA's multi-sector general permit requires compliance monitoring of storm water discharges from MSWLFs that have not been closed in accordance with 40 CFR 258.60.

Based on the above information:

• A storm water permit is not required if the landfill is properly capped in accordance with applicable regulations (Subtitle C for MSWLFs or Subtitle D for RCRA landfills) and the facility has a post closure care program to inspect and maintain the cap.

C1Documents and Settings/Rodriguez.3My Documents/WalterJan-Dec 2006/NYSDEC Storm Water Letter.doc

Page: 2/3

- Ŷ
- A permit is needed for non-compliant landfills that have not been closed in accordance with applicable regulations (Subtitle C for MSWLFs or Subtitle D ۲ for RCRA landfills) closure and post closure care regulations. These facilities must also monitor their storm water and comply with Numeric Limitations for specific parameters identified in 40 CFR 445 Subparts A & B.

Therefore, as stated previously and based on the summary provided, we believe that the Pelham Bay Landfill is not subject to the General Permitting requirements for storm water based on the following rational:

- The facility is inactive and capped in accordance with NYSDEC requirements.
- There is no waste in contact with storm water, the appropriate barriers are in place to prevent any storm water to come in contact with a waste stream and a post closure care program, approved by NYSDEC, is in place to inspect and maintain the cap.

Please let me know if this is not consistent with your understanding.

If you have any questions, please contact me at (718) 595-6389 or my staff Rupak Raha, P.E. at (718) 595-6210.

Sincerely,

ey, p.E.

Douglas Greeley, Deputy Commissioner

Copies:

Rupak Raha, BWT, NYCDEP Walter Goyzueta, BWT, NYCDEP Nigel Crawford, NYSDEC Region 2, Case Manager Kyriacos Pierides, ARCADIS Project Manager Christina Berardi Tuohy, P.E., ARCADIS Principal Engineer

C/Documents and Settings/RodriguezJMy Documents/Waller/Jan-Dec 2006/NYSDEC Storm Water Letter.doc

Page: 3/3

From: Angus Eaton [mailto:akeaton@gw.dec.state.ny.us]
Sent: Tuesday, January 09, 2007 10:23 AM
To: Tuohy, Christina Berardi
Subject: RE: Storm Water Permitting

I am very sorry Christina. We had an answer within two days, I guess it did not get sent.

Response:

Given the fact pattern described in your letter, I concur that an industrial stormwater permit is not required for this facility. Angus

Angus Eaton NYS Dept of Environmental Conservation 625 Broadway Albany, NY 12233-3505 518 402 8123

>>> "Tuohy, Christina Berardi" <CTuohy@arcadis-us.com> 01/09/07 9:32 AM >>> Angus,

I hope you had a nice holiday. I called yesterday to follow up with you regarding the permitting status at the Pelham Bay Landfill. If you could please call or respond with an e-mail or letter we would appreciate it. Thank you in advance.

Christina Tuohy, P.E. Principal Engineer ARCADIS Two Huntington Quadrangle, Suite 1S10 Melville, NY 11747 Direct: 631.391-5213 Cell: 516.779-8033 Fax: 631.249-7610 Email: CTuohy@arcadis-us.com

The information contained in this e-mail message is intended only for the personal and confidential use of the recipient(s) named above. This message may be an attorney -client communication, and as such, is privileged and confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution, or copying of this message is strictly prohibited. If you have received this communication in error, please notify us immediately by e-mail, and delete the original message.

From: Tuohy, Christina Berardi Sent: Monday, December 11, 2006 8:18 AM To: 'Angus Eaton' Cc: Pierides, Kyriacos; 'rraha@dep.nyc.gov' Subject: Storm Water Permitting

Angus,

Consistent with our phone calls, I attached the June 15, 2006 letter from the New York City Department of Environmental Protection regarding storm water permitting at the Pelham Bay Landfill. Please review and provide comments.

Thank you,

Christina Tuohy, P.E. Principal Engineer ARCADIS Two Huntington Quadrangle, Suite 1S10 Melville, NY 11747 Direct: 631.391-5213 Cell: 516.779-8033 Fax: 631.249-7610 Email: CTuohy@arcadis-us.com

The information contained in this e-mail message is intended only for the personal and confidential use of the recipient(s) named above. This message may be an attorney -client communication, and as such, is privileged and confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution, or copying of this message is strictly prohibited. If you have received this communication in error, please notify us immediately by e-mail, and delete the original message.

Appendix R

.

Quality Assurance Project Plan

Quality Assurance Project Plan

Pelham Bay Landfill Bronx, New York NYSDEC Site ID Number 2-03-001

ARCADIS

for New York City Department of Environmental Protection

Based on the Intergovernmental Data Quality Task Force Uniform Federal Policy for Quality Assurance Project Plans (Final Version 1, March 2005)

TABLE OF CONTENTS

INTRODUCTION		
QAPP Worksheet #1.	Title and Approval Page	1
QAPP Worksheet #2.	QAPP Identifying Information	2
QAPP Worksheet #3.	Distribution List	6
QAPP Worksheet #4.	Project Personnel Sign-Off Sheet	7
QAPP Worksheet #5.	Project Organizational Chart	11
QAPP Worksheet #6.	Communication Pathways	12
QAPP Worksheet #7.	Personnel Responsibilities and Qualifications Table	13
QAPP Worksheet #8.	Special Personnel Training and Certification Requirements	14
QAPP Worksheet #10.		15
	Project Quality Objectives/Systematic Planning Process Statements	17
	Measurement Performance Criteria Table	19
	Summary of Project Tasks	24
	Reference Limits and Evaluation Table	28
	Project Schedule/Timeline Table	39
	Sampling Design and Rationale	40
	Sampling Locations and Methods/SOP Requirements Table	41
	Analytical SOP Requirements Table	42
	Field Quality Control Sample Summary Table	43
	Project Sampling SOP Reference Table	44
	Field Equipment Calibration, Maintenance, Testing, and Inspection	
	Table	45
QAPP Worksheet #23.	Analytical SOP Reference Table	46
QAPP Worksheet #24.	Analytical Instrument Calibration Table	48
QAPP Worksheet #25.	Analytical Instrument and Equipment Maintenance, Testing, and	
	Inspection Table	50
QAPP Worksheet #26.	Sample Handling System	52
QAPP Worksheet #27.	Sample Custody Requirements	53
QAPP Worksheet #28.	QC Samples Table	55
QAPP Worksheet #29.	Project Documents and Records Table	73
QAPP Worksheet #30.	Analytical Services Table	74
QAPP Worksheet #31.	Planned Project Assessment Table	75
QAPP Worksheet #32.	Assessment Findings and Corrective Action Responses	76
QAPP Worksheet #33.	QA Management Reports Table	77
QAPP Worksheet #34.	Verification (Step I) Process Table	78
QAPP Worksheet #35.	Validation (Steps IIa and IIb) Process Table	79
QAPP Worksheet #36.	Validation (Steps IIa and IIb) Summary Table	80
QAPP Worksheet #37.	Data Usability Assessment	81
Attachment 1 EcoTes	st Laboratories Quality Assurance Manual	
Attachment 2 EcoTes	st Laboratories Control Limits	
Attachment O Furrer	le Chain of Custody Form (FooToot)	
Attachment 3 Examp	le Chain of Custody Form (EcoTest)	

Attachment 4 Decontamination Procedures

QAPP Worksheet #1 Title and Approval Page

Site Name/Project Name: Pelham Bay Landfill

Site Location: Bronx, New York

<u>Quality Assurance Project Plan</u> Document Title

<u>New York City Department of Environmental Protection</u> Lead Organization

<u>Christopher Keen, ARCADIS</u> Preparer's Name and Organizational Affiliation

Two Huntington Quadrangle, Suite 1S10, Melville, New York, (631-391-5277), christopher.keen@arcadisus.com

Preparer's Address, Telephone Number, and E-mail Address

April 25, 2008 Preparation Date (Day/Month/Year)

Post Closure Management Consultant Project Manager:_

Signature

Kyriacos Pierides, ARCADIS, April 25, 2008 Printed Name/Organization/Date

Post Closure Management Consultant QA Officer:

Signature

Donna M. Brown, ARCADIS, April25, 2008 Printed Name/Organization/Date

Lead Organization's Program Manager:

Signature

Rupak Raha, New York City Department of Environmental Protection, April 25, 2008 Printed Name/Organization/Date

Approval Signatures:

Signature

<u>Nigel Crawford – NYSDEC Project Manager, April 25, 2008</u> Printed Name/Title/Date

NYSDEC Region 2

Approval Authority

Other Approval Signatures:

Signature

Document Control Number: <u>QAPP-00</u>

Printed Name/Title/Date

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 1 of 85

QAPP Worksheet #2 QAPP Identifying Information

Site Name/Project Name: Pelham Bay Landfill

Site Location: Bronx, New York Site Number/Code: 2-03-001 Operable Unit: N/A Contractor Name: ARCADIS Contractor Number: N/A Contract Title: N/A Work Assignment Number: N/A Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 2 of 85

1. Identify guidance used to prepare QAPP:

Uniform Federal Policy for Quality Assurance Project Plans

2. Identify regulatory program: <u>New York State Inactive Hazardous Waste Disposal Site Remedial</u> <u>Program</u>

- 3. Identify approval entity: NYSDEC Region 2
- 4. Indicate whether the QAPP is a generic or (project-specific QAPP) (circle one)
- 5. List dates of scoping sessions that were held: N/A
- 6. List dates and titles of QAPP documents written for previous site work, if applicable:

 Title
 April 1991 RI/FS Work Plan Volume 3 – Quality Assurance Project Plan
 Approval Date

7. List organizational partners (stakeholders) and connection with lead organization:

- 8. List data users: <u>New York City Department of Environmental Protection; Severn Trent Environmental</u> <u>Services (STES); ARCADIS; NYSDEC Region 2</u>
- 9. If any required QAPP elements and required information are not applicable to the project, then bold type the omitted QAPP elements and required information on the attached table. Provide an explanation for their exclusion below: <u>Worksheet # 9 is not applicable because project scoping sessions were not necessary</u>. The scope of work is defined in the Operation, Maintenance and Monitoring Manual. Worksheet #13 is not applicable because secondary data will not be used.

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 3 of 85

QAPP Worksheet #2 (continued) QAPP Identifying Information

Required QAPP Element(s) and Crosswalk to Related					
Corresponding QAPP Section(s)	Required Information	Documents			
Project Management and Objectives					
2.1 Title and Approval Page	- Title and Approval Page	1			
2.2 Document Format and Table of	- Table of Contents				
Contents	- QAPP Identifying	2			
2.2.1 Document Control Format	Information				
2.2.2 Document Control Numbering System					
2.2.3 Table of Contents					
2.2.4 QAPP Identifying Information					
2.3 Distribution List and Project Personnel	- Distribution List	3			
Sign-Off Sheet	- Project Personnel Sign-Off	4			
2.3.1 Distribution List	Sheet				
2.3.2 Project Personnel Sign-Off					
Sheet					
2.4 Project Organization	- Project Organizational	5			
2.4.1 Project Organizational Chart	Chart	G			
2.4.2 Communication Pathways 2.4.3 Personnel Responsibilities and	- Communication Pathways - Personnel Responsibilities	6 7			
Qualifications	and Qualifications Table	/			
2.4.4 Special Training Requirements and	- Special Personnel Training	8			
Certification	Requirements Table	0			
2.5 Project Planning/Problem Definition	- Project Planning Session				
2.5.1 Project Planning (Scoping)	Documentation				
2.5.2 Problem Definition, Site History, and	- Project Scoping Session	9			
Background	Participants Sheet	(Not Applicable)			
	- Problem Definition, Site	10			
	History, and Background				
	- Site Maps (historical and				
	present)				
2.6 Project Quality Objectives and	- Site-Specific PQOs	11			
Measurement Performance Criteria					
2.6.1 Development of Project Quality	- Measurement Performance	12			
Objectives Using the Systematic Planning	Criteria Table				
Process					
2.6.2 Measurement Performance Criteria	Courses of Cocordom:				
2.7 Secondary Data Evaluation	- Sources of Secondary Data and Information				
	- Secondary Data Criteria	13			
	and Limitations Table	(Not Applicable)			
2.8 Project Overview and Schedule	- Summary of Project Tasks	14			
2.8.1 Project Overview	- Reference Limits and	15			
2.8.2 Project Schedule	Evaluation Table				
, ,	- Project Schedule/Timeline	16			
	Table				

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 4 of 85

QAPP Worksheet #2 (continued) QAPP Identifying Information

Required QAPP Element(s) and Corresponding QAPP Section(s)	Required Information	Crosswalk to Related Documents
		Documents
Measureme		
3.1 Sampling Tasks	- Sampling Design and	17
3.1.1 Sampling Process Design and	Rationale	
Rationale	- Sample Location Map	
3.1.2 Sampling Procedures and	- Sampling Locations and	18
Requirements	Methods/ SOP	
3.1.2.1 Sampling Collection	Requirements Table	
Procedures	 Analytical Methods/SOP 	19
3.1.2.2 Sample Containers, Volume,	Requirements Table	•
and Preservation	- Field Quality Control	20
3.1.2.3 Equipment/Sample Containers	Sample Summary Table	
Cleaning and Decontamination Procedures	- Sampling SOPs	
3.1.2.4 Field Equipment Calibration,	- Project Sampling SOP	21
Maintenance, Testing, and Inspection	References Table	22
Procedures	- Field Equipment	22
3.1.2.5 Supply Inspection and	Calibration, Maintenance,	
Acceptance Procedures	Testing, and Inspection	
3.1.2.6 Field Documentation	Table	
Procedures 3.2 Analytical Tasks	Analytical SODa	
3.2 Analytical Tasks 3.2.1 Analytical SOPs	- Analytical SOPs	23
3.2.2 Analytical SOFS 3.2.2 Analytical Instrument Calibration	- Analytical SOP References	23
Procedures	- Analytical Instrument	24
3.2.3 Analytical Instrument and Equipment	Calibration Table	24
Maintenance, Testing, and Inspection	- Analytical Instrument and	25
Procedures	Equipment Maintenance,	25
3.2.4 Analytical Supply Inspection and	Testing, and Inspection	
Acceptance Procedures	Table	
3.3 Sample Collection Documentation,	- Sample Collection	26
Handling, Tracking, and Custody Procedures	Documentation Handling,	20
3.3.1 Sample Collection Documentation	Tracking, and Custody	
3.3.2 Sample Handling and Tracking	SOPs	
System	- Sample Container	27
3.3.3 Sample Custody	Identification	
	- Example Chain-of-Custody	Attachment 3
	Form	
3.4 Quality Control Samples	- QC Samples Table	28
3.4.1 Sampling Quality Control Samples	- Screening/Confirmatory	
3.4.2 Analytical Quality Control Samples	Analysis Decision Tree	

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 5 of 85

QAPP Worksheet #2 (continued) QAPP Identifying Information

Required QAPP Element(s) and		Crosswalk to Related
Corresponding QAPP Section(s)	Required Information	Documents
3.5 Data Management Tasks	- Project Documents and	29
3.5.1 Project Documentation and Records3.5.2 Data Package Deliverables3.5.3 Data Reporting Formats	Records Table - Analytical Services Table - Data Management SOPs	30
3.5.4 Data Handling and Management 3.5.5 Data Tracking and Control		
-	ment/Oversight	
4.1 Assessments and Response Actions 4.1.1 Planned Assessments	- Assessments and Response Actions	
4.1.2 Assessment Findings and Corrective	- Planned Project	31
Action Responses	Assessments Table - Audit Checklists - Assessment Findings and Corrective Action Responses Table	32
4.2 QA Management Reports	- QA Management Reports Table	33
4.3 Final Project Report		
Da	ta Review	
5.1 Overview		
5.2 Data Review Steps 5.2.1 Step I: Verification 5.2.2 Step II: Validation	- Verification (Step I) Process Table	34
5.2.2.1 Step IIa Validation Activities 5.2.2.2 Step IIb Validation Activities	- Validation (Steps IIa and IIb) Process Table	35
5.2.3 Step III: Usability Assessment 5.2.3.1 Data Limitations and Actions	- Validation (Steps IIa and IIb) Summary Table	36
from Usability Assessment 5.2.3.2 Activities	- Usability Assessment	37
 5.3 Streamlining Data Review 5.3.1 Data Review Steps To Be Streamlined 5.3.2 Criteria for Streamlining Data Review 5.3.3 Amounts and Types of Data Appropriate for Streamlining 		Not Applicable

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 6 of 85

Document Telephone Control **QAPP** Recipients Title Number Fax Number E-mail Address Number Organization (718) 595-6210 Rupak Raha Program Manager NYCDEP (718) 595-4876 rraha@dep.nyc.gov QAPP-01 NYSDEC Project Nigel Crawford NYSDEC Region 2 (718) 482-4900 (718) 482-6358 nncrawfo@gw.dec.state.ny.us QAPP-02 Manager Kyriacos.Pierides@arcadis-(631) 249-7600 (631) 249-7610 Kyriacos Pierides Project Manager ARCADIS QAPP-03 us.com Carlo.SanGiovanni@arcadis-ARCADIS (631) 249-7600 (631) 249-7610 Carlo San Giovanni Deputy Project Manager QAPP-04 us.com ARCADIS Arnas.Nemickas@arcadis-us.com QAPP-05 Arnas Nemickas Task Manager (631) 249-7600 (631) 249-7610 ARCADIS Donna Brown Project QA Officer (631) 249-7600 Donna.Brown@arcadis-us.com QAPP-06 (631) 249-7610 Christopher.Keen@arcadis-Christopher Keen Project QAPP Preparer ARCADIS (631) 249-7600 (631) 249-7610 QAPP-07 us.com Project Sample Team Severn Trent Thomas Varley (516) 674-6032 (516) 674-0151 TVarley@stes.com QAPP-08 **Environmental Services** Leader EcoTest Laboratories EcoTestLab@aol.com QAPP-9 Thomas Treutlein Laboratory Director (631) 422-5777 (631) 422-5770 QA Manager/ Project QAPP-10 Thomas Powell EcoTest Laboratories (631) 422-5777 (631) 422-5770 EcoTestLab@aol.com Manager

QAPP Worksheet #3 Distribution List

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 7 of 85

QAPP Worksheet #4-1 Project Personnel Sign-Off Sheet

Organization: New York City Department of Environmental Protection

Project Personnel	Title	Telephone Number	Signature	Date QAPP Rea
Rupak Raha	Program Manager	(718) 595-6210		

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 8 of 85

QAPP Worksheet #4-2 Project Personnel Sign-Off Sheet

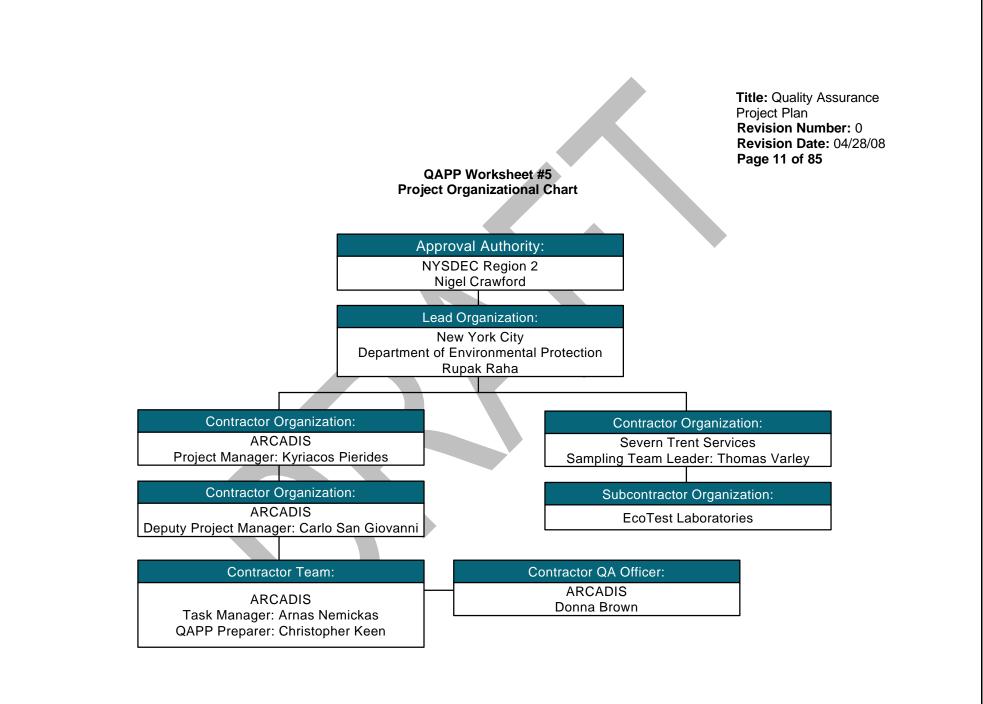
Organization: ARCADIS

Project Personnel	Title	Telephone Number	Signature	Date QAPP Read
Kyriacos Pierides	Project Manager	(631) 249-7600		
Carlo San Giovanni	Deputy Project Manager	(631) 249-7600		
Arnas Nemickas	Task Manager	(631) 249-7600		
Donna Brown	Project QA Officer	(631) 249-7600		
Christopher Keen	Project QAPP Preparer	(631) 249-7600		

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 9 of 85

QAPP Worksheet #4-3 Project Personnel Sign-Off Sheet

Organization: Severn Trent Environmental Services


Project Personnel	Title	Telephone Number	Signature	Date QAPP Read						
Thomas Varley	Sample Team Leader	(516) 674-6032								
			Thomas Varley Sample Team Leader (516) 674-6032							

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 10 of 85

QAPP Worksheet #4-4 Project Personnel Sign-Off Sheet

Organization: EcoTest Laboratories

	Project Personnel	Title	Telephone Number	Signature	Date QAPP Read
ĺ	Thomas Treutlein	Laboratory Director	(631) 422-5777		
	Thomas Powell	QA Manager/Project Manager	(631) 422-5777		

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 12 of 85

Communication Drivers Procedure (Timing, **Responsible Entity** Phone Number Name Pathways, etc.) Project status and schedule updates (718) 595-6210 Point of Contact with NYSDEC PM Lead Organization Program Manager Rupak Raha will be provided to Nigel Crawford by Rupak Raha. Kyriacos Pierides and Carlo San Contractor Project Manager **Kyriacos Pierides** Giovanni will be ARCADIS' liaisons to Manage all Project Phases (631) 249-7600 Contractor Deputy Project Manager Carlo San Giovanni Rupak Raha and Nigel Crawford. Notify Carlo San Giovanni by phone of QAPP Changes in the Field Sampling Team Leader Thomas Varley (516) 674-6032 changes to QAPP made in the field and the reasons. Notify Carlo San Giovanni by phone of Daily Field Progress Reports Sampling Team Leader Thomas Varley (516) 674-6032 field progress on a daily basis. All laboratory QA/QC issues with project field samples will be reported Reporting Lab Data Quality Issues Laboratory Project Manager Thomas Powell (631) 422-5777 by Thomas Powell to Donna Brown within 2 business days. The need for corrective action for field Field Corrective Issues Task Manager Arnas Nemickas (631) 249-7600 issues will be determined by Arnas Nemickas. The need for corrective action for Analytical Corrective Issues Contractor Quality Assurance Officer Donna Brown (631) 249-7600 analytical issues will be determined by Donna Brown. No analytical data can be released Release of Analytical Data Contractor Quality Assurance Officer Donna Brown (631) 249-7600 until validation is completed. Any major changes to the QAPP must NYSDEC Project Manager Nigel Crawford be approved by Nigel Crawford before **QAPP** Amendments (718) 482-4900 the changes can be implemented.

QAPP Worksheet #6 Communication Pathways

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 13 of 85

Name	Name Title		Responsibilities	Education and Experience Qualifications
Rupak Raha	Program Manager	New York City Department of Environmental Protection	Oversees project and responds to NYSDEC	B.S., Chemical Engineering, M.S., Chemical Engineering, Professional Engineer, NY 30+ yrs. Exp.
Kyriacos Pierides	Project Manager	ARCADIS	Manages project – coordinates between lead agency and sampling team/laboratory	B.S., Civil Engineering, M.S., Environmental Engineering, Ph.D., Civil and Environmental Engineering, Professional Engineer, NY 20 yrs. Exp.
Carlo San Giovanni	Deputy Project Manager	ARCADIS	Manages project – coordinates between lead agency and sampling team/laboratory	B.S., Biological Sciences, M.S., Environmental Sciences, 23 yrs. Exp.
Arnas Nemickas	Task Manager	ARCADIS	Coordinates between project manager, ARCADIS project team, and sampling team	B.S., Urban Studies, M.S., Hydrogeology, 15 yrs. Exp.
Donna Brown	Donna Brown QA Officer		QA oversight	B.S., Geology, M.S., Environmental Technology, 16 yrs. Exp.
Christopher Keen	QAPP Preparer	ARCADIS	QAPP preparation	B.S., Geology, 11 yrs. Exp.
Thomas Varley	Thomas Varley Sampling Team Leader		Supervises field sampling and coordinates all field activities	B.S., Environmental Studies, NYS Grade 4A Wastewater Operator Certification, 26 yrs. Exp.
Thomas Treutlein	Thomas Treutlein Laboratory Director		Manages generation of analytical data	B.A., Physics, 37 yrs. Exp.
Thomas Powell	QA Manager / Project Manager	EcoTest Laboratories	Performs lab QA oversight and Manages project – coordinates between client and laboratory and reviews project deliverables for compliance and completeness	B.S., Biology, M.S., Env. Science, 35 yrs. Exp.

QAPP Worksheet #7 Personnel Responsibilities and Qualifications Table

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 14 of 85

QAPP Worksheet #8 Special Personnel Training and Certification Requirements Table

Project Function	Specialized Training – Title or Description of Course	Training Provider/ Certification Authority	Training Date	Personnel/Groups Receiving Training	Personnel Titles/ Organizational Affiliation	Location of Training Records/Certificates ¹
Field Activities	40-hour HAZWOPER	Certified Training Professionals	NA	Field operations personnel	STES Personnel	STES Project Offices
Analytical Chemistry	NELAP Accreditation	New York State Department of Health	NA	NA	EcoTest Laboratories	EcoTest Laboratories
Analytical Chemistry	New York Certification	New York State Department of Health	NA	NA	EcoTest Laboratories	EcoTest Laboratories

Additional Training/Certification Requirements are listed in the Project Health and Safety Plan

1. Current HAZWOPER training certificates will be maintained in a file at the primary office location for each employee performing activities where 40-hour training is required for the position assignment.

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 15 of 85

QAPP Worksheet #10 Problem Definition

PROBLEM DEFINITION

The Pelham Bay Landfill (Site) contains residual waste materials left after completion of the Remedial Action performed under the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program (State Superfund Program). Engineering Controls (ECs) have been incorporated into the Site remedy to provide proper management of residual waste materials in the future and to ensure protection of public health and the environment. Monitoring is required to evaluate the performance and effectiveness of the implemented ECs in reducing or mitigating contamination at the Site.

The groundwater component of the Groundwater and Leachate Management System consists of a low-permeability vertical barrier cut-off wall and an upgradient collector drain located on the Pelham Bay Park side of the cut-off wall to control groundwater gradients. Groundwater quality samples are collected on a semi-annual basis from the monitoring well network to evaluate the effectiveness of the remedial measures. In addition, groundwater elevations are measured in monitoring wells and piezometers to monitor the groundwater and leachate levels on either side of the cut-off wall, upgradient and downgradient, respectively.

The leachate component of the Groundwater and Leachate Management System consists of downgradient collector drains, collection manholes and collection sumps, a curtain drain, lift stations, and a force main that discharges leachate to Hunts Point Water Pollution Control Plant. Leachate samples are collected as grab samples on a semi-annual basis from Collection Sump No. D-1.

The Landfill Gas Management and Flare System includes the landfill gas collection system and the blower/gas flare system. The system collects, monitors, and controls gas emissions associated with the landfill. Gas monitoring wells are tested and landfill surface gas is monitored on a semi-annual basis to evaluate the effectiveness of the remedial measures.

The Stormwater Management System is designed to remove storm water runoff from the landfill surface during storm events in order to prevent ponding of water on the landfill, provide sediment control prior to discharge to Eastchester Bay, control the effects of erosion on the landfill cap, and collect precipitation infiltrating through the barrier soil to the drainage system above the geo-membrane liner. Storm water samples are collected on a semi-annual basis from the effluent of Sedimentation Pond C.

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 16 of 85

QAPP Worksheet #10 (continued) Problem Definition

PROJECT DESCRIPTION

A Site Management Plan (SMP) is required for fulfillment of Remedial Action at the Site under the State Superfund Program administered by New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with the Order on Consent (Consent Order) Index # 2-03-001, Site # 2-03-001, which was originally issued in 1985 and was updated on April 17, 1990, and the Record of Decision (ROD), which was issued on August 31, 1993. After completion of the remedial work described in the ROD, some contamination was left in the subsurface at this Site, which is referred to as 'residual waste materials.' For the purposes of the SMP, residual waste materials are defined as municipal solid waste that may be commingled with hazardous materials. The SMP was prepared to manage residual waste materials at the Site in perpetuity or until extinguishment of the requirement by the NYSDEC. The SMP provides a detailed description of all procedures required to manage residual waste materials at the Site following the completion of the Remedial Action in accordance with the NYS Consent Order with the NYSDEC, and includes a Monitoring Plan. This QAPP has been prepared as an Appendix to the SMP and is associated with the Monitoring Plan to provide Quality Assurance/Quality Control (QA/QC) for the monitoring measures that are being conducted to evaluate the performance and effectiveness of the implemented ECs in reducing or mitigating contamination at the Site.

Title: Quality Assurance Project Plan Revision Number: 0 Revision Date: 04/28/08 Page 17 of 85

QAPP Worksheet #11 Project Quality Objectives/Systematic Planning Process Statements

WHO WILL USE THE DATA?

Data will be used by the New York City Department of Environmental Protection (NYCDEP), STES, ARCADIS, and NYSDEC Region 2.

WHAT WILL THE DATA BE USED FOR?

The data will be used for evaluating the performance and effectiveness of the implemented ECs in reducing or mitigating contamination at the Site.

WHAT TYPE OF DATA ARE NEEDED?

The monitoring program includes the following elements:

- § Groundwater quality samples are collected from a network of ten (10) on-site monitoring wells during the semi-annual sampling events and are submitted to the laboratory for the analysis of target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, target analyte list (TAL) metals, cyanide, and conventional leachate parameters (ammonia, bicarbonate alkalinity, carbonate alkalinity, chemical oxygen demand (COD), chloride, nitrate, sulfate, Total Kjeldahl Nitrogen (TKN), and total dissolved solids). Water quality parameters are also measured in the field during groundwater sampling.
- § Groundwater elevations are measured in a network of fifteen (15) monitoring wells during the semi-annual sampling events.
- § Leachate samples are collected from Collection Sump No. D-1 during the semi-annual sampling events and are submitted to the laboratory for the analysis of TCL VOCs, TCL SVOCs, TCL pesticides, TAL inorganics, cyanide, and conventional leachate parameters.
- Storm water samples are collected from the effluent of Pond C during the semi-annual sampling events and are submitted to the laboratory for the analysis of TCL VOCs, TCL SVOCs, TCL pesticides, TAL inorganics, cyanide, and conventional leachate parameters.
- § The gas monitoring wells are tested during the semi-annual sampling events to measure for percent methane by volume, percent oxygen by volume, and percent carbon dioxide by volume using a portable CES-LANDTEC GEM 500 landfill gas (LFG) analyzer. The landfill surface gas monitoring points are monitored for the presence of methane gas using a portable organic vapor analyzer (OVA), flame ionization detector (FID), or similar monitoring device.
- § Standard protocols for sample collection, handling, sample preparation, and analytical methods.

HOW "GOOD" DO THE DATA NEED TO BE IN ORDER TO SUPPORT THE ENVIRONMENTAL DECISION?

The data must support an evaluation of the performance and effectiveness of the implemented ECs in reducing or mitigating contamination at the Site.