Remedial Investigation Report Building 1 Transformer Rooms

Prepared for

New York State Office of Mental Health Bronx Psychiatric Center 1500 Waters Place Bronx, New York 10461

Prepared by

URS Corporation 40 British American Boulevard Latham, New York 12110

> Original August 2012 Revised January 2015 Revised November 2016

TABLE OF CONTENTS

Section 1	Introduction1				
	1.1	Certification	1-1		
	1.2	Site Description	1-1		
	1.3	Physical Setting	1-2		
		1.3.1 Site Geology	1-2		
		1.3.2 Site Hydrogeology	1-2		
	1.4	Contaminant Fate and Transport			
		1.4.1 Potential Routes of Migration			
		1.4.2 Contaminant Persistence			
		1.4.3 Contaminant Migration			
	1.5	Human Health Exposure Assessment	1-4		
Section 2	Remedial Investigations				
	2.1	1993 Remedial Investigation			
		2.1.1 Results and Findings	2-2		
	2.2	Encapsulation of Concrete Floors			
	2.3	Post Encapsulation Environmental Monitoring Events			
		2.3.1 May 1995 Environmental Monitoring Event	2-3		
		2.3.2 January and February 1996 Environmental Monitoring			
		Events			
		2.3.3 October 1996 Environmental Monitoring Event			
		2.3.4 April/May 1997 Monitoring Event			
		2.3.5 August 1997 Monitoring Event			
		2.3.6 December 1997 Monitoring Event			
		2.3.7 April 1998 Monitoring Event			
		2.3.8 July/August 1998 Monitoring Event			
		2.3.9 December 1998 Monitoring Event			
		2.3.10 January 1999 Monitoring Event			
		2.3.11 April/May 1999 Monitoring Event			
		2.3.12 October 1999 Monitoring Event			
	2.4	2.3.13 May 2000 Monitoring Event			
	2.4	2000 Preliminary Site Assessment			
		2.4.1 Sample Collection and Analysis			
		2.4.1.1 Concrete Sampling			
		2.4.1.2 Soil Sampling			
		2.4.2 Results and Findings			
		2.4.2.1 Transformer Room No. 1			
	2.5	2.4.2.2 Transformer Room No. 2			
	2.5	Continued Environmental Monitoring.			
		2.5.1 October 2000 Monitoring Event			
		2.5.2 May 2001 Monitoring Event			
		2.5.3 September 2001 Monitoring Event			
		2.5.4 May 2002 Monitoring Event	2-12		

TABLE OF CONTENTS

		2.5.5 N	November 2002 Monitoring Event	2-13		
		2.5.6 J	June 2003 Monitoring Event	2-13		
		2.5.7	November 2003 Monitoring Event	2-13		
		2.5.8 J	January/February 2004 Monitoring Well Rehabilitation			
		г	and Re-Sampling	2-14		
		2.5.9 I	May/June 2004 Monitoring Event	2-14		
Section 3	Interi	m Remedia	al Measures	3-1		
	3.1	Impleme	entation	3-1		
		-	Environmental Monitoring Requirements			
			3.1.1.1 Groundwater Sampling			
		3	3.1.1.2 Wipe Sampling	3-2		
			3.1.1.3 Air Sampling			
			Environmental Monitoring Results			
		3	3.1.2.1 2004 Biannual Monitoring	3-2		
		3	3.1.2.2 2005 1 st Biannual Monitoring	3-2		
			3.1.2.3 2005 2 nd Biannual Monitoring			
			3.1.2.4 2006 1 st Biannual Monitoring			
	3.2		classification and Continued Monitoring			
			January 2007 Environmental Monitoring Event			
			December 2007 Environmental Monitoring Event			
			2008 Environmental Monitoring Event			
			2009 Environmental Monitoring Event			
			2010 Environmental Monitoring Event			
			2011 Environmental Monitoring Event			
	3.3		der On Consent and Continued Monitoring			
			2012 Environmental Monitoring Event			
		3.3.2	2013 Environmental Monitoring Event	3-7		
			2014 Environmental Monitoring Event			
		3.3.4	2015 Environmental Monitoring Event	3-8		
Section 4	Supplemental Remedial Investigations					
	4.1		pplemental Remedial Investigation			
			Sample Collection and Analysis			
			4.1.1.1 Concrete Chip Sampling			
		2	4.1.1.2 Sub-Slab Soil Sampling			
			4.1.1.3 Soil Borings Outside of Transformer Rooms			
		۷	4.1.1.4 Groundwater Sampling	4-2		
		4.1.2 I	Results and Findings	4-2		
			4.1.2.1 Concrete Chip Sampling	4-2		
		۷	4.1.2.2 Sub-Slab Soil Sampling			
			4.1.2.3 Soil Borings Outside of Transformer Rooms			
			4.1.2.4 Groundwater Sampling			
	4.2	2014 Su	pplemental Remedial Investigation	4-3		

TABLE OF CONTENTS

	4.2.1 Sample Collection and Analysis						
Section 5	Conclusions and Recommendations5-1						
Section 6	References6-1						
List of Tables							
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	Summary of Soil Results, PCBs, Transformer Room No. 1 Summary of Soil Results, PCBs, Transformer Room No. 2 Summary of Concrete Results, PCBs, Transformer Room No. 1 Summary of Concrete Results, PCBs, Transformer Room No. 2 Summary of Soil Results, Detected Compounds: VOCs, SVOCs, Pesticides, Herbicides, and Metals, Transformer Room No. 1 Summary of Soil Results, Detected Compounds: VOCs and SVOCs, Transformer						
	Room No. 2						
List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10	Site Location Map Monitoring Well Locations and Groundwater Elevations, May 2005 Soil Sampling Locations, Transformer Room No. 1 Soil Sampling Locations, Transformer Room No. 2 Concrete Sampling Locations, Transformer Room No. 1 Concrete Sampling Locations, Transformer Room No. 2 PCB Concentrations in Soil Samples – Transformer Room No. 1 PCB Concentrations in Soil Samples – Transformer Room No. 2 PCB Concentrations in Concrete Samples – Transformer Room No. 1 PCB Concentrations in Concrete Samples – Transformer Room No. 2						
Appendices							
Appendix A Appendix B Appendix C Appendix D	Human Health Exposure Assessment Historical Tables and Figures Available Data Usability Study Reports Available Soil Sample Descriptions and Soil Boring Logs						

URS

This Remedial Investigation Report (RIR) has been prepared by URS Corporation-New York (URS) on behalf of the New York State Office of Mental Health (OMH) for the Bronx Psychiatric Center located at 1500 Waters Place in Bronx, New York (Figure 1). The original RIR was submitted to the New York State Department of Environmental Conservation (NYSDEC) in August 2012. The NYSDEC provided comments in September 2012. OMH has been conducting additional investigation activities at the site since 2012 to be incorporated into this comprehensive RIR. A Revised RIR was submitted in January 2015. The NYSDEC provided additional comments in October 2016 which have been incorporated into this document.

The RIR summarizes all previous investigations conducted for the Building 1 transformer rooms at the Site. The historical investigations summarized in this report were conducted prior to the NYSDEC issuing the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10). This report is being submitted in partial fulfillment of the terms of an Order on Consent and Administrative Settlement (Index # R2-0668-06-11) that was issued to OMH by the New York Department of Environmental Conservation (NYSDEC) in early 2012.

1.1 CERTIFICATION

I, <u>Don Porterfield</u>, <u>PE</u>, certify that I am currently a NYS registered professional engineer and that this RIR was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the

DER-approved work plan and any DER-approved modification TE OF NEW PORTERS

2016-11-29

Don Porterfield, PE

1.2 SITE DESCRIPTION

The Bronx Psychiatric Center was constructed approximately 50 years ago. The facility is a 360-bed facility that provides inpatient stabilization programs for individuals with co-occurring mental illness and substance abuse disorders.

The Building 1 transformers are located in two basement rooms located along the eastern side of the building (see Figure 2). The northern room has been designated as Room No. 1 and the southern room as Room No. 2. Each transformer room can be accessed from the outside through a set of double doors in concrete-walled areaways. There are locked gates at the top of the areaways and the entrance room doors are also locked. Access to the rooms from inside the building is controlled by a series of several locked basement doors and a single door for each transformer room. The building is constructed on piles to bedrock with

pile caps under the building columns and perimeter walls. The transformer room floors are approximately ten feet below the ground surface at the front (eastern side) of the building. It was observed that the former polychlorinated biphenyl (PCB)-containing transformers leaked PCBs onto the concrete floors and into the underlying soil in Room No. 1 and Room No. 2. The PCBs have impacted the concrete floors in both of the transformer rooms and have migrated down into the underlying soil though the floor drains and cracks or seams in the concrete.

The former PCB-containing transformers were replaced in February 1993 with non-PCB (silicone-based) transformers. Currently, Room No. 1 contains a 13,800-280 volt double-ended unit substation, consisting of primary switches, transformers, and switch gear. Room No. 2 contains a 13,800-480 volt double-ended unit substation, consisting of primary switches, transformers, and secondary switchgear, as well as switchgear that is served from Room No. 1.

1.3 PHYSICAL SETTING

1.3.1 Site Geology

The Site is generally flat and is at an elevation of approximately 30 feet above mean sea level, according to the National Geodetic Vertical Datum of 1929 (NGVD 1929). The two nearest surface water bodies are Eastchester Bay, approximately one-mile east of the Site, and Westchester Creek, approximately ½- mile south of the Site.

The Site is within the Manhattan Prong geologic region. This geologic region is characterized by rolling hills and valleys. Metamorphic rocks (such as gneiss, schist, and quartzite) that are more resistant to erosion form the hills, while marble is present in the valleys. The Site is near the contact between metamorphic rock formations: the Hartland Formation and the Manhattan Formation (New York State Science Service, 1970). According to the Surficial Geologic Map of New York (New York State Geological Survey 1989), the Site is underlain by relatively impermeable glacial till. During a previous investigation, fill comprised of fine to medium sand with fragments of coal, brick, glass, and wood was encountered beneath the transformer rooms. Saturated fill was encountered approximately four to six feet below the concrete floor of the rooms.

1.3.2 Site Hydrogeology

A review of the results of the previous and recent investigations indicates that groundwater at the Site occurs at depths ranging from approximately 10 feet to 15 feet below the existing surface grades. Based on groundwater level measurements obtained in May 2005, the groundwater flow direction is generally towards the northeast. Figure 2 shows the monitoring well network and the May 2005 groundwater elevation data.

1.4 CONTAMINANT FATE AND TRANSPORT

The following section discusses the fate and transport of PCBs at the Site.

1.4.1 Potential Routes of Migration

PCBs were detected in the concrete and subsurface soil underlying both of the transformer rooms in Building 1 at the Site. PCBs are mixtures of different congeners of chlorinated biphenyls and the relative importance of the environmental fate mechanisms generally depends on the degree of chlorination. PCBs tend to adsorb to soil particles and have a very low solubility in water. PCBs can volatilize from concrete surfaces and soil when the temperature is elevated.

1.4.2 Contaminant Persistence

PCBs do not readily break down and may remain in the environment for long periods of time. The persistence of PCBs increases with the degree of chlorination. Mono-, di- and trichlorinated biphenyls degrade rapidly, tetra-chlorinated biphenyls degrade slowly, and higher chlorinated biphenyls are resistant to degradation. PCBs in water tend to adsorb to suspended matter. PCBs have been shown to bioconcentrate significantly in aquatic organisms and humans. The main exposure route to humans is through eating contaminated fish and drinking contaminated water. There are interim remedial measures (IRMs), which are discussed in Section 3, in place that limit human exposure.

1.4.3 Contaminant Migration

Natural and other man-made mechanisms that can result in the migration of contaminants from their source areas include: surface water flow, infiltration, groundwater flow, subsurface utilities, volatilization, excavation, grading and vehicular traffic. The impact of these mechanisms varies by source area and Site-specific conditions.

At the Site, the applicable migration mechanisms would be volatilization and groundwater flow. PCBs are not readily volatilized at or below room temperatures. In addition, the presence of an epoxy coating on the concrete surface, which is discussed in Section 3, would preclude volatilization of the PCBs from the concrete in the transformer rooms and the underlying soil.

Overburden groundwater flow would be expected to allow both vertical and lateral migration of contaminants located within the saturated zone. Groundwater flow is considered a significant transport mechanism for contaminants that are water-soluble. PCBs are not readily soluble in water and PCBs were only detected in one of the groundwater samples collected over a nine-year period (Sections 2 and 3). PCBs were detected in the groundwater sample collected from MW-3 in November 2003. The monitoring well was rehabilitated and re-sampled in February 2004. PCBs were not detected in the groundwater sample collected after the well had been rehabilitated. Therefore, PCBs found in the soil do not appear to be impacting groundwater at the Site.

1.5 HUMAN HEALTH EXPOSURE ASSESSMENT

A qualitative human health exposure assessment was completed by URS in accordance with paragraph 3.3(c)4 and Appendix 3B of DER-10 Technical Guidance for Site Investigation and Remediation (DER-10) and is presented in Appendix A. The assessment did not identify any complete exposure pathways for the environmental media that were evaluated.

Remedial investigations and environmental monitoring events have been conducted at the Site since 1993. Described below is an overview of the investigation and environmental monitoring programs along with a summary of their results and their findings.

Section 6 lists the references that were used to prepare these summaries. The full reports should be referenced for complete details of the investigations and environmental monitoring events. The historical tables and figures from these reports are provided in Appendix B.

The tables and figures compiled for this RIR summarize the soil and concrete data available for the Site, as these are the media of concern for future remedial alternatives. All soil sampling locations for Transformer Rooms No. 1 and 2 can be found in Figures 3 and 4, respectively. All concrete sampling locations for Transformer Rooms No. 1 and 2 can be found in Figures 5 and 6, respectively. The PCB data for soil and concrete are presented in Figures 7 thru 10. Tables 1 and 2 summarize the PCB data in soil samples collected from Transformer Rooms No .1 and 2, respectively. Tables 3 and 4 summarize the PCB data in concrete samples collected from Transformer Rooms No .1 and 2, respectively.

The majority of the available data was collected prior to the NYSDEC issuing DER-10. Full ASP Category B deliverables were not available for these data sets. The available Data Usability Study Reports are provided in Appendix C.

2.1 1993 REMEDIAL INVESTIGATION

The initial investigation for PCB contamination within the concrete floors and underlying soil was conducted in Room No. 1 by Willow Contracting, Verona, New Jersey. The scope of work for this investigation included:

- Collecting concrete and soil samples from the transformer locations in Room 1 and analyzing samples for PCBs using EPA method 8080;
- Installing four monitoring wells outside Building No.1; and
- Collecting groundwater samples and analyzing samples for PCBs using EPA method 608.

The locations of the soil and concrete floor samples in Room No. 1 are shown in Figures 3 and 5. Samples S-1 through S-6 were collected at various locations. With the exception of sample S-1, concrete samples were obtained by saw cutting the concrete floor and collecting samples from the surface of the concrete floor. At sample S-1, two samples were collected (top and bottom of the concrete floor).

The subsurface soil samples were collected at typically two soil depth intervals at each of the sample locations except for sample S-1 where three soil samples were collected. Additional soil samples N-1 and N-2 were collected in May 1993 to provide a more focused delineation at these two locations. Multiple sample depths were targeted for sample locations N-1 and N-2.

Monitoring wells MW-1 through MW-4 were installed in September and October of 1993 using a hollow stem auger drill rig. The locations of the monitoring wells are shown in Figure 2.

In addition, five (5) hexane-wipe samples from 100 square centimeter areas of the floor in front of the transformer pad in Room 2 were collected and analyzed to investigate the oily residue observed on the concrete floor.

2.1.1 Results and Findings

The results of the concrete and soil PCB analyses were compared to the recommended soil cleanup objectives for PCBs, 1.0 milligrams per kilogram (mg/kg) and 10 mg/kg for surface soil and subsurface soil respectively, that were published by NYSDEC at that time. The results of the concrete and soil sampling analysis are presented in Figures 7 thru 10. Two samples (S-1 and S-3) showed elevated PCB concentrations which primarily consisted of Arochlor 1260. At sample location S-1, PCB concentrations up to 21,000 mg/kg (ppm) were detected in both the concrete and soil immediately below the floor. PCB concentrations decreased with depth to 703 ppm at the 2-foot depth horizon. At sample location S-3, only the concrete floor sample showed PCBs at 327 ppm; no PCB exceedances were detected in soil samples collected at location S-3.

The PCB concentrations at N-1 were 0.3 ppm just below the floor to 6-inches below the floor. PCBs were not detected at N-1 at depths of 12-inches to 26-inches below the floor. PCBs were detected at a concentration of 26 ppm just below the floor surface at N-2. PCB concentrations decreased with depth at N-2 to non-detect at 26-inches below the floor.

PCBs were not detected in the groundwater samples collected at any of the monitoring well locations. Historical data tables are found in Appendix B.

The analytical results of the wipe samples from the floor in Room 2 indicated that PCBs were detected at concentrations ranging from 8.7 to 360 micrograms per 100 square centimeters (μ g/100 cm²). Wipe sampling data is provided in Appendix B. The results exceed the United States Environmental Protection Agency (USEPA) Toxic Substance Control Acts (TSCA) cleanup standard of 10 μ g/100 cm².

In August 1993, OMH, NYSDEC, DOH, and the USEPA agreed to defer remediation of the area until an anticipated major renovation project was completed. The primary reason for deferring remediation was the concern that the complete removal of the contaminated concrete and soil would cause the building to become structurally unsafe while the building is in use and the transformers are energized. Since 1993, the building has remained in continuous service without major renovations.

2.2 ENCAPSULATION OF CONCRETE FLOORS

In 1995, the floors in both transformer rooms were encapsulated (sealed) with a two-layer epoxy system. The entire floor in Room No. 1 was epoxy sealed and only a limited portion of the floor near the transformer in Room No. 2 was epoxy sealed as shown in Figure 4.

2.3 POST ENCAPSULATION ENVIRONMENTAL MONITORING EVENTS

2.3.1 May 1995 Environmental Monitoring Event

In May 1995, post encapsulation air and wipe sampling was conducted by Applied Technology Services, Inc. Four air samples and eight wipe samples were collected in May 1995. Historical wipe and air sample locations and data can be found in Appendix B. The air samples were analyzed for PCBs by NYSDOH 311-1 and the wipe samples were analyzed for PCBs by EPA Method 8080.

PCBs were not detected in the air samples. PCBs were detected in all eight wipe samples $(1.0 \ \mu g/100 \ cm^2 \ to \ 7.8 \ \mu g/100 \ cm^2)$ at concentrations less than the TSCA cleanup standard for PCBs in wipe samples of $10 \ \mu g/100 \ cm^2$.

2.3.2 January and February 1996 Environmental Monitoring Events

Four wipe samples were collected from Transformer Room No. 1 (WS-1, WS-2, WS-3, and WS-4) and four wipe samples were collected from Transformer Room No. 2 (WS-5, WS-6, WS-7, and WS-8) in January 1996. Historical wipe sample locations and data can be found in Appendix B. WS-1 and WS-2 had concentrations of PCBs above the TSCA cleanup standard for PCBs in wipe samples of $10 \,\mu\text{g}/100 \,\text{cm}2$. All other sample concentrations were non-detect or below the TSCA cleanup standard. Confirmation sampling was conducted in February 1996. Based upon the confirmation sampling, PCBs were above the TSCA cleanup standard in the location of WS-2.

The four existing wells (MW-1 thru MW-4) were surveyed in February 1996 and measurements of depth to water were recorded to determine the direction of groundwater flow. Groundwater flow was determined to be to the west and therefore the need for two additional monitoring wells was evaluated. Groundwater samples were collected from all four monitoring wells. PCBs were not detected in any of the groundwater samples collected.

2.3.3 October 1996 Environmental Monitoring Event

A semi-annual environmental monitoring event was completed in October 1996 and included the installation, surveying, and development of two monitoring wells (MW-5 and MW-6), gauging of all site wells (MW-1 through MW-6), and sampling of four monitoring wells (MW-2, MW-3, MW-5, and MW-6).

The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the collected groundwater samples. Historical groundwater flow maps can be found in Appendix B.

2.3.4 April/May 1997 Monitoring Event

A semi-annual environmental monitoring event was completed in April/May 1997 and consisted of floor wipe sampling, air sampling, and groundwater sampling. Nine wipe samples (WS-1 thru WS-8 and duplicate sample WS-11) were collected from the Transformer Room floors and four air samples were collected (inside and outside of the Transformer Rooms) in April 1997. The two upgradient wells (MW-2 and MW-3) and two downgradient wells (MW-5 and MW-6) were gauged and sampled in May 1997.

Historical wipe and air sample locations and data can be found in Appendix B. The wipe and air samples were submitted for analysis of PCBs. PCBs were not detected in any of the wipe or air samples that were collected.

The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the collected groundwater samples. Historical groundwater flow maps can be found in Appendix B.

2.3.5 August 1997 Monitoring Event

A semi-annual environmental monitoring event was completed in August 1997 and consisted of groundwater sampling and floor wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. All of the detected concentrations of PCBs were below the TSCA cleanup standard for PCBs of $10 \mu g/100 \text{ cm}^2$.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.3.6 December 1997 Monitoring Event

A semi-annual environmental monitoring event was completed in December 1997 and consisted of groundwater sampling and floor wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. All of the detected concentrations of PCBs were below the TSCA cleanup standard for PCBs of 10 µg/100 cm².

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.3.7 April 1998 Monitoring Event

An environmental monitoring event was completed in April 1998 and consisted of indoor air sampling.

Historical air sample locations can be found in Appendix B. All collected air samples were submitted for analysis of PCBs. PCBs were not detected in any of the air samples that were collected.

2.3.8 July/August 1998 Monitoring Event

A semi-annual environmental monitoring event was completed in July 1998 and consisted of groundwater sampling and floor wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. PCBs were not detected in the wipe samples collected from Transformer Room No. 1. One wipe sample, WS-8, collected from Transformer Room No. 2, had a total PCB concentration of $16.7 \,\mu\text{g}/100 \,\text{cm}^2$, which is above the TSCA cleanup standard of $10 \,\mu\text{g}/100 \,\text{cm}^2$.

In August 1998, three confirmation floor wipe samples were collected in the vicinity of the July 1998 wipe sample, WS-8. The three wipe samples were submitted for analysis of PCBs. PCBs were detected in all three wipe samples. Two of the three wipe samples contained concentrations of PCBs exceeding the TSCA cleanup standard of $10 \,\mu\text{g}/100 \,\text{cm}^2$. Upon receiving the confirmation wipe sampling results, re-cleaning of the floor in Transformer Room No. 2 was scheduled.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples collected. Historical groundwater flow maps can be found in Appendix B.

2.3.9 December 1998 Monitoring Event

A semi-annual environmental monitoring event was completed in December 1998 and consisted of floor wipe sampling.

The floor of Transformer Room No. 2 was cleaned prior to the December 1998 wipe sampling event. Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. PCBs were not detected in the wipe samples collected from Transformer Room No. 1. The detected concentrations of PCBs in the wipe samples collected from Transformer Room No. 2 were below the TSCA cleanup standard of $10 \, \mu g/100 \, cm^2$.

URS

2.3.10 January 1999 Monitoring Event

A semi-annual environmental monitoring event was completed in January 1999 and consisted of groundwater sampling.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.3.11 April/May 1999 Monitoring Event

A semi-annual environmental monitoring event was completed in April/May 1999 and consisted of groundwater, floor wipe, and air sampling.

Historical wipe and air sample locations and data can be found in Appendix B. All collected wipe and air samples were submitted for analysis of PCBs. All of the detected concentrations of PCBs were below the TSCA cleanup standard of $10 \mu g/100 \text{ cm}^2$. PCBs were not detected any of the air samples collected.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.3.12 October 1999 Monitoring Event

A semi-annual environmental monitoring event was completed in October 1999 and consisted of groundwater and floor wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. All of the detected concentrations of PCBs in the wipe samples collected from Transformer Room No. 1 were below the TSCA cleanup standard. One wipe sample collected from the floor in Transformer Room No. 2 exceeded the TSCA cleanup of $10 \,\mu\text{g}/100 \,\text{cm}^2$ (SW-6 at a concentration of $19 \,\mu\text{g}/100 \,\text{cm}^2$). PCBs were not detected in any of the other wipe samples collected from Transformer Room No. 2. As a result of the wipe sampling, cleaning of the floor in Transformer Room No. 2 was scheduled.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.3.13 May 2000 Monitoring Event

A semi-annual environmental monitoring event was completed in May 2000 and consisted of groundwater, floor wipe, and indoor air sampling.

The floor of Transformer Room No. 2 was cleaned prior to the May 2000 wipe sampling event. Historical wipe and air sample locations and data can be found in Appendix B. All collected wipe and air samples were submitted for analysis of PCBs. All of the detected PCB concentrations in the wipe samples collected from Transformer Room No. 2 were below the TSCA cleanup standard. Two wipe samples collected from the floor of Transformer Room No. 1 contained concentrations of PCBs that exceed the TSCA cleanup criteria of $10 \,\mu g/100 \, cm^2$ (T1-2 at a concentration of $33 \,\mu g/100 \, cm^2$ and T1-3 at a concentration of $14 \,\mu g/100 \, cm^2$). PCBs were not detected in any of the air samples collected.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.4 2000 PRELIMINARY SITE ASSESSMENT

In January 1997, OMH and the NYSDEC entered into an Order on Consent No. W2-0779-96-12 (the 1997 Order). The goal of the Order was "the development and implementation of a Preliminary Site Assessment (PSA)" at Building No. 1 at the Bronx Psychiatric Center to evaluate whether hazardous wastes were present that "would constitute a significant threat to public health or the environment necessitating remediation."

Therefore, in August and September 2000, a PSA was conducted at the site by Dvirka and Bartilucci Consulting Engineers (D&B). The objective of the PSA was to evaluate the extent of the PCB contamination in the transformer rooms in Building No. 1. The work was described in D&B's Preliminary Site Assessment Work Plan, Building 1 Transformer Rooms Remediation, Contract No. D5597732-MH10 (PSA Work Plan), dated March 2000. The PSA Work Plan was approved by NYSDEC in July 2000. The results of the PSA were presented in D&B's report Preliminary Site Assessment, Building 1 Transformer Rooms Remediation, Contract No. D559773Z, dated December 2000. Described below is an overview of the PSA program.

The PSA sampling program was designed to be flexible, taking advantage of field information collected during its implementation. Initial sampling locations were selected based on existing data from the northern room (floor wipes, concrete and soil sample analyses) and from the southern room (floor wipe sample analyses). Subsequent sampling locations and depths were guided on the findings of the initial samplings. These findings included sample observations (e.g., odor, staining) and PCB semi-quantification results using immunoassay field kits.

2.4.1 Sample Collection and Analysis

2.4.1.1 Concrete Sampling

Prior to performing sampling, a grid was established in each room to locate sample points with axes that paralleled the transformer room walls. Transects were established every 5 feet. Concrete sample locations in Transformer Rooms No. 1 and 2 are shown in Figures 5 and Figure 6.

Concrete floor samples were collected using a portable coring machine with a 3-inch diameter core bit. The concrete contained rebar and the floor thicknesses ranged from 6 to 18 inches. Distilled water was used to keep the core bit cool and mitigate the generation of dust. The core drill bit was decontaminated between sampling locations by steam cleaning or a detergent wash water and distilled water rinse.

2.4.1.2 Soil Sampling

The soil beneath the concrete floors of each transformer room was sampled through concrete core holes using a 1.5-inch diameter stainless steel drive point with dedicated acetate liner. The sample points were located near previously identified areas of PCB contamination in concrete and soil. Additionally, test holes were constructed at the former floor drain locations. The drains and potential impacts were investigated by constructing test holes directly through the former drains. Access to the former drains was made by coring through the circular concrete drain patch in Room No. 1 and coring through the underlying soil after removing the drain seal in Room No. 2.

The soil samples were collected in two-foot length cores. Cores were advanced up to eight feet below the concrete floors and two feet into groundwater. Samples for analysis (field and laboratory) were collected from six-inch to two-foot increments depending on recovery volumes.

PCBs in the soil samples were quantified in the field using immunoassay kits (D-TECH Item# TK-1002-1). These kits enabled the quantification of PCBs from 0.5 ppm to greater than 25 ppm. The field test activities were carefully conducted in the areaways of the transformer rooms following D-TECH protocols. For confirmation purposes, 12 soil samples (approximately 20 percent of the total soil samples) were selected for laboratory analysis. The samples for laboratory analysis covered a range of field test results: non-detect, non-detect to 4 ppm; and 5 to 25 ppm.

All test hole construction, sampling and observations were logged by a geologist. Descriptions of the sampled materials are provided in Appendix D.

2.4.2 Results and Findings

For evaluation purposes, screening values utilized for PCBs in soil are based on the NYSDEC Part 375 Restricted Use Soil Cleanup Objectives (SCO). The Restricted Use SCO for PCBs is 1 ppm in surface soil. This level was developed to protect human health resulting from ingestion of soil by sensitive receptors, such as children, and ecological resources. The Restricted Use SCO for protection of groundwater as potable water supply is 3.2 ppm. With regard to concrete, based on discussions with NYSDEC, the typical cleanup level for PCBs in concrete is 1 ppm although a higher level can be established on a site-specific basis. The typical cleanup levels for both soil and concrete are not applicable to the transformer rooms because of the following factors:

- The transformer rooms have controlled and restricted access for use by adult facility personnel;
- The entire concrete floor in Room No. 1 and the concrete in the vicinity of the transformer in Room No. 2 has been coated with epoxy, which precludes direct contact with concrete, and restricts migration of transformer fluid through the floor;
- The concrete surface is routinely monitored and, if warranted, cleaned to mitigate contact with contaminated surfaces;
- The soil below the transformer room concrete floors is inaccessible. The concrete floors also mitigate vertical migration of fluids in the underlying soil;
- Routine groundwater quality monitoring conducted since 1994 in the vicinity and downgradient of the transformers rooms has shown that the groundwater has not been impacted by PCBs (less than the detection level of 1 ppm); and
- The groundwater in the area of the facility is not used for potable purposes.

2.4.2.1 Transformer Room No. 1

A total of 13 concrete cores were collected from Room No. 1 during the PSA. The thickness of the concrete floor ranged from 7 to 16 inches. There was no apparent evidence of cracks in the concrete floor in Room No. 1. The PCB analytical results for the concrete samples in Room No. 1 are provided in Table 3. The distribution of the PCB concentrations in the top and bottom samples of the concrete floor in Room No. 1 is shown in Figure 9.

Based on the PCB analytical results, the top inch portion of the floor near the central and northern portions of the transformer (see Figure 9) contains PCBs concentrations that ranged from 1,500 to 18,000 mg/kg (ppm). The maximum concentration was at grid node N25W15 on the west side of the transformer near the former floor drain. The contaminated area, including the area under the transformer, is approximately 400 square feet. Historical figures showing contours are provided in Appendix B.

Table 1 shows the PCB results for soil samples collected in Transformer Room No. 1. The results indicate only one area of soil, the former drain (sample Drain 01), with significant concentrations of PCBs (see Figure 7). At this location, PCBs were detected between 16,000 and 23,000 ppm in the top four feet of soil. The material encountered below the drain was

SECTIONTWO

Remedial Investigations and Environmental Monitoring

similar in nature to the ubiquitous fill below. A chemical odor was associated only with the top four feet of materials. There was no sensory indication of PCB impacts (e.g. staining, odor) below four feet. The PCB field test results did not indicate contamination below four feet. The water table was present at approximately four feet below the floor at this location. The sample cores were collected through the concrete floor. These findings support the facility information that the drain allowed material to drain directly into the subsurface material at the drain point.

2.4.2.2 Transformer Room No. 2

A total of 18 concrete core samples were collected in Room No. 2. The thickness ranged from 6 to 18 inches. The top and bottom inch of the cores were initially analyzed in the areas of staining and at other selected areas to help delineate the extent of contamination. The top inch of the concrete cores was analyzed at the other core locations. Based on an evaluation of these results, three additional bottom inch core samples were analyzed.

The PCB analytical results for the concrete samples are provided in Table 4. The distribution of PCBs in the top and bottom inch samples of the concrete floor in Room No. 2 and are shown in Figure 10. Based on the analytical results, two localized areas of significant PCB contamination of the top inch of the concrete floor exist in Room No. 2. One area is adjacent to the central portion of the east side of the transformer (concentration of 68,000 ppm at sample location S35W5) and the other area is adjacent to the western room wall in the center of the room (concentration of 650 ppm at sample location S30W20). The 68,000 ppm concentration was at the approximate location of staining reported in 1993.

In the bottom portion of the floor, the area east of the transformer contained elevated levels of PCBs between 14,000 ppm at sample location S35W5 and 58,000 ppm at sample location S47W7 (see Figure 10). This area contains one of the transformer room's two former floor drains. Approximately 10 feet to the northeast, near the areaway door entrance, the PCB concentration was 360 ppm at sample location S25W0.

A total of 30 soil samples were collected and field tested for PCBs. Seven of these samples were selected for laboratory analysis to cover the range of screening results for correlation purposes between the field and laboratory results. The field test results are provided in Appendix B. The results of the laboratory analyses are summarized in Table 2. Similar to Room No. 1, there generally was good correlation between the field test results and the laboratory analyses for the presence of contamination. For samples where the field test result indicated a positive result above 1 ppm, PCBs were generally detected by the laboratory in the soil sample at higher concentrations. For samples where the field kit values were below 1 ppm. The laboratory value generated was below 1 ppm.

The soil field test results and laboratory analytical results indicate only one area with significant PCB concentrations in soil. This area is at the eastern side of the transformer where the concentrations ranged from 12 to 49 ppm (S35W7) between 0 and 3 feet below the

floor. This area is directly below where elevated PCB concentrations were detected in the concrete in the floor (Figure 8 and 10).

PCBs were detected in soil samples collected below the two former floor drains located adjacent to the contaminated concrete floor areas. PCBs were detected at concentration of 3.2 ppm within the top 10 inches of soil at Drain 01. At Drain 01, well-sorted medium-grained sand was encountered to a depth of 10 inches. At 10 inches, concrete with rebar was encountered and coring was advanced one foot into the concrete. It is believed that because of the thickness and presence of rebar, this concrete was not a catch basin base associated with a drain, but rather a structural building feature such as a pile cap. In sample Drain 02, PCBs were detected between 0.7 and 7 ppm in the top 4 feet of soil. The material encountered at Drain 02 was similar in nature to fill material. No drainpipes or concrete were encountered below the concrete floor at Drain 02. The field findings at the transformer room's drains support the facility information that the drains allowed fluids to discharge directly to the subsurface below the drain.

2.5 CONTINUED ENVIRONMENTAL MONITORING

Environmental monitoring continued at the site under the 1997 Order. The environmental monitoring consisted of groundwater and floor wipe sampling on a semi-annual basis and indoor air sampling on an annual basis.

2.5.1 October 2000 Monitoring Event

A semi-annual environmental monitoring event was completed in October 2000 and consisted of groundwater and floor wipe sampling.

The floor of Transformer Room No. 1 was cleaned prior to the October 2000 wipe sampling event. Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. All of the detected PCB concentrations in the wipe samples collected from both Transformer Rooms were below the TSCA cleanup standard.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.5.2 May 2001 Monitoring Event

A semi-annual monitoring event was completed in May 2001 and consisted of groundwater, floor wipe, and indoor air sampling.

Historical wipe and air sample locations and data can be found in Appendix B. During the event, light surface stains were observed on the floor in Transformer Room No. 1 and wipe samples were biased to these locations. No staining was observed in Transformer Room No.

2. All collected wipe and air samples were submitted for analysis of PCBs. One wipe sample collected from Transformer Room No. 1 (T1-4 at a concentration of 16 μ g/100 cm²) exceeded the TSCA cleanup standard. Three wipe samples collected from Transformer Room No. 2 (T2-2 at a concentration of 11 μ g/100 cm², T2-3 at a concentration of 11 μ g/100 cm², and T2-4 at a concentration of 21 μ g/100 cm²) exceeded the TSCA cleanup standard. PCBs were not detected in any of the air samples collected for analysis.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.5.3 September 2001 Monitoring Event

A semi-annual monitoring event was completed in September 2001 and consisted of groundwater and wipe sampling.

The floors of Transformer Rooms No. 1 and 2 were cleaned prior to the September 2001 wipe sampling event. Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. PCBs were not detected in any of the wipe samples that were collected.

The groundwater sampling event consisted of gauging and sampling of one upgradient well (MW-3) and two downgradient wells (MW-5 and MW-6). MW-2 could not be located during the event due to excavation and construction in the area. The three groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.5.4 May 2002 Monitoring Event

A semi-annual monitoring event was completed in May 2002 and consisted of groundwater, floor wipe, and air sampling.

Historical wipe and air sample locations and data can be found in Appendix B. During the event, light surface stains were observed on the floor in Transformer Room No. 1 and wipe samples were biased to these locations. No staining was observed in Transformer Room No. 2. All collected wipe and air samples were submitted for analysis of PCBs. All of the detected concentrations of PCBs were below the TSCA cleanup standard of $10 \,\mu g/100 \, cm^2$. PCBs were not detected in any of the air samples collected.

The groundwater sampling event consisted of gauging and sampling of one upgradient well (MW-3) and two downgradient wells (MW-5 and MW-6). MW-2 could not be located and was assumed to be destroyed as the result of construction activities. The three groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the

groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.5.5 November 2002 Monitoring Event

A semi-annual monitoring event was completed in November 2002 and consisted of groundwater and floor wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. All four wipe samples collected from Transformer Room No. 1 contained concentrations of PCBs exceeding the TSCA cleanup criteria of $10 \,\mu\text{g}/100 \,\text{cm}^2$ (T1-1 at a concentration of $12 \,\mu\text{g}/100 \,\text{cm}^2$, T1-2 at a concentration of $340 \,\mu\text{g}/100 \,\text{cm}^2$, T1-3 at a concentration of $24 \,\mu\text{g}/100 \,\text{cm}^2$, and T1-4 at a concentration of $32 \,\mu\text{g}/100 \,\text{cm}^2$). All of the detected concentrations of PCBs in the wipe samples collected from Transformer Room No. 2 were below the TSCA cleanup standard.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and two downgradient wells (MW-5 and MW-6). The four groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B. .

2.5.6 June 2003 Monitoring Event

A semi-annual monitoring event was completed in June 2003 and consisted of groundwater, floor wipe, and air sampling.

Historical wipe and air sample locations and data can be found in Appendix B. The floor in Transformer Room No.1 was cleaned prior to sampling in June 2003. All collected wipe and air samples were submitted for analysis of PCBs. All of the detections of PCBs in the wipe samples collected from both Transformer Rooms were below the TSCA cleanup criteria of $10 \,\mu\text{g}/100 \,\text{cm}^2$. PCBs were not detected in any of the air samples collected for analysis.

The groundwater sampling event consisted of gauging and sampling of the two downgradient wells (MW-5 and MW-6). MW-2 and MW-3 were not required to be sampled during this event. The two groundwater samples were submitted for analysis of PCBs. PCBs were not detected in either of the groundwater samples that were collected. Historical groundwater flow maps can be found in Appendix B.

2.5.7 November 2003 Monitoring Event

A semi-annual monitoring event was completed in November 2003 and consisted of groundwater and floor wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. All collected wipe samples were submitted for analysis of PCBs. All of the detected concentrations of PCBs in

the wipe samples collected from both Transformer Rooms were below the TSCA cleanup criteria of $10 \,\mu g/100 \,cm^2$.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and two downgradient wells (MW-5 and MW-6). All collected groundwater samples were submitted for analysis of PCBs. PCBs were detected in the groundwater sample collected from MW-3 at a concentration of 3.8 μ g/L. PCBs were not detected in any of the other monitoring wells, which is consistent with historical data. Following a review of the analytical results, it was determined that the detection of PCBs in the groundwater sample collected from MW-3 during this event was not representative. It was noted that during the sampling event, the well was uncovered and unprotected and fragments of wood and leaves were observed when the well was purged. Historical groundwater flow maps can be found in Appendix B.

2.5.8 January/February 2004 Monitoring Well Rehabilitation and Re-Sampling

The condition of MW-3 was investigated in January 2004. The investigation indicated that there was a blockage comprised of soil and leaves inside MW-3 at a depth near the water table, approximately 15 feet bgs. The material was removed and MW-3 was re-developed. A protective curb box with a locking compression cap was installed at the surface.

In February 2004, a groundwater sample was re-collected from MW-3 and analyzed for PCBs. PCBs were not detected in the groundwater sample collected from MW-3 after it had been properly rehabilitated.

2.5.9 May/June 2004 Monitoring Event

A semi-annual monitoring event was completed in May 2004 and consisted of groundwater, wipe, and air sampling.

Historical wipe and air sample locations and data can be found in Appendix B. All collected wipe and air samples were submitted for analysis of PCBs. All of the detected concentrations of PCBs in the wipe samples collected from both Transformer Rooms were below the TSCA cleanup criteria of $10 \, \mu g/100 \, \text{cm}^2$. PCBs were detected in one air sample, located north of Transformer Room No. 1, at a concentration of $0.16 \, \mu g/m^3$. This concentration is just above the detection limit and does not pose any concern to human health.

The groundwater sampling event consisted of gauging and sampling of the two upgradient wells (MW-2 and MW-3) and two downgradient wells (MW-5 and MW-6). All collected groundwater samples were submitted for analysis of PCBs. PCBs were not detected in any of the groundwater samples that were collected. The monitoring wells were surveyed and depth to water measurements were recorded at all six existing monitoring wells. Historical groundwater flow maps can be found in Appendix B.

Interim Remedial Measures (IRMs) were developed and implemented at the Site in order to minimize the exposure potential of site personnel to the PCBs within and below the transformer rooms. The IRM Work Plan dated November 23, 2004 provides details on the scope of work and implementation. Key elements of the IRM included:

- 1. Task 1 Seal the openings between ventilation fan and exterior walls.
- 2. Task 2 Seal space between the floors and electrical equipment.
- 3. Task 3 Inject cement grout to stabilize PCBs in the subsoil.
- 4. Task 4 Prepare IRM summary report
- 5. Task 5 Continue routine sampling of groundwater, surface wipes, and indoor air to ensure PCB levels below cleanup standards and report findings and/or progress.

In a letter dated October 20, 2005, NYSDEC approved all elements of the IRM Work Plan except for Task 3 (grout injection). Discussed below are implementation details of the IRM.

3.1 IMPLEMENTATION

OMH completed Tasks 1 and 2 and continued environmental monitoring as required by the prior Order. On July 27, 2005, URS sealed the openings (up to ½-inch gaps) in the exterior walls of Rooms No. 1 and No. 2 with a polyurethane caulk to prevent wind-swept rain from entering the transformer room. The majority of the openings were between the ventilation fans and exterior walls.

Similarly, the space between the base of the electrical equipment and the floor (typically less than a 1/8 of an inch) was sealed with a polyurethane caulk to isolate the floor beneath the transformers from the concrete flooring surrounding the transformers.

3.1.1 Environmental Monitoring Requirements

Environmental monitoring consisted of bi-annual groundwater sampling, bi-annual wipe sampling, and annual air quality monitoring. The details of the groundwater sampling, wipe sampling and air quality sampling procedures are discussed in detail in the approved IRM Work Plan dated November 23, 2004. An overview of the periodic environmental monitoring activities is presented below.

3.1.1.1 Groundwater Sampling

Groundwater samples were collected from monitoring wells MW-1 through MW-6 on a biannual basis. Prior to sampling the monitoring wells, a synoptic round of groundwater levels were collected from the monitoring wells. The monitoring wells were purged and sampled following USEPA's low-flow purging and sampling protocol (EPA 540/S-95/504) to ensure representative groundwater samples were collected. All samples were collected, contained and stored, and transported to the laboratory in accordance with applicable regulations and guidelines and under chain-of-custody as outlined in the IRM Work Plan.

3.1.1.2 Wipe Sampling

Wipe samples were collected from the epoxy-coated areas of the concrete floors at four locations in each of the transformer rooms on a bi-annual basis. The wipe samples were collected by wiping a 100 cm² area with a gauze wipe soaked with hexane. The eight wipe samples were submitted for PCB analysis (EPA Method 8082) in accordance with applicable regulations and guidelines and under chain-of-custody as outlined in the IRM Work Plan.

3.1.1.3 Air Sampling

A single air sample was collected from each of the two Transformer Rooms in Building No. 1 on an annual basis. The two air samples were collected using florisil tubes and submitted for analysis of PCBs following National Institute for Occupational Safety and Health (NIOSH) Method 5503. All samples were collected, contained, stored, and transported to the laboratory in accordance with applicable regulations and guidelines and under chain of custody as outlined in the IRM Work Plan.

3.1.2 Environmental Monitoring Results

Biannual environmental monitoring was conducted in 2004, 2005 and 2006. The available results and findings from the monitoring events are discussed below.

3.1.2.1 2004 Biannual Monitoring

A biannual environmental monitoring event was completed in December 2004 and consisted of groundwater sampling and wipe sampling.

Historical groundwater data and flow maps are provided in Appendix B. The groundwater elevations indicate there is a relatively flat gradient and the groundwater flow direction is generally northeast.

Historical data tables are found in Appendix B. No PCBs were detected in the groundwater samples collected from any of the monitoring wells or in any of the QA/QC samples.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only Arochlor detected in the wipe samples. The concentrations of Arochlor 1260 ranged from not detected at the three locations (T1-1, T1-2 and T2-3) to 3.3 μ g/100 cm² at wipe sample T1-3. The maximum detected PCB concentration of 3.3 μ g/100 cm² is below the TSCA cleanup standard for PCBs in wipe samples of 10 μ g/100 cm².

3.1.2.2 2005 1st Biannual Monitoring

The first biannual environmental monitoring event of 2005 was completed in May 2005 and consisted of groundwater sampling, wipe sampling, and air sampling.

Historical groundwater data and flow maps are provided in Appendix B. The groundwater elevations indicate there is a relatively flat gradient and the groundwater flow direction is generally northeast.

Historical data tables are found in Appendix B. No PCBs were detected in the groundwater samples collected from any of the monitoring wells or in any of the QA/QC samples.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only Arochlor detected in the wipe samples. The concentrations of Arochlor 1260 ranged from not detected at Wipe-03 to 67 μ g/100 cm² at wipe sample Wipe-07. The TSCA cleanup standard for total PCBs in wipe samples is 10 μ g/100 cm². The Arochlor 1260 concentrations in two of the eight wipe samples, Wipe-01 at 19 μ g/100 cm² and Wipe-07 at 67 μ g/100 cm² exceed the TSCA cleanup standard.

The area surrounding Wipe-07 was cleaned and re-epoxyed on July 27, 2005 and the area surrounding Wipe-01 was cleaned and re-epoxyed on August 11, 2005.

Two air samples were collected using florisil tubes. Air sample Air-T1-01 was collected from Transformer Room No. 1 and Air-T2-01 was collected from Transformer Room No. 2. PCBs were not detected in any of the air samples.

3.1.2.3 2005 2nd Biannual Monitoring

The second biannual environmental monitoring event of 2005 was completed in December 2005 and consisted of groundwater sampling and wipe sampling.

Historical groundwater data and flow maps are provided in Appendix B. The groundwater elevations indicate there is a relatively flat gradient and the groundwater flow direction is generally northeast.

Historical data tables are found in Appendix B. No PCBs were detected in the groundwater samples collected from any of the monitoring wells or in any of the QA/QC samples.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only PCB compound detected in the wipe samples and was only detected at one wipe sample location (WIPE-05). The concentrations of Arochlor 1260 ranged from not detected to $2.2 \,\mu\text{g}/100 \,\text{cm}^2$ at wipe sample WIPE-05, which is below the TSCA cleanup standard for total PCBs in wipe samples of $10 \,\mu\text{g}/100 \,\text{cm}^2$.

3.1.2.4 2006 1st Biannual Monitoring

The first biannual environmental monitoring event of 2006 was completed in May 2006 and consisted on wipe sampling and air sampling. Groundwater sampling was waived by NYSDEC per email from Ms. Martinkat dated May 11, 2006.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only Arochlor detected in the wipe samples. The concentrations of Arochlor 1260 ranged from 3.4 μ g/100 cm² in wipe sample TR1-Wipe 3 to 10 μ g/100 cm² in wipe sample TR1-Wipe4 in Transformer Room No. 1. The concentrations of Arochlor 1260 ranged from 1.3 μ g/100 cm² in wipe sample TR2-Wipe5 to 9.5 μ g/100 cm² in wipe sample TR2-Wipe6 in Transformer Room No. 2. None of the wipe samples exceed the TSCA cleanup standard of 10 μ g/100 cm².

Two air samples were collected using florisil tubes. Air sample TR1-Air01 was collected from Transformer Room No. 1 and air sample TR2-Air02 was collected from Transformer Room No. 2. PCBs were not detected in either of the air samples.

3.2 SITE RECLASSIFICATION AND CONTINUED MONITORING

On July 27, 2006 OMH received a letter from NYSDEC indicating reclassification of the Bronx P.C. from a Class 2 to a Class 3. The Inactive Hazardous Waste Disposal Report attached to the letter stated that the quarterly groundwater monitoring for the last ten years has not detected any migration of PCBs. In addition, there have been no detections of PCBs in indoor air samples in the past ten years. Therefore, no further action is required at the facility until either the facility is taken out of service or the equipment in the transformer rooms needs to be upgraded or replaced.

Based on discussions between OMH and the NYSDEC, URS has continued annual collection of wipe samples from the floors of the transformer rooms and visual inspection of the epoxy coatings in the transformer rooms. The epoxy coating has been repaired if damage is observed during the inspections. The results of each annual sampling and monitoring event have been submitted to NYSDEC and are summarized below. Annual groundwater sampling and air sampling are no longer required.

3.2.1 January 2007 Environmental Monitoring Event

An environmental monitoring event was completed in January of 2007 and consisted of wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. Aroclor 1260 was the only Aroclor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Aroclor 1260 ranged from 1.3 micrograms per 100 μ g/100 cm² in wipe sample TR1-Wipe 1 to 6.6 μ g/100 cm² in wipe sample TR1-Wipe 4. In Transformer Room No. 2, the concentrations of Aroclor 1260 ranged from 1.5 μ g/100 cm² in wipe sample TR2-Wipe 8 to 4.4 μ g/100 cm² in wipe sample TR2-Wipe 7. None of the wipe samples exceeded the TSCA cleanup standard of 10 μ g/100cm².

3.2.2 December 2007 Environmental Monitoring Event

An environmental monitoring event was completed in December of 2007 and consisted of wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. Aroclor 1260 was the only Aroclor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Aroclor 1260 ranged from 2.1 micrograms per 100 μ g/100 cm² in wipe sample TR1-Wipe 1 to 9.2 μ g/100cm² in wipe sample TR1-Wipe 4. In Transformer Room No. 2, the concentrations of Aroclor 1260 ranged from 1.0 μ g/100 cm² in wipe sample TR2-Wipe 3 to 83 μ g/100 cm² in wipe sample TR2-Wipe 4. The total PCB concentration in wipe sample TR2-Wipe 4 exceeded the TSCA cleanup standard for total PCBs of 10 μ g/100cm².

A four foot by four foot area surrounding wipe sample TR2-Wipe 4 in Transformer Room No. 2 was cleaned in February 2008. PCBs were not detected in the confirmation wipe sample, TR2 Wipe 4b, collected after cleaning activities were complete. The cleaned area was re-epoxyed.

3.2.3 2008 Environmental Monitoring Event

An annual environmental monitoring event was completed in November of 2008 and consisted of wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. Aroclor 1260 was the only Aroclor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Aroclor 1260 ranged from 1.1 μ g/100 cm² in wipe sample TR1-Wipe 1 to 2.7 μ g/100cm² in wipe sample TR1-Wipe 4. In Transformer Room No. 2, the concentrations of Aroclor 1260 ranged from 0.53 μ g/100 cm² in wipe sample TR2-Wipe 8 to 3.8 μ g/100 cm² in wipe sample TR2-Wipe 5. None of the wipe samples exceeded the TSCA cleanup standard of 10 μ g/100cm².

3.2.4 2009 Environmental Monitoring Event

An annual environmental monitoring event was completed in November of 2009 and consisted of wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. Aroclor 1260 was the only Aroclor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Aroclor 1260 ranged from 1.5 μ g/100 cm² in wipe sample TR1-Wipe 4 to 2.4 μ g/100cm² in wipe sample TR1-Wipe 3. In Transformer Room No. 2, the concentrations of Aroclor 1260 ranged from 0.78 μ g/100 cm² in wipe sample TR2-Wipe 6 to 4.5 μ g/100 cm² in wipe sample TR2-Wipe 5. None of the wipe samples exceeded the TSCA cleanup standard of 10 μ g/100cm².

3.2.5 2010 Environmental Monitoring Event

An annual monitoring event was completed in October of 2010 and consisted of wipe sampling.

Historical wipe sample locations and data can be found in Appendix B. Aroclor 1260 was the only Aroclor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Aroclor 1260 ranged from 4.4 μ g/100 cm² in wipe sample TR1-Wipe 3 to 58.0 μ g/100cm² in wipe sample TR1-Wipe 2. In Transformer Room No. 2, the concentrations of Aroclor 1260 ranged from 1.6 μ g/100 cm² in wipe sample TR2-Wipe 8 to 8.0 μ g/100 cm² in wipe sample TR2-Wipe 6. Wipe samples TR1-Wipe 1 (36.0 μ g/100cm²) and TR1-Wipe 2 (58.0 μ g/100cm²) exceeded the TSCA cleanup standard for total PCBs of 10μ g/100cm².

The floor in Transformer Room No. 1 was cleaned in January 2011. PCBs were not detected in the four confirmation wipe samples (TR1-Wipe 1 through TR1-Wipe 4) collected after the cleaning activities were complete. The cleaned area was re-epoxyed.

3.2.6 2011 Environmental Monitoring Event

Inspections of the floors in the Transformer Rooms were conducted in April, May, and September of 2011. An annual monitoring event was completed in November of 2011 and consisted of wipe sampling.

The floor in Transformer Room 1 was noted to be damaged during the September 2011 inspection. On November 9, 2011, URS repaired the portion of the floor where the existing epoxy coating had cracked and broken. The area, approximately 30 square feet, was cleaned and re-epoxyed.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only Arochlor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Arochlor 1260 ranged from $6.8 \,\mu\text{g}/100\text{cm}^2$ in wipe sample TR1-Wipe 2 to $56 \,\mu\text{g}/100\text{cm}^2$ in wipe sample TR1-Wipe 3. In Transformer Room No. 2, the concentrations of Arochlor 1260 ranged from $0.95 \,\mu\text{g}/100 \,\text{cm}^2$ in wipe sample TR2-Wipe 8 to $28 \,\mu\text{g}/100 \,\text{cm}^2$ in wipe sample TR2-Wipe 5. Wipe samples TR1-Wipe 3 ($56 \,\mu\text{g}/100\text{cm}^2$) and TR2-Wipe 5 ($28 \,\mu\text{g}/100 \,\text{cm}^2$) exceeded the TSCA cleanup standard for total PCBs of $10 \,\mu\text{g}/100\text{cm}^2$.

The areas were cleaned and re-sampled on December 13, 2011. PCBs were not detected in the confirmation wipe samples collected after the cleaning activities were completed.

3.3 NEW ORDER ON CONSENT AND CONTINUED MONITORING

In early 2012, OMH and the NYSDEC entered into a new Order on Consent and Administrative Settlement – Index # R2-0668-06-11 (New Order). The goal of the New Order is the development and implementation of a remedial program to address the PCB contamination associated with the two transformer rooms in the basement of Building 1 at

the Bronx Psychiatric Center. The effective date of the New Order is March 4, 2012. Environmental monitoring continues on an annual basis and is summarized below.

3.3.1 2012 Environmental Monitoring Event

URS completed a visual inspection of the epoxy floor coatings in both Transformer Room No. 1 and Transformer Room No. 2 in Building 1 on February 15, 2012. On May 22, 2012, URS repaired the entire floor in Transformer Room No. 1 and the two localized areas of damaged epoxy floor coating in Transformer Room No. 2 in Building 1.

Annual wipe sampling was conducted in December 2012. Historical wipe sample locations and data can be found in Appendix B. Aroclor-1260 was the only Arochlor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Arochlor 1260 ranged from 0.590 μ g/100 cm² in wipe sample TR1-Wipe 2 to 0.930 μ g/100cm² in wipe sample TR1-Wipe 4. In Transformer Room No. 2, the concentrations of Arochlor 1260 ranged from 0.410 μ g/100 cm² in wipe sample TR2-Wipe 8 to 1.30 μ g/100cm² in wipe sample TR2-Wipe 7. None of the wipe samples exceeded the TSCA cleanup standard of 10 μ g/100cm².

During the annual sampling in December 2012, it was noted that the epoxy floor coating in Transformer Room No. 1 showed evidence of water damage from water infiltration as a result of Hurricane Sandy. The damaged area was repaired in January 2013.

3.3.2 2013 Environmental Monitoring Event

An annual monitoring event consisting of wipe sampling and inspection of the Transformer Room floors was conducted in December of 2013.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only Arochlor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Arochlor 1260 ranged from $0.820~\mu g/100~cm^2$ in wipe sample TR1-Wipe 1 to $4.10~\mu g/100~cm^2$ in wipe sample TR1-Wipe 3. In Transformer Room No. 2, the concentrations of Arochlor 1260 ranged from $0.570~\mu g/100~cm^2$ in wipe sample TR2-Wipe 8 to $0.610~\mu g/100~cm^2$ in wipe sample TR2-Wipe 7. None of the wipe samples exceeded the TSCA cleanup standard of $10~\mu g/100cm^2$.

3.3.3 2014 Environmental Monitoring Event

An annual monitoring event consisting of wipe sampling and inspection of the Transformer Room floors was conducted in December of 2014.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only Arochlor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Arochlor 1260 ranged from 1.70 μ g/100cm² in wipe sample TR1-Wipe 1 to 22.0 μ g/100cm² in wipe sample TR1-Wipe 3. Samples TR1-Wipe 2 and TR1-Wipe 3 collected in Transformer Room No. 1 had PCB concentrations that exceed the TSCA cleanup standard for total PCBs of 10 μ g/100cm². In Transformer Room No. 2, the concentrations of

Arochlor 1260 ranged from $0.780\,\mu\text{g}/100\text{cm}^2$ in wipe sample TR2-Wipe 6 to $3.90\,\mu\text{g}/100\text{cm}^2$ in wipe sample TR2-Wipe 7. None of the wipe samples collected in Transformer Room No. 2 had PCB concentrations that exceed the TSCA cleanup standard for total PCBs of 10 $\mu\text{g}/100\text{cm}^2$.

The areas surrounding TR1-Wipe 2 and TR1-Wipe 3 were cleaned and re-sampled on January 23, 2015. PCBs were detected in the confirmation wipe samples collected after the cleaning activities were completed at concentrations below the TSCA cleanup standard. During the annual sampling in December 2014, it was noted that there were several cracks in the epoxy floor coating in Transformer Room No. 1. The damaged area was repaired in January 2015.

3.3.4 2015 Environmental Monitoring Event

An annual monitoring event consisting of wipe sampling and inspection of the Transformer Room floors was conducted in December of 2015.

Historical wipe sample locations and data can be found in Appendix B. Arochlor 1260 was the only Arochlor detected in the wipe samples. In Transformer Room No. 1, the concentrations of Arochlor 1260 ranged from $0.880~\mu g/100cm^2$ in wipe sample TR1-Wipe 1 to $2.90~\mu g/100cm^2$ in wipe sample TR1-Wipe 3. In Transformer Room No. 2, the concentrations of Arochlor 1260 ranged from $0.380~\mu g/100cm^2$ in wipe sample TR2-Wipe 6 to $2.50~\mu g/100cm^2$ in wipe sample TR2-Wipe 7. None of the wipe samples exceeded the TSCA cleanup standard of $10~\mu g/100cm^2$.

Supplemental Remedial Investigations were conducted in 2013 and 2014 in order to evaluate whether volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were present beneath the concrete floors in the Transformer Rooms and to provide additional data for future remedial design at the Site.

The Data Usability Study Reports for the supplemental remedial investigations are provided in Appendix C.

4.1 2013 SUPPLEMENTAL REMEDIAL INVESTIGATION

A supplemental remedial investigation was conducted in July 2013 to provide additional data for the Site. A utility markout and geophysical survey were conducted prior to conducting the investigation activities. The scope of work consisted of the following tasks:

- Collection of Concrete Chip Samples;
- Sub-slab Soil Samples in Transformer Rooms;
- Soil Borings Outside Transformer Rooms; and
- Collection of Groundwater Samples.

4.1.1 Sample Collection and Analysis

4.1.1.1 Concrete Chip Sampling

URS collected two concrete chip samples from concrete cores in Transformer Room No. 1 (T1-CC01 and T1-CC02) and two concrete chip samples from concrete cores in Transformer Room No. 2 (T2-CC03 and T2-CC04). The locations were chosen to correspond to areas where historical soil impacts beneath the concrete had been noted. The concrete cores ranged in thickness from 8 to 15 inches. The locations are shown on Figures 5 and 6. Concrete chip samples were collected from both the bottom of the core, as well as the top of the core once the epoxy coating had been removed. Concrete chip samples were analyzed for PCBs by EPA Method 8082.

4.1.1.2 Sub-Slab Soil Sampling

URS collected two sub-slab soil samples in Transformer Room No. 1 (T1-SS01 and T1-SS02) and two sub-slab soil samples in Transformer Room No. 2 (T2-SS03 and T2-SS04). The locations were chosen to correspond to areas where historical soil impacts beneath the concrete had been noted. The locations are shown on Figures 3 and 4. The soil beneath the concrete slab was field screened for the presence of total volatile organic vapors utilizing a PID. The soil sample exhibiting the highest PID reading was collected and submitted for laboratory analysis from T1-SS01 and T2-SS03. All PID readings for samples collected from T1-SS02 and T2-SS04 were non-detect, therefore a soil sample was collected from the maximum depth attained and submitted for laboratory analysis. Soil samples were submitted for analysis of TCL VOCs by EPA Method 8260B and TCL SVOCs by EPA Method 8270C. In addition, the subslab soil samples were analyzed for PCBs by EPA Method 8082.

4.1.1.3 Soil Borings Outside of Transformer Rooms

Two soil borings (T1-SB01 and T2-SB02) were advanced to the water table, which was encountered at 14 feet below ground surface (bg), downgradient of the Transformer Rooms. Soil Boring T1-SB01 was advanced outside of Transformer Room No. 1 and soil boring T2-SB02 was advanced outside of Transformer Room No. 2. The locations are shown on Figures 3 and 4. Soil samples were field screened for the presence of total volatile organic vapors utilizing a PID. Recovery of soil in the macrocores was very low. Therefore, soil samples were collected from the 0 to 4 feet bgs and 5 to 10 feet bgs intervals from each boring. Soil samples were submitted for analysis of TCL VOCs by EPA Method 8260B and TCL SVOCs by EPA Method 8270C.

4.1.1.4 Groundwater Sampling

URS collected groundwater samples from the existing monitoring wells on site. The monitoring well outside of Transformer Room No. 2 was denoted as MW-1. The monitoring well outside of Transformer Room No. 1 was denoted as MW-2. Prior to the investigation in 2013, URS believed that these monitoring wells had been abandoned and did not have the correct identifications at the time of sampling. MW-1 corresponds to MW-2 and MW-2 corresponds to MW-3. Groundwater samples were collected following the USEPA's low-flow sampling protocol for purging and sampling (EPA/540/S-95/504). Groundwater samples were analyzed for TCL VOCs by EPA Method 8260B and TCL SVOCs by EPA Method 8270C.

4.1.2 Results and Findings

4.1.2.1 Concrete Chip Sampling

Tables 3 and 4 provide a summary of the concrete core samples. The results are presented on Figures 9 and 10. PCBs were detected in the upper zero to 1.5 inch interval in each of the concrete cores. The PCB concentrations detected in the upper zero to 1.5 inches of the concrete core ranged from 0.11 mg/kg to 2.2 mg/kg and are encapsulated by the epoxy coating. PCBs were not detected at the bottom of the concrete core that is in contact with the sub-sab soil.

4.1.2.2 Sub-Slab Soil Sampling

Tables 1 and 2 provide a summary of the sub-slab soil sampling results for PCBs. PCBs were detected in all four sub-slab soil samples at concentrations ranging from 0.041 mg/kg at T1-SS01 (0-8 inches) to 0.11 mg/kg at T2-SS03 (0 to 8 inches). The maximum concentration of 0.11 mg/kg barely exceeded the NYSDEC Unrestricted Use SCO of 0.1 mg/kg.

Tables 5 and 6 provide a summary of the compounds that were detected, other than PCBs, including VOCs and SVOCs. Acetone and methylene chloride were detected in at least one

sub-slab soil sample. Acetone was the only VOC that exceeded its respective NYSDEC Unrestricted Use Soil Cleanup Objective (SCO) established in 6 NYCRR Part 375-6.8(a). Acetone and methylene chloride are common laboratory contaminants.

Four SVOCs (benzo(a)anthracene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene) were detected in at least one sub-slab soil sample above their respective NYSDEC Unrestricted Use SCO. These PAHs are often attributed to the historical fill used in the New York City area.

4.1.2.3 Soil Borings Outside of Transformer Rooms

Tables 5 and 6 provide a summary of the compounds that were detected, other than PCBs, including VOCs and SVOCs. Fill material, consisting of fine to coarse brown sands with trace silt, brick fragments, and rock fragments, were encountered in the soil borings. The soil borings were advanced to 14 feet bgs. The floor of the transformer rooms are approximately 10 feet below grade. Therefore, these borings were drilled approximately four feet below the floor level of the transformer rooms.

Five VOCs (acetone, methylene chloride, naphthalene, styrene, and 1,2,4-trimethylbenzene) were detected in at least one soil sample collected at the site. Acetone was the only VOC that exceeded its respective NYSDEC Unrestricted Use SCO. Acetone is a common laboratory contaminant.

Eleven SVOCs (acenaphthene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, naphthalene, and pyrene) were detected in at least one soil sample above their respective NYSDEC Unrestricted Use SCO. These PAHs are often attributed to the historical fill used in the New York City area.

4.1.2.4 Groundwater Sampling

The groundwater data tables are found in Appendix B. VOCs were not detected in the groundwater samples collected from the existing monitoring wells located downgradient of the transformer rooms. One SVOC, benzo(b)fluoranthene, was detected in the groundwater samples collected from the existing monitoring wells (3.5 ug/L in MW-2 and 3.6 ug/L in MW-1). The NYSDEC guidance value established in Technical and Operational Guidance Series (TOGS) 1.1.1, 2004 for benzo(b)fluoranthene is 0.002 ug/L.

4.2 2014 SUPPLEMENTAL REMEDIAL INVESTIGATION

Additional remedial investigation activities were conducted in July 2014 to further delineate the impacts outside of Transformer Room No. 1. A utility markout and geophysical survey were conducted prior to conducting the investigation activities. The scope of work consisted of the following tasks:

- Soil Borings Outside Transformer Room No. 1; and
- Collection of Groundwater Sample Outside Transformer Room No. 1.

4.2.1 Sample Collection and Analysis

4.2.1.1 Soil Borings Outside Transformer Room No. 1

URS advanced four soil borings approximately ten feet to the north (T1-SB02), five feet to the south (T1-SB04), ten feet to the east (T1-SB03), and ten feet to the west (T1-SB05) of soil boring T1-SB01. The locations of the borings are shown in Figure 3.

Soil samples were field screened for the presence of total volatile organic vapors utilizing a PID. All PID readings were non-detect. Due to low recovery in the split spoons at the surface, a hand auger was used to collect samples from the 0-2 feet bgs interval. With the exception of T1-SB05, three soil samples were collected from each soil boring. A surface soil sample was collected from the zero to two-foot interval, a soil sample was collected from the five to ten-foot interval, and a soil sample was collected from ten-foot to the water table. No soil sample was collected from the interval 10 feet bgs to the water table at T1-SB05 due to a lack of sufficient material to sample. The water table was encountered at 11 feet bgs at T1-SB05. Soil samples were submitted for analysis of TCL VOCs plus tentatively identified compounds (TICs) by EPA Method 8260C, TCL SVOCs plus TICs by EPA Method 8270D, target analyte list (TAL) inorganics by EPA Method 6010C/7471B, PCBs by EPA Method 8082, pesticides by EPA Method 8081A, and herbicides by EPA Method 8151A.

4.2.1.2 Groundwater Sampling

URS developed the existing monitoring well outside Transformer Room No. 1 (MW-2) prior to collecting a groundwater sample. The groundwater sample was collected from MW-2 following the USEPA's low-flow sampling protocol for purging and sampling (EPA/540/S-95/504). Groundwater samples were analyzed for TCL VOCs plus TICs by EPA Method 8260C, TCL SVOCs plus TICs by EPA Method 8270D, TAL inorganics by EPA Method 6010C/7470A, dissolved (filtered) TAL inorganics by EPA Method 6010C/7470A, PCBs by EPA Method 8082, pesticides by 8081A, and herbicides by 8151A.

4.2.2 Results and Findings

4.2.2.1 Soil Borings Outside Transformer Room No. 1

Table 1 provides a summary of the soil sampling results for PCBs. Table 5 provides a summary of the compounds that were detected, other than PCBs, including VOCs, SVOCs, pesticides, herbicides, and metals. Fill material, consisting of fine to coarse brown sands with trace silt, brick fragments, and rock fragments, were encountered in the soil borings. Soil boring logs are provided in Appendix D. A clay layer was observed in soil borings T1-SB02, T1-SB03, and T1-SB04 at depths ranging from 12.5 feet bgs to 15.5 feet bgs.

One TCL VOC, acetone, was detected in at least one soil sample collected at the site. The detected concentrations of acetone were below the NYSDEC Unrestricted Use SCO. No other TCL VOCs were detected in the soil samples.

Seven TCL SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were detected in at least one soil sample above their respective NYSDEC Unrestricted Use SCO. These PAHs can be attributed to the historical fill used in the New York City area.

PCBs (Arochlor 1260) were detected in soil sample T1-SB05 (0 to 2 feet bgs) at a concentration of 0.12 mg/kg. This concentration slightly exceeds the NYSDEC Unrestricted Use SCO of 0.1 mg/kg. PCBs were not detected in any of the other soil samples.

Four pesticides (dieldrin, 4,4-DDE, 4,4-DDD, and 4,4-DDT) were detected in at least one soil sample above their respective NYSDEC Unrestricted Use SCO.

Silvex (2,4,5-TP) was not detected in any of the soil samples.

Eight TAL inorganic compounds (arsenic, barium, chromium, copper, lead, nickel, mercury, and zinc) were detected in at least one soil sample above their respective NYSDEC Unrestricted Use SCO. It is likely that these metals can be attributed to the historical fill used in the New York City area.

4.2.2.2 Groundwater Sampling

The groundwater data tables are found in Appendix B. TCL VOCs, TCL SVOCs, PCBs, pesticides, and herbicides were not detected in the groundwater sample collected from monitoring well MW-2.

Six TAL inorganics (arsenic, barium, chromium, lead, manganese, and zinc) were detected in the groundwater sample collected from MW-2. None of the detected concentrations were above the NYSDEC TOGS 1.1.1 Groundwater Effluent Concentrations (Class GA). Five dissolved TAL inorganics (arsenic, barium, copper, manganese, and zinc) were detected in the groundwater sample collected from MW-2. The concentrations of dissolved (filtered) TAL inorganics were similar to the unfiltered groundwater sample collected from MW-2. None of the detected concentrations of dissolved TAL inorganics were above the NYSDEC TOGS 1.1.1 Groundwater Effluent Concentrations (Class GA).

Remedial investigations and environmental monitoring have been conducted at the Site since 1993. The investigations evaluated the extent of PCB contamination within the concrete floor, concrete surfaces, subsurface soils, groundwater and ambient air. The results of the investigations determined that PCB contamination is limited to concrete and subsurface soils and that the delineation of PCBs in these two units is sufficient to determine the next steps. Additional investigation to determine the extent of PCBs in the subsurface may be needed during remedial design after the transformers are taken out of service.

In addition, investigations have shown that VOCs, SVOCs, pesticides, herbicides, and metals have been detected in the subsurface soils at the Site above their respective NYSDEC Unrestricted Use SCO. These compounds are likely attributed to the historical fill used in the New York City area.

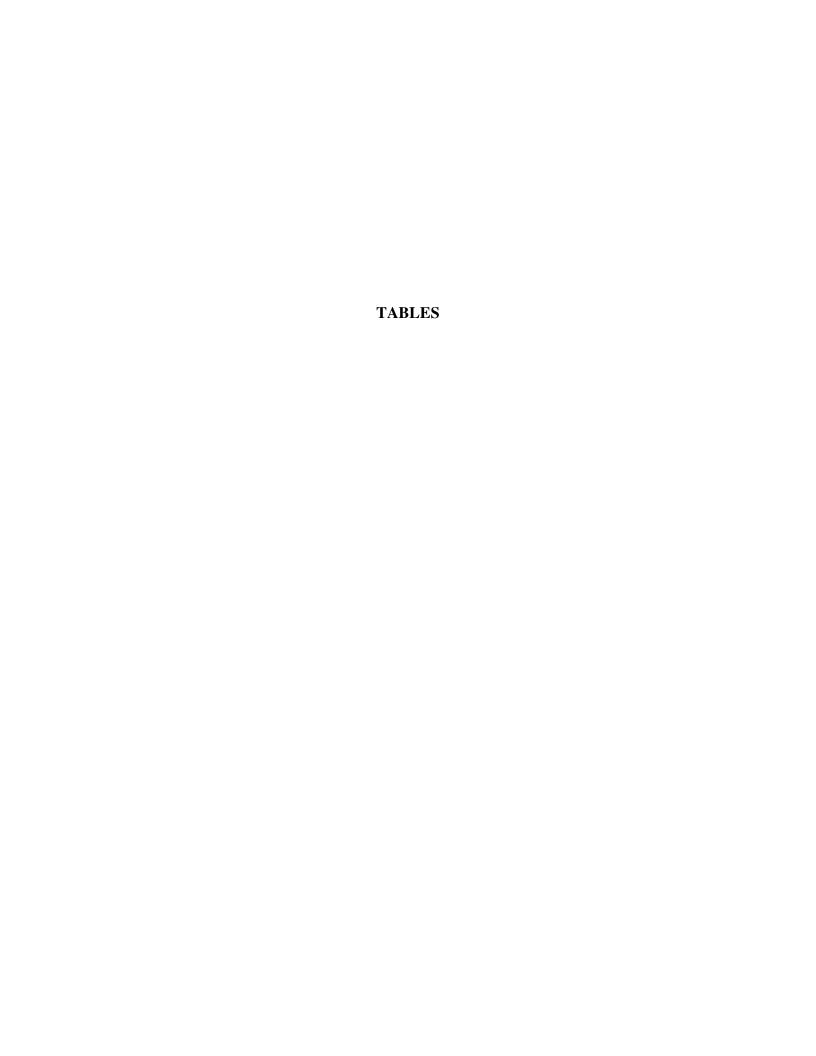
IRMs were developed and implemented beginning in 2005 to sever PCB migration pathways and also limit direct contact with stained concrete surfaces. The monitoring programs conducted since the implementation of the IRMs did not detect PCBs in either groundwater beneath the site or air in the transformer rooms. PCBs have been detected on the surface of the epoxy-coated concrete floors within the transformer rooms. However, when PCBs are detected above the TSCA cleanup standard, the floors are cleaned, re-epoxyed, and resampled to verify that concentrations are below the TSCA cleanup standard. The condition of the epoxy coating is visually inspected on an annual basis and repaired as necessary.

The remedial investigations and IRMs undertaken at the Site since 1993 have defined the nature and extent of PCB contamination in all media to the extent feasible given the physical constraints and fulfilled the technical requirements for completing Remedial Investigation as per DER-10. Remedial action is required as stated in the 2012 Order when OMH discontinues occupancy and the transformers are permanently taken out of service, or OMH considers demolition of the structure. It is anticipated that further delineation of the PCBs underneath the transformers will be undertaken as part of the remedial design.

URS recommends that a focused feasibility study (FS) be performed to evaluate potential alternatives that are practical and cost effective for remediation of PCBs in the concrete and soil beneath transformer rooms 1 and 2 within Building 1 at the Bronx Psychiatric Center. The FS will also consider the need for remediation of VOCs, SVOCs, pesticides, herbicides, and metals that have been detected in the soil beneath the Transformer Rooms with the remedial goal to meet Restricted Use Residential and Protection of Groundwater Soil Cleanup Objectives (SCOs).

- 1. 1970, New York State Science Service Geologic Map of New York, Lower Hudson Sheet.
- 2. 1993, Initial Investigation, Willow Contracting, Verona, New Jersey
- 3. June 1995, PCB Air and Wipe Sampling for Willow Contracting, Inc., Applied Technology Services, Inc.,
- 4. November 1996 PCB Monitoring Report, H2M Group of Melville, NY.
- 5. May 1997 PCB Monitoring Report, H2M Group of Melville, NY.
- 6. June 1997 Groundwater Monitoring Results Report, H2M Group of Melville, NY.
- 7. September 1997 PCB Floor Wipe Sampling Results Report, H2M Group of Melville, NY.
- 8. October 1997 Groundwater Monitoring Results Report, H2M Group of Melville, NY.
- 9. February 1998 PCB Floor Wipe Sampling Results Report, H2M Group of Melville, NY.
- 10. February 1998 Groundwater Monitoring Results Report, H2M Group of Melville, NY.
- 11. June 1998 PCB Air Monitoring Report, H2M Group of Melville, NY.
- 12. October 1998 Semi-Annual PCB Floor Wipe Sampling Results Report, H2M Group of Melville, NY.
- 13. September 1998 Groundwater Monitoring Results Report, H2M Group of Melville, NY.
- 14. December 1998 Semi-Annual PCB Floor Wipe Sampling Results Report, H2M Group of Melville, NY.
- 15. February 1999 Groundwater Monitoring Results Report, H2M Group of Melville, NY.
- 16. May 1999 PCB Monitoring Report, H2M Group of Melville, NY.
- 17. May 1999 Groundwater Monitoring Results Report, H2M Group of Melville, NY.
- 18. December 1999 Building No. 1 Transformer Rooms Floor Sampling Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 19. December 1999 Groundwater Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 20. June 2000 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 21. October 2000 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.

URS


- 22. 2000 Preliminary Site Assessment Work Plan, Building 1 Transformer Rooms Remediation, Contract No D5597732-MH10, Dvirka and Bartilucci Consulting Engineer.
- 23. 2000 Preliminary Site Assessment Building 1 Transformer Rooms Remediation, Contract No D559773, Dvirka and Bartilucci Consulting Engineers.
- 24. July 2001 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 25. December 2001 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 26. July 2002 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 27. December 2002 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 28. July 2003 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 29. December 2003 PCB Monitoring Results Report, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 30. March 2004, January and February 2004 Environmental Monitoring Event, Dvirka and Bartilucci Consulting Engineers of Woodbury, NY.
- 31. 2004 Interim Remedial Measures Work Plan, Bronx Psychiatric Center Building No. 1, URS Corporation, Clifton Park, NY.
- 32. 2005 First Biannual Monitoring Event, Bronx Psychiatric Center, Order of Consent W2-0779-96-12, URS Corporation, Clifton Park, NY.
- 33. 2005 Second Biannual Monitoring Event, Bronx Psychiatric Center, Order of Consent W2-0779-96-12, URS Corporation, Clifton Park, NY.
- 34. 2006 First Biannual Monitoring Event, Bronx Psychiatric Center, Order of Consent W2-0779-96-12, URS Corporation, Clifton Park, NY.
- 35. January 2007 Environmental Monitoring Event, URS Corporation, Clifton Park, NY.
- 36. December 2007 Environmental Monitoring Event, URS Corporation , Clifton Park, NY.
- 37. 2008 Environmental Monitoring Event, URS Corporation, Clifton Park, NY.
- 38. 2009 Environmental Monitoring Event, URS Corporation, Clifton Park, NY.
- 39. 2010 Environmental Monitoring Event, URS Corporation, Clifton Park, NY.
- 40. 2011 Environmental Monitoring Event, URS Corporation, Clifton Park, NY.
- 41. 2012 Environmental Monitoring Event, URS Corporation, Clifton Park, NY.

URS

42. September 4, 2013, Summary of Supplemental Remedial Investigation and Request for Additional Investigation, URS Corporation, Clifton Park, NY.

- 43. 2013 Environmental Monitoring Event, URS Corporation, Clifton Park, NY
- 44. October 3, 2014, Summary of Investigation to Delineate Soil Impacts Outside of Transformer Room No. 1, URS Corporation, Clifton Park, NY.

Table 1 Summary of Soil Results PCBS

Building 1 - Transformer Room No. 1

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

Sample Identification	Sample Date	Depth	Total PCBs (mg/kg)
S-1	3/8/1993	TOP	21,000
S-1	3/8/1993	7 inches b.c.	1,200
S-1	3/19/1993	24 inches b.c.	703
S-2	3/22/1993	20 inches b.c.	1.2
S-2	3/22/1993	28 inches b.c.	1.7
S-3	3/19/1993	14 inches b.c.	1.9
S-3	3/19/1993	24 inches b.c.	0.9
S-4	3/19/1993	14 inches b.c.	ND
S-4	3/19/1993	24 inches b.c.	0.5
S-5	3/19/1993	14 inches b.c.	ND
S-5	3/19/1993	24 inches b.c.	ND
S-6	3/19/1993	22 inches b.c.	ND
S-6	3/19/1993	28 inches b.c.	1.2
S-7	3/19/1993	14 inches b.c.	ND
S-7	3/19/1993	25 inches b.c.	ND
N-1	5/93	TOP	0.3
N-1	5/93	6 inches b.c.	0.3
N-1	5/93	12 inches b.c.	ND
N-1	5/93	18 inches b.c.	ND
N-1	5/93	26 inches b.c.	ND
N-2	5/93	TOP	26
N-2	5/93	6 inches b.c.	6.9
N-2	5/93	12 inches b.c.	0.3
N-2	5/93	18 inches b.c.	2.3
N-2	5/93	26 inches b.c.	ND
DRAIN 01	8/29/2000	0-2'	23,000
DRAIN 01	8/29/2000	2'-4'	16,000
N15W5	8/30/2000	4'-6'	1.1
N30W5	8/29/2000	2'-4'	0.9
N30W5	8/31/2000	4'-6'	0.2
T1-SS01	6/11/2013	0 - 8 inches b.c.	ND
T1-SS02	6/12/2013	0 - 6 inches b.c.	ND
T1-SB02	7/23/2014	0 - 2'	ND
T1-SB02	7/23/2014	5' - 10'	ND
T1-SB02	7/23/2014	10' - WT	ND
T1-SB03	7/23/2014	0 - 2'	ND

Table 1 Summary of Soil Results PCBS

Building 1 - Transformer Room No. 1

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

Sample Identification	Sample Date	Depth	Total PCBs (mg/kg)
T1-SB03	7/23/2014	5' - 10'	ND
T1-SB03	7/23/2014	10' - WT	ND
T1-SB04	7/23/2014	0 - 2'	ND
T1-SB04	7/23/2014	5' - 10'	ND
T1-SB04	7/23/2014	10' - WT	ND
T1-SB05	7/23/2014	0 - 2'	0.12
T1-SB05	7/23/2014	5' - 10'	ND

Notes

ND : Not detected : Not available

> : Greater than the indicated depth

b.c. : Below concrete

PCBs : Polychlorinated Biphenyls mg/kg : milligrams per kilogram

WT : Water Table

Table 2 Summary of Soil Results Building 1 - Transformer Room No. 2 PCBS

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

Sample Identification	Sample Date	Depth	Total PCBs (mg/kg)
DRAIN-01	8/30/2000	10 inches b.c.	3.2
DRAIN-02	8/30/2000	0-2'	0.7
DRAIN-02	8/30/2000	4'-6'	7
S15W10	8/31/2000	0-2'	0.1
S20W5	8/31/2000	0-2'	0.2
S35W7	8/31/2000	0-2'	12
S35W7	8/31/2000	2'-3'	49
T2-SS03	6/11/2013	0 - 8 inches b.c.	0.14
T2-SS04	6/12/2013	12 - 14 inches b.c.	ND

Notes

ND : Not detected b.c. : Below concrete

feet bgs : feet below ground surface
PCBs : Polychlorinated Biphenyls
mg/kg : milligrams per kilogram

Table 3 Summary of Concrete Results PCBs

Building 1 - Transformer Room No. 1

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

Sample Identification	Sample Date	Core Thickness	Depth	Total PCBs
_		(inches)	(inches)	(mg/kg)
S-1 TOP	3/8/1993	-	-	21,000
S-1 BOTTOM	3/8/1993	-	-	1,700
S-2 FLOOR TOP	3/19/1993	-	-	1.7
S-3 FLOOR TOP	3/22/1993	-	-	327
S-4 FLOOR TOP	3/19/1993	-	-	ND
S-5 FLOOR TOP	3/19/1993	-	-	0.4
S-6 FLOOR TOP	3/19/1993	-	-	0.3
N10W5 TOP	8/31/2000	11	-	7.5
N10W15 TOP	8/28/2000	10	-	1,500
N10W15 BOTTOM	8/28/2000	-	-	0.6
N10W25 TOP	8/28/2000	8	-	2.3
N10W25 BOTTOM	8/28/2000	-	-	0.6
N15W0 TOP	8/29/2000	15	-	1.4
N15W0 BOTTOM	8/30/2000	-	-	0.8
N15W5 TOP	8/28/2000	9	-	1,500
N15W5 BOTTOM	8/28/2000	-	-	0.33
N20W25 TOP	8/28/2000	9	-	170
N20W25 BOTTOM	8/28/2000	-	-	0.27
N25W0 TOP	8/29/2000	16	-	1.0
N25W0 BOTTOM	8/29/2000	-	-	0.54
N25W15 TOP	8/28/2000	12.5	-	18,000
N25W15 BOTTOM	8/28/2000	-	-	1,600
N30W5 TOP	8/28/2000	7.5	-	3.5
N30W5 BOTTOM	8/28/2000	-	-	0.3
N30W25 TOP	8/28/2000	>7	-	0.82
N40W5 TOP	8/28/2000	9	-	1.8
N40W5 BOTTOM	8/28/2000	-	-	200
N40W15 TOP	8/30/2000	16	-	1.5
N40W15 BOTTOM	8/30/2000	-	-	0.6
N40W25 TOP	8/28/2000	>12	-	1.5
T1-CC-01	7/9/2013	-	0 - 1	2.2
T1-CC-01	7/9/2013	-	6.5 - 8	ND
T1-CC-02	7/9/2013	-	0 - 1.5	0.5
T1-CC-02	7/9/2013	-	11 - 12	ND

Notes

ND : Not detected : Not available

> : Greater than the indicated depth
PCBs : Polychlorinated Biphenyls
mg/kg : milligrams per kilogram

Table 4 Summary of Concrete Results PCBs

Building 1 - Transformer Room No. 2

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

SOWS TOP 8/30/2000 15 - SSW10 TOP 8/30/2000 9 - STW20 TOP 8/30/2000 13 - S10W0 TOP 8/30/2000 14 - S10W15 TOP 8/30/2000 - - S15W10 TOP 8/30/2000 8 - S15W10 BOTTOM 8/30/2000 - - S20W5 TOP 8/30/2000 - - S20W5 BOTTOM 8/30/2000 - - S20W15 TOP 8/30/2000 10 - S25W0 TOP 8/30/2000 10 - S25W0 TOP 8/30/2000 13 - S25W0 BOTTOM 8/30/2000 - - S30W20 TOP 8/30/2000 9 - S30W20 TOP 8/30/2000 9 - S35W5 BOTTOM 8/30/2000 8 - S35W13 TOP 8/30/2000 8 - S40W0 BOTTOM 8/30/2000 15 - <	tification	Sample Date	Core Thickness (inches)	Depth (inches)	Total PCBs (mg/kg)
SSW20 TOP		8/30/2000			0.6
\$10W0 TOP		8/30/2000	9	_	6.5
S10W0 BOTTOM 8/30/2000 - - S15W10 TOP 8/30/2000 8 - S15W10 BOTTOM 8/30/2000 - - S20W5 TOP 8/30/2000 - - S20W5 BOTTOM 8/30/2000 - - S20W15 TOP 8/30/2000 10 - S25W0 TOP 8/30/2000 13 - S25W0 BOTTOM 8/30/2000 - - S30W20 TOP 8/30/2000 9 - S30W20 TOP 8/30/2000 9 - S35W5 TOP 8/30/2000 8 - S35W5 BOTTOM 8/30/2000 8 - 66 S35W13 TOP 8/30/2000 8 - 14 S35W13 TOP 8/30/2000 15 - - S40W0 BOTTOM 8/30/2000 15 - - S40W20 TOP 8/30/2000 11 - - S45W13 BOTTOM 8/30/2000 7 - - <t< td=""><td></td><td>8/30/2000</td><td>13</td><td>_</td><td>0.9</td></t<>		8/30/2000	13	_	0.9
SIOW15 TOP		8/30/2000	14	_	0.7
S15W10 TOP 8/30/2000 8.5 - S15W10 BOTTOM 8/30/2000 - - S20W5 TOP 8/30/2000 8 - S20W15 TOP 8/30/2000 10 - S25W0 TOP 8/30/2000 13 - S25W0 BOTTOM 8/30/2000 - - S25W7 TOP 8/30/2000 9 - S30W20 TOP 8/30/2000 9 - S30W20 BOTTOM 8/30/2000 9 - S35W5 TOP 8/30/2000 8 - 66 S35W13 TOP 8/30/2000 8 - 14 S40W0 TOP 8/30/2000 15 - - S40W20 TOP 8/30/2000 15 - - S40W20 TOP 8/30/2000 1 - - S40W20 BOTTOM 8/30/2000 1 - - S45W13 TOP 8/30/2000 7 - - S45W13 BOTTOM 8/30/2000 7 - - S47W7 TOP 8/30/2000 - - -)M	8/30/2000	-	_	10
815W10 BOTTOM 8/30/2000 - - 820W5 TOP 8/30/2000 8 - 820W15 BOTTOM 8/30/2000 10 - 820W15 TOP 8/30/2000 10 - 825W0 TOP 8/30/2000 13 - 825W0 BOTTOM 8/30/2000 - - 825W7 TOP 8/30/2000 9 - 830W20 TOP 8/30/2000 9 - 835W5 TOP 8/30/2000 8 - 68 835W5 BOTTOM 8/30/2000 8 - 68 835W13 TOP 8/30/2000 8 - 12 840W0 TOP 8/30/2000 15 - - 840W0 BOTTOM 8/30/2000 - - - 840W20 TOP 8/30/2000 11 - - 845W13 TOP 8/30/2000 7 - - 845W13 BOTTOM 8/30/2000 - - - 847W7 TOP 8/30/2000 - - - 847W7 BOTTOM 8/30/2000 - -		8/30/2000	8	_	0.4
S20W5 TOP 8/30/2000 8 - S20W15 BOTTOM 8/30/2000 - - S20W15 TOP 8/30/2000 10 - S25W0 TOP 8/30/2000 13 - S25W0 BOTTOM 8/30/2000 - - S25W7 TOP 8/30/2000 9 - S30W20 TOP 8/30/2000 9 - S30W20 BOTTOM 8/30/2000 - - S35W5 TOP 8/30/2000 8 - 68 S35W13 TOP 8/30/2000 8 - 14 S35W13 TOP 8/30/2000 8 - - S40W0 TOP 8/30/2000 15 - - S40W2 BOTTOM 8/30/2000 - - - 0 S45W13 TOP 8/30/2000 7 - - - - S45W13 BOTTOM 8/30/2000 - - - - - - S47W7 TOP 8/30/2000 - -		8/30/2000	8.5	_	1.6
S20W5 BOTTOM 8/30/2000 - - - S20W15 TOP 8/30/2000 10 - - S25W0 TOP 8/30/2000 13 - - S25W0 BOTTOM 8/30/2000 - - - S25W7 TOP 8/30/2000 9 - - S30W20 TOP 8/30/2000 9 - - S30W20 BOTTOM 8/30/2000 - - - S35W5 TOP 8/30/2000 8 - - 68 S35W5 BOTTOM 8/30/2000 - - - 14 S35W13 TOP 8/30/2000 8 - - - - S40W0 BOTTOM 8/30/2000 15 - - - - - S40W20 BOTTOM 8/30/2000 7 - - - - - - - - - - - - - - - - - - - <t< td=""><td>OM</td><td>8/30/2000</td><td>-</td><td>_</td><td>1.2</td></t<>	OM	8/30/2000	-	_	1.2
S20W15 TOP 8/30/2000 10 - S25W0 TOP 8/30/2000 13 - S25W0 BOTTOM 8/30/2000 - - S25W7 TOP 8/30/2000 9 - S30W20 TOP 8/30/2000 9 - S30W20 BOTTOM 8/30/2000 - - S35W5 TOP 8/30/2000 8 - 68 S35W5 BOTTOM 8/30/2000 - - 12 S40W0 TOP 8/30/2000 15 - - S40W0 BOTTOM 8/30/2000 - - - S40W20 TOP 8/30/2000 - - - S40W20 BOTTOM 8/30/2000 - - - S45W13 TOP 8/30/2000 - - - S45W13 BOTTOM 8/30/2000 - - - S47W7 BOTTOM 8/30/2000 - - - S47W7 BOTTOM 8/30/2000 - - -		8/30/2000	8	_	4.9
\$25W0 TOP 8/30/2000 13 - \$25W0 BOTTOM 8/30/2000 - - \$25W7 TOP 8/30/2000 9 - \$30W20 TOP 8/30/2000 9 - \$30W20 BOTTOM 8/30/2000 - - \$35W5 TOP 8/30/2000 8 - 68 \$35W5 BOTTOM 8/30/2000 - - 14 \$35W13 TOP 8/30/2000 8 - - 12 \$40W0 TOP 8/30/2000 15 - - - \$40W20 TOP 8/30/2000 - - - - \$40W20 TOP 8/30/2000 - - - - \$40W20 BOTTOM 8/30/2000 - - - - - \$45W13 TOP 8/30/2000 -)M	8/30/2000	-	-	1.8
S25W0 BOTTOM 8/30/2000 - - S25W7 TOP 8/30/2000 9 - S30W20 TOP 8/30/2000 9 - S30W20 BOTTOM 8/30/2000 - - S35W5 TOP 8/30/2000 8 - 68 S35W5 BOTTOM 8/30/2000 - - 14 S35W13 TOP 8/30/2000 8 - - 15 S40W0 TOP 8/30/2000 15 - - - S40W0 BOTTOM 8/30/2000 - - - - S40W20 TOP 8/30/2000 11 - - - S40W20 BOTTOM 8/30/2000 7 -		8/30/2000	10	-	8.9
\$25W7 TOP \$8/30/2000 9 - \$30W20 TOP \$8/30/2000 9 - \$30W20 BOTTOM \$8/30/2000 - - \$35W5 TOP \$8/30/2000 8 - 68 \$35W5 BOTTOM \$8/30/2000 - - 12 \$35W13 TOP \$8/30/2000 8 - - \$40W0 TOP \$8/30/2000 15 - - \$40W0 BOTTOM \$8/30/2000 - - - \$40W20 TOP \$8/30/2000 11 - - \$40W20 BOTTOM \$8/30/2000 7 - - \$45W13 TOP \$8/30/2000 7 - - \$47W7 TOP \$8/30/2000 - - - \$47W7 BOTTOM \$8/30/2000 - - - 58		8/30/2000	13	-	2.5
S30W20 TOP 8/30/2000 9 - 6 S30W20 BOTTOM 8/30/2000 - - 6 S35W5 TOP 8/30/2000 8 - 6 S35W5 BOTTOM 8/30/2000 - - 12 S35W13 TOP 8/30/2000 8 - - S40W0 TOP 8/30/2000 15 - - S40W20 TOP 8/30/2000 - - - S40W20 BOTTOM 8/30/2000 - - - 0 S45W13 TOP 8/30/2000 7 - - - S45W13 BOTTOM 8/30/2000 - - - - S47W7 TOP 8/30/2000 - - - 58 S47W7 BOTTOM 8/30/2000 - - - 58)M	8/30/2000	-	-	360
830W20 BOTTOM 8/30/2000 - - 835W5 TOP 8/30/2000 8 - 68 835W5 BOTTOM 8/30/2000 - - 14 835W13 TOP 8/30/2000 8 - - 840W0 TOP 8/30/2000 15 - - 840W0 BOTTOM 8/30/2000 - - - 840W20 TOP 8/30/2000 - - - 840W20 BOTTOM 8/30/2000 - - - 845W13 TOP 8/30/2000 7 - - 847W7 TOP 8/30/2000 6.5 - - 847W7 BOTTOM 8/30/2000 - - 58		8/30/2000	9	-	16
835W5 TOP 8/30/2000 8 - 68 835W5 BOTTOM 8/30/2000 - - 14 835W13 TOP 8/30/2000 8 - - 840W0 TOP 8/30/2000 15 - - 840W20 BOTTOM 8/30/2000 - - - 840W20 BOTTOM 8/30/2000 - - 0 845W13 TOP 8/30/2000 7 - - 845W13 BOTTOM 8/30/2000 - - - 847W7 TOP 8/30/2000 6.5 - - 847W7 BOTTOM 8/30/2000 - - 58		8/30/2000	9	-	650
835W5 BOTTOM 8/30/2000 - - 14 835W13 TOP 8/30/2000 8 - - 840W0 TOP 8/30/2000 15 - - 840W0 BOTTOM 8/30/2000 - - - 840W20 TOP 8/30/2000 11 - - 840W20 BOTTOM 8/30/2000 - - - 845W13 TOP 8/30/2000 7 - - 845W13 BOTTOM 8/30/2000 - - - 847W7 TOP 8/30/2000 6.5 - - 847W7 BOTTOM 8/30/2000 - - 58	OM	8/30/2000	-	-	39
835W13 TOP 8/30/2000 8 - \$40W0 TOP 8/30/2000 15 - \$40W0 BOTTOM 8/30/2000 - - \$40W20 TOP 8/30/2000 11 - \$40W20 BOTTOM 8/30/2000 - - 0 \$45W13 TOP 8/30/2000 7 - - \$45W13 BOTTOM 8/30/2000 - - - \$47W7 TOP 8/30/2000 6.5 - - \$47W7 BOTTOM 8/30/2000 - - 58		8/30/2000	8	-	68,000
\$40W0 TOP 8/30/2000 15 - \$40W0 BOTTOM 8/30/2000 - - \$40W20 TOP 8/30/2000 11 - \$40W20 BOTTOM 8/30/2000 - - - \$45W13 TOP 8/30/2000 7 - - \$45W13 BOTTOM 8/30/2000 - - - \$47W7 TOP 8/30/2000 6.5 - - \$47W7 BOTTOM 8/30/2000 - - 58)M	8/30/2000	-	-	14,000
\$40W0 BOTTOM 8/30/2000 - - \$40W20 TOP 8/30/2000 11 - \$40W20 BOTTOM 8/30/2000 - - 0 \$45W13 TOP 8/30/2000 7 - - \$45W13 BOTTOM 8/30/2000 - - - \$47W7 TOP 8/30/2000 6.5 - - \$47W7 BOTTOM 8/30/2000 - - 58		8/30/2000	8	-	45
\$40W20 TOP 8/30/2000 11 - \$40W20 BOTTOM 8/30/2000 - - 0 \$45W13 TOP 8/30/2000 7 - - \$45W13 BOTTOM 8/30/2000 - - - \$47W7 TOP 8/30/2000 6.5 - - \$47W7 BOTTOM 8/30/2000 - - 58		8/30/2000	15	-	8.4
\$40W20 BOTTOM 8/30/2000 - - 0 \$45W13 TOP 8/30/2000 7 - - \$45W13 BOTTOM 8/30/2000 - - - \$47W7 TOP 8/30/2000 6.5 - - \$47W7 BOTTOM 8/30/2000 - - 58)M	8/30/2000	-	-	0.5
S45W13 TOP 8/30/2000 7 - S45W13 BOTTOM 8/30/2000 - - S47W7 TOP 8/30/2000 6.5 - S47W7 BOTTOM 8/30/2000 - - 58		8/30/2000	11	-	3
S45W13 BOTTOM 8/30/2000 - - S47W7 TOP 8/30/2000 6.5 - S47W7 BOTTOM 8/30/2000 - - 58	OM	8/30/2000	-	_	0.47
\$47W7 TOP 8/30/2000 6.5 - \$47W7 BOTTOM 8/30/2000 - - 58		8/30/2000	7	-	43
S47W7 BOTTOM 8/30/2000 58	OM	8/30/2000	-	-	2.5
		8/30/2000	6.5	-	2.2
S50W15 TOP 8/30/2000 10 -)M	8/30/2000	-	-	58,000
		8/30/2000	10	-	0.2
T2-CC-03		7/9/2013	-	0 - 1	0.4
T2-CC-03 7/9/2013 - 13 - 15		7/9/2013	-	13 - 15	ND
T2-CC-04 7/9/2013 - 0 - 1.5 (7/9/2013	-	0 - 1.5	0.11
T2-CC-04 7/9/2013 - 10 - 12		7/9/2013	-	10 - 12	ND

Notes

ND : Not detected : Not available

PCBs : Polychlorinated Biphenyls mg/kg : milligrams per kilogram

Table 5 Summary of Soil Results Detected Compounds: VOCs, SVOCs, Pesticides, Herbicides, Metals Transformer Room No. 1

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

Samp	ple Identification	T1-SS01	T1-SS02	T1-SB01	T1-SB01	T1-SB02	T1-SB02	T1-SB02	T1-SB03
Sample Depth (feet bgs)		0 - 8 (in. b.c.)	0 - 6 (in. b.c.)	0 - 4	5 - 10	0 - 2	5 - 10	10 - WT	0 - 2
		6/11/2013	6/12/2013	6/12/2013	6/12/2013	7/23/14	7/23/14	7/23/14	7/23/14
Compound	SCO* (mg/kg)				Results (mg/	kg)			
Volatile Organic Compo	unds								
Acetone	0.05	0.46	1.2	0.25	1.9	ND	ND	ND	ND
Styrene	NS	ND	ND	ND	0.0049	NA	NA	NA	NA
Semivolatile Organic Co	mpounds								
Naphthalene	12	ND	ND	ND	16	0.19	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	0.41	ND
Acenaphthene	20	ND	ND	ND	21	0.44	ND	0.19	ND
Dibenzofuran	7	ND	ND	ND	8.5	0.33	ND	0.20	ND
Fluorene	30	ND	ND	ND	18	0.50	ND	0.29	ND
Phenanthrene	100	0.96	2.3	0.38	130	4.0	0.13	3.3	0.62
Anthracene	100	ND	0.4	ND	29	1.0	ND	0.68	0.16
Fluoranthene	100	1.5	2.4	0.58	130	4.4	0.12	4.1	1.0
Pyrene	100	1.6	2.8	0.65	130	3.0	0.0981	3.3	0.80
Benzo(a)anthracene	1	1	1.2	0.37	70	1.7	ND	1.8	0.51
Chrysene	1	1	1.3	0.38	62	1.6	ND	2.0	0.42
Benzo(b)fluoranthene	1	1.4	1.2	0.58	77	1.6	ND	2.6	0.61
Benzo(k)fluoranthene	0.8	0.49	0.49	0.21	23	0.69	ND	0.53	0.18
Benzo(a)pyrene	1	ND	ND	ND	ND	1.5	ND	1.7	0.48
Indeno(1,2,3-cd)pyrene	0.5	ND	ND	ND	32	0.83	ND	1.0	0.25
Dibenzo(a,h)anthracene	0.33	ND	0.21	ND	8.1	0.17	ND	0.26	ND
Benzo(g,h,i)perylene	100	0.37	0.67	0.21	25	0.81	ND	1.1	0.30
1,2,4-Trichlorobenzene	NS NS	ND	1.8	ND	ND	NA	NA NA	NA	NA
2-methylnaphthalene	NS	ND	ND	ND	13	NA	NA	NA	NA
Carbazole	NS	ND	ND	ND	10	NA	NA	NA	NA
Pesticides	•								
Dieldrin	0.005	NA	NA	NA	NA	0.0059	ND	ND	ND
4,4-DDE	0.0033	NA	NA	NA	NA	0.13	0.0025	0.0077	0.0348
4,4-DDD	0.0033	NA	NA	NA	NA	0.0062	ND	0.0016	ND
4,4-DDT	0.0033	NA	NA	NA	NA	0.12	0.0053	0.0173	0.0374
Herbicides	•								
2,4,5-TP (Silvex)	3.8	NA	NA	NA	NA	0.0731	0.0811	0.0831	0.0713
Metals	•								
Arsenic	13	NA	NA	NA	NA	6.96	4.29	9.39	15.6
Barium	350	NA	NA	NA	NA	233	172	472	216
Beryllium	7.2	NA	NA	NA	NA	0.635	0.542	0.659	0.611
Cadmium	2.5	NA	NA	NA	NA	ND	ND	1.53	ND
Chromium	30	NA	NA	NA	NA	21.9	19.9	36.2	22.5
Copper	50	NA	NA	NA	NA	47.2	57.2	77.3	39.1
Lead	63	NA	NA	NA	NA	62.4	125	488	197
Manganese	1,600	NA	NA NA	NA	NA	309	238	277	273
Mercury	0.18	NA	NA NA	NA	NA	0.078	0.342	0.278	0.161
Nickel	30	NA	NA	NA	NA	42.7	39.7	38.1	34.6
Selenium	3.9	NA NA	NA NA	NA NA	NA NA	1.46	1.03	1.06	1.54
Silver	2	NA NA	NA NA	NA NA	NA NA	ND	ND	0.267	ND
511.01	109	11/1	11/1	11/1	NA NA	152	110	429	218

Notes:

Soil samples analyzed by Chemtech Analytical Laboratory in Mountainside, New Jersey. **Bold**: Indicates an exceedance in the SCO

mg/kg: milligrams per kilogram

ND: Not Detected

feet bgs: feet below ground surface

SCO*: New York State Department of Environmental Conservation (NYSDEC) Unrestricted

Use Soil Cleanup Objective (SCO), 6 NYCRR Part 375-6.8(a), December 14, 2006.

WT: Water Table

Table 5 Summary of Soil Results Detected Compounds: VOCs, SVOCs, Pesticides, Herbicides, Metals Transformer Room No. 1

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

Samp	ple Identification	T1-SB03	T1-SB03	T1-SB04	T1-SB04	T1-SB04	T1-SB05	T1-SB05
Sample Depth (feet bgs)		5 - 10	10 - WT	0 - 2	5 - 10	10 - WT	0 - 2	5 - 10
		7/23/14	7/23/14	7/23/14	7/23/14	7/23/14	7/23/14	7/23/14
Compound	SCO* (mg/kg)]	Results (mg/kg	g)		
Volatile Organic Compo	unds							
Acetone	0.05	ND	ND	ND	0.0119	0.0102	ND	0.017
Styrene	NS	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organic Co	mpounds							
Naphthalene	12	ND	ND	ND	1.1	ND	ND	0.50
Acenaphthylene	100	0.49	0.36	ND	0.64	1.1	ND	0.63
Acenaphthene	20	0.30	ND	ND	1.4	ND	ND	0.62
Dibenzofuran	7	0.18	ND	ND	0.54	ND	ND	0.24
Fluorene	30	0.38	ND	ND	1.2	0.16	ND	0.53
Phenanthrene	100	4.3	1.1	0.41	8.4	0.79	0.14	3.4
Anthracene	100	1.2	0.33	0.0845	2.1	0.36	ND	0.97
Fluoranthene	100	7.3	1.9	0.53	10	3.2	0.23	4.0
Pyrene	100	5.6	2.4	0.40	8.5	8.1	0.19	4.9
Benzo(a)anthracene	1	3.5	1.3	0.40	5.3	3.1	0.19	3.1
Chrysene	1	3.1	1.2	0.23	4.4	2.4	0.11	2.3
Benzo(b)fluoranthene	1	3.6	1.9	0.21	6.3	4.0	0.10	3.7
	0.8	1.2	0.51	0.0893	1.1	1.7	ND	
Benzo(k)fluoranthene						· ·		1.0
Benzo(a)pyrene	1	2.9	1.6	0.18	4.8	4.8	0.0946	3.3
Indeno(1,2,3-cd)pyrene	0.5	1.6	0.93	0.0977	2.8	2.5	ND	1.9
Dibenzo(a,h)anthracene	0.33	0.41	0.20	ND	0.71	0.54	ND	0.41
Benzo(g,h,i)perylene	100	1.7	1.5	0.0977	3.5	4.3	ND	2.7
1,2,4-Trichlorobenzene	NS	NA	NA	NA	NA	NA	NA	NA
2-methylnaphthalene Carbazole	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pesticides	INS	INA	NA	INA	NA	INA	INA	NA
Dieldrin	0.005	ND	ND	ND	ND	ND	ND	ND
4,4-DDE	0.0033	0.0115	0.0016	0.0014	0.0021	ND	0.0246	ND
4,4-DDD	0.0033	ND	ND	ND	ND	ND	ND	ND
4,4-DDT	0.0033	0.0165	0.0026	ND	0.004	ND	0.0262	ND
Herbicides	1							
2,4,5-TP (Silvex)	3.8	0.074	0.0858	0.0738	0.0739	0.0776	0.0885	0.0826
Metals	1							
Arsenic	13	12.3	22.9	6.28	6.11	5.11	20.4	18.8
Barium	350	328	341	180	290	390	181	455
Beryllium	7.2	0.601	0.741	0.545	0.711	0.733	0.5	1.04
Cadmium	2.5	0.079	2.06	ND	0.26	0.174	ND	1.69
Chromium	30	21.6	29.1	20.3	25	23.9	19.1	21.9
Copper	50	36.9	65	35.2	54.6	47.1	28.3	80.2
Lead	63	276	326	134	273	267	155	580
Manganese	1,600	266	269	281	288	310	252	314
Mercury	0.18	0.208	0.195	0.109	0.388	0.179	0.123	0.468
Nickel	30	32.7	38.3	31.9	55	40.7	22.8	44.6
Selenium	3.9	1.1	1.3	1.11	1.28	1.24	0.895	1.25
Silver	2	ND	ND	ND	ND	ND	ND	0.310
Zinc	109	302	372	186	289	274	120	769

Notes:

Soil samples analyzed by Chemtech Analytical Laboratory in Mountainside, New Jersey. **Bold**: Indicates an exceedance in the SCO

mg/kg: milligrams per kilogram

ND: Not Detected

feet bgs: feet below ground surface

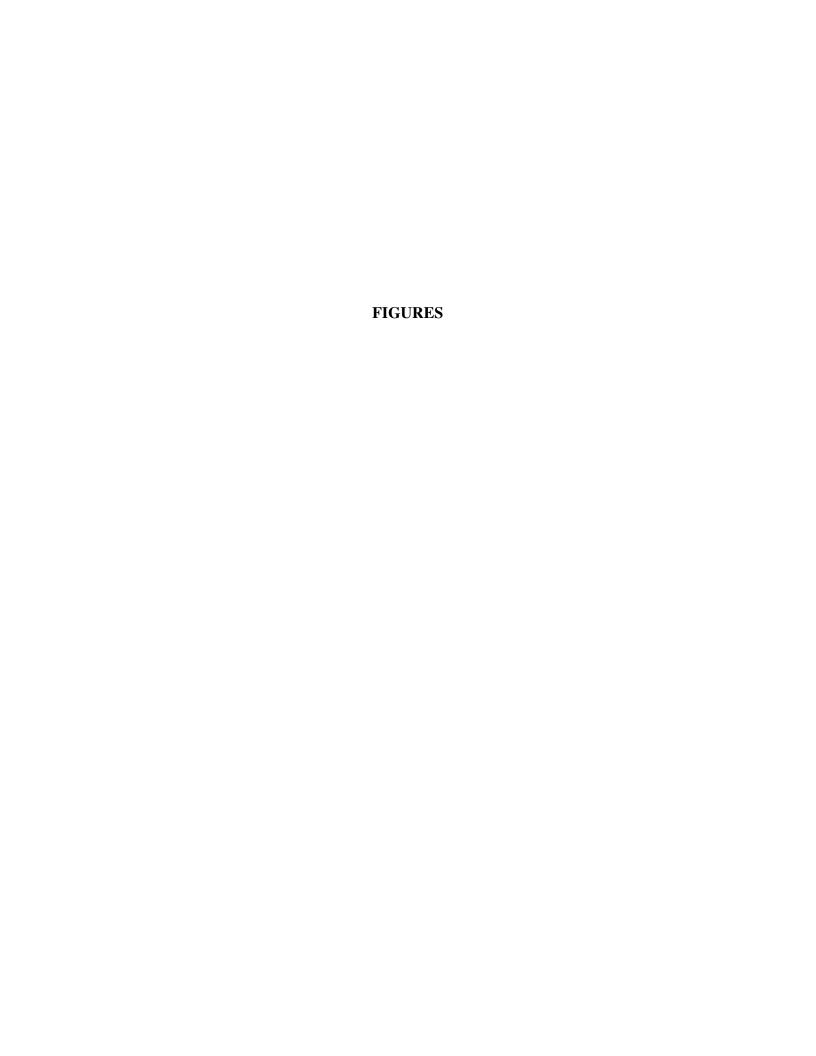
SCO*: New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use Soil Cleanup Objective (SCO), 6 NYCRR Part 375-6.8(a), December 14, 2006.

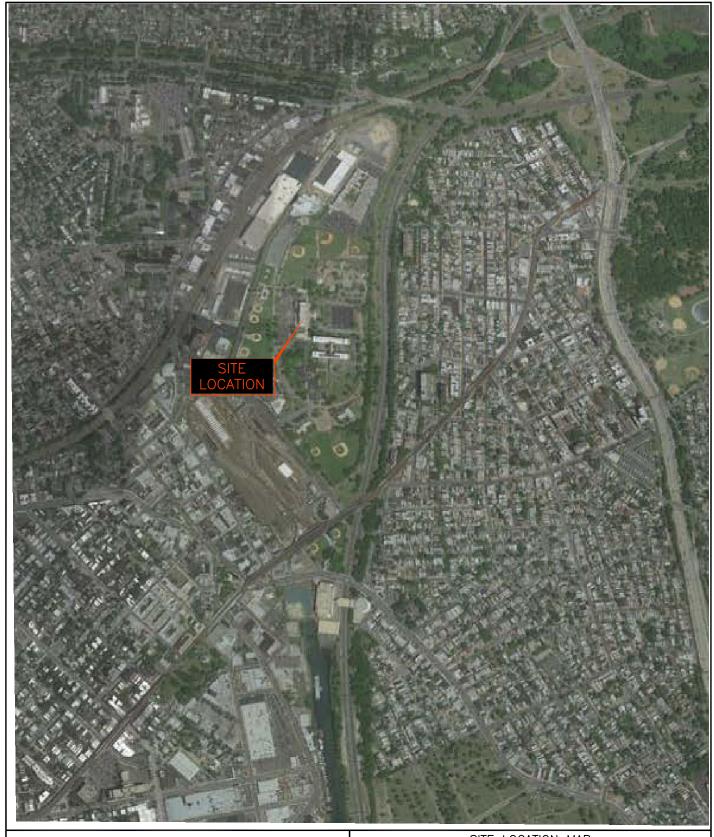
WT: Water Table

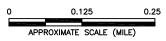
Table 6 Summary of Soil Results Detected Compounds: VOCs and SVOCs Transformer Room No. 2

Bronx Psychiatric Center 1500 Waters Place, Bronx, New York

Sample	Sample Identification			T2-SB02	T2-SB02		
Sample D	epth (feet bgs)	0 - 8 (in. b.c.)	12 - 14 (in. b.c)	0 - 4	5 - 10		
C	Collection Date	6/11/2013	6/12/2013	6/12/2013	6/12/2013		
Compound	SCO* (mg/kg)	Results (mg/kg)					
Volatile Organic Compounds							
Acetone	0.05	1.1	1.3	2	0.51		
Naphthalene	12	ND	ND	ND	0.026		
Semivolatile Organic Compounds							
Acenaphthene	20	ND	ND	0.67	0.39		
Anthracene	100	0.31	0.23	1.3	1		
Benzo(a)Anthracene	1	0.99	0.94	3.8	3.1		
Benzo(a)Pyrene	1	0.97	1	3.7	2.9		
Benzo(b)Fluoranthene	1	1.2	1.2	4.2	3.3		
Benzo(g,h,i)Perylene	100	0.71	0.99	2.3	1.9		
Benzo(k)Fluoranthene	0.8	0.49	0.49	1.6	1.3		
Carbazole	NS	ND	ND	0.58	0.38		
Chrysene	1	0.99	0.98	3.6	2.8		
Dibenz(a,h)Anthracene	0.33	ND	0.23	0.61	0.5		
Fluoranthene	100	1.8	1.6	6.1	5.2		
Fluorene	30	ND	ND	0.61	0.35		
Naphthalene	12	ND	0.22	0.85	0.39		
Phenanthrene	100	1.4	1.3	5.5	3.5		
Pyrene	100	2.2	2	8.4	6.7		

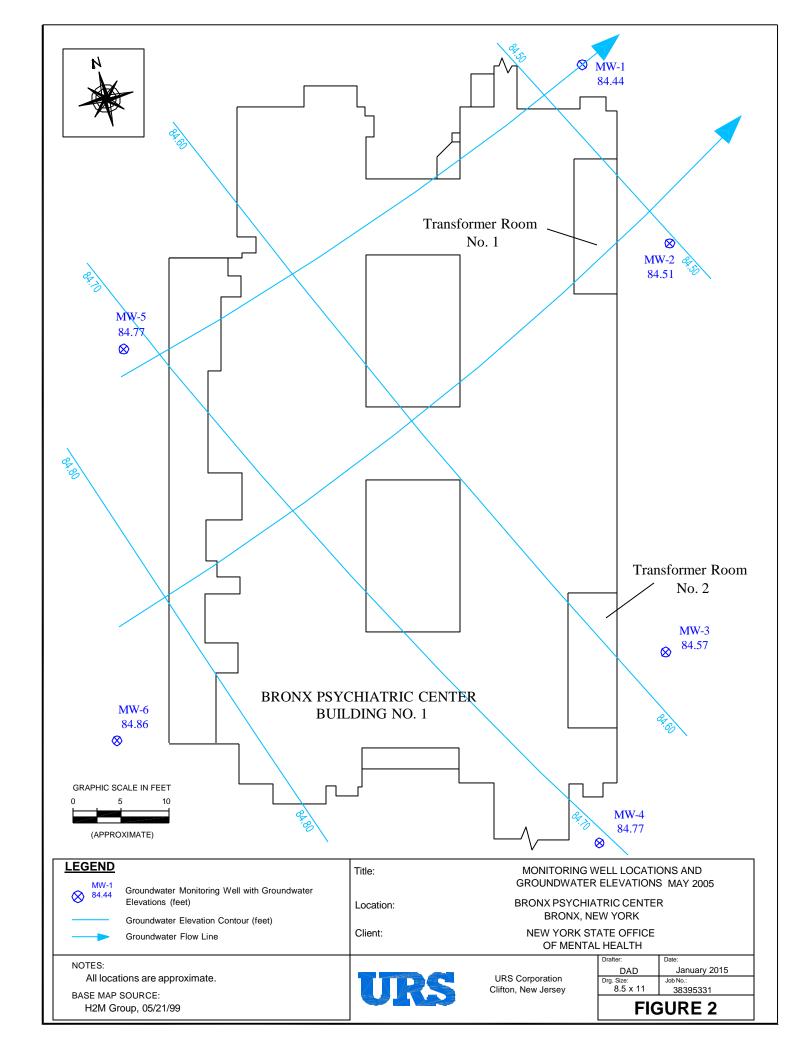

Notes:


Soil samples analyzed by ConTest Analytical Laboratory in East Longmeadow, Massachusetts.


mg/kg: milligrams per kilogram feet bgs: feet below ground surface in. b.c.: inches below concrete

NS: SCO not established in 6 NYCRR Part 375-6.8(a).

*: New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use Soil Cleanup Objective (SCO), 6 NYCRR Part 375-6.8(a), December 14, 2006.


MAP SOURCE:

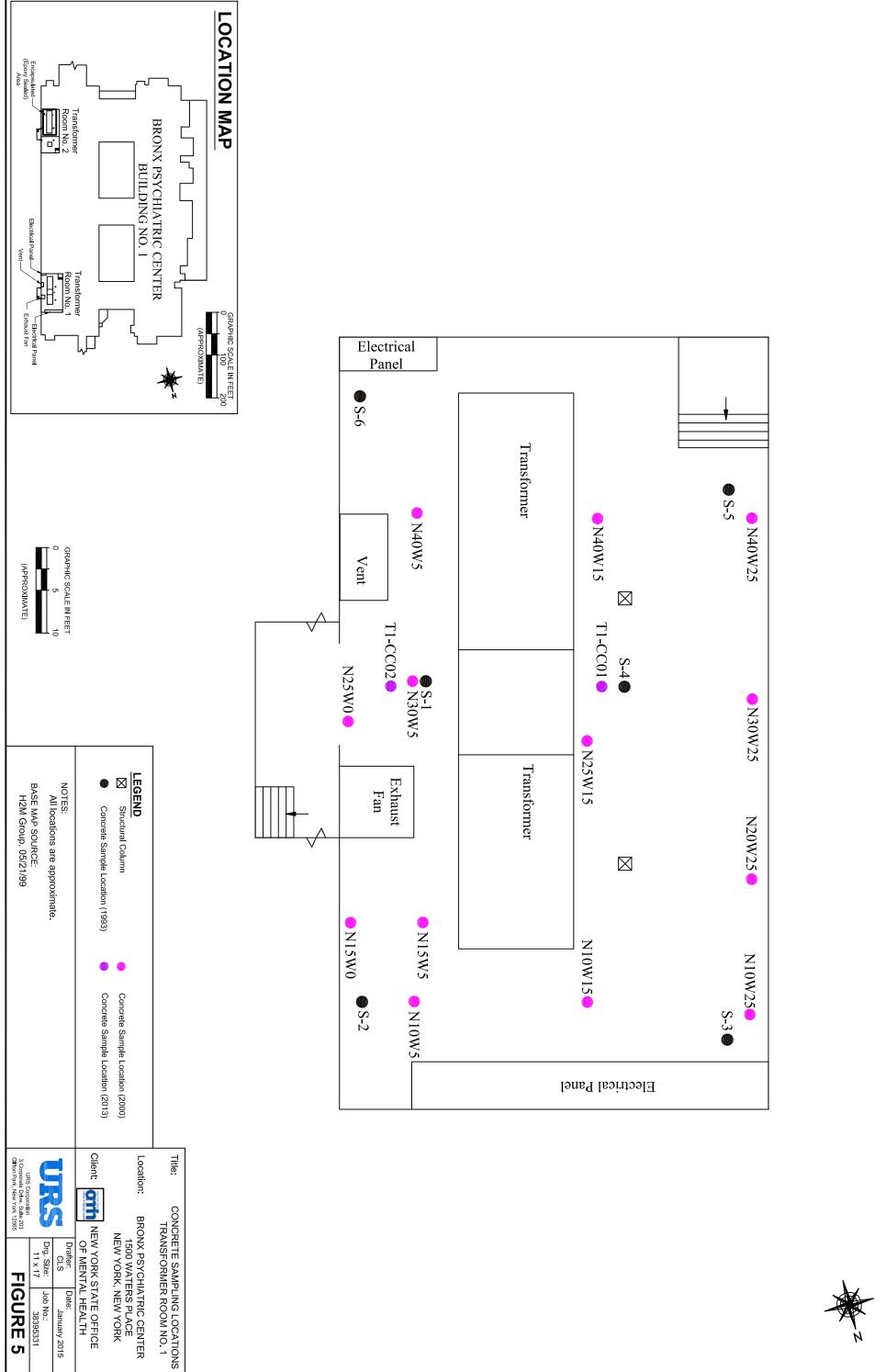
GOOGLE EARTH IMAGERY DATE 06/17/2010

SITE LOCATION MAP
1500 WATERS PLACE, BRONX, NEW YORK STATE
OFFICE OF MENTAL HEALTH
BRONX PSYCHIATRIC CENTER

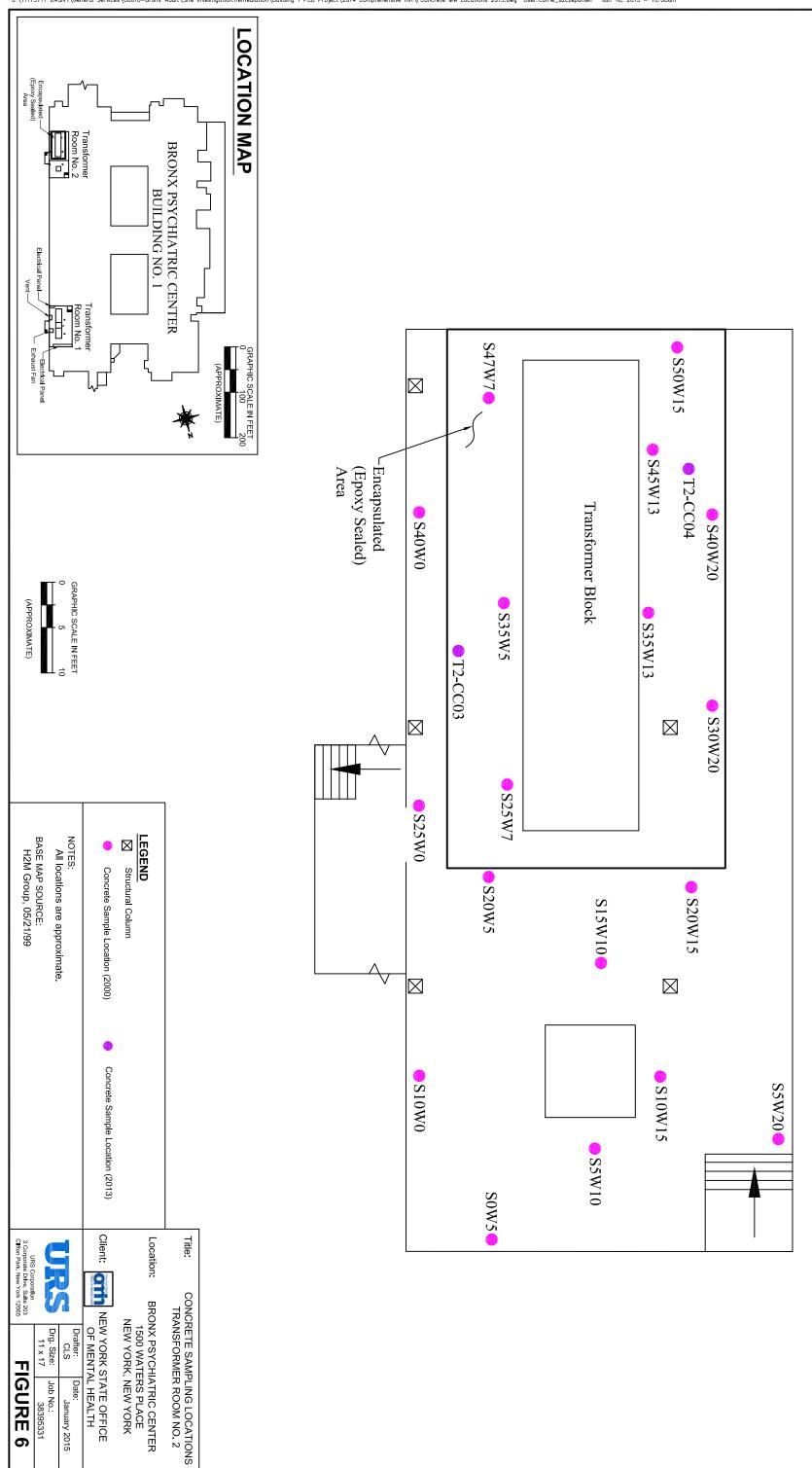
U	R	S
LIETON	NIEW	IEDOEN

CLIFTON, NEW JERSET								
DR. BY	ET	SCALE	AS SHOWN	DWG. NO. 38395095-	-15 PROJ. NO.	38395095		
CK'D. BY	SK		DATE	JULY 9, 2012	FIG. NO.	1		

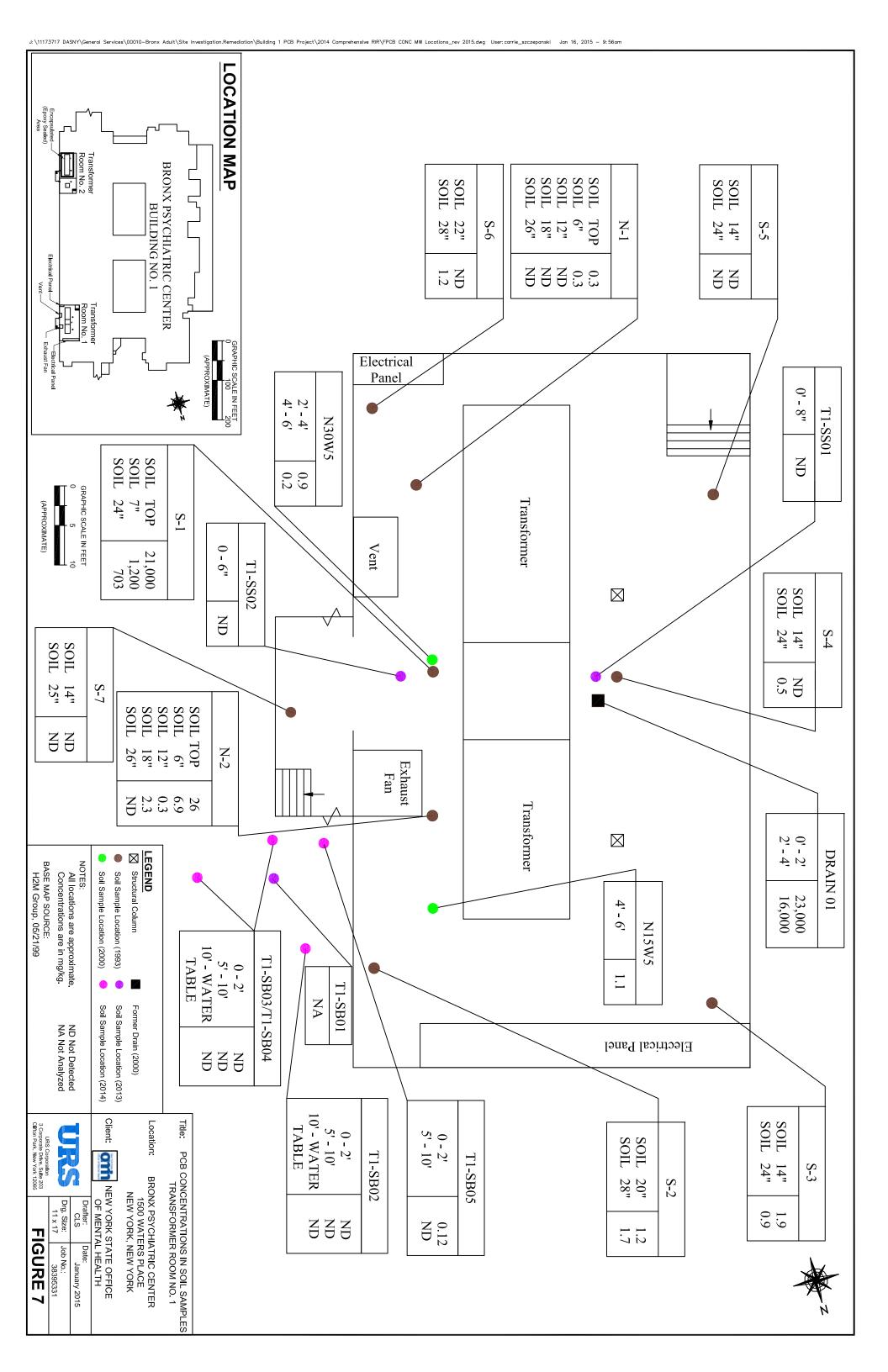
Date: January 2015 Job No. 38395331

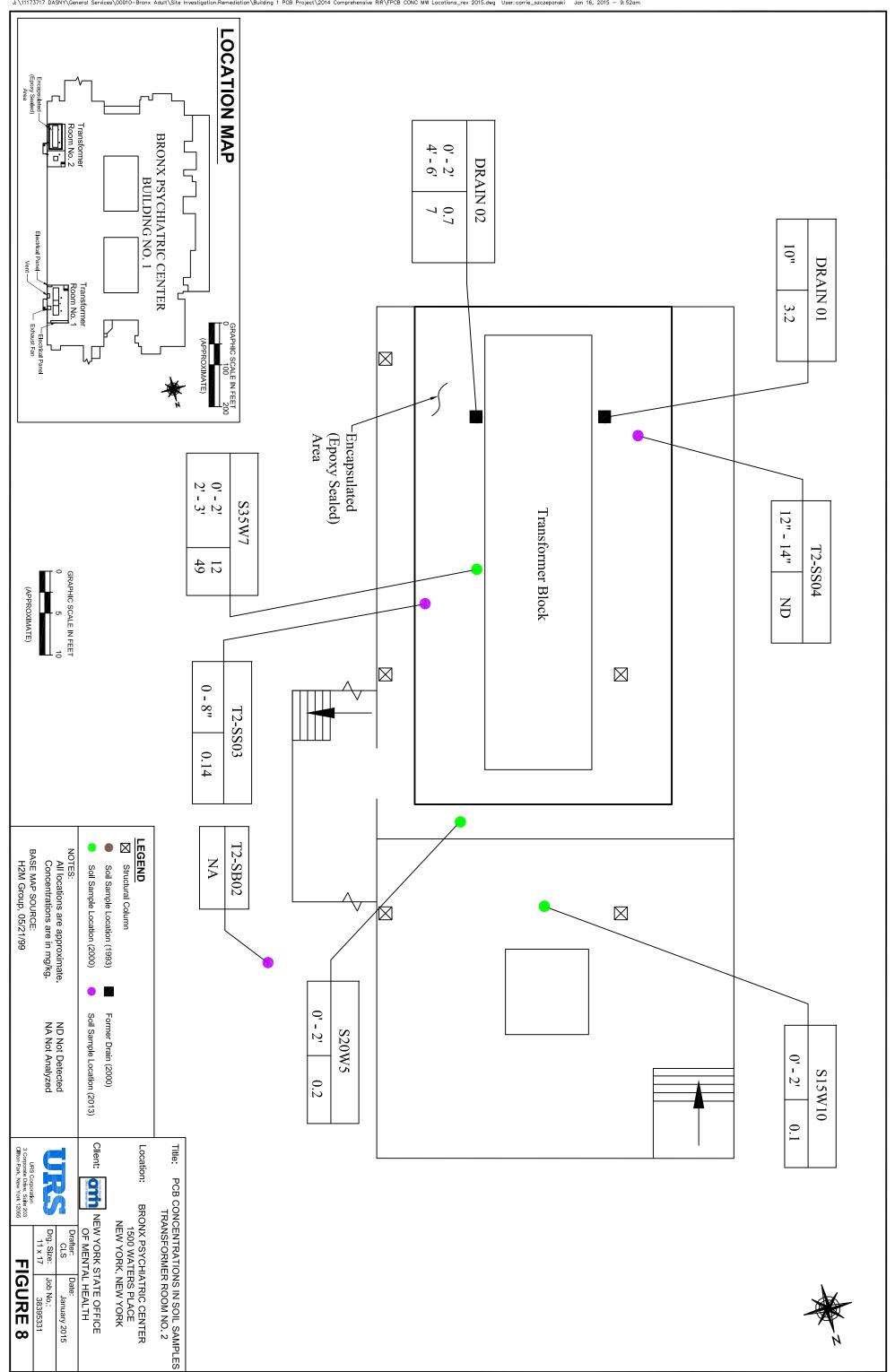

BRONX PSYCHIATRIC CENTER 1500 WATERS PLACE NEW YORK, NEW YORK

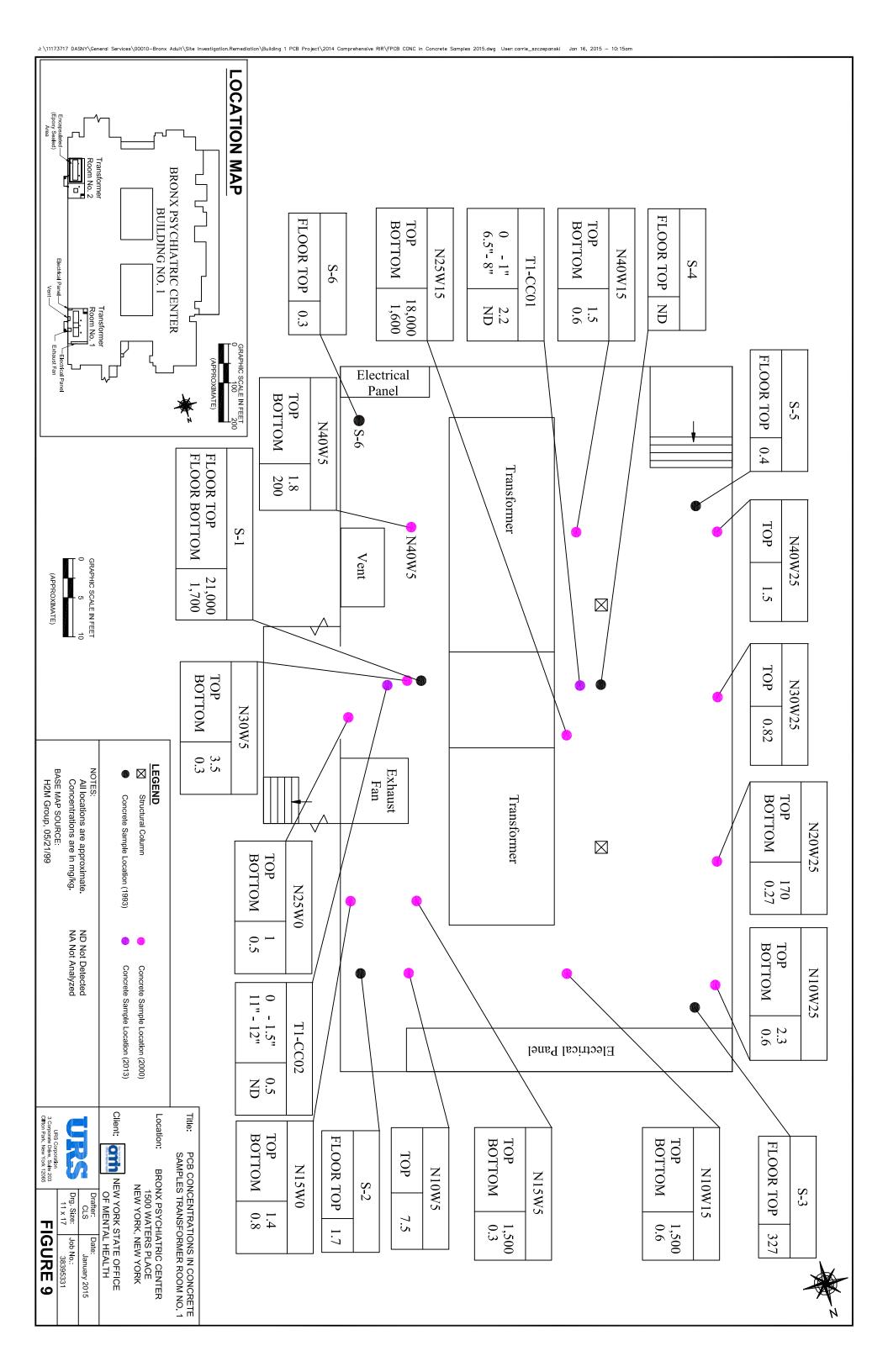
Drg. Size: Job No.: 11 x 17 38395331

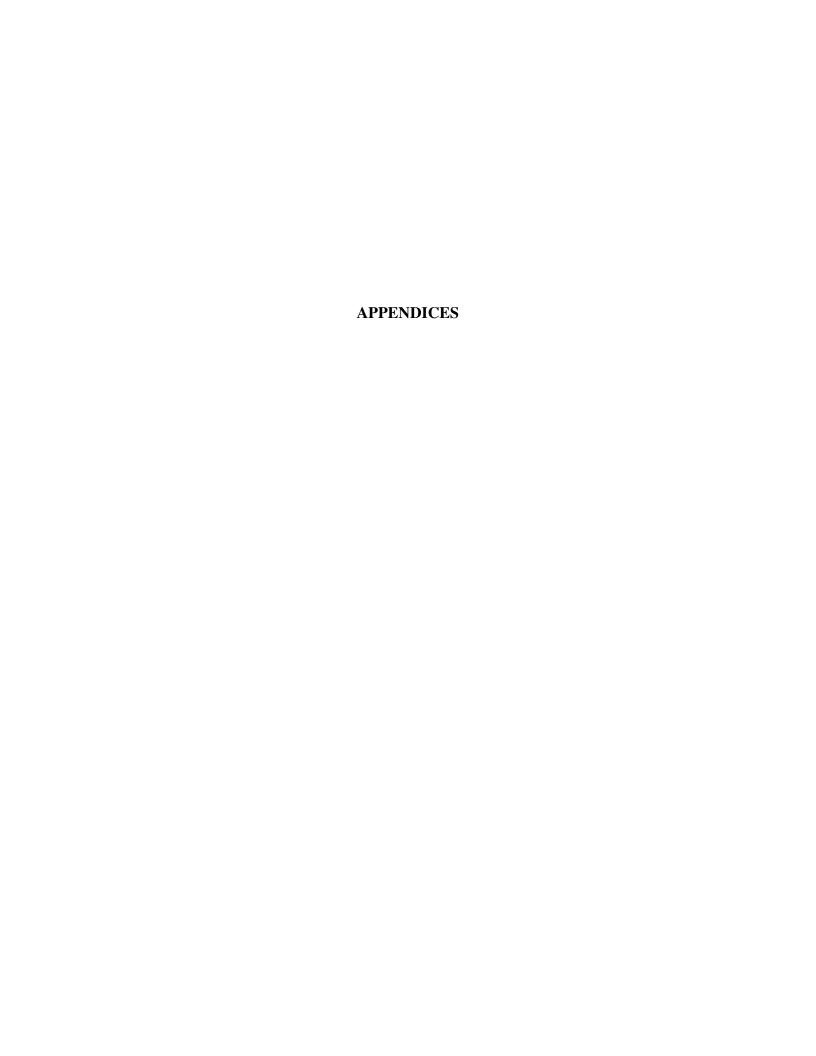

FIGURE 4

SOIL SAMPLING LOCATIONS TRANSFORMER ROOM NO. 2




Drg. Size: 11 x 17


Date: January 2015 Job No.: 38395331


FIGURE 6

APPENDIX A HUMAN HEALTH EXPOSURE ASSESSMENT

APPENDIX A

HUMAN HEALTH EXPOSURE ASSESSMENT

The purpose of a human health exposure assessment (HHEA) is to identify pathways by which human populations may be exposed to site-related contaminants. The HHEA includes an evaluation of existing site conditions, as well as conditions of surrounding areas and uses, and potential exposure pathways by which site contaminants may impact receptor populations. The HHEA also includes projections of future uses of the site and surrounding areas and resulting potential exposure pathways.

An exposure pathway is process by which Site contaminants may potentially impact a receptor population. An exposure pathway includes these five elements:

- 1. **Contaminant Source:** a source or sources where contaminants are released into the environment.
- 2. **Environmental media and transport mechanism:** environmental media include media to which contaminants are released and/or may be transported to receptors. These media include surficial soil, subsurface soil, groundwater, air, surface water, sediment, or waste materials.
- 3. **Point of exposure:** an actual or potential location of human contact with Site contaminants, including businesses, residences, recreational areas, water bodies, surface water or groundwater withdrawal points, etc.
- 4. **Route of exposure:** the process by which the contaminant could potentially enter a human body. These routes of exposure include ingestion, inhalation and dermal contact.
- 5. **Receptor population:** persons at the point of exposure who could potentially be exposed to site contaminants.

A completed exposure pathway provides a connection between a contaminant source and a receptor population and must include all five elements listed above. If one of the elements is not present, the exposure pathway is not complete and there is no potential for a human exposure. An evaluation of each of these elements with respect to PCB release in Building No. 1 transformer rooms 1 and 2 is presented in the following sections:

CONTAMINANT SOURCE

The contaminants identified at the Building 1 transformer rooms are PCBs. The source of PCB contamination is the release of PCBs from transformers located in Rooms 1 and 2. In addition, there are some VOCs, SVOCs, pesticides, herbicides, and metals in the soil beneath the transformer rooms that can likely be attributed to the urban fill material.

ENVIRONMENTAL MEDIA AND TRANSPORT MECHANISM

Environmental media that people could typically be exposed to include soil, groundwater, surface water and sediment. The Remedial Investigation Report (RIR) provides a detailed description of affected environmental media and delineation of contaminants in various media. An evaluation of these media with respect to exposure pathways is presented in the following sections.

Soil

As described in the RIR, the soil beneath the concrete floors is impacted with PCBs. In addition, there are some VOCs, SVOCs, pesticides, herbicides, and metals in the soil beneath the transformer rooms that can likely be attributed to the urban fill material. The soil is overlain by 6 to 18 inches of concrete slab and all vertical migration pathways from the concrete floor to the subsurface soil have been sealed. In addition, the concrete floor received epoxy coating that would limit direct exposure to concrete floor and also limit exposure from soils also. Therefore, no exposure pathway associated with soils exists.

Groundwater

As described in Sections 2.0 and 3.0 of the RIR, groundwater at the Site is not impacted by PCBs. Groundwater monitoring from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6) have been sampled and analyzed since 1994 for PCBs. Only one exceedence for PCBs has been detected in the groundwater in 2003. However, this detection was not replicated after the well was re-developed and re-sampled.

Indoor Air Data

As described in Sections 2.0 and 3.0 of the RIR, indoor samples have been collected from Transformer Rooms Nos. 1 and 2 in Building No. 1 from 1995 until 2006. PCBs were detected in one air sample, located north of Transformer Room No. 1, at a concentration of 0.16 μ g/m³ in May 2004. This concentration was just above the detection limit and does not pose any concern to human health.

POINT OF EXPOSURE

The point of exposure is the point at which people could come into contact with a contaminated environmental medium. The point(s) of exposure will depend on the impacted media, and local land and natural resource use.

Local Land Use and Natural Resource Use

The land use at Site and surrounding areas is a mixture of industrial and commercial and can reasonably be expected to continue as such for the foreseeable future. No residential properties are located in the vicinity of the Site. The nearest residential building is 500 feet from the Site. The groundwater at the Site is not used for potable water.

Environmental Media

As described in Sections 2.0 and 3.0, the environmental media that could be part of an exposure pathway include groundwater, soils and vapor. Data indicates the concrete floors in the transformer rooms are stained and could potentially be a point of exposure. However, the interim remedial measures (IRMs) have been implemented that limit exposure or direct contact.

The soil impacted by PCBs are covered by approximately 6 to 18 inches of concrete, which forms the floor slabs.

Only one exceedence for PCBs has been detected in the groundwater of MW-3 in 2003. However, this detection was not replicated after the well was re-developed and re-sampled. There have been no other groundwater exceedences for PCBs in the samples collected from the six monitoring wells that were sampled from 1993 through 2014. This suggests that there is no migration of PCBs from impacted soils to groundwater.

Air sampling did not detect any exceedences for PCB contamination.

RECEPTOR POPULATIONS

The potential receptor populations for Site are based on current and projected future land use in and around Site. As described above, the current land use in the area is industrial/commercial.

Access to the basement of the building is currently restricted. There are limited maintenance staff that enter the transformer rooms on a periodic basis. It is anticipated that future use of the building would include access restrictions to the basement. Annual environmental monitoring includes visual inspections and wipe sampling of the epoxy floor coating.

Construction workers may come in contact with contaminants during construction activities in the future, however practices will be put into place to limit exposure.

ROUTE OF EXPOSURE

An exposure route is a means by which contaminants can enter the body. Typical potential routes of exposure include:

Water

- 1. Direct ingestion
- 2. Dermal or ocular contact

Soil and/or Sediment

- 1. Direct ingestion (primarily by young children)
- 2. Dermal or ocular contact
- 3. Inhalation of dust
- 4. Inhalation of volatilized chemicals

Air

- 1. Inhalation
- 2. Dermal or ocular contact

Biota / Food Chain

- 1. Ingestion of plants or products impacted by intake of contaminated water, soil/sediment or air
- 2. Dermal or ocular contact with contaminated plants or products.

The routes of exposure are dependent on several factors discussed in the preceding sections, including land use, environmental media, point of exposure and receptor populations. As discussed in these sections, there are currently no identified completed human exposure pathways.

SUMMARY

This section summarizes the HHEA for Building No.1, Transformer Rooms No. 1 and 2 at the Bronx P.C. PCBs that were previously released from the transformers have impacted the concrete floors and subsurface soil. In addition, there are some VOCs, SVOCs, pesticides, herbicides, and metals in the soil beneath the transformer rooms that can likely be attributed to the urban fill material. The environmental media evaluated include groundwater, indoor air, concrete floor and soils. A summary for reach of these media is presented below.

Groundwater

Only one exceedence for PCBs has been detected in the groundwater of MW-3 in 2003. However, this detection was not replicated after the well was re-developed and re-sampled. There have been no other groundwater exceedences for PCBs in the samples collected from the six monitoring wells that were sampled from 1993 through 2014. Therefore, no exposure pathway associated with groundwater exists at the Site.

Concrete Floor

The concrete floor was impacted by PCBs. However, IRMs were implemented to prevent direct contact of stained surface by coating the concrete floor with epoxy. In addition, wipe samples have been collected at random locations in both rooms on an annual basis. If there is an exceedance of the cleanup standard, the floor is cleaned and re-epoxyed as necessary. Therefore, no exposure pathway associated with concrete floor exists at the Site. Annual environmental monitoring consisting of visual inspection, wipe sampling, and as-needed cleaning and repair of the epoxy coated floor will continue.

Soil

The soil beneath the concrete floors is impacted. The soil is overlain by 6 to 18 inches of concrete floor slab and vertical migration pathways from the concrete floor to the subsurface soil have been sealed. In addition, the concrete floor received epoxy coating that would limit direct

exposure to concrete floor and also limit exposure from soils also. Therefore, no exposure pathway associated with soils exists.

Indoor Air

Indoor air samples have been collected from Transformer Rooms Nos. 1 and 2 in Building No. 1 from 1995 until 2006. PCBs were detected in one air sample, located north of Transformer Room No. 1, at a concentration of $0.16~\mu g/m^3$ in May 2004. This concentration was just above the detection limit and does not pose any concern to human health. Therefore, no exposure pathway is associated with indoor air.

APPENDIX B HISTORICAL TABLES AND FIGURES

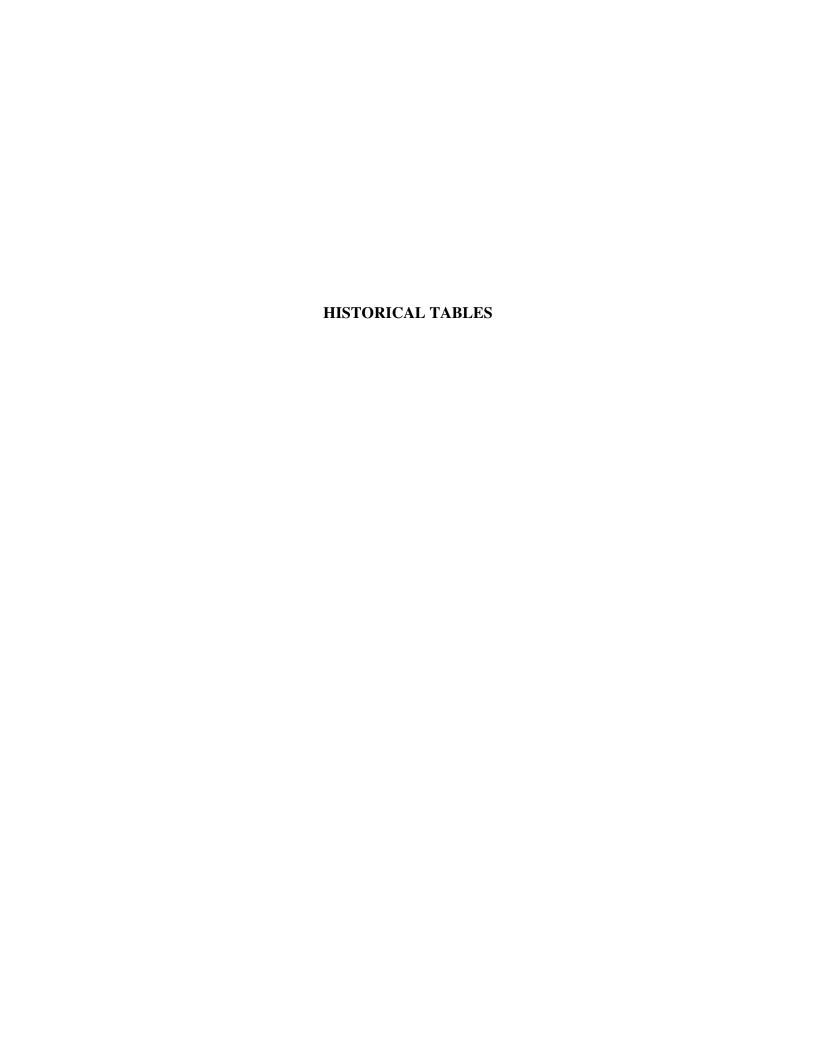


TABLE 2-1
1993 GROUNDWATER SAMPLING RESULTS
BRONX PSYCHIATRIC CENTER

Parameter	MW#1	MW#2	MW#3	MW#4	Date
PCB-1016	ND	ND	ND	ND	11/3/1993
PCB-1221	ND	ND	ND	ND	11/3/1993
PCB-1232	ND	ND	ND	ND	11/3/1993
PCB-1242	ND	ND	ND	ND	11/3/1993
PCB1248	ND	ND	ND	ND	11/3/1993
PCB-1254	ND	ND	ND	ND	11/3/1993
PCB-1260	ND	ND	ND	ND	11/3/1993

Notes:

Analyzed by Method 608 ND = Not detected above MDL All results reported as ug/L

TABLE 2-2 BUILDING 1-TRANSFORMER ROOM NO. 1 PCB CONCENTRATIONS IN CONCRETE CORE SAMPLES PRELIMINARY SITE ASSESSMENT BRONX PSYCHIATRIC CENTER

Sample	Laboratory Sample	Client Sample	Floor Core	Date of	PCBs*
Identification	Identification	Number	Thickness	Sample	(ppm)
			(inches)		
N10W5T	71401001	1CN10W5T	11	8/31/00	7.5 D
N10W15T	71389002	1CN10W15T	10	8/28/00	1,500
N10W15TBOTTOM	71671002	1CN10W15B		8/28/00	0.62
N10W25T	71389001	1CN10W25T	8	8/28/00	2.3
N10W25TBOTTOM	71671001	1CN10W25B		8/28/00	0.62
N15W0	71394002	1CN15W0T	15	8/29/00	1.40
N15W0BOTTOM	71394027	1CN15W0B		8/30/00	0.80
N15W5	71389008	1CN15W5	9	8/28/00	1,500
N15W5BOTTOM	71389012	1CN15W5B		8/28/00	0.33 P
N20W25T	71389003	1CN20W25T	9	8/28/00	170
N20W25TBOTTOM	71671003	1CN20W25B		8/28/00	0.27
N25W0	71394001	1CN25W0T	16	8/29/00	1.0
N25W0BOTTOM	71394026	1CN25W0B		8/29/00	0.54
N25W15	71389009	1CN25W15	12.5	8/28/00	18,000
N25W15BOTTOM	71389013	1CNW15B		8/28/00	1,600
N30W5	71389007	1CN30W5	7.5	8/28/00	3.5
N30W5BOTTOM	71389011	1CN30W5B		8/28/00	0.34
N30W25T	71389004	1CN30W25T	>7	8/28/00	0.82
N40W5	71389006	1CN40W5	9	8/28/00	1.8
N40W5BOTTOM	71389010	1CN40W5B		8/28/00	200
N40W15	71394003	1CN40W15T	16	8/30/00	1.5
N40W15BOTTOM	71394028	1CN40W15B		8/30/00	0.62
N40W25T	71389005	1CN40W25T	>12	8/28/00	1.5

Notes:

Samples are one-inch increments of three-inch diameter core

^{*} Arochlor 1260

D: Result taken from diluted sample analysis

P: This flag is used for a pesticide/ Arochlor target analyte when there is greater than 25% difference for detected concentrations between two GC columns. The lower of the two values is reported.

TABLE 2-3
BUILDING 1-TRANSFORMER ROOM NO. 2
PCB CONCENTRATIONS IN CONCRETE CORE SAMPLES
PRELIMINARY SITE ASSESSMENT
BRONX PSYCHIATRIC CENTER

Sample	Laboratory	Client Sample	Floor Core	Date of	PCBs*
Identification	Sample	Number	Thickness	Sample	(ppm)
	Identification		(inches)		
SOW5	71394006	2CS10W5T	15	8/30/00	0.61
S5W10	71394005	2CS5W10T	9	8/30/00	6.5
S5W20	71394004	2CS5W20T	13	8/30/00	0.9 P
S10W0	71394007	2CS10W0T	14	8/30/00	0.66
S10W0BOTTOM	71394029	2CS10W0B		8/30/00	10
S10W15	71394008	2CS10W15T	8	8/30/00	0.36
S15W10	71394009	2CS15W10T	8.5	8/30/00	1.6
S15W10BOTTOM	71394030	2CS15W10B		8/30/00	1.2
S20W5	7139410	2CS20W5T	8	8/30/00	4.9
S20W5BOTTOM	71394031	2CS20W5B		8/30/00	1.8
S20W15	71394020	2CS20W15T	10	8/30/00	8.9 P
S25W0	71394011	2CS25W0T	13	8/30/00	2.5
S25W0BOTTOM	71394032	2CS25W0B		8/30/00	360
S25W7	71394019	2CS25W7T	9	8/30/00	16
S30W20	71394012	2CS30W20T	9	8/30/00	650
S30W20BOTTOM	71394033	2CS30W20B		8/30/00	39
S35W5	71394017	2CS35W5T	8	8/30/00	68,000 P
S35W5BOTTOM	71394035	2CS35W5B		8/30/00	14,000 P
S35W13	71394014	2CS35W13T	8	8/30/00	45
S40W0	71394018	2CS40W0T	15	8/30/00	8.4
S40W0BOTTOM	71671005	2CS40W0B		8/30/00	0.51
S40W20	71394013	2CS40W20T	11	8/30/00	3
S40W20BOTTOM	71671004	2CS40W20B		8/30/00	0.47
S45W13	71394015	2CS45W13T	7	8/30/00	43
S45W13BOTTOM	71394034	2CS45W13B		8/30/00	2.5
S47W7	71394021	2CS47W7T	6.5	8/30/00	2.2 P
S47W7BOTTOM	71671006	2CS47W7B		8/30/00	58,000
S50W15	71394016	2CS50W15T	10	8/30/00	0.19

Notes:

P: This flag is used for a pesticide/ Arochlor target analyte when there is greater than 25% difference for detected concentrations between two GC columns. The lower of the two values is reported.

Samples are one-inch increments of three-inch diameter core

^{*} Arochlor 1260

TABLE 2-4
BUILDING 1-TRANSFORMER ROOMS
PCB FIELD RESULTS FOR SOIL SAMPLES
PRELIMINARY SITE ASSESSMENT
BRONX PSYCHIATRIC CENTER

Soil	Depth Below	Field Test				
Identification	Floor (feet)	Results ⁽¹⁾ (ppm)				
Room No. 01						
Drain	0-2	~15*				
	2-4	~15*				
	4-5.5	<1				
	5.5-6	<1				
N15W0	0-2	<1				
	2-4	<1				
	4-6	<1				
	6-8	<1				
N15W5	0-2	<1				
	2-4	<1				
	4-6	<1*				
	6-8	<1				
N25W0	0-2	<1				
ľ	2-4	<1				
	4-5.5	<1				
N25W15	0-2	<1				
1	4-5	<1				
	5.5-6	<1				
N30W5	0-2	<1*				
	2-4	<1*				
	4-6	<1*				
N40W5	0-2	<1				
	2-4	<1				
N40W5	0-6	<1				
	2-3	<1				
N40W15	0-2	<1				
1	2-4	<1				
	4-6	<1				

Soil	Depth Below	Field Test					
Identification	Floor (feet)	Results ⁽¹⁾ (ppm)					
,	(1001)	(ppiii)					
Room No. 02							
DRAIN-N01	008	5-15*					
DRAIN-N02	0-2	~1*					
	2-4	<1					
	4-6	<1*					
S10W0	0-2.5	<1					
S10W4	2-4	<1					
	4-6	<1					
S15W10	0-2	<1*					
	2-4	<1					
	4-6	<1					
	6-8	<1					
S20W5	0-2	<1					
	2-3	<1					
	3-3.5	<1					
S25W0	0-2	<1*					
	2-4	<1					
	4-6	<1					
S30W20	0-1	<1					
	1-3	<1					
	3-5	<1					
S35W7	0-2	<1*					
	2-3	5-15*					
	3-5	Refusal					
S45W15	0-2	~4					
	2-4	<1					
	4-5.5	<1					
	5.5-6	<1					

Note:

^{*} Selected for laboratory analysis

 $^{^{(1)}}$ Using a field immunoassay kit; D-TECH PCB Soil Test Kit, Item #TK-1002-1

TABLE 2-5
BUILDING 1-TRANSFORMER ROOMS
PCB CONCENTRATIONS IN SOIL SAMPLES
PRELIMINARY SITE ASSESSMENT
BRONX PSYCHIATRIC CENTER

Sample	Laboratory	Client Sample	Depth Below	Date of	PCBs*	PCB Field KIT
Identification	Sample	Number	Floor (feet)	Sample	(ppm)	Results ** (ppm)
	Identification					
Room No. 01						
DRAIN	71394024	1SDRAIN02	0-2	8/29/00	23,000	<1
DRAIN	71394025	1SDRAIN24	2-4	8/29/00	16,000	<1
N15W5	71394023	1SN15W546	4-6	8/30/00	1.1	~15
N30W5	71394022	1SN30W524	2-4	8/29/00	0.87 P	~15
N30W5	71401008	1SN30W546	4-6	8/31/00	0.17 P	<1
Room No. 02						
DRAIN-N01	7141004	2DRAIN106	0-0.8	8/30/00	3.2	4-15
DRAIN-N02	71401002	2DRAIN246	4-6	8/30/00	0.73 P	<1
DRAIN-N02	71401003	2DRAIN202	0-2	8/30/00	7.0 P	~1
S15W10	71401007	2S15W1002	0-2	8/31/00	0.09 P	<1
S20W5	71401006	2SS20W502	0-2	8/31/00	0.24	4-15
S35W7	71401005	2SS35W702	0-2	8/31/00	12	<1
S35W7	71401009	2SS35W723	2-3	8/31/00	49	<1

Note:

^{*}Arochlor 1260

^{**}Using a field immunoassay kit; D-TECH PCB Soil Test Kit, Item #TK-1002-1

P: This flag is used for a pesticide/ Arochlor target analyte when there is greater than 25% difference for detected concentrations between two GC columns. The higher of the two values is reported.

TABLE 3-1

SUMMARY OF GROUNDWATER ELEVATIONS 2004 BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

Water (feet) 12/14/2004 14.48 14.85 14.57 14.76 10.92		Measuring	Depth to	Groundwater
Elevation 12/14/2004 99.37 14.48 99.79 14.85 99.55 14.57 100.00 14.76 96.23 10.92 94.88 9.57		Point	Water (feet)	Elevation (feet)
99.37 14.48 99.79 14.85 99.55 14.57 100.00 14.76 96.23 10.92 94.88 9.57	Monitoring Well ID	Elevation	12/14/2004	12/14/2004
99.79 14.85 99.55 14.57 100.00 14.76 96.23 10.92 94.88 9.57	MW-1	99.37	14.48	84.89
99.55 100.00 96.23 94.88	MW-2	62'66	14.85	84.94
100.00 96.23 94.88	MW-3	99.55	14.57	84.98
96.23	MW-4	100.00	14.76	85.24
94.88	MW-5	96.23	10.92	85.31
	MW-6	94.88	9.57	85.31

Note:

Measuring point elevations in feet relative to site datum from Dvirka and Bartilucci July 13, 2004.

TABLE 3-2

SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS 2004 BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	MW-1	MW-2	MW-3	MW-4	MW-5	9-MW	MW-6 DUP
Parameter (µg/L)	12/14/2004	12/21/2004	12/14/2004	12/14/2004	12/14/2004	12/14/2004	12/14/2004
Polychlorinated Biphenyls							
Aroclor-1016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1221	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1232	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1242	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1248	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1254	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1260	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Total PCBs	ND						

Notes:

<: Indicates parameter was not detected at the reporting limit.

ND: Indicates parameter was not detected.

1: The New York State Groundwater Quality Standard from Division of Water Technical and

Operational Guidance Series (NYSDEC, TOGS 1.1.1) for total PCBs in groundwater is 0.09 µg/L.

TABLE 3-3

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS 2004 BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

		I ransformer Koom No.	Koom No. I			I ransformer Koom No.	K00m No. 2	
Parameter	T1-1	T1-2	T1-3	T1-4	T2-1	T2-2	T2-3	T2-4
(ug/100 cm ²)	12/14/2004	12/14/2004	12/14/2004	12/14/2004	12/14/2004	12/21/2004	12/14/2004	12/14/2004
Polychlorinated Biphenyls	henyls							
Aroclor-1016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1221	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1232	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1242	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1248	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1254	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1260	<1.0	<1.0	3.3	2.2	1.8	1.8	<1.0	2.6
Total PCBs	ND	ND	3.3	2.2	1.8	1.8	ND	2.6

Notes:
<! Indicates parameter was not detected at the reporting limit.
ND: Indicates parameter was not detected.

*: Wiped area was 100 cm2

**. The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs in a wipe sample is 10 µg/100 cm².

TABLE 3-4

SUMMARY OF GROUNDWATER ELEVATIONS 2005 1ST BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	Measuring	Depth to	Groundwater
	Point	Water (feet)	Elevation (feet)
Monitoring Well ID	Elevation	5/3/2005	5/3/2005
MW	99.37	14.93	84.44
MW	62.66	15.28	84.51
MW	99.55	14.98	84.57
MW	100.00	15.23	84.77
MW	96.23	11.46	84.77
MW	94.88	10.02	84.86

Note:

Measuring point elevations in feet relative to site datum from Dvirka and Bartilucci July 13, 2004.

TABLE 3-5

SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS 2005 1ST BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	NYSDEC						
	Groundwater	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
Parameter (µg/L)	Standard ¹	5/3/2005	5/3/2005	5/3/2005	5/3/2005	5/3/2005	5/3/2005
Polychlorinated Biphenyls							
Aroclor-1016		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor-1221	×	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor-1232	o C	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor-1242	ã	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor-1248	D	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor-1254		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor-1260	•	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total PCBs	60.0	ND	ND	ND	ND	ND	ND

Notes:

<: Indicates parameter was not detected at the reporting limit.</p>

ND: Indicates parameter was not detected.

1: The New York State Groundwater Quality Standard from Division of Water Technical and

Operational Guidance Series (NYSDEC, TOGS 1.1.1) for total PCBs in groundwater is 0.09 µg/L.

TABLE 3-6

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS $2005\ 1^{ST}$ BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	TSCA		Transformer Room No.	No. 1			Transformer Room No. 2	om No. 2	
Parameter	Cleanup	Wipe 5	Wipe 6	Wipe 7	Wipe 8	Wipe 1	Wipe 2	Wipe 3	Wipe 4
(µg/100 cm ² *)	<i>G</i> ₁	5/4/2005	5/4/2005	5/4/2005	5/4/2005	5/4/2005	5/4/2005	5/4/2005	5/4/2005
Polychlorinated Biphenyls	henyls								
Aroclor-1016	:4	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1221	0.	<1.0	<1.0	<5,0	<1.0	<1.0	<1,0	<1.0	<1.0
Aroclor-1232	<i>y</i> .	<1.0	<1.0	<5.0	<1.0	<1.0	<1,0	<1.0	<1.0
Aroclor-1242	,	<1.0	<1.0	<5,0	<1.0	<1.0	<1,0	<1.0	<1.0
Aroclor-1248		<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1254	•	<1.0	<1.0	<5,0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1260		2.6	1.7	29	3.3	19	1.4	<1.0	2.9
Total PCBs	10	2.6	1.7	29	3.3	61	1.4	ND	2.9

Indicates parameter was not detected at the reporting limit.
 ND: Indicates parameter was not detected.

*: Wiped area was 100 cm². 1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs in a wipe sample is 10 µg/100 cm².

TABLE 3-7

SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS 2005 $1^{\rm ST}$ BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	OSHA	Transformer Room No. 1	Transformer Room No. 2
Parameter mg/m ³	Exposure	Air T1-01	Air T2-01
0	Limit ¹	5/4/2005	5/4/2005
Polychlorinated Biphenyls			
Aroclor-1016	10	<0.00641	<0.00641
Aroclor-1221		<0.00641	<0.00641
Aroclor-1232		<0.00641	<0.00641
Aroclor-1242	1	<0.00641	<0.00641
Aroclor-1248	*	<0.00641	<0.00641
Aroclor-1254	0	<0.00641	<0.00641
Aroclor-1260	7	<0.00641	<0.00641
Total PCBs	1	QN	QN

Indicates parameter was not detected at the reporting limit.
 ND: Indicates parameter was not detected.

^{1.} The Occupational Safety and Health Administration's permissible exposure limit for Aroclor 1254 is 0.5 mg/m³ and for Aroclor 1242 is 1.0 mg/m³.

TABLE 3-8

SUMMARY OF GROUNDWATER ELEVATIONS 2005 2nd BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	Measuring	Depth to	Groundwater
	Point	Water (feet)	Elevation (feet)
Monitoring Well ID	Elevation	12/1/05	12/1/05
MW	99.37	13.97	85.50
MW	62.66	14.05	84.94
MW	99.55	14.57	84.98
MW	100.00	14.76	85.24
MW	96.23	10.92	85.31
MM	94.88	9.57	85.31

Note:

Measuring point elevations in feet relative to site datum from Dvirka and Bartilucci July 13, 2004.

TABLE 3-9

SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS 2005 2" BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	NYSDEC						
	Groundwater	MW-1	MW-2	MW-3	MW-4	MW-5	9-MW
Parameter (µg/L)	Standard ¹	5/3/2005	5/3/2005	5/3/2005	5/3/2005	5/3/2005	5/3/2005
Polychlorinated Biphenyls							
Aroclor-1016	30CT	0.05 U	0.05 U	0.05 U	$0.05\mathrm{U}$	0.05 U	0.05 U
Aroclor-1221	1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aroclor-1232	1303	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aroclor-1242	1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aroclor-1248) [4] (0.05 U	0.05 U	0.05 U	0.05 U	$0.05\mathrm{U}$	0.05 U
Aroclor-1254		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aroclor-1260	r _i	0.05 U	0.05 U	$0.05\mathrm{U}$	0.05 U	0.05 U	0.05 U
Total PCBs	60.0	ND	ND	ND	ND	ND	ND

Notes:

<: Indicates parameter was not detected at the reporting limit.

ND: Indicates parameter was not detected.

1: The New York State Groundwater Quality Standard from Division of Water Technical and

Operational Guidance Series (NYSDEC, TOGS 1.1.1) for total PCBs in groundwater is 0.09 µg/L,

TABLE 3-10

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS 2005 2" BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	TSCA		Transformer Room No.	- Room No.			Transformer Room No.	er Room No.	
Parameter	Cleanup	Wipe 5	Wipe 6	Wipe 7	Wipe 8	Wipe 1	Wipe 2	Wipe 3	Wipe 4
(µg/100 cm ² *)	Standard ¹	12/1/2005	12/1/2005	12/1/2005	12/1/2005	12/1/2005	12/1/2005	12/1/2005	12/1/2005
Polychlorinated Biphenyls	henyls								
Aroclor-1016		10	1.0	1.0	1.0	1.0	1.0	10	10
Aroclor-1221	•)	1 U	1 U	1 U	1 U	1 U	1.0	1-0	1 U
Aroclor-1232	.(•	1 0	10	10	1.0	1 U	1.0	10	10
Aroclor-1242		10	10	1 U	ΩI	1 U	10	1.0	10
Aroclor-1248		10	10	1.0	1.0	1 U	1.0	1 U	1.0
Aroclor-1254	16	1 U	1 U	1 U	1 U	1 U	1 Ü	1 U	1.0
Aroclor-1260	٠	2.2	1 U	1.0	10	1.0	1.0	10	1.0
Total PCBs	10	2.2	QN	QN	ND	ND	ΩN	ND	ΩN

Indicates parameter was not detected at the reporting limit.
 ND: Indicates parameter was not detected.
 *: Wiped area was 100 cm².
 I: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs in a wipe sample is 10 µg/100 cm².

TABLE 3-11

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS 2006 $\,1^{8T}$ BIANNUAL MONITORING

BUILDING NO. 1-PCB MONITORING

	TSCA Cleanup		Transformer Room No. 1	Room No. 1			Transformer	Transformer Room No. 2	
Parameter	Standard	TR1-Wipe1	TR1-Wipe2	TR1-Wipe3	TR1-Wipe4	TR2-Wipe5	TR2-Wipe6	TR2-Wipe7	TR2-Wipe8
(ug/100 cm ² *)	(ug/100 cm ² *)	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006
Polychlorinated Biphenyls	tenyls								
Aroclor-1016	¥	<1.0	<1,0	<1.0	<1,0	<1.0	<1,0	<1.0	<1.0
Aroclor-1221	×	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	0.1>	0'I>
Aroclor-1232	740	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	0"1>	<1.0
Aroclor-1242	¥	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1248	8.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1254	ю	<1.0	<1.0	<1.0	<1.0	0'1>	<1.0	<1.0	<1.0
Aroclor-1260		4.1	4.9	3,4	10	1.3	9.5	8.8	2.4
Total PCBs	10	4.1	4.9	3.4	$1\overline{0}$	1.3	9.5	8.8	2.4

Notes:
Wipe samples analyzed by EPA Method 8082 by Mitkern Corporation.

< Indicates parameter was not detected at the reporting limit.

ND: Indicates parameter was not detected.

PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm².

1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm².

TABLE 3-12

SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS 2006 1ST BIANNUAL MONITORING

BRONX PSYCHIATRIC CENTER BUILDING NO. 1-PCB MONITORING

		Transformer Room No. 1	Transformer Room No. 2
Parameter	OSHA PEL ¹	TR1-Air01	TR2-Air02
(mg/m³)	(mg/m ³)	5/18/2006	5/18/2006
Polychlorinated Biphenyls			
Aroclor-1016	§ €)	<0.0125	<0.0125
Aroclor-1221	386	<0.0110	<0.0110
Aroclor-1232	**	<0.0126	<0.0126
Aroclor-1242	1.0	<0.0134	<0.0134
Aroclor-1248	(%)	<0.0130	<0.0130
Aroclor-1254	0.5	<0.0107	<0.0107
Aroclor-1260		<0.0123	<0.0123
Total PCBs	(4)	ND	QN
I Utal I CDS		ON!	

Air samples analyzed by NIOSH Method 5503 by Mitkem Corporation. <: Indicates parameter was not detected at the reporting limit shown.

ND: Indicates parameter was not detected,

PCB: Polychlorinated Biphenyl 1. The Occupational Safety and Health Adminstration's (OSHA) permissible exposure limit (PEL)

for Aroclor 1242 is 1.0 mg/m 3 and for Aroclor 1254 is 0.5 mg/m 3

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS

BRONX PSYCHIATRIC CENTER BUILDING NO. 1-PCB MONITORING

	TSCA Cleanup		Transformer Room No.	Room No. 1			Transformer Room No. 2	Room No. 2	
Parameter	Standard ¹	TR1-Wipel	TR1-Wipe2	TR1-Wipe3	TR1-Wipe4	TR2-Wipe5	TR2-Wipe6	TR2-Wipe7	TR2-Wipe8
(µg/100 cm ² *)	(µg/100 cm ² *)	1/23/2007	1/23/2007	1/23/2007	1/23/2007	1/23/2007	1/23/2007	1/23/2007	1/23/2007
Polychlorinated Biphenyls	henyls								
Aroclor-1016		<1.0	<1.0	0 1>	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1221	ï	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1232		<1.0	<1.0	<1.0	<1.0	0.1>	<1.0	<1.0	<1.0
Aroclor-1242	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1248		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1254		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1260		1.3	1.7	3.9	9.9	<1.0	<1.0	4.4	1.5
Total PCBs	10	1.3	1.7	3.9	9.9	ND	ND	4.4	1.5

Notes:
Wipe samples analyzed by EPA Method 8082 by Mitkem Corporation.
<! Indicates parameter was not detected at the reporting limit.
ND: Indicates parameter was not detected.
PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm². 1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm²,

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS

BRONX PSYCHIATRIC CENTER BUILDING NO. 1-PCB MONITORING

	TSCA Cleanup		Transformer Room No.	Room No. 1			Transformer	Transformer Room No. 2	
Parameter	Standard ¹	TR1-Wipel	TR1-Wipe2	TR1-Wipe3	TR1-Wipe4	TR2-Wipel	TR2-Wipe2	TR2-Wipe3	TR2-Wipe4
(µg/100 cm ² *)	(µg/100 cm ² *)	12/6/2007	12/6/2007	12/6/2007	12/6/2007	12/6/2007	12/6/2007	12/6/2007	12/6/2007
Polychlorinated Biphenyls	henyls								
Aroclor-1016	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1221	٠	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1232		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1242	*	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	0'1>
Aroclor-1248		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0
Aroclor-1254	**	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor-1260		2.1	3.4	3.2	9.2	<1.0	2.3	1.0	83
Total PCBs	10	2.1	3.4	3.2	9.2	ND	2.3	1.0	83

Notes:
Wipe samples analyzed by EPA Method 8082 by Mitkem Corporation.
<! Indicates parameter was not detected at the reporting limit.
ND: Indicates parameter was not detected.
PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm². I: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 $\mu g/100$ cm².

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS

BRONX PSYCHIATRIC CENTER BUILDING NO. 1-PCB MONITORING

	TSCA Cleanup		Transformer Room No. 1	Room No. 1			Transforme	Transformer Room No. 2	
Parameter	Standard 1	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 4	TR2-Wipe 5	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
(ug/100 cm ² *)	(ue/100 cm ² *)	11/13/2008	11/13/2008	11/13/2008	11/13/2008	11/13/2008	11/13/2008	11/13/2008	11/13/2008
Polychlorinated Biphenyls	henvis								
Aroclor-1016		<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51
Aroclor-1221	2.	<0.51	<0.51	<0,51	<0.51	<0.51	<0.51	<0.51	<0.51
Aroclor-1232		<0.51	<0,51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51
Aroclor-1242	1	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51
Arnelor 1949		<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51
Aroclor-1254		<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51
Aroclor-1260	7.	1:1	1.2	2.0	2.7	3.8	2.9	1.8	0.53J
Total PCBs	10	13	1.2	2.0	2.7	3.8	2.9	1.8	0.53J

Notes:
Wipe samples analyzed by EPA Method 8082 by Chemtech.
<; Indicates parameter was not detected at the reporting limit.
J: Indicates value is estimated.
PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm². I: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm².

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS

BRONX PSYCHIATRIC CENTER BUILDING NO. 1-PCB MONITORING

	TSCA Cleanup		Transformer Room No. 1	Room No. 1			Transformer	Transformer Room No. 2	
Parameter	Standard1	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 4	TR2-Wipe 5	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
(µg/100 cm ² *)	(µg/100 cm ² *)	11/24/2009	11/24/2009	11/24/2009	11/24/2009	11/24/2009	11/24/2009	11/24/2009	11/24/2009
Polychlorinated Biphenyls	henyls								
Aroclor-1016		<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
Aroclor-1221	•	<0.14	<0,14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Aroclor-1232		<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Aroclor-1242	•9	>0.06	>0.06	>0.06	90 0>	>0.06	>0.06	>0.06	90.0>
Aroclor-1248	ų.	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Aroclor-1254	٠	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Aroclor-1260	•	2.2	2.0	2.4	1.5	4.5	0.78	1.2	Ξ
Total PCBs	10	2.2	2.0	2.4	1.5	4.5	0.78	1.2	1:1

Notes;
Wipe samples analyzed by EPA Method 8082 by Chemtech.
<! Indicates parameter was not detected at the reporting limit.
<!- PCB: Polychlorinated Biphenyl
*: Wiped area was 100 cm².

I: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm².

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	TSCA Cleanup		Transformer R	Room No. 1		Transfo	Transformer Room No. 1-Confirmation Wipe Sampling	onfirmation Wipe S	ampling
Parameter	Standard ¹	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 4	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 4
(μg/100 cm ² *)	(µg/100 cm ² *)	10/28/2010	10/28/2010	10/28/2010	10/28/2010	1/1//11	1/1//11	1/1//11	1/1//11
Polychlorinated Biphenyls	henyls								
Aroclor-1016	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor-1221		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor-1232		<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22
Aroclor-1242		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor-1248	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Aroclor-1254	•	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Aroclor-1260	9))	36.0 D	58.0 D	4.4	2.9	<0.12	<0.12	<0.12	<0.12
Total PCBs	10	36.0	58.0	4.4	6.7	QN	QN	ND	ND

Motor

Wipe samples analyzed by EPA Method 8082 by Chemtech.

<: Indicates parameter was not detected at the reporting limit.

PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm².

1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm².

Bold indicates value exceeds method detection limit.

Shading indicates value exceeds TSCA standard.

D: The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS

BRONX PSYCHIATRIC CENTER BUILDING NO. 1

	TSCA Cleanup		Transformer	Transformer Room No. 2	
Parameter	Standard ¹	TR2-Wipe 5	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
(µg/100 cm ² *)	(µg/100 cm ² *)	10/28/2010	10/28/2010	10/28/2010	10/28/2010
Polychlorinated Bip	henyls				
Aroclor-1016	27410	<0.1	<0.1	<0.1	<0.1
Aroclor-1221	•	<0.1	<0.1	<0.1	<0.1
Aroclor-1232	4	<0.22	<0.22	<0.22	<0.22
Aroclor-1242	000	<0.1	<0.1	<0.1	<0.1
Aroclor-1248	ř	<0.2	<0.2	<0.2	<0.2
Aroclor-1254	i•	<0.05	<0.05	<0.05	<0.05
Aroclor-1260	(a :	4.2	8.0	2.3	1.6
Total PCBs	10	4.2	8.0	2.3	1.6

Notes

Wipe samples analyzed by EPA Method 8082 by Chemtech.

<: Indicates parameter was not detected at the reporting limit.

PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm².

1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is $10~\mu g/100~cm^2$.

Bold indicates value exceeds method detection limit.

Shading indicates value exceeds TSCA standard.

D: The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS BUILDING NO. 1-PCB MONITORING BRONX PSYCHIATRIC CENTER TABLE 1

	TSCA Cleanup			Transform	Transformer Room No. 1		
Parameter	Standard ¹	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 3DL**	TR1- Wipe 3a	TR1-Wipe 4
(µg/100 cm ² *)	(µg/100 cm ² *)	11/10/2011	11/10/2011	11/10/2011	11/10/2011	12/14/2011	11/10/2011
Polychlorinated Biphenyls	sh						
Aroclor-1016	•	<0.10000	<0.10000	<0.10000	<1.00000	<0.00051	<0.10000
Aroclor-1221		<0.10000	<0.10000	<0.10000	<1.00000	<0.00051	<0.10000
Aroclor-1232		<0.22000	<0.22000	<0.02200	<2.20000	<0.00051	<0.22000
Aroclor-1242	39	<0.10000	<0.10000	<0.10000	<1.00000	<0.00051	<0.10000
Aroclor-1248		<0.20000	<0.20000	<0.20000	<2.00000	<0.00051	<0.20000
Aroclor-1254		<0.05000	<0.05000	<0.05000	<0.45000	<0.00051	<0.05000
Aroclor-1260		<0.12000	00008'9	30.0000	26.0000	<0.00051	<0.12000
Total PCBs	10	ΩN	00008'9	30.0000	26.0000	ND	QN

	TSCA Cleanup			Transformer	Transformer Room No. 2		
Parameter	Standard	TR2-Wipe 5	TR2-Wipe 5DL**	TR2-Wipe 5a	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
(µg/100 cm ^{2*})	(µg/100 cm ² *)	11/10/2011	11/10/2011	12/14/2011	11/10/2011	11/10/2011	11/10/2011
Polychlorinated Biphenyls	vls		30 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -				
Aroclor-1016	*	<0.10000	<0.52000	<0.00051	<0.10000	<0.10000	<0.10000
Aroclor-1221		<0.10000	<0.51000	<0.00051	<0.10000	<0.10000	<0.10000
Aroclor-1232		<0.22000	<1.10000	<0.00051	<0.22000	<0.22000	<0.22000
Aroclor-1242		<0.10000	<0.51000	<0.00051	<0.10000	<0.10000	<0.10000
Aroclor-1248	•	<0.20000	<0.99000	<0.00051	<0.20000	<0.20000	<0.20000
Aroclor-1254		<0.05000	<0.22000	<0.00051	<0.05000	<0.05000	<0.05000
Aroclor-1260		14.0000 E	28.0000	<0.00051	2.00000	4.00000	0.05000
Total PCBs	10	14.0000 F	28.0000	DN	2.00000	4.00000	0.95000

Wipe samples analyzed by EPA Method 8082 by Chemtech <: Indicates parameter was not detected at the reporting limit PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm²

µg/100 cm²; micrograms per 100 square centimeters

1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm²

E: Value exceeded calibration range DL**: A dilution factor is being used

ND: Not Detected Shading indicates value exceeds TSCA standard.

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS **BUILDING NO. 1-PCB MONITORING** BRONX PSYCHIATRIC CENTER TABLE 1

	TSCA Cleanup		Transformer Room No. 1	- Room No. 1	
Parameter	Standard ¹	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 4
(µg/100 cm ² *)	(µg/100 cm ² *)	12/5/2012	12/5/2012	12/5/2012	12/5/2012
Polychlorinated Biphenyls					
Aroclor-1016	• 00	<0.255	<0.255	<0.255	<0.255
Aroclor-1221		<0.255	<0.255	<0.255	<0.255
Aroclor-1232		<0.255	<0.255	<0.255	<0.255
Aroclor-1242	*	<0.255	<0.255	<0.255	<0.255
Aroclor-1248	3.5	<0.255	<0.255	<0.255	<0.255
Aroclor-1254	•	<0.255	<0.255	<0.255	<0.255
Aroclor-1260	2	0.800	0.590	0.800	0.930
Total PCBs	10	0.800	0.590	0.800	0.930

	TSCA Cleanup		Transforme	Transformer Room No. 2	
Parameter	Standard ¹	TR2-Wipe 5	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
(µg/100 cm ² *)	(µg/100 cm ²⁴)	12/5/2012	12/5/2012	12/5/2012	12/5/2012
Polychlorinated Biphenyls	5				
Aroclor-1016	*	<0.255	<0.255	<0.255	<0.255
Aroclor-1221	7.0	<0.255	<0.255	<0.255	<0.255
Aroclor-1232	***	<0.255	<0.255	<0.255	<0.255
Aroclor-1242		<0.255	<0.255	<0.255	<0.255
Aroclor-1248	(#K)	<0.255	<0.255	<0,255	<0.255
Aroclor-1254	30	<0.255	<0.255	<0.255	<0.255
Aroclor-1260	311	0.860	<0.255	1.30	0.410J
Total PCBs	10	0.860	QN	1.30	0.410J

Notes:

Wipe samples analyzed by EPA Method 8082 by Chemtech c: Indicates parameter was not detected at the reporting limit PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm²

µg/100 cm²: micrograms per 100 square centimeters

The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 μg/100 cm²
 Value is approximated. The value is between the Method Detection Limit and the Limit of Quantitation.

ND: Not Detected

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS TABLE 1

BUILDING NO. 1-PCB MONITORING BRONX PSYCHIATRIC CENTER

	TSCA Cleanup		Transformer Room No. 1	- Room No. 1	
Рагатеег	Standard ¹	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 4
(μg/100 cm ² *)	(μg/100 cm ² *)	12/10/2013	12/10/2013	12/10/2013	12/10/2013
Polychlorinated Biphenyl	S				
Aroclor-1016	٠	<0.510	<0.510	<0.510	<0.510
Aroclor-1221	20	<0,510	<0,510	<0.510	<0.510
Aroclor-1232		<0.510	<0,510	<0.510	<0.510
Aroclor-1242	26	<0.510	<0.510	<0.510	<0.510
Aroclor-1248	0	<0.510	<0.510	<0.510	<0.510
Aroclor-1254	ï	<0.510	<0.510	<0,510	<0.510
Aroclor-1260		0.820	2.00	4.10	2.00
Total PCBs	10	0.820	2.00	4.10	2.00

	TSCA Cleanup		Transforme	Transformer Room No. 2	
Parameter	Standard ¹	TR2-Wipe 5	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
$(\mu g/100 \text{ cm}^2*)$	$(\mu g/100 \text{ cm}^2*)$	12/10/2013	12/10/2013	12/10/2013	12/10/2013
Polychlorinated Biphenyl	•				
Aroclor-1016	v	<0.510	<0.510	<0.510	<0.510
Aroclor-1221	24	<0.510	<0.510	<0.510	<0.510
Aroclor-1232	41	<0,510	<0.510	<0.510	<0.510
Aroclor-1242	٠	<0,510	<0.510	<0.510	<0.510
Aroclor-1248		<0.510	<0.510	<0.510	<0.510
Aroclor-1254	•	<0.510	<0.510	<0.510	<0.510
Aroclor-1260	8.	0.600	0.580	0.610	0.570
Total PCBs	10	0.600	0.580	0.610	0.570

Notes:

Wipe samples analyzed by EPA Method 8082 by Chemtech <i Indicates parameter was not detected above the limit of quantitation PCB: Polychlorinated Biphenyl

*: Wiped area was 100 cm²

µg/100 cm²: micrograms per 100 square centimeters 1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm²

SOIL SAMPLING RESULTS

		T1-SS01	T1-SS02	T2-SS03					T3-SB03 (0-4 feet bgs)	
	NYSDEC 375-	(0-8 inches	(0-6 inches	(0-8 inches	T2-SS04	T1-SB01	T1-SB01	T2-SB02	Duplicate T2-SB02	T2-SB02
	Unrestricted	concrete)	concrete)	concrete)	below concrete)	(0-4 feet bgs)	(5-10 feet bgs)	(04 feet bgs)	(0-4 feet bgs)	(5-10 feet bgs)
Compound (mg/kg)	SCO* (mg/kg)	6/11/2013	6/12/2013	6/11/2013	6/12/2013	6/12/2013	6/12/2013	6/12/2013	6/12/2013	6/12/2013
Volatile Organic Compounds										
Acetone	0.05	0.46 J	1.2 J	1.1 J	1.3 J	0.25 J	1.9 J	2.1	0.31 J	0.51 J
Acrylonitrile	NS	<0.0069 R	<0.0063 R	<0.0071 R	<0.0064 R	<0.0059 R	<0.0073 R	<0.0067 R	<0.0070 R	<0.0060 R
tert-Amyl Methyl Ether (TAME)	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Benzene	90:0	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Bromobenzene	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Bromochloromethane	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Bromodichloromethane	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Bromoform	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Bromomethane	NS	<0.011	<0.010	<0.012 UJ	<0.011	6600:0>	<0.012	<0.011	<0.012	<0.010
2-Butanone (MEK)	0.12	<0.046 UJ	<0.042 UJ	<0.047	<0.043 UJ	<0.039 UJ	<0.049 UJ	<0.045 UJ	<0.047 UJ	<0.040 UJ
tert-Butyl Alcohol (TBA)	SN	<0.046 R	<0.042 R	<0.047 R	<0.043 R	<0.039 R	<0.049 R	<0.045 R	<0.047 R	<0.040 R
n-Butylbenzene	12	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
sec-Butylbenzene	11	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
tert-Butylbenzene	5.9	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
tert-Butyl Ethyl Ether (TBEE)	NS	<0.0011	<0.0010	<0.0012	<0.0011	<0.00099	<0.0012	<0.0011	<0.0012	<0.0010
Carbon Disulfide	NS	<0.023 UJ	<0.021 UJ	<0.024 UJ	<0.021 UJ	<0.020 UJ	<0.024 UJ	<0.022 UJ	<0.023 UJ	<0.020 UJ
Carbon Tetrachloride	0.76	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Chlorobenzene	1.1	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Chlorodibromomethane	SN	<0.0046	<0.0042	<0.0047	<0.0043	<0.0039	<0.0049	<0.0045	<0.0047	<0.0040
Chloroethane	NS	<0.023 UJ	<0.021 UJ	<0.024 UJ	<0.021	<0.020 UJ	<0.024 UJ	<0.022 UJ	<0.023 UJ	<0.020 UJ
Chloroform	0.37	<0.0046	<0.0042	<0.0047	<0.0043	<0.0039	<0.0049	<0.0045	<0.0047	<0.0040
Chloromethane	NS	<0.011 UJ	<0.010 UJ	<0.012 UJ	<0.011 UJ	CO:0099 UJ	<0.012 UJ	<0.011 UJ	<0.012 UJ	<0.010 UJ
2-Chlorotoluene	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
4-Chlorotoluene	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,2-Dibromo-3-chloropropane (DBCP)	NS	<0.0023 R	<0.0021 R	<0.0024 R	<0.0021 R	<0.0020 R	<0.0024 R	<0.0022 R	<0.0023 R	<0.0020 R
1,2-Dibromoethane (EDB)	NS	<0.0011	<0.0010	<0.0012	<0.0011	<0.00099	<0.0012	<0.0011	<0.0012	<0.0010
Dibromomethane	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,2-Dichlorobenzene	1.1	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,3-Dichlorobenzene	2.4	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,4-Dichlorobenzene	1.8	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
trans-1,4-Dichloro-2-butene	NS	<0.0046	<0.0042	<0.0047	<0.0043	<0.0039	<0.0049	<0.0045	<0.0047	<0.0040
Dichlorodifluoromethane (Freon 12)	NS	<0.023 UJ	<0.021 UJ	<0.024 UJ	<0.021	<0.020 UJ	<0.024 UJ	<0.022 UJ	<0.023 UJ	<0.020 UJ
1,1-Dichloroethane	0.27	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,2-Dichloroethane	0.02	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,1-Dichloroethylene	0.33	<0.0046	<0.0042	<0.0047	<0.0043	<0.0039	<0.0049	<0.0045	<0.0047	<0.0040
cis-1,2-Dichloroethylene	0.25	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020

SOIL SAMPLING RESULTS

	NYSDEC 375- 6.8(a)	T1-SS01 (0-8 inches below	T1-SS02 (0-6 inches below	T2-SS03 (0-8 inches below	T2-SS04 (12-14 inches	T1-SB01	T1-SB01	T2-SB02	T3-SB03 (0-4 feet bgs) Duplicate T2-SB02	T2-SB02
Anna 1 7 Dichiamoski dana	Unrestricted	concrete)	concrete)	concrete)	Delow concrete)	(0-4 feet bgs)	(5-10 leet bgs)	<0.0022 <0.0022	(0-4 leet 0gs) <0.0023	<0.0020 <0.0020
Laus-1,z-Dichloromonane	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1 3-Dichloropropane	SN	<0.0011	<0.0010	<0.0012	<0.0011	<0.00099	<0.0012	<0.0011	<0.0012	<0.0010
2.2-Dichloropropane	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1.1-Dichloropropene	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
cis-1,3-Dichloropropene	NS	<0.0011	<0.0010	<0.0012	<0.0011	<0.00099	<0.0012	<0.0011	<0.0012	<0.0010
trans-1,3-Dichloropropene	SN	<0.0011	<0.0010	<0.0012	<0.0011	<0.00099	<0.0012	<0.0011	<0.0012	<0.0010
Diethyl Ether	SN	<0.023 UJ	<0.021 UJ	<0.024	<0.021	<0.020 UJ	<0.024 UJ	<0.022 UJ	<0.023 UJ	<0.020 UJ
Dijsopropyl Ether (DIPE)	SN	<0.0011	<0.0010	<0.0012	<0.0011	<0.00099	<0.0012	<0.0011	<0.0012	<0.0010
1,4-Dioxane	0.1	<0.11 R	<0.10 R	<0.12 R	<0.11 R	<0.099 R	<0.12 R	<0.11 R	<0.12 R	<0.10 R
Ethylbenzene	1	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Hexachlorobutadiene	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
2-Hexanone (MBK)	NS	<0.046 UJ	<0.042 UJ	<0.047 UJ	<0.043	<0.039 UJ	<0.049 UJ	<0.045 UJ	<0.047 UJ	<0.040 UJ
Isopropylbenzene (Cumene)	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
p-Isopropyltoluene (p-Cymene)	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Methyl tert-Butyl Ether (MTBE)	0.93	<0.0046	<0.0042	<0.0047	<0.0043	<0.0039	<0.0049	<0.0045	<0.0047	<0.0040
Methylene Chloride	0.05	0.012 J	0.016 J	<0.024	0.012 J	0.01 J	0.02 J	0.021 J	0.021 J	0.013 J
4-Methyl-2-pentanone (MIBK)	NS	<0.046	<0.042	<0.047	<0.043	<0.039	<0.049	<0.045	<0.047	<0.040
Naphthalene	12	<0.0046	<0.0042	<0.0047	<0.0043	<0.0039	0.01	<0.0045	0.0056	0.026
n-Propylbenzene	3.9	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Styrene	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	0.0049	<0.0022	<0.0023	<0.0020
1,1,1,2-Tetrachloroethane	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,1,2,2-Tetrachloroethane	NS	<0.0011	<0.0010	<0.0012	<0.0011	<0.00099	<0.0012	<0.0011	<0.0012	<0.0010
Tetrachloroethylene	1.3	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Tetrahydrofuran	NS	<0.011 R	<0.010 R	<0.012 R	<0.011 R	<0.0099 R	<0.012 R	<0.011 R	<0.012 R	<0.010 R
Toluene	0.7	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,2,3-Trichlorobenzene	NS	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,2,4-Trichlorobenzene	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,3,5-Trichlorobenzene	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,1,1-Trichloroethane	89:0	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,1,2-Trichloroethane	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Trichloroethylene	0.47	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Trichlorofluoromethane (Freon 11)	SN	<0.011	<0.010	<0.012	<0.011	<0.0099	<0.012	<0.011	<0.012	<0.010
1,2,3-Trichloropropane	SN	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	3 NS	<0.011	<0.010	<0.012	<0.011	<0.0099	<0.012	<0.011	<0.012	<0.010
1,2,4-Trimethylbenzene	3.6	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	0.0016 J	<0.0022	<0.0023	<0.0020
1,3,5-Trimethylbenzene	8.4	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
Vinyl Chloride	0.02	<0.011	<0.010	<0.012	<0.011	<0.0099	<0.012	<0.011	<0.012	<0.010

SOIL SAMPLING RESULTS

									T3-SB03	
	NYSDEC 375-	T1-SS01 (0-8 inches	T1-SS02 (0-6 inches	T2-SS03 (0-8 inches	T2-SS04				(0-4 feet bgs) Duplicate	• 0 E
	6.8(a)	below concrete)	below concrete)	below concrete)	(12-14 inches below concrete)	T1-SB01 (0-4 feet bgs)	T1-SB01 (5-10 feet bgs)	T2-SB02 (0-4 feet bgs)	12-SB02 (0-4 feet bgs)	12-SB02 (5-10 feet bgs)
m+p Xvlene	0.26	<0.0046	<0.0042	<0.0047	<0.0043	<0.0039	<0.0049	<0.0045	<0.0047	<0.0040
o-Xylene	0.26	<0.0023	<0.0021	<0.0024	<0.0021	<0.0020	<0.0024	<0.0022	<0.0023	<0.0020
SemiVolatile Organic Compounds										
Acenaphthene	20	<0.20	0.14 J	0.15 J	<0.20	<0.19	21	0.67	1.7	0.39
Acenaphthylene	100	0.099 J	<0.21	<0.21	0.14 J	<0.19	1.4 J	0.21 J	0.16 J	0.13 J
Acetophenone	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Aniline	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Anthracene	100	0.19 J	0.4	0.31	0.23	<0.19	29	1.3	3.8	1
Benzidine	NS	<0.40 UJ	<0.41	<0.41	<0.39	<0.39 UJ	<i><7.9</i>	<0.81 R	LU 62.0>	<0.76
Benzo(a)anthracene	_	1	1.2	0.99	0.94	0.37	70	3.8	7.9	3.1
Benzo(a)pyrene	1	1	96.0	0.97	1	0.45	70	3.7	7	2.9
Benzo(b)fluoranthene	_	1.4	1.2	1.2	1.2	0.58	77	4.2	8.3	3,3
Benzo(g.h.i)perylene	100	0.37	19.0	0.71	0.99	0.21	25	2.3	2.2	1.9
Benzo(k)fluoranthene	0.8	0.49	0.49	0.49	0.49	0.21	23	1.6	3.3	1.3
Benzoic Acid	NS	<1.2	<1.2	<1.2	<1.2	<1.1	<12	<2.4	<1.2	<1.2
Bis(2-chloroethoxv)methane	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Bis(2-chloroethyl)ether	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Bis(2-chloroisopropyl)ether	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Bis(2-Ethylhexyl)phthalate	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	0.46 J	<0.41	<0.39
4-Bromophenylphenylether	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Butylbenzylphthalate	NS	<0.78	<0.80	<0.80	<0.76	<0.75	<4.0	<1.6	<0.41	<0.39
Carbazole	SN	0.1 J	0.19 J	0.16 J	0.15 J	<0.19	10	0.58	1.3	0.38
4-Chloroaniline	SN	<0.78	<0.80	<0.80	<0.76	<0.75	6:1>	<1.6	<0.79	<0.76
4-Chloro-3-methylphenol	SN	<0.78	<0.80	<0.80	<0.76	<0.75	<7.9	<1.6	<0.79	<0.76
2-Chloronaphthalene	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
2-Chlorophenol	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
4-Chlorophenylphenylether	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Chrysene	1	1	1.3	0.99	0.98	0.38	62	3.6	7.2	2.8
Dibenz(a,h)anthracene	0.33	0.11 J	0.21	0.19 J	0.23	<0.19	8.1	0.61	0.74	6.5
Dibenzofuran	SN	<0.40	0.16 J	0.12 J	<0.39	<0.39	8.5	0.41 J	1.1	0.2 J
Di-n-butylphthalate	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
1,2-Dichlorobenzene	1.1	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
1,3-Dichlorobenzene	2.4	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
1,4-Dichlorobenzene	1.8	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
3,3-Dichlorobenzidine	SN	<0.20	<0.21	<0.21	<0.20	<0.19	<2.0	<0.40	<0.20	<0.20
2,4-Dichlorophenol	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Diethylphthalate	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
2 4-Dimethylphenol	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39

SOIL SAMPLING RESULTS

	NYSDEC 375-	T1-SS01 (0-8 inches	T1-SS02 (0-6 inches	T2-SS03 (0-8 inches	T2-SS04				T3-SB03 (0-4 feet bgs) Duplicate	
	6.8(a) Unrestricted	below concrete)	below concrete)	below concrete)	(12-14 inches below concrete)	T1-SB01 (0-4 feet bgs)	T1-SB01 (5-10 feet bgs)	12-SB02 (0-4 feet bgs)	T2-SB02 (0-4 feet bgs)	T2-SB02 (5-10 feet bgs)
Dimethylphthalate	SN	<0.78	<0.80	<0.80	<0.76	<0.75	<4.0	<1.6	<0.41	<0.39
4,6-Dinitro-2-methylphenol	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
2,4-Dinitrophenol	SN	<0.78	<0.80	<0.80	<0.76	<0.75	<7.9	<1.6	<0.79	<0.76
2,4-Dinitrotoluene	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
2,6-Dinitrotoluene	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Di-n-octylphthalate	NS	<0.78	<0.80	<0.80	<0.76	<0.75	<8.0	<1.6	<0.80	<0.77
1,2-Diphenylhydrazine (as Azobenzene)	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Fluoranthene	100	1.5	2.4	1.8	1.6	0.58	130	6.1	15	5.2
Fluorene	30	<0.20	<0.21	0.13 J	<0.20	<0.19	18	0.61	1.7	0.35
Hexachlorobenzene	0.33	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Hexachlorobutadiene	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Hexachlorocyclopentadiene	NS	<0.78	<0.80	<0.80	<0.76	<0.75	<4.0	<1.6 R	<0.41	<0.39
Hexachloroethane	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Indeno(1,2,3-cd)pyrene	0.5	0.45	0.81	0.79	0.97	0.24	32	2.5	2.8	2.2
Isophorone	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
1-Methylnaphthalene	SN	<0.20	0.17 J	0.14 J	<0.20	<0.19	14	<0.40	0.28	0.1 J
2-Methylnaphthalene	SN	<0.20	0.18 J	0.16 J	<0.20	<0.19	13	0.28 J	0.38	0.12 J
2-Methylphenol	0.33	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
3/4-Methylphenol	0.33	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Naphthalene	12	0.088	0.2 J	0.2 J	0.22	<0.19	16	0.85	0.76	0.39
2-Nitroaniline	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
3-Nitroaniline	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
4-Nitroaniline	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Nitrobenzene	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
2-Nitrophenol	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
4-Nitrophenol	SN	<0.78	<0.80	<0.80	<0.76	<0.75	<7.9	<1.6	<0.79	<0.76
N-Nitrosodimethylamine	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
N-Nitrosodiphenylamine	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
N-Nitrosodi-n-propylamine	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Pentachloronitrobenzene	SN	<0.40 R	<0.41 R	<0.41 R	<0.39 R	<0.39 R	<4.0 R	<0.81 R	<0.41 R	<0.39 R
Pentachlorophenol	0.8	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Phenanthrene	100	96.0	2.3	1.4	1.3	0.38	130	5.5	14	3.5
Phenol	0.33	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Pyrene	100	1.6	2.8	2.2	2	0.65	130	8.4	16	6.7
Pyridine	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
1,2,4,5-Tetrachlorobenzene	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
1,2,4-Trichlorobenzene	NS	<0.40	1.8	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
2,4,5-Trichlorophenol	NS	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39

SOIL SAMPLING RESULTS

BRONX PSYCHIATRIC CENTER BUILDING 1 BRONX, NEW YORK

	NYSDEC 375- 6.8(a) Unrestricted	T1-SS01 (0-8 inches below concrete)	T1-SS02 (0-6 inches below concrete)	T2-SS03 (0-8 inches below concrete)	T2-SS04 (12-14 inches below concrete)	T1-SB01 (0-4 feet bgs)	T1-SB01 (5-10 feet bgs)	T2-SB02 (0-4 feet bgs)	T3-SB03 (0-4 feet bgs) Duplicate T2-SB02 (0-4 feet bgs)	T2-SB02 (5-10 feet bgs)
2,4,6-Trichlorophenol	SN	<0.40	<0.41	<0.41	<0.39	<0.39	<4.0	<0.81	<0.41	<0.39
Polychlorinated Biphenyls										
Aroclor 1016	NS	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Aroclor 1221	NS	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Aroclor 1232	NS	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Aroclor 1242	SN	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Aroclor 1248	SN	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Aroclor 1254	NS	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Aroclor 1260	SN	0.041	0.055	0.11.J	0.045 J	NA	NA	NA	NA	NA
Aroclor 1262	SN	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Aroclor 1268	SN	<0.023	<0.024	<0.024	<0.023	NA	NA	NA	NA	NA
Total PCBs	0.1	0.041	0.055	0.11 J	0.045 J	NA	NA	NA	NA	NA

Votes:

Soil samples analyzed by ConTest Analytical Laboratory in East Longmeadow, Massachusetts.

mg/kg: milligrams per kilogram

*. New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use Soil Cleanup

Objective (SCO), 6 NYCRR Part 375-6.8(a), December 14, 2006.

NS: SCO not established in 6 NYCRR Part 375-6.8(a).

NA: Not Analyzed

- The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

J. The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

UJ: The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria.

Re. The data are unusable. The sample results are rejected une to schous deficiency in modified quanty controls. Bold indicates that the compound was detected. Shaded means compound exceeded NYSDEC criteria.

GROUNDWATER SAMPLING RESULTS

Compound (μg/L)	TOGS GWQS (µg/L)	T1-MW1 6/11/2013	T1-MW3 Duplicate (T1-MW1) 6/11/2013	T2-MW2 6/11/2013
Volatile Organic Compounds	G (QS (µg/L)	0/11/2013	0/11/2015	0/11/2015
Acetone	[50]	<50	<50	<50
Acrylonitrile	5	<5.0	<5.0	<5.0
ert-Amyl Methyl Ether (TAME)	NS	<0.50	<0.50	<0.50
Benzene	1	<1.0	<1.0	<1.0
Bromobenzene	5	<1.0	<1.0	<1.0
Bromochloromethane	5	<1.0	<1.0	<1.0
Bromodichloromethane	[50]	<0.50	<0.50	< 0.50
Bromoform	[50]	<1.0	<1.0	<1.0
Bromomethane	5	<2.0 UJ	<2.0 UJ	<2.0 UJ
2-Butanone (MEK)	[50]	<20	<20	<20
tert-Butyl Alcohol (TBA)	NS	<20 R	<20 R	<20 R
n-Butylbenzene	5	<1.0	<1.0	<1.0
sec-Butylbenzene	5	<1.0	<1.0	<1.0
tert-Butylbenzene	5	<1.0	<1.0	<1.0
tert-Butyl Ethyl Ether (TBEE)	NS	<0.50	< 0.50	< 0.50
Carbon Disulfide	[60]	<2.0	<2.0	<2.0
Carbon Tetrachloride	5	<5.0	<5.0	<5.0
Chlorobenzene	5	<1.0	<1.0	<1.0
Chlorodibromomethane	[50]	< 0.50	<0.50	< 0.50
Chloroethane	5	<2.0	<2.0	<2.0
Chloroform	7	<2.0	<2.0	<2.0
Chloromethane	5	<2.0 UJ	<2.0 UJ	<2.0 UJ
2-Chlorotoluene	5	<1.0	<1.0	<1.0
4-Chlorotoluene	5	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane (DBCP)	0.04	<5.0 R	<5.0 R	<5.0 R
1,2-Dibromoethane (EDB)	0.0006	< 0.50	< 0.50	< 0.50
Dibromomethane	5	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	3	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	3	<1.0	<1.0	<1.0
1.4-Dichlorobenzene	3	<1.0	<1.0	<1.0
trans-1,4-Dichloro-2-butene	5	<2.0	<2.0	<2.0
Dichlorodifluoromethane (Freon 12)	5	<2.0	<2.0	<2.0
1.1-Dichloroethane	5	<1.0	<1.0	<1.0
1.2-Dichloroethane	0.6	<1.0	<1.0	<1.0
1,1-Dichloroethylene	5	<1.0	<1.0	<1.0
cis-1,2-Dichloroethylene	5	<1.0	<1.0	<1.0
trans-1,2-Dichloroethylene	5	<1.0	<1.0	<1.0
1,2-Dichloropropane	1	<1.0	<1.0	<1.0
1,3-Dichloropropane	5	< 0.50	< 0.50	<0.50
2,2-Dichloropropane	5	<1.0	<1.0	<1.0
1,1-Dichloropropene	5	<2.0	<2.0	<2.0
cis-1,3-Dichloropropene	0.4	<0.50	< 0.50	<0.50
trans-1,3-Dichloropropene	0.4	<0.50	< 0.50	< 0.50
Diethyl Ether	NS	<2.0	<2.0	<2.0
Diisopropyl Ether (DIPE)	NS	<0.50	< 0.50	< 0.50
1,4-Dioxane	NS	<50 R	<50 R	<50 R
Ethylbenzene	5	<1.0	<1.0	<1.0
Hexachlorobutadiene	0.5	<0.50	<0.50	<0.50
2-Hexanone (MBK)	[50]	<10	<10	<10
Isopropylbenzene (Cumene)	5	<1.0	<1.0	<1.0

GROUNDWATER SAMPLING RESULTS

Compound (µg/L)	TOGS GWQS (µg/L)	T1-MW1 6/11/2013	T1-MW3 Duplicate (T1-MW1) 6/11/2013	T2-MW2 6/11/2013
p-Isopropyltoluene (p-Cymene)	5	<1.0	<1.0	<1.0
Methyl tert-Butyl Ether (MTBE)	[10]	<0.1>	<1.0	<1.0
Methylene Chloride	5	<5.0	<5.0	<5.0
4-Methyl-2-pentanone (MIBK)	NS	<10	<10	<10
Vaphthalene	[10]	<2.0 UJ	<2.0 UJ	<2.0 UJ
n-Propylbenzene	5	<1.0	<1.0	<1.0
Styrene	5	<1.0	<1.0	<1.0
1,1,1,2-Tetrachloroethane	5	<1.0	<1.0	<1.0
1.1.2.2-Tetrachloroethane	5	<0.50	< 0.50	< 0.50
retrachloroethylene	5	<1.0	<1.0	<1.0
Tetrahydrofuran	[50]	<10	<10	<10
Foluene	5	<1.0	<1.0	<1.0
1.2.3-Trichlorobenzene	5	<5.0	<5.0	<5.0
1.2.4-Trichlorobenzene	5	<1.0	<1.0	<1.0
1.3.5-Trichlorobenzene	5	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	5	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	1	<1.0	<1.0	<1.0
Frichloroethylene	5	<1.0	<1.0	<1.0
Trichlorofluoromethane (Freon 11)	5	<2.0	<2.0	<2.0
1.2.3-Trichloropropane	0.04	<2.0	<2.0	<2.0
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	5	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	5	<1.0	<1.0	<1.0
Vinyl Chloride	2	<2.0	<2.0	<2.0
m+p Xylene	5	<2.0	<2.0	<2.0
o-Xylene	5	<1.0	<1.0	<1.0
Semivolatile Organic Compounds				
Acenaphthene	[20]	<5.2	<5.2	<5.1
Acenaphthylene	NS	<5.2	<5.2	<5.1
Acetophenone	NS	<10	<10	<10
Aniline	5	<5.2	<5.2	<5.1
Anthracene	[50]	<5.2	<5.2	<5.1
Benzidine	5	<10 UJ	<10 UJ	<10 UJ
Benzo(a)anthracene	[0.002]	<5.2	<5.2	<5.1
Benzo(a)pyrene	ND	<5.2	<5.2	<5.1
Benzo(b)fluoranthene	[0.002]	3.6 J	3.6 J	3.5 J
Benzo(g,h,i)perylene	NS	<5.2 UJ	<5.2 UJ	<5.1 UJ
Benzo(k)fluoranthene	[0.002]	<5.2	<5.2	<5.1
Benzoic Acid	NS	<10	<10	<10
Bis(2-chloroethoxy)methane	5	<10	<10	<10
Bis(2-chloroethyl)ether	1	<10	<10	<10
Bis(2-chloroisopropyl)ether	5	<10	<10	<10
Bis(2-Ethylhexyl)phthalate	5	<10	<10	<10
4-Bromophenylphenylether	NS	<10	<10	<10
Butylbenzylphthalate	[50]	<10	<10	<10
Carbazole	NS	<10	<10	<10
4-Chloroaniline	5	<10	<10	<10
4-Chloro-3-methylphenol		<10	<10	<10
2-Chloronaphthalene	[10]	<10	<10	<10
2-Chlorophenol	1	<10	<10	<10
4-Chlorophenylphenylether	NS	<10	<10	<10

GROUNDWATER SAMPLING RESULTS

Compound (μg/L)	TOGS GWQS (µg/L)	T1-MW1 6/11/2013	T1-MW3 Duplicate (T1-MW1) 6/11/2013	T2-MW2 6/11/2013
Chrysene	[0.002]	<5.2	<5.2	<5.1
Dibenz(a,h)anthracene	NS	<5.2	<5.2	<5.1
Dibenzofuran	NS	<5.2	<5.2	<5.1
Di-n-butylphthalate	50	<10	<10	<10
,2-Dichlorobenzene	3	<5.2	<5.2	<5.1
,3-Dichlorobenzene	3	<5.2	<5.2	<5.1
.4-Dichlorobenzene	3	<5.2	<5.2	<5.1
3,3-Dichlorobenzidine	5	<10	<10	<10
2,4-Dichlorophenol	5	<10	<10	<10
Diethylphthalate	[50]	<10	<10	<10
2,4-Dimethylphenol	1	<10	<10	<10
Dimethylphthalate	[50]	<10	<10	<10
4,6-Dinitro-2-methylphenol	1	<10	<10	<10
2,4-Dinitrophenol	1	<10	<10	<10
2.4-Dinitrotoluene	5	<10	<10	<10
2.6-Dinitrotoluene	5	<10	<10	<10
Di-n-octylphthalate	[50]	<10	<10	<10
	NS	<10	<10	<10
,2-Diphenylhydrazine (as Azobenzene)	[50]	<5.2	<5.2	<5.1
	[50]	<5.2	<5.2	<5.1
Fluorene	0.04	<10	<10	<10
Hexachlorobenzene	0.5	<10	<10	<10
Hexachlorobutadiene	5	<10 UJ	<10 UJ	<10 UJ
Hexachlorocyclopentadiene	5	<10	<10	<10
Hexachloroethane		<5.2	<5.2	<5.1
Indeno(1,2,3-cd)pyrene	[0.002]		<10	<10
Isophorone	[50]	<10 <5.2	<5.2	<5.1
1-Methylnaphthalene	NS NS		<5.2 <5.2	<5.1
2-Methylnaphthalene		<5.2		
2-Methylphenol	1	<10	<10	<10
3/4-Methylphenol	1	<10	<10	<10
Naphthalene	[10]	<5.2	<5.2	<5.1
2-Nitroaniline	5	<10	<10	<10
3-Nitroaniline	5	<10	<10	<10
4-Nitroaniline	5	<10	<10	<10
Nitrobenzene	0.4	<10	<10	<10
2-Nitrophenol	1	<10	<10	<10
4-Nitrophenol	1	<10 UJ	<10 UJ	<10 UJ
N-Nitrosodimethylamine	NS	<5.2	<5.2	<5.1
N-Nitrosodiphenylamine	[50]	<10	<10	<10
N-Nitrosodi-n-propylamine	NS	<10	<10	<10
Pentachloronitrobenzene	ND	<10 R	<10 R	<10 R
Pentachlorophenol	1	<10 UJ	<10 UJ	<10 UJ
Phenanthrene	[50]	<5.2	<5.2	<5.1
Phenol	1	<10	<10	<10
Pyrene	[50]	<5.2	<5.2	<5.1
Pyridine	[50]	<5.2	<5.2	<5.1

GROUNDWATER SAMPLING RESULTS

BRONX PSYCHIATRIC CENTER BUILDING 1 BRONX, NEW YORK

Compound (μg/L)	TOGS GWQS (µg/L)	T1-MW1 6/11/2013	T1-MW3 Duplicate (T1-MW1) 6/11/2013	T2-MW2 6/11/2013
1,2,4,5-Tetrachlorobenzene	5	<10	<10	<10
1,2,4-Trichlorobenzene	5	<5.2	<5.2	<5.1
2,4,5-Trichlorophenol	1	<10	<10	<10
2,4,6-Trichlorophenol	1	<10	<10	<10

Notes:

Groundwater samples analyzed by ConTest Analytical Laboratory in East Longmeadow, Massachusetts.

μg/I: Micrograms per liter

GWQS: Groundwater Quality Standard

TOGS GWQS: New York State Department of Environmental Conservation (NYSDEC) Groundwater (GW) Standard, Technical and Operational Guidance Series (TOGS) 1.1.1, 2004

[#]: Denotes a Guidance value

NS: No Standard

- < The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ: The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria.

Bold indicates that the compound was detected. Shaded means compound exceeded NYSDEC criteria.

CONCRETE CHIP SAMPLING RESULTS

BRONX PSYCHIATRIC CENTER BUILDING 1 BRONX, NEW YORK

Compound (mg/kg)	(M-1 in)	(6.5-8 in)	(0-1 5 in)	(11-12 in)	(0-1 in)	(13-15 in)	(0-1-5 in)	(10-12 in)
	7/9/2013	7/9/2013	7/9/2013	7/9/2013	7/9/2013	7/9/2013	7/9/2013	7/9/2013
Polychlornated Bipnenyls								
Aroclor-1016	<0.33	<0.087	980:0>	<0.083	<0.081	<0.088	<0.091	<0.093
Aroclor-1221	<0.33	<0.087	>0.086	<0.083	<0.081	<0.088	<0.091	<0.093
Aroclor-1232	<0.33	<0.087	>0.086	<0.083	<0.081	<0.088	<0.091	<0.093
Aroclor-1242	<0.33	<0.087	>0.086	<0.083	<0.081	<0.088	<0.091	<0.093
Aroclor-1248	<0.33	<0.087	>0.086	<0.083	<0.081	<0.088	<0.091	<0.093
Aroclor-1254	<0.33	<0.087	>0.086	<0.083	<0.081	<0.088	<0.091	<0.093
Aroclor-1260	2.2	<0.087	6.5	<0.083	0.4	<0.088	0.11	<0.093
Aroclor-1262	<0.33	<0.087	>0.086	<0.083	<0.081	<0.088	<0.091	<0.093
Aroclor-1268	<0.33	<0.087	>0.086	<0.083	<0.081	<0.088	<0.091	<0.093
Total PCBs	2.2	Ð	6.5	QN	0.4	ND	0.11	QN

Notes

Concrete chip samples analyzed by ConTest Analytical Laboratory in East Longmeadow, Massachusetts. mg/kg: milligrams per kilogram

< - The compound was not detected at the indicated concentration.

Bold indicates that the compound was detected.

ND: Not Detected

TABLE 2 GROUNDWATER SAMPLING RESULTS BRONX PSYCHIATRIC CENTER TRANSFORMER ROOM 1

	NYSDEC GW	MW-2		MW-3D	
Compound (µg/L)	Effluent Limitations	F3308-01		F3308-02	
Compound (pg 2)	(Class GA) (µg/L)	F3308-05		F3308-06	
		7/23/2014		7/23/2014	
Volatile Organic Compounds					
Vinyl Chloride	2	5	Tul	5	U
1.1-Dichloroethene	5	5	U	5	U
Acetone	50	25	U	25	U
Methyl tert-butyl Ether	10	5	U	5	U
Methylene Chloride	5	5	U	5	U
trans-1,2-Dichloroethene	5	5	U	5	U
1,1-Dichloroethane	5	5	U	5	U
2-Butanone	745	25	U	25	U
Carbon Tetrachloride	5	5	U	5	U
cis-1,2-Dichloroethene	5	5	U	5	U
Chloroform	7	5	U	5	U
1,1,1-Trichloroethane	5	5	U	5	U
Benzene	1	5	U	5	U
1,2-Dichloroethane	0.6	5	U	5	U
Trichloroethene	5	5	U	5	U
Toluene	5	5	U	5	U
Tetrachloroethene	5	5	U	5	U
Chlorobenzene	5	5	U	5	U
Ethyl Benzene	5	5	U	5	U
Total Xylenes	5	15	U	15	U
n-propylbenzene	5	5	U	5	U
1,3,5-Trimethylbenzene	5	5	U	5	U
tert-Butylbenzene	5	5	U	5	U
	5	5	U	5	U
1,2,4-Trimethylbenzene sec-Butylbenzene	5	5	U	5	U
1,3-Dichlorobenzene	3	5	U	5	U
	3	5	U	5	U
1,4-Dichlorobenzene	5	5	U	5	U
n-Butylbenzene	3	5	U	5	U
1,2-Dichlorobenzene		R	+++	R	+
1,4-Dioxane	**	K	44	K	
Semivolatile Organic Compounds	1	10	U	10	U
Phenol	1	10 10	U	10	U
2-Methylphenol	1		U	10	U
3+4-Methylphenols	1	10			U
Naphthalene	10	10	U	10	U
Acceptable	20	10	U	10	U
Acenaphthene		10	Ü	10	U
Dibenzofuran	50	10	U	10	U
Fluorene Hexachlorobenzene	0.04	10	U	10	U
Pentachlorophenol	1	10	U	10	U

TABLE 2 GROUNDWATER SAMPLING RESULTS BRONX PSYCHIATRIC CENTER TRANSFORMER ROOM 1

	NYSDEC GW	MW-2		MW-3D	
Compound (µg/L)	Effluent Limitations	F3308-01		F3308-02	
Compound (µg L)	(Class GA) (µg/L)	F3308-05		F3308-06	
	` ' '	7/23/2014	-	7/23/2014	
Phenanthrene	50	10	U	10	U
Anthracene	50	10	U	10	U
Fluoranthene	50	10	U	10	U
Pyrene	50	10	U	10	U
Benzo(a)anthracene	0.002	10	U	10	U
Chrysene	0.002	10	U	10	U
Benzo(b)fluoranthene	0.002	10	U	10	U
Benzo(k)fluoranthene	0.002	10	U	10	Ū
Benzo(a)pyrene	ND ND	10	U	10	U
Indeno(1,2,3-cd)pyrene	0.002	10	U	10	U
Dibenzo(a,h)anthracene	0.002	10	U	10	U
		10	U	10	U
Benzo(g,h,i)perylene Pesticides		10	101	10	
alpha-BHC	0.01	0.05	U	0.05	U
beta-BHC	0.04	0.05	U	0.05	U
delta-BHC	0.04	0.05	U	0.05	U
gamma-BHC (Lindane)	0.04	0.05	U	0.05	U
	0.03	0.05	U	0.05	U
Heptachlor Aldrin	ND	0.05	U	0.05	U
Endosulfan I		0.05	U	0.05	U
Dieldrin	0.004	0.05	U	0.05	U
	0.004	0.05	U	0.05	U
4,4-DDE	ND	0.05	U	0.05	U
Endrin Endosulfan II	ND -	0.05	U	0.05	U
	0.3	0.05	U	0.05	U
4,4-DDD Endosulfan Sulfate	0.3	0.05	U	0.05	U
4,4-DDT	0.2	0.05	U	0.05	U
	0.05	0.05	บ	0.05	U
alpha-Chlordane	0.03	0.03	101	0.03	
Polychlorinated Biphenyls	0.09	0.5	U	0.5	Tu
Aroclor-1016	0.09	0.5	U	0.5	U
Aroclor-1221	0.09	0.5	U	0.5	U
Aroclor-1232 Aroclor-1242	0.09	0.5	U	0.5	U
	0.09	0.5	U	0.5	U
Arcelor 1254	0.09	0.5	U	0.5	U
Arcelor 1250	0.09	0.5	U	0.5	U
Aroclor-1260	0.09	0.5	101	0.5	
Herbicides	0.26	2	U	2	U
2,4,5-TP (Silvex)	0.20		101		10
Metals	25	8.11	J	7.59	J
Arsenic	1,000	269		278	+
Barium	3	3	U	3	U
Beryllium Cadmium	5	3	U	3	U

TABLE 2 GROUNDWATER SAMPLING RESULTS BRONX PSYCHIATRIC CENTER TRANSFORMER ROOM 1

Compound (μg/L)	NYSDEC GW Effluent Limitations (Class GA) (µg/L)	MW-2 F3308-01 F3308-05		MW-3D F3308-02 F3308-06						
		7/23/2014		7/23/2014	177					
Chromium	50	1.67	J	5	U					
Copper	200	10	U	10	U J					
Lead	25	2.83	J 3.77							
Manganese	300	166		153 U 0						
Mercury	0.7	0.2								
Nickel	100	20	U		U					
Selenium	10	10	U	10	U					
Silver	50	5	U	5	U					
Zinc	2,000	69.4		64.3						
Metals (Dissolved)										
Arsenic	25	8.32	J	10	U					
Barium	1,000	269		249						
Beryllium	3	3	U	3						
Cadmium	5	3	U	3	U					
Chromium	50	5	U	5	U					
Соррег	200	2.62	J	10	U					
Lead	25	6.00	U	6	U					
Manganese	300	171		135						
Mercury	0.7	0.2	U	0.2	U					
Nickel	100	20	U	20	U					
Selenium	10	10	U	10	U					
Silver	50	5	U	5	U					
Zinc	2,000	7.59	J	20	U					

Notes:

 $Groundwater\ samples\ analyzed\ by\ Chemtech\ Analytical\ Laboratory\ in\ Mountainside,\ New\ Jersey.$

μg/L: Micrograms per liter

NYSDEC, Division of Water Technical and Operational Guidance Series (TOGS 1.1.1)

Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998, Class GA.

An ND means a non-detectable concentration by the approved analytical methods referenced in section 700.3.

Qualifiers:

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria.

The result is less than the quantitation limit but greater than MDL.

The concentration given is an approximate value.

R - Data rejected.

TABLE 1 SOIL SAMPLING RESULTS BRONX PSYCHIATRIC CENTER TRANSFORMER ROOM 1

Visign Challed Chall	SB06D **		TI-SB0: (5-10)		TI-SB05 (0-2))	TI-SB04 (10-WT		TI-SB04 (5-10)		TI-SB04 (0-2)		TI-SB03 (10-WT)		TI-SB03 (5-10)		TI-SB03 (0-2)		TI-SB02 (10-WT)		TI-SB02 (5-10)		TI-SB02 (0-2)	NYSDEC 375- 6.8(a) Unrestricted SCO* (mg/kg)	Compound (mg/kg)
Page Charleshed Charleshe	1/23/2014	_	77237201	7	11231201		77237201	_	772372014	<u> </u>	77207201		1120/2011		7720.201				.,					, o o,	
1-1-believenthene 0.33	UJ 0.0054 U	T	0.0062	11	0.66	1,,	0.0059	11	0.0056	п	0.0055	п	0.0064	111	0.0055	п	0.0053	пТ	0.0062	ш	0.0061	п	0.0055	0.02	
March Marc		+		11				-		H		II		П		\vdash		 		U					
March Marc	J 0.0271 U	103		П		ī		ī		\vdash		U		U		H		\vdash		U		U			
Methylene Chloride		1,,		П		II		II		H		U		U		U		U		U		U		1	Methyl tert-butyl Ether
Part 2. Dickhlorenthene		+		U		-				H		U		U		U		U		U		U			
		+		U		-				U		U		U		U		U	0.0062	U	0.0061	U	0.0055	0.19	
Degree Color Col		UJ		U		+	0.0058	U	0.0056	U	0.0055	U		U		U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.27	1,1-Dichloroethane
Cuber Tetrachloride		UJ		U	3.3	-	0.0291	U	0.0279	U	0.0276	U		U	0.0276	U	0.0266	U	0.0311	U	0.0303	U	0.0273	0.12	2-Butanone
Chiereform		UJ		U	0.66		0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U.	0.0055	0.76	Carbon Tetrachloride
Li-Trichluroenhame		UJ	0.0062	U	0.66	-	0.0058	U		U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.25	cis-1,2-Dichloroethene
Debarage Co.06	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.37	Chloroform
Carbichloroethane Column	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.68	1,1,1-Trichloroethane
Trichloroethene	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.06	Benzene
Toluene 0.7 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0065 U 0.0055 U 0.0056 U 0.0058 U 0.66 U 0.0062 U 0.0062 U 0.0055 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U 0.0062 U 0.0062 U 0.0055 U 0.0066 U 0.0055 U 0.0066 U 0.0058 U 0.66 U 0.0062 U 0.0066 U 0.0062 U 0.0055 U 0.0066 U 0.0055 U 0.0066 U 0.0055 U 0.0066 U 0.0058 U 0.066 U 0.0062 U 0.0055 U 0.0066 U 0.0055 U 0.0066 U 0.0055 U 0.0066 U 0.0058 U 0.066 U 0.0062 U 0.0055 U 0.0066 U 0.0055 U 0.0066 U 0.0058 U 0.066 U 0.0062 U 0.0055 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.066 U 0.0062 U 0.0058 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.0066 U 0.0062 U 0.0062 U 0.0058 U 0.0064 U 0.0055 U 0.0065 U 0.0058 U 0.0066 U 0.0062 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.0066 U 0.0062 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.0066 U 0.0062 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.0066 U 0.0062 U 0.0058 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.0066 U 0.0062 U 0.0058 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.0066 U 0.0062 U 0.0058 U 0.0064 U 0.0055 U 0.0066 U 0.0058 U 0.0066 U 0.0066 U 0.0058 U 0.0066 U 0	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.02	1,2-Dichloroethane
Tetrachloreethene	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.47	Trichloroethene
Chiorobenzene	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	0.7	Toluene
Ethyl Benzene	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	1.3	Tetrachloroethene
Total Xylenes 0.26 0.0164 U 0.0182 U 0.0186 U 0.0159 U 0.0166 U 0.0192 U 0.0165 U 0.0168 U 0.0174 U 1.96 U 0.0186 U 0.Propylbenzene 3.9 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0065 U 0.0056 U 0.0058 U 0.66 U R 1.3.5-Trimethylbenzene 8.4 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.2.4-Trimethylbenzene 5.9 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.3.3-Dichlorobenzene 11 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.3-Dichlorobenzene 11 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0053 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.3-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0058 U 0.066 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0055 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0055 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.66 U R 1.4-Dichlorobenzene 12 0.0055 U 0.0061 U 0.0062 U 0.0055 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	1.1	Chlorobenzene
n-Propylbenzene 3.9 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1.3.5-Trimethylbenzene 8.4 0.0055 U 0.0061 U 0.0062 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2.4-Trimethylbenzene 5.9 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2.4-Trimethylbenzene 3.6 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2.4-Trimethylbenzene 11 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.3Dichlorobenzene 11 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.4-Dichlorobenzene 1.8 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.4-Dichlorobenzene 1.8 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1.4-Dichlorobenzene 1.2 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0051 U 0.0055 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0051 U 0.0055 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0055 U 0.0056 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1.2-Dichlorobenzene 1.1 0.0055 U 0.0055 U 0.0055 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.066	UJ 0.0054 U	UJ	0.0062	U	0.66	U	0.0058	U	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	1	Ethyl Benzene
1,3-frimethylbenzene 8.4 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.056 U 0.056 U 0.058 U 0.066 U R	UJ 0.0162 U	UJ	0.0186	U	1.96	U	0.0174	U	0.0168	U	0.0165	U	0.0192	U	0.0166	U	0.0159	U	0.0186	U	0.0182	U	0.0164	0.26	Total Xylenes
tert-Butylbenzene 5.9 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,2,4-Trimethylbenzene 3.6 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R sec-Butylbenzene 11 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,3-Dichlorobenzene 2.4 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dichlorobenzene 1.8 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0058 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dichlorobenzene 0.1 R R R R R R R R R R R R R R R R R R R	0.0054 U.		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	3.9	n-Propylbenzene
1.2.4-Trimethylbenzene	0.0054 U.		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	8.4	1,3,5-Trimethylbenzene
See-Butylbenzene 11	0.0054 U.		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	5.9	tert-Butylbenzene
1,4-Dichlorobenzene 2,4 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.0058 U 0.666 U R	0.0054 U.		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	Ü	0.0055	3.6	1,2,4-Trimethylbenzene
1.8 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0058 U 0.0058 U 0.666 U R	0.0054 U.		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	Ū	0.0053	U	0.0062	U	0.0061	U	0.0055	11	sec-Butylbenzene
12 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0055 U 0.0056 U 0.0058 U 0.666 U R 1,2-Dichlorobenzene 1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R 1,4-Dioxane 0.1 R R R R R R R R R	0.0054 U.		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	2.4	1,3-Dichlorobenzene
1.1 0.0055 U 0.0061 U 0.0062 U 0.0053 U 0.0055 U 0.0064 U 0.0055 U 0.0056 U 0.0056 U 0.0058 U 0.666 U R R R R R R R R R	0.0054 U		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	Ü	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	1.8	1,4-Dichlorobenzene
I,4-Dioxane	0.0054 U		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	12	n-Butylbenzene
Semivolatile Organic Compounds Seminolatile Organic Compounds	0.0054 U.		R	U	0.66	U	0.0058	UJ	0.0056	U	0.0055	U	0.0064	U	0.0055	U	0.0053	U	0.0062	U	0.0061	U	0.0055	1.1	1,2-Dichlorobenzene
Phenol 0.33 0.36 U 0.40 U 0.82 U 0.70 U 0.73 U 0.84 U 0.36 U 0.73 U R 0.44 U 0.81 U 0.81 U 0.82 U 0.70 U 0.73 U 0.84 U 0.36 U 0.73 U R 0.44 U 0.81 U 0.81 U 0.84 U 0.85 U 0.73 U R 0.44 U 0.81 U 0.84 U 0.85 U 0.73 U R 0.44 U 0.81 U 0.85 U	R		R		R		R		R		R		R	Ш	R	Ш	R	Ш	R	Ш	R		R	1.0	
2-Methylphenol 0.33 0.36 U 0.40 U 0.82 U 0.70 U 0.73 U 0.84 U 0.36 U 0.73 U R 0.44 U 0.81 U 3.44-Methylphenols 0.33 0.36 U 0.40 U 0.82 U 0.70 U 0.73 U 0.84 U 0.36 U 0.73 U R 0.44 U 0.81 U Naphthalene 12 0.19 J 0.40 U 0.82 U 0.70 U 0.70 U 0.73 U 0.84 U 0.36 U 0.73 U R 0.44 U 0.50 J				r - 1		_																			
3+4-Methylphenols 0.33 0.36 U 0.40 U 0.82 U 0.70 U 0.73 U 0.84 U 0.36 U 0.73 U R 0.44 U 0.81 U Naphthalene 12 0.19 J 0.40 U 0.82 U 0.70 U 0.70 U 0.73 U 0.84 U 0.36 U 1.1 0.76 U 0.44 U 0.50 J		U		U			R			\rightarrow		-		-		-		-		_		-			
Naphthalene 12 0.19 J 0.40 U 0.82 U 0.70 U 0.73 U 0.84 U 0.36 U 1.1 0.76 U 0.44 U 0.50 J		+		U				-		-		\vdash		-		-		_		\rightarrow		-			
		U		U		$\vdash \vdash$		U		-		\vdash		-		\vdash		\rightarrow		\rightarrow		Ü		-	
1000 1 100 1 106 1111 1000	J 0.36 U			U		U				\rightarrow		U		U		\vdash		-		\rightarrow		J			
	J 0.0933 J	J	0.63	U	0.44	\sqcup	1.1	J	0.64	U	0.36	1	0.36	╀┤	0.49	U	0.70	J	0.41	U	0.40	U	0.36	100	Acenaphthylene
Acenaphthene 20 0.44 0.40 U 0.19 J 0.70 U 0.30 J 0.84 U 0.36 U 1.4 0.76 U 0.44 U 0.62 J Dibenzofuran 7 0.33 J 0.40 U 0.20 J 0.70 U 0.18 J 0.84 U 0.36 U 0.54 J 0.76 U 0.44 U 0.24 J	J 0.0922 J J 0.36 U			 		-		\vdash		\rightarrow		\rightarrow		╀┤		-		J		-		+			

TABLE 1 SOIL SAMPLING RESULTS BRONX PSYCHIATRIC CENTER TRANSFORMER ROOM 1

	NYSDEC 375- 6.8(a) Unrestricted	TI-SB02 (0-2)		TI-SB02 (5-10)	2	TI-SB02 (10-WT)		TI-SB03 (0-2)	3	TI-SB03 (5-10)	3	TI-SB03 (10-WT)	- 1	TI-SB04 (0-2)		TI-SB04 (5-10)		TI-SB04 (10-WT)		TI-SB05 (0-2)		TI-SB05 (5-10)		TI-SB06DR SB06D *	
Compound (mg/kg)	SCO* (mg/kg)	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	4	7/23/2014		7/23/201	1	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	14
Fluorene	30	0.50		0.40	U	0.29	J	0.70	U	0.38	J	0.84	U	0.36	U	1.2		0.16	J	0.44	U	0.53	J	0.11	J
Hexachlorobenzene	0.33	0.36	U	0.40	U	0.82	U	0.70	U	0.73	U	0.84	U	0.36	U	0.73	U	0.76	U	0.44	U	0.81	U	0.36	U
Pentachlorophenol	0.8	0.36	U	0.40	U	0.82	U	0.70	U	0.73	U	0.84	U	0.36	U	0.73	U	R		0.44	U	0.81	U	0.36	U
Phenanthrene	100	4.0	D	0.13	J	3.3		0.62	J	4.3		1.1		0.41		8.4	D	0.79		0.14	J	3.4		1.1	
Anthracene	100	1.0		0.40	U	0.68	J	0.16	J	1.2		0.33	J	0.0845	J	2.1		0.36	J	0.44	U	0.97		0.26	J
Fluoranthene	100	4.4	D	0.12	J	4.1		1.0		7.3	D	1.9		0.53		10	D	3.2		0.23	J	4.0		1.4	\top
Pyrene	100	3.0	D	0.0981	J	3.3		0.80		5.6		2.4		0.40		8.5	D	8.1	D	0.19	J	4.9		1.3	
Benzo(a)anthracene	1	1.7		0.40	U	1.8		0.51	J	3.5		1.3	П	0.23	J	5.3		3.1		0.11	J	3.1		0.73	\vdash
Chrysene	1	1.6		0.40	U	2.0		0.42	J	3.1		1.2		0.21	J	4.4		2.4		0.10	J	2.3		0.73	\top
Benzo(b)fluoranthene	1	1.6		0.40	U	2.6		0.61	J	3.6		1.9		0.24	J	6.3	D	4.0		0.13	J	3.7		0.77	
Benzo(k)fluoranthene	0.8	0.69		0.40	U	0.53	J	0.18	J	1.2		0.51	J	0.0893	J	1.1		1.7		0.44	U	1.0		0.37	1
Benzo(a)pyrene	1	1.5		0.40	U	1.7		0.48	J	2.9		1.6		0.18	J	4.8		4.8		0.0946	J	3.3		0.69	
Indeno(1,2,3-cd)pyrene	0.5	0.83		0.40	U	1.0	П	0.25	J	1.6		0.93		0.0977	J	2.8		2.5		0.44	U	1.9		0.40	
Dibenzo(a,h)anthracene	0.33	0.17	1	0.40	U	0.26	J	0.70	U	0.41	J	0.20	J	0.36	U	0.71	J	0.54	J	0.44	U	0.41	J	0.0929	17
Benzo(g,h,i)perylene	100	0.81		0.40	U	1.1		0.30	J	1.7		1.5		0.0977	J	3.5		4.3		0.44	U	2.7		0.45	\top
Pesticides																									
alpha-BHC	0.02	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
beta-BHC	0.036	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
delta-BHC	0.04	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
gamma-BHC (Lindane)	0.1	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
Heptachlor	0.042	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
Aldrin	0.005	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
Endosulfan I	2.4	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
Dieldrin	0.005	0.0059	J	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
4,4-DDE	0.0033	0.13	D	0.0025		0.0077		0.0348	D	0.0115		0.0016	J	0.0014	J	0.0021		0.0020	U	0.0246	П	0.0021	U	0.0212	
Endrin	0.014	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
Endosulfan II	2.4	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
4,4-DDD	0.0033	0.0062	J	0.0021	U	0.0016	J	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
Endosulfan Sulfate	2.4	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
4,4-DDT	0.0033	0.12	D	0.0053	J	0.0173		0.0374	D	0.0165		0.0026		0.0019	U	0.004		0.0020	U	0.0262		0.0021	U	0.0222	
alpha-Chlordane	0.094	0.0019	U	0.0021	U	0.0021	U	0.0018	U	0.0019	U	0.0022	U	0.0019	U	0.0019	U	0.0020	U	0.0023	U	0.0021	U	0.0018	U
Polychlorinated Biphenyls					-																				•
Aroclor-1016	0.1	0.0186	U	0.0206	U	0.0210	U	0.0181	U	0.0188	U	0.0217	U	0.0187	U	0.0188	U	0.0197	U	0.0224	U	0.021	U	0.0184	U
Aroclor-1221	0.1	0.0186	U	0.0206	U	0.0210	U	0.0181	U	0.0188	U	0.0217	U	0.0187	U	0.0188	U	0.0197	U	0.0224	U	0.021	U	0.0184	U
Aroclor-1232	0.1	0.0186	U	0.0206	U	0.0210	U	0.0181	U	0.0188	U	0.0217	U	0.0187	U	0.0188	U	0.0197	U	0.0224	U	0.021	U	0.0184	U
Aroclor-1242	0.1	0.0186	U	0.0206	U	0.0210	U	0.0181	U	0.0188	U	0.0217	U	0.0187	U	0.0188	U	0.0197	U	0.0224	U	0.021	U	0.0184	U
Aroclor-1248	0.1	0.0186	U	0.0206	U	0.0210	U	0.0181	U	0.0188	U	0.0217	U	0.0187	U	0.0188	U	0.0197	U	0.0224	U	0.021	U	0.0184	U
Aroclor-1254	0.1	0.0186	U	0.0206	U	0.0210	U	0.0181	U	0.0188	U	0.0217	U	0.0187	U	0.0188	U	0.0197	U	0.0224	U	0.021	U	0.0184	U
Aroclor-1260	0.1	0.0186	U	0.0206	U	0.0210	U	0.0181	U	0.0188	U	0.0217	U	0.0187	U	0.0188	U	0.0197	U	0.12		0.021	U	0.0184	U

TABLE 1 SOIL SAMPLING RESULTS BRONX PSYCHIATRIC CENTER TRANSFORMER ROOM 1

	NYSDEC 375- 6.8(a) Unrestricted	TI-SB02 (0-2)		TI-SB02 (5-10)	:	TI-SB02 (10-WT)		TI-SB03 (0-2)	3	TI-SB03 (5-10)	3	TI-SB0: (10-WT		TI-SB0- (0-2)	1	TI-SB04 (5-10)	1	TI-SB0 (10-WT		TI-SB0 (0-2)	5	TI-SB0 (5-10)		TI-SB06DR SB06D	
Compound (mg/kg)	SCO* (mg/kg)	7/23/201	14	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	4	7/23/201	4	7/23/20	14	7/23/20	4	7/23/20:	14	7/23/20:	14
Herbicides	1		- 19																						
2,4,5-TP (Silvex)	3.8	0.0731	U	0.0811	U	0.0831	U	0.0713	U	0.074	U	0.0858	U	0.0738	U	0.0739	U	0.0776	U	0.0885	U	0.0826	U	0.0724	U
Metals																									
Arsenic	13	6.96		4.29		9.39		15.6	J	12.3	П	22.9		6.28		6.11		5.11		20.4	П	18.8		7.49	J
Barium	350	233		172		472		216	Ј	328		341		180		290		390		181		455		306	J
Beryllium	7.2	0.635		0.542		0.659		0.611		0.601		0.741		0.545		0.711		0.733		0.5		1.04		0.531	
Cadmium	2.5	0.272	U	0.309	U	1.53		0.277	U	0.079	J	2.06		0.281	U	0.26	J	0.174	J	0.34	U	1.69		0.278	U
Chromium	30	21.9		19.9		36.2		22.5	J	21.6		29.1		20.3		25		23.9		19.1		21.9		33.1	J
Соррег	50	47.2		57.2		77.3		39.1	J	36.9		65		35.2		54.6		47.1		28.3		80.2		48.4	J
Lead	63	62.4		125		488		197	J	276		326		134		273		267		155		580		285	J
Manganese	1,600	309		238		277		273	J	266		269		281		288		310		252		314		259	J
Mercury	0.18	0.078		0.342		0.278		0.161		0.208		0.195		0.109		0.388		0.179		0.123		0.468	W I	0.226	
Nickel	30	42.7	ž.	39.7		38.1		34.6		32.7		38.3		31.9		55		40.7		22.8		44.6		37	
Selenium	3.9	1.46	N	1.03		1.06		1.54	J	1.1		1.3		1.11		1.28		1.24		0.895	J	1.25		1.02	J
Silver	2	0.461	U	0.514	U	0.267	J	0.461	U	0.467	U	0.550	U	0.468	U	0.485	U	0.481	U	0.566	U	0.310	1	0.463	U
Zinc	109	152		144		429	Ī	218	П	302		372		186	П	289		274		120		769		387	

Notes:

Soil samples analyzed by Chemtech Analytical Laboratory in Mountainside, New Jersey.

mg/kg: milligrams per kilogram

- *: New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use Soil Cleanup Objective (SCO), 6 NYCRR Part 375-6.8(a), December 14, 2006.
- ** T1-SB06D is a duplicate sample collected from T1-SB03 (0-2). A duplicate VOC analysis was performed only for T1-SB06D and is identified as T1-SB06DRE.

Qualifiers:

- U The compound was not detected at the indicated concentration.
- UJ The compound was not detected, quantitation is an estimated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.

 The concentration given is an approximate value.
- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- R Data rejected.

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS BUILDING NO. 1-PCB MONITORING BRONX PSYCHIATRIC CENTER TABLE 1

Parameter (µg/100 cm²*) Standard¹ (µg/100 cm²*) TRI-Wipe 1 TRI-Wipe 2 TRI-Wipe 2 TRI-Wipe 3 TRI-TRIAL 3 TRI-TRI-TRIAL 3 TRI-TRI-TRI-TRI-TRI-TRI-TRIAL 3 TRI-TRI-TRI-TRI-TRI-TRI-TRI-TRI-TRI-TRI-		TSCA Cleanup			Transformer Room No. 1	Room No. 1		
(μg/100 cm²*) 12/17/2014 12/17/2014 1/23/2015 12/17/2014 1 - <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <td< th=""><th>Parameter</th><th>Standard¹</th><th>TR1-Wipe 1</th><th>TR1-Wipe 2</th><th>TR1-Wipe 2 - 2**</th><th>TR1-Wipe 3</th><th>TR1-Wipe 3 - 2**</th><th>TR1-Wipe 4</th></td<>	Parameter	Standard ¹	TR1-Wipe 1	TR1-Wipe 2	TR1-Wipe 2 - 2**	TR1-Wipe 3	TR1-Wipe 3 - 2**	TR1-Wipe 4
40.510 40.510	(µg/100 cm²*)	(μg/100 cm ² *)	12/17/2014	12/17/2014	1/23/2015	12/17/2014	1/23/2015	12/17/2014
- <0.510	Polychlorinated Biphenyla							
- <0.510 <0.510 <0.510 - <0.510	Aroclor-1016	ī.	<0.510	<0.510	<0.510	<0.510	<0.510	<0.510
<0.510 <0.510 <0.510 <0.510 <0.510	Aroclor-1221	· ·	<0.510	<0.510	<0.510	<0.510	<0.510	<0.510
<0.510 <0.510 <0.510 <0.510 <0.510	Aroclor-1232	*	<0.510	<0.510	<0.510	<0.510	<0.510	<0.510
<0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.510 <0.511 <0.510 <0.510 <0.511 <0.594 <0.20	Aroclor-1242	366	<0.510	<0.510	<0.510	<0.510	<0.510	<0.510
<0.510 <0.510 0.29 J <0.510 1.70 21.1 <0.510	Aroclor-1248		<0.510	<0.510	<0.510	<0.510	<0.510	<0.510
1.70 21.1 <0.510 22.0 1.10 1.70 21.1 0.29.1 22.0	Aroclor-1254	36	<0.510	<0.510	0.29 J	<0.510	1.00	<0.510
10 1.70 21.1 0.29 J 22.0	Aroclor-1260		1.70	21.1	<0.510	22.0	<0.510	3.00
	Total PCBs	10	1.70	21.1	0.29 J	22.0	1.00	3.00

	TSCA Cleanup		Transformer	Transformer Room No. 2	
Parameter	Standard ¹	TR2-Wipe 5	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
(μg/100 cm ² *)	(µg/100 cm ² *)	12/17/2014	12/17/2014	12/17/2014	12/17/2014
Polychlorinated Biphenyls	S				
Aroclor-1016	(3)	<0.510	<0.510	<0.510	<0.510
Aroclor-1221	3.	<0.510	<0.510	<0.510	<0.510
Aroclor-1232	1/62	<0.510	<0.510	<0.510	<0.510
Aroclor-1242	(25)	<0.510	<0.510	<0.510	<0.510
Aroclor-1248	160	<0.510	<0.510	<0.510	<0.510
Aroclor-1254	3.45	<0.510	<0.510	<0.510	<0.510
Aroclor-1260	•	3.20	0.780	3.90	1.30
Total PCBs	10	3.20	0.780	3.90	1,30

Wipe samples analyzed by EPA Method 8082 at Chemtech in Mountainside, New Jersey.

<. Indicates parameter was not detected above the limit of quantitation shown.

PCB: Polychlorinated Biphenyl.

*: Wiped area was 100 cm²

µg/100 cm²: micrograms per 100 square centimeters.

1: The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is $10 \,\mu g/100 \, \text{cm}^2$ Shading indicates an exceedance of the TSCA Cleanup Standard.

**: Confirmation wipe sample collected after the floor was cleaned on 1/23/15.

J: Indicates an estimated value.

SUMMARY OF WIPE SAMPLE ANALYTICAL RESULTS BRONX PSYCHIATRIC CENTER BUILDING NO. 1-PCB MONITORING

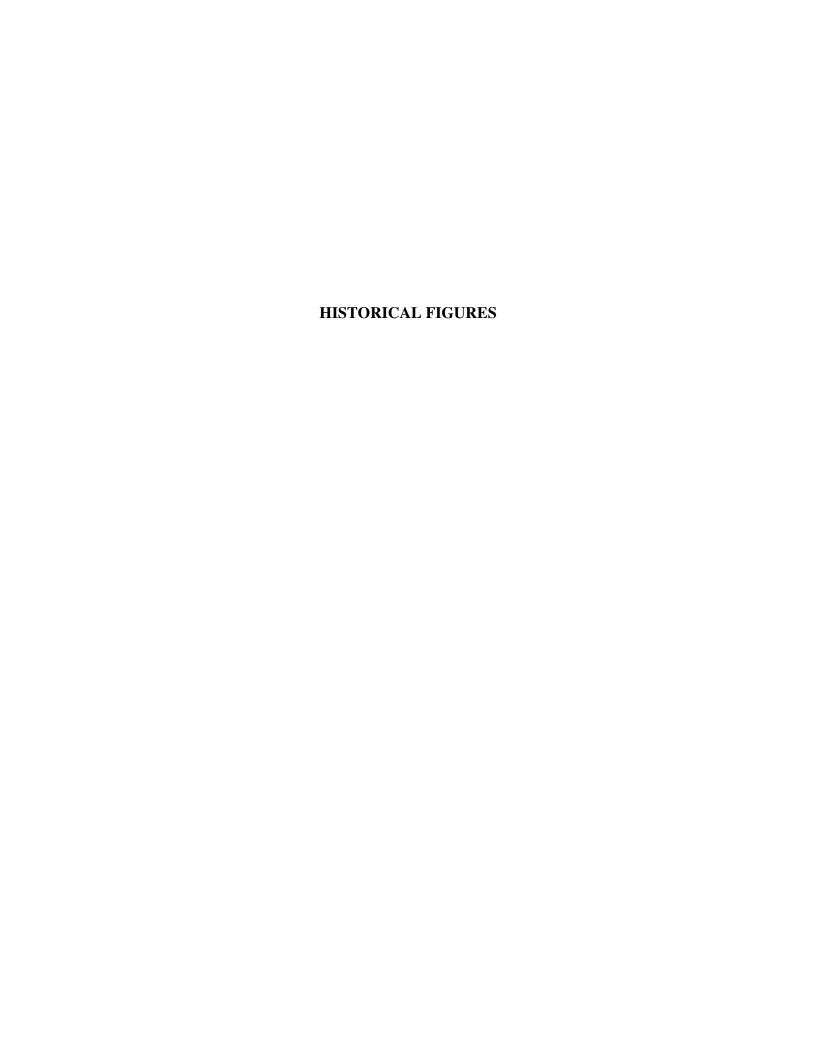
	TSCA Cleanup		Transforme	Transformer Room No. 1	
Parameter	Standard	TRI-Wipe 1	TR1-Wipe 2	TR1-Wipe 3	TR1-Wipe 4
(μg/100 cm ² *)	(µg/100 cm ^{2*})	12/15/2015	12/12/2015	12/15/2015	12/15/2015
Polychlorinated Biphenyls					
Aroclor-1016	0.00	<0.510	<0.510	<0.510	<0.510
Aroclor-1221	-	<0.510	<0.510	<0.510	<0.510
Aroclor-1232	-	<0.510	<0.510	<0.510	<0.510
Aroclor-1242	•	<0.510	<0.510	<0.510	<0.510
Aroclor-1248	1	<0.510	<0.510	<0.510	<0.510
Aroclor-1254	-	<0.510	015.0>	<0.510	<0.510
Aroclor-1262	•	<0.510	<0.510	<0.510	<0.510
Aroclor-1268	-	<0.510	<0.510	<0.510	<0.510
Aroclor-1260	-	0.880	2.10	2.90	1.50
Total PCBs	01	0.880	2.10	2.90	1.50

	TSCA Cleanup		Transforme	Transformer Room No. 2	
Parameter	Standard	TR2-Wipe 5	TR2-Wipe 6	TR2-Wipe 7	TR2-Wipe 8
(µg/100 cm²*)	(µg/100 cm ² *)	12/15/2015	12/15/2015	12/15/2015	12/15/2015
Polychlorinated Biphenyls					
Aroclor-1016		<0.510	<0.510	<0.510	<0.510
Aroclor-1221		<0.510	<0.510	<0.510	<0.510
Aroclor-1232	1	<0.510	<0.510	<0.510	<0.510
Aroclor-1242	r	<0.510	<0.510	<0.510	<0.510
Aroclor-1248	•	<0.510	<0.510	<0.510	<0.510
Aroclor-1254	3	<0.510	<0.510	<0.510	<0.510
Aroclor-1262	1	<0.510	<0.510	<0.510	<0.510
Aroclor-1268	7	<0.510	<0.510	<0.510	<0.510
Aroclor-1260	•	1.20	0.380 J	2.50	0.750
Total PCBs	10	1.20	I. 08E.0	2.50	0.750

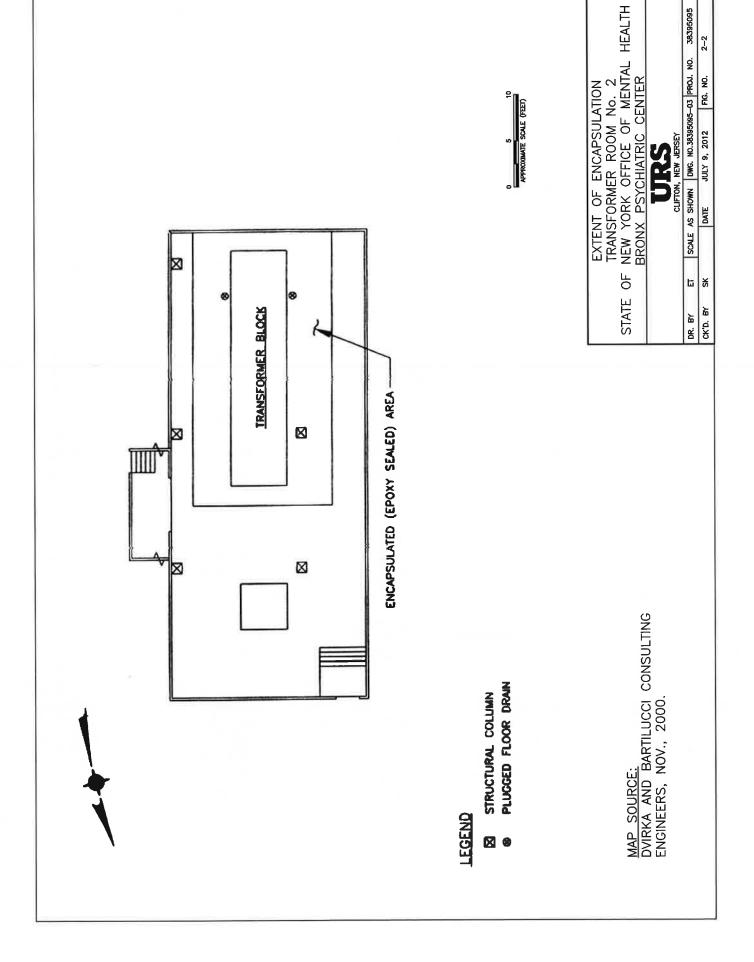
Notes:

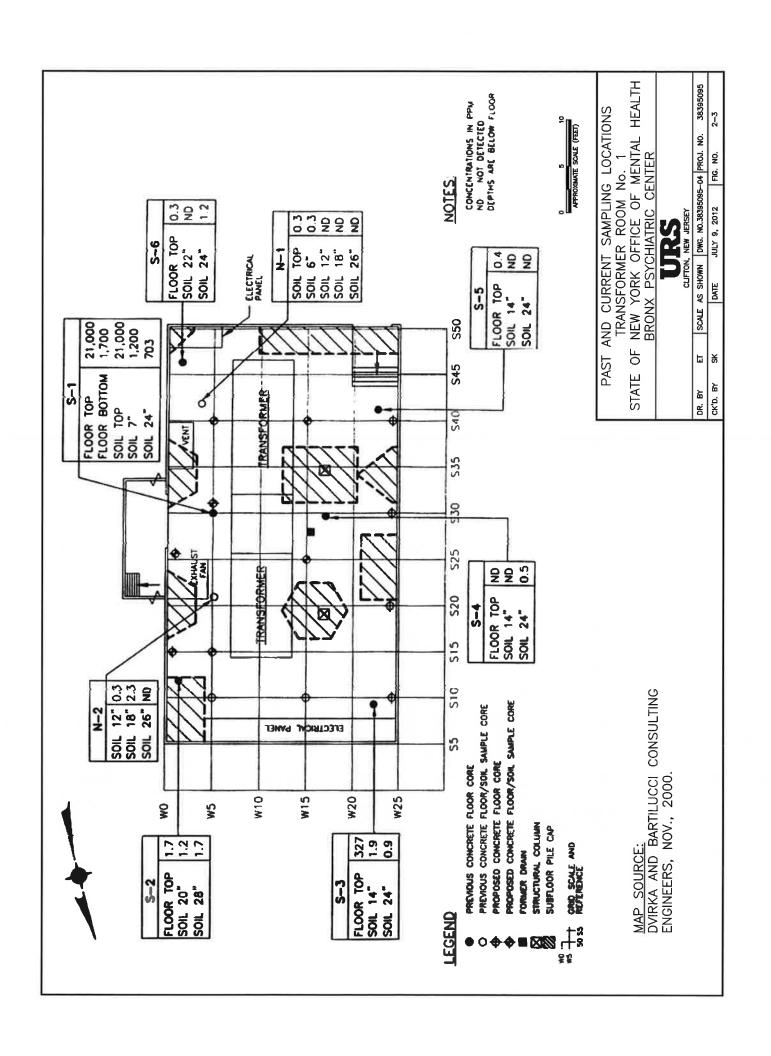
Wipe samples analyzed by EPA Method 8082 at Chemtech in Mountainside, New Jersey.

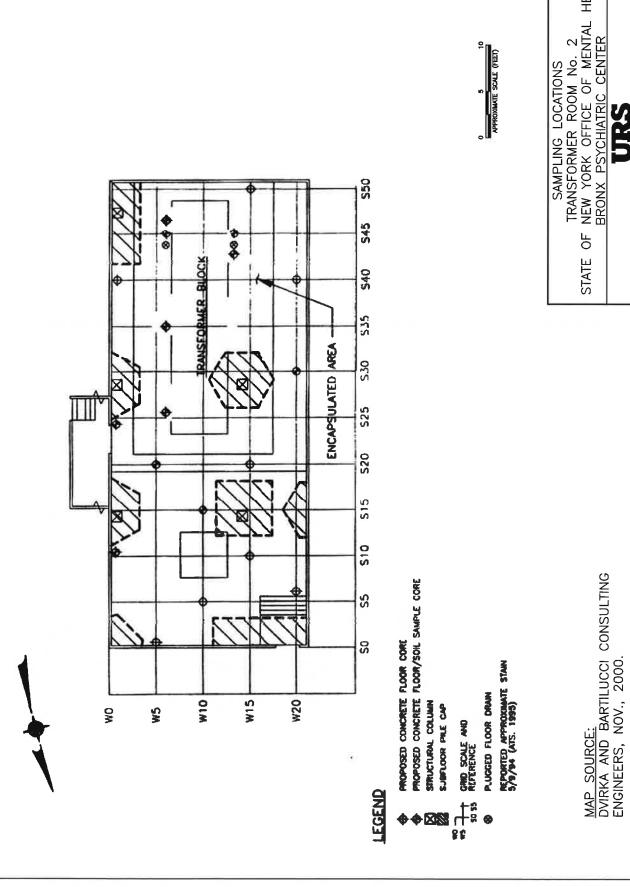
Indicates parameter was not detected above the limit of quantitation shown.

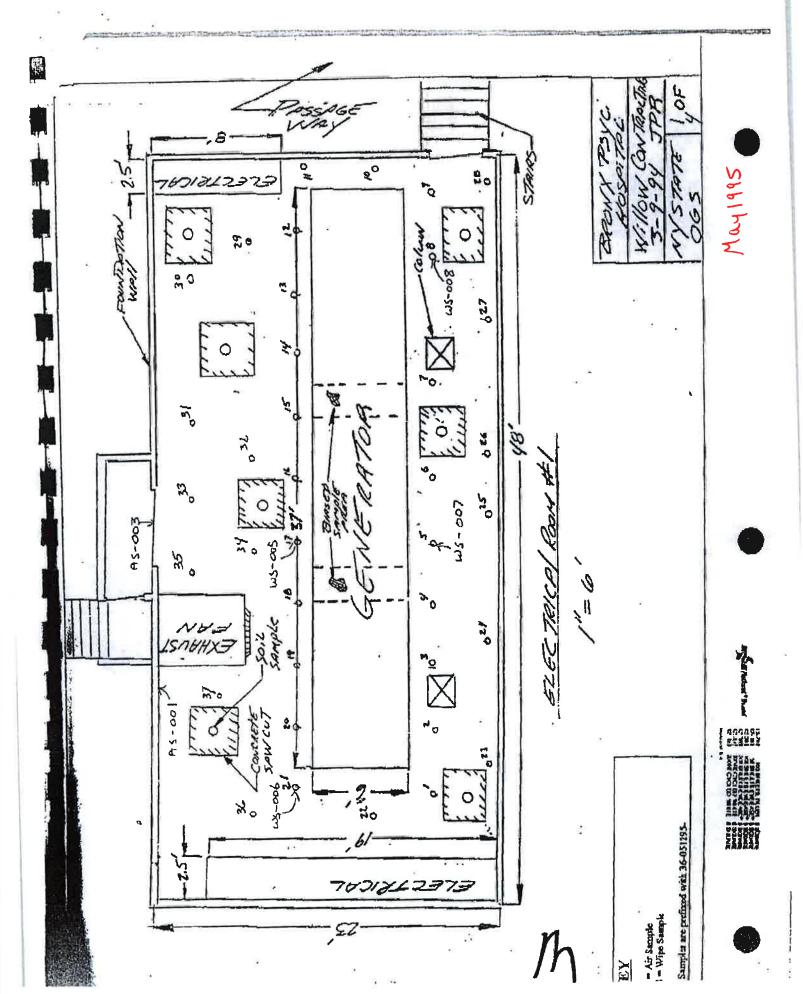

PCB: Polychlorinated Biphenyl.

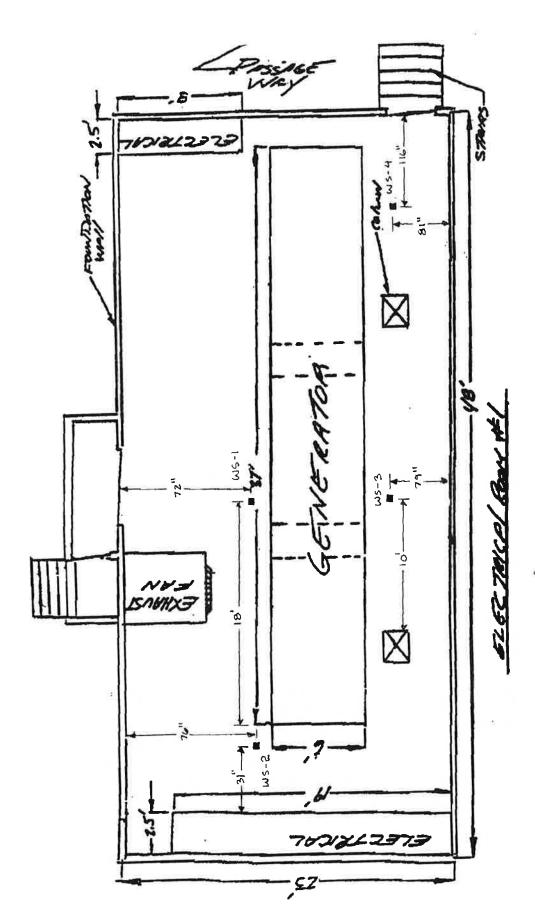
*: Wiped area was 100 cm²

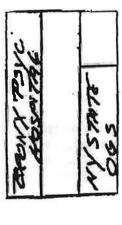

µg/100 cm²: micrograms per 100 square centimeters.


1. The Toxic Substance Control Act (TSCA) Cleanup Standard (40CFR Part 761) for total PCBs is 10 µg/100 cm²

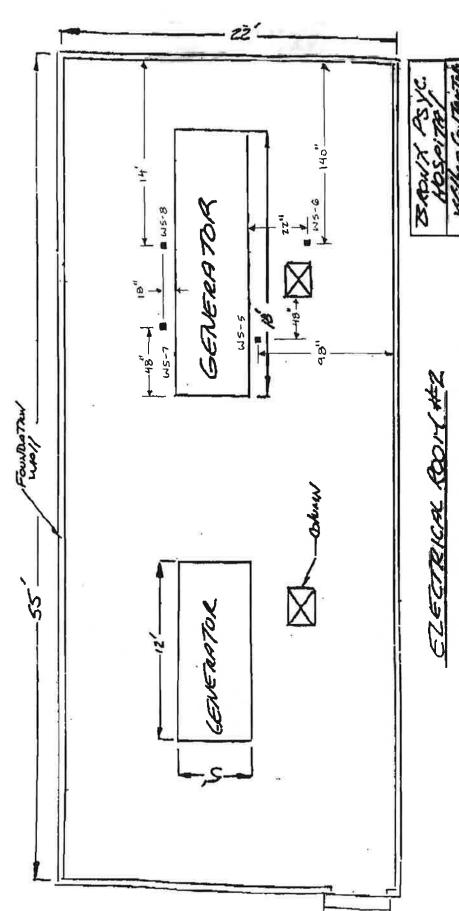

J. Indicates an estimated value.

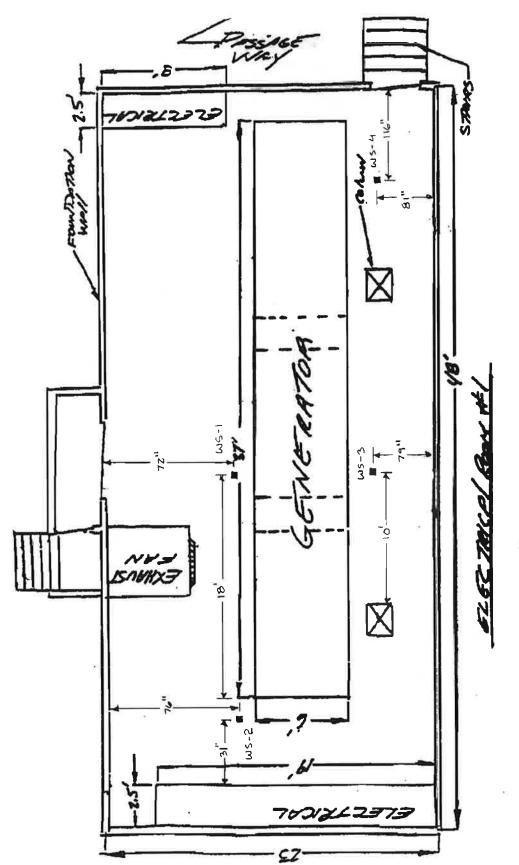


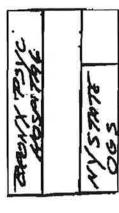

TRANSFORMER ROOM No. 2
NEW YORK OFFICE OF MENTAL HEALTH
BRONX PSYCHIATRIC CENTER


CUFTON, NEW JERSEY
SCALE AS SHOWN DWG. NO. 38395095 2-4 FIG. NO. JULY 9, 2012 DATE ᄪᄦ CK'D. BY DR. BY

exemp) SENERATOR 45-00 R Lowery May 1995 for BERSONING 70 W5-011 ELECTRICAL ROOM 11101 All Sumples are prefixed with 36-051295. A5 - Air Sample WS - Wore Sample K

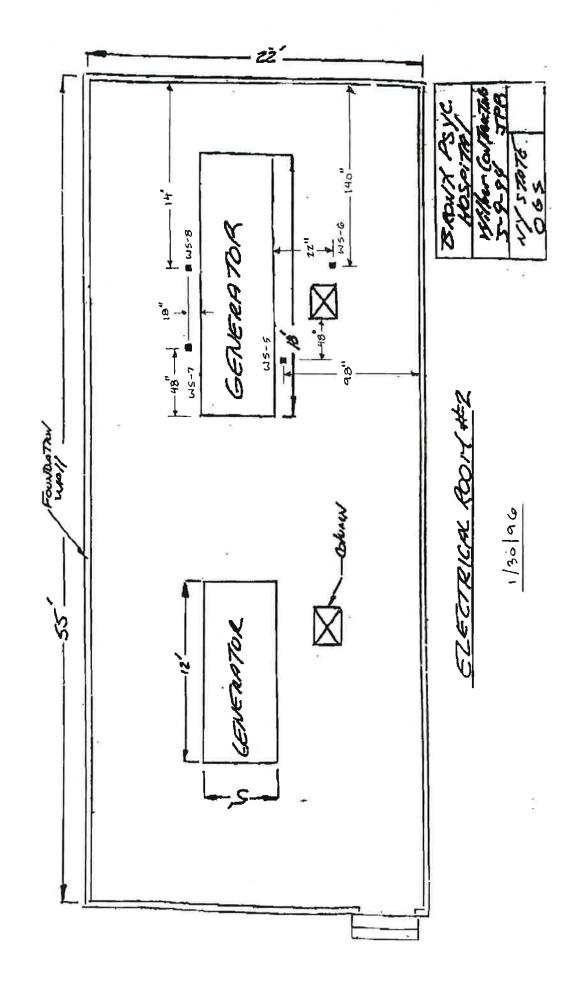

The state of the s

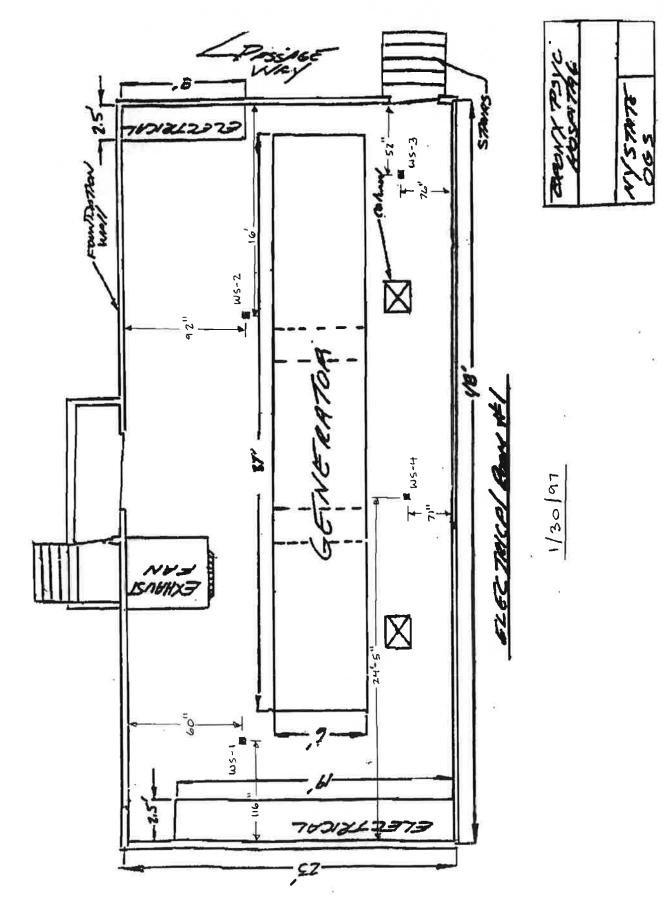




San/ Feb 1996

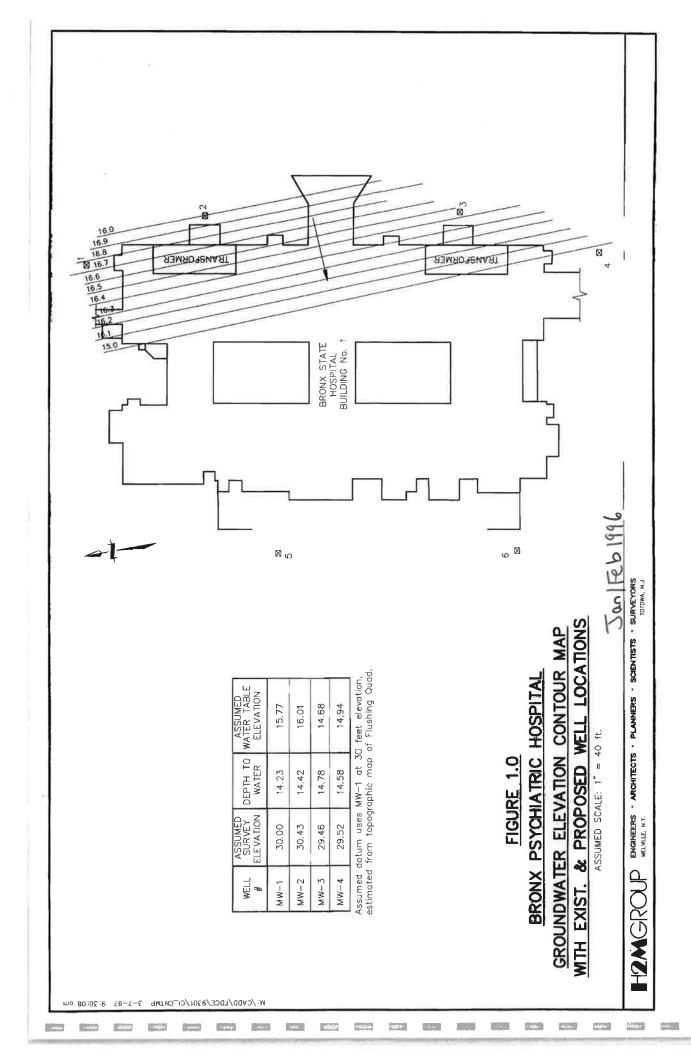
P.

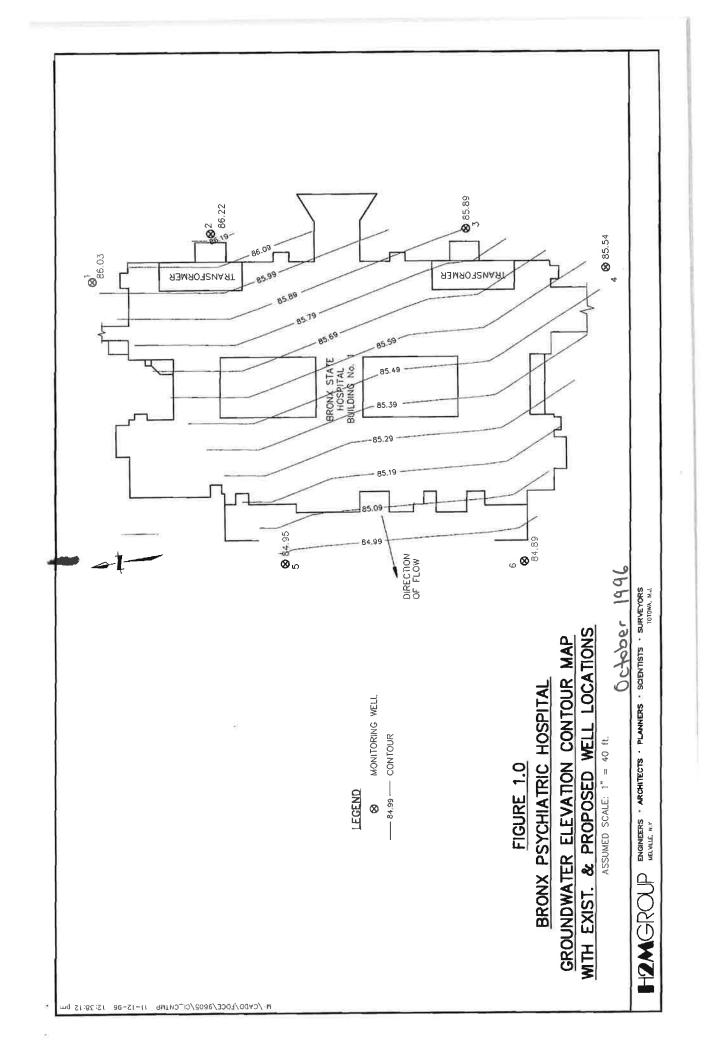


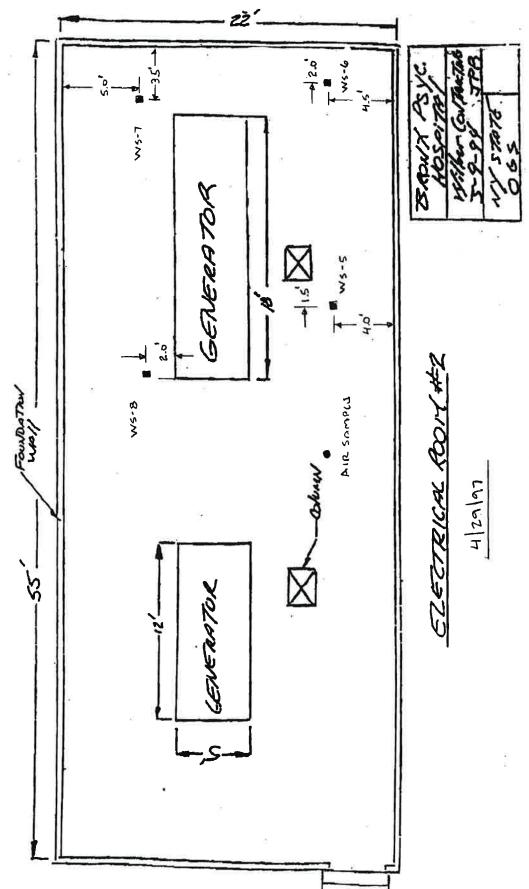


1/30/96,2/21/96

Jan 1786 1996

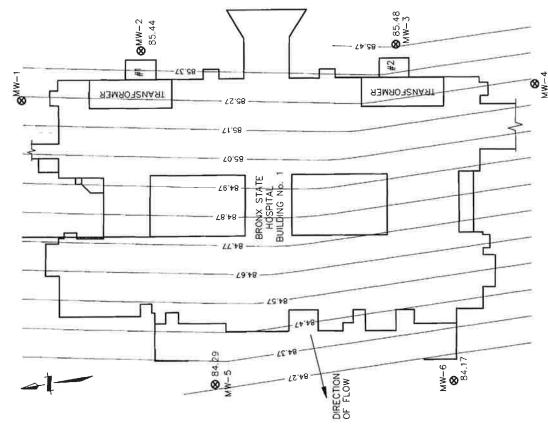



Jan 186 1996



Jan 186 1996

is a



April 1997

APril 1997

LEGEND

MONITORING WELL

-85.44 -- CONTOUR

FIGURE 1.0

BRONX PSYCHIATRIC HOSPITAL GROUNDWATER ELEVATION CONTOUR MAP

ASSUMED SCALE: 1" = 40 ft. $\Delta = 11 \text{ May 1 for }$

Aprill May 1897

H2MGROUP BUGINERS

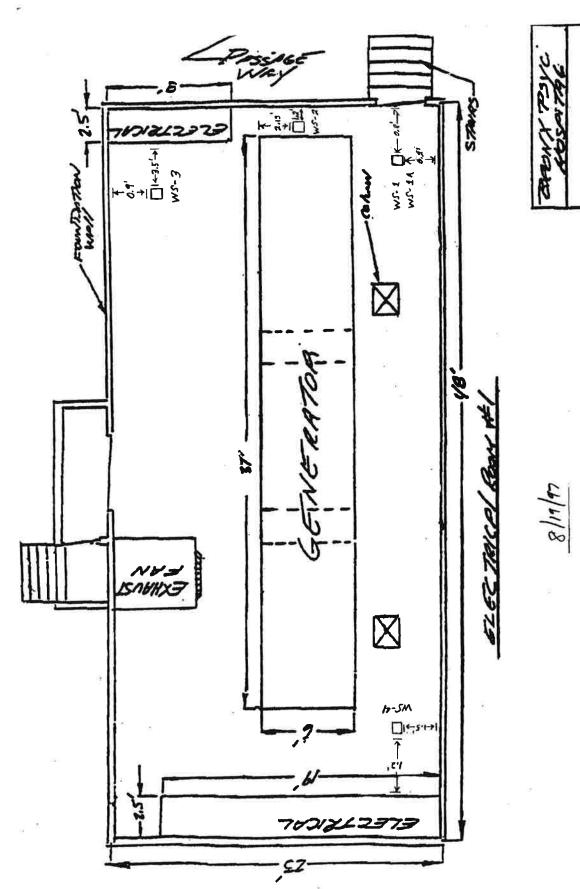
BUGNEERS · SCIENTISTS · SCIENTISTS · SCIENTISTS · SCIENTISTS · SURVEYORS

TOTOMA, N.J.

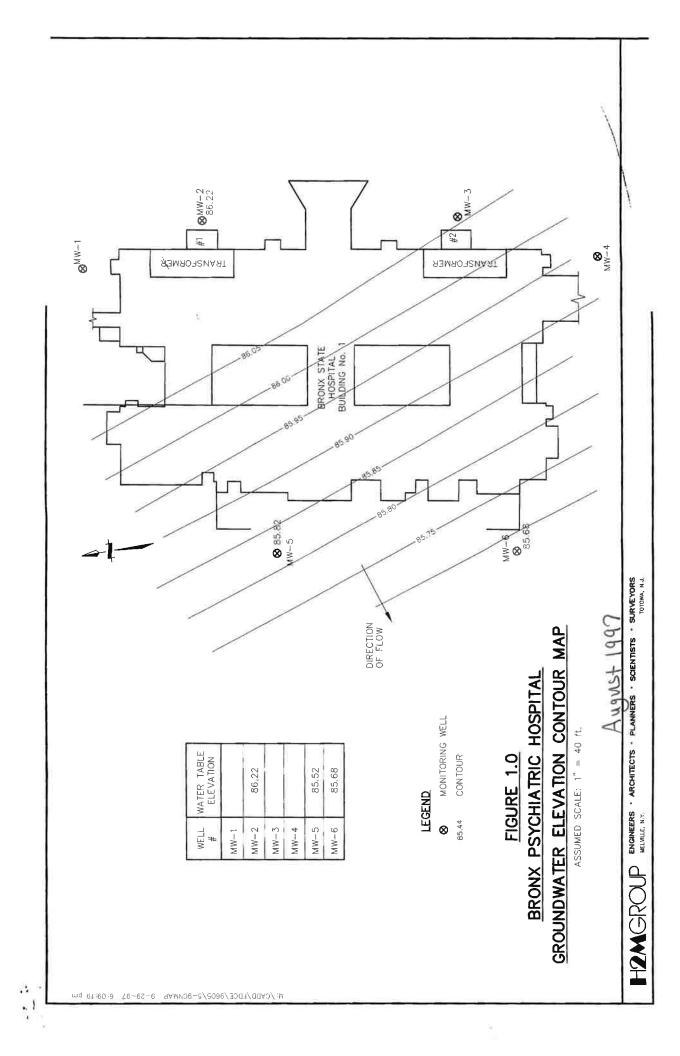
M:/CADD/FDCE/9605/5-9CNMAP 5-12-97 12:41:09 pm

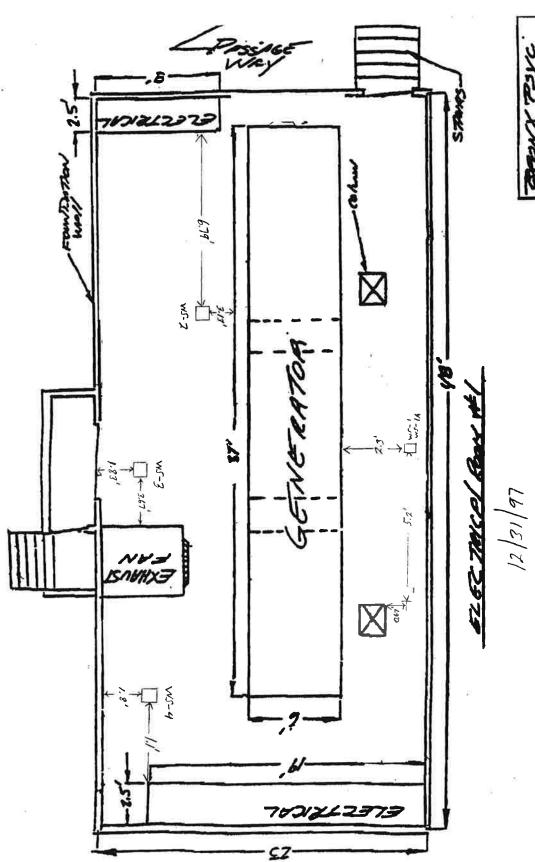
WATER TABLE ELEVATION

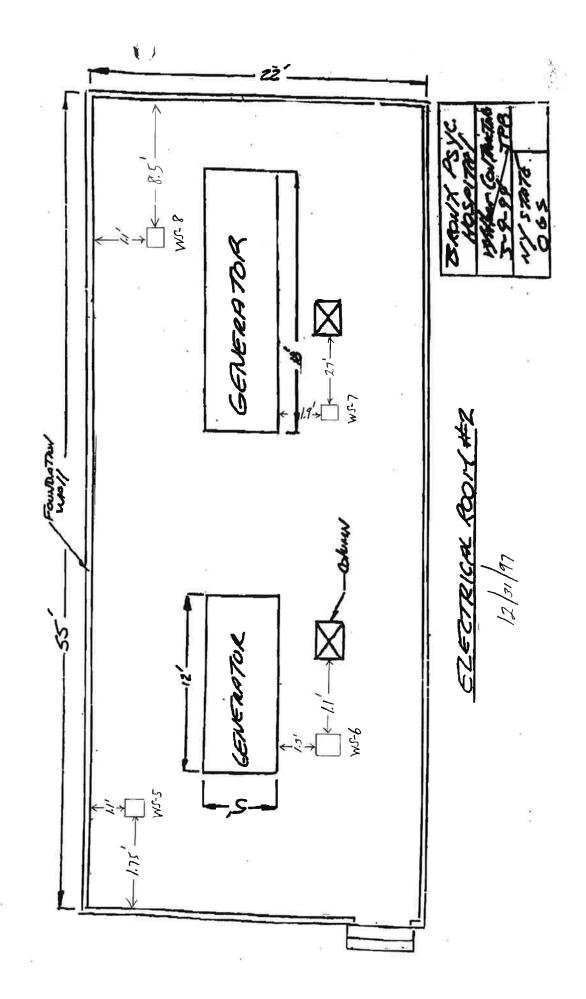
WELL

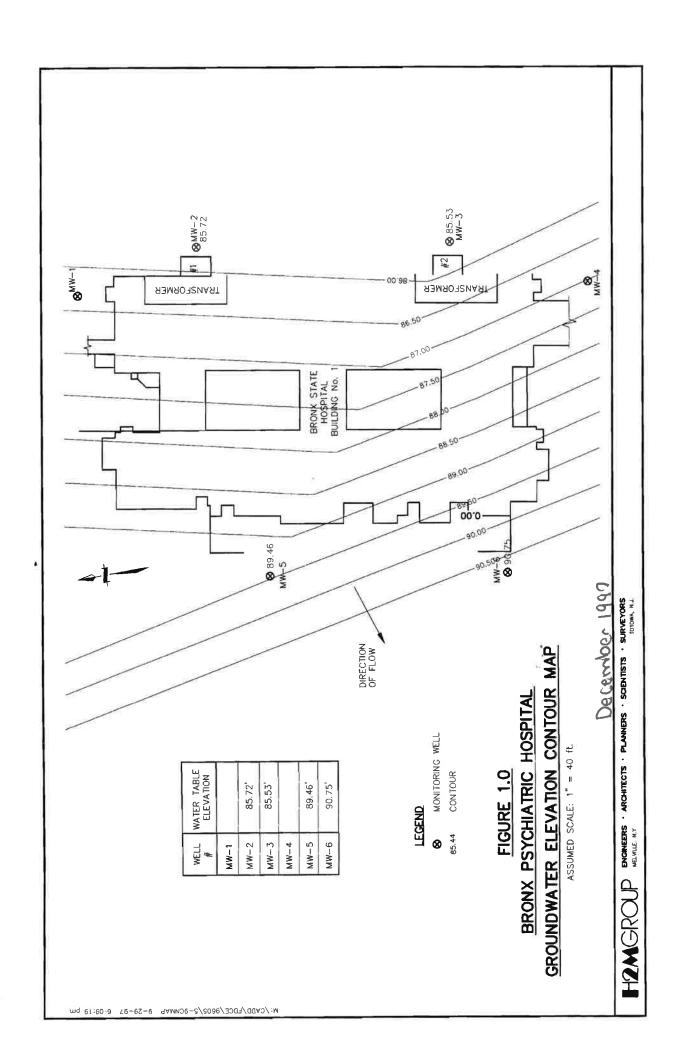

85.44 85.48

MW-1

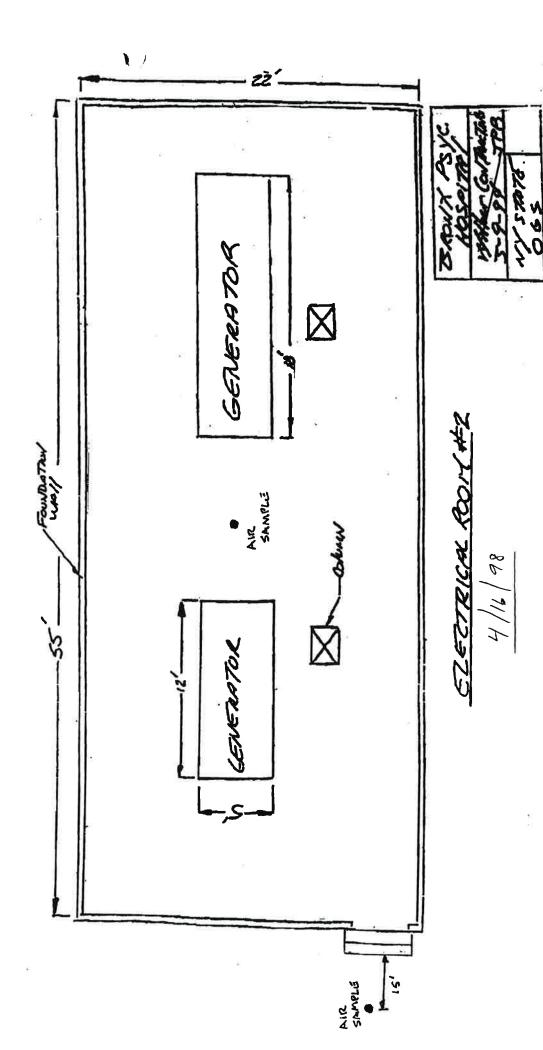

MW-3 MW-5 MW-5

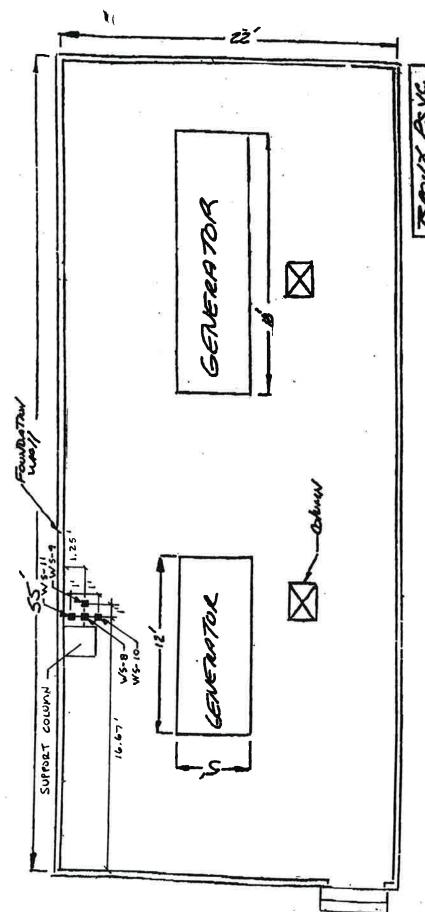

84.29


MW-6

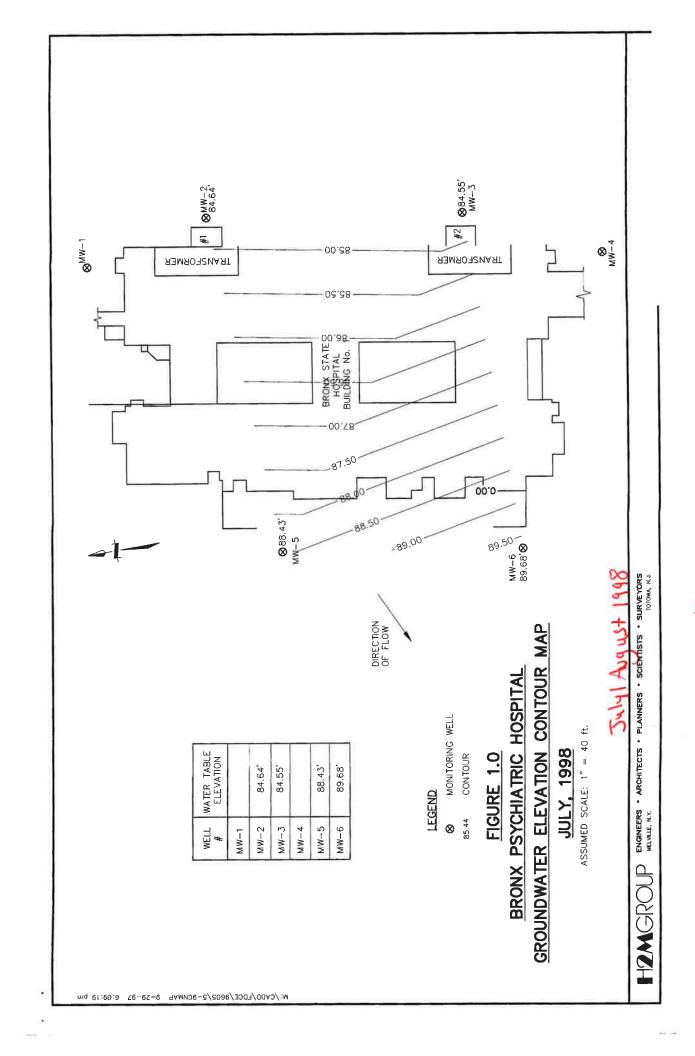


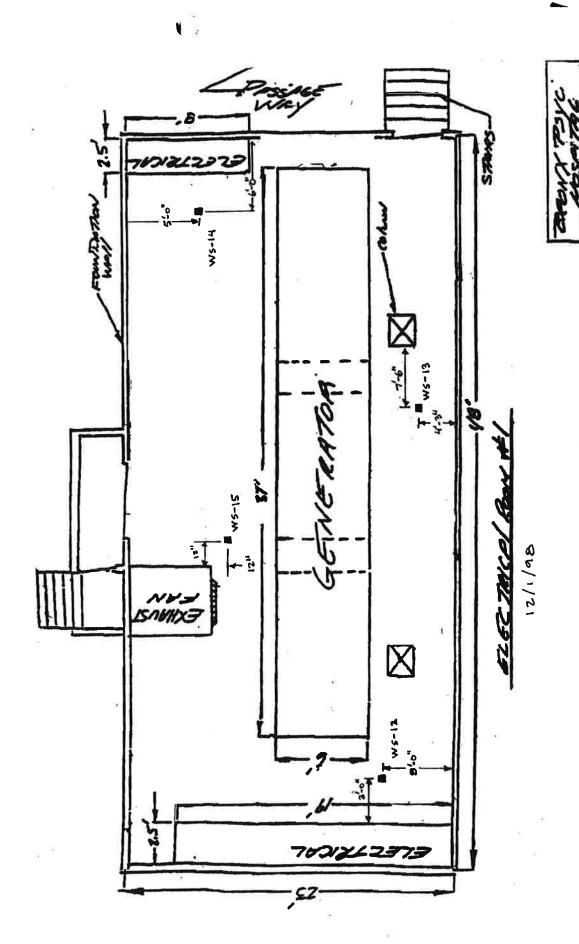
August 1997

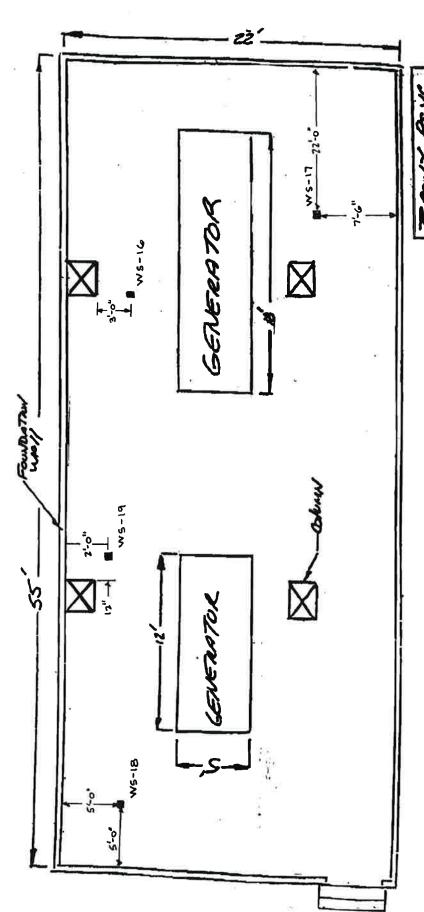


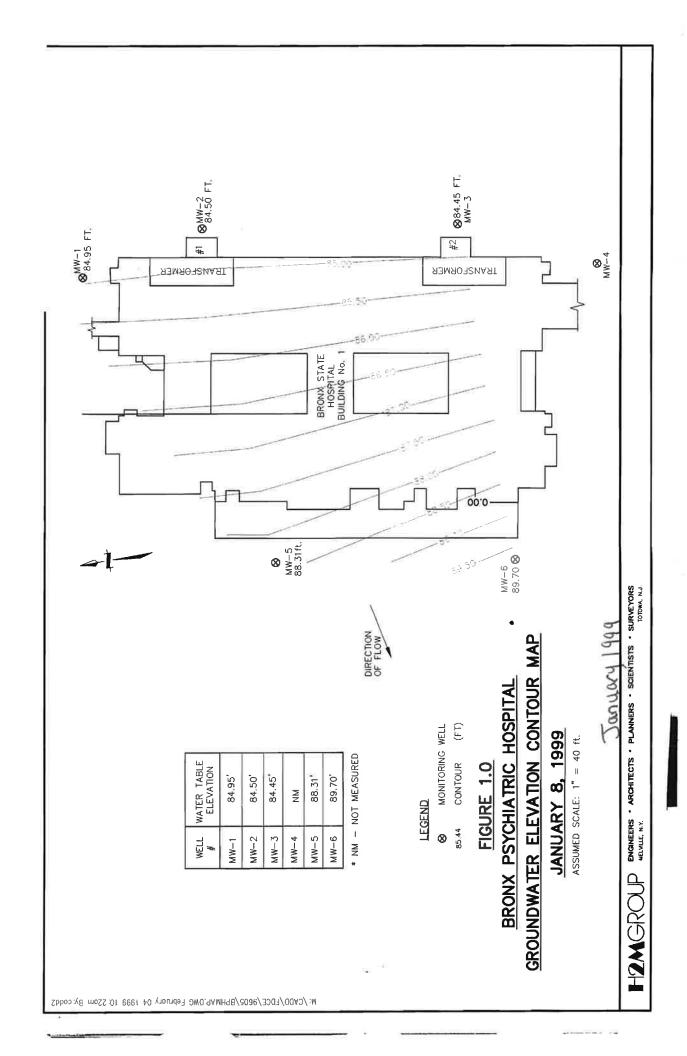


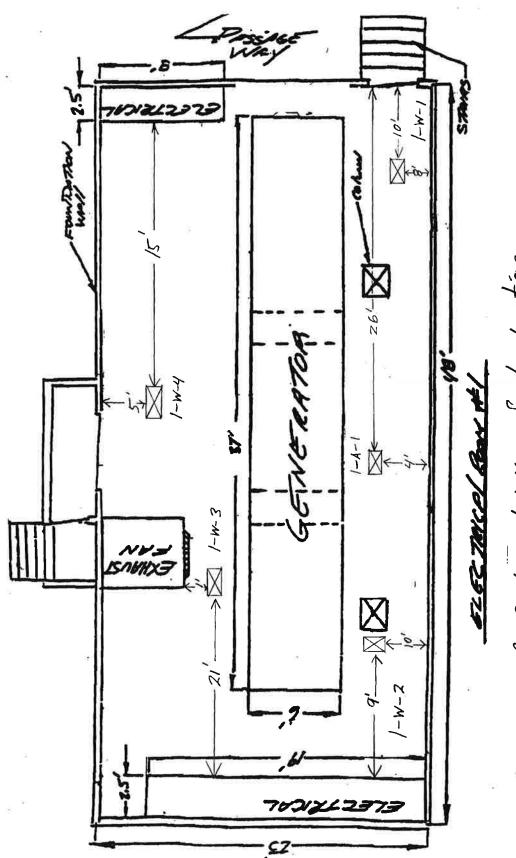
April 1998



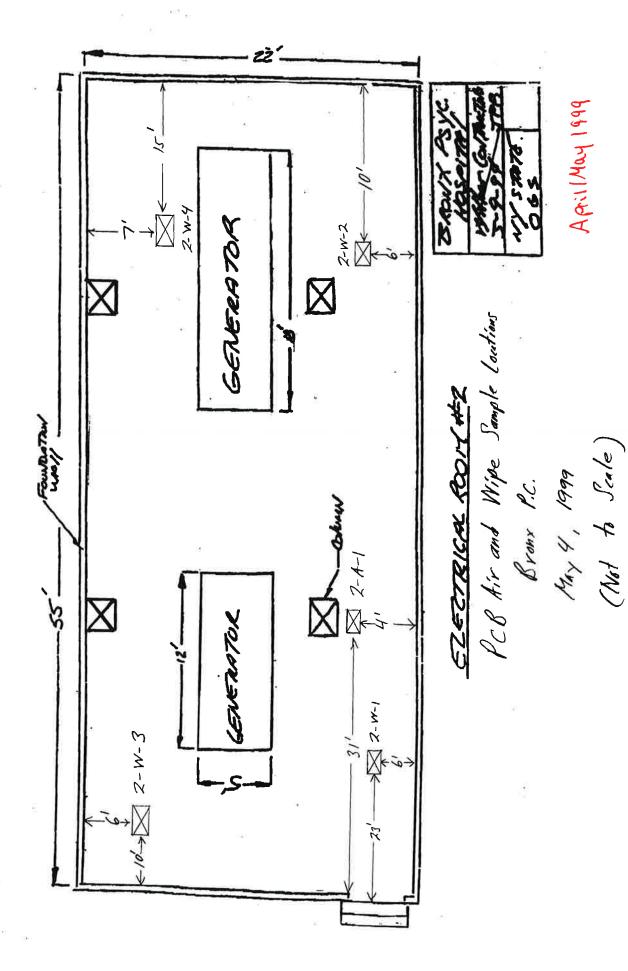

July 1 August 1988

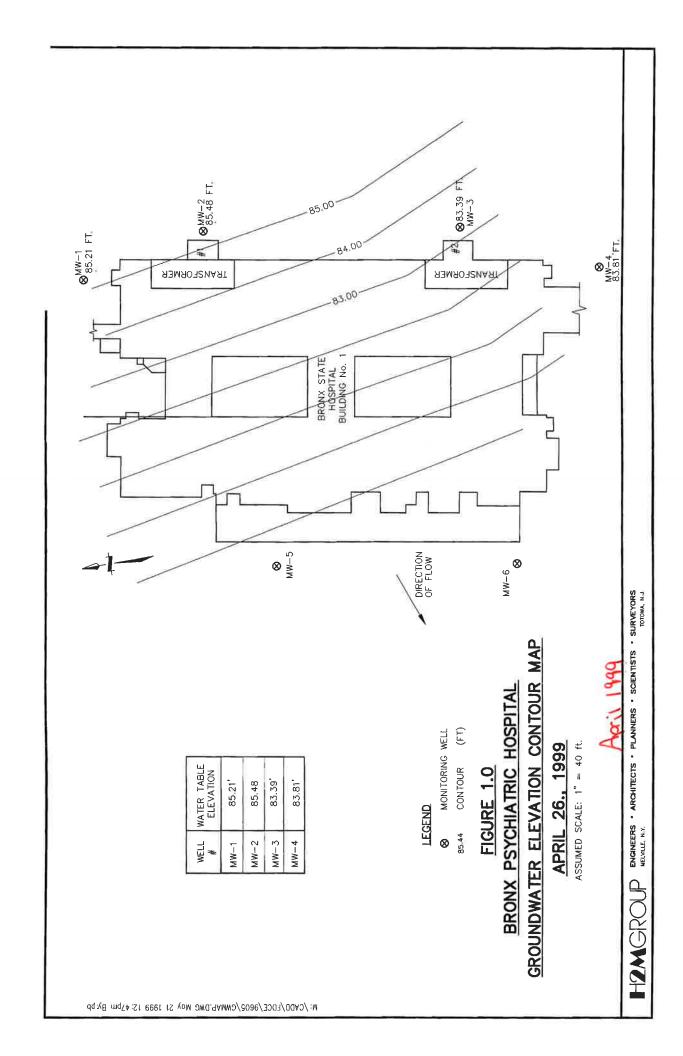

July August 1998

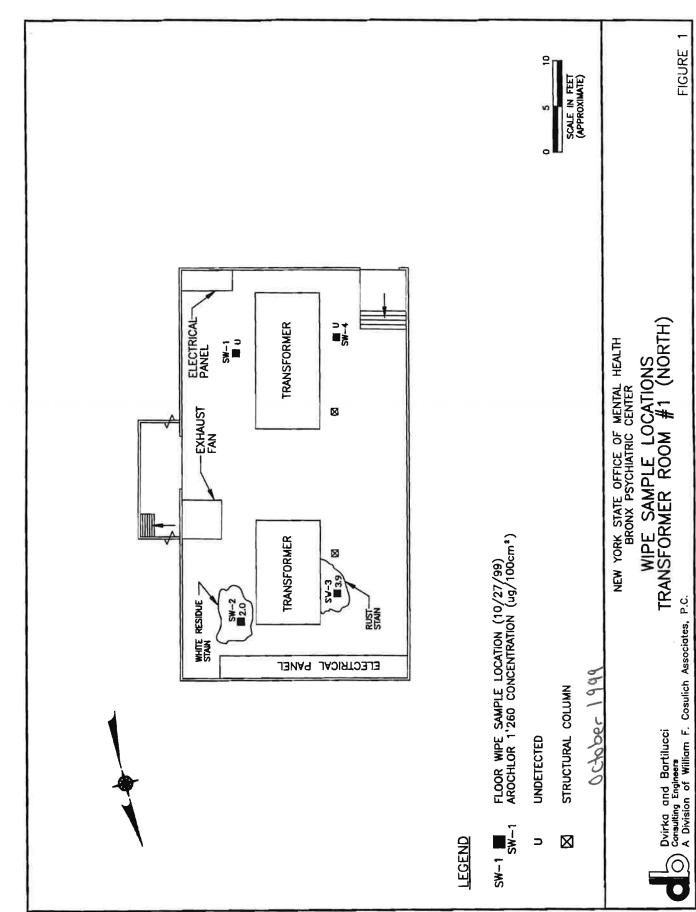

62 6 67 81 CA RON #2

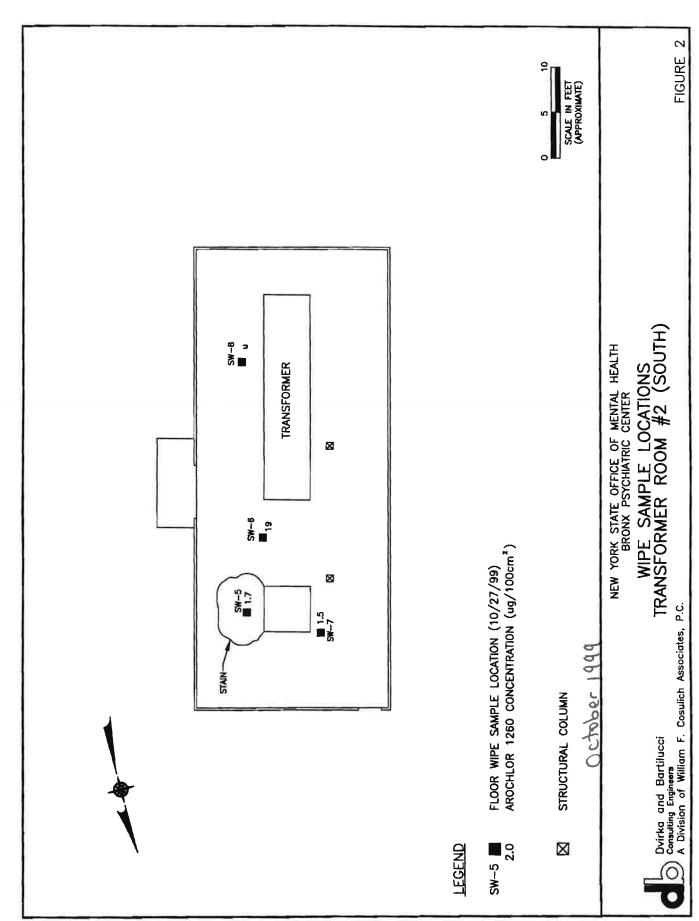


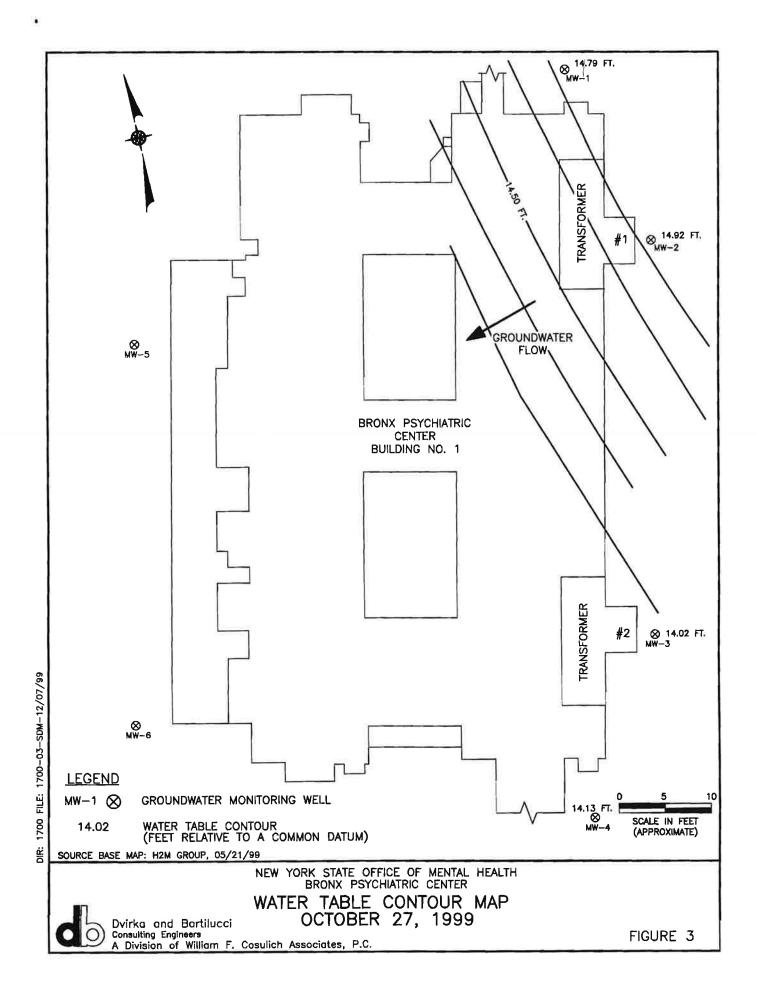
62667RICA RON #2

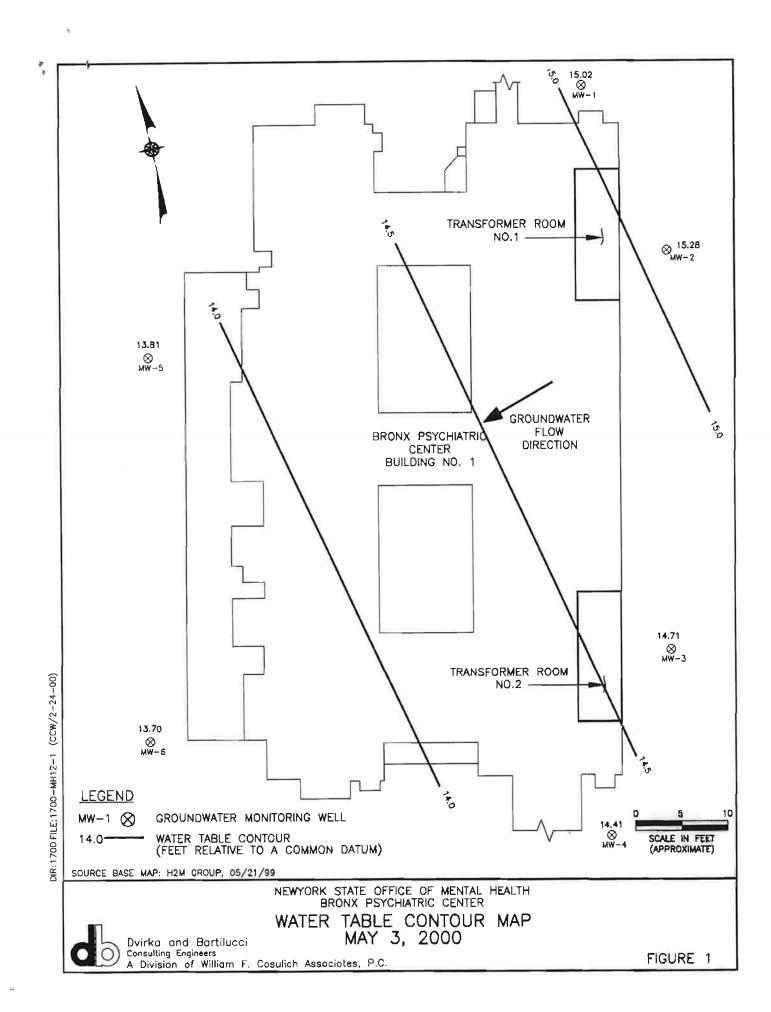


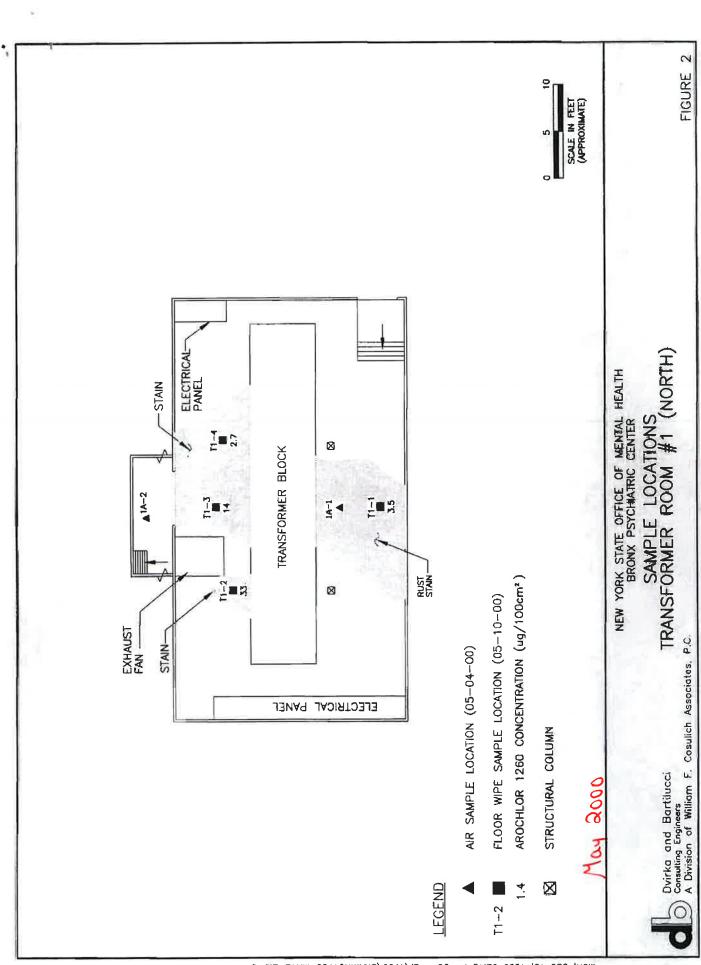


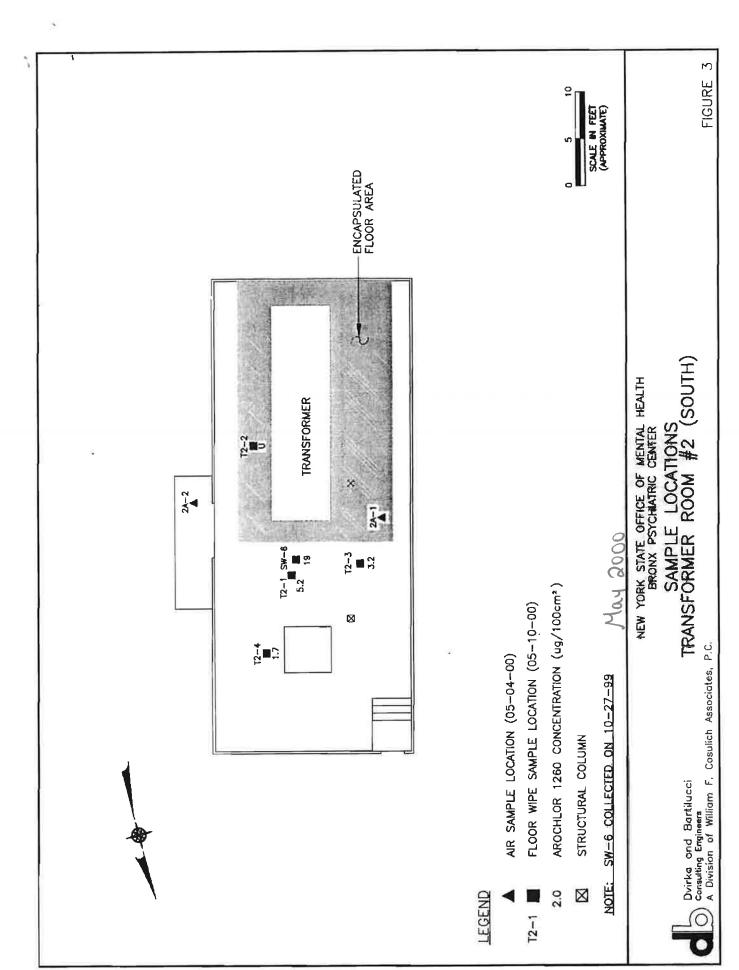

PCB Hir and Wipe Sample L Bronx P.C. May 4, 1999

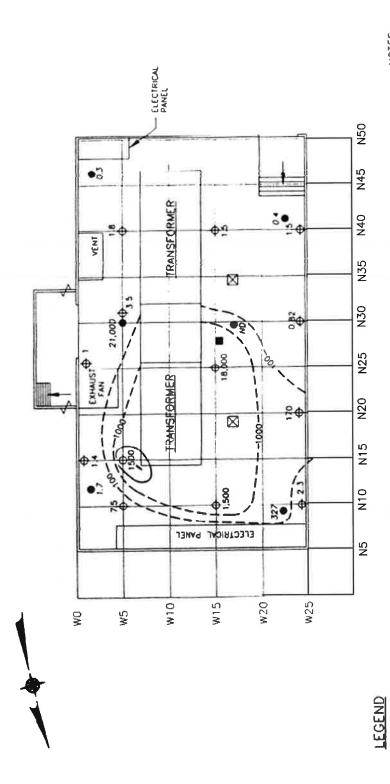

(Not to Scale)


AprillMay 1999









NOTES

PREVIOUS CONCRETE FLOOR CORE SAMPLE ANALYZED IN 1993 CURRENT INVESTIGATION CONCRETE FLOOR CORE SAMPLE

CONTOUR OF PCB CONCENTRATION IN PPM (BASED ON 8/2000 RESULTS)

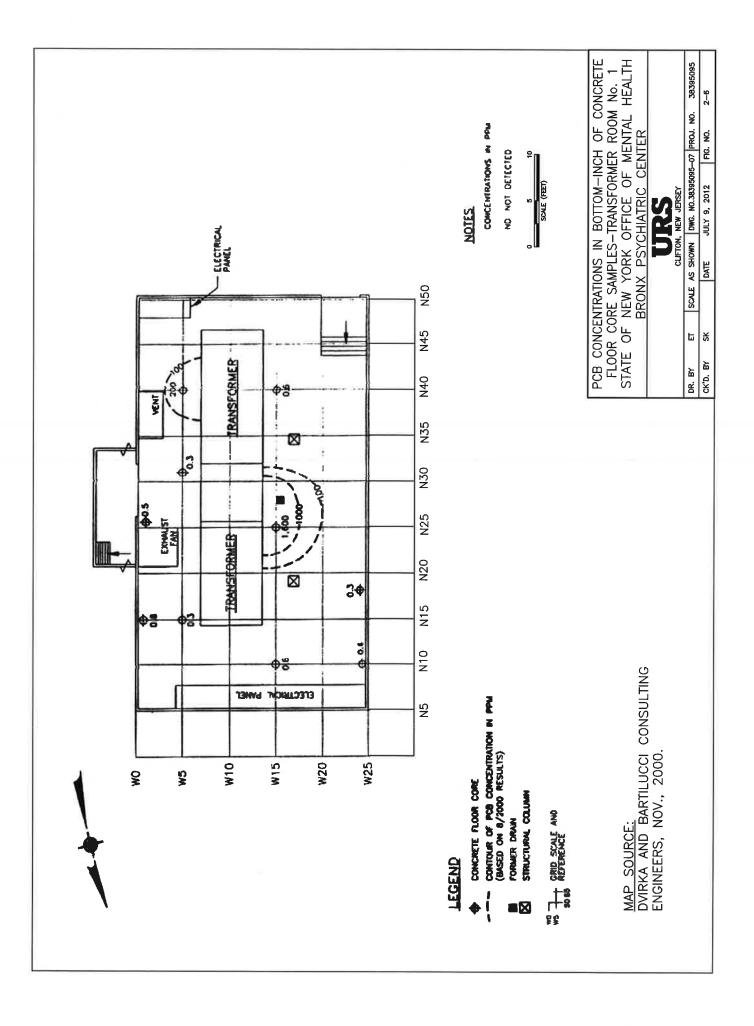
STRUCTURAL COLUMN

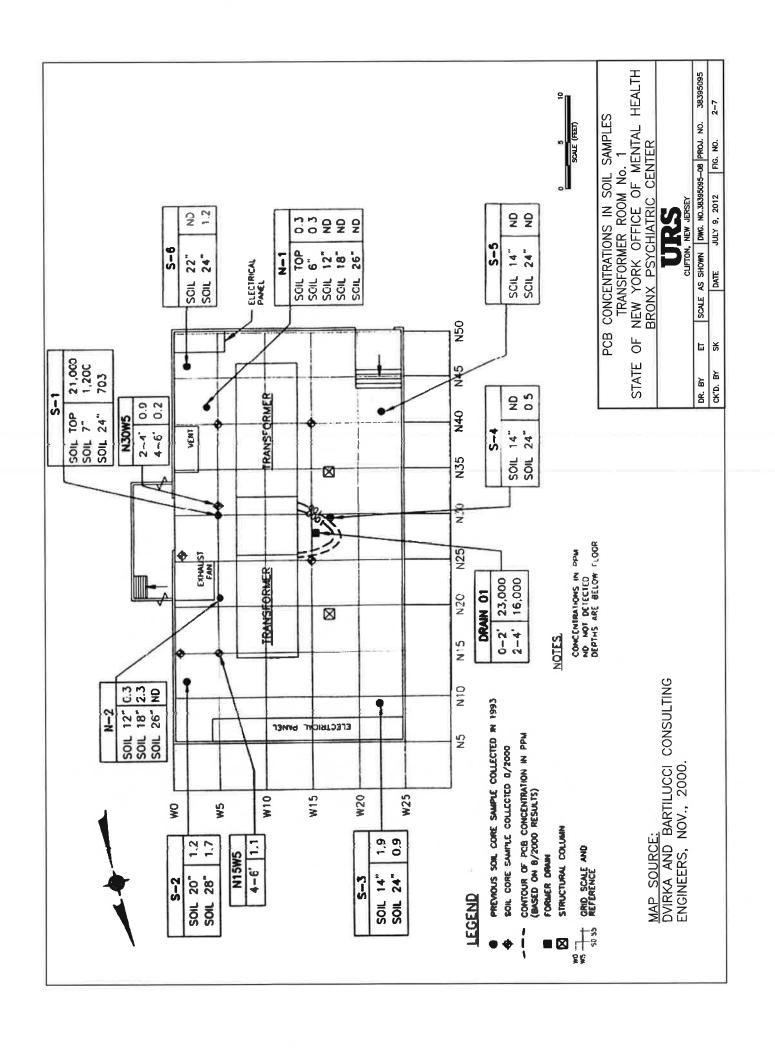
 \boxtimes

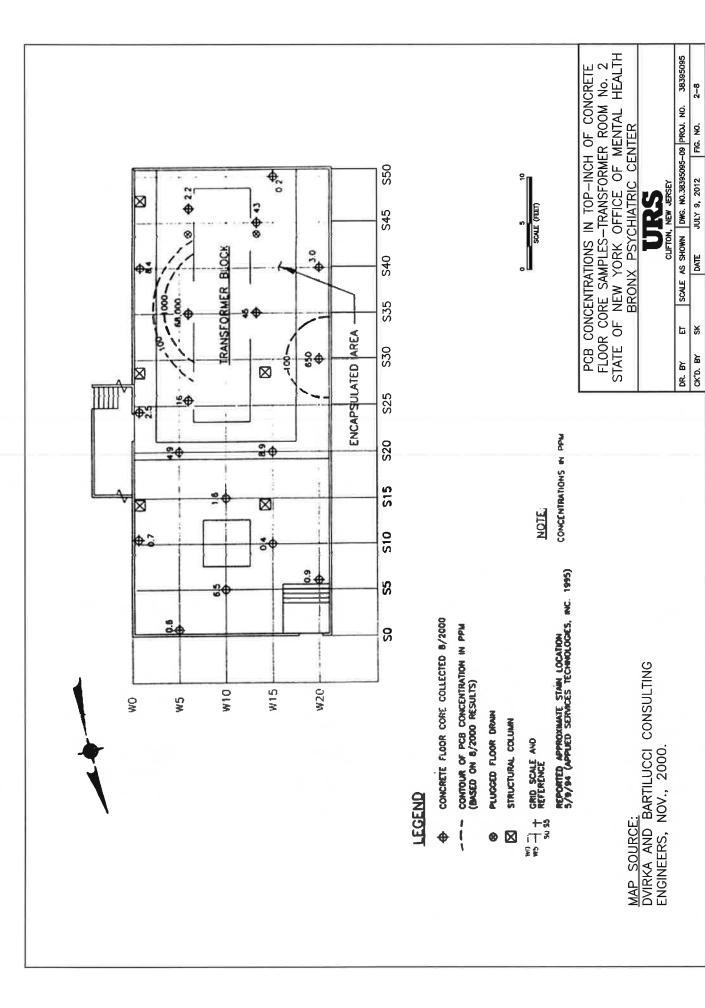
FORMER DIWIN

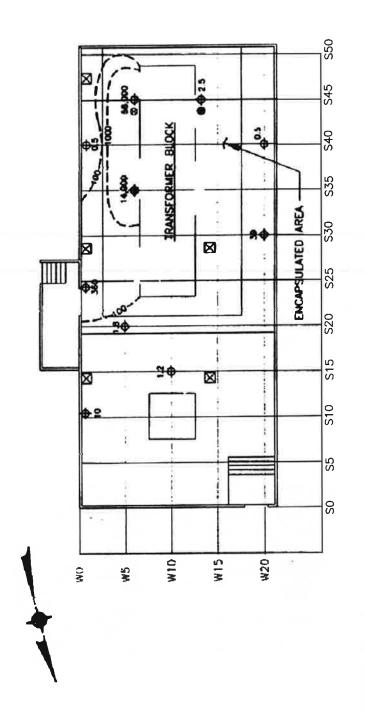
CRID SCALE AND REFERENCE

CONCENTRATIONS IN PRIM NO NOT DETECTED




PCB CONCENTRATIONS IN TOP-INCH OF CONCRETE


FLOOR CORE SAMPLES—TRANSFORMER ROOM No. STATE OF NEW YORK OFFICE OF MENTAL HEALTH BRONX PSYCHIATRIC CENTER


CLIFTON, NEW JERSEY
SCALE AS SHOWN DWG. NO. 38395095 2-2 FIG. NO. JULY 9, 2012 DATE ᇤ쌇 CK'D. BY DR. BY

MAP SOURCE: DVIRKA AND BARTILUCCI CONSULTING ENGINEERS, NOV., 2000.

LEGEND

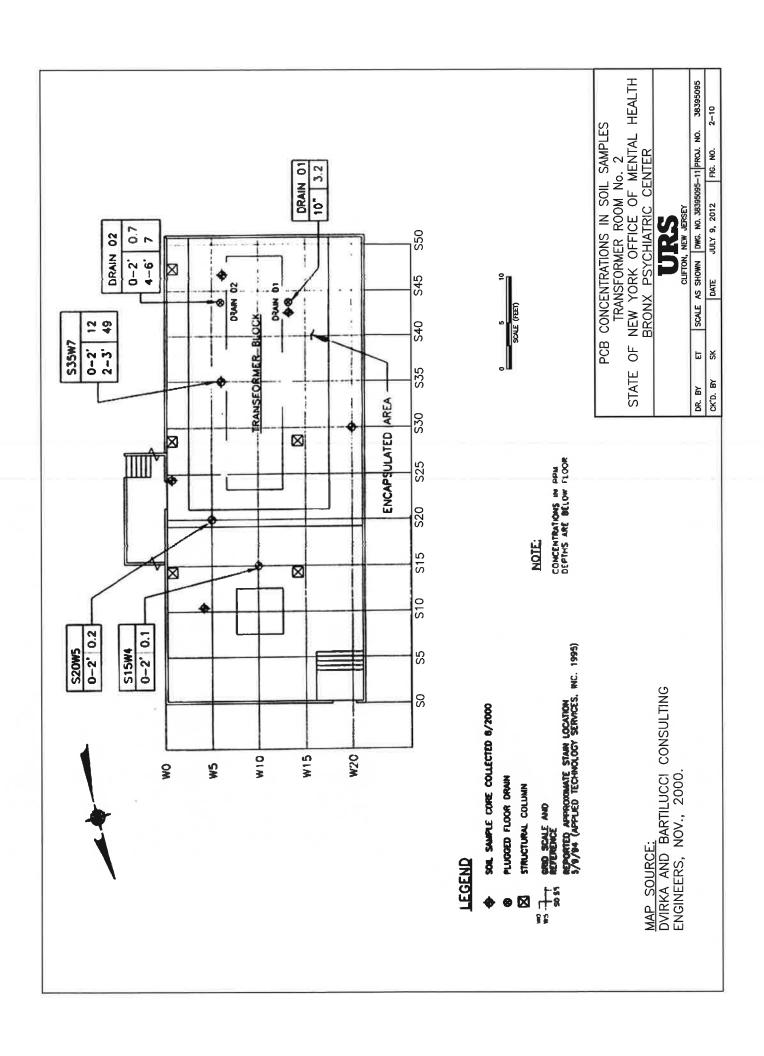
CONCRETE PLOOR CORE COLLECTED 8/2000

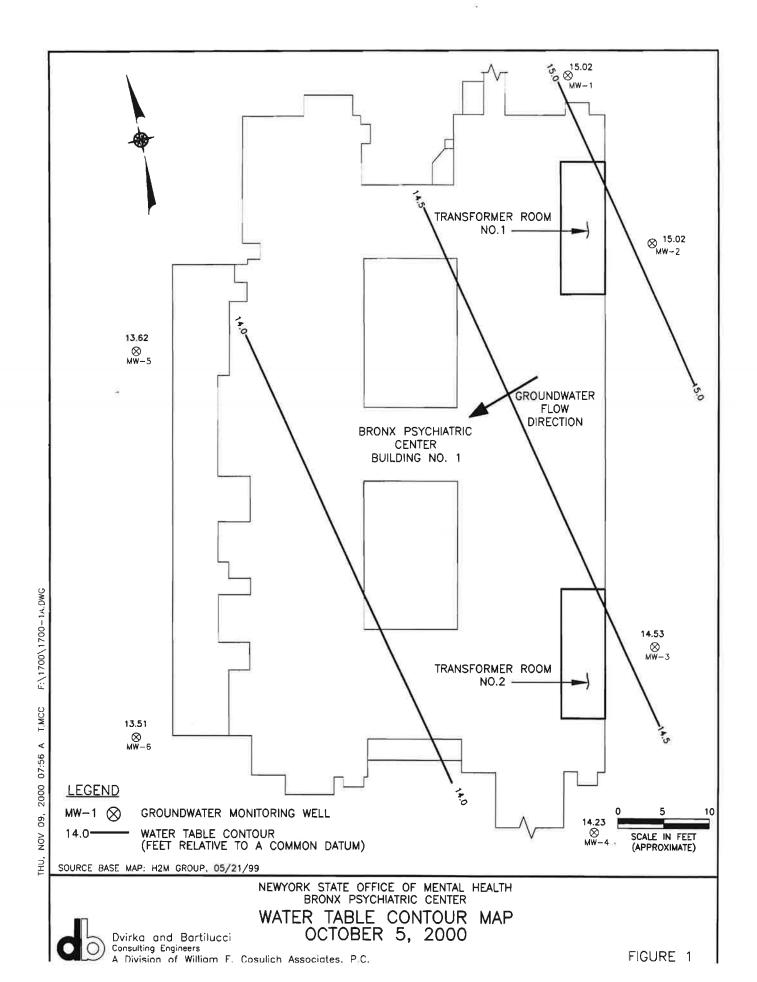
CONTOUR OF POB CONCENTRATION IN PPM (8/2000 RESULTS)

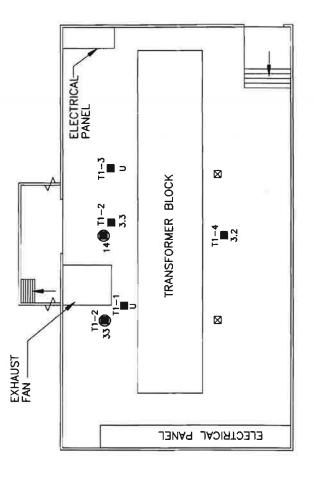
PLUGGED FLOOR DRAIN

STRUCTURAL COLUMN **6 2**

SO NS IL 4- NO OND SCALE AND IN NETERENCE


REPORTED APPROXIMATE STAIN LOCATION 5/94 (APPLIED TECHNOLOGY SCRINCES, INC. 1995)


CONCENTRATIONS IN PPIN NOTE


> DVIRKA AND BARTILUCCI CONSULTING ENGINEERS, NOV., 2000. MAP SOURCE:

FLOOR CORE SAMPLES—TRANSFORMER ROOM No. 2 STATE OF NEW YORK OFFICE OF MENTAL HEALTH BRONX PSYCHIATRIC CENTER PCB CONCENTRATIONS IN BOTTOM-INCH OF CONCRETE

			CLITON,	CLIFTON, NEW JERSEY			
OR. BY	ы	SCALE	AS SHOWN	SCALE AS SHOWN DWG. NO. 38395095-10 PROJ. NO. 38395095	-10 PR	Ž.	38395095
CK'D. BY	×		DATE	JULY 9, 2012	FIG. NO.	ē.	2–9

SCALE IN FEET (APPROXIMATE)

NEW YORK STATE OFFICE OF MENTAL HEALTH BRONX PSYCHIATRIC CENTER

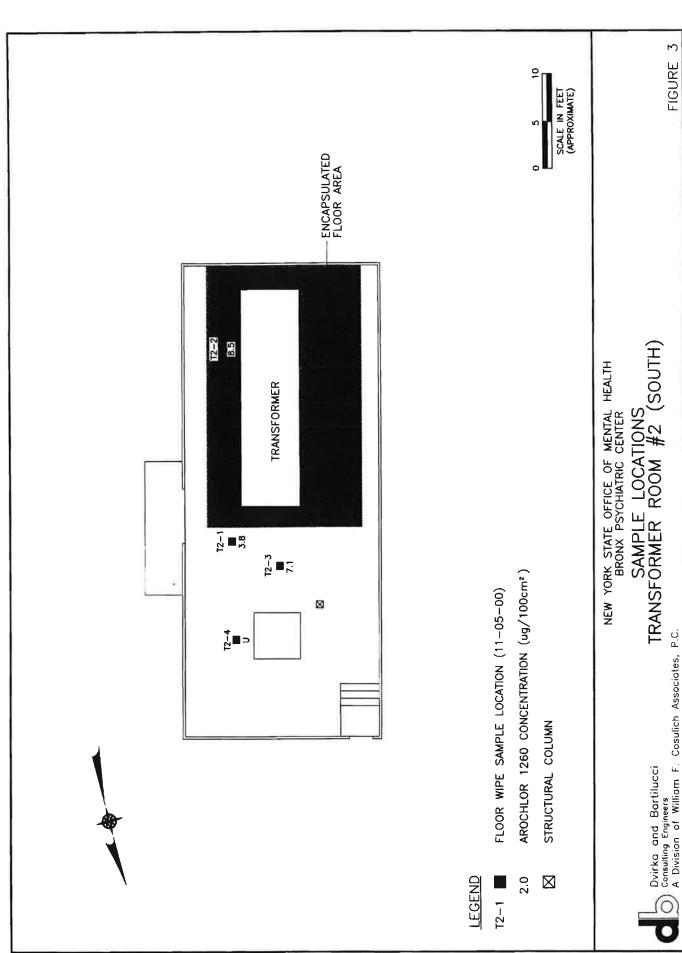
(NORTH) SAMPLE LOCATIONS TRANSFORMER ROOM #1 (

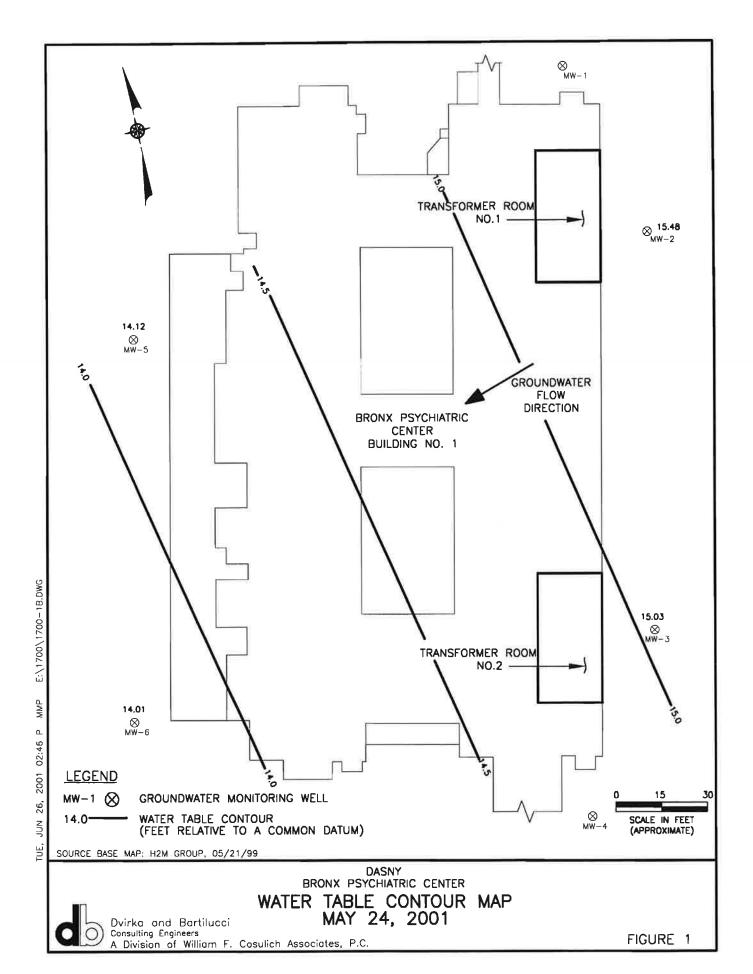
Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Cosulich Associates, P.C.

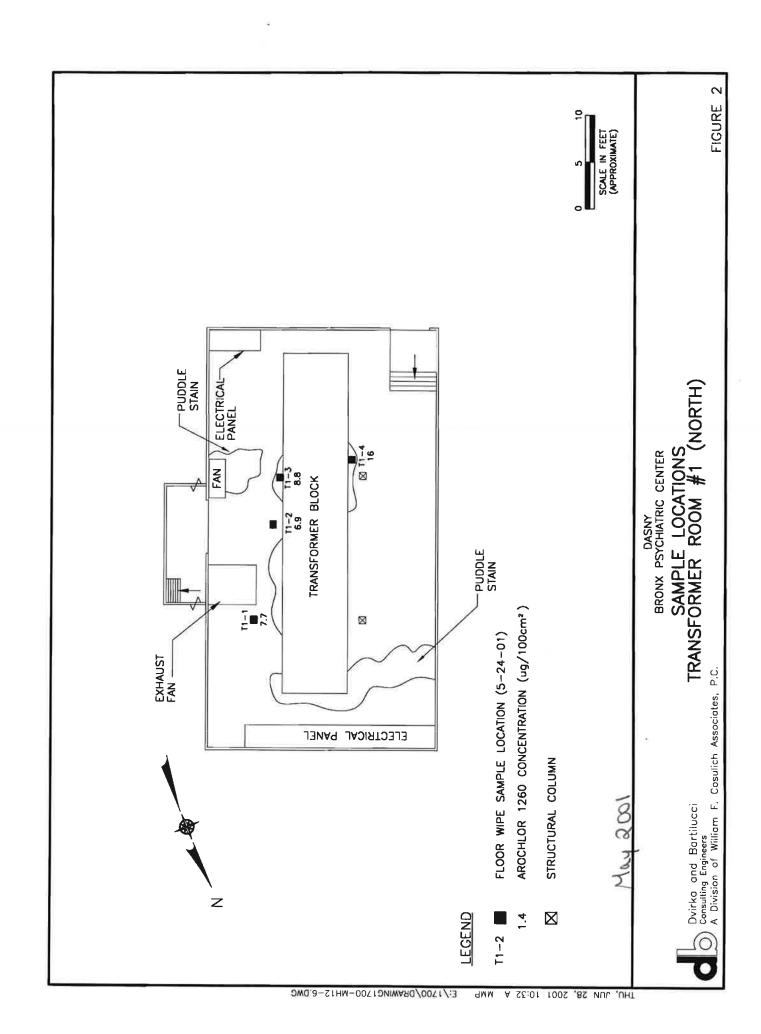
 \boxtimes

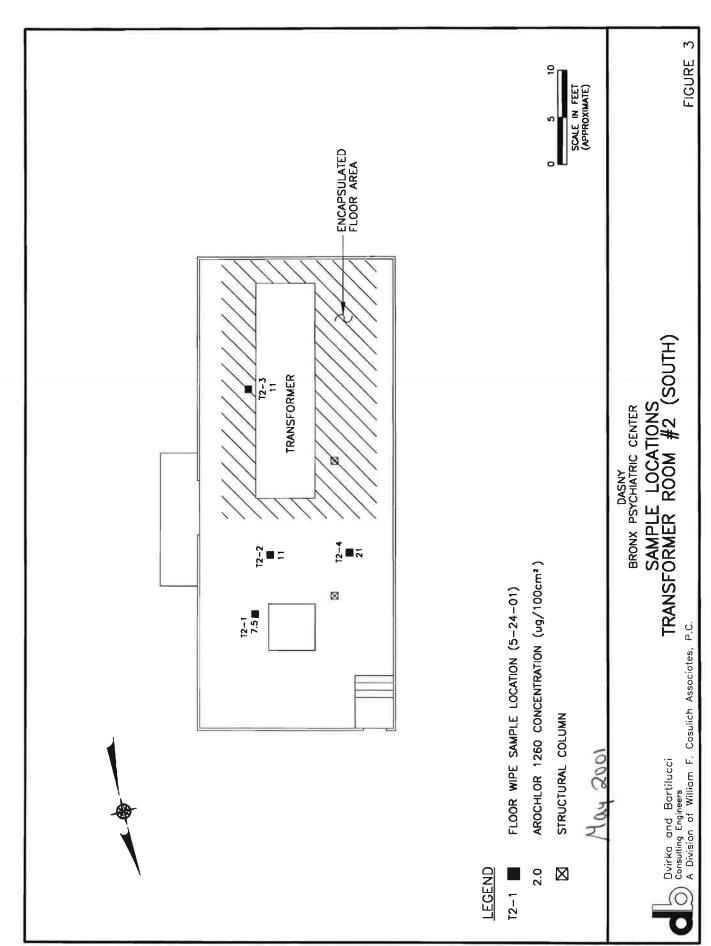
STRUCTURAL COLUMN

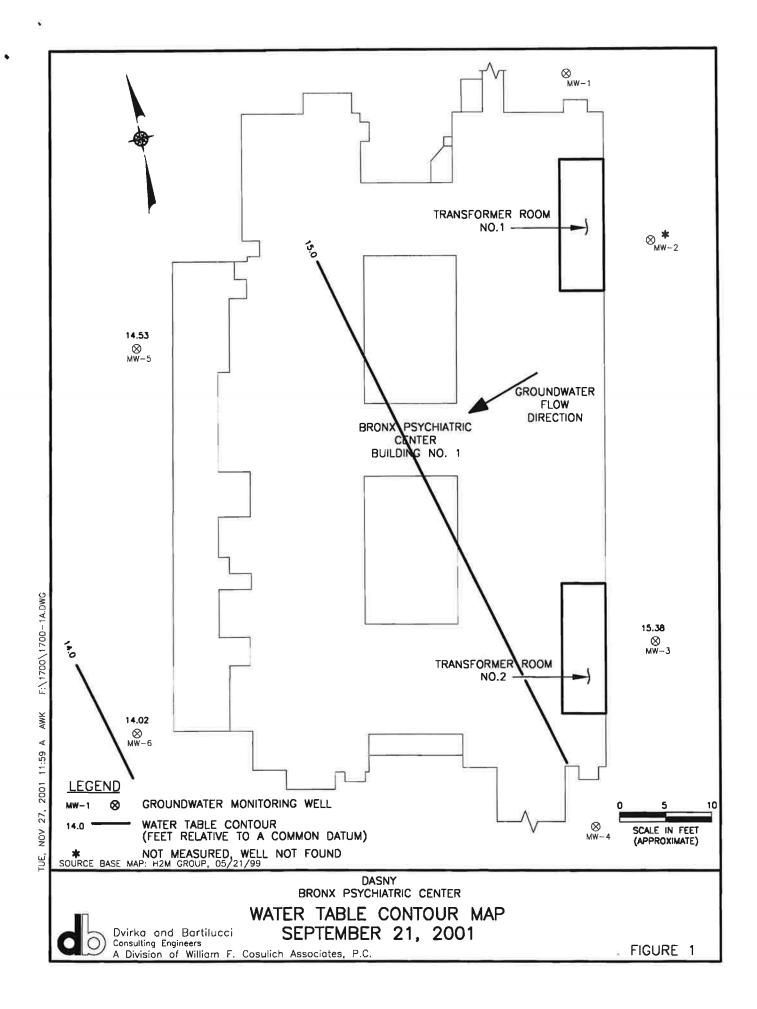
AROCHLOR 1260 CONCENTRATION (ug/100cm²)

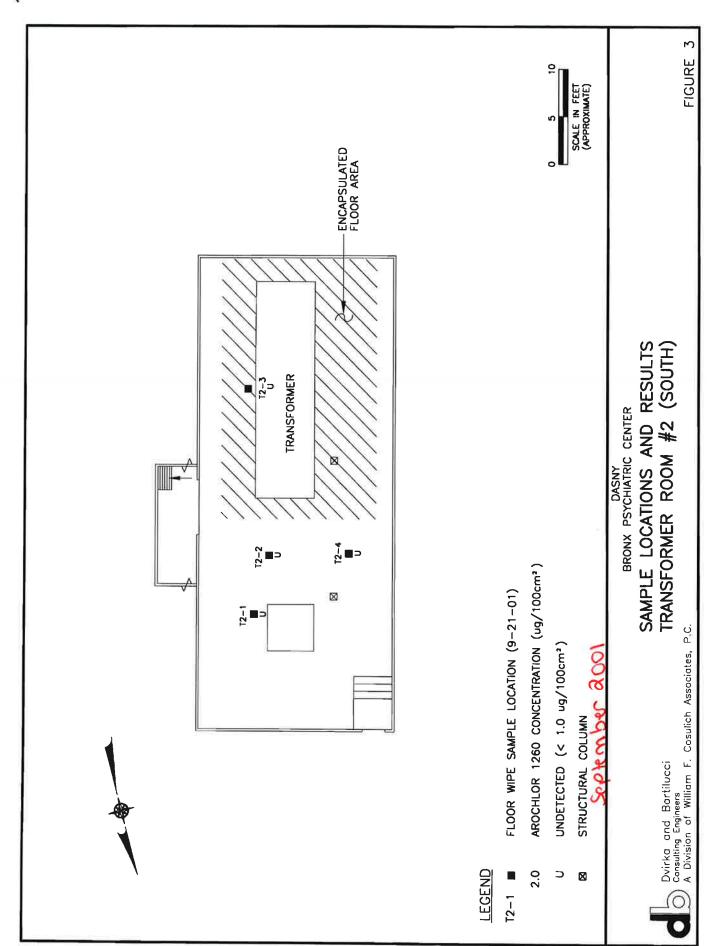

1.4

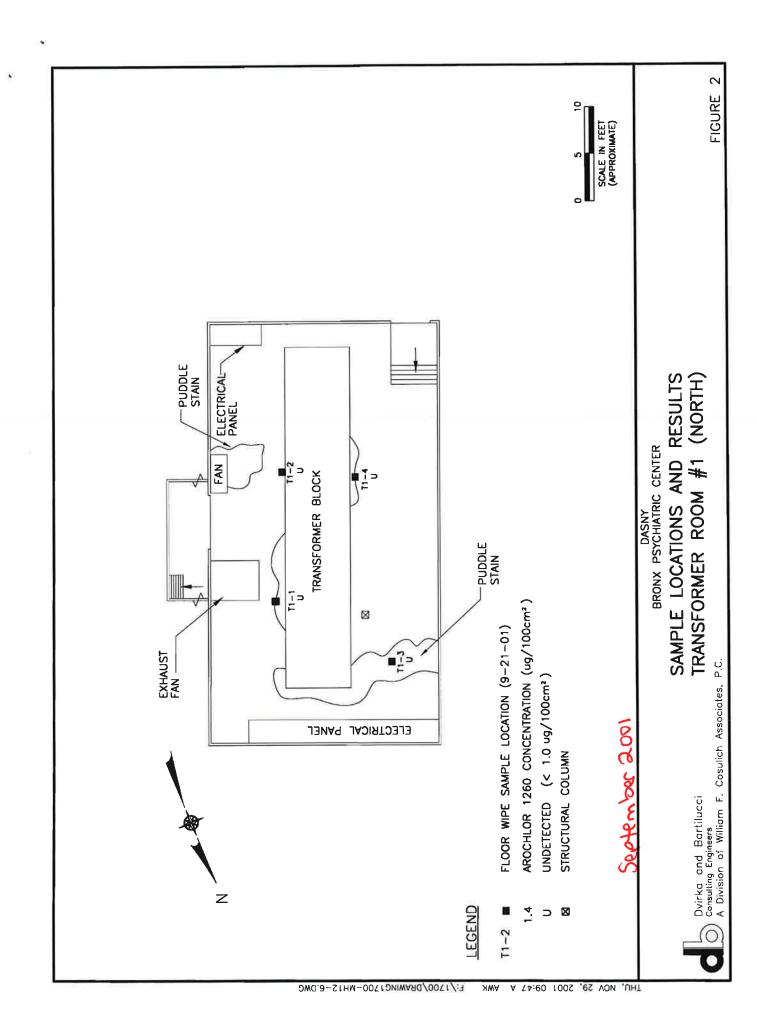

T1-2

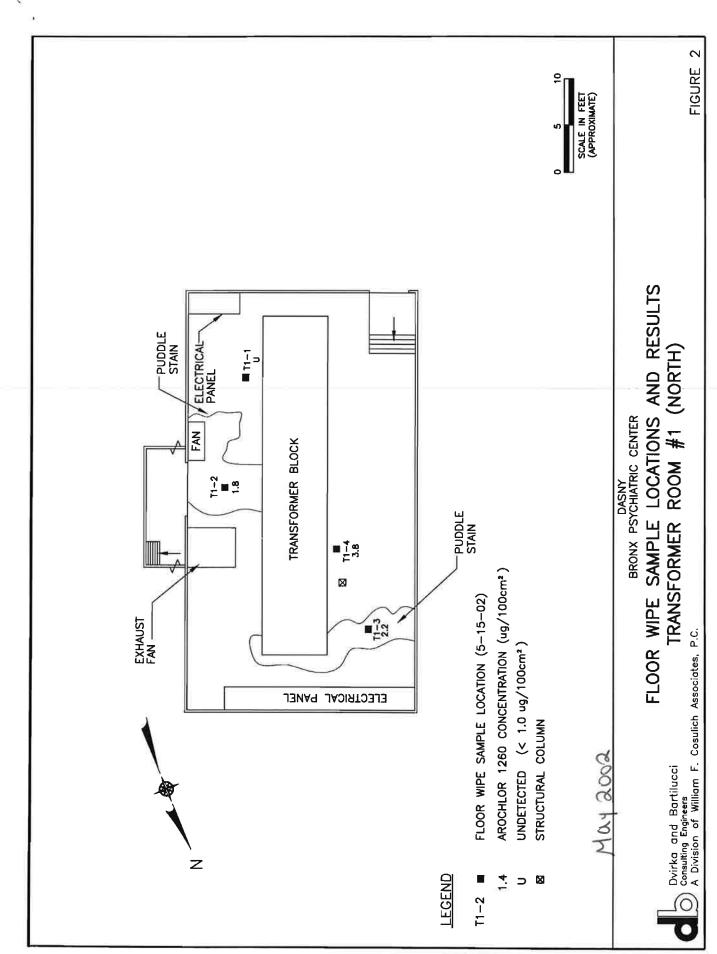

FLOOR WIPE SAMPLE LOCATION (11-5-00)

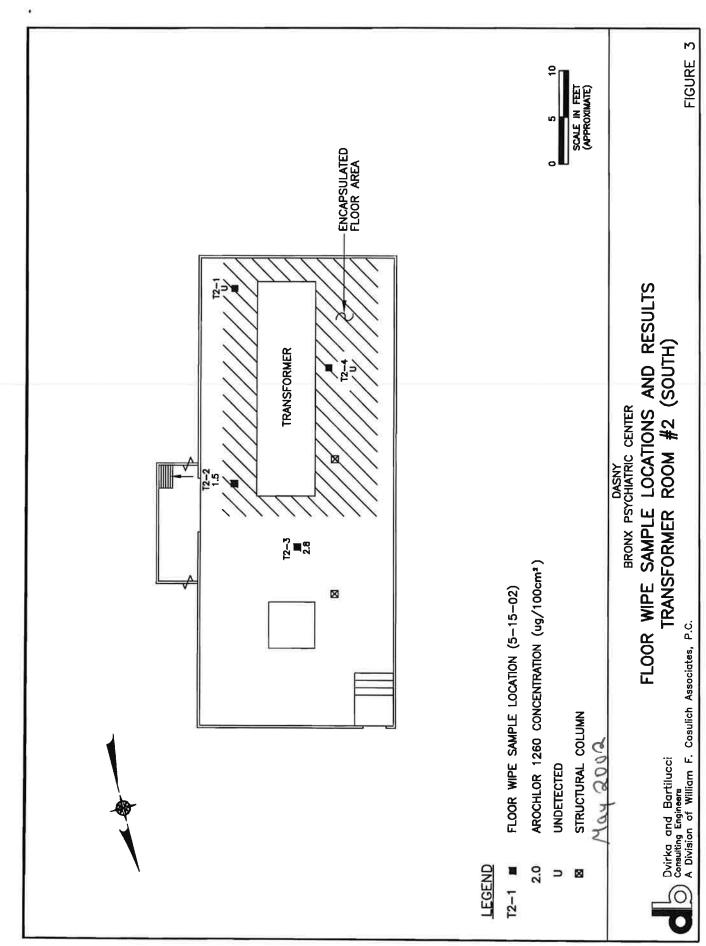

FLOOR WIPE SAMPLE LOCATION (05-10-00)


LEGEND









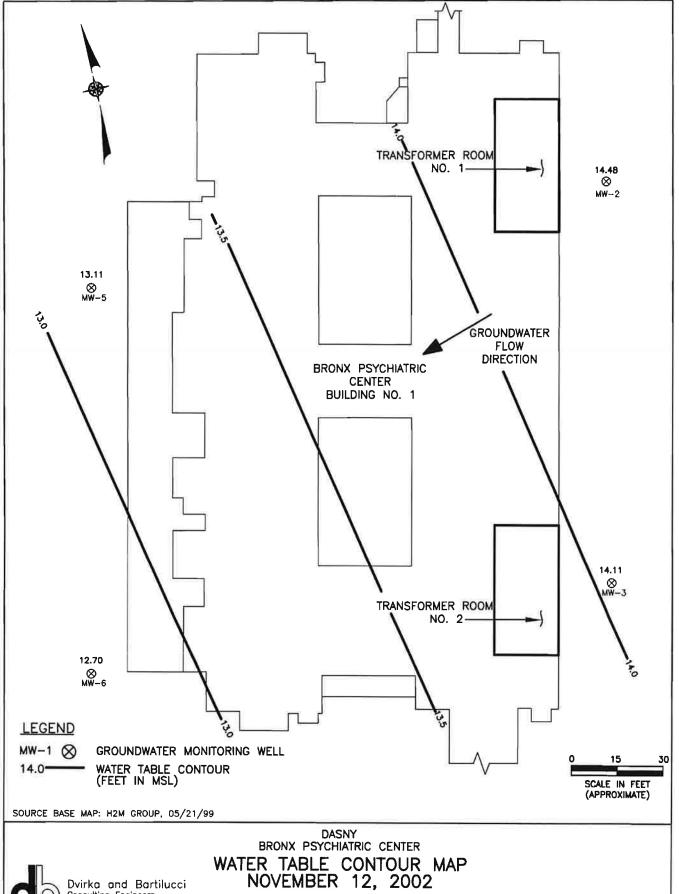
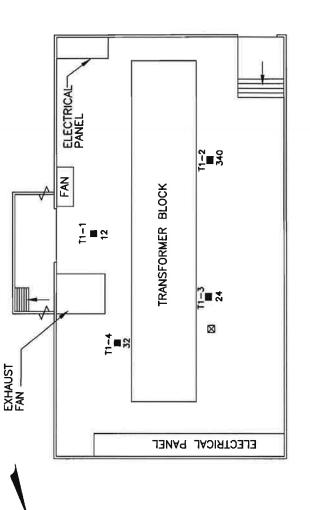
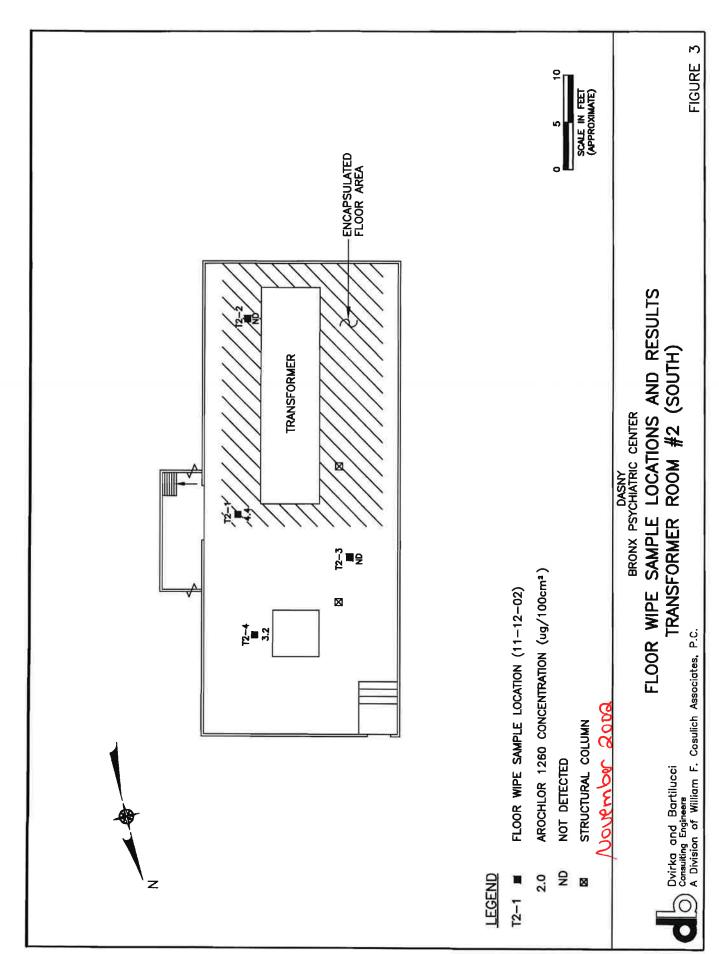
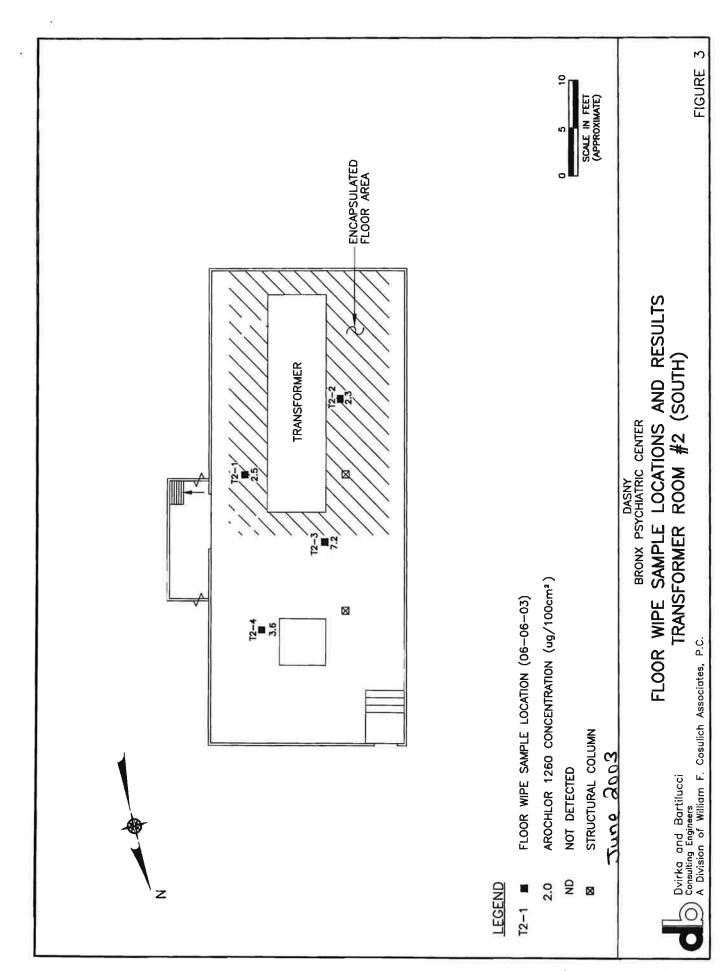



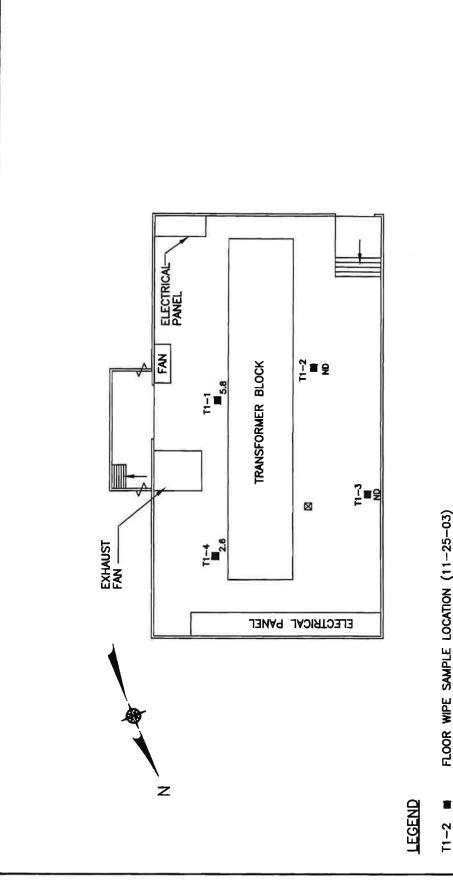
FIGURE 1

Z


EGEND

FLOOR WIPE SAMPLE LOCATION (11-12-02) T1−2 ■


AROCHLOR 1260 CONCENTRATION (ug/100cm²) 4.


NOT DETECTED

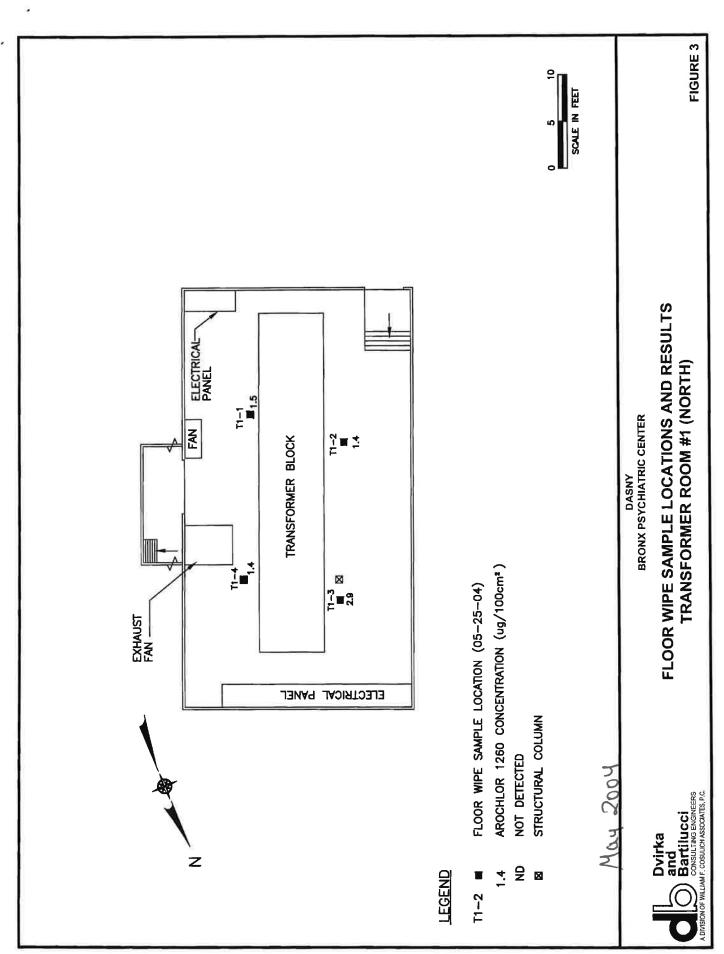
STRUCTURAL COLUMN

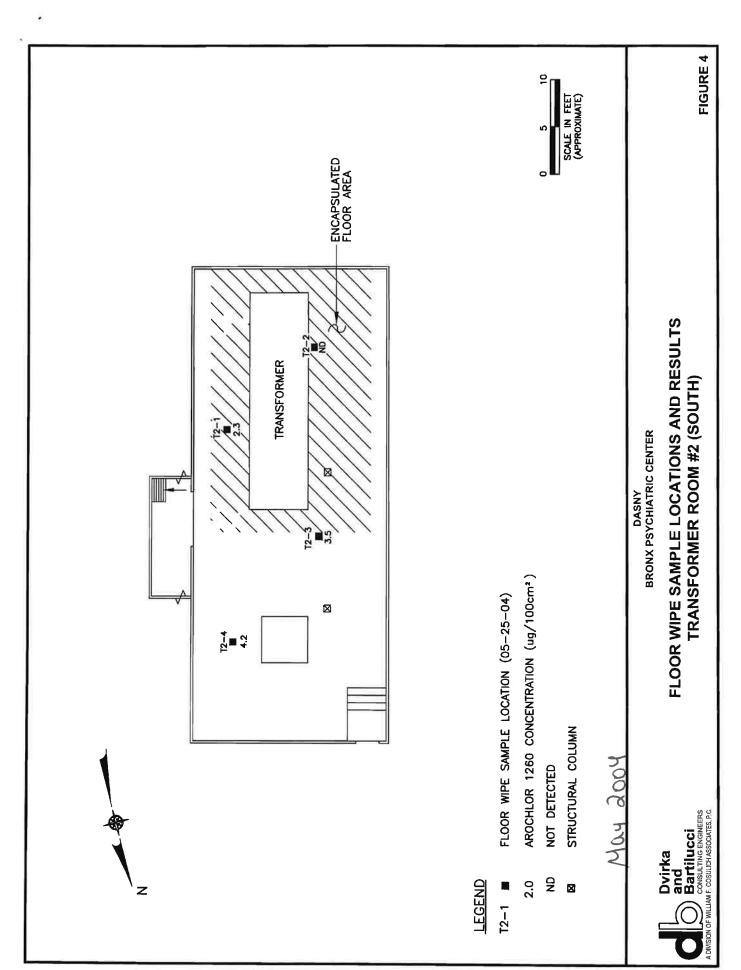
F:\1700\Drawing1700-MH12-6-1.dwg, 07/31/03 03:10:07 PM, JZegers

- AROCHLOR 1260 CONCENTRATION (ug/100cm²) 4:
 - NOT DETECTED 9 **8**
- STRUCTURAL COLUMN

PASNY
BRONX PSYCHIATRIC CENTER
FLOOR WIPE SAMPLE LOCATIONS AND RESULTS
TRANSFORMER ROOM #1 (NORTH)

Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Cosulich Associates, P.C.




SCALE IN FEET (APPROXIMATE)

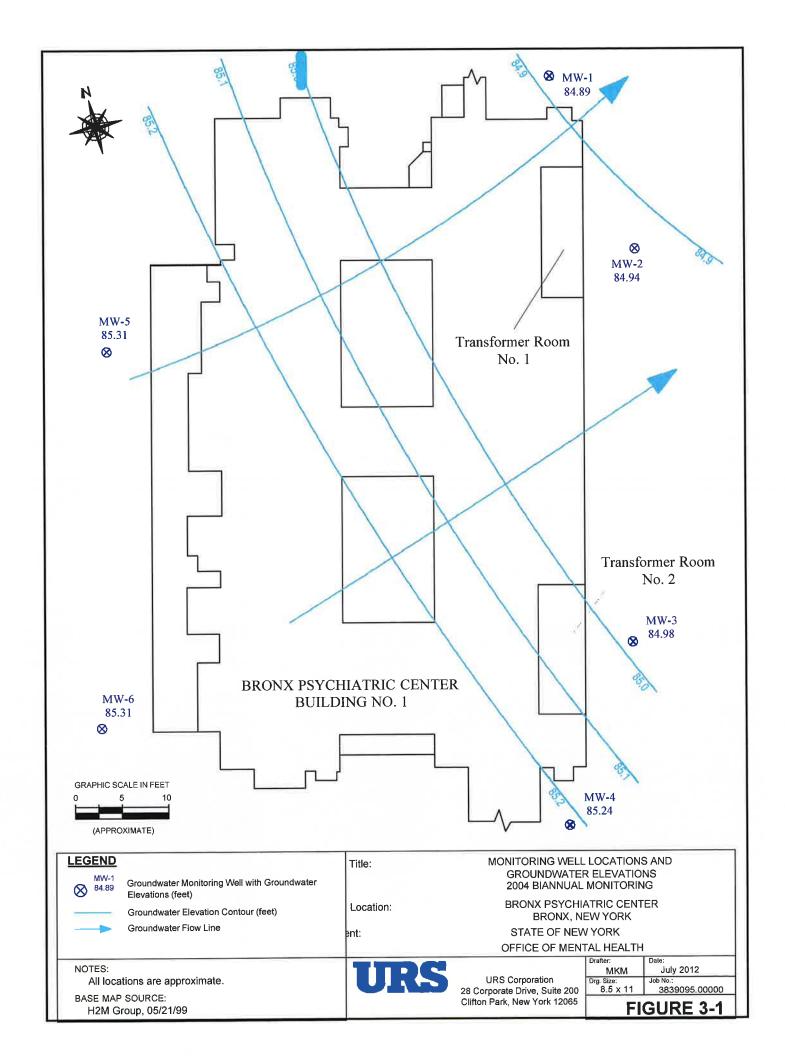
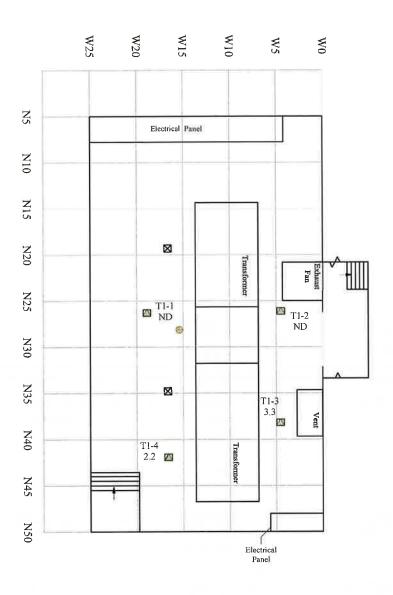
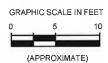

JUNE 22, 2004

FIGURE 1


Bartilucci CONSULTING ENGINEERS A DIVISION OF WILLIAM F COSULICH ASSOCIATES, P.C.



T1-4 2.2

Wipe Sample Location with Aroclor 1260 Concentration (µg/100cm²)

(1)

Former Drain Structural Column

₩ 52 02 25

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS 2004 BIANNUAL SAMPLING

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

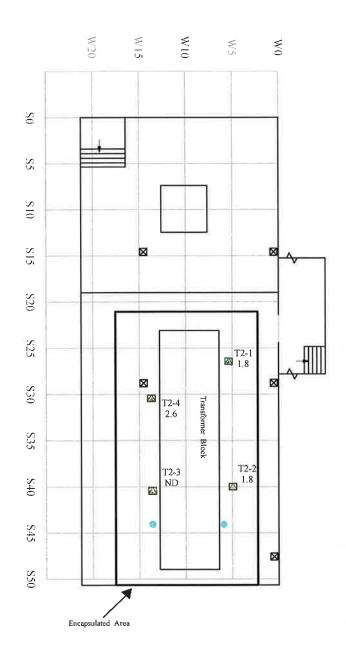
Client:

DORMITORY AUTHORITY OF THE STATE OF NEW YORK

NOTES:

ND: Not Detected All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
MKM	July 2012
Drg. Size:	Job No ::
8.5 x 11	38395095.00000

GRAPHIC SCALE IN FEET
0 5 10
(APPROXIMATE)

1.8

Wipe Sample Location with Aroclor 1260 Concentration (µg/100 cm²)

Plugged Floor Drain Structural Column

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS 2004 BIANNUAL MONITORING

Location:

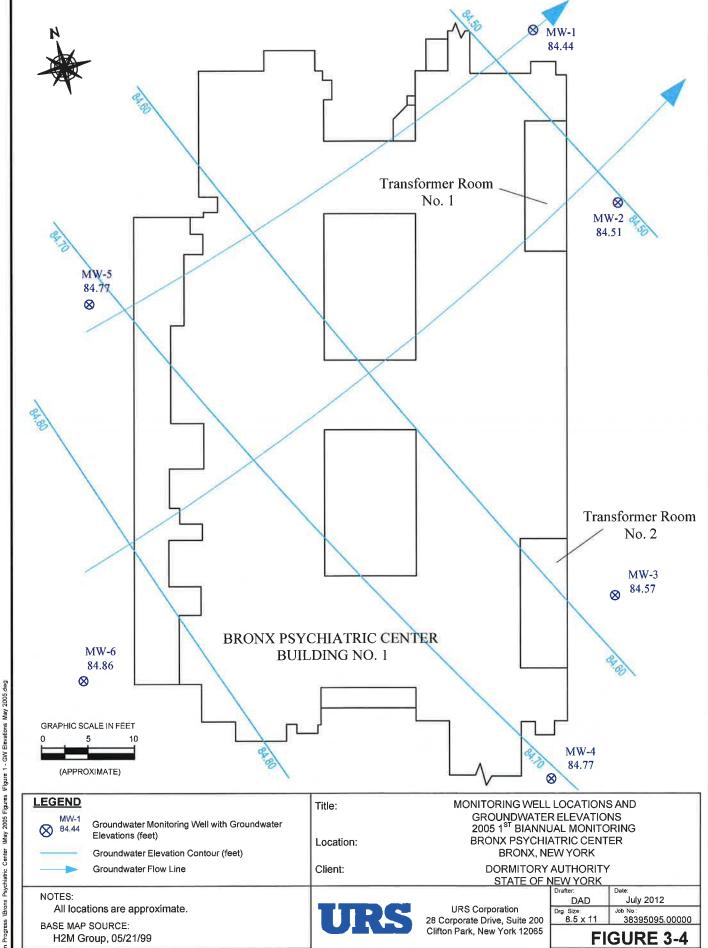
BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client:

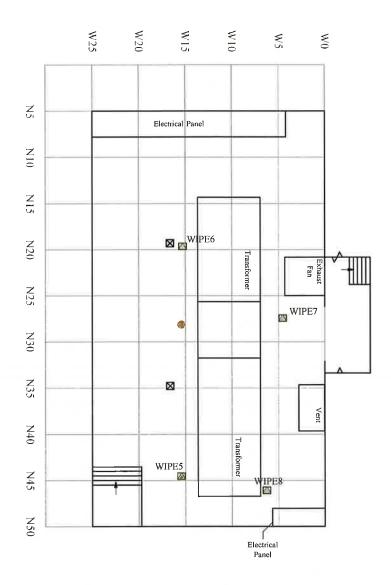
DORMITORY AUTHORITY OF THE STATE OF NEW YORK

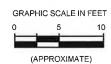
NOTES:

ND: Not Detected All locations are approximate.


BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00


URS


URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
MKM	January 2005
Drg Size:	Job No :
8.5 x 11	38395095.00000

T1-4

Wipe Sample Location with Aroclor 1260 Concentration (µg/100cm²)

Former Drain Structural Column

W0 -___

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS 2005 1st BIANNUAL MONITORING

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

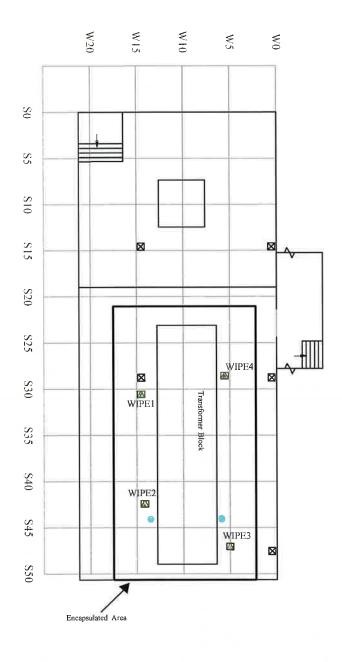
Client:

DORMITORY AUTHORITY OF THE STATE OF NEW YORK

NOTES:

ND: Not Detected All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
DAD	July 2012
Drg Size:	Job No :
8.5 x 11	38395095.00000

GRAPHIC SCALE IN FEET
0 5 10
(APPROXIMATE)

WIPE

Wipe Sample Location

 \boxtimes

Plugged Floor Drain

Structural Column

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS 2005 1st BIANNUAL MONITORING

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client:

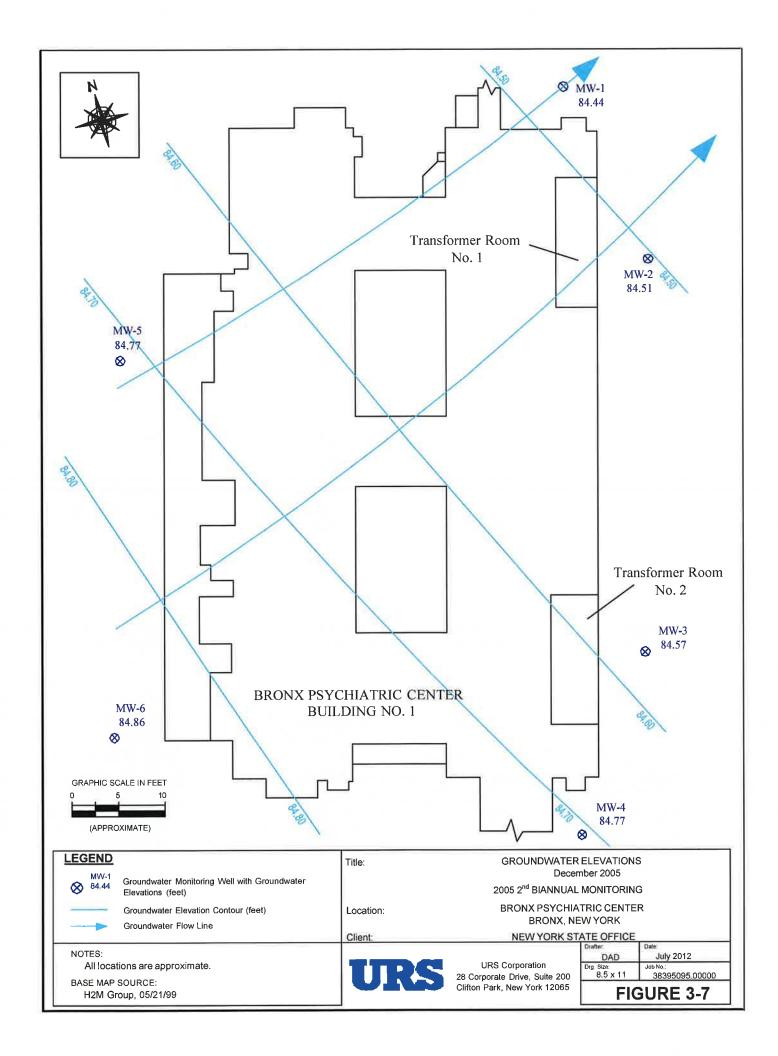
DORMITORY AUTHORITY OF THE STATE OF NEW YORK

NOTES:

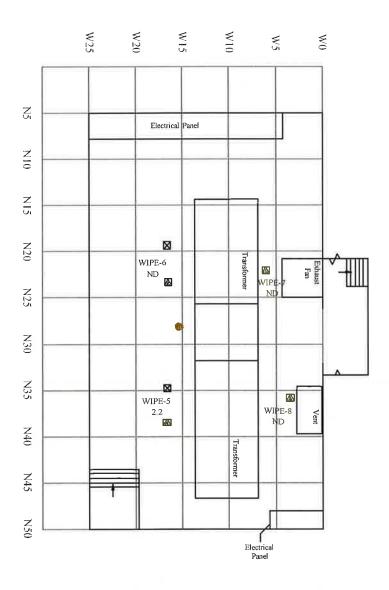
ND: Not Detected All locations are approximate,

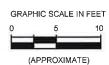
BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00

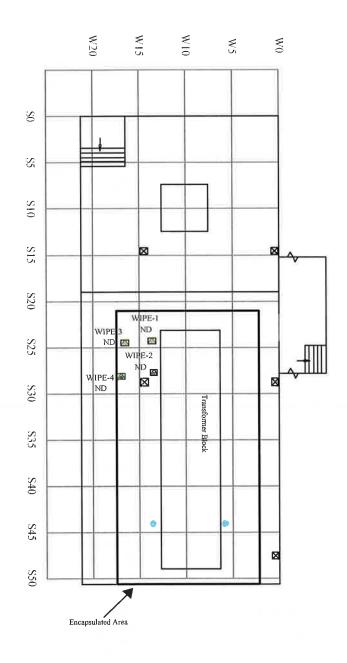


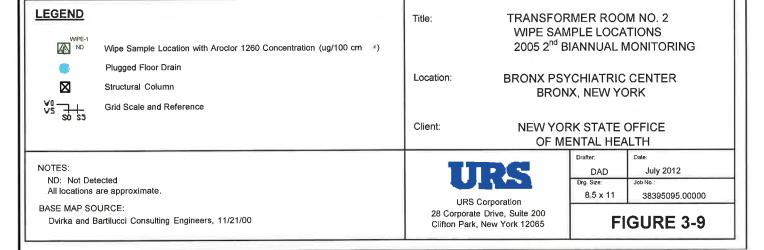
URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065


Drafter:	Date:
DAD	July 2012
Drg Size:	Job No:
8.5 x 11	38395095.00000

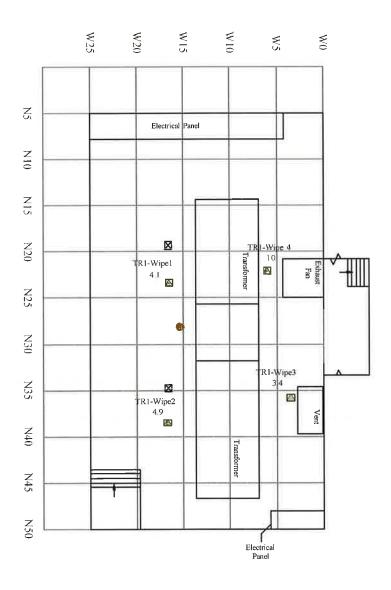

FIGURE 3-6

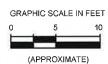
P Un Progress (Bronx Psychiatric Center May 2005 Figures (Figure 3 - Wipe Sample Locator





LEGEND TRANSFORMER ROOM NO. 1 Title: WIPE SAMPLE LOCATIONS WIPE-5 2005 2nd BIANNUAL MONITORING Wipe Sample Location with Aroclor 1260 Concentration ($\mu g/100 cm$) 2 Former Drain Location: **BRONX PSYCHIATRIC CENTER** X Structural Column BRONX, NEW YORK Grid Scale and Reference Client: NEW YORK STATE OFFICE OF MENTAL HEALTH Drafter. NOTES: DAD July 2012 ND: Not Detected Drg Size: All locations are approximate. 8,5 x 11 38395095.00000 **URS** Corporation BASE MAP SOURCE: 28 Corporate Drive, Suite 200 Dvirka and Bartilucci Consulting Engineers, 11/21/00 FIGURE 3-8 Clifton Park, New York 12065





GRAPHIC SCALE IN FEET
0 5 10
(APPROXIMATE)

LEGEND TR1-Wipe A 4.1 Wipe Sample Location with Aroclor 1260 Concentration (μg/100cm ²) 4 Former Drain \times Structural Column Grid Scale and Reference

TRANSFORMER ROOM NO. 1 Title: WIPE SAMPLE LOCATIONS

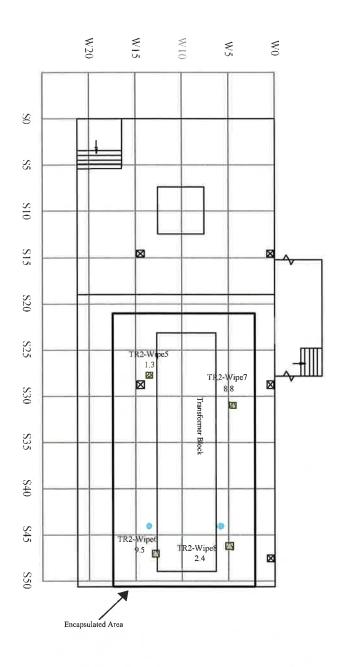
2006 1st BIANNUAL MONITORING

Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

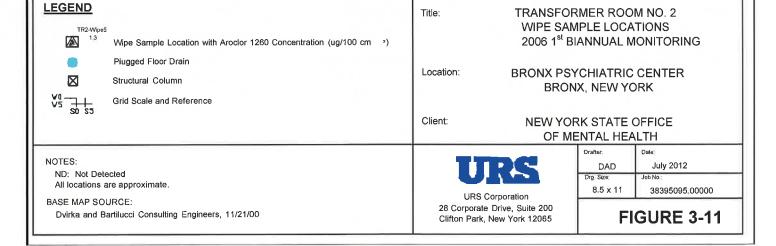
NEW YORK STATE OFFICE Client: OF MENTAL HEALTH

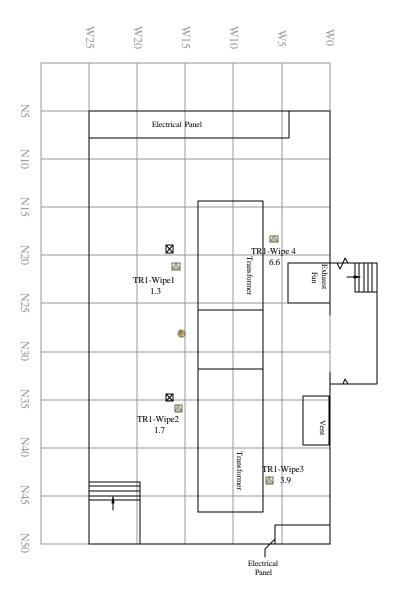
NOTES:

ND: Not Detected All locations are approximate.


BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00


URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065


Drafter:	Date:
DAD	July 2012
Drg Size:	Job Na :
8.5 x 11	38395095.00000



GRAPHIC SCALE IN FEET
0 5 10
(APPROXIMATE)

TR1-Wipe 1

Wipe Sample Location with Aroclor 1260 Concentration (µg/100cm ²)

(1)

Former Drain Structural Column

WI —

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS

Location:

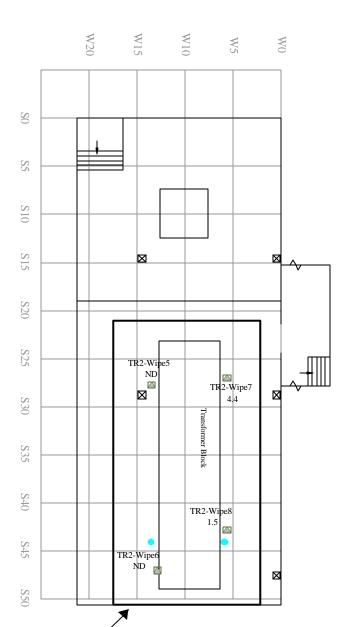
BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

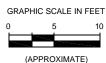
Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

ND: Not Detected All locations are approximate.


BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
DAD	January 2007
Drg. Size:	Job No.:
8.5 x 11	11174956.00010

TR2-Wipe8

Wipe Sample Location with Aroclor 1260 Concentration (ug/100 cm ²)

Plugged Floor Drain Structural Column

V0 V5 S0 S5

Grid Scale and Reference

Title:

Encapsulated Area

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

ND: Not Detected All locations are approximate.

BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS Corporation
28 Corporate Drive, Suite 200
Clifton Park, New York 12065

Drafter:	Date:
DAD	January 2007
Drg. Size:	Job No.:
8.5 x 11	11174956.00010

TR1-Wipe 1

Wipe Sample Location with Aroclor 1260 Concentration (µg/100cm ²)

0

Former Drain Structural Column

 \times

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS

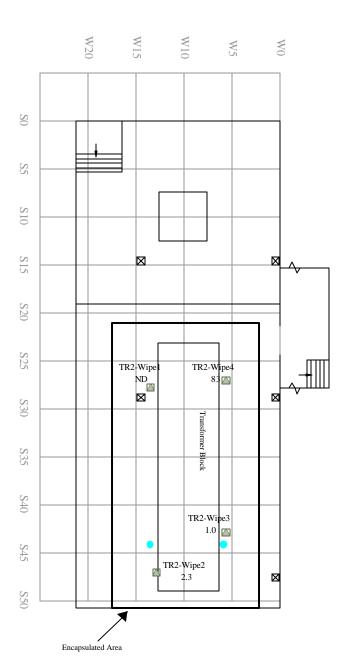
Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:


ND: Not Detected All locations are approximate.

BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
DAD	December 2007
Drg. Size:	Job No.:
8.5 x 11	11175426.00010

Wipe Sample Location with Aroclor 1260 Concentration (ug/100 cm ²)

Plugged Floor Drain

Structural Column

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS

Location:

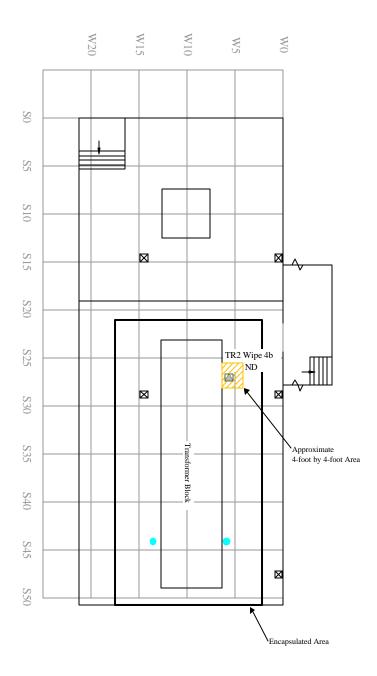
BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

ND: Not Detected All locations are approximate.


BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
DAD	December 2007
Drg. Size:	Job No.:
8.5 x 11	11175426.00010
	•

Title:

Location:

Client:

GRAPHIC SCALE IN FEET
0 5 10
(APPROXIMATE)

LEGEND

TR2 Wipe

Wipe Sample Location with Total PCB Concentration (ug/100 cm $\,^{2}$)

Plugged Floor Drain Structural Column

Grid Scale and Reference

Cleaned / Epoxied Area

TIDS

URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
DAD	February 2008
Drg. Size:	Job No.:
8.5 x 11	11175426.00010

TRANSFORMER ROOM NO. 2

CONFIRMATION WIPE SAMPLE LOCATION

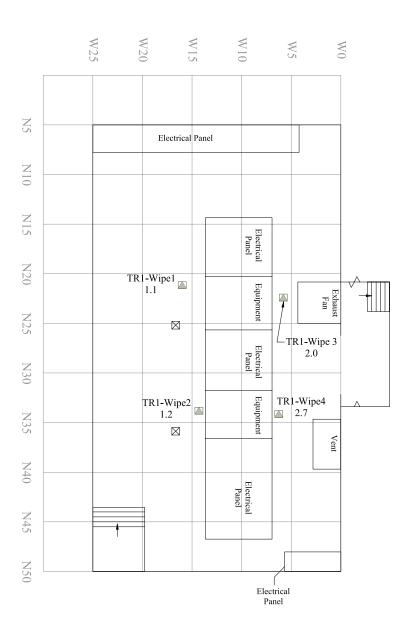
AND CLEANED / EPOXIED AREA

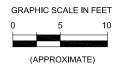
BRONX PSYCHIATRIC CENTER

BRONX, NEW YORK

NEW YORK STATE OFFICE OF MENTAL HEALTH

FIGURE 1


NOTES:


ND: Not Detected All locations are approximate.

BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00

TR1-Wipe 1

Mipe Sample Location with Aroclor 1260 Concentration (μg/100cm²)

Structural Column

Grid Scale and Reference

Title: TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS

Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

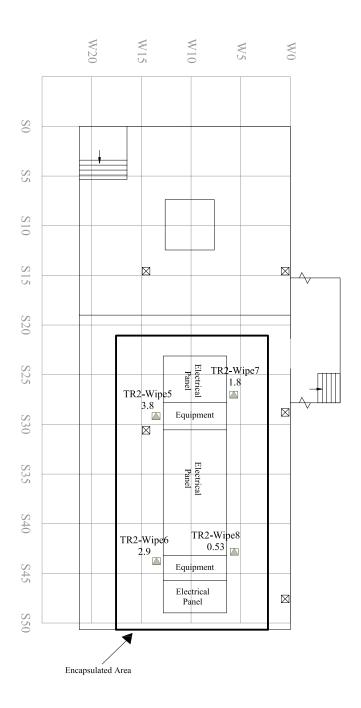
Client: NEW YORK STATE OFFICE OF MENTAL HEALTH

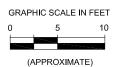
NOTES:

LEGEND

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00



URS Corporation 28 Corporate Drlve, Sulte 200 Clifton Park, New York 12065

Drafter:	Date:
ARZ	November 2008
Drg. Size:	Job No.:
8.5 x 11	38394639,00010

TR2-Wipe5

Wipe Sample Location with Aroclor 1260 Concentration (ug/100 cm²)

 \boxtimes

Structural Column

Grid Scale and Reference

TRANSFORMER ROOM NO. 2

WIPE SAMPLE LOCATIONS

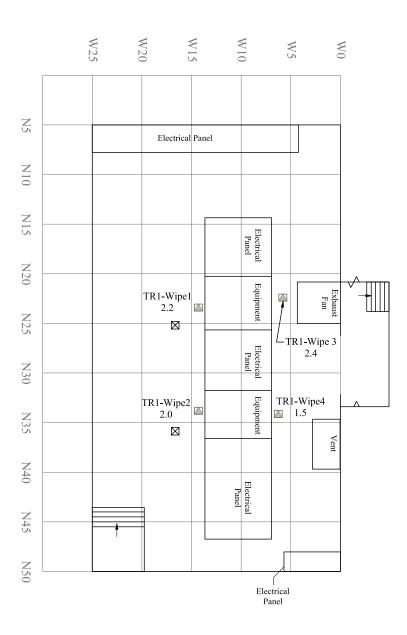
Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

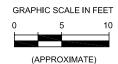
Client: NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00


URS

URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
ARZ	November 2008
Drg. Size:	Job No.:
8.5 x 11	38394639.00010
	ARZ Drg. Size:

TR1-Wipe 1

√0 Grld Scale and Reference

Title: TRANSFORMER ROOM NO. 1
WIPE SAMPLE LOCATIONS

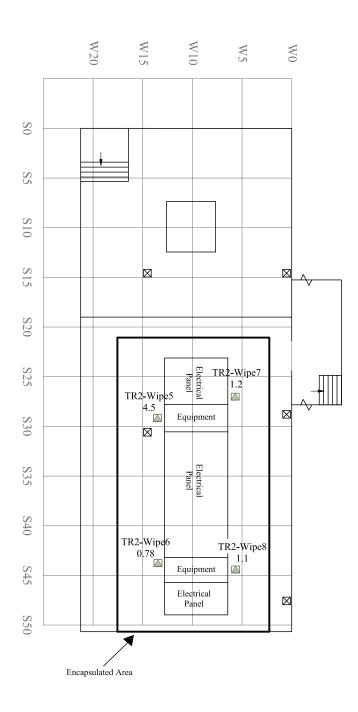
Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

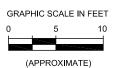
Client: NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00


URS

URS Corporation 28 Corporate DrIve, Sulte 200 Clifton Park, New York 12065

Drafter:	Date:	
ARZ	November 2009	
Drg. Slze:	Job No.:	
8.5 x 11	38394691,00010	

TR2-Wipe5

Wipe Sample Location with Aroclor 1260 Concentration (ug/100 cm²)

 \boxtimes

Structural Column

Grid Scale and Reference

Title: TRANSFORM

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS

Location

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

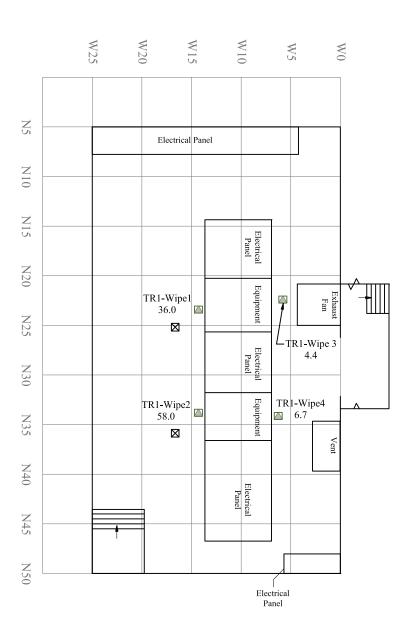
Client:

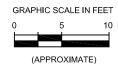
NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00



URS Corporation 28 Corporate Drive, Suite 200 Clifton Park, New York 12065

Drafter:	Date:
ARZ	November 2009
Drg. Size:	Job No.:
8.5 x 11	38394691.00010
	ARZ Drg. Size:

36.0

Wipe Sample Location with Aroclor 1260 Concentration (µg/100cm²)

 \boxtimes

Structural Column Grld Scale and Reference

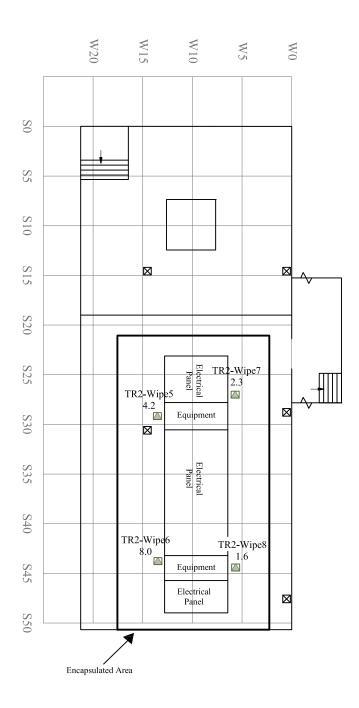
TRANSFORMER ROOM NO. 1 Title:

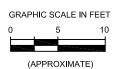
WIPE SAMPLE LOCATIONS

Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client: **NEW YORK STATE OFFICE** OF MENTAL HEALTH

All locations are approximate.


BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS Corporation 3 Corporate Drlve, Sulte 203 Clifton Park, New York 12065

Drafter:	Date:
ARZ	November 2010
Drg. Size:	Job No.:
8.5 x 11	38394726,00010

TR2-Wipe5

4.2

Wipe Sample Location with Aroclor 1260 Concentration (ug/100 cm²)

 \boxtimes

Structural Column

W5 7 + S5 S5

Grid Scale and Reference

Title: TRANSFORMER ROOM NO. 2
WIPE SAMPLE LOCATIONS

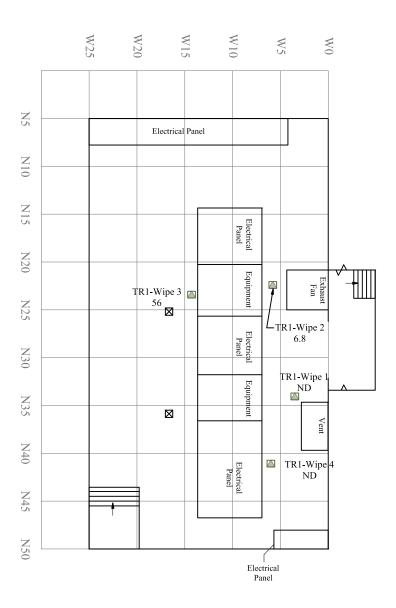
Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

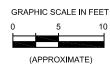
Client: NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00


URS

URS Corporation 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter:	Date:
ARZ	November 2010
Drg. Size:	Job No.:
8.5 x 11	38394726.00010

TR1-Wipe 1

Wipe Sample Location with Aroclor 1260 Concentration ($\mu g/100 cm^2$) \boxtimes

Structural Column

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

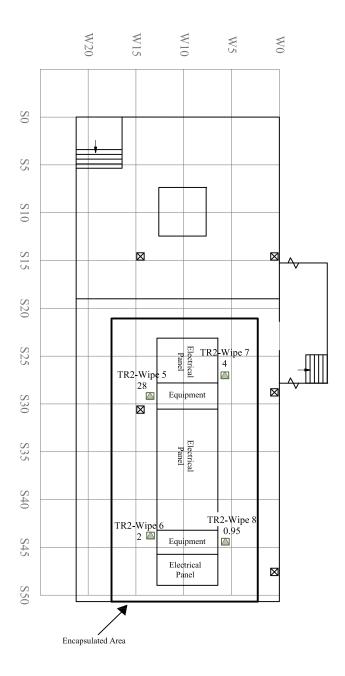
Client:

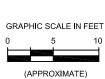
NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00



URS Corporation 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter:	Date:
ARZ	December 2011
Drg. Size:	Job No.:
8.5 x 11	38394932.00010

TR2-Wipe5

4.2

Wipe Sample Location with Aroclor 1260 Concentration (ug/100 cm 2)

 \boxtimes

Grid Scale and Reference

Structural Column

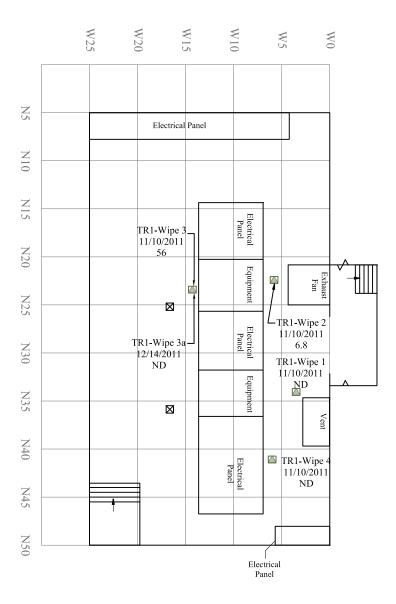
Title: TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS

Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client: NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.


BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS Corporation 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter:	Date:
ARZ	December 2011
Drg. Size:	Job No.:
8.5 x 11	38394932.00010

TR1-Wipe

Mipe Sample Location with date and Aroclor 1260 Concentration

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentration.

Mipe Sample Location with date and Aroclor 1260 Concentra

(µg/100cm²)

Structural Column

\[
\frac{\sqrt{0}}{\sqrt{5}} \rightarrow \frac{1}{\sqrt{0}} \frac{1}{\sqrt{5}} \quad \text{Grid Scale and Reference}
\]

ND Not Detected

Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS

Location: BRONX PSY

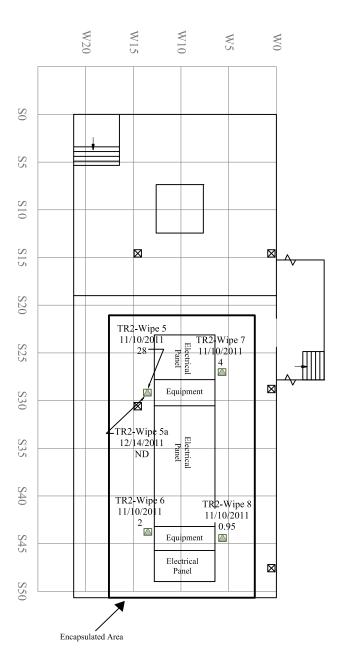
BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.


BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS Corporation 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter:	Date:
CLS	December 2011
Drg. Size:	Job No.:
8.5 x 11	38395037.00010

TR2-Wipe5

Wipe Sample Location with date and Aroclor 1260 Concentration

(ug/100 cm²)

W5 + + S0 S5

Grid Scale and Reference

ND Not Detected

Title:

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

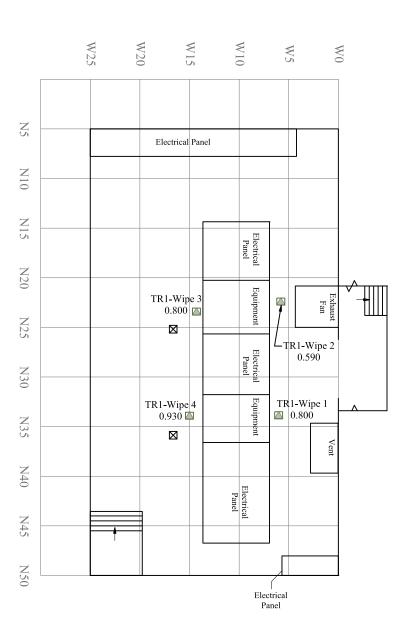
Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS Corporation 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter:	Date:	
CLS	December 2011	
Drg. Size:	Job No.:	
8.5 x 11	38395037.00010	

TR1-Wipe

Δ ^{36.0} Wipe Sample Location with Aroclor 1260 Concentration (μg/100cm²)

W0 W5 → Grld Scale and Reference Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS

DECEMBER 2012

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

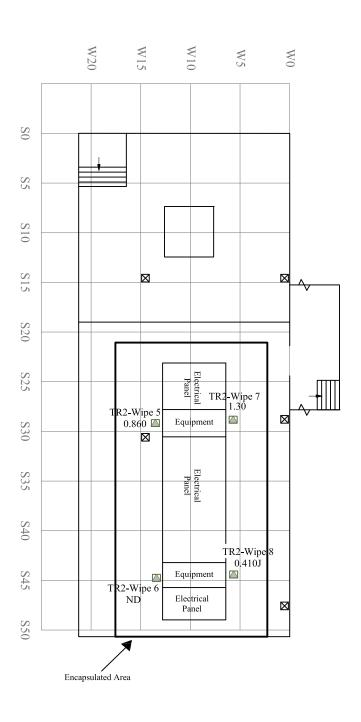
Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS Corporation 3 Corporate Drlve, Sulte 203 Clifton Park, New York 12065

Drafter:	Date:
CLS	January 2013
Drg. Size:	Job No.:
8.5 x 11	38395143,00010

TR2-Wipe5

50 55

Wipe Sample Location with Aroclor 1260 Concentration (ug/100 cm²)

Structural Column

Grid Scale and Reference

ND Not Detected

Indicates an Estimated Concentration

Title: TRANSFORMER ROOM NO. 2

WIPE SAMPLE LOCATIONS DECEMBER 2012

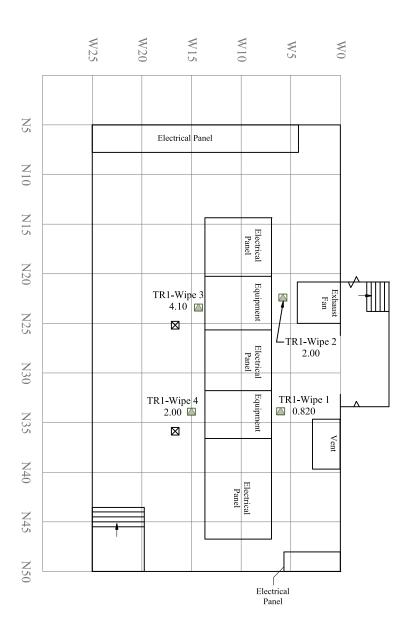
Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

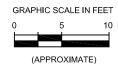
Client: NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00


URS

URS Corporation 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter:	Date:
CLS	January 2013
Drg. Size:	Job No.:
8.5 x 11	38395143.00010

TR1-Wipe 1

 $\square^{0.820}$ Wipe Sample Location with Aroclor 1260 Concentration (µg/100cm²)

Grld Scale and Reference

Title: TRANSFORMER ROOM NO. 1

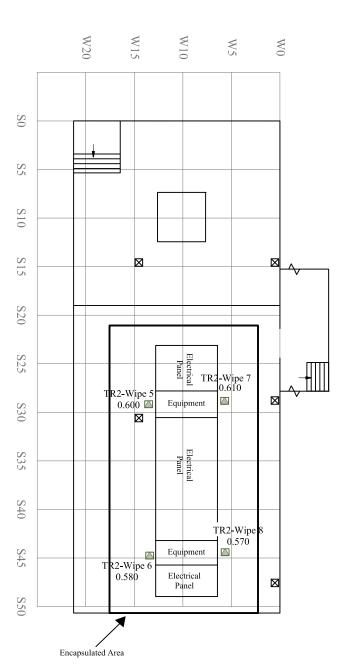
WIPE SAMPLE LOCATIONS DECEMBER 2013

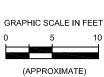
Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client: NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES

All locations are approximate.


BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS Corporation 3 Corporate Drlve, Sulte 203 Clifton Park, New York 12065

Drafter:	Date:
CLS	January 2014
Drg. Size:	Job No.:
8.5 x 11	38395286,00010

TR2-Wlpe5 0,600

Wipe Sample Location with Aroclor 1260 Concentration (µg/100 cm ²)

 \boxtimes

Structural Column

W5 7 5

Grid Scale and Reference

Title:

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS DECEMBER 2013

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

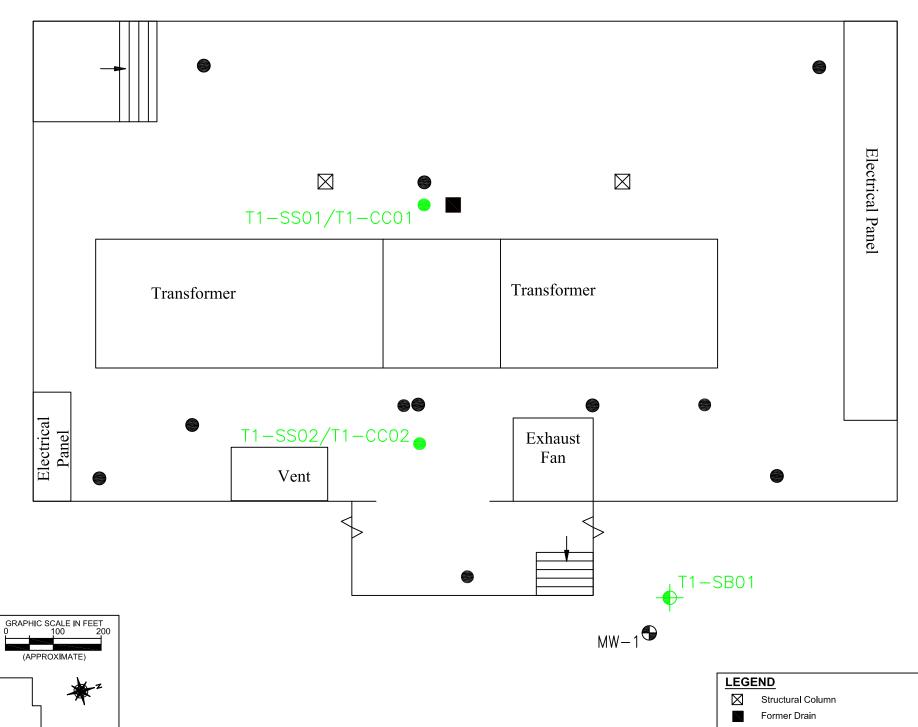
Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS Corporation 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

-		
	Drafter:	Date:
	CLS	January 2014
	Drg. Slze:	Job No.:
	8.5 x 11	38395286.00010

GRAPHIC SCALE IN FEET

(APPROXIMATE)

LOCATION MAP

Transformer

Room No. 2

BRONX PSYCHIATRIC CENTER

BUILDING NO. 1

Transformer

Room No. 1

Historical Soil Sample Location (2000)

Soil Boring Location (2013)

Soil Sample Location (2013) Existing Monitoring Well

NOTES:

All locations are approximate. Concentrations are in ppm.

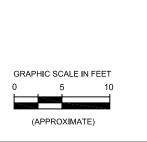
BASE MAP SOURCE: H2M Group, 05/21/99 Title:

SAMPLE LOCATIONS TRANSFORMER ROOM NO. 1

Location

BRONX PSYCHIATRIC CENTER 1500 WATERS PLACE NEW YORK, NEW YORK


NEW YORK STATE OFFICE OF MENTAL HEALTH



Drafter: MAW Drg. Size: Job No.: 38395252.00000 11 x 17

Structural Column

Former Drain
Historical Soil Sample Location (2000)
Soil Boring Location (2013)
Soil Sample Location (2013)
Existing Monitoring Well

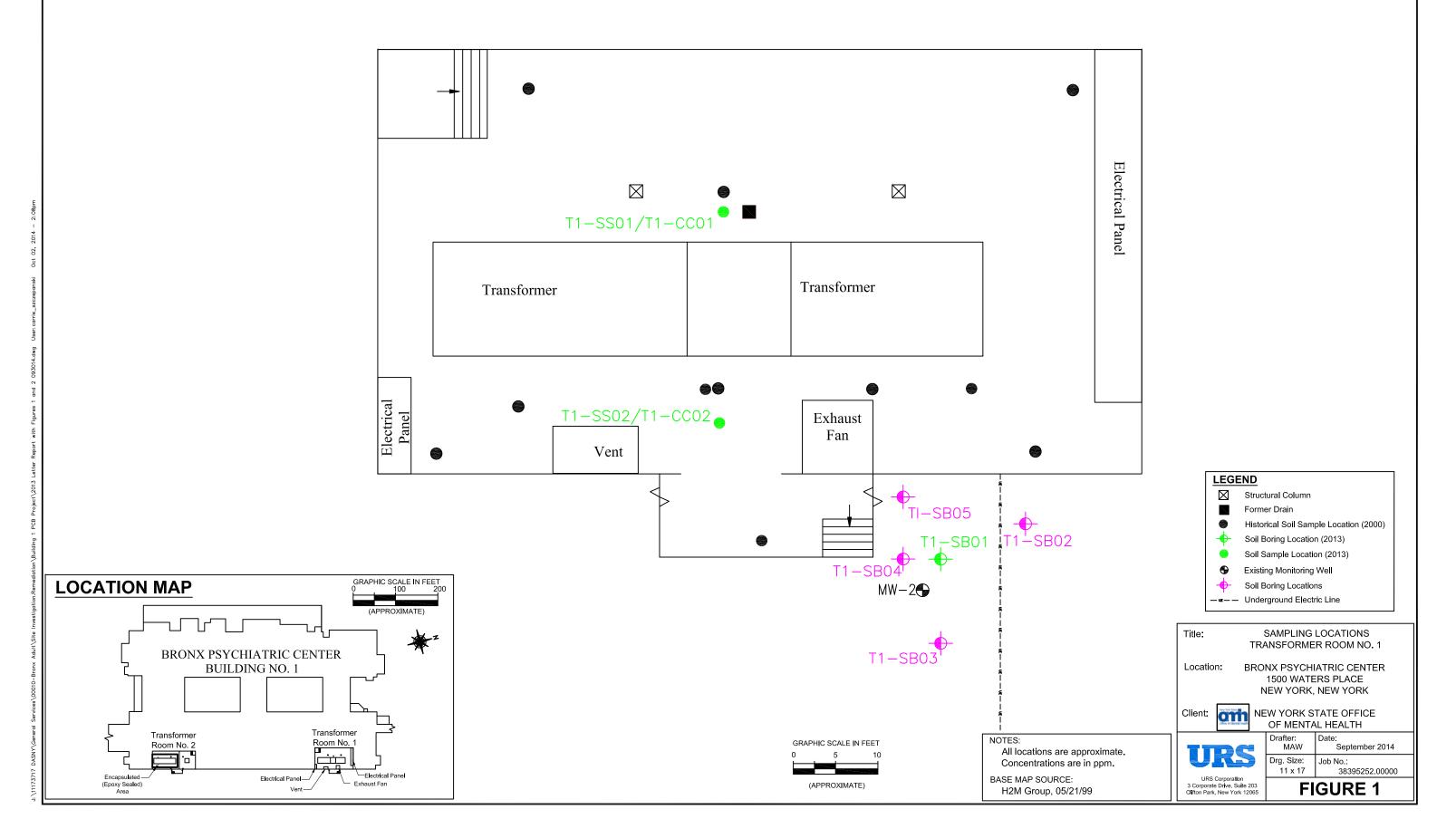
NOTES:

LEGEND

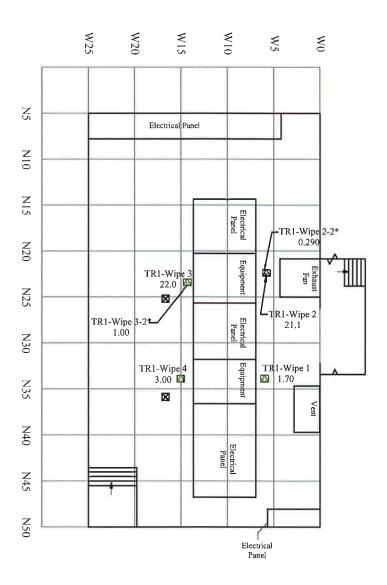
All locations are approximate.
Concentrations are in ppm.

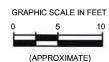
BASE MAP SOURCE: H2M Group, 05/21/99

Title:	SAMPLING LOCATIONS
	TRANSFORMER ROOM NO.


Location: BRONX PSYCHIATRIC CENTER
1500 WATERS PLACE
NEW YORK, NEW YORK

lient: NEW YORK STATE OFFICE
OF MENTAL HEALTH




Drafter: MAW	Date: August 2013
Drg. Size: 11 x 17	Job No.: 38395252.00000

Title: TRANSFORMER ROOM NO. 1
WIPE SAMPLE LOCATIONS
DECEMBER 2014 and JANUARY 2015

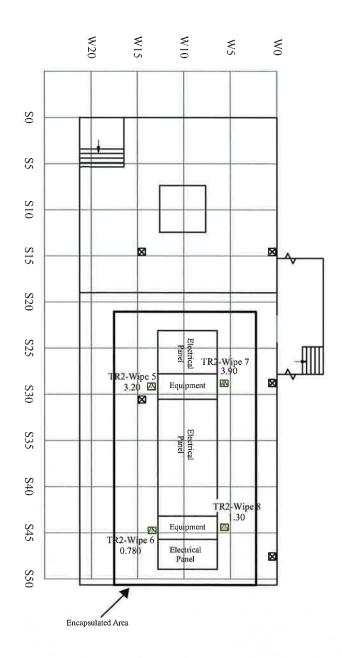
Location: BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

Client: NEW YORK STATE OFFICE
OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter:	Date:
CLS	March 2015
Drg. Size:	Job No :
8.5 x 11	38395390.00010

GRAPHIC SCALE IN FEET
0 5 10
(APPROXIMATE)

LEGEND

America 1 PCB Project 2015 More Floure 2 - Woe Somple Locations Room No.2 38395390 February 2015 030415.deg Usericonte_atcapponed

TR2-Wipes 0,600

Wipe Sample Location with Total PCB Concentration (µg/100 cm²)

 \boxtimes

Structural Column

₩0 ₩5 \$0 \$5

Grid Scale and Reference

PCB

Polychlorinated Biphenyl

Title:

TRANSFORMER ROOM NO. 2 WIPE SAMPLE LOCATIONS

DECEMBER 2014

BRONX PSYCHIATRIC CENTER

BRONX, NEW YORK

Client:

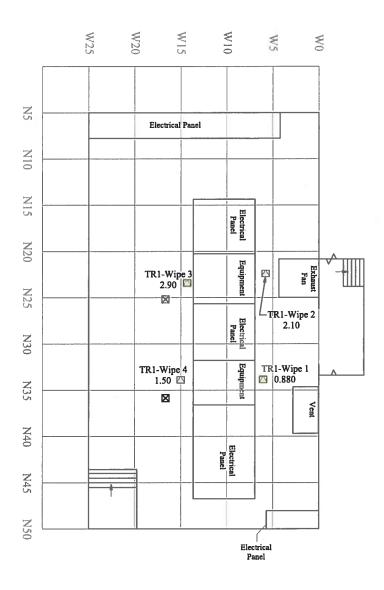
Location:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

Drafter.	Date:
ÇLS	March 2015
Drg. Size:	Job No.:
8.5 x 11	38395390.00010

LEGEND

k.\1173717 DASNY\General Services\0001G-Bronx Adult\Site investigation.Remediation.Remediation\Bulding 1 PCB Project\2016 December 2015 Wpe Figure 1 - Wipe Sample Lecations Recom No 1 60449868.10 January 2016.deg

TR1-Wipe 1

38.0 Wipe Sample Location with Total PCB Concentration (µg/100 cm²)

Structural Column

Grid Scale and Reference
PCB Polychlorinated Biphenyl

Title:

TRANSFORMER ROOM NO. 1 WIPE SAMPLE LOCATIONS DECEMBER 2015

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

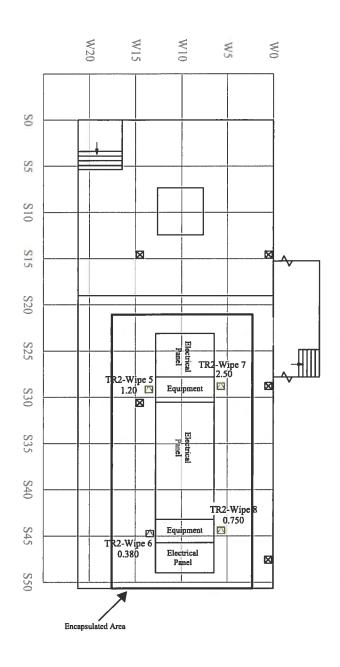
Client:

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:


Dvirka and Bartilucci Consulting Engineers, 11/21/00

URS

URS 40 British American Boulevard Latham, New York 12110

Drafter:	Date:
CLS	January 2016
Drg. Size	Job No.:
8.5 x 11	60449869.10

GRAPHIC SCALE IN FEET (APPROXIMATE)

LEGEND

Wipe Sample Location with Total PCB Concentration (µg/100 cm²)

Structural Column

Grid Scale and Reference

PCB Polychlorinated Biphenyl Title:

Client:

TRANSFORMER ROOM NO. 2

WIPE SAMPLE LOCATIONS **DECEMBER 2015**

Location:

BRONX PSYCHIATRIC CENTER BRONX, NEW YORK

NEW YORK STATE OFFICE OF MENTAL HEALTH

NOTES:

All locations are approximate.

BASE MAP SOURCE:

Dvirka and Bartilucci Consulting Engineers, 11/21/00

40 British American Boulevard Latham, New York 12110

Drafter:	Date:
CLS	January 2016
Drg. Size:	Job No.:
8.5 x 11	60449869.10

APPENDIX C AVAILABLE DATA USABILITY STUDY REPORTS

DATA USABILITY SUMMARY REPORT

BRONX PSYCHIATRIC CENTER – BUILDING 1 SITE BRONX, NEW YORK

Analyses Performed by:

CON-TEST ANALYTICAL LABORATORY EAST LONGMEADOW, MASSACHUSETTS

Prepared for:

DORMITORY AUTHORITY OF THE STATE OF NEW YORK

Prepared by:

URS CORPORATION
77 GOODELL STREET
BUFFALO, NY 14203

JULY 2013

TABLE OF CONTENTS

		Page No.
I.	INTRODUCTION	1
И.	ANALYTICAL METHODOLOGIES	1
Ш.	DATA DELIVERABLE COMPLETENESS	2
IV.	SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES	2
V.	NON-CONFORMANCES	2
VI.	SAMPLE RESULTS AND REPORTING	4
VII.	SUMMARY	4

TABLES (Following Text)

Table 1 Summary of Data Qualifications

ATTACHMENTS

Attachment A - Validated Form 1s

Attachment B - Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for Data Deliverables and Development of Data Usability Summary Reports,* May 2010.

This DUSR discusses the data usability of two (2) groundwater samples plus one (1) field duplicate and one (1) matrix spike/matrix spike duplicate (MS/MSD) pair, and eight (8) soil samples plus one (1) field duplicate and one (1) MS/MSD pair collected by URS personnel on June 11-12, 2013, as part of the sampling program at the Bronx Psychiatric Center – Building 1 Site located in Bronx, New York. This work has been performed for the Dormitory Authority of the State of New York (DASNY).

II. ANALYTICAL METHODOLOGIES

The groundwater and soil samples were sent to Con-Test Analytical Laboratory located in East Longmeadow, MA for analysis, and were analyzed for the following parameters:

- Volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C,
- Semivolatile organic compounds (SVOCs) by USEPA Method 8270D, and
- Polychlorinated biphenyls (PCBs) by USEPA Method 8082A (soils only).

A limited data validation was performed in accordance with the following USEPA Region II guidelines:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B, SOP HW-24, Rev. 2, August 2008;
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008; and
- Validating PCB Compounds by SW-846 Method 8082A, HW-45, Revision 1, October 2006.

Qualifications applied to the data during the limited validation include 'U' (non-detect), 'J' (estimated concentration), 'UJ' (estimated quantitation limit) and 'R' (rejected). Definitions of USEPA data qualifiers are presented at the end of this text. A summary of data qualifications is presented in Table 1. Copies of the validated laboratory results (i.e., Form 1s) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC Analytical Services Protocol (ASP) Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved and under proper chainof-custody (COC), except for the following instance.

• For groundwater sample T2-MW2, the VOC container was unpreserved (i.e., pH=7). Since the laboratory analyzed the sample within 7 days of collection, no qualification of the data was deemed necessary.

All samples were analyzed within the required holding times.

V. NON-CONFORMANCES

• Initial and Continuing Calibrations

For VOCs, the minimum relative response factors (RRFs) for the initial calibrations (ICALs) and continuing calibrations (CCALs) were less than 0.05 for one or more of the following compounds: 1,2-dibromo-3-chloropropane, 1,4-dioxane, acrylonitrile,

tert-butyl alcohol, and/or tetrahydrofuran. The associated sample results for these compounds were rejected and qualified 'R', as listed on Table 1.

For VOCs, the percent differences (%Ds) between the ICAL RRFs and the RRFs in the CCALs exceeded 20% one or more of the following compounds: 2-butanone, 2-hexanone, acetone, chloroethane, chloromethane, dichlorodifluoromethane, diethyl ether, and/or naphthalene. The associated sample results for these compounds were qualified 'J' or 'UJ', as listed on Table 1.

For SVOCs, the minimum RRFs for the ICALs and CCALs were less than 0.05 for pentachloronitrobenzene. The associated sample results for this compound were rejected and qualified 'R', as listed on Table 1.

For SVOCs, the %Ds between the ICAL RRFs and the RRFs in the CCALs exceeded 20% one or more of the following compounds: 4-nitrophenol, benzidine, benzo(b)fluoranthene, benzo(g,h,i)perylene, hexachlorocyclopentadiene, and/or pentachlorophenol. The associated sample results for these compounds were qualified 'UJ', as listed on Table 1.

Documentation supporting the qualification of data (i.e., Form 5, 6, and Form 7) is presented in Attachment B.

Matrix Spikes and Laboratory Control Samples

The SVOC MS/MSD analyses for soil sample T2-SB02 (0-4') exhibited zero percent recoveries (%Rs) for benzidine and hexachlorocyclopentadiene. The non-detect results for this sample were rejected and qualified 'R', as listed on Table 1. Note, the MS/MSD did exhibit low/high biased outliers for several other compounds, but the associated laboratory control samples (LCS) were within QC limits, hence, no further qualification of the data was deemed necessary.

The SVOC MS/MSD analyses for groundwater sample T1-MW1 and associated laboratory control samples (LCS) exhibited biased low percent recoveries (%R) for

benzidine. The non-detect benzidine results for all groundwater samples were

qualified 'UJ', as listed on Table 1.

The VOC LCS %Rs were below QC limits for one or more of the following

compounds: acetone, bromomethane, carbon disulfide, and/or chloromethane. The

associated sample results for these compounds were qualified 'J' or 'UJ', as listed on

Table 1.

Documentation supporting the qualification of data (i.e., Form 3) is presented in

Attachment B.

SAMPLE RESULTS AND REPORTING VI.

All quantitation/reporting limits were reported in accordance with method requirements and

were adjusted for sample size and dilution factors.

For PCBs, the %Ds between the dual-column analyses for soil samples T2-SS03 (0-8") and

T2-SS04 (12-14") were >25% for AR1260. The AR1260 results for these two samples were qualified

'J', as listed on Table 1. Documentation supporting the qualification of data (i.e., Form 10) is

presented in Attachment B.

VII. **SUMMARY**

All sample analyses were found to be compliant with the method criteria, except where

previously noted. Those results qualified 'J' or 'UJ' are considered conditionally usable. Those

results qualified 'U' are considered non-detect. Those results qualified 'R' are unusable. All other

sample results are usable as reported. URS does not recommend the recollection of any samples at this

time.

Prepared By: Peter R. Fairbanks, Senior Chemist Prepared By: Peter R. Fairbanks, Senior Chemist

Date: 7/31/13

Reviewed By: Ann Marie Kropovitch, Chemist

Date: 7/31/13

TABLE 1

SUMMARY OF DATA QUALIFICATIONS

BRONX PSYCHIATRIC CENTER - BUILDING 1 SITE

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
All groundwater samples	VOC	ICAL and CCAL minimum RRFs < 0.05 for 1,4-dioxane, 1,2-dibromo-3-chloropropane, and/or tert-butyl alcohol.	Qualify non-detect results 'R.'
All soil samples	VOC	ICAL and CCAL minimum RRFs < 0.05 for 1,2-dibromo-3-chloropropane, 1,4-dioxane, acrylonitrile, tert-butyl alcohol, and/or tetrahydrofuran	Qualify non-detect results 'R.'
All groundwater samples	VOC	CCAL %Ds >20% for chloromethane and naphthalene.	Qualify non-detect results 'UJ.'
All soil samples	VOC	CCAL %Ds >20% for 2-butanone, 2-hexanone, acetone, chloroethane, dichlorodifluoromethane, and diethyl ether.	Qualify detected results 'J' and non-detect results 'UJ.'
All groundwater and soil samples	SVOC	ICAL and CCAL minimum RRFs < 0.05 for pentachloronitrobenzene.	Qualify non-detect results 'R.'
All groundwater samples	SVOC	CCAL %D greater than 20% for 4-nitrophenol, benzo(b)fluoranthene, benzo(g,h,i)perylene, hexachlorocyclopentadiene, and/or pentachlorophenol.	Qualify non-detect results 'UJ.'
Soil samples T1-SS01 (0-8"), T1-SB01 (0-4'), and T3-SB03 (0-4')	SVOC	CCAL %D greater than 20% for benzidine.	Qualify non-detect results 'UJ.'
Soil sample T2-SB02 (0-4')	SVOC	MS/MSD %Rs 0% for benzidine and hexachlorocyclopentadiene.	Qualify non-detect results 'R.'
All groundwater samples	SVOC	MS/MSD and LCS < QC limits for benzidine.	Qualify non-detect results 'UJ.'
All groundwater samples	VOC	LCS < QC limits for bromomethane.	Qualify non-detect results 'UJ.'
All soil samples	VOC	LCS < QC limits for acetone, carbon disulfide, and chloromethane.	Qualify detected results 'J' and non-detect results 'UJ.'
Soil samples T2-SS03 (0-8") and T2-SS04 (12-14')	PCB	%D between dual-column analyses >25%.	Qualify detected results 'J'.

ATTACHMENT A

VALIDATED FORM 1s

ATTACHMENT B

SUPPORT DOCUMENTATION

DEFINITIONS OF USEPA DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- B (Metals only) The analyte was detected in the sample at a concentration greater than the instrument detection limit, but less than the quantitation limit.

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-MW1

Sampled: 6/11/2013 11:20

Sample ID: 13F0478-01
Sample Matrix: Ground Water

			Volatile	Organic Co	mpounds by	GC/MS 7 30	13			
			-					Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	4.7	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Acrylonitrile	ND	5.0	0.58	μg/L	1	Ū	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
tert-Amyl Methyl Ether (TAME)	ND	0,50	0,091	μg/L	F.	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Benzene	ND	1.0	0.079	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Bromobenzene	ND	1.0	0.044	μg/L	1.	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Bromochloromethane	ND	1.0	0_22	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Bromodichloromethane	ND	0,50	0,088	μg/L	E	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Bromoform	ND	1.0	0.21	μg/L	Ī	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Bromomethane	ND	2.0	0.94	μg/L	ī	-1:-04, MS-09, U_	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
2-Butanone (MEK)	ND	20	2.4	μg/L	I.	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1	8-06, V-16, H	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
n-Butylbenzene	ND	1.0	0.054	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
sec-Butylbenzene	ND	1.0	0.084	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
tert-Butylbenzene	ND	1_0	0.096	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0,075	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Carbon Disulfide	ND	2.0	1.0	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Carbon Tetrachloride	ND	5.0	0,10	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Chlorobenzene	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Chlorodibromomethane	ND	0.50	0.054	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Chloroethane	ND	2.0	0.16	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Chloroform	ND	2.0	0,14	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Chloromethane	ND	2.0	0.32	μg/L	î	_MS-07A; R-00; V-03; U	Jsw-846 8260C	6/14/13	6/14/13 19:54	EEH
2-Chlorotoluene	ND	1.0	0.070	μg/L	1	U U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
4-Chlorotoluene	ND	1.0	0.074	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.34	μg/L	1	υR	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.089	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Dibromomethane	ND	1.0	0.070	μg/L	ā	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,2-Dichlorobenzene	ND	1.0	0.076	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,3-Dichlorobenzene	ND	1.0	0.079	μg/L	1	υ	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,4-Dichlorobenzene	ND	1.0	0.046	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	ЕЕН
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.12	μg/L	1	MS-07A, U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,1-Dichloroethane	ND	1.0	0.16	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,2-Dichloroethane	ND	1.0	0.19	μg/L	1	Ū	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,1-Dichloroethylene	ND	1.0	0.21	μg/L	1	Ŭ	SW-846 8260C	6/14/13	6/14/13 19:54	
cis-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	i	U	SW-846 8260C	6/14/13	6/14/13 19:54	
trans-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	
1,2-Dichloropropane	ND	1.0	0:11	μg/L μg/L	1	Ū	SW-846 8260C	6/14/13	6/14/13 19:54	
1,3-Dichloropropane	ND	0.50	0.099		1	υ	SW-846 8260C	6/14/13	6/14/13 19:54	
2,2-Dichloropropane	ND	1.0	0.072	μg/L ug/I	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	
1,1-Dichloropropene	ND	2.0	0.072	μg/L			SW-846 8260C			
cis-1,3-Dichloropropene				μg/L	1	Ū		6/14/13	6/14/13 19:54	
	ND	0.50	0.062	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	
trans-1,3-Dichloropropene	ND	0.50	0,056	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-MW1
Sample ID: 13F0478-01

Sampled: 6/11/2013 11:20

Sample ID:	13104/8-01
Sample Mat	rix: Ground Water

		Volatile Organic Compounds by GC/MS								
						7		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diethyl Ether	ND	2.0	0,22	μg/L	.1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Diisopropyl Ether (DIPE)	ND	0.50	0.18	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,4-Dioxane	ND	50	26	μg/L	1	MS-09, V-16, U R	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Ethylbenzene	ND	1,0	0,092	$\mu g/L$	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Hexachlorobutadiene	ND	0.50	0.17	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
2-Hexanone (MBK)	ND	10	1,5	μg/L	10	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Isopropylbenzene (Cumene)	ND	1.0	0.11	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.090	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1,5	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Naphthalene	ND	2.0	0.12	μg/L	1	-V-05, U J	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
n-Propylbenzene	ND	1.0	0,094	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Styrene	ND	1,0	0.12	μg/L	1)	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Tetrachloroethylene	ND	1.0	0.080	μg/L	15	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Tetrahydrofuran	ND	10	1,1	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Toluene	ND	1.0	0.090	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,2,3-Trichlorobenzene	ND	5.0	0,14	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.12	μg/L	Ĭ.	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.14	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,1,1-Trichloroethane	ND	1.0	0,094	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,1,2-Trichloroethane	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Trichloroethylene	ND	1.0	0.077	μιg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,2,3-Trichloropropane	ND	2.0	0,12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.092	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
(Freon 113) 1,2,4-Trimethylbenzene	ND	1.0	0.18	μg/L	ã	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
1,3,5-Trimethylbenzene	ND	1,0	0,10	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 19:54	
m+p Xylene	ND	2.0	0.18	μg/L	ä	U	SW-846 8260C	6/14/13	6/14/13 19:54	EEH
o-Xylene	ND	1.0	0.11	μg/L	11	U	SW-846 8260C	6/14/13	6/14/13 19:54	
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		105		70-130					6/14/13 19:54	r
Toluene-d8		101		70-130					6/14/13 19:54	
4-Bromofluorobenzene		99.2		70-130					6/14/13 19:54	

Project Location: Bronx PC Bldg 1

Sample Description:

otion: Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-MW1

Sampled: 6/11/2013 11:20

Sample ID: 13F0478-01
Sample Matrix: Ground Water

			Semivolat	ile Organic C	ompounds by	GC/MS	0 13			
						•		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	5.2	2.8	μg/L	1	R=05. U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Acenaphthylene	ND	5.2	2_8	μg/L	ī	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Acetophenone	ND	10	3.5	μg/L	12	R-05 , U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Aniline	ND	5.2	2.4	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Anthracene	ND	5.2	2.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Benzidine	ND	10	6.5	μg/L	1	R-05, R-06, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Benzo(a)anthracene	ND	5.2	2.4	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Benzo(a)pyrene	ND	5,2	3.0	μg/L	I.	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Benzo(b)fluoranthene	3,6	5,2	2.2	μg/L	1	V-05 , J	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Benzo(g,h,i)perylene	ND	5.2	5.1	μg/L	Ĭ.	V-20, U ,J	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Benzo(k)fluoranthene	ND	5.2	3.2	μg/L	T.	-R-05 , U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Benzoic Acid	ND	10	2.9	μg/L	1	MS-09 , U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Bis(2-chloroethoxy)methane	ND	10	3.2	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Bis(2-chloroethyl)ether	ND	10	4.6	μg/L	1	R-05 U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Bis(2-chloroisopropyl)ether	ND	10	4.2	μg/L	I.	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Bis(2-Ethylhexyl)phthalate	ND	10	7.3	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
4-Bromophenylphenylether	ND	10	3.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Butylbenzylphthalate	ND	10	2.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Carbazole	ND	10	1.8	μg/L	Ī	R -0 5, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
4-Chloroaniline	ND	10	3.0	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
4-Chloro-3-methylphenol	ND	10	3.0	μg/L	1	'R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2-Chloronaphthalene	ND	10	4.1	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2-Chlorophenol	ND	10	3,7	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
4-Chlorophenylphenylether	ND	10	3.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Chrysene	ND	5 2	2.8	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Dibenz(a,h)anthracene	ND	5.2	5,2	μg/L	3	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Dibenzofuran	ND	5.2	2.9	μg/L	î	R-05; U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Di-n-butylphthalate	ND	10	2,3	μg/L	1	Ū	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
1,2-Dichlorobenzene	ND	5.2	3.6	$\mu g/L$	1	R-05; U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
1,3-Dichlorobenzene	ND	5.2	4_0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
1,4-Dichlorobenzene	ND	5.2	3.9	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
3,3-Dichlorobenzidine	ND	10	5.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2,4-Dichlorophenol	ND	10	3.5	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Diethylphthalate	ND	10	2,9	$\mu g/L$	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2,4-Dimethylphenol	ND	10	7.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Dimethylphthalate	ND	10	2.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
4,6-Dinitro-2-methylphenol	ND	10	4.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2,4-Dinitrophenol	ND	10	3.3	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2,4-Dinitrotoluene	ND	10	3.1	$\mu g/L$	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2,6-Dinitrotoluene	ND	10	2.8	μg/L	1	R-05-1	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Di-n-octylphthalate	ND	10	7_0	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	4.9	$\mu g/L$	1	U	SW-846-8270D	6/17/13	6/19/13 15:49	CMR
Fluoranthene	ND	5.2	2.1	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Fluorene	ND	5.2	2.4	μg/L	1	ge 11 of 133	SW-846 8270D	6/17/13	6/19/13 15:49	CMR

Project Location: Bronx PC Bldg 1

Sample Description:

71.3

30-130

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-MW1

Sampled: 6/11/2013 11:20

Sample ID: 13F0478-01

p-Terphenyl-d14

			Semivo	latile Organic Cor	npounds l	by GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	10	3.6	μg/L	i i	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Hexachlorobutadiene	ND	10	5.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Hexachlorocyclopentadiene	ND	10	8.2	μg/L	1	V-05, U-J	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Hexachloroethane	ND	10	4.7	μg/L	Î	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Indeno(1,2,3-cd)pyrene	ND	5.2	4.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Isophorone	ND	10	3.2	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
1-Methylnaphthalene	ND	5.2	3.2	μg/L	1	R-0.5, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2-Methylnaphthalene	ND	5.2	3.6	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2-Methylphenol	ND	10	3.2	μg/L	1	R ₇ 05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
3/4-Methylphenol	ND	10	3.2	μg/L	1:	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Naphthalene	ND	5.2	3, 1	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2-Nitroaniline	ND	10	3.0	μg/L	1	R-05. U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
3-Nitroaniline	ND	10	3.6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
4-Nitroaniline	ND	10	4.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Nitrobenzene	ND	10	3.6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2-Nitrophenol	ND	10	3.4	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
4-Nitrophenol	ND	10	3,9	μg/L	1	∀-05 , U 🦵	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
N-Nitrosodimethylamine	ND	5.2	3,3	μg/L	Ĩ	L-04, R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
N-Nitrosodiphenylamine	ND	10	4.0	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
N-Nitrosodi-n-propylamine	ND	10	5.7	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Pentachloronitrobenzene	ND	10	2.4	μg/L	1	R-05, V-16, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Pentachlorophenol	ND	10	3.8	μg/L	1	V-20, U J	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Phenanthrene	ND	5.2	2.6	μg/L	1	-R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Phenol	ND	10	1,5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Pyrene	ND	5,2	2.6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Pyridine	ND	5.2	3.1	μg/L	1	MS-09, R-05, U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
1,2,4,5-Tetrachlorobenzene	ND	10	5.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
1,2,4-Trichlorobenzene	ND	5.2	5,0	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2,4,5-Trichlorophenol	ND	10	2.8	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
2,4,6-Trichlorophenol	ND	10	3.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 15:49	CMR
Surrogates		% Reco	very	Recovery Limits		Flag				
2-Fluorophenol		40.9		15-110					6/19/13 15:49	
Phenol-d6		27,6		15-110		- 10	1.3		6/19/13 15:49	
Nitrobenzene-d5		51,7		30-130		7/3	P T T		6/19/13 15:49	
2-Fluorobiphenyl		58.7		30-130			5.35		6/19/13 15:49	
2,4,6-Tribromophenol		71.4		15-110					6/19/13 15:49	

6/19/13 15:49

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-MW3
Sample ID: 13F0478-02
Sample Matrix: Ground Water

Sampled: 6/11/2013 13:15
Field Duplicate of TLMWI)

7/30/13

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	4.7	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Acrylonitrile	ND	5.0	0.58	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.091	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Benzene	ND	1,0	0_079	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Bromobenzene	ND	1.0	0.044	μg/L	Ĩ	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Bromochloromethane	ND	1.0	0,22	μg/L	T.	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Bromodichloromethane	ND	0.50	0.088	μg/L	ť	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Bromoform	ND	1.0	0.21	μg/L	Î.	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Bromomethane	ND	2.0	0.94	μg/L	1	-1-04,U J	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
2-Butanone (MEK)	ND	20	2.4	μg/L	ï	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1	V-16,U R	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
n-Butylbenzene	ND	1,0	0,054	μg/L	1	Ū	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
sec-Butylbenzene	ND	1.0	0,084	µg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
tert-Butylbenzene	ND	1.0	0.096	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.075	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Carbon Disulfide	ND	2.0	1.0	μg/L	ï	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Carbon Tetrachloride	ND	5.0	0.10	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Chlorobenzene	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Chlorodibromomethane	ND	0.50	0.054	μg/L	ĩ	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Chloroethane	ND	2.0	0.16	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Chloroform	ND	2.0	0.14	μg/L	ï	U	SW-846 8260C	6/14/13	6/14/13 20:20	
Chloromethane	ND	2.0	0.32	μg/L	Ĩ	¥-05, U J	SW-846 8260C	6/14/13	6/14/13 20:20	
2-Chlorotoluene	ND	1.0	0,070	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
4-Chlorotoluene	ND	1.0	0.074	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,2-Dibromo-3-chloropropane (DBCP)	ND	5_0	0_34	μg/L	ï	UR	SW-846 8260C	6/14/13	6/14/13 20:20	
1,2-Dibromoethane (EDB)	ND	0.50	0.089	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
Dibromomethane	ND	1.0	0.070	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,2-Dichlorobenzene	ND	1.0	0.076	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,3-Dichlorobenzene	ND	1.0	0.079	μ g /L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,4-Dichlorobenzene	ND	1.0	0.046	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
trans-1,4-Dichloro-2-butene	ND	2.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,1-Dichloroethane	ND	1.0	0.16	μg/L	ï	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,2-Dichloroethane	ND	1.0	0.19	μg/L	3	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,1-Dichloroethylene	ND	1.0	0.21	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
cis-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1	Ū	SW-846 8260C	6/14/13	6/14/13 20:20	
trans-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	ä	U	SW-846 8260C	6/14/13	6/14/13 20;20	
1,2-Dichloropropane	ND	1.0	0,11	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,3-Dichloropropane	ND	0.50	0.099	μg/L	1	Ū	SW-846 8260C	6/14/13	6/14/13 20:20	
2,2-Dichloropropane	ND	1.0	0.072	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
1,1-Dichloropropene	ND	2.0	0.13	μg/L	i	U	SW-846 8260C	6/14/13	6/14/13 20:20	
cis-1,3-Dichloropropene	ND	0.50	0.062	μg/L	4	U	SW-846 8260C	6/14/13	6/14/13 20:20	
trans-1,3-Dichloropropene	ND	0.50	0.056	μg/L μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	
Diethyl Ether	ND	2.0	0.22	μg/L μg/L	-	U	SW-846 8260C	6/14/13	6/14/13 20:20	

Page 13 of 1332 B074595_01 07/26/13 14:14:40

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013 Field Sample #: T1-MW3

Sampled: 6/11/2013 13:15

Sample ID: 13F0478-02 Sample Matrix: Ground Water

			Vola	tile Organic Com	pounds by G	C/MS	1.3			
						7/3	11 %	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0,50	0.18	μg/L	ř.	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,4-Dioxane	ND	50	26	μ g/L	1	4V-16, U R	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Ethylbenzene	ND	1.0	0.092	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Hexachlorobutadiene	ND	0.50	0.17	μg/L	T.	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
2-Hexanone (MBK)	ND	10	1.5	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Isopropylbenzene (Cumene)	ND	1.0	0.11	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
p-IsopropyItoluene (p-Cymene)	ND	1:0	0.12	μg/L	í	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.090	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1_5	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Naphthalene	ND	2,0	0.12	μg/L	1	¥-05, U J	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
n-Propylbenzene	ND	1.0	0.094	μg/L	î.	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Styrene	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/J3 20:20	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Tetrachloroethylene	ND	1,0	0.080	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Tetrahydrofuran	ND	10	1.1	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Toluene	ND	1.0	0.090	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.14	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,2,4-Trichlorobenzene	ND	1.0	0,12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.14	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,1,1-Trichloroethane	ND	1.0	0_094	$\mu g/L$	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,1,2-Trichloroethane	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Trichloroethylene	ND	1.0	0_077	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	3	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,2,3-Trichloropropane	ND	2.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.092	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,2,4-Trimethylbenzene	ND	1.0	0.18	$\mu g/L$	î	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
1,3,5-Trimethylbenzene	ND	1.0	0.10	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
ın+p Xylene	ND	2,0	0,18	$\mu g/L$	Ti .	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
o-Xylene	ND	1.0	0.11	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:20	EEH
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		102		70-130					6/14/13 20:20	
Toluene-d8		103		70-130					6/14/13 20:20	
4-Bromofluorobenzene		101		70-130					6/14/13 20:20)

Work Order: 13F0478

Sample Description:

Date Received: 6/13/2013
Field Sample #: T1-MW3

Project Location: Bronx PC Bldg I

Sampled: 6/11/2013 13:15

Sample ID: 13F0478-02
Sample Matrix: Ground Water

(Fula Duplicate of TI-MWI)

			Semivolat	ile Organic C	Compounds by	GC/MS	1,1.3			
						7	(3)1.3	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	5,2	2.8	μg/L	1	R-05 U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Acenaphthylene	ND	5.2	2.8	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Acetophenone	ND	10	3,5	μg/L	1)	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Aniline	ND	5.2	2.4	μg/L	Ĭ.	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Anthracene	ND	5_2	2.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Benzidine	ND	10	6.6	μg/L	1	R-05, U J	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Benzo(a)anthracene	ND	5.2	2.4	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Benzo(a)pyrene	ND	5.2	3.0	μg/L	1.	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Benzo(b)fluoranthene	3.6	5.2	2,2	$\mu g/L$	1	₩-05, J	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Benzo(g,h,i)perylene	ND	5,2	5.2	$\mu g/L$	1	₩-20, U J	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Benzo(k)fluoranthene	ND	5,2	3.2	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Benzoic Acid	ND	10	2.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Bis(2-chloroethoxy)methane	ND	10	3.2	$\mu g/L$	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Bis(2-chloroethyl)ether	ND	10	4.6	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Bis(2-chloroisopropyl)ether	ND	10	4.3	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Bis(2-Ethylhexyl)phthalate	ND	10	7.4	$\mu g/L$	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
4-Bromophenylphenylether	ND	10	4.0	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Butylbenzylphthalate	ND	10	2.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Carbazole	ND	10	1.8	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
4-Chloroaniline	ND	10	3.0	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
4-Chloro-3-methylphenol	ND	10	3.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2-Chloronaphthalene	ND	10	4.2	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2-Chlorophenol	ND	10	3.8	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
4-Chlorophenylphenylether	ND	10	3.0	μg/L	î	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Chrysene	ND	5.2	2.8	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Dibenz(a,h)anthracene	ND	5.2	5.2	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Dibenzofuran	ND	5.2	3.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Di-n-butylphthalate	ND	10	2,3	μg/L	3	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
1,2-Dichlorobenzene	ND	5,2	3,6	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
1,3-Dichlorobenzene	ND	5.2	4.0	$\mu g/L$	1	R ₇ 05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
1,4-Dichlorobenzene	ND	5.2	3,9	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
3,3-Dichlorobenzidine	ND	10	5.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2,4-Dichlorophenol	ND	10	3.6	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Diethylphthalate	ND	10	2.9	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2,4-Dimethylphenol	ND	10	7,5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Dimethylphthalate	ND	10	2.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
4,6-Dinitro-2-methylphenol	ND	10	4.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2,4-Dinitrophenol	ND	10	3.3	μg/L	ii.	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2,4-Dinitrotoluene	ND	10	3.1	μg/L)1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2,6-Dinitrotoluene	ND	10	2.8	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Di-n-octylphthalate	ND	10	7_1	μg/L	74	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	5.0	μg/L	41	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Fluoranthene	ND	5.2	2.1	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Fluorene	ND	5.2	2,5	μg/L	- î	R-05. U	SW-846.8270D	6/17/13	6/19/13 16:27	
					Pac	e 15 of 13	32 B074595	01 07/2	6/13 14:1	4:40

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-MW3

Sampled: 6/11/2013 13:15

Sample ID: 13F0478-02
Sample Matrix: Ground Water

			Semivo	latile Organic Coi	mpounds by	GC/MS	130/13			
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	10	3.7	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Hexachlorobutadiene	ND	10	5.8	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Hexachlorocyclopentadiene	ND	10	8.2	μg/L	Ē	V-05; U J	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Hexachloroethane	ND	10	4.7	μg/L	î	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Indeno(1,2,3-cd)pyrene	ND	5.2	4.7	μg/L	T.	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
lsophorone	ND	10	3.3	μg/L	î	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
1-Methylnaphthalene	ND	5.2	3.2	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2-Methylnaphthalene	ND	5.2	3.7	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2-Methylphenol	ND	10	3,2	μg/L	í	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
3/4-Methylphenol	ND	10	3,3	μg/L	ī	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Naphthalene	ND	5.2	3.1	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2-Nitroaniline	ND	10	3.0	μg/L	1	R=05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
3-Nitroaniline	ND	10	3.6	μg/L	I	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
4-Nitroaniline	ND	10	4.1	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Nitrobenzene	ND	10	3.7	μg/L	1	υ	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2-Nitrophenol	ND	10	3,5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
4-Nitrophenol	ND	10	4.0	μg/L	1	V=05, U J	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
N-Nitrosodimethylamine	ND	5.2	3.3	μg/L	ĩ	L-04, R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
N-Nitrosodiphenylamine	ND	10	4.0	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
N-Nitrosodi-n-propylamine	ND	10	5.7	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Pentachloronitrobenzene	ND	10	2.4	μg/L	1	R-05, V-16, U R	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Pentachlorophenol	ND	10	3.9	μg/L	1	V-20, U J	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Phenanthrene	ND	5.2	2.7	μg/L	Ĩ	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Phenol	ND	10	1.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Pyrene	ND	5.2	2.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Pyridine	ND	5.2	3.1	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
1,2,4,5-Tetrachlorobenzene	ND	10	5.6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
1,2,4-Trichlorobenzene	ND	5.2	5.0	μg/L	3	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2,4,5-Trichlorophenol	ND	10	2.8	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
2,4,6-Trichlorophenol	ND	10	3.7	μg/L	1.	U	SW-846 8270D	6/17/13	6/19/13 16:27	CMR
Surrogates		% Reco	very	Recovery Limits	s	Flag				
2-Fluorophenol		39.6		15-110					6/19/13 16:27	
Phenol-d6		26.4		15-110					6/19/13 16:27	
Nitrobenzene-d5		52.7		30-130					6/19/13 16:27	
2-Fluorobiphenyl		49.6		30-130					6/19/13 16:27	
2,4,6-Tribromophenol p-Terphenyl-d14		68.8 75.0		15-110 30-130					6/19/13 16:27 6/19/13 16:27	
b reshiond, are		. 5.0		55 150					0,15,15 10,27	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-MW2

Sampled: 6/11/2013 12:55

Sample ID: 13F0478-03

Sample Matrix: Ground Water

Sample Flags: PR-10			Volatile	Organic Coi	mpounds by G	C/MS	7 30 13			
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Analyte	ND	50	4.7	μg/L) I	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
crylonitrile	ND	5.0	0.58	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
ert-Amyl Methyl Ether (TAME)	ND	0.50	0.091	μg/L	E E	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
enzene	ND	1.0	0.079	μg/L	ř	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Fromobenzene	ND	1.0	0.044	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Bromochloromethane	ND	1.0	0.22	μg/L	I .	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
romodichloromethane	ND	0.50	0.088	μg/L	î	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
dromoform	ND	1.0	0.21	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Iromomethane	ND	2.0	0.94	μg/L	ï	L-04; U .5	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
-Butanone (MEK)	ND	20	2.4	μg/L	Ĩ	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
ert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	r	V-16, U R	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
-Butylbenzene	ND	1.0	0.054	μg/L	î	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
ec-Butylbenzene	ND	1.0	0.084	μg/L	î	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
ert-Butylbenzene	ND	1.0	0.096	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.075	μg/L	i	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Carbon Disulfide	ND	2.0	1.0	μg/L	I	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Carbon Tetrachloride	ND	5.0	0.10	μg/L	i	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Chlorobenzene	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Chlorodibromomethane	ND	0.50	0,054	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Chloroethane	ND	2.0	0,16	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
hloroform	ND	2.0	0.14	μg/L	1	υ	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Chloromethane	ND	2.0	0.32	μg/L	1	V-05, U J	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
-Chlorotoluene	ND	1.0	0.070	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
-Chlorotoluene	ND	1.0	0.074	μg/L	ī	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.34	μg/L	1	UR	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,2-Dibromoethane (EDB)	ND	0.50	0.089	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Dibromomethane	ND	1.0	0_070	μg/L	î	Ū	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,2-Dichlorobenzene	ND	1.0	0.076	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,3-Dichlorobenzene	ND	1.0	0.079	μg/L	i	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,4-Dichlorobenzene	ND	1.0	0.046	μg/L	î	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
rans-1,4-Dichloro-2-butene	ND	2.0	0.12	μg/L	1	Ū	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.12	μg/L	i	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,1-Dichloroethane	ND	1.0	0.16	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,2-Dichloroethane	ND	1.0	0.19	μg/L	1	Ŭ	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,1-Dichloroethylene	ND	1.0	0.21	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
is-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
rans-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1	Ŭ	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,2-Dichloropropane	ND	1.0	0.11	μg/L	ì	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,3-Dichloropropane	ND	0.50	0.099	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
,2-Dichloropropane	ND	1.0	0.072	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	
,1-Dichloropropene	ND	2.0	0.13	μg/L μg/L	î	U	SW-846 8260C	6/14/13	6/14/13 20:47	
sis-1,3-Dichloropropene	ND	0.50	0.062	μg/L	30	U	SW-846 8260C	6/14/13	6/14/13 20:47	
rans-1,3-Dichloropropene	ND	0.50	0.056	μg/L μg/L	(4)	U	SW-846 8260C	6/14/13	6/14/13 20:47	
Diethyl Ether	ND	2.0	0.22	μg/L μg/L	1140	U	SW-846 8260C	6/14/13	6/14/13 20:47	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-MW2
Sample ID: 13F0478-03

Sampled: 6/11/2013 12:55

Samole Matrix: Ground Water

Sample Flags: PR-10			Volat	ile Organic Comp	ounds by G	C/MS	1.1.2			
						7	30/3	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.18	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,4-Dioxane	ND	50	26	μg/L	1	·₩•16; U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Ethylbenzene	ND	1.0	0.092	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Hexachlorobutadiene	ND	0.50	0.17	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
2-Hexanone (MBK)	ND	10	1.5	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
lsopropylbenzene (Cumene)	ND	1.0	0.11	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	0.12	μg/L	$\widetilde{\mathbf{E}}$	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0,090	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Methylene Chloride	ND	5.0	3,2	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1.5	μg/L	1.	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Naphthalene	ND	2.0	0.12	μg/L	1	4 -05 , UJ	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
n-Propylbenzene	ND	1.0	0,094	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Styrene	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Tetrachloroethylene	ND	1.0	0.080	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Tetrahydrofuran	ND	10	1.1	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Toluene	ND	1.0	0.090	μg/L	I	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.14	μg/L	I	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.14	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,1,1-Trichloroethane	ND	1.0	0,094	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,1,2-Trichloroethane	ND	1.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Trichloroethylene	ND	1.0	0.077	μg/L	ĭ	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	3	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,2,3-Trichloropropane	ND	2.0	0.12	μg/L	1	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.092	μg/L	ì	U	SW-846 8260C	6/14/13	6/14/13 20:47	EEH
(Freon 113) 1,2,4-Trimethylbenzene	ND	1.0	0.18	σ	1	U	SW-846 8260C	6/14/13	6/14/12/20:47	PPH
1,3,5-Trimethylbenzene		1.0		μg/L	- 00				6/14/13 20:47	
Vinyl Chloride	ND	1.0	0.10	μg/L	1	U U	SW-846 8260C SW-846 8260C	6/14/13	6/14/13 20:47	
m+p Xylene	ND	2.0	0.13	μg/L	1	U		6/14/13	6/14/13 20:47	
o-Xylene	ND ND	1.0	0.18	μg/L	ä . ï	U	SW-846 8260C SW-846 8260C	6/14/13 6/14/13	6/14/13 20:47 6/14/13 20:47	
	עמ			μg/L			3 11-040 02000	0/14/13	0/14/13 20;47	CEH
Surrogates 1,2-Dichloroethane-d4		% Rec	overy	Recovery Limits	8	Flag			6/14/13 20:47	,
Toluene-d8		102		70-130					6/14/13 20:47	
4-Bromofluorobenzene		104		70-130					6/14/13 20:47	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-MW2

Sampled: 6/11/2013 12:55

Sample ID: 13F0478-03

Sample Matrix: Ground Water

			Semivolat	tile Organic (Compounds by	GC/MS	2/30/13	_		
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.1	2.8	μg/L	1	R-0 6, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Acenaphthylene	ND	5.1	2.7	μg/L	Ĭ.	R ₇ 05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Асеторнепопе	ND	10	3,4	μg/L	1	k-0 5, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Aniline	ND	5.1	2.3	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Anthracene	ND	5.1	2.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Benzidine	ND	10	6.5	μg/L	1	R=05, U J	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Benzo(a)anthracene	ND	5,1	2,4	μg/L	Ĭ.	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Benzo(a)pyrene	ND	5.1	2.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Benzo(b)fluoranthene	3.5	5.1	2.1	μg/L	1)	₩•05, J	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Benzo(g,h,i)perylene	ND	5,1	5,1	μg/L	12	V-20, U J	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Benzo(k)fluoranthene	ND	5,1	3.2	μg/L	1	R-05; U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Benzoic Acid	ND	10	2.9	μg/L	12	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Bis(2-chloroethoxy)methane	ND	10	3.2	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Bis(2-chloroethyl)ether	ND	10	4.6	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Bis(2-chloroisopropyl)ether	ND	10	4.2	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Bis(2-Ethylhexyl)phthalate	ND	10	7.2	μg/L	Ĭ.	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
4-Bromophenylphenylether	ND	10	3.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Butylbenzylphthalate	ND	10	2.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Carbazole	ND	10	1.8	μg/L	1	R-05; U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
4-Chloroaniline	ND	10	2.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
4-Chloro-3-methylphenol	ND	10	3.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2-Chloronaphthalene	ND	10	4.1	μg/L	1	R-0 ∮ , U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2-Chlorophenol	ND	10	3.7	μg/L	1	R- Ø 5, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
4-Chlorophenylphenylether	ND	10	3.0	μg/L	1	R/05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Chrysene	ND	5.1	2.7	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Dibenz(a,h)anthracene	ND	5.1	5.1	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Dibenzofuran	ND	5,1	2,9	μg/L	1	₁ R-05 , U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Di-n-butylphthalate	ND	10	2.2	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
1,2-Dichlorobenzene	ND	5.1	3,5	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
1,3-Dichlorobenzene	ND	5.1	4.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
1,4-Dichlorobenzene	ND	5,1	3.8	μg/L	1	R-05 ; U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
3,3-Dichlorobenzidine	ND	10	5,6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2,4-Dichlorophenol	ND	10	3.5	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Diethylphthalate	ND	10	2.9	μg/L	1	R -05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2,4-Dimethylphenol	ND	10	7.4	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Dimethylphthalate	ND	10	2.7	μg/L	ì	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
4,6-Dinitro-2-methylphenol	ND	10	4.8	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2,4-Dinitrophenol	ND	10	3,3	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2,4-Dinitrotoluene	ND	10	3.1	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2,6-Dinitrotoluene	ND	10	2.7	μg/L	1	8-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Di-n-octylphthalate	ND	10	6.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	4.9	μg/L	Ĩ	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Fluoranthene	ND	5.1	2.1	μg/L	4	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Fluorene	ND	5,1	2.4	μg/L	. 4	R-05. U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-MW2
Sample ID: 13F0478-03

Sampled: 6/11/2013 12:55

Sample	ID.	131.04	70-03	
Sample	Matr	ix: Gr	ound V	/ater

-			Semivo	olatile Organic Co	mpounds by	GC/MS	1 2			
						71	30/13	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobenzene	ND	10	3,6	μg/L	Ĭ.	-R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Hexachlorobutadiene	ND	10	5.7	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Hexachlorocyclopentadiene	ND	10	8,1	μg/L	1	V-05; U J	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Hexachloroethane	ND	10	4.6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Indeno(1,2,3-cd)pyrene	ND	5.1	4,6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Isophorone	ND	10	3,2	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
I-Methylnaphthalene	ND	5.1	3.2	μg/L	1	-R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2-Methylnaphthalene	ND	5.1	3.6	$\mu g/L$	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2-Methylphenol	ND	10	3,2	μg/L	1	R-95, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
3/4-Methylphenol	ND	10	3.2	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Naphthalene	ND	5.1	3.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2-Nitroaniline	ND	10	2,9	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
3-Nitroaniline	ND	10	3.6	μg/L	I	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
4-Nitroaniline	ND	10	4.0	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Nitrobenzene	ND	10	3,6	μg/L	Ĩ.	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2-Nitrophenol	ND	10	3,4	μg/L	I	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
4-Nitrophenol	ND	10	3,9	μg/L	1	V-05, U J	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
N-Nitrosodimethylamine	ND	5_1	3,2	μg/L	1	L-04, R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
N-Nitrosodiphenylamine	ND	10	3.9	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
N-Nitrosodi-n-propylamine	ND	10	5,6	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Pentachloronitrobenzene	ND	10	2.4	μg/L	1	V-16, R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Pentachlorophenol	ND	10	3.8	μg/L	1	√2 0, U 🎵	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Phenanthrene	ND	5,1	2,6	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Phenol	ND	10	1.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Pyrene	ND	5.1	2,6	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Pyridine	ND	5,1	3,1	μg/L	1	R-05, U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
1,2,4,5-Tetrachlorobenzene	ND	10	5.5	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
1,2,4-Trichlorobenzene	ND	5.1	4.9	μg/L	3	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2,4,5-Trichlorophenol	ND	10	2,8	μg/L	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
2,4,6-Trichlorophenol	ND	10	3.7	$\mu g/L$	1	U	SW-846 8270D	6/17/13	6/19/13 17:04	CMR
Surrogates		% Reco	overy	Recovery Limits	s	Flag				
2-Fluorophenol		42.6		15-110			_		6/19/13 17:04	
Phenol-d6		29_6		15-110					6/19/13 17:04	
Nitrobenzene-d5		57.8		30-130					6/19/13 17:04	
2-Fluorobiphenyl		61.9		30-130					6/19/13 17:04	
2,4,6-Tribromophenol		70,6		15-110					6/19/13 17:04	
p-Terphenyl-d14		75.7		30-130					6/19/13 17:04	

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SS01 (0-8in) Sampled: 6/11/2013 10:30

						71	30113	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	0.46	0.11	0,027	mg/Kg dry	1	-E-U4 J	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Acrylonitrile	ND	0.0069	0.0029	mg/Kg dry	Ĩ	₩-16, U /	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
ert-Amyl Methyl Ether (TAME)	ND	0.0023	0,00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Вепхепе	ND	0.0023	0,00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Bromobenzene	ND	0.0023	0,00091	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Bromochloromethane	ND	0,0023	0.0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
romodichloromethane	ND	0,0023	0_00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Bromoform	ND	0,0023	0,0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Bromomethane	ND	0.011	0.0019	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
-Butanone (MEK)	ND	0_046	0.020	mg/Kg dry	1	UJ	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
ert-Butyl Alcohol (TBA)	ND	0,046	0.024	mg/Kg dry	1	¥-16; U /	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
-Butylbenzene	ND	0.0023	0,00080	ıng/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
ec-Butylbenzene	ND	0.0023	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
ert-Butylbenzene	ND	0.0023	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
ert-Butyl Ethyl Ether (TBEE)	ND	0.0011	0,00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Carbon Disulfide	ND	0.023	0,0038	mg/Kg dry	ì	L-04, U J	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Carbon Tetrachloride	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Chlorobenzene	ND	0,0023	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Chlorodibromomethane	ND	0.0046	0_00080	mg/Kg dry	ī	Ū	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Chloroethane	ND	0.023	0.0017	mg/Kg dry	1	U J	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Chloroform	ND	0,0046	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Chloromethane	ND	0.011	0,0010	mg/Kg dry	1	L-04, V-05, U.T	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
-Chlorotoluene	ND	0,0023	0.00091	mg/Kg dry	(1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
-Chlorotoluene	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,2-Dibromo-3-chloropropane (DBCP)	ND	0.0023	0,0013	mg/Kg dry	1	∨ 1 6, U 🦰	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,2-Dibromoethane (EDB)	ND	0.0011	0,0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Dibromomethane	ND	0.0023	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,2-Dichlorobenzene	ND	0.0023	0.00080	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,3-Dichlorobenzene	ND	0.0023	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,4-Dichlorobenzene	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
rans-1,4-Dichloro-2-butene	ND	0.0046	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.023	0,0015	mg/Kg dry	1	V=05: U J	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,1-Dichloroethane	ND	0.0023	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,2-Dichloroethane	ND	0.0023	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,1-Dichloroethylene	ND	0.0046	0,0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
sis-1,2-Dichloroethylene	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
rans-1,2-Dichloroethylene	ND	0.0023	0,0010	mg/Kg dry	31	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,2-Dichloropropane	ND	0.0023	0.0015	mg/Kg dry	t	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,3-Dichloropropane	ND	0,0011	0.00080	mg/Kg dry	1)	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
2,2-Dichloropropane	ND	0,0023	0.0010	mg/Kg dry	1/	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
,1-Dichloropropene	ND	0.0023	0.0010	ing/Kg dry	iì	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
cis-1,3-Dichloropropene	ND	0.0011	0.00080	mg/Kg dry	1)	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
тans-1,3-Dichloropropene	ND	0.0011	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Diethyl Ether	ND	0,023	0.0021	mg/Kg dry	Ŷ	V=05: U .T	SW-846 8260C	6/18/13	6/18/13 9:55	MFF

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013 Field Sample #: T1-SS01 (0-8in)

Sampled: 6/11/2013 10:30

Sample ID: 13F0478-04 Sample Matrix: Soil

Volatile O	rganic	Compounds	bv	GC/MS
------------	--------	-----------	----	-------

Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0,0011	0,00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,4-Dioxane	ND	0.11	0,066	mg/Kg dry	12	V=16, U €	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Ethylbenzene	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Hexachlorobutadiene	ND	0,0023	0_0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
2-Hexanone (MBK)	ND	0.046	0.012	mg/Kg dry	1	υJ	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Isopropylbenzene (Cumene)	ND	0.0023	0,00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0046	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Methylene Chloride	0.012	0.023	0.0081	mg/Kg dry	ï	J	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.046	0.0087	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Naphthalene	ND	0.0046	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
n-Propylbenzene	ND	0.0023	0.00080	mg/Kg dry	ĩ	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Styrene	ND	0.0023	0,00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,1,1,2-Tetrachloroethane	ND	0.0023	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,1,2,2-Tetrachloroethane	ND	0.0011	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Tetrachloroethylene	ND	0.0023	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Tetrahydrofuran	ND	0.011	0.0025	mg/Kg dry	1	V=16; UR	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Тоlиепе	ND	0.0023	0.00091	mg/Kg dry	1	υ	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,2,3-Trichlorobenzene	ND	0.0023	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,2,4-Trichlorobenzene	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,3,5-Trichlorobenzene	ND	0,0023	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,1,1-Trichloroethane	ND	0,0023	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,1,2-Trichloroethane	ND	0.0023	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Trichloroethylene	ND	0,0023	0.0010	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Trichlorofluoromethane (Freon 11)	ND	0.011	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,2,3-Trichloropropane	ND	0.0023	0.0013	mg/Kg dry	Ĩ	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.011	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,2,4-Trimethylbenzene	ND	0.0023	0.00091	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
1,3,5-Trimethylbenzene	ND	0.0023	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Vinyl Chloride	ND	0.011	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
m+p Xylene	ND	0.0046	0.0019	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
o-Xylene	ND	0.0023	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:55	MFF
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		106		70-130					6/18/13 9:55	
Toluene-d8 4-Bromofluorobenzene		101 101		70-130		7	1 -		6/18/13 9:55	
4-ыныниоговепиене		101		70-130		2/2	11.1		6/18/13 9:55	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-SS01 (0-8in)

Sampled: 6/11/2013 10:30

			Semivola	tile Organic Co	ompounds by	GC/MS	1217			
						1	3013	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	0.20	0,095	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Acenaphthylene	0.099	0.20	0,095	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Acetophenone	ND	0.40	0.14	mg/Kg dry	ĵ.	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Aniline	ND	0.40	0_13	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Anthracene	0_19	0_20	0.095	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Benzidine	ND	0.40	0,095	mg/Kg dry	1	V-20, U J	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Benzo(a)anthracene	1.0	0.20	0,095	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Benzo(a)pyrene	1.0	0,20	0,11	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Benzo(b)fluoranthene	1.4	0.20	0,11	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Benzo(g,h,i)perylene	0.37	0.20	0.083	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Benzo(k)fluoranthene	0.49	0.20	0.12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Benzoic Acid	ND	1.2	0.18	mg/Kg dry	1	1 1.04, U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Bis(2-chloroethoxy)methane	ND	0.40	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Bis(2-chloroethyl)ether	ND	0.40	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Bis(2-chloroisopropyl)ether	ND	0.40	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Bis(2-Ethylhexyl)phthalate	ND	0.40	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
4-Bromophenylphenylether	ND	0.40	0.083	mg/Kg dry	38	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Butylbenzylphthalate	ND	0.78	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Carbazole	0.10	0.20	0,095	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
4-Chloroaniline	ND	0.78	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
4-Chloro-3-methylphenol	ND	0.78	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2-Chloronaphthalene	ND	0,40	0.083	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2-Chlorophenol	ND	0.40	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
4-Chlorophenylphenylether	ND	0.40	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Chrysene	1,0	0_20	0,095	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Dibenz(a,h)anthracene	0,11	0,20	0.083	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Dibenzofuran	ND	0.40	0.095	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Di-n-butylphthalate	ND	0.40	0,095	mg/Kg dry	.1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
1,2-Dichlorobenzene	ND	0.40	0.095	mg/Kg dry	31	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
1,3-Dichlorobenzene	ND	0.40	0.095	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
1,4-Dichlorobenzene	ND	0.40	0,095	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
3,3-Dichlorobenzidine	ND	0,20	0.071	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2,4-Dichlorophenol	ND	0.40	0.095	mg/Kg dry	ì	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Diethylphthalate	ND	0.40	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2,4-Dimethylphenol	ND	0.40	0.083	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Dimethylphthalate	ND	0.78	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
4,6-Dinitro-2-methylphenol	ND	0.40	0.048	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2,4-Dinitrophenol	ND	0.78	0048	mg/Kg dry	1	- V-19; U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2,4-Dinitrotoluene	ND	0.40	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2,6-Dinitrotoluene	ND	0.40	0,13	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Di-n-octylphthalate	ND	0.78	0,15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.40	0.095	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Fluoranthene	1.5	0,20	0.083	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Fluorene	ND	0,20	0,11	mg/Kg dry	_1_	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SS01 (0-8in)

Sampled: 6/11/2013 10:30

			Semivol	latile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	0:40	0,095	mg/Kg dry	ï	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Hexachlorobutadiene	ND	0.40	0,071	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Hexachlorocyclopentadiene	ND	0.78	0.071	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Hexachloroethane	ND	0.40	0.095	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Indeno(1,2,3-cd)pyrene	0_45	0.20	0.083	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Isophorone	ND	0.40	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16;42	CMR
1-Methylnaphthalene	ND	0.20	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2-Methylnaphthalene	ND	0.20	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2-Methylphenol	ND	0.40	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
3/4-Methylphenol	ND	0.40	0.19	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Naphthalene	0.088	0.20	0.083	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2-Nitroaniline	ND	0.40	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
3-Nitroaniline	ND	0.40	0.12	mg/Kg dry	ì	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
4-Nitroaniline	ND	0.40	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Nitrobenzene	ND	0.40	0,083	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2-Nitrophenol	ND	0,40	0,059	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
4-Nitrophenol	ND	0.78	0.048	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
N-Nitrosodimethylamine	ND	0.40	0.071	mg/Kg dry	ì	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
N-Nitrosodiphenylamine	ND	0.40	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
N-Nitrosodi-n-propylamine	ND	0.40	0,15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Pentachloronitrobenzene	ND	0.40	0.13	mg/Kg dry	ï	₩-16, U R	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Pentachlor ophenol	ND	0.40	0.071	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Phenanthrene	0.96	0,20	0.095	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Phenol	ND	0.40	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Pyrene	1,6	0.20	0.12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Pyridine	ND	0.40	0.095	mg/Kg dry	ä	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
1,2,4,5-Tetrachlorobenzene	ND	0.40	0.083	mg/Kg dry	i	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
1,2,4-Trichlorobenzene	ND	0.40	0.071	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2,4,5-Trichlorophenol	ND	0.40	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
2,4,6-Trichlorophenol	ND	0.40	0.083	mg/Kg dry	1.	U	SW-846 8270D	6/17/13	6/18/13 16:42	CMR
Surrogates		% Rec	overy	Recovery Limits	s	Flag				
2-Fluorophenol		76.7		30-130					6/18/13 16:42	
Phenol-d6		86.2		30-130		γI_1	10		6/18/13 16:42	
Nitrobenzene-d5		79.4		30-130		2/3	7		6/18/13 16:42	
2-Fluorobiphenyl		78.5		30-130			2		6/18/13 16:42	
2,4,6-Tribromophenol		53.8		30-130					6/18/13 16:42	
p-Terphenyl-d14		74.8		30-130					6/18/13 16:42	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SS01 (0-8in)

Sampled: 6/11/2013 10:30

			Poly	chlorinated Bipl	nenyls By GC/	ECD				
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.023	0.0072	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1221 [1]	ND	0.023	0.023	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1232 [1]	ND	0.023	0.014	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1242 [1]	ND	0,023	0.012	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1248 [1]	ND	0.023	0.014	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1254 [1]	ND	0.023	0.010	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1260 [1]	0.041	0.023	0.011	mg/Kg dry	1		SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1262 [1]	ND	0.023	0.0096	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Aroclor-1268 [1]	ND	0,023	0,014	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:01	MJC
Surrogates		% Reco	very	Recovery Limit	ts	Flag				
Decachlorobiphenyl [1]		75.2		30-150					6/27/13 11:01	
Decachlorobiphenyl [2]		77.6		30-150					6/27/13 11:01	
Tetrachloro-m-xylene [1]		72.3		30-150					6/27/13 11:01	
Tetrachloro-m-xylene [2]		77.4		30-150					6/27/13 11:01	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SS01 (0-8in)

Sampled: 6/11/2013 10:30

Sample ID: 13F0478-04 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time		
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		84.1		% Wt	1		SM 2540G	6/17/13	6/18/13 9:32	MLA

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SS03 (0-8in)

Sampled: 6/11/2013 14:25

	Volatile Organic Compounds by GC/MS 7 3 13 Date Date/Time										
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst	
Acetone	1,1	0,12	0.028	mg/Kg dry	î:	1-04- J	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Acrylonitrile	ND	0.0071	0.0030	mg/Kg dry	1	V-16-U R	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
tert-Amyl Methyl Ether (TAME)	ND	0_0024	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Benzene	ND	0.0024	0.00083	mg/Kg dry	ï	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Bromobenzene	ND	0,0024	0,00095	mg/Kg dry	1:	υ	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Bromochloromethane	ND	0.0024	0.0017	mg/Kg dry	ï	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Bromodichloromethane	ND	0.0024	0.00071	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Bromoform	ND	0.0024	0.0017	mg/Kg dry	1	υ	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Bromomethane	ND	0.012	0.0020	mg/Kg dry	1	U J	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
2-Butanone (MEK)	ND	0.047	0,021	mg/Kg dry	Ĩ	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
tert-Butyl Alcohol (TBA)	ND	0.047	0,025	mg/Kg dry	1	-V-16, U R	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
n-Butylbenzene	ND	0.0024	0,00083	mg/Kg dry	1	υ	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
sec-Butylbenzene	ND	0.0024	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
tert-Butylbenzene	ND	0.0024	0.0011	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
tert-Butyl Ethyl Ether (TBEE)	ND	0.0012	0,00071	mg/Kg dry	ī	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Carbon Disulfide	ND	0.024	0.0039	mg/Kg dıy	1	L-04, U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Carbon Tetrachloride	ND	0.0024	0.00095	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Chlorobenzene	ND	0.0024	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Chlorodibromomethane	ND	0.0047	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Chloroethane	ND	0.024	0.0018	mg/Kg dry	1	υ 🦵	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Chloroform	ND	0_0047	0_00083	mg/Kg dry	ï	υ	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Chloromethane	ND	0.012	0.0011	mg/Kg dry	1	L-04, V-05, U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
2-Chlorotoluene	ND	0.0024	0.00095	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
4-Chlorotoluene	ND	0,0024	0,00095	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0024	0.0013	mg/Kg dry	1	V-16, U /	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,2-Dibromoethane (EDB)	ND	0,0012	0,0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Dibromomethane	ND	0.0024	0.00071	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,2-Dichlorobenzene	ND	0.0024	0,00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,3-Dichlorobenzene	ND	0,0024	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,4-Dichlorobenzene	ND	0,0024	0.00095	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
trans-1,4-Dichloro-2-butene	ND	0.0047	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
Dichlorodifluoromethane (Freon 12)	ND	0.024	0,0015	mg/Kg dry	1	₩-03; U J	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,1-Dichloroethane	ND	0.0024	0_00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,2-Dichloroethane	ND	0,0024	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,1-Dichloroethylene	ND	0.0047	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
cis-1,2-Dichloroethylene	ND	0,0024	0_00095	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
trans-1,2-Dichloroethylene	ND	0.0024	0.0011	mg/Kg dry	1.	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,2-Dichloropropane	ND	0.0024	0.0015	mg/Kg dry	ũ	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
1,3-Dichloropropane	ND	0,0012	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
2,2-Dichloropropane	ND	0,0024	0,0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44		
1,1-Dichloropropene	ND	0,0024	0,0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF	
cis-1,3-Dichloropropene	ND	0.0012	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44		
trans-1,3-Dichloropropene	ND	0.0012	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44		
Diethyl Ether	ND	0,024	0,0021	mg/Kg dry	_1_	V-05, U	SW-846 8260C	6/18/13	6/18/13 11:44		
		.0		- 0 /	Pa	ge 27 of 133	32 B074595		6/13 14:1		

Project Location: Bronx PC Bldg I

Sample Description:

100

101

70-130

70-130

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-SS03 (0-8in)

2-SS03 (0-8in) Sampled: 6/11/2013 14:25

Sample ID: 13F0478-05 Sample Matrix: Soil

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS										
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.0012	0.00071	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,4-Dioxane	ND	0.12	0.068	mg/Kg dry	1	4-16,UR	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Ethylbenzene	ND	0.0024	0.00095	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Hexachlorobutadiene	ND	0.0024	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
2-Hexanone (MBK)	ND	0.047	0.013	mg/Kg dry	I	UJ	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Isopropylbenzene (Cumene)	ND	0.0024	0.00083	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0024	0,00095	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0,0047	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Methylene Chloride	ND	0,024	0.0084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.047	0_0090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Naphthalene	ND	0.0047	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
n-Propylbenzene	ND	0.0024	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Styrene	ND	0,0024	0,00071	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,1,1,2-Tetrachloroethane	ND	0,0024	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,1,2,2-Tetrachloroethane	ND	0;0012	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Tetrachloroethylene	ND	0,0024	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Tetrahydrofuran	ND	0,012	0,0026	mg/Kg dry	1	V-16,UR	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Toluene	ND	0.0024	0.00095	mg/Kg dry	1	U ,	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,2,3-Trichlorobenzene	ND	0.0024	0.00071	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,2,4-Trichlorobenzene	ND	0.0024	0,00095	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,3,5-Trichlorobenzene	ND	0.0024	0.00083	mg/Kg dry	i	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,1,1-Trichloroethane	ND	0.0024	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,1,2-Trichloroethane	ND	0,0024	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Trichloroethylene	ND	0.0024	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Trichlorofluoromethane (Freon 11)	ND	0,012	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,2,3-Trichloropropane	ND	0,0024	0.0013	mg/Kg dry	1.	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.012	0.0011	ing/Kg dry	1.	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,2,4-Trimethylbenzene	ND	0.0024	0.00095	mg/Kg dry	4	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
1,3,5-Trimethylbenzene	ND	0,0024	0,00071	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Vinyl Chloride	ND	0.012	0,0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
m+p Xylene	ND	0.0047	0,0020	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
o-Xylene	ND	0.0024	0.00083	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 11:44	MFF
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		105		70-130					6/18/13 11:44	

6/18/13 11:44 6/18/13 11:44

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SS03 (0-8in) Sampled: 6/11/2013 14:25

			Semivola	tile Organic C	ompounds by	GC/MS	2/30/13			
							1	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	0.15	0.21	0.097	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Acenaphthylene	ND	0.21	0.097	mg/Kg dry	I.	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Acetophenone	ND	0.41	0.14	mg/Kg dry	18	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Aniline	ND	0.41	0.13	mg/Kg dry	18	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Anthracene	0.31	0.21	0.097	mg/Kg dry	15		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Benzidine	ND	0.41	0.097	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Benzo(a)anthracene	0.99	0.21	0_097	mg/Kg dry	11		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
lenzo(a)pyrene	0.97	0.21	0.11	mg/Kg dry	1)		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Benzo(b)fluoranthene	1.2	0.21	0.11	mg/Kg dry	19		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
lenzo(g,h,i)perylene	0.71	0.21	0.084	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
lenzo(k)fluoranthene	0.49	0.21	0.12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Benzoic Acid	ND	1.2	0.18	mg/Kg dry	1	- 1-04 , U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
sis(2-chloroethoxy)methane	ND	0.41	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
sis(2-chloroethyl)ether	ND	0.41	0.12	mg/Kg dry	ī	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Bis(2-chloroisopropyl)ether	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Bis(2-Ethylhexyl)phthalate	ND	0_41	0.12	mg/Kg dry	Ī	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
-Bromophenylphenylether	ND	0,41	0.084	mg/Kg dry	#	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
utylbenzylphthalate	ND	0.80	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
'arbazole	0_16	0_21	0.097	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
-Chloroaniline	ND	0.80	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
-Chloro-3-methylphenol	ND	0_80	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
-Chloronaphthalene	ND	0.41	0.084	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
-Chlorophenol	ND	0.41	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
-Chlorophenylphenylether	ND	0.41	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Thrysene	0.99	0.21	0.097	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Dibenz(a,h)anthracene	0.19	0.21	0.084	ing/Kg dry	1	1	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Dibenzofuran	0.12	0.41	0.097	mg/Kg dry	1	Ј	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Di-n-butylphthalate	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,2-Dichlorobenzene	ND	0.41	0,097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,3-Dichlorobenzene	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,4-Dichlorobenzene	ND	0.41	0,097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,3-Dichlorobenzidine	ND	0.21	0.072	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,4-Dichlorophenol	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Diethylphthalate	ND	0.41	0.12	mg/Kg dry	4	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,4-Dimethylphenol	ND	0.41	0.084	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Dimethylphthalate	ND	0.80	0_12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,6-Dinitro-2-methylphenol	ND	0.41	0.048	mg/Kg dry	1	Ū	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,4-Dinitrophenol	ND	0.80	0.048	mg/Kg dry	1	- V-19, U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,4-Dinitrotoluene	ND	0.41	0.13	mg/Kg dry	.1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,6-Dinitrotoluene	ND	0.41	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Di-n-octylphthalate	ND	0.80	0_16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
,2-Diphenylhydrazine (as Azobenzene)	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
luoranthene	1.8	0.21	0.084	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
luorene	0.13	0.21	0.11	mg/Kg dry		J	SW-846 8270D 1332 B074595	6/17/13 01 07/2	6/19/13 13:27	CMR

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SS03 (0-8in)

Sampled: 6/11/2013 14:25

			Semivol	latile Organic Co	mpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobenzene	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Hexachlorobutadiene	ND	0.41	0.072	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Hexachlorocyclopentadiene	ND	0.80	0.072	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Hexachloroethane	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Indeno(1,2,3-cd)pyrene	0.79	0.21	0,084	mg/Kg dry	1.		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Isophorone	ND	0_41	0.12	mg/Kg dry	Ĭ.	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
1-Methylnaphthalene	0.14	0,21	0.12	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
2-Methylnaphthalene	0.16	0.21	0.12	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
2-Methylphenol	ND	0.41	0.16	mg/Kg dry	î	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
3/4-Methylphenol	ND	0.41	0_19	mg/Kg dry	ī	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Naphthalene	0.20	0.21	0.084	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
2-Nitroaniline	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
3-Nitroaniline	ND	0.41	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
4-Nitroaniline	ND	0.41	0,14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Nitrobenzene	ND	0.41	0.084	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
2-Nitrophenol	ND	0.41	0.060	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
4-Nitrophenol	ND	0,80	0.048	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
N-Nitrosodimethylamine	ND	0.41	0.072	mg/Kg dry	Ĩ	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
N-Nitrosodiphenylamine	ND	0.41	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
N-Nitrosodi-n-propylamine	ND	0.41	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Pentachloronitrobenzene	ND	0.41	0.13	mg/Kg dry	1	V-16, U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Pentachlorophenol	ND	0.41	0.072	mg/Kg dry	3	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Phenanthrene	1.4	0,21	0.097	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Phenol	ND	0.41	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Pyrene	2,2	0.21	0.12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Pyridine	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
1,2,4,5-Tetrachlorobenzene	ND	0.41	0.084	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
1,2,4-Trichlorobenzene	ND	0.41	0.072	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
2,4,5-Trichlorophenol	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
2,4,6-Trichlorophenol	ND	0,41	0,084	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 13:27	CMR
Surrogates		% Rec	overy	Recovery Limits	S	Flag				
2-Fluorophenol		64.0		30-130					6/19/13 13:27	
Phenol-d6		72,5		30-130		-10	la		6/19/13 13:27	
Nitrobenzene-d5		67.4		30-130		7/30	112		6/19/13 13:27	
2-Fluorobiphenyl		71.5		30-130			~C		6/19/13 13:27	
2,4,6-Tribromophenol		43.6		30-130					6/19/13 13:27	
p-Terphenyl-d14		97.1		30-130					6/19/13 13:27	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-SS03 (0-8in)

Sampled: 6/11/2013 14:25

			Polyc	chlorinated Biph	enyls By GC/	ECD				
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0,024	0.0073	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1221 [1]	ND	0.024	0.023	ıng/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1232 [1]	ND	0.024	0.015	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1242 [1]	ND	0.024	0.012	mg/Kg dry	Ĩ.	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1248 [1]	ND	0.024	0.014	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1254 [1]	ND	0.024	0.010	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1260 [2]	0.11	0.024	0.011	mg/Kg dry	1	5	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1262 [1]	ND	0.024	0.0097	mg/Kg dry	Ţ	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Aroclor-1268 [1]	ND	0.024	0.014	ing/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:14	MJC
Surrogates		% Reco	very	Recovery Limi	ts	Flag				
Decachlorobiphenyl [1]		68.5		30-150					6/27/13 11:14	
Decachlorobiphenyl [2]		73.9		30-150			2		6/27/13 11:14	
Tetrachloro-ın-xylene [1]		72.2		30-150		- 12	113		6/27/13 11:14	
Tetrachloro-m-xylene [2]		75.4		30-150		7 30	11/		6/27/13 11:14	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SS03 (0-8in)

Sampled: 6/11/2013 14:25

Sample ID: 13F0478-05 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		82.9		% Wt	i.		SM 2540G	6/17/13	6/18/13 9:32	MLA

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SB01 (0-4in)

Sampled: 6/12/2013 08:20

			Volatile	Organic Com	ipounds by G	C/MS	13013	ъ.	The state	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	0.25	0,099	0.023	mg/Kg dry	I	~ L-04 - J	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
crylonitrile	ND	0.0059	0.0025	mg/Kg dry	1	V-16, U R	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
ert-Amyl Methyl Ether (TAME)	ND	0.0020	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
enzene	ND	0,0020	0,00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
romobenzene	ND	0.0020	0.00079	mg/Kg dry	J	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
romochloromethane	ND	0.0020	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
romodichloromethane	ND	0.0020	0,00059	mg/Kg dry	1	Ŭ	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
romoform	ND	0.0020	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
romomethane	ND	0.0099	0.0017	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
-Butanone (MEK)	ND	0,039	0.017	mg/Kg dry	1	υJ	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
rt-Butyl Alcohol (TBA)	ND	0.039	0.021	ıng/Kg dry	1	- V-16 , U /₹	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Butylbenzene	ND	0.0020	0.00069	ıng/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
ec-Butylbenzene	ND	0.0020	0.00099	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
ert-Butylbenzene	ND	0,0020	0,00089	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
ert-Butyl Ethyl Ether (TBEE)	ND	0.00099	0.00059	mg/Kg dry	1	Ū	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
arbon Disulfide	ND	0.020	0.0033	mg/Kg dry	1	45-04, U J	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
arbon Tetrachloride	ND	0.0020	0,00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
hlorobenzene	ND	0.0020	0,00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
hlorodibromomethane	ND	0.0039	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
hloroethane	ND	0.020	0.0015	mg/Kg dry	1	U J	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
hloroform	ND	0.0039	0.00069	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
hloromethane	ND	0.0099	0.00089	mg/Kg dry	1	V-03, L-04, U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
-Chlorotoluene	ND	0.0020	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
-Chlorotoluene	ND	0.0020	0.00079	ıng/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,2-Dibromo-3-chloropropane (DBCP)	ND	0.0020	0.0011	mg/Kg dry	1	V-16, U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,2-Dibromoethane (EDB)	ND	0.00099	0.00099	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Dibromomethane	ND	0,0020	0.00059	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,2-Dichlorobenzene	ND	0.0020	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,3-Dichlorobenzene	ND	0,0020	0,00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,4-Dichlorobenzene	ND	0.0020	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
rans-1,4-Dichloro-2-butene	ND	0.0039	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Pichlorodifluoromethane (Freon 12)	ND	0.020	0.0013	mg/Kg dry	1	V-05, U J	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,1-Dichloroethane	ND	0.0020	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,2-Dichloroethane	ND	0,0020	0.0013	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,1-Dichloroethylene	ND	0.0039	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
is-1,2-Dichloroethylene	ND	0.0020	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
rans-1,2-Dichloroethylene	ND	0.0020	0.00089	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,2-Dichloropropane	ND	0,0020	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,3-Dichloropropane	ND	0,00099	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,2-Dichloropropane	ND	0,0020	0.00089	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
,1-Dichloropropene	ND	0.0020	0.00089	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
is-1,3-Dichloropropene	ND	0.00099	0.00069	mg/Kg dry	l	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
rans-1,3-Dichloropropene	ND	0.00099	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Diethyl Ether	ND	0.020	0.0018	mg/Kg dry	1	Y=05: U J	SW-846 8260C	6/18/13	6/18/13 12:12	MFF

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SB01 (0-4in)

Sampled: 6/12/2013 08:20

			Volatil	e Organic Com	pounds by G	C/MS	12113			
						7	13.11.2	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.00099	0.00059	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,4-Dioxane	ND	0.099	0.057	mg/Kg dry	1)	¥-16, U / R	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Ethylbenzene	ND	0.0020	0.00079	mg/Kg dry	10	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Hexachlorobutadiene	ND	0.0020	0.00099	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
2-Hexanone (MBK)	ND	0.039	0.011	mg/Kg dry	1)	n 11	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Isopropylbenzene (Cumene)	ND	0_0020	0.00069	mg/Kg dry	E	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
p-IsopropyltoIuene (p-Cymene)	ND	0.0020	0.00079	mg/Kg dıy	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0039	0,00089	mg/Kg dry	10	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Methylene Chloride	0.010	0,020	0_0070	mg/Kg dry	1	J	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.039	0_0075	mg/Kg dry	1	υ	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Naphthalene	ND	0.0039	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
n-Propylbenzene	ND	0.0020	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Styrene	ND	0,0020	0.00059	mg/Kg dry	1.	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,1,1,2-Tetrachloroethane	ND	0.0020	0.00089	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,1,2,2-Tetrachloroethane	ND	0.00099	0.00089	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Tetrachloroethylene	ND	0.0020	0.0013	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Tetrahydrofuran	ND	0.0099	0.0022	mg/Kg dry	1	V=16; U R	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Toluene	ND	0.0020	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,2,3-Trichlorobenzene	ND	0.0020	0,00059	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,2,4-Trichlorobenzene	ND	0.0020	0,00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,3,5-Trichlorobenzene	ND	0,0020	0,00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,1,1-Trichloroethane	ND	0.0020	0,00099	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,1,2-Trichloroethane	ND	0.0020	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Trichloroethylene	ND	0.0020	0.00089	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0099	0,0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,2,3-Trichloropropane	ND	0.0020	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.0099	0_00089	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,2,4-Trimethylbenzene	ND	0.0020	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
1,3,5-Trimethylbenzene	ND	0,0020	0.00059	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Vinyl Chloride	ND	0.0099	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
m+p Xylene	ND	0,0039	0.0017	mg/Kg dry	Ĩ	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
o-Xylene	ND	0,0020	0.00069	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:12	MFF
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		111		70-130					6/18/13 12:12	
Toluene-d8		101		70-130					6/18/13 12:12	
4-Bromofluorobenzene		99.4		70-130					6/18/13 12:12	

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SB01 (0-4in)

Sampled: 6/12/2013 08:20

			Semivola	tile Organic C	ompounds by	GC/MS	7/30/13 N		D	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.19	0.091	mg/Kg dry	1	υ	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Acenaphthylene	ND	0.19	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Acetophenone	ND	0,39	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Aniline	ND	0.39	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Anthracene	ND	0.19	0,091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Benzidine	ND	0.39	0,091	mg/Kg dry	1	V-20, U J	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Benzo(a)anthracene	0.37	0.19	0.091	mg/Kg dry	Î.	-	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Benzo(a)pyrene	0.45	0.19	0.10	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Benzo(b)fluoranthene	0.58	0.19	0.10	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Benzo(g,h,i)perylene	0.21	0.19	0.080	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Benzo(k)fluoranthene	0,21	0.19	0.11	mg/Kg dry	1.		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Benzoic Acid	ND	1,1	0.17	mg/Kg dry	1	L-04, U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Bis(2-chloroethoxy)methane	ND	0.39	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Bis(2-chloroethyl)ether	ND	0.39	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Bis(2-chloroisopropyl)ether	ND	0,39	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Bis(2-Ethylhexyl)phthalate	ND	0.39	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
4-Bromophenylphenylether	ND	0.39	0.080	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Butylbenzylphthalate	ND	0.75	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Carbazole	ND	0.19	0.091	ıng/Kg dry	Ī	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
4-Chloroaniline	ND	0.75	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
4-Chloro-3-methylphenol	ND	0,75	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2-Chloronaphthalene	ND	0,39	0,080	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2-Chlorophenol	ND	0,39	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
4-Chlorophenylphenylether	ND	0.39	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Chrysene	0.38	0.19	0.091	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Dibenz(a,h)anthracene	ND	0.19	0.080	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Dibenzofuran	ND	0.39	0.091	mg/Kg dry	ĭ	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Di-n-butylphthalate	ND	0.39	0.091	mg/Kg dry	1	υ	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
1,2-Dichlorobenzene	ND	0,39	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
1,3-Dichlorobenzene	ND	0.39	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
1,4-Dichlorobenzene	ND	0.39	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
3,3-Dichlorobenzidine	ND	0.19	0.068	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2,4-Dichlorophenol	ND	0.39	0,091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Diethylphthalate	ND	0.39	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2,4-Dimethylphenol	ND	0.39	0.080	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Dimethylphthalate	ND	0.75	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
4,6-Dinitro-2-methylphenol	ND	0.39	0.046	ıng/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2,4-Dinitrophenol	ND	0,75	0.046	mg/Kg dry	1	∀-19, U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2,4-Dinitrotoluene	ND	0.39	0.13	mg/Kg dry	1.	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2,6-Dinitrotoluene	ND	0.39	0.13	mg/Kg dry	1.	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Di-n-octylphthalate	ND	0.75	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.39	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Fluoranthene	0,58	0.19	0.080	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 17:52	
Fluorene	ND	0.19	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
					Pac	ne 35 of 1	332 B074595	01 07/2	6/13 14:1	4:40

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013 Field Sample #: T1-SB01 (0-4in)

Sampled: 6/12/2013 08:20

84.9

30-130

Sample ID: 13F0478-06 nole Matrix: Soil

p-Terphenyl-d14

Sample Matrix: Soil										
			Semivol	atile Organic Co	mpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobenzene	ND	0.39	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Hexachlorobutadiene	ND	0.39	0.068	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Hexachlorocyclopentadiene	ND	0.75	0.068	mg/Kg dry	I)	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Hexachloroethane	ND	0.39	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Indeno(1,2,3-cd)pyrene	0.24	0.19	0.080	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Isophorone	ND	0.39	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
I-Methylnaphthalene	ND	0.19	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2-Methylnaphthalene	ND	0.19	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2-Methylphenol	ND	0.39	0,15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
3/4-Methylphenol	ND	0.39	0.18	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Naphthalene	ND	0.19	0.080	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2-Nitroaniline	ND	0.39	0.11	mg/Kg dry	T.	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
3-Nitroaniline	ND	0,39	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
4-Nitroaniline	ND	0.39	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Nitrobenzene	ND	0.39	0,080	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2-Nitrophenol	ND	0.39	0,057	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
4-Nitrophenol	ND	0.75	0,046	mg/Kg dry	1	υ	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
N-Nitrosodimethylamine	ND	0.39	0.068	ıng/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
N-Nitrosodiphenylamine	ND	0.39	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
N-Nitrosodi-n-propylamine	ND	0.39	0,15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Pentachloronitrobenzene	ND	0.39	0.13	mg/Kg dry	1	₩-16, U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Pentachlorophenol	ND	0.39	0.068	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Phenanthrene	0.38	0.19	0,091	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Phenol	ND	0.39	0.10	mg/Kg dry	ī	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Pyrene	0,65	0,19	0.11	mg/Kg dry	3		SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Pyridine	ND	0.39	0.091	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
1,2,4,5-Tetrachlorobenzene	ND	0.39	0.080	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
1,2,4-Trichlorobenzene	ND	0.39	0.068	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2,4,5-Trichlorophenol	ND	0,39	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
2,4,6-Trichlorophenol	ND	0,39	0.080	mg/Kg dry	I	U	SW-846 8270D	6/17/13	6/18/13 17:52	CMR
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
2-Fluorophenol		84.5		30-130					6/18/13 17:52	
Phenol-d6		96.3		30-130					6/18/13 17:52	
Nitrobenzene-d5		81.5		30-130		7/30	(3		6/18/13 17:52	
2-Fluorobiphenyl 2,4,6-Tribromophenol		82.6 62.7		30-130 30-130		1130	12.		6/18/13 17:52 6/18/13 17:52	
2,4,0-111010Httphenot		02.7		30-130			~		0/10/13 17.32	

6/18/13 17:52

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SB01 (0-4in)

Sampled: 6/12/2013 08:20

Sample ID: 13F0478-06 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		87.5		% Wt	Ť		SM 2540G	6/17/13	6/18/13 9:32	MLA

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SB01 (5-10ft)

Sampled: 6/12/2013 08:25

						7	3013	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	1.9	0.12	0,028	mg/Kg dry	1	·- L-04	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
acrylonitrile	ND	0.0073	0.0030	mg/Kg dry	1	-V-16, U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
ert-Amyl Methyl Ether (TAME)	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Benzene	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Bromobenzene	ND	0_0024	0.00097	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Bromochloromethane	ND	0.0024	0.0017	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Bromodichloromethane	ND	0.0024	0,00073	mg/Kg dry	T.	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Bromoform	ND	0.0024	0.0017	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Bromomethane	ND	0,012	0.0021	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
-Butanone (MEK)	ND	0.049	0,021	mg/Kg dry	Ě	v J	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
ert-Butyl Alcohol (TBA)	ND	0,049	0,025	mg/Kg dry	1	-V-16,-U R	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Butylbenzene	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
ec-Butylbenzene	ND	0.0024	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
ert-Butylbenzene	ND	0.0024	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
ert-Butyl Ethyl Ether (TBEE)	ND	0,0012	0,00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Carbon Disulfide	ND	0_024	0.0040	mg/Kg dry	1	L-04, U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Carbon Tetrachloride	ND	0.0024	0.00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Chlorobenzene	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Chlorodibromomethane	ND	0.0049	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Chloroethane	ND	0,024	0.0018	mg/Kg dry	1	υ . ፓ	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Chloroform	ND	0.0049	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Chloromethane	ND	0.012	0.0011	mg/Kg dry	1	L-04, V-95, U J	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
-Chlorotoluene	ND	0.0024	0_00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
-Chlorotoluene	ND	0.0024	0.00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,2-Dibromo-3-chloropropane (DBCP)	ND	0,0024	0,0013	mg/Kg dry	1	V-16,U /	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,2-Dibromoethane (EDB)	ND	0,0012	0,0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Dibromomethane	ND	0.0024	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,2-Dichlorobenzene	ND	0.0024	0.00085	mg/Kg dry	3	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,3-Dichlorobenzene	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,4-Dichlorobenzene	ND	0.0024	0.00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
rans-1,4-Dichloro-2-butene	ND	0,0049	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.024	0.0016	mg/Kg dry	1	- V=05, ;U ∫	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,l-Dichloroethane	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,2-Dichloroethane	ND	0.0024	0.0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,1-Dichloroethylene	ND	0.0049	0,0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
is-1,2-Dichloroethylene	ND	0.0024	0.00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
rans-1,2-Dichloroethylene	ND	0.0024	0.0011	mg/Kg dry	31	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,2-Dichloropropane	ND	0.0024	0.0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,3-Dichloropropane	ND	0.0012	0.00085	mg/Kg dry	1.	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,2-Dichloropropane	ND	0.0024	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
,1-Dichloropropene	ND	0:0024	0.0011	mg/Kg dry	Ĭ	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
sis-1,3-Dichloropropene	ND	0.0012	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
rans-1,3-Dichloropropene	ND	0.0012	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Diethyl Ether	ND	0.024	0.0022	mg/Kg dry	1	V:05: U J	SW-846.8260C	6/18/13	6/18/13 12:39	MFF

Sample Description:

Work Order: 13F0478

Project Location: Bronx PC Bldg 1 Date Received: 6/13/2013

Field Sample #: T1-SB01 (5-10ft)

SB01 (5-10ft) Sampled: 6/12/2013 08:25

			Volațil	e Organic Com	pounds by G	C/MS	13-13			
						7	13-10	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.0012	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,4-Dioxane	ND	0.12	0.070	mg/Kg dry	1	V-16, U €	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Ethylbenzene	ND	0,0024	0.00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Hexachlorobutadiene	ND	0.0024	0.0012	ıng/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
2-Hexanone (MBK)	ND	0,049	0.013	mg/Kg dry	12	U 📑	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Isopropylbenzene (Cumene)	ND	0.0024	0.00085	mg/Kg dıy	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
p-Isopropyltoluene (p-Cymene)	ND	0_0024	0.00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0049	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Methylene Chloride	0,020	0,024	0.0086	mg/Kg dry	1	J	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
4-Methyl-2-pentanone (MIBK)	ND	0,049	0.0092	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Naphthalene	0.010	0,0049	0.00085	mg/Kg dry	1		SW-846 8260C	6/18/13	6/18/13 12:39	MFF
n-Propylbenzene	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Styrene	0,0049	0,0024	0.00073	mg/Kg dry	1		SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,1,1,2-Tetrachloroethane	ND	0.0024	0.0011	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,1,2,2-Tetrachloroethane	ND	0.0012	0.0011	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Tetrachloroethylene	ND	0.0024	0.0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Tetrahydrofuran	ND	0.012	0.0027	mg/Kg dry	1	¥-16, U /2	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Toluene	ND	0.0024	0,00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,2,3-Trichlorobenzene	ND	0.0024	0,00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,2,4-Trichlorobenzene	ND	0.0024	0,00097	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,3,5-Trichlorobenzene	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,1,1-Trichloroethane	ND	0.0024	0,0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,1,2-Trichloroethane	ND	0.0024	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Trichloroethylene	ND	0.0024	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Trichlorofluoromethane (Freon 11)	ND	0.012	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,2,3-Trichloropropane	ND	0.0024	0.0013	mg/Kg dry	ī	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.012	0.0011	mg/Kg dry	J.	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,2,4-Trimethylbenzene	0,0016	0,0024	0.00097	mg/Kg dry	1	J	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
1,3,5-Trimethylbenzene	ND	0.0024	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Vinyl Chloride	ND	0.012	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
m+p Xylene	ND	0.0049	0.0021	mg/Kg dry	ĭ	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
o-Xylene	ND	0.0024	0.00085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 12:39	MFF
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		108		70-130					6/18/13 12:39	
Toluene-d8		102		70-130					6/18/13 12:39	
4-Bromofluorobenzene		103		70-130					6/18/13 12:39	

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SB01 (5-10ft)

Sampled: 6/12/2013 08:25

Sample Flags: DL-03			Semitona	atile Organic C	ompounds by	GC/M3	7/3-113	ъ.	D . / //	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	21	2,0	1.0	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Acenaphthylene	1.4	2,0	0.98	mg/Kg dry	10	J	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Acetophenone	ND	4.0	0.98	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Aniline	ND	4.0	3,1	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Anthracene	29	2.0	1.2	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Benzidine	ND	7.9	5.5	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Benzo(a)anthracene	70	20	9.2	mg/Kg dry	100		SW-846 8270D	6/17/13	6/20/13 15:48	CMR
Benzo(a)pyrene	70	20	7,1	mg/Kg dry	100		SW-846 8270D	6/17/13	6/20/13 15:48	CMR
Benzo(b)fluoranthene	77	20	18	mg/Kg dry	100		SW-846 8270D	6/17/13	6/20/13 15:48	CMR
Benzo(g,h,i)perylene	25	2.0	1.6	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Benzo(k)fluoranthene	23	2,0	1_8	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Benzoic Acid	ND	12	11	mg/Kg dry	10	- L-04 , U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Bis(2-chloroethoxy)methane	ND	4.0	1.5	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Bis(2-chloroethyl)ether	ND	4.0	1.6	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Bis(2-chloroisopropyl)ether	ND	4.0	1,6	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Bis(2-Ethylhexyl)phthalate	ND	4.0	0.90	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
1-Bromophenylphenylether	ND	4.0	1.0	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Butylbenzylphthalate	ND	4_0	1.6	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Carbazole	10	2.0	1,5	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
4-Chloroaniline	ND	7,9	2.0	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
1-Chloro-3-methylphenol	ND	7.9	1.7	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2-Chloronaphthalene	ND	4.0	1.3	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2-Chlorophenol	ND	4.0	1.2	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
4-Chlorophenylphenylether	ND	4.0	1,4	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Chrysene	62	20	13	mg/Kg dry	100		SW-846 8270D	6/17/13	6/20/13 15:48	CMR
Dibenz(a,h)anthracene	8.1	2.0	1,1	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Dibenzofuran	8.5	4.0	0.94	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Di-n-butylphthalate	ND	4.0	1.7	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
1,2-Dichlorobenzene	ND	4.0	0.81	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
1,3-Dichlorobenzene	ND	4.0	0.95	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
1,4-Dichlorobenzene	ND	4.0	1.0	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
3,3-Dichlorobenzidine	ND	2.0	1.9	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2,4-Dichlorophenol	ND	4_0	1.2	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Diethylphthalate	ND	4.0	1.4	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2,4-Dimethylphenol	ND	4.0	1,2	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Dimethylphthalate	ND	4.0	1.6	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
4,6-Dinitro-2-methylphenol	ND	4.0	1.7	mg/Kg dry	10	υ	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2,4-Dinitrophenol	ND	7.9	4.0	mg/Kg dry	10	V-19, U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2,4-Dinitrotoluene	ND	4.0	1.6	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2,6-Dinitrotoluene	ND	4.0	1.3	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Di-n-octylphthalate	ND	8.0	5.5	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	4.0	1.9	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Fluoranthene	130	20	18	mg/Kg dry	100		SW-846 8270D	6/17/13	6/20/13 15:48	CMR
Fluorene	18	2.0	1.6	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SB01 (5-10ft)

Sampled: 6/12/2013 08:25

Hexachlorobenizene ND 4,0 1,8 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Hexachlorobenderiene ND 4,0 1,3 ing/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Hexachlorocyclepentadiene ND 4,0 2,7 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Hexachlorocyclepentadiene ND 4,0 1,1 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene 32 2,0 1,3 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,1 mg/kg dry 10 SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,1 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,3 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,3 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,3 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,3 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,8 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,8 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,1 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,1 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene ND 4,0 1,2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16.24 CN Indexo(1,2,3-cd)pyrene	Sample Flags: DL-03			Semivo	latile Organic Co	ompounds by	GC/MS	785			
Recombinocherusers Recombination Recomb							2	130/13	Date	Date/Time	
Heasehbrotherines	Analyte	Results	RL	DL	Units	Dilution	Flag	1			Analyst
Reseath/forespelopentations	Hexachlorobenzene	ND	4_0	1.8	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Resachborosylopentadiene	Hexachlorobutadiene	ND	4.0	1.3	ing/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Heaverline	Hexachlorocyclopentadiene	ND	4.0			10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Indianci (1,2,1-cd) pyene 32 2,0 1,3 mg/Kg dy 10 U SW-846 82700 611713 61913 16.24 CL Inspinence	Hexachloroethane					10		SW-846 8270D		6/19/13 16:24	CMR
Incomponent							2				CMR
Companiement Comp							11				CMR
2-Methylphenol 13 2,0 1,1 mg/Kg dry 10 U SW-846 82700 61713 61971 16:24 CA							Ō				CMR
2-Methylphenel ND 4.0 1.3 mg/ks dry 10 U SW-846 8270D 61713 619713 16:24 CN											
34-Methylphenol ND 4,0 2,2 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA Naphthalene 16 2,0 0,89 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 2-Nitroaniline ND 4,0 2,8 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroaniline ND 4,0 1,8 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroaniline ND 4,0 1,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroaniline ND 4,0 1,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroaniline ND 4,0 1,2 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroaniline ND 4,0 1,2 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroaniline ND 7,9 7,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 1,5 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 1,5 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 1,5 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 1,5 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 1,5 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 1,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 1,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 0,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 0,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 0,1 mg/kg dry 10 U SW-846 82700 61/713 61/913 16:24 CA 3-Nitroandimethylamine ND 4,0 0,1 mg/kg dry 10 U SW-846 82700 61/71											CMR
Name	2-Methylphenol	ND	4.0	1.3	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2-Nitroaniline ND 4,0 2,8 mg/Kg dry 10 U SW-846 8270D 61713 61913 16-24 CA	3/4-Methylphenol	ND	4.0	2.2	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
3-Nitroaniline ND 4,0 1,8 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-18 CN-1	Naphthalene	16	2.0	0.89	mg/Kg dry	10		SW-846 8270D	6/17/13	6/19/13 16:24	CMR
4-Nitroanitine ND 4.0 2.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNitrobenzene ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNitrobenel ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNitrobenel ND 7.9 7.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNitrobenel ND 4.0 1.6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNitrobenel ND 4.0 1.6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0 1.2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CNITROBENE ND 4.0	2-Nitroaniline	ND	4.0	2.8	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Nitrobenzene ND 4.0 1.1 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 2-Nitrophenol ND 4.0 1.2 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrophenol ND 7.9 7.1 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrophenol ND 4.0 1.6 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodimetylamine ND 4.0 1.9 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodimetylamine ND 4.0 1.9 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.9 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.3 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.13 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.16 mg/kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.1 mg/kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.1 mg/kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.1 mg/kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.1 mg/kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 1.1 mg/kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.98 mg/kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CD 4-Nitrosodim-propylamine ND 4.0 0.	3-Nitroaniline	ND	4.0	1.8	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
2-Nitrophenol ND 4,0 1,2 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentylamine ND 4,0 1,3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentylamine ND 4,0 1,3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentylamine ND 4,0 0.95 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentylamine ND 4,0 0.95 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentirobenzene ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-Nitrosodimentylamine ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16/24 CN-NITROSOMINENE ND 4,	4-Nitroaniline	ND	4.0	2.1	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
A-Nitrophenol ND 7,9 7,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodimethylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodimethylamine ND 4,0 1,9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodim-propylamine ND 4,0 1,3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodim-propylamine ND 4,0 0,95 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodim-propylamine ND 4,0 0,55 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodim-propylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodim-propylamine ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodim-propylamine ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodim-propylamine ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-NITROSOMINE CN	Nitrobenzene	ND	4.0	1.1	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
N-Nitrosodimethylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,7 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 1,7 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodiphenylamine ND 4,0 30-130 U U SW-846 8270D 6/17/13 6/19/13 16:24 CN-NITROSodiphenylamine ND 4,0 30-130 U U SW-846 8270D 6/17/13 6/19/13 16:24 CN-NITROSODIPHINE ND 4,0 30-130 U U U SW-846 8270D 6/17/13 6/19/13 16:24	2-Nitrophenol	ND	4,0	1.2	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
N-Nitrosodiphenylamine ND 4.0 1.9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodi-n-propylamine ND 4.0 1.3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4.0 0.95 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4.0 0.95 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4.0 1.6 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4.0 1.1 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4.0 1.1 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachloromitrobenzene ND 4.0 1.7 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 1.7 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pertachlorobenzene ND 4.0 0.98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 1	4-Nitrophenol	ND	7,9	7,1	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
N-Nitrosodijhenylamine ND 4,0 1,9 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Nitrosodi-n-propylamine ND 4,0 1,3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4,0 0,95 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4,0 1,6 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4,0 1,1 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4,0 1,1 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4,0 1,1 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachloromitrobenzene ND 4,0 1,1 mg/Kg dry 100 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 1,7 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CN-Pentachlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16	N-Nitrosodimethylamine	ND	4.0	1.6	ing/Kg dry	10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
N-Nitrosodi-n-propylamine ND 4,0 1,3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pentachloronitrobenzene ND 4,0 0,95 mg/Kg dry 10 V+6c U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pentachlorophenol ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pentachlorophenol ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Phenol ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyrone 130 20 14 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyrone ND 4,0 1,7 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 1,7 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U SW-846 8270D 6/17/13 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U U SW-846 8270D 6/17/13 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 30-130 U U SW-846 8270D 6/17/13 6/17/13 6/19/13 16:24 CP Pyridine ND 4,0 4,0 30-130 U U SW-846 8270D 6/17/13 6/17/13 6/19/13 16:24 CP Pyridine ND	N-Nitrosodiphenylamine	ND	4.0	1.9		10	U	SW-846 8270D	6/17/13	6/19/13 16:24	CMR
Pentachloromitrobenzene ND 4,0 0.95 mg/Kg dry 10	N-Nitrosodi-n-propylamine					10	U				CMR
Pentachlorophenol ND 4,0 1,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CP											CMR
Phenanthrene 130 20 11 mg/Kg dry 100 SW-846 8270D 6/17/13 6/20/13 15:48 CP	Pentachlorophenol										CMR
Phenol ND 4,0 1,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI											CMR
Pyrene 130 20 14 mg/Kg dry 100 SW-846 8270D 6/17/13 6/20/13 15:48 CI Pyridine ND 4,0 1,7 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 1,2,4,5-Tetrachlorobenzene ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,5-Trichlorophenol ND 4,0 2,3 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,5-Trichlorophenol ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,6-Trichlorophenol ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2-Fluorophenol 47,0 30-130 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2-Fluorophenol 47,0 30-130 U	Phenol						11				CMR
ND 4,0 1,7 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 1,2,4,5-Tetrachlorobenzene ND 4,0 2,4 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 1,2,4-Trichlorobenzene ND 4,0 0,98 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,5-Trichlorophenol ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,6-Trichlorophenol ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,6-Trichlorophenol ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,6-Trichlorophenol 47,0 30-130											CMR
1,2,4,5-Tetrachlorobenzene							[]				CMR
1,2,4-Trichlorobenzene											CMR
2,4,5-Trichlorophenol ND 4,0 2,1 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI 2,4,6-Trichlorophenol ND 4,0 2,6 mg/Kg dry 10 U SW-846 8270D 6/17/13 6/19/13 16:24 CI Surrogates % Recovery Recovery Limits Flag 2-Fluorophenol 47,0 30-130 6/20/13 15:48 6/19/13 16:24 Phenol-d6 49,4 30-130 6/19/13 16:24 6/19/13 16:24 Phenol-d6 46,5 30-130 6/20/13 15:48 6/20/13 15:48 Nitrobenzene-d5 43,0 30-130 6/20/13 15:48 6/19/13 16:24 Nitrobenzene-d5 47,4 30-130 6/19/13 16:24 6/19/13 16:24 2-Fluorobiphenyl 56,0 30-130 6/19/13 16:24 6/19/13 16:24 2-Fluorobiphenyl 49,0 30-130 8-07 6/20/13 15:48 2-A,6-Tribromophenol 30,7 30-130 8-07 6/19/13 16:24 2,4,6-Tribromophenol 30,7											CMR
Surrogates % Recovery Recovery Limits Flag 2-Fluorophenol 47.0 30-130 6/19/13 16:24 2-Fluorophenol 49.4 30-130 6/20/13 15:48 Phenol-d6 57.8 30-130 6/20/13 15:48 Phenol-d6 43.0 30-130 6/20/13 15:48 Nitrobenzene-d5 43.0 30-130 6/20/13 15:48 Nitrobenzene-d5 47.4 30-130 6/20/13 15:48 2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 8-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 8-07 6/20/13 15:48											CMR
Surrogates % Recovery Recovery Limits Flag 2-Fluorophenol 47.0 30-130 6/20/13 15:48 2-Fluorophenol 49.4 30-130 6/19/13 16:24 Phenol-d6 57.8 30-130 6/19/13 16:24 Phenol-d6 46.5 30-130 6/20/13 15:48 Nitrobenzene-d5 43.0 30-130 6/20/13 15:48 Nitrobenzene-d5 47.4 30-130 6/19/13 16:24 2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 6/19/13 16:24 2,4,6-Tribromophenol 12.0 30-130 S-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 S-07 6/20/13 15:48											
2-Fluorophenol 47.0 30-130 6/20/13 15:48 2-Fluorophenol 49.4 30-130 6/19/13 16:24 Phenol-d6 57.8 30-130 6/19/13 16:24 Phenol-d6 46.5 30-130 6/20/13 15:48 Nitrobenzene-d5 43.0 30-130 6/20/13 15:48 Nitrobenzene-d5 47.4 30-130 6/19/13 16:24 2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 8-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 S-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 S-07 6/20/13 15:48	<u> </u>	ND	. 27					3W-840 8270D	0/17/13	0/19/13 10.24	CMR
2-Fluorophenol 49.4 30-130 6/19/13 16:24 Phenol-d6 57.8 30-130 6/19/13 16:24 Phenol-d6 46.5 30-130 6/20/13 15:48 Nitrobenzene-d5 43.0 30-130 6/20/13 15:48 Nitrobenzene-d5 47.4 30-130 6/19/13 16:24 2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 8-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 8-07 6/20/13 15:48				overy		ıs	riag			6/20/12 15:49	
Phenol-d6 57.8 30-130 6/19/13 16:24 Phenol-d6 46.5 30-130 6/20/13 15:48 Nitrobenzene-d5 43.0 30-130 6/20/13 16:24 2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 6/19/13 16:24 2-Juorobiphenyl 49.0 30-130 8-07 6/20/13 15:48 2-J.4,6-Tribromophenol 30.7 30-130 8-07 6/20/13 15:48 2-J.4,6-Tribromophenol 30.7 30-130 8-07 6/19/13 16:24											
Phenol-d6 46,5 30-130 6/20/13 15:48 Nitrobenzene-d5 43,0 30-130 6/20/13 15:48 Nitrobenzene-d5 47,4 30-130 6/19/13 16:24 2-Fluorobiphenyl 56,0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49,0 30-130 6/19/13 16:24 2,4,6-Tribromophenol 12,0 30-130 S-07 6/20/13 15:48 2,4,6-Tribromophenol 30,7 30-130 S-07 6/19/13 16:24	·										
Nitrobenzene-d5 43.0 30-130 6/20/13 15:48 Nitrobenzene-d5 47.4 30-130 6/19/13 16:24 2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 6/19/13 16:24 2,4,6-Tribromophenol 12.0 30-130 8-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 8-07 6/19/13 16:24											
Nitrobenzene-d5 47.4 30-130 6/19/13 16:24 2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 6/19/13 16:24 2,4,6-Tribromophenol 12.0 30-130 S-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 S-07 6/19/13 16:24											
2-Fluorobiphenyl 56.0 30-130 6/20/13 15:48 2-Fluorobiphenyl 49.0 30-130 6/19/13 16:24 2,4,6-Tribromophenol 12.0 30-130 S-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 S-07 6/19/13 16:24											
2,4,6-Tribromophenol 12.0 30-130 S-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 6/19/13 16:24	2-Fluorobiphenyl				30-130					6/20/13 15:48	3
2,4,6-Tribromophenol 12.0 30-130 S-07 6/20/13 15:48 2,4,6-Tribromophenol 30.7 30-130 6/19/13 16:24										6/19/13 16:24	ŀ
2,4,6-Tribromophenol 30,7 30-130 6/19/13 16:24			12.0		30-130		S-07			6/20/13 15:48	3
	p-Terphenyl-d14		69.0		30-130					6/19/13 16:24	Ļ
p-Terphenyl-d14 75.0 30-130 6/20/13 15:48	p-Terphenyl-d14		75.0		30-130					6/20/13 15:48	3

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: TI-SB01 (5-10ft)

Sampled: 6/12/2013 08:25

Sample ID: 13F0478-07 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		84.0		% Wr	1		SM 2540G	6/17/13	6/18/13 9-32	MLA

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (0-4ft)

Sampled: 6/12/2013 09:20

			Volatile	e Organic Con	pounds by	GC/MS	3./13	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	2,0	0,11	0,026	mg/Kg dry	Ĭ.	-L-04, MS-09 5	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Acrylonitrile	ND	0.0067	0,0028	mg/Kg dry	1	V-16, U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Benzene	ND	0.0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Bromobenzene	ND	0.0022	0,00090	mg/Kg dry	1)	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Bromochloromethane	ND	0,0022	0.0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Bromodichloromethane	ND	0.0022	0.00067	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Bromoform	ND	0.0022	0.0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Bromomethane	ND	0,011	0.0019	mg/Kg dry	1	MS-07A, U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
2-Butanone (MEK)	ND	0,045	0_020	mg/Kg dry	1	n T	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
tert-Butyl Alcohol (TBA)	ND	0,045	0.024	mg/Kg dry	1	MS-07A, V-16, U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
n-Butylbenzene	ND	0.0022	0.00079	mg/Kg dry	Ě	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
sec-Butylbenzene	ND	0.0022	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
tert-Butylbenzene	ND	0.0022	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0,0011	0.00067	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Carbon Disulfide	ND	0.022	0.0037	mg/Kg dry	1	L-04, MS-09, U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Carbon Tetrachloride	ND	0.0022	0,00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Chlorobenzene	ND	0,0022	0.00079	mg/Kg dry	ĩ	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Chlorodibromomethane	ND	0.0045	0,00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Chloroethane	ND	0.022	0.0017	mg/Kg dry	X	MS-07A, U J	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Chloroform	ND	0.0045	0.00079	mg/Kg dry	Ĩ	υ	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Chloromethane	ND	0.011	0.0010	mg/Kg dry	1	L-04 MS-09 V-05	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
2-Chlorotoluene	ND	0.0022	0,00090	mg/Kg dry	1	Ü	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
4-Chlorotoluene	ND	0.0022	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0022	0.0012	mg/Kg dry	1	¥-16; U / C_	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2-Dibromoethane (EDB)	ND	0.0011	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Dibromomethane	ND	0.0022	0_00067	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2-Dichlorobenzene	ND	0.0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,3-Dichlorobenzene	ND	0,0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,4-Dichlorobenzene	ND	0.0022	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
trans-1,4-Dichloro-2-butene	ND	0.0045	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.022	0.0015	mg/Kg dry	3	MS-07A, V-05, U J	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1-Dichloroethane	ND	0.0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2-Dichloroethane	ND	0,0022	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1-Dichloroethylene	ND	0,0045	0.0012	mg/Kg dry	1	MS≅07A, U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
cis-1,2-Dichloroethylene	ND	0.0022	0,00090	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
trans-1,2-Dichloroethylene	ND	0.0022	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2-Dichloropropane	ND	0.0022	0.0015	mg/Kg dıy	ì	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,3-Dichloropropane	ND	0.0011	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
2,2-Dichloropropane	ND	0.0022	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1-Dichloropropene	ND	0.0022	0_0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
cis-1,3-Dichloropropene	ND	0.0011	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
trans-1,3-Dichloropropene	ND	0.0011	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-SB02 (0-4ft)

Sampled: 6/12/2013 09:20

			Volati	le Organic Com	pounds by C	GC/MS	2/3/13			
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diethyl Ether	ND	0,022	0.0020	mg/Kg dry	Ĭ.	` ∀-85 , U 🎵	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Diisopropyl Ether (DIPE)	ND	0.0011	0.00067	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,4-Dioxane	ND	0.11	0,065	mg/Kg dry	1	V-10, U/2	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Ethylbenzene	ND	0.0022	0:00090	mg/Kg dry	Ï	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Hexachlorobutadiene	ND	0.0022	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
2-Hexanone (MBK)	ND	0.045	0,012	mg/Kg dry	T.	UJ	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Isopropylbenzene (Cumene)	ND	0.0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
p-Isopropyltoluene (p-Cymene)	ND	0,0022	0,00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0,0045	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Methylene Chloride	0.021	0.022	0_0080	mg/Kg dry	1	J	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.045	0.0085	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Naphthalene	ND	0.0045	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
n-Propylbenzene	ND	0.0022	0,00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Styrene	ND	0.0022	0.00067	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1,1,2-Tetrachloroethane	ND	0,0022	0.0010	mg/Kg dry	ĩ	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1,2,2-Tetrachloroethane	ND	0.0011	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Tetrachloroethylene	ND	0.0022	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Tetrahydrofuran	ND	0.011	0.0025	mg/Kg dry	Ĩ	V-16, U R	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Toluene	ND	0.0022	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2,3-Trichlorobenzene	ND	0.0022	0.00067	mg/Kg dry	Ĩ.	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2,4-Trichlorobenzene	ND	0.0022	0,00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,3,5-Trichlorobenzene	ND	0.0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1,1-Trichloroethane	ND	0.0022	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1,2-Trichloroethane	ND	0.0022	0.0013	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Trichloroethylene	ND	0,0022	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Trichlorofluoromethane (Freon 11)	ND	0.011	0.0012	mg/Kg dry	1	MS-07A, U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2,3-Trichloropropane	ND	0.0022	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.011	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,2,4-Trimethylbenzene	ND	0.0022	0,00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
1,3,5-Trimethylbenzene	ND	0.0022	0.00067	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Vinyl Chloride	ND	0.011	0.0012	mg/Kg dry	1	MS-07 A, U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
m+p Xylene	ND	0.0045	0.0019	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
o-Xylene	ND	0.0022	0.00079	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 9:28	MFF
Surrogates		% Reco	overy	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		106		70-130					6/18/13 9:28	
Toluene-d8		102		70-130					6/18/13 9:28	
4-Bromofluorobenzene		99.2		70-130					6/18/13 9:28	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (0-4ft)

Sampled: 6/12/2013 09:20

Sample Flags: DL-03			Schlivola	une Organic Ci	ompounds by	GC/MB	7/30/13	_		
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analysi
Acenaphthene	0,67	0.40	0.19	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
cenaphthylene	0.21	0.40	0.19	mg/Kg dry	2	J	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Acetophenone	ND	0.81	0_28	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Aniline	ND	0.81	0.26	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Anthracene	1.3	0.40	0,19	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Benzidine	ND	0.81	0.19	mg/Kg dry	2	UR	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
enzo(a)anthracene	3,8	0.40	0.19	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Benzo(a)pyrene	3,7	0.40	0.21	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Benzo(b)fluoranthene	4.2	0.40	0.21	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Benzo(g,h,i)perylene	2,3	0.40	0.17	mg/Kg dry	2	MS 09	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
ienzo(k)fluoranthene	1,6	0.40	0.24	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
denzoic Acid	ND	2.4	0.36	mg/Kg dry	2	- L-04, U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Bis(2-chloroethoxy)methane	ND	0.81	0.21	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Bis(2-chloroethyl)ether	ND	0.81	0_24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Bis(2-chloroisopropyl)ether	ND	0.81	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Bis(2-Ethylhexyl)phthalate	0.46	0.81	0_24	mg/Kg dry	2	P. 06, J	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
-Bromophenylphenylether	ND	0,81	0.17	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Butylbenzylphthalate	ND	1,6	0.26	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Carbazole	0_58	0_40	0.19	ıng/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
-Chloroaniline	ND	1.6	0.21	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
-Chloro-3-methylphenol	ND	1,6	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
-Chloronaphthalene	ND	0.81	0.17	mg/Kg dry	2	Ū	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
-Chlorophenol	ND	0.81	0.21	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
-Chlorophenylphenylether	ND	0.81	0.28	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Chrysene	3,6	0,40	0.19	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Dibenz(a,h)anthracene	0.61	0.40	0.17	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Dibenzofuran	0.41	0.81	0.19	mg/Kg dry	2	J	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Di-n-butylphthalate	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
,2-Dichlorobenzene	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
,3-Dichlorobenzene	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
,4-Dichlorobenzene	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
3,3-Dichlorobenzidine	ND	0.40	0.14	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2,4-Dichlorophenol	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Diethylphthalate	ND	0.81	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2,4-Dimethylphenol	ND	0.81	0:17	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Dimethylphthalate	ND	1.6	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
,6-Dinitro-2-methylphenol	ND	0,81	0.095	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
,4-Dinitrophenol	ND	1.6	0.095	mg/Kg dry	2	- V=19 , U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
,4-Dinitrotoluene	ND	0.81	0.26	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2,6-Dinitrotoluene	ND	0.81	0.26	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Di-n-octylphthalate	ND	1.6	0.31	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
,2-Diphenylhydrazine (as Azobenzene)	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Fluoranthene	6.1	0.40	0.17	rng/Kg dry	2	M S-0 9	SW-846 8270D	6/17/13	6/19/13 15:48	
luorene	0.61	0 40	0.21	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-SB02 (0-4ft)

Sampled: 6/12/2013 09:20

Sample ID: 13F0478-08
Sample Matrix: Soil

Sample Flags: DL-03

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	0,81	0.19	mg/Kg dry	2	Ū	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Hexachlorobutadiene	ND	0,81	0_14	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Hexachlorocyclopentadiene	ND	1.6	0.14	mg/Kg dry	2	MS-09; U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Hexachloroethane	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Indeno(1,2,3-cd)pyrene	2.5	0.40	0.17	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Isophorone	ND	0.81	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
1-Methylnaphthalene	ND	0.40	0,24	mg/Kg dry	2	Ū	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2-Methylnaphthalene	0.28	0.40	0.24	mg/Kg dry	2	J	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2-Methylphenol	ND	18.0	0.31	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
3/4-Methylphenol	ND	0,81	0.38	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Naphthalene	0.85	0.40	0.17	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2-Nitroaniline	ND	0.81	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
3-Nitroaniline	ND	0.81	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
4-Nitroaniline	ND	0.81	0.28	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Nitrobenzene	ND	0.81	0.17	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2-Nitrophenol	ND	0.81	0.12	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
4-Nitrophenol	ND	1.6	0.095	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
N-Nitrosodimethylamine	ND	0.81	0.14	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
N-Nitrosodiphenylamine	ND	0.81	0.26	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
N-Nitrosodi-n-propylamine	ND	0.81	0.31	ıng/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Pentachloronitrobenzene	ND	0.81	0.26	mg/Kg dry	2	V-16, U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Pentachlorophenol	ND	0.81	0.14	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Phenanthrene	5,5	0.40	0.19	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Phenol	ND	0.81	0.21	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Ругепе	8.4	0.40	0.24	mg/Kg dry	2	MS_09	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Pyridine	ND	0.81	0.19	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
1,2,4,5-Tetrachlorobenzene	ND	0,81	0.17	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
1,2,4-Trichlorobenzene	ND	0.81	0,14	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15;48	CMR
2,4,5-Trichlorophenol	ND	0,81	0.24	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
2,4,6-Trichlorophenol	ND	0.81	0.17	mg/Kg dry	2	U	SW-846 8270D	6/17/13	6/19/13 15:48	CMR
Surrogates		% Reco	very	Recovery Limit	s	Flag				
2-Fluorophenol		72.3		30-130					6/19/13 15:48	
Phenol-d6		76.9		30-130			4		6/19/13 15:48	
Nitrobenzene-d5		65.1		30-130		7/30	les		6/19/13 15:48	
2-Fluorobiphenyl		66.6		30-130		4 1 30	7		6/19/13 15:48	
2,4,6-Tribromophenol		41.9		30-130			U		6/19/13 15:48	
p-Terphenyl-d14		89.1		30-130					6/19/13 15:48	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (0-4ft)

Sampled: 6/12/2013 09:20

Sample ID: 13F0478-08 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		83.9		% Wt	1		SM 2540G	6/17/13	6/18/13 9:32	MLA

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Page 48 of 1332 B074595_01 07/26/13 14:14:40

Date Received: 6/13/2013

Field Sample #: T3-SB03 (0-4ft)

Sampled: 6/12/2013 09:25

Sample ID: 13F0478-09 Sample Matrix: Soil Fuld Duplicate of T2-5B02 (0-4)

***************************************		144	Volatile	Organic Con	ipounds by (GC/MS	2/3/13			
							, , ,	Date	Date/Time	_
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone Acrylonitrile	0,31	0.12	0.027	mg/Kg dry	100	1-04 J V-16, U R	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
	ND	0.0070	0.0029	mg/Kg dry	1		SW-846 8260C	6/18/13	6/18/13 13:07	MFF
tert-Amyl Methyl Ether (TAME) Benzene	ND	0.0023	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Bromobenzene	ND	0.0023	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Bromochloromethane	ND	0.0023	0.00094	mg/Kg dry	1	U	SW-846 8260C SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Bromodichloromethane	ND ND	0.0023	0,0016 0,00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13 6/18/13	6/18/13 13:07	MFF
Bromoform	ND	0.0023	0.00070	mg/Kg dry		U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF MFF
Bromomethane	ND	0.012	0,0010	mg/Kg dry	1) 12		SW-846 8260C	6/18/13	6/18/13 13:07	
2-Butanone (MEK)	ND	0.012	0,0020	mg/Kg dry	1	ບ ບ ງ	SW-846 8260C	6/18/13	6/18/13 13:07	MFF MFF
tert-Butyl Alcohol (TBA)	ND	0.047	0.021	mg/Kg dry mg/Kg dry	ī	V-16, U	SW-846 8260C	6/18/13	6/18/13 13:07 6/18/13 13:07	
n-Butylbenzene	ND	0.0023	0.00082		1	U.10, U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF MFF
sec-Butylbenzene	ND	0.0023	0.00082	mg/Kg dry mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
tert-Butylbenzene	ND	0.0023	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0012	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Carbon Disulfide	ND	0.023	0.0039	mg/Kg dry	1	1-04, U.J	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Carbon Tetrachloride	ND	0.0023	0,00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Chlorobenzene	ND	0.0023	0.00082	mg/Kg dry	i.	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Chlorodibromomethane	ND	0.0047	0.00082	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Chloroethane	ND	0.023	0.00082	mg/Kg dry	î	u J	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Chloroform	ND	0.0047	0.00082	mg/Kg dry	î	υ	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Chloromethane	ND	0.012	0.0011	mg/Kg dry	1	L-04, V-05, U,	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
2-Chlorotoluene	ND	0.0023	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
4-Chlorotoluene	ND	0.0023	0.00094	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0023	0.0013	mg/Kg dry	î	V-16, U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2-Dibromoethane (EDB)	ND	0.0012	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Dibromomethane	ND	0.0023	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2-Dichlorobenzene	ND	0.0023	0.00082	mg/Kg dry	ī	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,3-Dichlorobenzene	ND	0.0023	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,4-Dichlorobenzene	ND	0.0023	0.00094	mg/Kg dry	ĭ	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
trans-1,4-Dichloro-2-butene	ND	0.0047	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.023	0.0015	mg/Kg dry	1	V=05, U J	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,1-Dichloroethane	ND	0,0023	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2-Dichloroethane	ND	0,0023	0.0015	mg/Kg dry	1	υ	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,1-Dichloroethylene	ND	0,0047	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
cis-1,2-Dichloroethylene	ND	0.0023	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
trans-1,2-Dichloroethylene	ND	0,0023	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2-Dichloropropane	ND	0,0023	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	
1,3-Dichloropropane	ND	0,0012	0.00082	mg/Kg dry	ī	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
2,2-Dichloropropane	ND	0.0023	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	
1,1-Dichloropropene	ND	0.0023	0.0011	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 13:07	
cis-1,3-Dichloropropene	ND	0.0012	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	
trans-1,3-Dichloropropene	ND	0.0012	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Diethyl Ether	ND	0.023	0.0021	mg/Kg dry		V=05. U 5	SW-846 8260C	6/18/13	6/18/13 13:07	MFF

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013 Field Sample #: T3-SB03 (0-4ft)

Sampled: 6/12/2013 09:25

Sample ID: 13F0478-09 Sample Matrix: Soil

Fuld Duplicate of TZ-5602 (0-4)

			Volatile	e Organic Com	pounds by G	C/MS	132/13			
						/	2	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.0012	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,4-Dioxane	ND	0.12	0.068	mg/Kg dry	1	V=16; U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Ethylbenzene	ND	0_0023	0.00094	mg/Kg dry	Ĭ.	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Hexachlorobutadiene	ND	0.0023	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
2-Hexanone (MBK)	ND	0.047	0.013	mg/Kg dry	10	u J	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Isopropylbenzene (Cumene)	ND	0.0023	0.00082	mg/Kg dry	T.	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
p-Isopropyltoluene (p-Cymene)	ND	0_0023	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0047	0.0011	ıng/Kg dıy	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Methylene Chloride	0,021	0,023	0.0083	mg/Kg dry	ĭ	J	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.047	0_0089	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Naphthalene	0.0056	0.0047	0.00082	mg/Kg dry	1		SW-846 8260C	6/18/13	6/18/13 13:07	MFF
n-Propylbenzene	ND	0.0023	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Styrene	ND	0.0023	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,1,1,2-Tetrachloroethane	ND	0,0023	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,1,2,2-Tetrachloroethane	ND	0.0012	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Tetrachloroethylene	ND	0.0023	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Tetrahydrofuran	ND	0,012	0.0026	mg/Kg dry	1	V-16, U /	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Toluene	ND	0.0023	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2,3-Trichlorobenzene	ND	0.0023	0,00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2,4-Trichlorobenzene	ND	0.0023	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,3,5-Trichlorobenzene	ND	0.0023	0,00082	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,1,1-Trichloroethane	ND	0.0023	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,1,2-Trichloroethane	ND	0.0023	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Trichloroethylene	ND	0.0023	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Trichlorofluoromethane (Freon 11)	ND	0.012	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2,3-Trichloropropane	ND	0.0023	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.012	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,2,4-Trimethylbenzene	ND	0.0023	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
1,3,5-Trimethylbenzene	ND	0.0023	0.00070	mg/Kg dry	31	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Vinyl Chloride	ND	0.012	0.0013	mg/Kg dry	1	υ	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
m+p Xylene	ND	0.0047	0.0020	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
o-Xylene	ND	0.0023	0.00082	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:07	MFF
Surrogates		% Rec	overy 1	Recovery Limi	ts	Flag				
1,2-Dichloroethane-d4		113		70-130					6/18/13 13:07	
Toluene-d8 4-Bromofluorobenzene		99.8 100		70-130					6/18/13 13:07	
4-Diomoliuoropenzene		100		70-130					6/18/13 13:07	

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013 Field Sample #: T3-SB03 (0-4ft)

Sampled: 6/12/2013 09:25

Sample ID: 13F0478-09

Sample Matrix: Soil Sample Flags: DL-03

							7/3-11 30	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	1.7	0,20	0,10	mg/Kg dry	Î.		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Acenaphthylene	0.16	0,20	0,098	mg/Kg dry	1	Ĵ	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Acetophenone	ND	0.41	0,098	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Aniline	ND	0.41	0.31	mg/Kg dry	Ĩ	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Anthracene	3,8	0.20	0.12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Benzidine	ND	0.79	0.55	mg/Kg dry	1	¥-20, U .]	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Benzo(a)anthracene	7.9	1.0	0_46	mg/Kg dry	5		SW-846 8270D	6/17/13	6/19/13 15:13	CMR
Benzo(a)pyrene	7.0	1,0	0.36	mg/Kg dry	5		SW-846 8270D	6/17/13	6/19/13 15:13	CMR
Benzo(b)fluoranthene	8,3	1.0	0.89	mg/Kg dry	5		SW-846 8270D	6/17/13	6/19/13 15:13	CMR
Benzo(g,h,i)perylene	2,2	0.20	0,16	mg/Kg dıy	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Benzo(k)fluoranthene	3.3	0_20	0_18	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Benzoic Acid	ND	1,2	1,1	mg/Kg dry	1	L-04 , U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Bis(2-chloroethoxy)methane	ND	0.41	0.15	ıng/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Bis(2-chloroethyl)ether	ND	0.41	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Bis(2-chloroisopropyl)ether	ND	0.41	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Bis(2-Ethylhexyl)phthalate	ND	0,41	0.091	mg/Kg dry	I	υ	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
4-Bromophenylphenylether	ND	0.41	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Butylbenzylphthalate	ND	0.41	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Carbazole	1,3	0,20	0,15	mg/Kg dry	1.		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
4-Chloroaniline	ND	0.79	0.20	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
4-Chloro-3-methylphenol	ND	0.79	0.17	mg/Kg dry	ĭ	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2-Chloronaphthalene	ND	0.41	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2-Chlorophenol	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
4-Chlorophenylphenylether	ND	0.41	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Chrysene	7.2	1.0	0.66	mg/Kg dry	s		SW-846 8270D	6/17/13	6/19/13 15:13	CMR
Dibenz(a,h)anthracene	0.74	0,20	0.11	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Dibenzofuran	1:1	0.41	0.094	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Di-n-butylphthalate	ND	0.41	0.17	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
1,2-Dichlorobenzene	ND	0.41	0.081	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
1,3-Dichlorobenzene	ND	0.41	0.095	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
1,4-Dichlorobenzene	ND	0.41	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
3,3-Dichlorobenzidine	ND	0.20	0.19	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2,4-Dichlorophenol	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Diethylphthalate	ND	0 41	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2,4-Dimethylphenol	ND	0.41	0.12	mg/Kg dry	1.	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Dimethylphthalate	ND	0.41	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
4,6-Dinitro-2-methylphenol	ND	0.41	0.17	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2,4-Dinitrophenol	ND	0.79	0.40	mg/Kg dry	1	∨ -19, U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2,4-Dinitrotoluene	ND	0,41	0,16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2,6-Dinitrotoluene	ND	0.41	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Di-n-octylphthalate	ND	0.80	0.55	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.41	0.19	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Fluoranthene	15	1.0	0,91	mg/Kg dry	5		SW-846 8270D	6/17/13	6/19/13 15:13	CMR
Fluorene	1.7	0.20	0.16	ıng/Kg dry	_1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR

Page 50 of 1332 B074595_01 07/26/13 14:14:40

Sample Description:

Work Order: 13F0478

Project Location: Bronx PC Bldg I
Date Received: 6/13/2013
Field Sample #: T3-SB03 (0-4ft)

Sampled: 6/12/2013 09:25

Sample ID: 13F0478-09
Sample Matrix: Soil

Sample Flags: DL-03

[Field Duplicate of TZ -SBOZ(0-4')]

Analyte Results RL DL Units Dilution Flag Method Prepared Analyze Analyze Analyst Hexachlorobenzene ND 0,41 0,18 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Hexachlorobutadiene ND 0,41 0,13 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Hexachlorocyclopentadiene ND 0,41 0,27 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR	Sample Flags. DL-03			Semiyor	attie Organie Co	inpounds by	GCINIS	7/3-/13			
Reachlorobarzame	A - allow	D Iv.	DI	DI	11.4	Dil di			Date	Date/Time	
Reacubonstandinger											
Hessalthoroeylopentadares						1					CMR
Hexachtoroethane	Hexachlorobutadiene	ND	0.41	0.13	mg/Kg dry	10	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Indem(12,3-eU)yyrren	Hexachlorocyclopentadiene	ND	0.41	0.27	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Sophierone ND 0.41 0.12 mg/Kg day 1 U SW-846-8270D 6/17/13 6/18/13 19.35 CMR C	Hexachloroethane	ND	0_41	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Publichytamphthalene	Indeno(1,2,3-cd)pyrene	2.8	0.20	0,13	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2-Methylphaphalene	Isophorone	ND	0.41	0.12	mg/Kg dry	Ĩ.	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2-Methylphenol ND 0,41 0,13 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Methylphenol ND 0,41 0,23 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Methylphenol ND 0,41 0,28 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,18 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,18 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,18 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,11 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroaniline ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,10 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,41 0,42 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,41 0,42 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,42 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 74-Nitroanilentylamine ND 0,41 0,42 mg/Kg dry 1 U SW-846 8270D 6/1	I-Methylnaphthalene	0,28	0.20	0,077	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2-Methylphenol ND 0,41 0,13 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Aff-Methylphenol ND 0,41 0,23 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Aff-Methylphenol ND 0,41 0,28 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Applitulation ND 0,41 0,28 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR A-Nitroaniline ND 0,41 0,18 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR A-Nitroaniline ND 0,41 0,21 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR A-Nitroaniline ND 0,41 0,21 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR A-Nitroaniline ND 0,41 0,41 0,12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR A-Nitroaniline ND 0,41 0,12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR A-Nitroaniline ND 0,41 0,12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR A-Nitroaniline ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,09 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,41 0,42 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroanilentylamine ND 0,41 0,42 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CM	2-Methylnaphthalene	0.38	0.20	0.11	mg/Kg dry	1		SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Methylphenol ND	2-Methylphenol						U				
Naphthalene 0,76 0,20 0,89 mg/kg dry 1 SW-846 8270D 6/17/13 5/18//3 19.35 CMR 2-Nitroaniline ND 0,41 0,28 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 3-Nitroaniline ND 0,41 0,18 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 4-Nitroaniline ND 0,41 0,11 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 2-Nitroaniline ND 0,41 0,11 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 2-Nitroaniline ND 0,41 0,11 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 2-Nitrophenol ND 0,79 0,71 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 4-Nitrophenol ND 0,79 0,71 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 2-Nitrophenol ND 0,41 0,16 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR N-Nitroandiphamine ND 0,41 0,19 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR N-Nitroandiphamine ND 0,41 0,19 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR N-Nitroandiphamine ND 0,41 0,19 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Pentachloroantichezane ND 0,41 0,10 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Pentachloroantichezane ND 0,41 0,10 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Pentachloroantichezane ND 0,41 0,10 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Phenol ND 0,41 0,10 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Phenol ND 0,41 0,10 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Phenol ND 0,41 0,40 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Phenol ND 0,41 0,41 0,42 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Phenol ND 0,41 0,42 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR Phenol ND 0,41 0,42 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 12,4,5-Trichlorobenzane ND 0,41 0,42 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 12,4,5-Trichlorobenzane ND 0,41 0,42 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 12,4,5-Trichlorobenzane ND 0,41 0,42 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CMR 12,4,5-Trichlorobenzane ND 0,41 0,42 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18//3 19.35 CM											
2-Niroaniline ND 0.41 0.28 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR 3-Niroaniline ND 0.41 0.11 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR 4-Niroaniline ND 0.41 0.11 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Nirobenzene ND 0.41 0.11 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR 2-Nirophenol ND 0.41 0.12 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR 4-Nirophenol ND 0.41 0.12 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR 4-Nirophenol ND 0.41 0.16 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR N-Nirosodiphenol ND 0.41 0.16 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR N-Nirosodiphenylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR N-Nirosodiphenylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR N-Nirosodiphenylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR N-Nirosodiphenylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR N-Nirosodiphenylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Pentachlorophenol ND 0.41 0.16 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene 14 1.0 0.54 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene 14 1.0 0.54 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene 16 1.0 0.70 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.17 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.10 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.10 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.10 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.70 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.70 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.70 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.70 mg/Kg dry 1 U SW-846 8270D 617/13 6/18/13 19-35 CMR Phenonlamene ND 0.41 0.42 mg/Kg dry 1 U SW-							Ü				
3-Nitroaniline ND 0.41 0.18 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 4-Nitroaniline ND 0.41 0.11 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Nitrobenzene ND 0.41 0.12 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 4-Nitroaniline ND 0.41 0.12 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 4-Nitrophenol ND 0.79 0.71 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR 4-Nitrophenol ND 0.79 0.71 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroandimethylamine ND 0.41 0.16 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroandimethylamine ND 0.41 0.16 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroandimethylamine ND 0.41 0.19 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroandimethylamine ND 0.41 0.13 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR N-Nitroandimethylamine ND 0.41 0.15 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pentachlorophenone ND 0.41 0.15 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pentachlorophenol ND 0.41 0.16 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pentachlorophenol ND 0.41 0.16 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Phenanthrene 14 1.0 0.54 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Phenanthrene 16 1.0 0.70 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.17 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.17 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.24 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.26 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.26 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.26 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.26 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.26 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.26 mg/kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19.35 CMR Pyrridine ND 0.41 0.30 mg/							**				
4-Nitroaniline ND 0.41 0.21 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Nitrobenzene ND 0.41 0.11 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR 2-Nitrophenol ND 0.41 0.12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR 4-Nitrophenol ND 0.79 0.71 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodimethylamine ND 0.41 0.16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodimethylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodimethylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodimethylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodimethylamine ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodimethylamine ND 0.41 0.13 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pentachlorophenol ND 0.41 0.16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pentachlorophenol ND 0.41 0.16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Phenothrene 14 1.0 0.54 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Phenothrene 16 1.0 0.70 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane 16 1.0 0.70 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.17 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.17 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.17 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrane ND 0.41 0.26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-3											
Nitrobenzene ND 0,41 0,11 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR 2-Nitrophenol ND 0,41 0,12 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR 4-Nitrophenol ND 0,79 0,71 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodiphenylamine ND 0,41 0,19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodiphenylamine ND 0,41 0,19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodiphenylamine ND 0,41 0,19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodiphenylamine ND 0,41 0,49 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodiphenylamine ND 0,41 0,99 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR N-Nitrosodiphenylamine ND 0,41 0,99 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pentachlarophenol ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Phenanthrene 14 1,0 0,54 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Phenanthrene 14 1,0 0,54 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Phenanthrene 16 1,0 0,70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine 16 1,0 0,70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,41 0,47 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,41 0,49 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,24 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19-35 CMR Pyrcine ND 0,41 0,40 mg/Kg dry 1 U SW-846 8270D 6/17/13											CMR
2-Nitrophenol ND 0,41 0,12 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR A-Nitrophenol ND 0,79 0,71 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodimethylamine ND 0,41 0,16 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodimethylamine ND 0,41 0,19 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodimethylamine ND 0,41 0,13 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodimethylamine ND 0,41 0,13 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodimethylamine ND 0,41 0,095 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0,41 0,095 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0,41 0,06 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenonthrene 14 1,0 0,54 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenonthrene 14 1,0 0,54 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1,0 0,70 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1,0 0,70 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,17 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,24 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,24 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,41 0		ND	0.41	0,21	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
4-Nitrophenol ND 0,79 0,71 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodimethylamine ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodimethylamine ND 0,41 0,19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodiphenylamine ND 0,41 0,19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodiphenylamine ND 0,41 0,19 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0,41 0,095 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0,41 0,095 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenonlitree 14 1,0 0,04 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenonlitree 16 1,0 0,70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1,0 0,70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1,0 0,70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene ND 0,41 0,71 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,45-Tictablorobenzene ND 0,41 0,24 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,45-Tictablorobenzene ND 0,41 0,24 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorobenzene ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorobenzene ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorobenzene ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorobenzene ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorophenol ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorophenol ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorophenol ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorophenol ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorophenol ND 0,41 0,20 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 12,4-Tirichlorophenol ND 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41	Nitrobenzene	ND	0.41	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
N. Nirosodimethylamine ND 0.41 0.16 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR N-Nirosodiphenylamine ND 0.41 0.19 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR N-Nirosodiphenylamine ND 0.41 0.13 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR N-Nirosodiphenylamine ND 0.41 0.095 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pentachlorophenol ND 0.41 0.095 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pentachlorophenol ND 0.41 0.16 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Phenanhrene 14 1.0 0.54 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19/35 CMR Phenanhrene 16 1.0 0.70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyrene 16 1.0 0.70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyrene 16 1.0 0.70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyrene ND 0.41 0.17 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyrene ND 0.41 0.17 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.24 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.20 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19/35 CMR Pyridine ND 0.41 0.40 0.40 0.40 0.40 0.40 0.40 0.40	2-Nitrophenol	ND	0.41	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
N-Nitrosodiphenylamine ND 0,41 0,19 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR N-Nitrosodiphenylamine ND 0,41 0,13 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0,41 0,16 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0,41 0,16 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenanthrene 14 1,0 0,54 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenanthrene 14 1,0 0,74 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1,0 0,70 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1,0 0,70 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene ND 0,41 0,17 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyridine ND 0,41 0,17 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Trichlorobenzene ND 0,41 0,24 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4-5-Trichlorobenzene ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,21 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4-5-Trichlorophenol ND 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41	4-Nitrophenol	ND	0.79	0.71	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
N-Nitrosodi-n-propylamine ND 0.41 0.13 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachloronitrobenzene ND 0.41 0.095 mg/kg dry I V+6; U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0.41 0.16 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenanthrene 14 1.0 0.54 mg/kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenol ND 0.41 0.11 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1.0 0.70 mg/kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene ND 0.41 0.17 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyridine ND 0.41 0.27 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4,5-Tetrachlorobenzene ND 0.41 0.27 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorobenzene ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.21 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.22 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2.4,5-Trichlorophenol ND 0.41 0.20 mg/kg dry I U U SW-846 8270D 6/17/13 6/18/13 1	N-Nitrosodimethylamine	ND	0.41	0,16	mg/Kg dry	I	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
N-Nitrosodi-n-propylamine ND 0.41 0.13 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachloronitrobenzene ND 0.41 0.095 mg/Kg dry I V+6-C SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0.41 0.16 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenanhrene 14 1.0 0.54 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenol ND 0.41 0.11 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1.0 0.70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene ND 0.41 0.17 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyridine ND 0.41 0.17 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4,5-Tetrachlorobenzene ND 0.41 0.24 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorobenzene ND 0.41 0.24 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorobenzene ND 0.41 0.29 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.22 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.22 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.22 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1.2,4-Trichlorophenol ND 0.41 0.26 mg/Kg dry I U U SW-846 8270D 6/17/13 6/18/1	N-Nitrosodiphenylamine	ND	0.41	0.19	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Pentachloronitrobenzene ND 0,41 0,095 mg/Kg dry 1 V+16, U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pentachlorophenol ND 0,41 0,16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenon ND 0,41 0,11 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Phenol ND 0,41 0,11 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrrane 16 1,0 0,70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrrane ND 0,41 0,17 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrrane ND 0,41 0,17 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Trichlorobenzene ND 0,41 0,24 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Trichlorobenzene ND 0,41 0,98 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,5-Trichlorophenol ND 0,41 0,21 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,5-Trichlorophenol ND 0,41 0,22 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,5-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR SW-846 8270D 6/17/13 6/18/13 19:35	N-Nitrosodi-n-propylamine	ND	0.41	0.13		ī	U	SW-846 8270D	6/17/13	6/18/13 19:35	
Pentachlorophenol ND 0.41 0.16 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR	Pentachloronitrobenzene	ND	0.41			1	V-16-U (?	SW-846 8270D			
Phenol ND	Pentachlorophenol	ND	0.41								
Phenol ND 0,41 0,11 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyrene 16 1.0 0,70 mg/Kg dry 5 SW-846 8270D 6/17/13 6/18/13 19:35 CMR Pyridine ND 0,41 0,17 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4,5-Tetrachlorobenzene ND 0,41 0,24 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4-Trichlorobenzene ND 0,41 0,098 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4-Trichlorophenol ND 0,41 0,21 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,6-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,6-Trichlorophenol 77.8 30-130	Phenanthrene										
Pyrene 16							11				
Pyridine							O				
1,2,4,5-Tetrachlorobenzene ND 0,41 0,24 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 1,2,4-Trichlorobenzene ND 0,41 0,098 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,5-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,6-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Surrogates **Recovery Recovery Limits Flag 2-Fluorophenol 77.8 30-130 6/19/13 15:13 2-Fluorophenol 79.0 30-130 6/18/13 19:35 Phenol-d6 85.8 30-130 6/19/13 15:13 Nitrobenzene-d5 69.2 30-130 6/19/13 15:13 2-Fluorobiphenyl 79.4 30-130 6/	-										
1,2,4-Trichlorobenzene ND 0,41 0,098 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,5-Trichlorophenol ND 0,41 0,21 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,6-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Surrogates Recovery Limits Flag 2-Fluorophenol 77.8 30-130 6/18/13 19:35 CMR 6/18/13 19:35 CMR 6/18/13 19:35 CMR 78.8 30-130 6/18/13 19:35 CMR 6/18											
2,4,5-Trichlorophenol ND 0,41 0,21 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR 2,4,6-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Surrogates % Recovery Recovery Limits Flag 2-Fluorophenol 77.8 30-130 6/19/13 15:13 2-Fluorophenol 70.1 30-130 6/18/13 19:35 Phenol-d6 79.0 30-130 6/18/13 19:35 Phenol-d5 74.0 30-130 6/18/13 19:35 Nitrobenzene-d5 74.0 30-130 6/18/13 19:35 Nitrobenzene-d5 69.2 30-130 6/19/13 15:13 2-Fluorophenol 75.1 30-130 6/19/13 15:13 2-Fluorophenol 79.4 30-130 6/18/13 19:35 2-Horophenol 70.7 30-130 6/18/13 19:35 2-A,6-Tribromophenol 55.5 30-130 6/18/13 1											CMR
2,4,6-Trichlorophenol ND 0,41 0,26 mg/Kg dry 1 U SW-846 8270D 6/17/13 6/18/13 19:35 CMR Surrogates Recovery Recovery Limits Flag 2-Fluorophenol 77.8 30-130 6/18/13 19:35 Phenol-d6 79.0 30-130 6/18/13 19:35 Phenol-d6 85.8 30-130 6/18/13 19:35 Phenol-d6 85.8 30-130 6/18/13 19:35 Nitrobenzene-d5 74.0 30-130 6/18/13 19:35 Nitrobenzene-d5 69.2 30-130 6/18/13 19:35 Nitrobenzene-d5 69.2 30-130 6/18/13 19:35 2-Fluorobiphenyl 75.1 30-130 6/18/13 19:35 2-Fluorobiphenyl 75.1 30-130 6/18/13 19:35 2-Fluorophenol 70.7 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70.7 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35		ND	0.41	0,098	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
Surrogates % Recovery Limits Flag 2-Fluorophenol 77.8 30-130 6/19/13 15:13 2-Fluorophenol 70.1 30-130 6/18/13 19:35 Phenol-d6 79.0 30-130 6/18/13 19:35 Phenol-d6 85.8 30-130 6/19/13 15:13 Nitrobenzene-d5 74.0 30-130 6/18/13 19:35 Nitrobenzene-d5 69.2 30-130 6/19/13 15:13 2-Fluorobiphenyl 75.1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79.4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70.7 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35	2,4,5-Trichlorophenol	ND	0.41	0.21	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2-Fluorophenol 77.8 30-130 6/19/13 15:13 2-Fluorophenol 70.1 30-130 6/18/13 19:35 Phenol-d6 79.0 30-130 6/18/13 19:35 Phenol-d6 85.8 30-130 6/19/13 15:13 Nitrobenzene-d5 74.0 30-130 6/18/13 19:35 Nitrobenzene-d5 69.2 30-130 6/19/13 15:13 2-Fluorobiphenyl 75.1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79.4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70.7 30-130 6/18/13 19:35 2,4,6-Tribromophenol 55.5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35	2,4,6-Trichlorophenol	ND	0.41	0.26	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/18/13 19:35	CMR
2-Fluorophenol 70,1 30-130 6/18/13 19:35 Phenol-d6 79,0 30-130 6/18/13 19:35 Phenol-d6 85,8 30-130 6/19/13 15:13 Nitrobenzene-d5 74.0 30-130 6/18/13 19:35 Nitrobenzene-d5 69,2 30-130 6/19/13 15:13 2-Fluorobiphenyl 75,1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79,4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70,7 30-130 6/18/13 19:35 2,4,6-Tribromophenol 55,5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35	Surrogates		% Reco	very	Recovery Limits	3	Flag				
Phenol-d6 79,0 30-130 6/18/13 19:35 Phenol-d6 85,8 30-130 6/19/13 15:13 Nitrobenzene-d5 74,0 30-130 6/18/13 19:35 Nitrobenzene-d5 69,2 30-130 6/19/13 15:13 2-Fluorobiphenyl 75,1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79,4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70,7 30-130 6/18/13 19:35 2,4,6-Tribromophenol 55,5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
Phenol-d6 85,8 30-130 6/19/13 15:13 Nitrobenzene-d5 74,0 30-130 6/18/13 19:35 Nitrobenzene-d5 69,2 30-130 6/19/13 15:13 2-Fluorobiphenyl 75,1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79,4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70,7 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
Nitrobenzene-d5 74.0 30-130 6/18/13 19:35 Nitrobenzene-d5 69.2 30-130 6/19/13 15:13 2-Fluorobiphenyl 75.1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79.4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70.7 30-130 6/19/13 15:13 2,4,6-Tribromophenol 55,5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
Nitrobenzene-d5 69,2 30-130 6/19/13 15:13 2-Fluorobiphenyl 75,1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79,4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70,7 30-130 6/19/13 15:13 2,4,6-Tribromophenol 55,5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
2-Fluorobiphenyl 75.1 30-130 6/19/13 15:13 2-Fluorobiphenyl 79.4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70.7 30-130 6/19/13 15:13 2,4,6-Tribromophenol 55.5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
2-Fluorobiphenyl 79.4 30-130 6/18/13 19:35 2,4,6-Tribromophenol 70.7 30-130 6/19/13 15:13 2,4,6-Tribromophenol 55.5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
2,4,6-Tribromophenol 70.7 30-130 6/19/13 15:13 2,4,6-Tribromophenol 55,5 30-130 6/18/13 19:35 p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
p-Terphenyl-d14 56,3 30-130 6/18/13 19:35											
	2,4,6-Tribromophenol		55.5		30-130					6/18/13 19:35	
p-Terphenyl-d14 96.0 30-130 6/19/13 15:13	p-Terphenyl-d14		56,3		30-130					6/18/13 19:35	
	p-Terphenyl-d14		96.0		30-130					6/19/13 15:13	

Sample Description:

Work Order: 13F0478

Project Location: Bronx PC Bldg 1 Date Received: 6/13/2013 Field Sample #: T3-SB03 (0-4ft)

Sampled: 6/12/2013 09:25

Sample ID: 13F0478-09 Sample Matrix: Soil

[Field Deplicate of T2 - SBOZ (04')

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		83,6		%Wt	1		SM 2540G	6/17/13	6/18/13 9:32	MLA

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (5-10ft)

Sampled: 6/12/2013 09:28

Actors				Volatile	Organic Com	pounds by (GC/MS	13.113			
March Marc							7	12.1.3	Date	Date/Time	
Appendix No	Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Instruction	Acetone	0_51	0,10	0,023	mg/Kg dry	F.	. 1.04- J	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Brownerment	Acrylonitrile	ND	0.0060	0,0025	mg/Kg dry	1	V-16, U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Decondename N.D. 0,076	tert-Amyl Methyl Ether (TAME)	ND	0.0020	0,00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Bromochlormerlane N.D. 0,000 0,0014 mgKg day 1 U SW-446 S260C 618/13 618/13 131/34 MFF Bromochlarmerlane N.D. 0,0020 0,0014 mgKg day 1 U SW-446 S260C 618/13 618/13 131/34 MFF Bromochlarme N.D. 0,0010 0,0017 mgKg day 1 U SW-446 S260C 618/13 618/13 131/34 MFF	Benzene	ND	0.0020	0,00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Promoticishinoumerhame Ni	Bromobenzene	ND	0.0020	0,00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Bronnenfame	Bromochloromethane	ND	0.0020	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Homomethame No 0,000 0,001 mg/kg dry 1 U SW-446 226CC 618/13 018/13 1344 MFF	Bromodichloromethane	ND	0.0020	0.00060	mg/Kg dry	Ĩ.	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
2-Batanone (MEK) MD 0,40 0,014 0,004 0,000	Bromoform	ND	0.0020	0.0014	mg/Kg dry	15	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
ter-Buyl Alcohol (TBA) ND 0,040 0,021 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,002 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,002 0,0000 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,002 0,0000 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,002 0,0000 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,0000 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,0000 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,0000 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-446-8200C 6/18/13 6/18/13 13-34 MFF see-Buylbeacene ND 0,0000 0,00070 mg/kg dry 1 U SW-	Bromomethane	ND	0.010	0.0017	mg/Kg dry	1	Ŭ	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
n-Butylbenzzene ND 0,0020 0,0020 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 133/4 MFF sex-Butylbenzzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 133/4 MFF text-ButylEdnyl Ether (TBEE) ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 133/4 MFF Carbon Textachloride ND 0,0020 0,0000 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 133/4 MFF Carbon Textachloride ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 133/4 MFF Chlorodhena ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 133/4 MFF Chlorodhena ND 0,002 0,0010 mg/Kg dry 1 U SW-846 8260C <td>2-Butanone (MEK)</td> <td>ND</td> <td>0.040</td> <td>0.017</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8260C</td> <td>6/18/13</td> <td>6/18/13 13:34</td> <td>MFF</td>	2-Butanone (MEK)	ND	0.040	0.017	mg/Kg dry	1		SW-846 8260C	6/18/13	6/18/13 13:34	MFF
See-Buty/Demizered ND 0,002 0,0010 mg/Kg dry 1	tert-Butyl Alcohol (TBA)	ND	0.040	0.021	mg/Kg dry	1	V-16, U /	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
terl-Burylbenzene terl-Burylbenzene terl-Burylbenzene terl-Burylbenzene terl-Buryl Ethyl Ether (TBEE) ND 0,0020 0,00000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Carbon Disulfide ND 0,020 0,00000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Carbon Disulfide ND 0,020 0,00000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,00000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Ciloronbenzene ND 0,020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibriononbenzene(DBCP) ND 0,0020 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0010 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF L3-Dibrionbenzene ND 0,0020 0,0000 mg/Kg dry 1 U SW-84	n-Butylbenzene	ND	0,0020	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
cert-Buyl Ethyl Ether (TBEE) ND 0,0010 0,0010 0,0000 mg/kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13.34 MFF Carbon Disulfide ND 0,0020 0,0003 mg/Kg dry 1 L-04, U_1 SW-846 8260C 6/18/13 6/18/13 13.34 MFF Carbon Tetrachloride ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13.34 MFF Chlorochame ND 0,0020 0,0001 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13.34 MFF Chlorochame ND 0,0040 0,0001 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13.34 MFF Chlorochame ND 0,0010 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13.34 MFF Chlorochame ND 0,001 0,0000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13.34<	sec-Butylbenzene	ND	0,0020	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Carbon Disulfide ND 0,000 0,0033 mg/Kg dry 1 L-04, U_J SW-846 8260C 6/18/13 6/18/13 13:34 MFF Carbon Fetrachloride ND 0,0020 0,00000 mg/Kg dry 1 U SW-846 8260C 6/18/13 13:34 MFF Chlorodhomorehune ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Chlorochane ND 0,002 0,0015 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Chlorochane ND 0,002 0,0010 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Chlorochane ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Chlorochane ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	tert-Butylbenzene	ND	0,0020	0,00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Carbon Tetrachloride ND 0,002 0,0008 mg/Kg dry 1 U SW-846 8260C G/18/13 6/18/13 13-34 MFF Chlorochazzene ND 0,0007 mg/Kg dry 1 U SW-846 8260C G/18/13 G/18/13 13-34 MFF Chlorochazene ND 0,000 0,0007 mg/Kg dry 1 U SW-846 8260C G/18/13 G/18/13 13-34 MFF Chlorocharen ND 0,000 0,0007 mg/Kg dry 1 U SW-846 8260C G/18/13 G/18/13 13-34 MFF Chlorochothure ND 0,000 0,00080 mg/Kg dry 1 U SW-846 8260C G/18/13 G/18/13 13-34 MFF 2-Chlorochothure ND 0,000 0,00080 mg/Kg dry 1 U SW-846 8260C G/18/13 G/18/13 13-34 MFF 1,2-Dihromochana ND 0,000 0,0000 mg/Kg dry 1 U SW-846 8260C G/18/13 G/18/13 13-34 MFF 1,2-Di	tert-Butyl Ethyl Ether (TBEE)	ND	0.0010	0.00060	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Chlorobenzene ND 0,0020 0,0070 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,004 0,0070 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,002 0,0015 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,0070 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00070 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00080 mg/Kg dry 1 U SW-846-8260C 6/18/13 6/18/13 13-34 MFF Chlorodhane ND 0,000 0,00	Carbon Dísulfide	ND	0_020	0.0033	mg/Kg dry	ī	L-04, U.	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Chlorodibromomethame	Carbon Tetrachloride	ND	0,0020	0,00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Chloroethane	Chlorobenzene	ND	0,0020	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Chloroform	Chlorodibromomethane	ND	0.0040	0.00070	mg/Kg dry	1	Ŭ	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Chloromethane ND 0.010 0.00090 mg/Kg dry 1 104, 105, 105, 10 1 104, 105, 105, 10 1 104, 105, 105, 10 1 104, 105, 105, 10 1 104, 105, 105, 105, 105, 105, 105, 105, 105	Chloroethane	ND	0.020	0.0015	mg/Kg dry	1	UJ	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Chlorotoluene	Chloroform	ND	0.0040	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
A-Chlorotoluene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dibromo-3-chloropropane (DBCP) ND 0,0020 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dibromoethane (EDB) ND 0,0020 0,00000 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichlorobenzene ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichlorobenzene ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichlorobenzene ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,4-Dichloro-2-butene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,4-Dichloro-2-butene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorobethane ND 0,020 0,00013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorobethane ND 0,020 0,00013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0020 0,00013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U	Chloromethane	ND	0.010	0.00090	mg/Kg dry	4	L-04, V-05; U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2-Dibromo-3-chlorogropane (DBCP) ND 0,0020 0,0011 mg/Kg dry 1 V=16-FU	2-Chlorotoluene	ND	0,0020	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2-Dibromoethane EDB ND 0,001 0,0010 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichlorobenzene ND 0,002 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichlorobenzene ND 0,002 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,4-Dichlorobenzene ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,4-Dichlorodfluoromethane ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,4-Dichlorodfluoromethane ND 0,004 0,0012 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorodfluoromethane ND 0,002 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethane ND 0,002 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloroethylene ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloropthylene ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloropthylene ND 0,002 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloroptopane ND 0,002 0,0009 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroptopane ND 0,0000 0,0007 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroptopane ND 0,0000 0,0007 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroptopane ND 0,0000 0,0007 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroptopane ND 0,0000 0,0007 mg/Kg dry 1 U SW-846 8260C	4-Chlorotoluene	ND	0.0020	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Dibromomethane	1,2-Dibromo-3-chloropropane (DBCP)	ND	0,0020	0.0011	mg/Kg dry	1	V-16,-U R	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
ND 0,0020 0,0070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichlorobenzene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,4-Dichloro-2-butene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,4-Dichloro-2-butene ND 0,0040 0,0012 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorotenthane (Freon 12) ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorotenthane ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorotenthane ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorotethylene ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichlorotethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichlorotethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichlorotethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichlorotethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0010 0,00070 mg/Kg dry	1,2-Dibromoethane (EDB)	ND	0,0010	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	Dibromomethane	ND	0.0020	0_00060	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,4-Dichlorobenzene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,4-Dichloro-2-butene ND 0,0040 0,0012 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Dichlorodifluoromethane (Freon 12) ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethane ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloroethane ND 0,0020 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0040 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,2-Dichloroethylene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13	1,2-Dichlorobenzene	ND	0.0020	0.00070	mg/Kg dry	13	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
trans-1,4-Dichloro-2-butene ND 0,0040 0,0012 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Dichlorodifluoromethane (Freon 12) ND 0,020 0,0013 mg/Kg dry 1 V=05,U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethane ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloroethane ND 0,0020 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0040 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,2-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloroethylene ND 0,0020 0,00013 mg/Kg dry 1 U SW-846 8260C 6/18/13	1,3-Dichlorobenzene	ND	0,0020	0.00070	mg/Kg dry	3	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Dichlorodifluoromethane (Freon 12) ND 0,020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethane ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloroethylene ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0,0020 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,2-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,2-Dichloroethylene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0,0020 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,3-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	1,4-Dichlorobenzene	ND	0,0020	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1-Dichloroethane	trans-1,4-Dichloro-2-butene	ND	0.0040	0,0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2-Dichloroethane ND 0.0020 0.0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloroethylene ND 0.0040 0.0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,2-Dichloroethylene ND 0.0020 0.00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,2-Dichloroethylene ND 0.0020 0.00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloropropane ND 0.0020 0.0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0.0010 0.00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0.0020 0.00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/1	Dichlorodifluoromethane (Freon 12)	ND	0,020	0,0013	mg/Kg dry	1	V=05, U J	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1-Dichloroethylene ND 0,0040 0,0011 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,2-Dichloroethylene ND 0,0020 0,00080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,2-Dichloroethylene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloropropane ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 2,2-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18	1,1-Dichloroethane	ND	0.0020	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
cis-1,2-Dichloroethylene ND 0,0020 0,0080 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,2-Dichloroethylene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloropropane ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 2,2-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6	1,2-Dichloroethane	ND	0.0020	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
trans-1,2-Dichloroethylene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,2-Dichloropropane ND 0,0020 0,0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 2,2-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	1,1-Dichloroethylene	ND	0.0040	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2-Dichloropropane ND 0.0020 0.0013 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,3-Dichloropropane ND 0.0010 0.00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 2,2-Dichloropropane ND 0.0020 0.00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0.0020 0.00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,3-Dichloropropene ND 0.0010 0.00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0.0010 0.00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Diethyl Ether ND 0.0010 0.00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:3	cis-1,2-Dichloroethylene	ND	0,0020	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,3-Dichloropropane ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 2,2-Dichloropropane ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Diethyl Ether ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	trans-1,2-Dichloroethylene	ND	0.0020	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
2,2-Dichloropropane ND 0,0020 0,0090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF 1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Diethyl Ether ND 0,0010 0,0018 mg/Kg dry 1 V=05.U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	1,2-Dichloropropane	ND	0.0020	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1-Dichloropropene ND 0,0020 0,00090 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF cis-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Diethyl Ether ND 0,020 0,0018 mg/Kg dry 1 V=05: U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	1,3-Dichloropropane	ND	0,0010	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
cis-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Diethyl Ether ND 0,020 0,0018 mg/Kg dry 1 V=05: U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	2,2-Dichloropropane	ND	0.0020	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Diethyl Ether ND 0,020 0,0018 mg/Kg dry 1 V=05 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	1,1-Dichloropropene	ND	0.0020	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
trans-1,3-Dichloropropene ND 0,0010 0,00070 mg/Kg dry 1 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF Diethyl Ether ND 0,020 0,0018 mg/Kg dry 1 V=05 U SW-846 8260C 6/18/13 6/18/13 13:34 MFF	cis-1,3-Dichloropropene	ND	0.0010	0.00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Diethyl Ether ND 0,020 0,0018 mg/Kg dry 1 V=05. U 5 SW-846 8260C 6/18/13 6/18/13 13:34 MFF	trans-1,3-Dichloropropene	ND	0.0010	0.00070		1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
	Diethyl Ether	ND	0.020	0.0018	mg/Kg dry		V=05. U J	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Page 53 of 1332 B074595 01 07/26/13 14:14:40						Pa	ge 53 of 133	32 B074595	01 07/2	6/13 14:1	4:40

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (5-10ft)

Sampled: 6/12/2013 09:28

			Volati	le Organic Comp	pounds by G	C/MS	130/13			
						+	130113	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.0010	0.00060	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,4-Dioxane	ND	0.10	0.058	mg/Kg dry	1	V-16-U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Ethylbenzene	ND	0.0020	0,00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Hexachlorobutadiene	ND	0.0020	0_0010	mg/Kg dry	Î	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
2-Hexanone (MBK)	ND	0.040	0.011	mg/Kg dry	1	UJ	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Isopropylbenzene (Cumene)	ND	0.0020	0.00070	mg/Kg dry	E	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0020	0.00080	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0040	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Methylene Chloride	0.013	0.020	0.0071	mg/Kg dry	1	J	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.040	0,0076	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Naphthalene	0.026	0,0040	0.00070	mg/Kg dry	1		SW-846 8260C	6/18/13	6/18/13 13:34	MFF
n-Propylbenzene	ND	0.0020	0,00070	mg/Kg dry	ï	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Styrene	ND	0.0020	0,00060	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1,1,2-Tetrachloroethane	ND	0.0020	0,00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1,2,2-Tetrachloroethane	ND	0.0010	0,00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Tetrachloroethylene	ND	0.0020	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Tetrahydrofuran	ND	0.010	0.0022	mg/Kg dry	1	V-16, U 1	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Toluene	ND	0.0020	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2,3-Trichlorobenzene	ND	0.0020	0,00060	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2,4-Trichlorobenzene	ND	0.0020	0,00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,3,5-Trichlorobenzene	ND	0.0020	0,00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1,1-Trichloroethane	ND	0_0020	0,0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1,2-Trichloroethane	ND	0,0020	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Trichloroethylene	ND	0.0020	0.00090	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Trichlorofluoromethane (Freon 11)	ND	0,010	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2,3-Trichloropropane	ND	0.0020	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.010	0.00090	mg/Kg dry	Ĭ	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,2,4-Trimethylbenzene	ND	0.0020	0.00080	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
1,3,5-Trimethylbenzene	ND	0,0020	0.00060	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Vinyl Chloride	ND	0.010	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
m+p Xylene	ND	0,0040	0.0017	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
o-Xylene	ND	0,0020	0,00070	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 13:34	MFF
Surrogates		% Rec	overy	Recovery Limits	s	Flag				
1,2-Dichloroethane-d4		107		70-130					6/18/13 13:34	
Toluene-d8		102		70-130					6/18/13 13:34	
4-Bromofluorobenzene		101		70-130					6/18/13 13:34	

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (5-10ft)

Sampled: 6/12/2013 09:28

Sample Flags: DL-03			Semivola	itile Organic C	ompounds by	GC/MS	7/3-/13			
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	0.39	0.20	0.098	mg/Kg dry	1	riag	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Acenaphthylene	0.13	0.20	0,095	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Acetophenone	ND	0,39	0,095	mg/Kg dry	î.	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Aniline	ND	0.39	0.30	mg/Kg dry	i	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Anthracene	1.0	0.20	0_12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Benzidine	ND	0.76	0.53	ing/Kg dry	ï	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Benzo(a)anthracene	3.1	0.20	0,089	mg/Kg dry	ï		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Benzo(a)pyrene	2.9	0,20	0.069	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Benzo(b)fluoranthene	3,3	0,20	0.17	mg/Kg dry	ī		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Benzo(g,h,i)perylene	1.9	0.20	0.16	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Benzo(k)fluoranthene	1,3	0,20	0.18	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Benzoic Acid	ND	1,2	1,1	mg/Kg dry	1	8 207, U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Bis(2-chloroethoxy)methane	ND	0.39	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Bis(2-chloroethyl)ether	ND	0.39	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Bis(2-chloroisopropyl)ether	ND	0,39	0,16	mg/Kg dry	Ĩ	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Bis(2-Ethylhexyl)phthalate	ND	0.39	0.088	mg/Kg dry	Ĩ	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
4-Bromophenylphenylether	ND	0.39	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Butylbenzylphthalate	ND	0.39	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Carbazole	0,38	0,20	0.14	mg/Kg dry	i		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
4-Chloroaniline	ND	0.76	0.19	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
4-Chloro-3-methylphenol	ND	0.76	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2-Chloronaphthalene	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2-Chlorophenol	ND	0.39	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
4-Chlorophenylphenylether	ND	0.39	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Chrysene	2.8	0.20	0.13	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Dibenz(a,h)anthracene	0.50	0.20	0.11	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Dibenzofuran	0.20	0.39	0.091	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Di-n-butylphthalate	ND	0.39	0.17	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
1,2-Dichlorobenzene	ND	0,39	0,079	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
1,3-Dichlorobenzene	ND	0.39	0.092	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
1,4-Dichlorobenzene	ND	0.39	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
3,3-Dichlorobenzidine	ND	0.20	0,18	mg/Kg dry	1.	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2,4-Dichlorophenol	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Diethylphthalate	ND	0.39	0,13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2,4-Dimethylphenol	ND	0.39	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Dimethylphthalate	ND	0.39	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
4,6-Dinitro-2-methylphenol	ND	0,39	0.16	mg/Kg dry	1	Ü	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2,4-Dinitrophenol	ND	0.76	0,39	mg/Kg dry	1	√-19, U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2,4-Dinitrotoluene	ND	0.39	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2,6-Dinitrotoluene	ND	0.39	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Di-n-octylphthalate	ND	0.77	0.54	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.39	0.19	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Fluoranthene	5.2	0,39	0,35	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 14:37	CMR
Fluorene	0.35	0.20	0.15	mg/Kg dry	1		SW-846 8270D 332 B074595	6/17/13	6/19/13 11:38	

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (5-10ft)

Sampled: 6/12/2013 09:28

Sample Flags: DL-03			Semivol	atile Organic Co	mpounds by	GC/MS	7 - F			
						4	1 3011 3	Date	Date/Time	
Analyte	Results	RL	\mathbf{DL}	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobenzene	ND	0,39	0,18	mg/Kg dry	i	Ū	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Hexachlorobutadiene	ND	0.39	0,13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Hexachlorocyclopentadiene	ND	0.39	0.26	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Hexachloroethane	ND	0.39	0.11	mg/Kg dry	î	υ	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Indeno(1,2,3-cd)pyrene						O				
	2.2	0.20	0,13	mg/Kg dry	1)		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Isophorone	ND	0.39	0.11	mg/Kg dry	1:	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
1-Methylnaphthalene	0,10	0.20	0.075	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2-Methylnaphthalene	0.12	0_20	0.10	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2-Methylphenol	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
3/4-Methylphenol	ND	0.39	0.22	mg/Kg dry	E	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Naphthalene	0,39	0.20	0,087	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2-Nitroaniline	ND	0.39	0.27	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
3-Nitroaniline	ND	0.39	0.18	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
4-Nitroaniline	ND	0.39	0.20	ing/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Nitrobenzene	ND	0.39	0.11	mg/Kg dry	i	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2-Nitrophenol										
•	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
4-Nitrophenol	ND	0.76	0.69	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
N-Nitrosodimethylamine	ND	0.39	0.16	mg/Kg dry	I	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
N-Nitrosodiphenylamine	ND	0.39	0.18	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
N-Nitrosodi-n-propylamine	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Pentachloronitrobenzene	ND	0.39	0,092	mg/Kg dry	I	-V-16, U R	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Pentachlorophenol	ND	0,39	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Phenanthrene	3.5	0.20	0.11	mg/Kg dry	3		SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Phenol	ND	0,39	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Pyrene	6.7	0.39	0.27	mg/Kg dry	2		SW-846 8270D	6/17/13	6/19/13 14:37	CMR
Pyridine	ND	0.39	0.16	mg/Kg dry	i	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
1,2,4,5-Tetrachlorobenzene	ND	0.39	0.23	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
1,2,4-Trichlorobenzene										
	ND	0,39	0.095	mg/Kg dry	1	Ū	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2,4,5-Trichlorophenol	ND	0.39	0.20	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
2,4,6-Trichlorophenol	ND	0.39	0.25	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 11:38	CMR
Surrogates		% Rec	overy	Recovery Limi	ts	Flag				
2-Fluorophenol		76.8		30-130					6/19/13 14:37	
2-Fluorophenol		73.0		30-130					6/19/13 11:38	
Phenol-d6 Phenol-d6		84.5 84.0		30-130 30-130					6/19/13 14:37 6/19/13 11:38	
Nitrobenzene-d5		77.2		30-130					6/19/13 11:38	
Nitrobenzene-d5		70.8		30-130					6/19/13 14:37	
2-Fluorobiphenyl		75.9		30-130					6/19/13 14:37	
2-Fluorobiphenyl		79.6		30-130					6/19/13 11:38	
2,4,6-Tribromophenol		50.6		30-130					6/19/13 14:37	
2,4,6-Tribromophenol		48.3		30-130					6/19/13 11:38	
p-Terphenyl-d14		101		30-130					6/19/13 11:38	
p-Terphenyl-d14		103		30-130					6/19/13 14:37	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SB02 (5-10ft)

Sampled: 6/12/2013 09:28

Sample ID: 13F0478-10 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
_	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		86.3		% Wt	î		SM 2540G	6/17/13	6/18/13 9:32	MLA

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Page 58 of 1332 B074595_01 07/26/13 14:14:40

Date Received: 6/13/2013
Field Sample #: T2-SS04 12-14

Sampled: 6/12/2013 10:25

Saintle Matrix. Soil			Volatile	e Organic Con	npounds by C	GC/MS	130/13	D-4-	Date/Tim	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	1,3	0.11	0,025	mg/Kg dry	1	1-04-5	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Acrylonitrile	ND	0.0064	0.0027	mg/Kg dry	1	V-16, U /	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0021	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Benzene	ND	0.0021	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Bromobenzene	ND	0,0021	0,00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Bromochloromethane	ND	0.0021	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Bromodichloromethane	ND	0.0021	0.00064	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Bromoform	ND	0.0021	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Bromoinethane	ND	0.011	0.0018	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
2-Butanone (MEK)	ND	0.043	0.019	mg/Kg dry	1	u J	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
tert-Butyl Alcohol (TBA)	ND	0.043	0.022	mg/Kg dry	I	4-16-U R	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
n-Butylbenzene	ND	0.0021	0.00075	mg/Kg dry	ï	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
sec-Butylbenzene	ND	0.0021	0.0011	mg/Kg dry	ĭ	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
tert-Butylbenzene	ND	0,0021	0,00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0011	0.00064	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Carbon Disulfide	ND	0.021	0.0035	mg/Kg dry	1	_L-04, U J	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Carbon Tetrachloride	ND	0.0021	0.00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Chlorobenzene	ND	0,0021	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Chlorodibromomethane	ND	0,0043	0,00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Chloroethane	ND	0.021	0.0016	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Chloroform	ND	0,0043	0.00075	mg/Kg dry	ì	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Chloromethane	ND	0.011	0.00096	mg/Kg dry	1	L-04, V-05, U 🕽	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
2-Chlorotoluene	ND	0.0021	0,00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
4-Chlorotoluene	ND	0.0021	0.00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0021	0.0012	mg/Kg dry	1	V-16, U R	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2-Dibromoethane (EDB)	ND	0.0011	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Dibromomethane	ND	0,0021	0_00064	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2-Dichlorobenzene	ND	0.0021	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,3-Dichlorobenzene	ND	0,0021	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,4-Dichlorobenzene	ND	0,0021	0.00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
trans-1,4-Dichloro-2-butene	ND	0,0043	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.021	0.0014	mg/Kg dry	1	V-05, U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,1-Dichloroethane	ND	0.0021	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2-Dichloroethane	ND	0.0021	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,1-Dichloroethylene	ND	0.0043	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
cis-1,2-Dichloroethylene	ND	0.0021	0.00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
trans-1,2-Dichloroethylene	ND	0,0021	0.00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2-Dichloropropane	ND	0.0021	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,3-Dichloropropane	ND	0.0011	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
2,2-Dichloropropane	ND	0,0021	0,00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
I,I-Dichloropropene	ND	0.0021	0.00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
cis-1,3-Dichloropropene	ND	0,0011	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
trans-1,3-Dichloropropene	ND	0.0011	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Diethyl Ether	ND	0.021	0.0019	mg/Kg dry		V=05. U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-SS04 12-14

Sampled: 6/12/2013 10:25

			Volati	le Organic Comp	oounds by G	C/MS	7/30/13,2			
							7 1	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0_0011	0_00064	mg/Kg dry	Î	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,4-Dioxane	ND	0.11	0.062	mg/Kg dry	1	V-16; U /	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Ethylbenzene	ND	0.0021	0,00086	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Hexachlorobutadiene	ND	0.0021	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
2-Hexanone (MBK)	ND	0.043	0,012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Isopropylbenzene (Cumene)	ND	0.0021	0,00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0021	0,00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0043	0,00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Methylene Chloride	0.012	0.021	0,0076	mg/Kg dry	1	J	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
4-Methyl-2-pentanone (MIBK)	ND	0,043	0.0081	mg/Kg dry	I	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Naphthalene	ND	0.0043	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
n-Propylbenzene	ND	0.0021	0.00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Styrene	ND	0.0021	0.00064	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,1,1,2-Tetrachloroethane	ND	0,0021	0.00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,1,2,2-Tetrachloroethane	ND	0.0011	0.00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Tetrachloroethylene	ND	0.0021	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Tetrahydrofuran	ND	0.011	0.0024	mg/Kg dry	31	-V-16, U R	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Toluene	ND	0.0021	0.00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2,3-Trichlorobenzene	ND	0.0021	0.00064	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2,4-Trichlorobenzene	ND	0.0021	0_00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,3,5-Trichlorobenzene	ND	0.0021	0_00075	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,1,1-Trichloroethane	ND	0.0021	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,1,2-Trichloroethane	ND	0.0021	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Trichloroethylene	ND	0.0021	0.00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Trichlorofluoromethane (Freon 11)	ND	0.011	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2,3-Trichloropropane	ND	0,0021	0,0012	mg/Kg dry	1.	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0,011	0.00096	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,2,4-Trimethylbenzene	ND	0.0021	0.00086	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
1,3,5-Trimethylbenzene	ND	0.0021	0.00064	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Vinyl Chloride	ND	0.011	0.0012	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
m+p Xylene	ND	0.0043	0.0018	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
o-Xylene	ND	0,0021	0,00075	ıng/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:02	MFF
Surrogates		% Rec	overy	Recovery Limits	s	Flag				
1,2-Dichloroethane-d4		109		70-130					6/18/13 14:02	
Toluene-d8		101		70-130					6/18/13 14:02	
4-Bromofluorobenzene		100		70-130					6/18/13 14:02	1

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-SS04 12-14

Sampled: 6/12/2013 10:25

			Semivola	tile Organic Co	ompounds by	GC/MS	1.1.7			
							7/3/13	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	0.20	0.093	mg/Kg dry	15	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Acenaphthylene	0.14	0_20	0_093	mg/Kg dry	I	J	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Acetophenone	ND	0,39	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Aniline	ND	0.39	0,13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Anthracene	0.23	0,20	0.093	mg/Kg dry	1)		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Benzidine	ND	0.39	0,093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Benzo(a)anthracene	0.94	0.20	0.093	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Benzo(a)pyrene	1.0	0.20	0.10	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Benzo(b)fluoranthene	1.2	0,20	0.10	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Benzo(g,h,i)perylene	0.99	0.20	0.081	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Benzo(k)fluoranthene	0.49	0.20	0.12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Benzoic Acid	ND	1,2	0.17	mg/Kg dry	1	Ŀ -04 , U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Bis(2-chloroethoxy)methane	ND	0.39	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Bis(2-chloroethyl)ether	ND	0.39	0.12	mg/Kg dry	T.	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Bis(2-chloroisopropyl)ether	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Bis(2-Ethylhexyl)phthalate	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
4-Bromophenylphenylether	ND	0.39	0,081	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Butylbenzylphthalate	ND	0.76	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Carbazole	0.15	0.20	0,093	ıng/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
4-Chloroaniline	ND	0.76	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
4-Chloro-3-methylphenol	ND	0.76	0.12	mg/Kg dry	Ť	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2-Chloronaphthalene	ND	0.39	0.081	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2-Chlorophenol	ND	0.39	0.10	mg/Kg dry	¥	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
4-Chlorophenylphenylether	ND	0.39	0_14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Chrysene	0.98	0.20	0.093	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Dibenz(a,h)anthracene	0.23	0,20	0.081	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Dibenzofuran	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Di-n-butylphthalate	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
1,2-Dichlorobenzene	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
1,3-Dichlorobenzene	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
1,4-Dichlorobenzene	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
3,3-Dichlorobenzidine	ND	0.20	0.069	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2,4-Dichlorophenol	ND	0.39	0.093	mg/Kg dry	ī	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Diethylphthalate	ND	0,39	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2,4-Dimethylphenol	ND	0.39	0.081	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Dimethylphthalate	ND	0.76	0_12	mg/Kg dry	Ĩ	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
4,6-Dinitro-2-methylphenol	ND	0.39	0.046	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2,4-Dinitrophenol	ND	0.76	0.046	mg/Kg dry	1	- V-19 , U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2,4-Dinitrotoluene	ND	0.39	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2,6-Dinitrotoluene	ND	0,39	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Di-n-octylphthalate	ND	0.76	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Fluoranthene	1.6	0.20	180.0	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Fluorene	ND	0.20	0.10	mg/Kg dry	I	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T2-SS04 12-14

Sampled: 6/12/2013 10:25

			Semivo	latile Organic Co	mpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobenzene	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Hexachlorobutadiene	ND	0.39	0.069	mg/Kg dry	t	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Hexachlorocyclopentadiene	ND	0.76	0,069	mg/Kg dry	I.	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Hexachloroethane	ND	0.39	0.093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Indeno(1,2,3-cd)pyrene	0.97	0.20	0.081	mg/Kg dry	1)		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
lsophorone	ND	0.39	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
1-Methylnaphthalene	ND	0.20	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2-Methylnaphthalene	ND	0.20	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2-Methylphenol	ND	0.39	0.15	mg/Kg dry	Ť.	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
3/4-Methylphenol	ND	0.39	0.19	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Naphthalene	0,22	0,20	0.081	mg/Kg dry	12		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2-Nitroaniline	ND	0.39	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
3-Nitroaniline	ND	0_39	0,12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
4-Nitroaniline	ND	0.39	0.14	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Nitrobenzene	ND	0.39	0,081	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2-Nitrophenol	ND	0.39	0,058	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
4-Nitrophenol	ND	0.76	0,046	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
N-Nitrosodimethylamine	ND	0.39	0.069	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
N-Nitrosodiphenylamine	ND	0.39	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
N-Nitrosodi-n-propylamine	ND	0,39	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Pentachloronitrobenzene	ND	0.39	0.13	mg/Kg dry	1	V-16, U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Pentachlorophenol	ND	0.39	0.069	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Phenanthrene	1,3	0.20	0,093	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Phenol	ND	0.39	0.10	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Pyrene	2,0	0.20	0.12	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Pyridine	ND	0.39	0,093	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
1,2,4,5-Tetrachlorobenzene	ND	0.39	0.081	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
1,2,4-Trichlorobenzene	ND	0.39	0.069	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2,4,5-Trichlorophenol	ND	0.39	0.12	mg/Kg dry	ì	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
2,4,6-Trichlorophenol	ND	0,39	0,081	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 12:13	CMR
Surrogates		% Rec	overy	Recovery Limit	s	Flag				
2-Fluorophenol		63.4		30-130		-	1		6/19/13 12:13	
Phenol-d6		73.6		30-130		2/30	13		6/19/13 12:13	
Nitrobenzene-d5		63.8		30-130		1.179			6/19/13 12:13	
2-Fluorobiphenyl		70.2		30-130		,			6/19/13 12:13	
2,4,6-Tribromophenol		43.5		30-130					6/19/13 12:13	
p-Terphenyl-d14		88;3		30-130					6/19/13 12:13	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T2-SS04 12-14

Sampled: 6/12/2013 10:25

			Polyc	hlorinated Biph	nenyls By GC/	ECD				
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analys
Aroclor-1016 [1]	ND	0,023	0.0072	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:27	МЈС
Aroclor-1221 [1]	ND	0.023	0.023	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Aroclor-1232 [1]	ND	0.023	0.014	mg/Kg dry	1)	U	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Aroclor-1242 [1]	ND	0.023	0.012	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Aroclor-1248 [1]	ND	0.023	0.013	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Aroclor-1254 [1]	ND	0.023	0,010	mg/Kg dry	1	Ŭ	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Aroclor-1260 [2]	0.045	0.023	0.011	mg/Kg dry	Î.	J	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Aroclor-1262 [1]	ND	0.023	0.0095	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Aroclor-1268 [1]	ND	0.023	0.014	mg/Kg dry	E	U	SW-846 8082A	6/17/13	6/27/13 11:27	MJC
Surrogates		% Reco	very	Recovery Limi	ts	Flag				
Decachlorobiphenyl [1]		80.1		30-150					6/27/13 11:27	
Decachlorobiphenyl [2]		89.7		30-150		7 1			6/27/13 11:27	
Tetrachloro-m-xylene [1]		82.7		30-150		7/30/	13		6/27/13 11:27	
Tetrachloro-m-xylene [2]		90.3		30-150		. ,	2-		6/27/13 11:27	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013 Field Sample #: T2-SS04 12-14

Sampled: 6/12/2013 10:25

Sample ID: 13F0478-11 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		86.4	_	% Wt	1º		SM 2540G	6/17/13	6/18/13 9:32	MLA

Project Location: Bronx PC Bldg I

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-SS02 0-6

Sampled: 6/12/2013 11:10

			Volatile	Organic Con	ipounds by (GC/MS	7/30/13	D-4-	D-4-/T:	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analys
Acetone	1,2	0.10	0,024	mg/Kg dry	1	1-04 J	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Acrylonitrile	ND	0,0063	0,0026	mg/Kg dry	î	V-16, U R	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
ert-Arnyl Methyl Ether (TAME)	ND	0,0021	0,00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
enzene	ND	0,0021	0,00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
romobenzene	ND	0,0021	0.00084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Bromochloromethane	ND	0.0021	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
romodichloromethane	ND	0.0021	0,00063	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
dromoform	ND	0.0021	0.0015	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
romomethane	ND	0.010	0.0018	mg/Kg diy	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
-Butanone (MEK)	ND	0.042	0.018	mg/Kg dry	1	UJ	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
ert-Butyl Alcohol (TBA)	ND	0,042	0,022	mg/Kg dry	1	¥-16,U R	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
-Butylbenzene	ND	0,0021	0,00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
ec-Butylbenzene	ND	0.0021	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
ert-Butylbenzene	ND	0,0021	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
ert-Butyl Ethyl Ether (TBEE)	ND	0.0010	0.00063	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Carbon Disulfide	ND	0.021	0.0034	mg/Kg dry	1	1.04,0 J	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Carbon Tetrachloride	ND	0.0021	0.00084	mg/Kg dry	3	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Chlorobenzene	ND	0.0021	0.00073	mg/Kg dry	ì	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
hlorodibromomethane	ND	0.0042	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
hloroethane	ND	0.021	0,0016	mg/Kg dry	1	UJ	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Chloroform	ND	0,0042	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Chloromethane	ND	0.010	0.00094	mg/Kg dry	1	L-04, V-05; U J	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
-Chlorotoluene	ND	0.0021	0.00084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
-Chlorotoluene	ND	0.0021	0.00084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,2-Dibromo-3-chloropropane (DBCP)	ND	0,0021	0.0011	mg/Kg dry	1	-V-16, U/2	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,2-Dibromoethane (EDB)	ND	0,0010	0,0010	mg/Kg dry	3.	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Dibromomethane	ND	0.0021	0.00063	ıng/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,2-Dichlorobenzene	ND	0.0021	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,3-Dichlorobenzene	ND	0,0021	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,4-Dichlorobenzene	ND	0.0021	0.00084	mg/Kg dry	1	Ŭ	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
rans-1,4-Dichloro-2-butene	ND	0.0042	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.021	0.0014	mg/Kg dry	1	-V-05, U.J	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,1-Dichloroethane	ND	0.0021	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,2-Dichloroethane	ND	0.0021	0.0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,1-Dichloroethylene	ND	0,0042	0,0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
sis-1,2-Dichloroethylene	ND	0.0021	0_00084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
rans-1,2-Dichloroethylene	ND	0.0021	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,2-Dichloropropane	ND	0,0021	0,0014	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,3-Dichloropropane	ND	0.0010	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
2,2-Dichloropropane	ND	0.0021	0_00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
,1-Dichloropropene	ND	0.0021	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
sis-1,3-Dichloropropene	ND	0.0010	0.00073	mg/Kg dry	10	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
rans-1,3-Dichloropropene	ND	0.0010	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Diethyl Ether	ND	0.021	0.0019	mg/Kg dry		ge 64 of 133	SW-846 8260C	6/18/13	6/18/13 14:29	MFF

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-SS02 0-6
Sample ID: 13F0478-12

o-Xylene

Sampled: 6/12/2013 11:10

Sample Matrix: Soil			Volatil	e Organic Con	npounds by G	C/MS	1-12			
							7/3/113	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0,0010	0,00063	mg/Kg dry	1	V	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,4-Dioxane	ND	0_10	0.060	mg/Kg dry	1)	V-16; U K	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Ethylbenzene	ND	0.0021	0.00084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Hexachlorobutadiene	ND	0_0021	0.0010	mg/Kg dry	Î.	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
2-Hexanone (MBK)	ND	0,042	0.011	mg/Kg dry	1	U J	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Isopropylbenzene (Cumene)	ND	0.0021	0.00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
p-Isopropyltoluene (p-Cymene)	ND	0_0021	0.00084	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0042	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Methylene Chloride	0,016	0,021	0,0074	mg/Kg dry	1	J	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.042	0.0079	mg/Kg dry	ì	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Naphthalene	ND	0.0042	0,00073	mg/Kg dry	10	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
n-Propylbenzene	ND	0,0021	0,00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Styrene	ND	0,0021	0,00063	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,1,1,2-Tetrachloroethane	ND	0.0021	0,00094	ing/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,1,2,2-Tetrachloroethane	ND	0.0010	0,00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Tetrachloroethylene	ND	0.0021	0.0014	mg/Kg dry	Ī	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Tetrahydrofuran	ND	0.010	0.0023	mg/Kg dry	1	V-16, U 12	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Toluene	ND	0.0021	0.00084	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,2,3-Trichlorobenzene	ND	0,0021	0.00063	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,2,4-Trichlorobenzene	ND	0.0021	0.00084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,3,5-Trichlorobenzene	ND	0_0021	0_00073	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,1,1-Trichloroethane	ND	0,0021	0.0010	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,1,2-Trichloroethane	ND	0,0021	0.0013	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Trichloroethylene	ND	0,0021	0.00094	mg/Kg dry	î	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
Trichlorofluoromethane (Freon 11)	ND	0.010	0.0011	mg/Kg dry	3	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,2,3-Trichloropropane	ND	0,0021	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.010	0.00094	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
(Freon 113) 1,2,4-Trimethylbenzene	ND	0.0021	0.00084	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	MFF
1,3,5-Trimethylbenzene	ND	0.0021	0.00063	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	
Vinyl Chloride	ND	0.010	0.0011	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	
m+p Xylene	ND	0.0042	0.0018	mg/Kg dry	1	U	SW-846 8260C	6/18/13	6/18/13 14:29	
		0,0012	0,0010			-		10.10		

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	111	70-130		6/18/13 14:29
Toluene-d8	103	70-130		6/18/13 14:29
4-Bromofluorobenzene	98.6	70-130		6/18/13 14:29

mg/Kg dry

ND

0.0021

0_00073

1

U

SW-846 8260C

6/18/13

6/18/13 14:29

MFF

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-SS02 0-6
Sample ID: 13F0478-12

Sampled: 6/12/2013 11:10

Sample Matrix: Soil

			Semivola	tile Organic Co	ompounds by	GC/MS	2/30/03			
							2	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	0.14	0,21	0.097	mg/K.g dry	1	J	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Acenaphthylene	ND	0.21	0_097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Acetophenone	ND	0.41	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Aniline	ND	0.41	0,13	mg/Kg dıy	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Anthracene	0.40	0.21	0.097	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Benzidine	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Benzo(a)anthracene	1.2	0.21	0.097	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Benzo(a)pyrene	0.96	0.21	0.11	mg/Kg dry	I.		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Benzo(b)fluoranthene	1.2	0.21	0,11	mg/Kg dry	t		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Benzo(g,h,i)perylene	0.67	0.21	0,085	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Benzo(k)fluoranthene	0,49	0.21	0.12	mg/Kg dry	Ī		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Benzoic Acid	ND	1.2	0.18	mg/Kg dry	1	"L-04;" U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Bis(2-chloroethoxy)methane	ND	0.41	0_11	mg/Kg dry	ī	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Bis(2-chloroethyl)ether	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Bis(2-chloroisopropyl)ether	ND	0.41	0.12	mg/Kg dry	ī	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Bis(2-Ethylhexyl)phthalate	ND	0.41	0_12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
4-Bromophenylphenylether	ND	0.41	0.085	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Butylbenzylphthalate	ND	0.80	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Carbazole	0.19	0.21	0.097	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
4-Chloroaniline	ND	0.80	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
4-Chloro-3-methylphenol	ND	0.80	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2-Chloronaphthalene	ND	0.41	0.085	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2-Chlorophenol	ND	0,41	0,11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
4-Chlorophenylphenylether	ND	0.41	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Chrysene	1.3	0,21	0.097	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Dibenz(a,h)anthracene	0.21	0.21	0.085	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Dibenzofuran	0.16	0.41	0.097	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Di-n-butylphthalate	ND	0,41	0,097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
1,2-Dichlorobenzene	ND	0.41	0,097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
1,3-Dichlorobenzene	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
1,4-Dichlorobenzene	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
3,3-Dichlorobenzidine	ND	0,21	0.073	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2,4-Dichlorophenol	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Diethylphthalate	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2,4-Dimethylphenol	ND	0.41	0,085	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Dimethylphthalate	ND	0.80	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
4,6-Dinitro-2-methylphenol	ND	0.41	0.048	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2,4-Dinitrophenol	ND	0.80	0.048	mg/Kg dry	1	√ 19, U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2,4-Dinitrotoluene	ND	0.41	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2,6-Dinitrotoluene	ND	0.41	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Di-n-octylphthalate	ND	0.80	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	0,41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Fluoranthene	2.4	0.21	0.085	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Fluorene	ND	0,21	0.11	mg/Kg dry	ī	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR

Project Location: Bronx PC Bldg 1

Sample Description: Work Order: 13F0478

Date Received: 6/13/2013
Field Sample #: T1-SS02 0-6

Sampled: 6/12/2013 11:10

Sample ID: 13F0478-12
Sample Matrix: Soil

			Semivo	latile Organic Co	mpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobenzene	ND	0.41	0.097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Hexachlorobutadiene	ND	0.41	0.073	mg/Kg dry	ĬĬ.	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Hexachlorocyclopentadiene	ND	0.80	0.073	mg/Kg dry	1/	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Hexachloroethane	ND	0.41	0,097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Indeno(1,2,3-cd)pyrene	0.81	0.21	0.085	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Isophorone	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
1-Methylnaphthalene	0.17	0.21	0.12	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2-Methylnaphthalene	0.18	0.21	0.12	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2-Methylphenol	ND	0.41	0,16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
3/4-Methylphenol	ND	0.41	0.19	mg/Kg dry	Ĩ	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Naphthalene	0_20	0.21	0.085	mg/Kg dry	1	J	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2-Nitroaniline	ND	0.41	0.12	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
3-Nitroaniline	ND	0.41	0.12	mg/Kg dry	Ĭ	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
4-Nitroaniline	ND	0.41	0.15	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Nitrobenzene	ND	0.41	0,085	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2-Nitrophenol	ND	0.41	0.061	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
4-Nitrophenol	ND	0.80	0.048	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
N-Nitrosodimethylamine	ND	0.41	0.073	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
N-Nitrosodiphenylamine	ND	0.41	0.13	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
N-Nitrosodi-n-propylamine	ND	0.41	0.16	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Pentachloronitrobenzene	ND	0,41	0.13	mg/Kg dry	1	* 16, U R	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Pentachlorophenol	ND	0.41	0.073	mg/Kg dry	1	บ	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Phenanthrene	2.3	0.21	0.097	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Phenol	ND	0.41	0.11	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Ругепе	2.8	0.21	0.12	mg/Kg dry	Ĭ		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Pyridine	ND	0.41	0,097	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
1,2,4,5-Tetrachlorobenzene	ND	0.41	0.085	mg/Kg dry	1	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
1,2,4-Trichlorobenzene	1.8	0.41	0.073	mg/Kg dry	1		SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2,4,5-Trichlorophenol	ND	0.41	0.12	mg/Kg dry	3	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
2,4,6-Trichlorophenol	ND	0.41	0.085	mg/Kg dry	i	U	SW-846 8270D	6/17/13	6/19/13 14:02	CMR
Surrogates		% Rec	overy	Recovery Limit	ts	Flag				
2-Fluorophenol		52.1		30-130			1 1		6/19/13 14:02	
Phenol-d6		62.2		30-130		7	30/13		6/19/13 14:02	
Nitrobenzene-d5		73.4		30-130			200		6/19/13 14:02	
2-Fluorobiphenyl		74.0	-	30-130		0.05			6/19/13 14:02	
2,4,6-Tribromophenol		26.7	•	30-130		S-07			6/19/13 14:02	
p-Terphenyl-d14		101		30-130					6/19/13 14:02	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013

Field Sample #: T1-SS02 0-6

Sampled: 6/12/2013 11:10

Sample ID: 13F0478-12 Sample Matrix: Soil

			Polyo	chlorinated Bipl	enyls By GC/	ECD .				
Analyte	Results	RL	DL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0,024	0,0075	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1221 [1]	ND	0,024	0,024	mg/Kg dry	χĹ	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1232 [1]	ND	0.024	0.015	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1242 [1]	ND	0.024	0.012	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1248 [1]	ND	0.024	0.014	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1254 [1]	ND	0.024	0.010	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1260 [2]	0.055	0.024	0.012	mg/Kg dry	1		SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1262 [1]	ND	0.024	0.0099	mg/Kg dry	i	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Aroclor-1268 [1]	ND	0.024	0.015	mg/Kg dry	1	U	SW-846 8082A	6/17/13	6/27/13 11:40	MJC
Surrogates		% Reco	very	Recovery Limi	ts	Flag				
Decachlorobiphenyl [1]		64.9		30-150					6/27/13 11:40	
Decachlorobiphenyl [2]		73,1		30-150					6/27/13 11:40	
Tetrachloro-m-xylene [1]		69.4		30-150					6/27/13 11:40	
Tetrachloro-m-xylene [2]		75,5		30-150					6/27/13 11:40	

Project Location: Bronx PC Bldg 1

Sample Description:

Work Order: 13F0478

Date Received: 6/13/2013 Field Sample #: T1-SS02 0-6 Sample ID: 13F0478-12

Sampled: 6/12/2013 11:10

Sample ID: 13F0478-Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids		82.5		% Wt	1/		SM 2540G	6/17/13	6/18/13 9:32	MLA

ATTACHMENT B

SUPPORT DOCUMENTATION

	@ Phone: 413-525-2332	e: 413-525-2332	CHAI	CHAIN OF CUST	CUSTODY RECORD	REC	ORD	39 Spruce Street		Page of 2	U
		413-525-6405		- 1	Carried States			East long meadow, MA 01028	, MA 01028		1.79
1	Email	Email: info@contestlabs.com	ps.com	Rev 04.05.12	N.	3	_			# of Containers	g:9
TILL ANALY	ANALYTICAL LABORATORY www.	www.comtestiabs.com		13万077	80	HIL	Н			** Preservation	1 8
company Name: URS	RS		Telephone:	S18 688-001S	S	グト	4			***Container Code	
ddress: 30 gray	3 Consone Drive Juit 203	203	Project#	3839		-	\$0000000000000000000000000000000000000	A ANALYSIS REQUESTED	9	Dissolved Metals	2/90
	2		Client PO#			- 3	8			O Field Filtered	
ttention:			DATA DELIVE	ă		2.00 20	230				090
roject coation:	Box Pc Rida		Fax# OF	OEMAIL OWEBSITE		36-	ΛS		×11(1,1)=	***Conf. Code:	0940
ampled By: No	305		19	Jenniffer, gillies and	Sevos	8	180	75		A=amber glass	8 76
Project Proposal Provis	Project Proposal Provided? (for billing purposes)		23	OPFOF CPEXCEL C	OGIS	<u>- 2</u>	988	- C		P=plastic ST=star[la	3113C
sak o	proposal date		ection	O OTHER O "Enhanced Data Package"	dage"	20 130	-2	. 9.0		V= v(a)	15 (
Con-Test Lab ID	Client Sample ID / Description	Begin	Ending	Composite Grab Para	Matrix Gane Code	V 12) (5V			S=Summa can T=tedlar bag	, abi
(abboratory use only)	TI- MUII 4	Civilis	1120	×	7 3	X				• O=Other	³d ∣
02	TI- MWS DUD		1315	3	7	X				**Preservation	3740
5	$ _{\sim}$		05 1	39 ×	7	XX				1=1œd u=uci	13F
اجا	MSD 0/ 1113	611113	1120	33 X	٦	XX				M = Methanol	911
(33	CMY-CL	611113		$\overline{}$	ا لا	XX				N = Nitric Acid S = Sulfuric Acid	to 4
20	11-8-0) 1058-17		1030	S[x]	カー	Н	~ 子			8 = Sodium bisulfat X = Na hydroxide	, J. Əl
8	T2-5503 (0-8") IGIN113		ケメ	3		X			T = Na thiosulfate	Pac
90	-5(30)	Slolla (820	5 X	ゴ		Y				
70	1-5801(51-101	1) (fisia		٥ ٧	ಶ	Н	Y			• Matrix Code: GW= groundwater	
80	172-5B02(0-41)	योटा] (।	920	X X	3		¥			\neg	
omments: X	brither for Sail.	Pleane ex	Grack L		lease use the may b	fallowing e high in e	codes to	Please use the following codes to let Con-Test know if a specific sample may be high in concentration in Matrix/Conc. Code Box:	a specific sample ode Box:		
PAN Aid	poten first and then Side. Asp Cata deliverable	ASP C	ata del		ひーでもですら アやびばらびて - H - High; M - Medium; L - Lo	S (PED) PROUDING	SOLVE SELECT	Low, C - Clean; U - Unknown	Unknown	SI = sludge	
plinquished by: (signature)		1	± ,	Detection Limit Requirements	Requireme	ents	E voi	Is your project MCP or RCP 2	Por RCP 2	auto = O	1
とうながし	C[13]13	SS		Massachusetts:							
gbeiveld by Signature	hud 4/3/13	90	ا مع]				O MCP Form Required O RCP Form Required		3 <u>9</u>	
elinquished by: (signature)	e) Date/Time	e: 0 [‡] 24+	H.*	Connecticut:				1 9	NELAC	NELAC & AIHA-LAP, LLC	
edelved by: (signardie)	9 J 0/ (-) 1 Date/Tipe:		☐ [‡] 72-Hr ☐ [‡] 4-Day [‡] Require lab approval	Other			1	9	×	Accredited WBE/DBE Certified	70
THENAROUND TIME S	00 A.M. THE D	AFTER SAMPLER	RECEIPT UNLE	SS THERE ARE QUE	NO SNOILS	YOUR C	HAIN, 1F	THIS FORM IS NOT	FILLED OUT CO	MPLETELY OR	ī

PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT SANCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

Phone: 413-525-2332
Email: info@contestabs.com
- 1
Project#
DATA DELIVERY (check all that apply)
Fax
Email:
Format
Collection
Beginning Date/ Ilmo
शिद्य
ट्राचा
श्रीटा १३
[[2][3]
[[2]
EIICI
· KXTRC+ VOC +13+
ASP Cato Delixables.,
arc
35 7-Day
10-Day (ਨਖ਼ੇ
Other
KUSH 1
O 72-Hr O 14-Day
* Require lab

TURNAGOUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.
REVISE REPORT 07/25/13 - Results reported to the MDL.

REVISED REPORT 06/28/13 - Reporting limit for 8082 lowered by running the extract at less of a dilution per client request.

SW-846 8260C

Qualifications:

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Acetone, Bromomethane, Carbon Disulfide, Chloromethane

 $13F0478-04[T1-SS01\ (0-8in)],\ 13F0478-05[T2-SS03\ (0-8in)],\ 13F0478-06[T1-SB01\ (0-4in)],\ 13F0478-07[T1-SB01\ (5-10ft)],\ 13F0478-08[T2-SB02\ (0-4ft)],\ 13F0478-09[T3-SB03\ (0-4ft)],\ 13F0478-10[T2-SB02\ (5-10ft)],\ 13F0478-12[T1-SS02\ 0-6],\ B075154-BLK1,\ B075154-BS1,\ B075154-BS1,\ B075154-BS1,\ B075154-BS1,\ B074954-BS1,\ B0749$

Matrix spike and spike duplicate recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of matrix effects that lead to low bias or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

1,1-Dichloroethylene, Bromomethane, Chloroethane, Chloromethane, Dichlorodifluoromethane (Freon 12), tert-Butyl Alcohol (TBA),

Trichlorofluoromethane (Freon 11), Viny! Chloride

13F0478-08[T2-SB02 (0-4ft)], B075154-MS1, B075154-MSD1, 13F0478-01[T1-MW1], B074954-MS1, B074954-MSD1

Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

1,4-Dioxane, Acetone, Bromomethane, Carbon Disulfide, Chloromethane

13F0478-01[T1-MW1], B074954-MS1, B074954-MSD1, 13F0478-08[T2-SB02 (0-4ft)], B075154-MS1, B075154-MSD1

Either matrix spike or matrix spike duplicate is outside of control limits, but the other is within limits. Analysis is in control based on laboratory fortified blank recovery.

Analyte & Samples(s) Qualified:

Diethyl Ether

B075154-MSD1

pH of sample (pH 7) is outside of method specified preservation criteria

Analyte & Samples(s) Qualified:

13F0478-03[T2-MW2]

Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.

Analyte & Samples(s) Qualified:

Chloromethane, tert-Butyl Alcohol (TBA)

13F0478-01[T1-MW1], B074954-MS1, B074954-MSD1

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Chloromethane, Dichlorodifluoromethane (Freon 12), Diethyl Ether, Naphthalene

13F0478-01[T1-MW1], 13F0478-02[T1-MW3], 13F0478-03[T2-MW2], 13F0478-04[T1-SS01 (0-8in)], 13F0478-05[T2-SS03 (0-8in)], 13F0478-06[T1-SB01 (0-4in)], 13F0478-07[T1-SB01 (5-10fi)], 13F0478-08[T2-SB02 (0-4fi)], 13F0478-09[T3-SB03 (0-4fi)], 13F0478-10[T2-SB02 (5-10fi)], 13F0478-11[T2-SS04 12-14], 13F0478-12[T1-SS02 0-6], B074954-BS1, B074954-BS1, B074954-BS1, B074954-BS1, B075154-BLK1, B075154-BS1, B075154-BS

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

Acetone

B075154-BS1, B075154-BSD1, S004325-CCV1

Response factor is less than method specified minimum acceptable value, Reduced precision and accuracy may be associated with reported result.

Analyte & Samples(s) Qualified:

1,2-Dibromo-3-chloropropane (DBCP), 1,4-Dioxane, Acrylonitrile, tert-Butyl Alcohol (TBA), Tetrahydrofuran

 $13F0478-04[T1-SS01\ (0-8in)], 13F0478-05[T2-SS03\ (0-8in)], 13F0478-06[T1-SB01\ (0-4in)], 13F0478-07[T1-SB01\ (5-10ft)], 13F0478-08[T2-SB02\ (0-4ft)], \\ 13F0478-09[T3-SB03\ (0-4ft)], 13F0478-10[T2-SB02\ (5-10ft)], 13F0478-11[T2-SS04\ 12-14], 13F0478-12[T1-SS02\ 0-6], B075154-BLK1, B075154-BS1, B075154-BS1, B075154-BS1, B075154-BS1, B075154-BS1, B074954-BS1, B074954$

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

2-Butanone (MEK), 2-Hexanone (MBK), Chloroethane

B075154-BS1, B075154-BSD1, S004325-CCV1

SW-846 8270D

Qualifications:

Elevated reporting limit due to matrix.

Analyte & Samples(s) Qualified:

13F0478-07[T1-SB01 (5-10ft)], 13F0478-08[T2-SB02 (0-4ft)], 13F0478-09[T3-SB03 (0-4ft)], 13F0478-10[T2-SB02 (5-10ft)]

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

3/4-Methylphenol

B075072-BS1, B075072-BSD1

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Benzoic Acid, N-Nitrosodimethylamine

13F0478-04[T1-SS01 (0-8in)], 13F0478-05[T2-SS03 (0-8in)], 13F0478-06[T1-SB01 (0-4in)], 13F0478-07[T1-SB01 (5-10ft)], 13F0478-08[T2-SB02 (0-4ft)], 13F0478-09[T3-SB03 (0-4ft)], 13F0478-10[T2-SB02 (5-10ft)], 13F0478-12[T1-SS02 0-6], B075072-BLK1, B075072-BS1, B075072-BSD1, 13F0478-01[T1-MW1], 13F0478-02[T1-MW3], 13F0478-03[T2-MW2], B075096-BLK1, B075096-BS1, B075096-BSD1

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits, RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

3/4-Methylphenol, Benzidine

B075096-BSD1, B075096-BS1

Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

Benzo(g,h,i)perylene, Benzoic Acid, Fluoranthene, Hexachlorocyclopentadiene, Pyrene, Pyridine

13F0478-08[T2-SB02 (0-4ft)], B075072-MS1, B075072-MSD1, 13F0478-01[T1-MW1], B075096-MS1, B075096-MSD1

Matrix spike and matrix spike duplicate recoveries are outside of control limits. Data validation is not affected since results for this compound in this sample are "not detected", and recovery bias is on the high side.

Analyte & Samples(s) Qualified:

3/4-Methylphenol

B075072-MS1, B075072-MSD1, B075096-MS1, B075096-MSD1

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.

Analyte & Samples(s) Qualified:

Benzo(a)anthracene, Benzo(b)fluoranthene, Chrysene, Indeno(1,2,3-cd)pyrene, Phenanthrene

B075072-MSD1, B075072-MS1

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Benzidine, Bis(2-Ethylhexyl)phthalate

B075096-MS1, B075072-MS1

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

Analyte & Samples(s) Qualified:

1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1-Methylnaphthalene, 2,4-Dichlorophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 2-Chloronaphthalene, 2-Chlorophenol, 2-Methylphenol, 2-Methylphenol, 2-Nitroaniline, 3/4-Methylphenol, 4-Chloro-3-methylphenol, 4-Chlorophenylphenol, 4-Chlorophenol, 4-Chlorophenol

Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample,

Analyte & Samples(s) Qualified:

Benzidine, Bis(2-Ethylhexyl)phthalate

13F0478-01[T1-MW1], B075096-MSD1, 13F0478-08[T2-SB02 (0-4ft)], B075072-MSD1

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%

Analyte & Samples(s) Qualified:

2,4,6-Tribromophenol

13F0478-12[T1-SS02 0-6]

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria.

Analyte & Samples(s) Qualified:

Benzidine

B075072-BLK1, B075072-BS1, B075072-BSD1

Continuing calibration did not meet method specifications and was biased on the low side for this compound, Increased uncertainty is associated with the reported value which is likely to be biased on the low side,

Analyte & Samples(s) Qualified:

4-Nitrophenol, Benzo(b)fluoranthene, Hexachlorocyclopentadiene

13F0478-01[T1-MW1], 13F0478-02[T1-MW3], 13F0478-03[T2-MW2], B075096-BLK1, B075096-BS1, B075096-BSD1

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

1,2,4,5-Tetrachlorobenzene, 3,3-Dichlorobenzidine, 4,6-Dinitro-2-methylphenol, Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene, Pentachlorophenol B075072-BS1, B075072-BS1, B075096-BS1, B075096-BSD1

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result,

Analyte & Samples(s) Qualified:

Pentachloronitrobenzene

13F0478-01[T1-MW1], 13F0478-02[T1-MW3], 13F0478-03[T2-MW2], 13F0478-04[T1-SS01 (0-8in)], 13F0478-05[T2-SS03 (0-8in)], 13F0478-06[T1-SB01 (0-4in)], 13F0478-07[T1-SB01 (5-10ft)], 13F0478-08[T2-SB02 (0-4ft)], 13F0478-09[T3-SB03 (0-4ft)], 13F0478-10[T2-SB02 (5-10ft)], 13F0478-11[T2-SS04 12-14], 13F0478-12[T1-SS02 0-6], 13

Initial calibration did not meet method specifications. Compound was calibrated using linear regression with correlation coefficient <0,99.

Analyte & Samples(s) Qualified:

2,4-Dinitrophenol, Benzoic Acid

 $13F0478-04[T1-SS01\ (0-8in)],\ 13F0478-05[T2-SS03\ (0-8in)],\ 13F0478-06[T1-SB01\ (0-4in)],\ 13F0478-07[T1-SB01\ (0-6in)],\ 13F0478-08[T2-SB02\ (0-4in)],\ 13F0478-09[T3-SB03\ (0-4in)],\ 13F0478-10[T2-SB02\ (0-10in)],\ 13F0478-12[T1-SS02\ 0-6],\ B075072-MS1,\ B075072-MSD1,\ B075072-BLK1,\ B075072-BS1,\ B075072-BSD1$

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

1,2,4,5-Tetrachlorobenzene, 3,3-Dichlorobenzidine, 4,6-Dinitro-2-methylphenol, Benzidine, Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene, Pentachlorophenol

B075072-BLK1, 13F0478-04[T1-SS01 (0-8in)], 13F0478-06[T1-SB01 (0-4in)], 13F0478-09[T3-SB03 (0-4ft)], 13F0478-01[T1-MW1], 13F0478-02[T1-MW3], 13F0478-03[T2-MW2], B075096-BLK1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

n Culu

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Michael A. Erickson Laboratory Director

3 - FORM III MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T1-MW1

Laboratory: Con-Test Analytical Laboratory

Work Order: 13F0478

Client: URS Corp. Clifton Park

Project: 20121210 Bronx PC

Matrix: Water

Analysis: SW-846 8260C

Batch: B074954

Preparation: SW-846 5035

% Solids:

Laboratory ID: B074954-MS1

Initial/Final: 5 mL / 5 mL

Sample Lab ID: 13F0478-01

Column:

ANALYTE	SPIKE ADDED (µg/L)	SAMPLE CONCENTRATION (µg/L)	MS CONCENTRATION (μg/L)	MS % REC.	QC LIMITS REC.
Acetone	100	ND	89.0	89.0	70 - 130
Acrylonitrile	10.0	ND	11.7	117	70 - 130
tert-Amyl Methyl Ether (TAME)	10.0	ND	10.2	102	70 - 130
Benzene	10.0	ND	9.20	92.0	70 - 130
Bromobenzene	10.0	ND	9.82	98.2	70 - 130
Bromochloromethane	10.0	ND	10.5	105	70 - 130
Bromodichloromethane	10.0	ND	9.18	91.8	70 - 130
Bromoform	10.0	ND	8.84	88.4	70 - 130
Bromomethane	10.0	ND	3.80	38.0	* 70 - 130
2-Butanone (MEK)	100	ND	112	112	70 - 130
tert-Butyl Alcohol (TBA)	100	ND	116	116	70 - 130
n-Butylbenzene	10.0	ND	10.2	102	70 - 130
sec-Butylbenzene	10.0	ND	11.1	111	70 - 130
tert-Butylbenzene	10.0	ND	10.5	105	70 - 130
tert-Butyl Ethyl Ether (TBEE)	10.0	ND	10.4	104	70 - 130
Carbon Disulfide	10.0	ND	8.94	89.4	70 - 130
Carbon Tetrachloride	10.0	ND	9.69	96.9	70 - 130
Chlorobenzene	10.0	ND	10.3	103	70 - 130
Chlorodibromomethane	10.0	ND	9.44	94.4	70 - 130
Chloroethane	10.0	ND	8.01	80.1	70 - 130
Chloroform	10.0	ND	9.83	98.3	70 - 130
Chloromethane	10.0	ND	2.71	27.1	* 70 - 130
2-Chlorotoluene	10.0	ND	10.6	106	70 - 130
4-Chlorotoluene	10.0	ND	· 10.4	104	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	10.0	ND	10.8	108	70 - 130

Page 221 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T1-MW1

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Matrix:

Water

Analysis:

SW-846 8260C

Batch:

B074954

Preparation:

SW-846 5035

% Solids:

D074335

Laboratory ID:

B074954-MSD1

Initial/Final:

5 mL / 5 mL

Sample Lab ID:

13F0478-01

Column:

	SPIKE	MSD	MSD		QC	LIMITS
ANALYTE	ADDED (μg/L)	CONCENTRATION (µg/L)	% REC.#	% RPD	RPD	REC.
Acetone	100	73.5	73.5	19.1	30	70 - 130
Acrylonitrile	10.0	10.0	100	15.7	30	70 - 130
tert-Amyl Methyl Ether (TAME)	10.0	10.0	100	1.38	30	70 - 130
Benzene	10.0	9.58	95.8	4.05	30	70 - 130
Bromobenzene	10.0	9.78	97.8	0.408	30	70 - 130
Bromochloromethane	10.0	10.4	104	1.15	30	70 - 130
Bromodichloromethane	10.0	9.56	95.6	4.06	30	70 - 130
Bromoform	10.0	8.30	83.0	6.30	30	70 - 130
Bromomethane	10.0	4.64	46.4	19.9	30	70 - 130
2-Butanone (MEK)	100	84.3	84.3	28.5	30	70 - 130
tert-Butyl Alcohol (TBA)	100	80.0	80.0	36.7	30	70 - 130
n-Butylbenzene	10.0	10.1	101	1.08	30	70 - 130
sec-Butylbenzene	10.0	10.6	106	4.50	30	70 - 130
tert-Butylbenzene	10.0	10.4	104	1.05	30	70 - 130
tert-Butyl Ethyl Ether (TBEE)	10.0	10.5	105	1.24	30	70 - 130
Carbon Disulfide	10.0	8.79	87.9	1.69	30	70 - 130
Carbon Tetrachloride	10.0	9.99	99.9	3.05	30	70 - 130
Chlorobenzene	10.0	9.97	99.7	3.55	30	70 - 130
Chlorodibromomethane	10.0	9.43	94.3	0.106	30	70 - 130
Chloroethane	10.0	9.96	99.6	21.7	30	70 - 130
Chloroform	10.0	9.92	99.2	0.911	30	70 - 130
Chloromethane	10.0	5.94	59.4	74.7 *	30	70 - 130
2-Chlorotoluene	10.0	10.6	106	0.0944	30	70 - 130
4-Chlorotoluene	10.0	10.8	108	3.60	30	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	10.0	8.29	82.9	26.0	30	70 - 130

Page 225 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

LCS / LCS DUPLICATE RECOVERY

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Matrix:

Water

Preparation:

SW-846 5035

Batch:

B074954

Laboratory ID:

B074954-BS1

Column:

Initial/Final:

5 mL / 5 mL

ANALYTE	SPIKE ADDED (µg/L)	LCS CONCENTRATION (μg/L)	LCS % REC.	QC LIMITS REC.
Acetone	100	101	101	70 - 160
Acrylonitrile	10.0	11.2	112	70 - 130
tert-Amyl Methyl Ether (TAME)	10.0	11.1	111	70 - 130
Benzene	10.0	9.91	99.1	70 - 130
Bromobenzene	10.0	10.5	105	70 - 130
Bromochloromethane	10.0	10.9	109	70 - 130
Bromodichloromethane	10.0	9.92	99.2	70 - 130
Bromoform	10.0	9.18	91.8	70 - 130
Bromomethane	10.0	3.05	30.5	40 - 160
2-Butanone (MEK)	100	110	110	40 - 160
tert-Butyl Alcohol (TBA)	100	105	105	40 - 160
n-Butylbenzene	10.0	10.8	108	70 - 130
sec-Butylbenzene	10.0	11.0	110	70 - 130
tert-Butylbenzene	10.0	10.7	107	70 - 130
tert-Butyl Ethyl Ether (TBEE)	10.0	11.8	118	70 - 130
Carbon Disulfide	10.0	10.3	103	70 - 130
Carbon Tetrachloride	10.0	9.94	99.4	70 - 130
Chlorobenzene	10.0	10.8	108	70 - 130
Chlorodibromomethane	10.0	10.3	103	70 - 130
Chloroethane	10.0	9.88	98.8	70 - 130
Chloroform	10.0	10.3	103	70 - 130
Chloromethane	10.0	5.42	54.2	40 - 160
2-Chlorotoluene	10.0	11.2	112	70 - 130
4-Chlorotoluene	10.0	11.4	114	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	10.0	10.3	103	70 - 130
1,2-Dibromoethane (EDB)	10.0	10.8	108	70 - 130
Dibromomethane	10.0	10.3	103	70 - 130
1,2-Dichlorobenzene	10.0	10.6	106	70 - 130
1,3-Dichlorobenzene	10.0	10.6	106	70 - 130
1,4-Dichlorobenzene	10.0	9.97	99.7	70 - 130
trans-1,4-Dichloro-2-butene	10.0	10.3	103	70 - 130
		Page 237 of 1	197 B075050_01 (06/28/13 16:54:

3 - FORM III

LCS / LCS DUPLICATE RECOVERY

SW-846 8260C

Laboratory: Con-Test Analytical Laboratory

Work Order: 13F0478

Client: URS Corp. Clifton Park

Project: 20121210 Bronx PC

Matrix: Water

Preparation: SW-846 5035

Batch: B074954

Laboratory ID: B074954-BS1

Column:

Initial/Final: 5 mL / 5 mL

ANALYTE	SPIKE ADDED (µg/L)	LCS CONCENTRATION (µg/L)	LCS % REC.	QC LIMITS REC.
1,2,3-Trichlorobenzene	10.0	10.3	103	70 - 130
1,2,4-Trichlorobenzene	10.0	10.4	104	70 - 130
1,3,5-Trichlorobenzene	10.0	10.2	102	70 - 130
1,1,1-Trichloroethane	10.0	10.2	102	70 - 130
1,1,2-Trichloroethane	10.0	9.89	98.9	70 - 130
Trichloroethylene	10.0	9.89	98.9	70 - 130
Trichlorofluoromethane (Freon 11)	10.0	8.95	89.5	70 - 130
1,2,3-Trichloropropane	10.0	10.7	107	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	10.9	109	70 - 130
1,2,4-Trimethylbenzene	10.0	10.1	101	70 - 130
1,3,5-Trimethylbenzene	10.0	9.93	99.3	70 - 130
Vinyl Chloride	10.0	7.63	76.3	40 - 160
m+p Xylene	20.0	20.8	104	70 - 130
o-Xylene	10.0	11.0	110	70 - 130

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	%	QC	LIMITS
ANALYTE	ADDED (μg/L)	CONCENTRATION (μg/L)	76 REC. #	RPD#	RPD	REC.
Acetone	100	98.4	98.4	2.13	25	70 - 160
Acrylonitrile	10.0	11.0	110	1.26	25	70 - 130
tert-Amyl Methyl Ether (TAME)	10.0	11.3	113	1.87	25	70 - 130
Benzene	10.0	10.0	100	1.10	25	70 - 130
Bromobenzene	10.0	10.6	106	0.379	25	70 - 130
Bromochloromethane	10.0	11.2	112	2.98	25	70 - 130
Bromodichloromethane	10.0	9.96	99.6	0.402	25	70 - 130
Bromoform	10.0	9.20	92.0	0.218	25	70 - 130
Bromomethane	10.0	3.52	35.2	* 14.3	25	40 - 160
2-Butanone (MEK)	100	105	105	4.81	25	40 - 160
tert-Butyl Alcohol (TBA)	100	106	106	1.07	25	40 - 160
n-Butylbenzene	10.0	10.5	105	2.54	25	70 - 130

Page 239 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T2-SB02 (0-4ft)

Laboratory: Con-Test Analytical Laboratory

ratory Work Order: 13F0478

Preparation:

Client: URS Corp. Clifton Park

Project: 20121210 Bronx PC

Matrix: Soil

Analysis: SW-846 8260C

Batch: B075154

SW-846 5035

% Solids: 83.90

Laboratory ID: B075154-MS1

Initial/Final: 5.4 g / 10 mL

Sample Lab ID: 13F0478-08

Column:

ANALYTE	SPIKE ADDED (mg/Kg dry)	SAMPLE CONCENTRATION (mg/Kg dry)	MS CONCENTRATION (mg/Kg dry)	MS % REC.	QC LIMITS REC.
Acetone	0.221	1.95	1.48	-215	70 - 130
Acrylonitrile	0.0221	ND	0.0191	86.7	70 - 130
tert-Amyl Methyl Ether (TAME)	0.0221	ND	0.0224	102	70 - 130
Benzene	0.0221	ND	0.0199	90.3	70 - 130
Bromobenzene	0.0221	ND	0.0208	94.3	70 - 130
Bromochloromethane	0.0221	ND	0.0220	99.7	70 - 130
Bromodichloromethane	0.0221	ND	0.0198	89.8	70 - 130
Bromoform	0.0221	ND	0.0164	74.4	70 - 130
Bromomethane	0.0221	ND	0.0111	50.4	70 - 130
2-Butanone (MEK)	0.221	ND	0.205	93.0	70 - 130
tert-Butyl Alcohol (TBA)	0.221	ND	0.145	65.8	× 70 - 130
n-Butylbenzene	0.0221	ND	0.0181	81.9	70 - 130
sec-Butylbenzene	0.0221	ND	0.0196	88.6	70 - 130
tert-Butylbenzene	0.0221	ND	0.0198	89.7	70 - 130
tert-Butyl Ethyl Ether (TBEE)	0.0221	ND	0.0217	98.4	70 - 130
Carbon Disulfide	0.0221	ND	0.0124	56.1	* 70 - 130
Carbon Tetrachloride	0.0221	ND	0.0210	95.2	70 - 130
Chlorobenzene	0.0221	ND	0.0205	92.8	70 - 130
Chlorodibromomethane	0.0221	ND	0.0202	91.7	70 - 130
Chloroethane	0.0221	ND	0.0151	68.6	* 70 - 130
Chloroform	0.0221	ND	0.0217	98.5	70 - 130
Chloromethane	0.0221	ND	0.0122	55.4	* 70 - 130
2-Chlorotoluene	0.0221	ND	0.0218	98.9	70 - 130
4-Chlorotoluene	0.0221	ND	0.0224	101	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	0.0221	ND	0.0162	73.5	70 - 130

Page 229 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T2-SB02 (0-4ft)

Sample Lab ID:

13F0478-08

Laboratory: Con-Test Analytical Laboratory Work Order: 13F0478

Client: URS Corp. Clifton Park Project: 20121210 Bronx PC

 Matrix:
 Soil
 Analysis:
 SW-846 8260C

 Batch:
 B075154
 Preparation:
 SW-846 5035

 % Solids:
 83.90
 Laboratory ID:
 B075154-MSD1

Initial/Final: 5.2 g / 10 mL

Column:

=======================================	SPIKE	MSD	MSD	•	QC	LIMITS
ANALYTE	ADDED (mg/Kg dry)	CONCENTRATION (mg/Kg dry)	% REC.#	% RPD	RPD	REC.
Acetone	0.229	1.68	-120 *	12.7	30	70 - 130
Acrylonitrile	0.0229	0.0171	74.8	11.0	30	70 - 130
tert-Amyl Methyl Ether (TAME)	0.0229	0.0242	106	7.73	30	70 - 130
Benzene	0.0229	0.0206	90.0	3.44	30	70 - 130
Bromobenzene	0.0229	0.0196	85.6	5.90	30	70 - 130
Bromochloromethane	0.0229	0.0228	99.5	3.57	30	70 - 130
Bromodichloromethane	0.0229	0.0198	86.5	0.0300	30	70 - 130
Bromoform	0.0229	0.0170	74.3	3.64	30	70 - 130
Bromomethane	0.0229	0.0103	44.8 *	8.00	30	70 - 130
2-Butanone (MEK)	0.229	0.206	90.1	0.605	30	70 - 130
tert-Butyl Alcohol (TBA)	0.229	0.155	67.4 *	6.26	30	70 - 130
n-Butylbenzene	0.0229	0.0182	79.5	0.800	30	70 - 130
sec-Butylbenzene	0.0229	0.0197	86.1	0.912	30	70 - 130
tert-Butylbenzene	0.0229	0.0202	88.2	2.09	30	70 - 130
tert-Butyl Ethyl Ether (TBEE)	0.0229	0.0219	95.7	0.992	30	70 - 130
Carbon Disulfide	0.0229	0.0120	52.4 *	3.05	30	70 - 130
Carbon Tetrachloride	0.0229	0.0202	88.1	3.98	30	70 - 130
Chlorobenzene	0.0229	0.0203	88.5	0.970	30	70 - 130
Chlorodibromomethane	0.0229	0.0197	86.0	2.64	30	70 - 130
Chloroethane	0.0229	0.0149	64.9 *	1.77	30	70 - 130
Chloroform	0.0229	0.0212	92.3	2.73	30	70 - 130
Chloromethane	0.0229	0.0126	55.1 *	3.23	30	70 - 130
2-Chlorotoluene	0.0229	0.0218	94.9	0.355	30	70 - 130
4-Chlorotoluene	0.0229	0.0220	95.9	1.70	30	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	0.0229	0.0173	75.4	6.32	30	70 - 130

Page 233 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

LCS / LCS DUPLICATE RECOVERY

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Matrix:

Soil

Preparation:

SW-846 5035

Batch:

B075154

Laboratory ID:

B075154-BS1

Column:

Initial/Final:

5 g / 10 mL

ANALYTE	SPIKE ADDED (mg/Kg wet)	LCS CONCENTRATION (mg/Kg wet)	LCS % REC.	QC LIMITS REC.
Acetone	0.200	0.130	65.2 *	70 - 160
Acrylonitrile	0.0200	0.0189	94.3	70 - 130
tert-Amyl Methyl Ether (TAME)	0.0200	0.0218	109	70 - 130
Benzene	0.0200	0.0205	102	70 - 130
Bromobenzene	0.0200	0.0209	104	70 - 130
Bromochloromethane	0.0200	0.0210	105	70 - 130
Bromodichloromethane	0.0200	0.0201	100	70 - 130
Bromoform	0.0200	0.0172	86.1	70 - 130
Bromomethane	0.0200	0.0122	61.2	40 - 130
2-Butanone (MEK)	0.200	0.189	94.4	70 - 160
tert-Butyl Alcohol (TBA)	0.200	0.154	77.2	40 - 130
n-Butylbenzene	0.0200	0.0197	98.7	70 - 130
sec-Butylbenzene	0.0200	0.0212	106	70 - 130
tert-Butylbenzene	0.0200	0.0207	103	70 - 160
tert-Butyl Ethyl Ether (TBEE)	0.0200	0.0213	106	70 - 130
Carbon Disulfide	0.0200	0.0134	66.9 *	70 - 130
Carbon Tetrachloride	0.0200	0.0212	106	70 - 130
Chlorobenzene	0.0200	0.0221	110	70 - 130
Chlorodibromomethane	0.0200	0.0201	100	70 - 130
Chloroethane	0.0200	0.0150	75.0	70 - 130
Chloroform	0.0200	0.0206	103	70 - 130
Chloromethane	0.0200	0.0129	64.3 *	70 - 130
2-Chlorotoluene	0.0200	0.0231	115	70 - 130
4-Chlorotoluene	0.0200	0.0233	116	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	0.0200	0.0170	85.2	70 - 130
1,2-Dibromoethane (EDB)	0.0200	0.0227	113	70 - 130
Dibromomethane	0.0200	0.0213	107	70 - 130
1,2-Dichlorobenzene	0.0200	0.0221	110	70 - 130
1,3-Dichlorobenzene	0.0200	0.0231	116	70 - 130
1,4-Dichlorobenzene	0.0200	0.0200	100	70 - 130
trans-1,4-Dichloro-2-butene	0.0200	0.0213	106	70 - 130
		Page 243 of 1	197 B075050_01	06/28/13 16:54:10

3 - FORM III

LCS / LCS DUPLICATE RECOVERY

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Matrix:

Soil

Preparation:

SW-846 5035

B075154

Laboratory ID:

B075154-BS1

Batch: Column:

Initial/Final:

5 g / 10 mL

ANALYTE	SPIKE ADDED (mg/Kg wet)	LCS CONCENTRATION (mg/Kg wet)	LCS % REC.	QC LIMITS REC.
1,2,3-Trichlorobenzene	0.0200	0.0190	94.9	70 - 130
1,2,4-Trichlorobenzene	0.0200	0.0228	114	70 - 130
1,3,5-Trichlorobenzene	0.0200	0.0204	102	70 - 130
1,1,1-Trichloroethane	0.0200	0.0217	109	70 - 130
1,1,2-Trichloroethane	0.0200	0.0199	99.4	70 - 130
Trichloroethylene	0.0200	0.0201	100	70 - 130
Trichlorofluoromethane (Freon 11)	0.0200	0.0155	77.7	70 - 130
1,2,3-Trichloropropane	0.0200	0.0198	98.8	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.0200	0.0166	82.8	70 - 130
1,2,4-Trimethylbenzene	0.0200	0.0198	99.0	70 - 130
1,3,5-Trimethylbenzene	0.0200	0.0207	104	70 - 130
Vinyl Chloride	0.0200	0.0128	64.2	40 - 130
m+p Xylene	0.0400	0.0438	110	70 - 130
o-Xylene	0.0200	0.0208	104	70 - 130

	SPIKE	LCSD	LCSD	%	QC	LIMITS
ANALYTE	ADDED (mg/Kg wet)	CONCENTRATION (mg/Kg wet)	% REC. #	RPD#	RPD	REC.
Acetone	0.200	0.134	67.0	2.78	25	70 - 160
Acrylonitrile	0.0200	0.0183	91.7	2.80	25	70 - 130
tert-Amyl Methyl Ether (TAME)	0.0200	0.0228	114	4.13	25	70 - 130
Benzene	0.0200	0.0208	104	1.55	25	70 - 130
Bromobenzene	0.0200	0.0212	106	1.71	25	70 - 130
Bromochloromethane	0.0200	0.0221	110	4.92	25	70 - 130
Bromodichloromethane	0.0200	0.0202	101	0.794	25	70 - 130
Bromoform	0.0200	0.0169	84.3	2.11	25	70 - 130
Bromomethane	0.0200	0.0133	66.6	8.45	25	40 - 130
2-Butanone (MEK)	0.200	0.190	95.0	0.560	25	70 - 160
tert-Butyl Alcohol (TBA)	0.200	0.163	81.5	5.41	25	40 - 130
n-Butylbenzene	0.0200	0.0197	98.6	0.101	25	70 - 130

Page 245 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

LCS / LCS DUPLICATE RECOVERY

SW-846 8260C

Laboratory: Con-Test Analytical Laboratory Work Order: 13F0478

Client: URS Corp. Clifton Park Project: 20121210 Bronx PC

Matrix: Soil Preparation: SW-846 5035

Batch: B075154 Laboratory ID: B075154-BSD1

Column: Initial/Final: 5 g / 10 mL

	SPIKE	LCSD	LCSD	٥,	QC	LIMITS
ANALYTE	ADDED (mg/Kg wet)	CONCENTRATION (mg/Kg wet)	% REC.#	% RPD #	RPD	REC.
sec-Butylbenzene	0.0200	0.0213	106	0.566	25	70 - 130
tert-Butylbenzene	0.0200	0.0208	104	0.771	25	70 - 160
tert-Butyl Ethyl Ether (TBEE)	0.0200	0.0216	108	1.58	25	70 - 130
Carbon Disulfide	0.0200	0.0132	66.2	1.05	25	70 - 130
Carbon Tetrachloride	0.0200	0.0217	108	2.34	25	70 - 130
Chlorobenzene	0.0200	0.0220	110	0.454	25	70 - 130
Chlorodibromomethane	0.0200	0.0204	102	1.58	25	70 - 130
Chloroethane	0.0200	0.0151	75.7	0.929	25	70 - 130
Chloroform	0.0200	0.0213	107	3.33	25	70 - 130
Chloromethane	0.0200	0.0134	67.2 *	4.41	25	70 - 130
2-Chlorotoluene	0.0200	0.0231	116	0.173	25	70 - 130
4-Chlorotoluene	0.0200	0.0231	116	0.604	25	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	0.0200	0.0171	85.7	0.585	25	70 - 130
1,2-Dibromoethane (EDB)	0.0200	0.0229	115	1.05	25	70 - 130
Dibromomethane	0.0200	0.0218	109	2.41	25	70 - 130
1,2-Dichlorobenzene	0.0200	0.0217	108	1.74	25	70 - 130
1,3-Dichlorobenzene	0.0200	0.0230	115	0.608	25	70 - 130
1,4-Dichlorobenzene	0.0200	0.0203	101	1.39	25	70 - 130
trans-1,4-Dichloro-2-butene	0.0200	0.0204	102	4.23	25	70 - 130
Dichlorodifluoromethane (Freon 12)	0.0200	0.00974	48.7	0.614	25	40 - 160
1,1-Dichloroethane	0.0200	0.0200	100	1.61	25	70 - 130
1,2-Dichloroethane	0.0200	0.0205	102	1.18	25	70 - 130
1,1-Dichloroethylene	0.0200	0.0160	79.8	2.15	25	70 - 130
cis-1,2-Dichloroethylene	0.0200	0.0199	99.6	1.62	25	70 - 130
trans-1,2-Dichloroethylene	0.0200	0.0203	101	6.41	25	70 - 130
1,2-Dichloropropane	0.0200	0.0206	103	2.30	25	70 - 130
1,3-Dichloropropane	0.0200	0.0219	110	0.365	25	70 - 130
2,2-Dichloropropane	0.0200	0.0206	103	0.00	25	70 - 130
1,1-Dichloropropene	0.0200	0.0217	108	1.30	25	70 - 130

Page 246 of 1197 B075050_01 06/28/13 16:54:10

Client:

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

5 - FORM V INSTRUMENT PERFORMANCE CHECK

SW-846 8260C

13F0478

Laboratory: Con-Test Analytical Laboratory Work Order:

URS Corp. Clifton Park Project: 20121210 Bronx PC

Lab File ID:ve165003.DInjection Date:06/14/13Instrument ID:GCMSVOA5Injection Time:10:20

Sequence: S004324 Lab Sample ID: S004324-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	PASS/FAIL
50	15 - 40% of 95	20.2	PASS
75	30 - 60% of 95	47.4	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.52	PASS
173	Less than 2% of 174	0	PASS
174	50 - 200% of 95	94.5	PASS
175	5 - 9% of 174	8.32	PASS
176	95 - 101% of 174	96.5	PASS
177	5 - 9% of 176	6.98	PASS
177	5 - 9% of 176	6.98	PASS

Client ID	Sample ID	File ID	Date Analyzed	Time Analyzed
	S004324-CCV1	ve165003.D	06/14/2013	10:20:00
LCS	B074954-BS1	ve165005.D	06/14/2013	11:12:00
LCS Dup	B074954-BSD1	ve165006.D	06/14/2013	11:38:00
Blank	B074954-BLK1	ve165009.D	06/14/2013	12:56:00
T1-MW1	13F0478-01	ve165025.D	06/14/2013	19:54:00
T1-MW3	13F0478-02	ve165026.D	06/14/2013	20:20:00
T2-MW2	13F0478-03	ve165027.D	06/14/2013	20:47:00
Matrix Spike	B074954-MS1	ve165028.D	06/14/2013	21:13:00
Matrix Spike Dup	B074954-MSD1	ve165029.D	06/14/2013	21:39:00

5 - FORM V INSTRUMENT PERFORMANCE CHECK

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Lab File ID:

VD169004.D

Injection Date:

06/18/13

Instrument ID:

GCMSVOA4

Injection Time:

06:18

Sequence:

S004325

Lab Sample ID:

S004325-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	PASS/FAIL
50	15 - 40% of 95	22.7	PASS
75	30 - 60% of 95	53.3	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.7	PASS
173	Less than 2% of 174	0	PASS
174	50 - 200% of 95	89.2	PASS
175	5 - 9% of 174	7.72	PASS
176	95 - 101% of 174	96.1	PASS
177	5 - 9% of 176	6.33	PASS

Client ID	Sample ID	File ID	Date Analyzed	Time Analyzed
Calibration Check	S004325-CCV1	VD169004.D	06/18/2013	6:18:00
LCS	B075154-BS1	VD169006.D	06/18/2013	7:12:00
LCS Dup	B075154-BSD1	VD169007.D	06/18/2013	7:39:00
Blank	B075154-BLK1	VD169009.D	06/18/2013	8:34:00
T2-SB02 (0-4ft)	13F0478-08	VD169011.D	06/18/2013	9:28:00
T1-SS01 (0-8in)	13F0478-04	VD169012.D	06/18/2013	9:55:00
Matrix Spike	B075154-MS1	VD169013.D	06/18/2013	10:23:00
Matrix Spike Dup	B075154-MSD1	VD169014.D	06/18/2013	10:50:00
T2-SS03 (0-8in)	13F0478-05	VD169016.D	06/18/2013	11:44:00
T1-SB01 (0-4in)	13F0478-06	VD169017.D	06/18/2013	12:12:00
T1-SB01 (5-10ft)	13F0478-07	VD169018.D	06/18/2013	12:39:00
T3-SB03 (0-4ft)	13F0478-09	VD169019.D	06/18/2013	13:07:00
T2-SB02 (5-10ft)	13F0478-10	VD169020.D	06/18/2013	13:34:00
T2-SS04 12-14	13F0478-11	VD169021.D	06/18/2013	14:02:00
T1-SS02 0-6	13F0478-12	VD169022.D	06/18/2013	14:29:00

6 - FORM VI INITIAL CALIBRATION DATA SHEET (Continued)

SW-846 8260C

Laboratory:

Calibration:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

1300053

Instrument:

GCMSVOA5

Calibration Date:

5/17/2013 12:00:36AM

COMPOUND	Mean RF	RF RSD	Line	arr	Quad COD	LIMIT	Q
Acetone	7.134968E-02	8.7				15	
Acrolein	4.465998E-02	7.8	Not ta	get c	empound	15	
Acrylonitrile	8.087693E-02	13.0				15	
tert-Amyl Methyl Ether (TAME)	0.5583237	12.2				15	
Benzene	1.120585	5.4				15	
Bromobenzene	0.7003925	4.5				15	
Bromochloromethane	0.2134845	9.1				15	
Bromodichloromethane	0.2646878	9.9				15	
Bromoform	0.3134229	12.2				15	
Bromomethane	0.2111494	14.1				15	
2-Butanone (MEK)	9.527142E-02	14.0				15	
tert-Butyl Alcohol (TBA)	0.0157114	14.7				15	
n-Butylbenzene	1.473402	12.8				15	
sec-Butylbenzene	1.967151	7.4				15	
tert-Butylbenzene	1.354244	5.9				15	
tert-Butyl Ethyl Ether (TBEE)	0.6215235	11.6				15	
Carbon Disulfide	0.8954041	5.7				15	
Carbon Tetrachloride	0.3949352	7.6				15	
Chlorobenzene	1.127694	6.4				15	
Chlorodibromomethane	0.1999028	13.2				15	
Chloroethane	0.1663037	7.4				15	
2-Chloroethyl Vinyl Ether	0.1087374	13.4				15	
Chloroform	0.4850183	7.2				15	
Chloromethane	0.3410179	12.3				15	
2-Chlorotoluene	1.218465	7.9				15	
4-Chlorotoluene	1.271738	6.1				15	
Cyclohexane	0.4652329	6.1			f 1197 B075050	15	

Page 264 of 1197 B075050_01 06/28/13 16:54:10

6 - FORM VI INITIAL CALIBRATION DATA SHEET (Continued)

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

GCMSVOA5

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Calibration:

1300053

Instrument:

Calibration Date:

5/17/2013 12:00:36AM

COMPOUND	Mean RF	RF RSD	Linear r	Quad COD	LIMIT	Q
1,2-Dibromo-3-chloropropane (DBCP)	5.172919E-02	12.9			15	
1,2-Dibromoethane (EDB)	0.1713981	13.4			15	
Dibromomethane	0.115482	13.3			15	
1,2-Dichlorobenzene	0.7781515	6.8			15	
1,3-Dichlorobenzene	0.8552778	6.9			15	
1,4-Dichlorobenzene	0.9458815	3.8			15	
cis-1,4-Dichloro-2-butene	0.116817	9.7			15	
trans-1,4-Dichloro-2-butene	0.1061309	12.8			15	
Dichlorodifluoromethane (Freon 12)	0.3316602	7.3			15	
1,1-Dichloroethane	0.485378	5.9			15	
1,2-Dichloroethane	0.2699794	14.7			15	
1,1-Dichloroethylene	0.4242032	5.1			15	
cis-1,2-Dichloroethylene	0.4016163	6.6			15	
trans-1,2-Dichloroethylene	0.3737704	9.1			15	
Dichlorofluoromethane (Freon 21)	0.5124733	6.9			15	
1,2-Dichloropropane	0.2082147	4.8			15	
1,3-Dichloropropane	0.2667256	8.6			15	
2,2-Dichloropropane	0.3921449	6.1			15	
1,1-Dichloropropene	0.4063944	7.3			15	
cis-1,3-Dichloropropene	0.3075397	11.8			15	
trans-1,3-Dichloropropene	0.2465436	12.2			15	
Diethyl Ether	0.1820586	5.9			15	
Diisopropyl Ether (DIPE)	0.7107587	8.0			15	
1,4-Dioxane	1.659301E-03	10.9			15	
Ethyl Acetate	0.1796933	14.9			15	
Ethylbenzene	2.065389	5.2			15	
Ethyl Methacrylate	0.203145	13.1			15	

Page 265 of 1197 B075050_01 06/28/13 16:54:10

6 - FORM VI INITIAL CALIBRATION DATA SHEET (Continued)

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Calibration:

1300064

Instrument:

GCMSVOA4

Calibration Date:

6/11/2013 12:00:48AM

COMPOUND	Mean RF	RF RSD	Linear r	Quad COD	LIMIT	Q
Acetone	6.405913E-02	11.0			15	
Acrylonitrile	4.418477E-02	15.0			15	
tert-Amyl Methyl Ether (TAME)	0.2257886	14.9			15	
Benzene	0.5139863	8.8			15	
Bromobenzene	0.4444968	8.5			15	
Bromochloromethane	8.094392E-02	8.7			15	
Bromodichloromethane	0.1625026	14.1			15	
Bromoform	0.1586799	22.4	0.9991493		0.99	
Bromomethane	0.1961787	74.1	0.9898394	rounds to 0.99	0.99	*
2-Butanone (MEK)	6.087598E-02	11.3			15	
tert-Butyl Alcohol (TBA)	2.482539E-02	74.2	0.9995822		0.99	
n-Butylbenzene	0.8309814	25.6	0.9997507		0.99	
sec-Butylbenzene	0.221167	25.4	0.9997262		0.99	
tert-Butylbenzene	0.7389451	26.0	0.999612		0.99	
tert-Butyl Ethyl Ether (TBEE)	0.3331292	13.1			15	
Carbon Disulfide	0.5266202	14.7			15	
Carbon Tetrachloride	0.2834974	15.0			15	
Chlorobenzene	0.7320293	7.4			15	
Chlorodibromomethane	0.1268853	14.9			15	
Chloroethane	0.1111831	11.5			15	
Chloroform	0.3031986	7.5			15	
Chloromethane	0.1806022	14.4			15	
2-Chlorotoluene	0.846981	14.2			15	
4-Chlorotoluene	1.008169	15.0			15	
Cyclohexane	0.7537843	125.6	0.9984457		0.99	
1,2-Dibromo-3-chloropropane (DBCP)	4.418306E-02	13.4			15	
1,2-Dibromoethane (EDB)	9.161219E-02	14.5			15	

6 - FORM VI INITIAL CALIBRATION DATA SHEET (Continued)

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Calibration:

1300064

Instrument:

GCMSVOA4

Calibration Date:

6/11/2013 12:00:48AM

COMPOUND	Mean RF	RF RSD	Linear r	Quad COD	LIMIT	Q
Dibromomethane	6.407493E-02	12.6			15	
1,2-Dichlorobenzene	0.5219378	8.6			15	
1,3-Dichlorobenzene	0.5597864	10.3			15	
1,4-Dichlorobenzene	0.6488216	3.6			15	
trans-1,4-Dichloro-2-butene	8.133543E-02	12.0			15	
Dichlorodifluoromethane (Freon 12)	0.1742583	20.5	0.9960583		0.99	
1,1-Dichloroethane	0.2634834	9.7			15	
1,2-Dichloroethane	0.2112149	6.3			15	
1,1-Dichloroethylene	0.3041896	11.3			15	
cis-1,2-Dichloroethylene	0.2626513	10.4			15	
trans-1,2-Dichloroethylene	0.2379352	13.0			15	
1,2-Dichloropropane	8.791625E-02	8.7			15	
1,3-Dichloropropane	0.134154	12.8			15	
2,2-Dichloropropane	0.2295567	14.1			15	
1,1-Dichloropropene	6.300162E-02	11.1			15	
cis-1,3-Dichloropropene	0.1190508	16.6	0.9897667	rounds to 0.99	0.99	*
trans-1,3-Dichloropropene	9.880777E-02	15.9	0.9935134		0.99	
Diethyl Ether	9.113194E-02	11.8			15	
Diisopropyl Ether (DIPE)	0.4026051	13.3			15	
1,4-Dioxane	1.003986E-03	9.3			15	
Ethylbenzene	1.220737	14.8			15	
Hexachlorobutadiene	0.259037	9.7			15	
2-Hexanone (MBK)	6.548896E-02	11.6			15	
Isopropylbenzene (Cumene)	0.278075	30.4	0.9997019		0.99	
p-Isopropyltoluene (p-Cymene)	1.044579	13.0			15	
Methyl Acetate	0.1185445	14.3			15	
Methyl tert-Butyl Ether (MTBE)	0.3244629	13.7			15	

6 - FORM VI INITIAL CALIBRATION DATA SHEET (Continued)

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Calibration:

1300064

Instrument:

GCMSVOA4

Calibration Date:

6/11/2013 12:00:48AM

COMPOUND	Mean RF	RF RSD	Linear r	Quad COD	LIMIT	Q
Methyl Cyclohexane	0.1286425	14.8			15	
Methylene Chloride	0.2441136	14.7			15	
4-Methyl-2-pentanone (MIBK)	8.972315E-02	11.7			15	
Naphthalene	0.6278087	45.5	0.9986042		0.99	
n-Propylbenzene	1.339448	14.7			15	
Styrene	0.707284	24.7	0.9997026		0.99	
1,1,1,2-Tetrachloroethane	0.3114684	13.7			15	
1,1,2,2-Tetrachloroethane	0.2406839	9.1			15	
Tetrachloroethylene	0.139036	12.9			15	
Tetrahydrofuran	1.147056E-02	31.8	0.9974453		0.99	
Toluene	0.455838	11.5			15	
1,2,3-Trichlorobenzene	0.3400749	21.4	0.9992371		0.99	
1,2,4-Trichlorobenzene	0.3199823	14.5			15	
1,3,5-Trichlorobenzene	0.4380937	11.5			15	
1,1,1-Trichloroethane	0.2954245	13.8			15	
1,1,2-Trichloroethane	6.881607E-02	11.6			15	
Trichloroethylene	0.1250057	12.2			15	
Trichlorofluoromethane (Freon 11)	0.3465255	13.1			15	
1,2,3-Trichloropropane	9.426592E-02	13.5			15	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	0.1799465	11.4			15	
1,2,4-Trimethylbenzene	0.9315302	24.9	0.9998027		0.99	
1,3,5-Trimethylbenzene	1.207139	14.4			15	
Vinyl Chloride	0.1932285	14.7			15	
m+p Xylene	1.005262	11.4			15	
o-Xylene	0.874262	21.4	0.9996678		0.99	
1,2-Dichloroethane-d4	0.5359981	2.0			15	
Toluene-d8	1.086502	11.0			15	

Page 278 of 1197 B075050_01 06/28/13 16:54:10

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GCMSVOA5

Calibration:

1300053

Lab File ID:

ve165003.D

Calibration Date:

05/17/13 00:00

Sequence:

S004324

Injection Date:

06/14/13

Lab Sample ID:

S004324-CCV1

Injection Time:

	·	CONC	. (μg/L)	RESPONSE FACTOR			% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Acetone	А	100	86.1	7. 134968E-02	6.142277E-02		-13.9	20
Acrylonitrile	Α	10.0	10.2	8.087693E-02	8.231752E-02		1.8	20
tert-Amyl Methyl Ether (TAME)	Α	10.0	10.2	0.5583237	0.5674472		1.6	20
Benzene	Α	10.0	9.62	1.120585	1.078435		-3.8	20
Bromobenzene	Α	10.0	10.2	0.7003925	0.7114592		1.6	20
Bromochloromethane	Α	10.0	10.5	0.2134845	0.224756		5.3	20
Bromodichloromethane	Α	10.0	9.73	0.2646878	0.2575118		-2.7	20
Bromoform	Α	10.0	9.08	0.3134229	0.284695		-9.2	20
Bromomethane	Α	10.0	8.12	0.2111494	0.1714747		-18.8	20
2-Butanone (MEK)	Α	100	103	9.527142E-02	9.774217E-02		2.6	20
tert-Butyl Alcohol (TBA)	Α	100	97.5	0.0157114	1.531496E-02		-2.5	20
n-Butylbenzene	Α	10.0	10.0	1.473402	1.479504		0.4	20
sec-Butylbenzene	Α	10.0	9.96	1.967151	1.959975		-0.4	20
tert-Butylbenzene	Α	10.0	9.47	1.354244	1.282931		-5.3	20
tert-Butyl Ethyl Ether (TBEE)	Α	10.0	10.0	0.6215235	0.6215352		0.002	20
Carbon Disulfide	Α	100	99.0	0.8954041	0.8861933		-1.0	20
Carbon Tetrachloride	Α	10.0	9.78	0.3949352	0.3862455		-2.2	20
Chlorobenzene	Α	10.0	9.88	1.127694	1.114263		-1.2	20
Chlorodibromomethane	Α	10.0	9.61	0.1999028	0.1920598		-3.9	20
Chloroethane	Α	10.0	8.00	0.1663037	0.1330179		-20.0	20
Chloroform	Α	10.0	10.0	0.4850183	0.4875817		0.5	20
Chloromethane	Α	10.0	5.19	0.3410179	0.1769754		-48.1	20
2-Chlorotoluene	Α	10.0	10.3	1.218465	1.25957		3.4	20
4-Chlorotoluene	Α	10.0	10.1	1.271738	1.289907		1.4	20

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GCMSVOA5

Calibration:

1300053

Lab File ID:

ve165003.D

Calibration Date:

05/17/13 00:00

Sequence:

S004324

Injection Date:

06/14/13

Lab Sample ID:

S004324-CCV1

Injection Time:

		CONC	. (μg/L)	RESP	ONSE FACTOR		% DIFF / DRIFT	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,2-Dibromo-3-chloropropane (DBCP)	Α	10.0	9.20	5,172919E-02 (4.760086E-02		-8.0	20
1,2-Dibromoethane (EDB)	Α	10.0	9.85	0.1713981	0.1687635		-1.5	20
Dibromomethane	Α	10.0	10.2	0.115482	0.1178628		2.1	20
1,2-Dichlorobenzene	Α	10.0	9.47	0.7781515	0.7370817		-5.3	20
1,3-Dichlorobenzene	Α	10.0	9.68	0.8552778	0.8282354		-3.2	20
1,4-Dichlorobenzene	Α	10.0	9.53	0.9458815	0.9018558		-4.7	20
trans-1,4-Dichloro-2-butene	Α	10.0	10.7	0.1061309	0.11363		7.1	20
Dichlorodifluoromethane (Freon 12)	Α	10.0	8.96	0.3316602	0.2970238		-10.4	20
1,1-Dichloroethane	Α	10.0	9.78	0.485378	0,4747251		-2.2	20
1,2-Dichloroethane	Α	10.0	9.02	0.2699794	0.2435106		-9.8	20
1,1-Dichloroethylene	Α	10.0	9.83	0.4242032	0.4169915		-1.7	20
cis-1,2-Dichloroethylene	Α	10.0	9.70	0.4016163	0.389391		-3.0	20
trans-1,2-Dichloroethylene	Α	10.0	10.0	0.3737704	0.3737438		-0.007	20
1,2-Dichloropropane	Α	10.0	9.77	0.2082147	0.2033333		-2.3	20
1,3-Dichloropropane	Α	10.0	9.85	0.2667256	0.2628266		-1.5	20
2,2-Dichloropropane	Α	10.0	10.1	0.3921449	0.3945692		0.6	20
1,1-Dichloropropene	Α	10.0	9.76	0.4063944	0.3967791		-2.4	20
cis-1,3-Dichloropropene	Α	10.0	10.2	0.3075397	0.312381		1.6	20
trans-1,3-Dichloropropene	Α	10.0	10.1	0.2465436	0.2494576		1.2	20
Diethyl Ether	Α	10.0	8.59	0.1820586	0.1563113		-14.1	20
Diisopropyl Ether (DIPE)	Α	10.0	10.4	0.7107587	0.7401801		4.1	20
1,4-Dioxane	Α	100	95.3	1.659301E-03	1.581572E-03		-4.7	20
Ethylbenzene	Α	10.0	10.2	2.065389	2.108671		2.1	20
Hexachlorobutadiene	Α	10.0	9.31	0.2752574	0.2563911		-6.9	20
2-Hexanone (MBK)	Α	100	106	0.1076445	0.1137889 Page 378 of 119		5.7	20

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GCMSVOA5

Calibration:

1300053

Lab File ID:

ve165003.D

Calibration Date:

05/17/13 00:00

Sequence:

S004324

Injection Date:

06/14/13

Lab Sample ID:

S004324-CCV1

Injection Time:

9.98 9.86 10.4	1.96985 1.593628	1.966121 1.570706	MIN (#)	-0.2	20 20
9.86	1.593628				20
		1.570706			
10.4	0.5402004			-1.4	20
	0.5403094	0.5631402		4.2	20
11.2	0.344631	0.3868584		12.3	20
105	0.1571706	0.1656682		5.4	20
7.48	0.7173134	0.5363143		-25.2	20 *
10.1	2.168905	2.198062		1.3	20
10.2	1.18214	1.199352		1.5	20
9.57	0.4217188	0.4035878		-4.3	20
10.2	0.4256722	0.4335703		1.9	20
10.1	0.2579545	0.2595956		0.6	20
10.3	5.649186E-02	5.805619E-02		2.8	20
10.1	0.8549861	0.8637772		1.0	20
8.09	0.2717194	0.2198613		-19.1	20
8.91	0.4263482	0.3798802		-10.9	20
9.36	0.5442242	0.5094169		-6.4	20
9.75	0.4359259	0.42517		-2.5	20
9.68	0.164519	0.1592693		-3.2	20
9.68	0.2220355	0.2149229		-3.2	20
9.02	0.424814	0.3829708		-9.8	20
10.6	0.3235542	0.3434456		6.1	20
10.1	0.256276	0.2596317		1.3	20
9.76	1.564829	1.527763		-2.4	20
	11.2 105 7.48 10.1 10.2 9.57 10.2 10.1 10.3 10.1 8.09 8.91 9.36 9.75 9.68 9.68 9.02 10.6 10.1	11.2 0.344631 105 0.1571706 7.48 0.7173134 10.1 2.168905 10.2 1.18214 9.57 0.4217188 10.2 0.4256722 10.1 0.2579545 10.3 5.649186E-02 10.1 0.8549861 8.09 0.2717194 8.91 0.4263482 9.36 0.5442242 9.75 0.4359259 9.68 0.164519 9.68 0.2220355 9.02 0.424814 10.6 0.3235542 10.1 0.256276	11.2 0.344631 0.3868584 105 0.1571706 0.1656682 7.48 0.7173134 0.5363143 10.1 2.168905 2.198062 10.2 1.18214 1.199352 9.57 0.4217188 0.4035878 10.2 0.4256722 0.4335703 10.1 0.2579545 0.2595956 10.3 5.649186E-02 5.805619E-02 10.1 0.8549861 0.8637772 8.09 0.2717194 0.2198613 8.91 0.4263482 0.3798802 9.36 0.5442242 0.5094169 9.75 0.4359259 0.42517 9.68 0.2220355 0.2149229 9.02 0.424814 0.3829708 10.6 0.3235542 0.3434456 10.1 0.256276 0.2596317	11.2 0.344631 0.3868584 105 0.1571706 0.1656682 7.48 0.7173134 0.5363143 10.1 2.168905 2.198062 10.2 1.18214 1.199352 9.57 0.4217188 0.4035878 10.2 0.4256722 0.4335703 10.1 0.2579545 0.2595956 10.3 5.649186E-02 5.805619E-02 10.1 0.8549861 0.8637772 8.09 0.2717194 0.2198613 8.91 0.4263482 0.3798802 9.36 0.5442242 0.5094169 9.75 0.4359259 0.42517 9.68 0.164519 0.1592693 9.68 0.2220355 0.2149229 9.02 0.424814 0.3829708 10.6 0.3235542 0.3434456 10.1 0.256276 0.2596317	11.2 0.344631 0.3868584 12.3 105 0.1571706 0.1656682 5.4 7.48 0.7173134 0.5363143 -25.2 10.1 2.168905 2.198062 1.3 10.2 1.18214 1.199352 1.5 9.57 0.4217188 0.4035878 -4.3 10.2 0.4256722 0.4335703 1.9 10.1 0.2579545 0.2595956 0.6 10.3 5.649186E-02 5.805619E-02 2.8 10.1 0.8549861 0.8637772 1.0 8.09 0.2717194 0.2198613 -19.1 8.91 0.4263482 0.3798802 -10.9 9.36 0.5442242 0.5094169 -6.4 9.75 0.4359259 0.42517 -2.5 9.68 0.164519 0.1592693 -3.2 9.68 0.2220355 0.2149229 -3.2 9.02 0.424814 0.3829708 -9.8 10.6 0.3235542 0.3434456 6.1 10.1 0.256276 0.2596317

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GCMSVOA4

Calibration:

1300064

Lab File ID:

VD169004.D

Calibration Date:

06/11/13 00:00

Sequence:

S004325

Injection Date:

06/18/13

Lab Sample ID:

S004325-CCV1

Injection Time:

		CONC	. (µg/L)	RESF	RESPONSE FACTOR		% DIFF	/ DRIFT	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Acetone	Α	100	129	6,405913E-02	8.247153E-02		28.7	20	*
Acrylonitrile	Α	10.0	9.58	4.418477E-02	4.235163E-02		-4.1	20	
tert-Amyl Methyl Ether (TAME)	Α	10.0	11.0	0.2257886	0.2487359		10.2	20	
Benzene	Α	10.0	10.3	0.5139863	0.5293368		3.0	20	
Bromobenzene	Α	10.0	10.4	0.4444968	0.4611689		3.8	20	
Bromochloromethane	Α	10.0	11.0	8.094392E-02	8.923044E-02		10.2	20	
Bromodichloromethane	Α	10.0	10.6	0.1625026	0.1720265		5.9	20	
Bromoform	L	10.0	9.10	0.1586799	0.1639686		-9.0	20	
Bromomethane	L	10.0	10.1	0.1961787	0.1059626		0.5	20	
2-Butanone (MEK)	Α	100	133	6.087598E-02	8.106884E-02		33.2	20	*
tert-Butyl Alcohol (TBA)	L	100	90.9	2.482539E-02	1.383114E-02	,	-9.1	20	
n-Butylbenzene	L	10.0	10.2	0.8309814	0.999534		1.7	20	
sec-Butylbenzene	L	10.0	9.80	0.221167	0.2546725		-2.0	20	
tert-Butylbenzene	L	10.0	9.96	0.7389451	0.8683636		-0.4	20	
tert-Butyl Ethyl Ether (TBEE)	Α	10.0	10.5	0.3331292	0.3505764		5.2	20	
Carbon Disulfide	Α	100	86.7	0.5266202	0.4568156		-13.3	20	
Carbon Tetrachloride	Α	10.0	11.1	0.2834974	0.3147141		11.0	20	
Chlorobenzene	Α	10.0	10.1	0.7320293	0.7424665		1.4	20	
Chlorodibromomethane	Α	10.0	10.3	0.1268853	0.1310503		3.3	20	
Chloroethane	Α	10.0	7.88	0.1111831	8.762346E-02		-21.2	20	*
Chloroform	Α	10.0	10.9	0.3031986	0.329367		8.6	20	
Chloromethane	Α	10.0	8.09	0.1806022	0.1460756		-19.1	20	
2-Chlorotoluene	Α	10.0	11.3	0.846981	0.954448		12.7	20	
4-Chlorotoluene	Α	10.0	11.3	1.008169	1.139574		13.0	20	

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GCMSVOA4

Calibration:

1300064

Lab File ID:

VD169004.D

Calibration Date:

06/11/13 00:00

Sequence:

S004325

Injection Date:

06/18/13

Lab Sample ID:

S004325-CCV1

Injection Time: 06:18

		CONC	. (μg/L)	µg/L) RESPONSE FACTOR			% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT ((#)
1,2-Dibromo-3-chloropropane (DBCP)	Α	10.0	9.30	4.418306E-02	4.110536E-02		-7.0	20	
1,2-Dibromoethane (EDB)	Α	10.0	11.9	9.161219E-02	0.1089417		18.9	20	
Dibromomethane	Α	10.0	11.2	6.407493E-02	7.145545E-02		11.5	20	
1,2-Dichlorobenzene	Α	10.0	10.3	0.5219378	0.5375087		3.0	20	
1,3-Dichlorobenzene	Α	10.0	10.9	0.5597864	0.6082423		8.7	20	
1,4-Dichlorobenzene	Α	10.0	10.2	0.6488216	0.6614733		1.9	20	
trans-1,4-Dichloro-2-butene	Α	10.0	10.9	8.133543E-02	8.825467E-02		8.5	20	
Dichlorodifluoromethane (Freon 12)	L	10.0	7.64	0.1742583	0.1514763		-23.6	20	*
1,1-Dichloroethane	Α	10.0	10.3	0.2634834	0.2714947		3.0	20	
1,2-Dichloroethane	Α	10.0	10.7	0.2112149	0.2253217		6.7	20	
1,1-Dichloroethylene	Α	10.0	8.27	0.3041896	0.2516407		-17.3	20	
cis-1,2-Dichloroethylene	Α	10.0	10.6	0.2626513	0.2778516		5.8	20	
trans-1,2-Dichloroethylene	Α	10.0	9.56	0.2379352	0.2275553		-4.4	20	
1,2-Dichloropropane	Α	10.0	10.3	8.791625E-02	9.083124E-02		3.3	20	
1,3-Dichloropropane	Α	10.0	11.0	0.134154	0.1469275		9.5	20	
2,2-Dichloropropane	Α	10.0	10.7	0.2295567	0.2451552		6.8	20	
1,1-Dichloropropene	Α	10.0	11.6	6.300162E-02	7.336802E-02		16.5	20	
cis-1,3-Dichloropropene	L	10.0	11.6	0.1190508	0.1493885		15.9	20	
trans-1,3-Dichloropropene	L	10.0	11.3	9.880777E-02	0.1246126		13.0	20	
Diethyl Ether	Α	10.0	7.59	9.113194E-02	6.919602E-02		-24.1	20	*
Diisopropyl Ether (DIPE)	Α	10.0	10.8	0.4026051	0.4341143		7.8	20	
1,4-Dioxane	Α	100	96.2	1.003986E-03	9.603209E-04		-4.3	20	
Ethylbenzene	Α	10.0	10.8	1.220737	1.318507		8.0	20	
Hexachlorobutadiene	Α	10.0	10.6	0.259037	0.2743945		5.9	20	
2-Hexanone (MBK)	Α	100	124	6.548896E <u>-02</u>	0.0812972 age 385 of 119		24.1	20	*

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8260C

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GCMSVOA4

Calibration:

1300064

Lab File ID:

VD169004.D

Calibration Date:

06/11/13 00:00

Sequence:

S004325

Injection Date:

06/18/13

Lab Sample ID:

S004325-CCV1

Injection Time: 06:18

		CONC	. (μg/L)	RESP	ONSE FACTOR		% DIFF / DRIFT	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Isopropylbenzene (Cumene)	L	10.0	9.68	0.278075	0.3254327		-3.2	20
p-Isopropyltoluene (p-Cymene)	Α	10.0	11.2	1.044579	1.173048		12.3	20
Methyl tert-Butyl Ether (MTBE)	Α	10.0	9.66	0.3244629	0.3135122		-3.4	20
Methylene Chloride	Α	10.0	9.51	0.2441136	0.2320786		-4.9	20
4-Methyl-2-pentanone (MIBK)	Α	100	114	8.972315E-02	0.1019615		13.6	20
Naphthalene	L	10.0	8.37	0.6278087	0.6642615		-16.3	20
n-Propylbenzene	Α	10.0	11.0	1.339448	1.46716		9.5	20
Styrene	L	10.0	9.84	0.707284	0.8197464		-1.6	20
1,1,1,2-Tetrachloroethane	Α	10.0	10.3	0.3114684	0.3209893		3.1	20
1,1,2,2-Tetrachloroethane	Α	10.0	10.3	0.2406839	0.2472113		2.7	20
Tetrachloroethylene	Α	10.0	11.6	0.139036	0.161454		16.1	20
Tetrahydrofuran	L	10.0	8.47	1.147056E-02 (1.046167E-02)	-15.3	20
Toluene	Α	10.0	10.8	0.455838	0.4922943		8.0	20
1,2,3-Trichlorobenzene	L	10.0	9.30	0.3400749	0.3499178		-7.0	20
1,2,4-Trichlorobenzene	Α	10.0	11.2	0.3199823	0.3572006		11.6	20
1,3,5-Trichlorobenzene	Α	10.0	10.3	0.4380937	0.4516061		3.1	20
1,1,1-Trichloroethane	Α	10.0	11.6	0.2954245	0.3438067		16.4	20
1,1,2-Trichloroethane	Α	10.0	10.5	6.881607E-02	7.259553E-02		5.5	20
Trichloroethylene	Α	10.0	10.5	0.1250057	0.1310005		4.8	20
Trichlorofluoromethane (Freon 11)	Α	10.0	8.31	0.3465255	0.287912		-16.9	20
1,2,3-Trichloropropane	Α	10.0	10.0	9.426592E-02	9.470839E-02		0.5	20
1,1,2-Trichloro-1,2,2-trifluoroe thane (Freon 113)	Α	10.0	8.49	0.1799465	0.1527608		-15.1	20
1,2,4-Trimethylbenzene	Ł	10.0	10.3	0.9315302	1-117011		2.8	20

Page 386 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T2-SB02 (0-4ft)

Laboratory:

Con-Test Analytical Laboratory

Client:

URS Corp. Clifton Park

Matrix:

Soil

Batch:

B075072

% Solids:

83.90

Initial/Final:

30 g / 1 mL

Column:

Work Order:

13F0478

Project:

20121210 Bronx PC

Analysis:

SW-846 8270D

Preparation:

SW-846 3546

Laboratory ID:

B075072-MS1

Sample Lab ID:

13F0478-08

ANALYTE	SPIKE ADDED (mg/Kg dry)	SAMPLE CONCENTRATION (mg/Kg dry)	MS CONCENTRATION (mg/Kg dry)	MS % REC.	QC LIMITS REC.
Acenaphthene	1.99	0.666	2.22	78.4	40 - 140
Acenaphthylene	1.99	0.210	1.83	81.6	40 - 140
Acetophenone	1.99	ND	1.80	90.5	40 - 140
Aniline	1.99	ND	1.20	60.6	40 - 140
Anthracene	1.99	1.27	2.81	77.3	40 - 140
Benzidine	1.99	ND	0.81 U	(0)	* 40 - 140
Benzo(a)anthracene	1.99	3.83	4.83	50.4	40 - 140
Benzo(a)pyrene	1.99	3.68	4.98	65.4	40 - 140
Benzo(b)fluoranthene	1.99	4.18	5.64	73.8	40 - 140
Benzo(g,h,i)perylene	1.99	2.31	2.77	23.3	* 40 - 140
Benzo(k)fluoranthene	1.99	1.57	3.08	76.0	40 - 140
Benzoic Acid	1.99	ND	0.867	43.6	40 - 140
Bis(2-chloroethoxy)methane	1.99	ND	1.66	83.7	40 - 140
Bis(2-chloroethyl)ether	1.99	ND	1.78	89.5	40 - 140
Bis(2-chloroisopropyl)ether	1.99	ND	1.69	85.3	40 - 140
Bis(2-Ethylhexyl)phthalate	1.99	0.460	3.64	160	* 40 - 140
4-Bromophenylphenylether	1.99	ND	1.70	85.6	40 - 140
Butylbenzylphthalate	1.99	ND	1.67	84.2	40 - 140
Carbazole	1.99	0.579	2.03	73.0	40 - 140
4-Chloroaniline	1.99	ND	1.36	68.2	40 - 140
4-Chloro-3-methylphenol	1.99	ND	1.90	95.6	30 - 130
2-Chloronaphthalene	1.99	ND	1.37	69.0	40 - 140
2-Chlorophenol	1.99	ND	1.67	83.9	30 - 130
4-Chlorophenylphenylether	1.99	ND	1.56	78.3	40 - 140
Chrysene	1.99	3.58	4.50	46.2	40 - 140

Page 710 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T2-SB02 (0-4ft)

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Matrix:

Soil

Analysis:

SW-846 8270D

Batch:

B075072

Preparation:

SW-846 3546

% Solids:

83.90

Laboratory ID:

B075072-MS1

Initial/Final:

30 g / 1 mL

Sample Lab ID:

13F0478-08

Column:

ANALYTE	SPIKE ADDED (mg/Kg dry)	SAMPLE CONCENTRATION (mg/Kg dry)	MS CONCENTRATION (mg/Kg dry)	MS % REC.		QC LIMITS REC.
Dibenz(a,h)anthracene	1.99	0.605	1.53	46.4		40 - 140
Dibenzofuran	1.99	0.406	1.94	77.3		40 - 140
Di-n-butylphthalate	1.99	ND	1.63	82.1		40 - 140
1,2-Dichlorobenzene	1.99	ND	1.40	70.4		40 - 140
1,3-Dichlorobenzene	1.99	ND	1.34	67.2		40 - 140
1,4-Dichlorobenzene	1.99	ND	1.35	68.1		40 - 140
3,3-Dichlorobenzidine	1.99	ND	1.08	54.5		40 - 140
2,4-Dichlorophenol	1.99	ND	1.65	83.0		30 - 130
Diethylphthalate	1.99	ND	1.66	83.6		40 - 140
2,4-Dimethylphenol	1.99	ND	1.66	83.4		30 - 130
Dimethylphthalate	1.99	ND	1.63	82.0		40 - 140
4,6-Dinitro-2-methylphenol	1.99	ND	1.37	68.7	*	30 - 130
2,4-Dinitrophenol	1.99	ND	1.31	65.8		30 - 130
2,4-Dinitrotoluene	1.99	ND	1.51	76.0		40 - 140
2,6-Dinitrotoluene	1.99	ND	1.71	85.9		40 - 140
Di-n-octylphthalate	1.99	ND	1.51	76.1		40 - 140
1,2-Diphenylhydrazine (as Azobenzene)	1.99	ND	2.03	102		40 - 140
Fluoranthene	1.99	6.10	6.36	12.8	*	40 - 140
Fluorene	1.99	0.610	2.14	76.9		40 - 140
Hexachlorobenzene	1.99	ND	1.63	82.0		40 - 140
Hexachlorobutadiene	1.99	ND	1.26	63.6		40 - 140
Hexachlorocyclopentadiene	1.99	ND	1.6 U	0	*	30 - 130
Hexachloroethane	1.99	ND	1.10	55.3		40 - 140
Indeno(1,2,3-cd)pyrene	1.99	2.47	3.09	31.2	*	40 - 140
Isophorone	1.99	ND	1.63	82.2		40 - 140

Page 711 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T2-SB02 (0-4ft)

Laboratory: Con-Test Analytical Laboratory

Work Order: 13F0478

Preparation:

Laboratory ID:

Client: URS Corp. Clifton Park

Project: 20121210 Bronx PC

Matrix: Soil

Analysis: SW-846 8270D

Batch: B075072 % Solids: 83.90 SW-846 3546

B075072-MSD1

Initial/Final: 30.2 g / 1 mL

Sample Lab ID: 13F0478-08

Column:

	SPIKE MSD MSD			QC	QC LIMITS		
ANALYTE	ADDED (mg/Kg dry)	CONCENTRATION (mg/Kg dry)	% REC.#	% RPD	RPD	REC.	
Acenaphthene	1.97	2.08	71.8	6.51	30	40 - 140	
Acenaphthylene	1.97	1.82	81.8	0.274	30	40 - 140	
Acetophenone	1.97	1.81	91.6	0.565	30	40 - 140	
Aniline	1.97	1.13	57.2	6.44	30	40 - 140	
Anthracene	1.97	2.59	60.6	8.24	30	40 - 140	
Benzidine	1.97	0.81 U	(0)	* ?	30	40 - 140	
Benzo(a)anthracene	1.97	4.47	32.5	* 7.74	30	40 - 140	
Benzo(a)pyrene	1.97	4.52	42.4	9.74	30	40 - 140	
Benzo(b)fluoranthene	1.97	4.87	35.2	* 14.6	30	40 - 140	
Benzo(g,h,i)perylene	1.97	3.09	39.5	10.9	30	40 - 140	
Benzo(k)fluoranthene	1.97	2.87	65.6	7.22	30	40 - 140	
Benzoic Acid	1.97	0.843	42.7	2.79	30	40 - 140	
Bis(2-chloroethoxy)methane	1.97	1.64	83.0	1.53	30	40 - 140	
Bis(2-chloroethyl)ether	1.97	1.71	86.6	3.94	30	40 - 140	
Bis(2-chloroisopropyl)ether	1.97	1.62	81.9	4.78	30	40 - 140	
Bis(2-Ethylhexyl)phthalate	1.97	1.91	73.7	62.2	* 30	40 - 140	
4-Bromophenylphenylether	1.97	1.68	85.1	1.18	30	40 - 140	
Butylbenzylphthalate	1.97	1.87	94.8	11.2	30	40 - 140	
Carbazole	1.97	1.92	67.8	5.68	30	40 - 140	
4-Chloroaniline	1.97	1.30	66.0	4.00	30	40 - 140	
4-Chloro-3-methylphenol	1.97	1.86	94.2	2.18	30	30 - 130	
2-Chloronaphthalene	1.97	1.34	67.8	2.48	30	40 - 140	
2-Chlorophenol	1.97	1.53	77.5	8.54	30	30 - 130	
4-Chlorophenylphenylether	1.97	1.57	79.7	1.11	30	40 - 140	
Chrysene	1.97	4.16	29.1	* 7.93	30	40 - 140	

Page 714 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T2-SB02 (0-4ft)

Laboratory:

Con-Test Analytical Laboratory

1.97

Client:

URS Corp. Clifton Park

Matrix:

Soil

Batch:

B075072

% Solids:

83.90

Initial/Final: Column:

Isophorone

30.2 g / 1 mL

Work Order:

13F0478

Project:

20121210 Bronx PC

Analysis:

SW-846 8270D

Preparation:

SW-846 3546

Laboratory ID:

B075072-MSD1

Sample Lab ID:

13F0478-08

	SPIKE	MSD	MSD	04	QC	LIMITS
ANALYTE	ADDED (mg/Kg dry)	CONCENTRATION (mg/Kg dry)	% REC. #	% RPD	RPD	REC.
Dibenz(a,h)anthracene	1.97	1.68	54.6	9.80	30	40 - 140
Dibenzofuran	1.97	1.91	76.0	1.86	30	40 - 140
Di-n-butylphthalate	1.97	1.62	82.3	0.421	30	40 - 140
1,2-Dichlorobenzene	1.97	1.33	67.2	5.20	30	40 - 140
1,3-Dichlorobenzene	1.97	1.30	65.6	3.07	30	40 - 140
1,4-Dichlorobenzene	1.97	1.29	65.5	4.50	30	40 - 140
3,3-Dichlorobenzidine	1.97	1.24	63.0	13.8	30	40 - 140
2,4-Dichlorophenol	1.97	1.55	78.6	6.16	30	30 - 130
Diethylphthalate	1.97	1.70	86.1	2.35	30	40 - 140
2,4-Dimethylphenol	1.97	1.64	83.0	1.24	30	30 - 130
Dimethylphthalate	1.97	1.65	83.4	1.03	30	40 - 140
4,6-Dinitro-2-methylphenol	1.97	1.26	63.6	8.34	30	30 - 130
2,4-Dinitrophenol	1.97	1.31	66.2	0.00199	30	30 - 130
2,4-Dinitrotoluene	1.97	1.59	80.5	5.01	30	40 - 140
2,6-Dinitrotoluene	1.97	1.71	86.7	0.216	30	40 - 140
Di-n-octylphthalate	1.97	1.55	78.5	2.44	30	40 - 140
1,2-Diphenylhydrazine (as Azobenzene)	1.97	1.89	95.7	7.41	30	40 - 140
Fluoranthene	1.97	5.31	-40.1 *	17.9	30	40 - 140
Fluorene	1.97	2.16	78.4	0.958	30	40 - 140
Hexachlorobenzene	1.97	1.61	81.7	1.01	30	40 - 140
Hexachlorobutadiene	1.97	1.30	65.7	2.55	30	40 - 140
Hexachlorocyclopentadiene	1.97	1.6 U	(0).	i i	30	30 - 130
Hexachloroethane	1.97	1.05	53.2	4.65	30	40 - 140
Indeno(1,2,3-cd)pyrene	1.97	3.34	43.8	7.61	30	40 - 140

1.62

82.3

Page 715 of 1197 B075050_01 06/28/13 16:54:10

30

40 - 140

0.567

3 - FORM III MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T1-MW1

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Matrix:

Water

Analysis:

SW-846 8270D

Batch:

B075096

Preparation:

SW-846 3510C

% Solids:

5075050

Laboratory ID:

B075096-MS1

Initial/Final:

940 mL / 1 mL

Sample Lab ID:

13F0478-01

Column:

ANALYTE	(μg/L)	CONCENTRATION (µg/L)	CONCENTRATION (µg/L)	% REC.	LIMITS REC.
Acenaphthene	53.2	ND	42.1	79.1	40 - 140
Acenaphthylene	53.2	ND	43.1	81.1	40 - 140
Acetophenone	53.2	ND	40.9	76.9	40 - 140
Aniline	53.2	ND	36.7	69.1	40 - 140
Anthracene	53.2	ND	43.6	81.9	40 - 140
Benzidine	53.2	ND	20.6	38.7	• 40 - 140
Benzo(a)anthracene	53.2	ND	46.8	88.1	40 - 140
Benzo(a)pyrene	53.2	ND	48.9	91.9	40 - 140
Benzo(b)fluoranthene	53.2	3.59	47.1	81.7	40 - 140
Benzo(g,h,i)perylene	53.2	ND	55.3	104	40 - 140
Benzo(k)fluoranthene	53.2	ND	45.9	86.2	40 - 140
Benzoic Acid	53.2	ND	16.2	30.5	* 40 - 140
Bis(2-chloroethoxy)methane	53.2	ND	46.7	87.8	40 - 140
Bis(2-chloroethyl)ether	53.2	ND	44.3	83.3	40 - 140
Bis(2-chloroisopropyl)ether	53.2	ND	39.8	74.7	40 - 140
Bis(2-Ethylhexyl)phthalate	53.2	ND	44.6	83.9	40 - 140
4-Bromophenylphenylether	53.2	ND	38.8	72.9	40 - 140
Butylbenzylphthalate	53.2	ND	47.3	88.9	40 - 140
Carbazole	53.2	ND	48.1	90.4	40 - 140
4-Chloroaniline	53.2	ND	45.9	86.2	40 - 140
4-Chloro-3-methylphenol	53.2	ND	48.1	90.4	30 - 130
2-Chloronaphthalene	53.2	ND	35.7	67.1	40 - 140
2-Chlorophenol	53.2	ND	41.3	77.6	30 - 130
4-Chlorophenylphenylether	53.2	ND	46.2	86.8	40 - 140
Chrysene	53.2	ND	42.0	78.9	40 - 140

Page 717 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

T1-MW1

Laboratory:

Con-Test Analytical Laboratory

Client:

URS Corp. Clifton Park

Matrix:

Water

Batch:

B075096

% Solids:

Initial/Final: Column: 920 mL / 1 mL

Work Order:

13F0478

Project:

20121210 Bronx PC

Analysis:

SW-846 8270D

Preparation:

SW-846 3510C

Laboratory ID:

B075096-MSD1

Sample Lab ID:

13F0478-01

	SPIKE	MSD	MSD		QC	LIMITS
ANALYTE	ADDED (μg/L)	CONCENTRATION (µg/L)	% REC.#	% RPD	RPD	REC.
Acenaphthene	54.3	45.4	83.5	7.51	30	40 - 140
Acenaphthylene	54.3	47.2	86.9	9.10	30	40 - 140
Acetophenone	54.3	42.4	78.0	3.57	30	40 - 140
Aniline	54.3	37.4	68.9	1.83	30	40 - 140
Anthracene	54.3	48.2	88.7	10.1	30	40 - 140
Benzidine	54.3	37.9	69.8	59.1	30	40 - 140
Benzo(a)anthracene	54.3	52.1	95.8	10.5	30	40 - 140
Benzo(a)pyrene	54.3	50.8	93.5	3.81	30	40 - 140
Benzo(b)fluoranthene	54.3	45.0	76.3	4.39	30	40 - 140
Benzo(g,h,i)perylene	54.3	56.5	104	2.11	30	40 - 140
Benzo(k)fluoranthene	54.3	47.1	86.6	2.57	30	40 - 140
Benzoic Acid	54.3	13.4	24.7	* 18.8	30	40 - 140
Bis(2-chloroethoxy)methane	54.3	44.1	81.1	5.71	30	40 - 140
Bis(2-chloroethyl)ether	54.3	43.8	80.6	1.14	30	40 - 140
Bis(2-chloroisopropyl)ether	54.3	40.6	74.7	2.07	30	40 - 140
Bis(2-Ethylhexyl)phthalate	54.3	49.1	90.3	9.47	30	40 - 140
4-Bromophenylphenylether	54.3	48.4	89.0	22.0	30	40 - 140
Butylbenzylphthalate	54.3	52.3	96.2	10.0	30	40 - 140
Carbazole	54.3	52.2	96.0	8.18	30	40 - 140
4-Chloroaniline	54.3	43.6	80.2	5.09	30	40 - 140
4-Chloro-3-methylphenol	54.3	47.1	86.6	2.05	30	30 - 130
2-Chloronaphthalene	54.3	40.5	74.6	12.7	30	40 - 140
2-Chlorophenol	54.3	41.3	76.0	0.0157	30	30 - 130
4-Chlorophenylphenylether	54.3	45.5	83.6	1.58	30	40 - 140
Chrysene	54.3	48.3	88.8	14.0	30	40 - 140

Page 720 of 1197 B075050_01 06/28/13 16:54:10

3 - FORM III

LCS / LCS DUPLICATE RECOVERY

SW-846 8270D

Laboratory: Con-Test Analytical Laboratory Work Order: 13F0478

URS Corp. Clifton Park Client:

20121210 Bronx PC Project:

Water Matrix:

SW-846 3510C Preparation:

Batch: B075096

B075096-BS1 Laboratory ID:

Column: Initial/Final: 1000 mL / 1 mL

ANALYTE	SPIKE ADDED (μg/L)	LCS CONCENTRATION (μg/L)	LCS % REC.	QC LIMITS REC.
Acenaphthene	50.0	31.2	62.5	40 - 140
Acenaphthylene	50.0	29.7	59.3	40 - 140
Acetophenone	50.0	29.1	58.1	40 - 140
Aniline	50.0	22.0	44.0	40 - 140
Anthracene	50.0	35.0	69.9	40 - 140
Benzidine	50.0	7.68	15.4	40 - 140
Benzo(a)anthracene	50.0	36.3	72.7	40 - 140
Benzo(a)pyrene	50.0	36.8	73.6	40 - 140
Benzo(b)fluoranthene	50.0	30.7	61.5	40 - 140
Benzo(g,h,i)perylene	50.0	36.4	72.8	40 - 140
Benzo(k)fluoranthene	50.0	32.3	64.6	40 - 140
Benzoic Acid	50.0	11.6	23.2	10 - 130
Bis(2-chloroethoxy)methane	50.0	33.4	66.7	40 - 140
Bis(2-chloroethyl)ether	50.0	29.1	58.3	40 - 140
Bis(2-chloroisopropyl)ether	50.0	26.0	51.9	40 - 140
Bis(2-Ethylhexyl)phthalate	50.0	33.8	67.6	40 - 140
4-Bromophenylphenylether	50.0	34.6	69.2	40 - 140
Butylbenzylphthalate	50.0	35.7	71.5	40 - 140
Carbazole	50.0	35.1	70.3	40 - 140
4-Chloroaniline	50.0	31.7	63.4	40 - 140
4-Chloro-3-methylphenol	50.0	30.9	61.7	30 - 130
2-Chloronaphthalene	50.0	25.7	51.4	40 - 140
2-Chlorophenol	50.0	27.3	54.6	30 - 130
4-Chlorophenylphenylether	50.0	32.1	64.2	40 - 140
Chrysene	50.0	33.8	67.6	40 - 140
Dibenz(a,h)anthracene	50.0	34.9	69.8	40 - 140
Dibenzofuran	50.0	31.3	62.5	40 - 140
Di-n-butylphthalate	50.0	35.1	70.1	40 - 140
1,2-Dichlorobenzene	50.0	26.2	52.5	40 - 140
1,3-Dichlorobenzene	50.0	26.5	53.0	40 - 140
1,4-Dichlorobenzene	50.0	26.2	52.3 197 B075050_01 0	40 - 140

5 - FORM V INSTRUMENT PERFORMANCE CHECK

SW-846 8270D

Laboratory: Con-Test Analytical Laboratory Work Order: 13F0478

Client: URS Corp. Clifton Park Project: 20121210 Bronx PC

Lab File ID:C061901.DInjection Date:06/19/13Instrument ID:GMMSSV3Injection Time:12:03

Sequence: S004333 Lab Sample ID: S004333-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	PASS/FAIL
51	10 - 80% of 198	46.1	PASS
68	Less than 2% of 69	1.38	PASS
69	Base peak, 100% relative abundance	100	PASS
70	Less than 2% of 69	0	PASS
127	10 - 80% of 198	53.3	PASS
197	Less than 2% of 198	0	PASS
198	Base peak, 100% relative abundance	100	PASS
199	5 - 9% of 198	7.03	PASS
275	10 - 60% of 198	22.5	PASS
365	1 - 100% of 198	2.99	PASS
441	Less than 24% of 442	16.1	PASS
442	50 - 100% of 198	62.3	PASS
443	15 - 24% of 442	18.9	PASS

Client ID	Sample ID	File ID	Date Analyzed	Time Analyzed
Calibration Check	S004333-CCV1	C061903.D	06/19/2013	13:08:00
Blank	B075096-BLK1	C061904.D	06/19/2013	13:55:00
LCS	B075096-BS1	C061905.D	06/19/2013	14:33:00
LCS Dup	B075096-BSD1	C061906.D	06/19/2013	15:11:00
T1-MW1	13F0478-01	C061907.D	06/19/2013	15:49:00
T1-MW3	13F0478-02	C061908.D	06/19/2013	16:27:00
T2-MW2	13F0478-03	C061909.D	06/19/2013	17:04:00
Matrix Spike	B075096-MS1	C061916.D	06/19/2013	21:18:00
Matrix Spike Dup	B075096-MSD1	C061917.D	06/19/2013	21:54:00

5 - FORM V INSTRUMENT PERFORMANCE CHECK

SW-846 8270D

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Lab File ID:

B061801.D

Injection Date:

06/18/13

Instrument ID:

GCMSSV2

Injection Time:

09:09

Sequence: S004334

Lab Sample ID:

S004334-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	PASS/FAIL	
51	10 - 80% of 198	54.7	PASS	
68	Less than 2% of 69	0	PASS	
69	Base peak, 100% relative abundance	100	PASS	
70	Less than 2% of 69	0.973	PASS	
127	10 - 80% of 198	58.4	PASS	
197	Less than 2% of 198	0.366	PASS	
198	Base peak, 100% relative abundance	100	PASS	
199	5 - 9% of 198	7.05	PASS	
275	10 - 60% of 198	19.3	PASS	
365	1 - 100% of 198	2.3	PASS	
441	Less than 24% of 442	15.3	PASS	
442	50 - 100% of 198	63.9	PASS	
443	15 - 24% of 442	18.5	PASS	

Client ID	Sample ID	File ID	Date Analyzed	Time Analyzed
Calibration Check	S004334-CCV1	B061802.D	06/18/2013	9:30:00
T1-SS01 (0-8in)	13F0478-04	B061814.D	06/18/2013	16:42:00
T1-SB01 (0-4in)	13F0478-06	B061816.D	06/18/2013	17:52:00
T3-SB03 (0-4ft) (5x)	13F0478-09	B061911.D	06/18/2013	19:35:00 15:13
T3-SB03 (0-4ft)	13F0478-09	B061819.D	06/18/2013	19:35:00

FALLS UNDER TUNG BOX1901.D

5 - FORM V INSTRUMENT PERFORMANCE CHECK

SW-846 8270D

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Lab File ID:

B061901.D

Injection Date:

06/19/13

Instrument ID:

GCMSSV2

Injection Time:

09:19

Sequence:

S004335

Lab Sample ID:

S004335-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	PASS/FAIL
51	10 - 80% of 198	49.3	PASS
68	Less than 2% of 69	0	PASS
69	Base peak, 100% relative abundance	100	PASS
70	Less than 2% of 69	0.852	PASS
127	10 - 80% of 198	56.6	PASS
197	Less than 2% of 198	0	PASS
198	Base peak, 100% relative abundance	100	PASS
199	5 - 9% of 198	6.94	PASS
275	10 - 60% of 198	20.3	PASS
365	1 - 100% of 198	2,25	PASS
441	Less than 24% of 442	15.2	PASS
442	50 - 100% of 198	73.6	PASS
443	15 - 24% of 442	20.3	PASS

Client ID	Sample ID	File ID	Date Analyzed	Time Analyzed
Calibration Check	S004335-CCV1	B061903.D	06/19/2013	10:19:00
T2-SB02 (5-10ft)	13F0478-10	B061905.D	06/19/2013	11:38:00
T2-SB02 (5-10ft)	13F0478-10	B061910.D	06/19/2013	11:38:00
T2-SS04 12-14	13F0478-11	B061906.D	06/19/2013	12:13:00
T2-SS03 (0-8in)	13F0478-05	B061908.D	06/19/2013	13:27:00
T1-SS02 0-6 T3-S66 3 (0 -4 ft) T2-SB02 (0-4ft)	13F0478-12 13F0478-08	B061909.D B061912.D B061912.D	06/19/2013 06/19/2013	14:02:00 15:48:00
T1-SB01 (5-10ft) (10x)	13F0478-07	B061913.D	06/19/2013	16:24:00
T1-SB01 (5-10ft) (100 x)	13F0478-07	B062012.D	06/19/2013	16:24:00 15:48
Matrix Spike	B075072-MS1	B061919.D	06/19/2013	19:50:00
Matrix Spike Dup	B075072-MSD1	B061920.D	06/19/2013	20:23:00
· ·				

DIFFERENT TUNE!

(not reported by loo)

6 - FORM VI INITIAL CALIBRATION DATA SHEET (Continued)

SW-846 8270D

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Calibration:

1300062

Instrument:

Calibration Date:

GMMSSV3 6/6/2013 10:16:20AM

COMPOUND	Mean RF	RF RSD	Linear r	Quad COD	LIMIT	Q
Naphthalene	1.103311	5.0			20	
2-Nitroaniline	0.3549997	6.1			20	
3-Nitroaniline	0.2410438	13.6			20	
4-Nitroaniline	0.2582388	8.8			20	
Nitrobenzene	0.4367226	5.4			20	
2-Nitrophenol	0.1717746	14.2			20	
4-Nitrophenol	0.1738655	14.0			20	
N-Nitrosodimethylamine	0.9885725	3.7			20	
N-Nitrosodiphenylamine	0.5041818	7.0			20	
N-Nitrosodi-n-propylamine	1.352404	4.7			20	
Pentachloronitrobenzene	3.634659E-02	11.9			20	
Pentachlorophenol	0.1435721	17.3			20	
Phenanthrene	1.0477	6.9			20	
Phenol	2.1011	5.5			20	
Pyrene	1.099859	5.2			20	
Pyridine	1.647069	6.8			20	
1,2,4,5-Tetrachlorobenzene	0.5499792	12.0			20	
1,2,4-Trichlorobenzene	0.3294798	6.1			20	
2,4,5-Trichlorophenol	0.3303908	13.3			20	
2,4,6-Trichlorophenol	0.3308075	14.7			20	
2-Fluorophenol	1.408285	3.8			20	
Phenol-d6	1.770523	5.9			20	
Nitrobenzene-d5	0.4141813	7.6			20	
2-Fluorobiphenyl	1.238199	7.2			20	
2,4,6-Tribromophenol	0.1285629	17.8			20	
p-Terphenyl-d14	0.5046013	5.6			20	

6 - FORM VI INITIAL CALIBRATION DATA SHEET (Continued)

SW-846 8270D

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Calibration:

1300063

Instrument:

GCMSSV2

Calibration Date:

5/29/2013 12:47:21PM

COMPOUND	Mean RF	RF RSD	Linear r	Quad COD	LIMIT	Q
Naphthalene	1.016888	6.4			20	
2-Nitroaniline	0.3589516	5.2			20	
3-Nitroaniline	0.348696	6.4			20	
4-Nitroaniline	0.3603762	8.6			20	
Nitrobenzene	0.3633814	4.2			20	
2-Nitrophenol	0.1881495	5.9			20	
4-Nitrophenol	0.1612328	13.8			20	
N-Nitrosodimethylamine	0.828061	8.7			20	
N-Nitrosodiphenylamine	0.4928568	5.5			20	
N-Nitrosodi-n-propylamine	1.064936	4.1			20	
Pentachloronitrobenzene	3.145017E-02	5.4			20	
Pentachlorophenol	0.1093209	15.4			20	
Phenanthrene	1.035671	6.1			20	
Phenol	1.978329	7.0			20	
Pyrene	1.249758	4.3			20	
Pyridine	1.517645	4.1			20	
1,2,4,5-Tetrachlorobenzene	0.47941	7.7			20	
1,2,4-Trichlorobenzene	0.3121802	4.0			20	
2,4,5-Trichlorophenol	0.346071	4.4			20	
2,4,6-Trichlorophenol	0.3343909	4.2			20	
2-Fluorophenol	1.461692	2.5			20	
Phenol-d6	1.720284	4.4			20	
Nitrobenzene-d5	0.358987	3.4			20	
2-Fluorobiphenyl	1.146456	6.9			20	
2,4,6-Tribromophenol	0.1471741	12.0			20	
p-Terphenyl-d14	0.5370185	3.2			20	

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8270D

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GMMSSV3

Calibration:

1300062

Lab File ID:

C061903.D

Calibration Date:

06/06/13 10:16

Sequence:

S004333

Injection Date:

06/19/13

Lab Sample ID:

S004333-CCV1

Injection Time:

13:08

		CONC.	(μg/mL)	RESP	RESPONSE FACTOR		% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	ccv	MIN (#)	CCV	LIMIT (#)
Acenaphthene	Α	50.0	45.6	1.081695	0.9859267		-8.9	20
Acenaphthylene	Α	50.0	44.6	1.726792	1.540511		-10.8	20
Acetophenone	Α	50.0	44.4	2.208879	1.95947		-11.3	20
Aniline	Α	50.0	47.9	2.333413	2.236011		-4.2	20
Anthracene	Α	50.0	45.9	1.055892	0.9689812		-8.2	20
Benzidine	Α	50.0	46.6	0.2886379	0.2687179		-6.9	20
Benzo(a)anthracene	Α	50.0	48.8	1.058623	1.032805		-2.4	20
Benzo(a)pyrene	Α	50.0	45.6	1.05902	0.966658		-8.7	20
Benzo(b)fluoranthene	L	50.0	39.7	1.291918	1.190443		-20.7	20 *
Benzo(g,h,i)perylene	Α	50.0	63.5	0.6379555	0.8103341		27.0	20 *
Benzo(k)fluoranthene	Α	50.0	44.7	1.136277	1.016073		-10.6	20
Benzoic Acid	L	50.0	42.4	0.1516819	0.1410572		-15.2	20
Bis(2-chloroethoxy)methane	Α	50.0	47.4	0.4032023	0.3818279		-5.3	20
Bis(2-chloroethyl)ether	Α	50.0	47.8	1,480987	1.414659		-4.5	20
Bis(2-chloroisopropyl)ether	Α	50.0	40.4	2.410763	1.948401		-19.2	20
Bis(2-Ethylhexyl)phthalate	Α	50.0	43.7	0.8494761	0.7418709		-12.7	20
4-Bromophenylphenylether	Α	50.0	46.0	0.1989611	0.1829507		-8.0	20
Butylbenzylphthalate	Α	50.0	46.5	0.5481793	0.5096516		-7.0	20
Carbazole	Α	50.0	43.7	0.9037719	0.7905277		-12.5	20
4-Chloroaniline	Α	50.0	46.1	0.4235389	0.3903693		-7.8	20
4-Chloro-3-methylphenol	Α	50.0	44.1	0.2972543	0.2621782		-11.8	20
2-Chloronaphthalene	Α	50.0	45.3	1.283294	1.161732		-9.5	20
2-Chlorophenol	Α	50.0	49.1	1.54524	1.517243		-1.8	20
4-Chlorophenylphenylether	Α	50.0	46.0	0.5916232	0.5448622		-7.9	20
Chrysene	Α	50.0	46.8	0.9103381	0.8516703		-6.4	20

Page 1015 of 1197 B075050_01 06/28/13 16:54:10

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8270D

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GMMSSV3

Calibration:

1300062

Lab File ID:

C061903.D

Calibration Date:

06/06/13 10:16

Sequence:

S004333

Injection Date:

06/19/13

Lab Sample ID:

S004333-CCV1

Injection Time:

13:08

		CONC.	(μg/mL)	RESP	RESPONSE FACTOR			/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Dibenz(a,h)anthracene	Α	50.0	52.8	0.7093303	0.7494348		5.7	20
Dibenzofuran	Α	50.0	46.3	1,511736	1.398902		-7.5	20
Di-n-butylphthalate	Α	50.0	40.7	1.299448	1.057071		-18.7	20
1,2-Dichlorobenzene	Α	50.0	43.3	1.717425	1.486853		-13.4	20
1,3-Dichlorobenzene	Α	50.0	47.0	1.769608	1.664543		-5.9	20
1,4-Dichlorobenzene	Α	50.0	47.8	1.817858	1.739381		-4.3	20
3,3-Dichlorobenzidine	Α	50.0	51.2	0.33081	0.3389071		2.4	20
2,4-Dichlorophenol	Α	50.0	48.4	0.2770348	0.2683764		-3.1	20
Diethylphthalate	Α	50.0	41.9	1.244498	1.04185		-16.3	20
2,4-Dimethylphenol	Α	50.0	47.8	0.3112903	0.2972778		-4.5	20
Dimethylphthalate	Α	50.0	43.2	1.201404	1.038048		-13.6	20
4,6-Dinitro-2-methylphenol	L	50.0	42.3	9.732805E-02	9.135276E-02		-15.5	20
2,4-Dinitrophenol	L	50.0	41.8	9.459777E-02	0.0898263		-16.4	20
2,4-Dinitrotoluene	Α	50.0	45.2	0,3400621	0.3071838		-9.7	20
2,6-Dinitrotoluene	Α	50.0	47.1	0.2486051	0.2340573		-5.9	20
Di-n-octylphthalate	Α	50.0	42.6	1.896057	1.614975		-14.8	20
1,2-Diphenylhydrazine (as Azobenzene)	Α	50.0	41.9	0.8574755	0,7186194		-16.2	20
Fluoranthene	Α	50.0	43.8	1.072733	0.9389013		-12.5	20
Fluorene	Α	50.0	44.8	1.281741	1.147972		-10.4	20
Hexachlorobenzene	Α	50.0	44.6	0.2111014	0.1883785		-10.8	20
Hexachlorobutadiene	Α	50.0	44.5	0.1978784	0.1762122		-10.9	20
Hexachlorocyclopentadiene	L	50.0	39.6	0.3596115	0.3307462		-20.9	20 *
Hexachloroethane	Α	50.0	42.4	0.7343127	0,6222388		-15.3	20
Indeno(1,2,3-cd)pyrene	Α	50.0	54.7	0.6846314	0.7489398		9.4	20
Isophorone	Α	50.0	45.3	0.7517592	0.6806486		-9.5	20

Page 1016 of 1197 B075050_01 06/28/13 16:54:10

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8270D

Project:

Laboratory: Con-Test Analytical Laboratory

Work Order: 13F0478

Client: URS Corp. Clifton Park

20121210 Bronx PC

Instrument ID: GMMSSV3

Calibration: 1300062

Lab File ID: C061903.D

Calibration Date: 06/06/13 10:16

Sequence: S004333

Injection Date: 06/19/13

Lab Sample ID: S004333-CCV1 Injection Time: 13:08

		CONC.	(μg/mL)	RESP	ONSE FACTOR		% DIFF	DRIFT	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)	
1-Methylnaphthalene	Α	50.0	41.7	0.7178115	0.5987346		-16.6	20	
2-Methylnaphthalene	Α	50.0	43.6	0.7592265	0.6628436		-12.7	20	
2-Methylphenol	Α	50.0	43.7	1.434068	1.254326		-12.5	20	
3/4-Methylphenol	Α	100	86.4	1.633971	1.411822		-13.6	20	
Naphthalene	Α	50.0	45.2	1.103311	0.9967585		-9.7	20	
2-Nitroaniline	Α	50.0	44.2	0.3549997	0.3135031		-11.7	20	
3-Nitroaniline	Α	50.0	53.3	0.2410438	0.256888		6.6	20	
4-Nitroaniline	Α	50.0	42.8	0,2582388	0.2211697		-14.4	20	
Nitrobenzene	Α	50.0	40.4	0.4367226	0.3530142		-19.2	20	
2-Nitrophenol	Α	50.0	51.2	0.1717746	0.1758261		2.4	20	
4-Nitrophenol	Α	50.0	37.5	0.1738655	0.1304934		-24.9	20 *	
N-Nitrosodimethylamine	Α	50.0	42.1	0.9885725	0.833248		-15.7	20	
N-Nitrosodiphenylamine	Α	50.0	44.4	0.5041818	0.4481655		-11.1	20	
N-Nitrosodi-n-propylamine	Α	50.0	41.7	1.352404	1.127234		-16.6	20	
Pentachloronitrobenzene	Α	50.0	42.0	3.634659E-02	3.051694E-02)	-16.0	20	
Pentachlorophenol	Α	50.0	37.5	0.1435721	0.1077493		-25.0	20 *	
Phenanthrene	Α	50.0	45.3	1.0477	0.9500099		-9.3	20	
Phenol	Α	50.0	47.1	2.1011	1.978958		-5.8	20	
Pyrene	Α	50.0	45.2	1.099859	0.9944773		-9.6	20	
Pyridine	Α	50.0	49.4	1.647069	1.62602		-1.3	20	
1,2,4,5-Tetrachlorobenzene	Α	50.0	46.9	0.5499792	0.5159562		-6.2	20	
1,2,4-Trichlorobenzene	Α	50.0	46.1	0.3294798	0.3036015		-7.9	20	
2,4,5-Trichlorophenol	Α	50.0	46.1	0.3303908	0.3045786		-7.8	20	
2,4,6-Trichlorophenol	Α	50.0	44.6	0.3308075	0.2948116		-10.9	20	
2-Fluorophenol	Α	50.0	48.0	1.408285	1.3522		-4.0		

Page 1017 of 1197 B075050_01 06/28/13 16:54:10

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8270D

Project:

Laboratory: Con-Test Analytical Laboratory

Work Order: 13F0478

Client: URS Corp. Clifton Park

20121210 Bronx PC

Instrument ID: GCMSSV2

Calibration: 1300063

Lab File ID: B061802.D

Calibration Date: 05/29/13 12:47

Sequence: S004334

Injection Date: 06/18/13

Lab Sample ID: S004334-CCV1

Injection Time: 09:30

TYPE	STD					% DIFF / DRIFT		
	310	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)	
Α	50.0	50.8	1.056752	1.074711		1.7	20	
Α	50.0	50.2	1.68641	1.692777		0.4	20	
Α	50.0	53.3	1.931386	2.060107		6.7	20	
Α	50.0	55.4	2.145872	2.378961		10.9	20	
Α	50.0	51.4	1.05399	1.083966		2.8	20	
Α	50.0	65.3	0.3198915	0.4176139		30.5	20 *	
Α	50.0	49.3	1.028547	1.013876		-1.4	20	
Α	50.0	50.5	0.9952339	1.004821		1.0	20	
Α	50.0	49.1	1.086609	1.067585		-1.8	20	
Α	50.0	51.7	0.9279326	0.9595657		3.4	20	
Α	50.0	48.2	1,076515	1.037939		-3.6	20	
L	50.0	54.2	0.1691456	0.2090158		8.4	20	
Α	50.0	53.0	0.38229	0.4051852		6.0	20	
Α	50.0	54.2	1.407577	1.526938		8.5	20	
Α	50.0	55.6	2.284158	2.539745		11.2	20	
Α	50.0	57.3	0.8035971	0.9203754		14.5	20	
Α	50.0	48.1	0.1750023	0.1682314		-3.9	20	
Α	50.0	56.2	0.5804063	0.6523341		12.4	20	
Α	50.0	53.1	0.9370628	0.9947658		6.2	20	
Α	50.0	51.8	0.4249565	0.4406419		3.7	20	
Α	50.0	50.4	0.2905151	0,2930681		0.9	20	
Α	50.0	51.2	1.254405	1.283192		2.3	20	
Α	50.0	50.7	1.575674	1.596627		1.3	20	
Α	50.0	47.1	0.5527584	0.5209853		-5.7	20	
Α	50.0	48.3	1.028911	0.9935513		-3.4	20	
	A A A A A A A A A A A A A A A A A A A	A 50.0	A 50.0 50.2 A 50.0 53.3 A 50.0 55.4 A 50.0 51.4 A 50.0 65.3 A 50.0 49.3 A 50.0 50.5 A 50.0 49.1 A 50.0 51.7 A 50.0 48.2 L 50.0 54.2 A 50.0 53.0 A 50.0 53.0 A 50.0 53.0 A 50.0 55.6 A 50.0 55.6 A 50.0 55.6 A 50.0 57.3 A 50.0 56.2 A 50.0 56.2 A 50.0 51.8 A 50.0 51.8 A 50.0 50.4 A 50.0 50.7 A 50.0 50.7	A 50.0 50.2 1.68641 A 50.0 53.3 1.931386 A 50.0 55.4 2.145872 A 50.0 51.4 1.05399 A 50.0 65.3 0.3198915 A 50.0 49.3 1.028547 A 50.0 50.5 0.9952339 A 50.0 49.1 1.086609 A 50.0 49.1 1.086609 A 50.0 51.7 0.9279326 A 50.0 48.2 1.076515 L 50.0 54.2 0.1691456 A 50.0 53.0 0.38229 A 50.0 54.2 1.407577 A 50.0 55.6 2.284158 A 50.0 57.3 0.8035971 A 50.0 48.1 0.1750023 A 50.0 56.2 0.5804063 A 50.0 51.8 0.4249565 A 50.0 51.2 1.254405 A 50.0 50.7 1.575674 A 50.0 50.7 1.575674 A 50.0 50.7 1.575674	A 50.0 50.2 1.68641 1.692777 A 50.0 53.3 1.931386 2.060107 A 50.0 55.4 2.145872 2.378961 A 50.0 51.4 1.05399 1.083966 A 50.0 65.3 0.3198915 0.4176139 A 50.0 49.3 1.028547 1.013876 A 50.0 50.5 0.9952339 1.004821 A 50.0 49.1 1.086609 1.067585 A 50.0 49.1 1.086609 1.067585 A 50.0 48.2 1.076515 1.037939 L 50.0 54.2 0.1691456 0.2090158 A 50.0 53.0 0.38229 0.4051852 A 50.0 54.2 1.407577 1.526938 A 50.0 55.6 2.284158 2.539745 A 50.0 57.3 0.8035971 0.9203754 A 50.0 56.2 0.5804063 0.6523341 A 50.0 56.2 0.5804063 0.6523341 A 50.0 51.8 0.4249565 0.4406419 A 50.0 50.4 0.2905151 0.2930681 A 50.0 51.2 1.254405 1.283192 A 50.0 50.7 1.575674 1.596627 A 50.0 50.7 1.575674 1.596627 A 50.0 50.7 1.575674 1.596627	A 50.0 50.2 1.68641 1.692777 A 50.0 53.3 1.931386 2.060107 A 50.0 55.4 2.145872 2.378961 A 50.0 51.4 1.05399 1.083966 A 50.0 65.3 0.3198915 0.4176139 A 50.0 49.3 1.028547 1.013876 A 50.0 50.5 0.9952339 1.004821 A 50.0 49.1 1.086609 1.067585 A 50.0 49.1 1.086609 1.067585 A 50.0 51.7 0.9279326 0.9595657 A 50.0 48.2 1.076515 1.037939 L 50.0 54.2 0.1691456 0.2090158 A 50.0 53.0 0.38229 0.4051852 A 50.0 54.2 1.407577 1.526938 A 50.0 55.6 2.284158 2.539745 A 50.0 57.3 0.8035971 0.9203754 A 50.0 57.3 0.8035971 0.9203754 A 50.0 56.2 0.5804063 0.6523341 A 50.0 56.2 0.5804063 0.6523341 A 50.0 51.8 0.4249565 0.4406419 A 50.0 51.8 0.4249565 0.4406419 A 50.0 51.2 1.254405 1.283192 A 50.0 50.7 1.575674 1.596627 A 50.0 47.1 0.5527584 0.5209853	A 50.0 50.2 1.68641 1.692777 0.4 A 50.0 53.3 1.931386 2.060107 6.7 A 50.0 55.4 2.145872 2.378961 10.9 A 50.0 51.4 1.05399 1.083966 2.8 A 50.0 65.3 0.3198915 0.4176139 30.5 A 50.0 49.3 1.028547 1.013876 -1.4 A 50.0 50.5 0.9952339 1.004821 1.0 A 50.0 49.1 1.086609 1.067585 -1.8 A 50.0 51.7 0.9279326 0.9595657 3.4 A 50.0 51.7 0.9279326 0.9595657 3.4 A 50.0 54.2 1.076515 1.037939 -3.6 L 50.0 54.2 0.1691456 0.2090158 8.4 A 50.0 53.0 0.38229 0.4051852 6.0 A 50.0 54.2 1.407577 1.526938 8.5 A 50.0 55.6 2.284158 2.539745 11.2 A 50.0 57.3 0.8035971 0.9203754 14.5 A 50.0 48.1 0.1750023 0.1682314 -3.9 A 50.0 56.2 0.5804063 0.6523341 12.4 A 50.0 53.1 0.9370628 0.9947658 6.2 A 50.0 51.8 0.4249565 0.4406419 3.7 A 50.0 51.2 1.254405 1.283192 2.3 A 50.0 50.7 1.575674 1.596627 1.3 A 50.0 50.7 1.575674 1.596627 1.3	

Page 1028 of 1197 B075050_01 06/28/13 16:54:10

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8270D

Project:

Injection Date:

Laboratory: Con-Test Analytical Laboratory Work Order: 13F0478

URS Corp. Clifton Park Client:

20121210 Bronx PC

Instrument ID: GCMSSV2 Calibration: 1300063

B061802.D Lab File ID:

Calibration Date: 05/29/13 12:47

06/18/13

Sequence: S004334

Lab Sample ID:	S004334-CCV1	Injection Time:	09:30

		CONC.	(μg/mL)	RESP	ONSE FACTOR	ł	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1-Methylnaphthalene	Α	50.0	48.4	0.642798	0.6227058		-3.1	20
2-Methylnaphthalene	Α	50.0	48.8	0.6831472	0.66735		-2.3	20
2-Methylphenol	Α	50.0	53.5	1.386391	1.484046		7.0	20
3/4-Methylphenol	Α	100	112	1.492887	1.673505		12.1	20
Naphthalene	Α	50.0	50.7	1.016888	1.03098		1.4	20
2-Nitroaniline	Α	50.0	54.6	0.3589516	0.3923585		9.3	20
3-Nitroaniline	Α	50.0	50.1	0.348696	0.3495817		0.3	20
4-Nitroaniline	Α	50.0	48.4	0.3603762	0.3489558		-3.2	20
Nitrobenzene	Α	50.0	51.3	0.3633814	0.3728065		2.6	20
2-Nitrophenol	Α	50.0	52.0	0.1881495	0.1957878		4.1	20
4-Nitrophenol	Α	50.0	46.7	0.1612328	0.1505856		-6.6	20
N-Nitrosodimethylamine	Α	50.0	51.5	0.828061	0.8534942		3.1	20
N-Nitrosodiphenylamine	Α	50.0	51.0	0.4928568	0.5022176		1.9	20
N-Nitrosodi-n-propylamine	Α	50.0	54.0	1.064936	1 149298		7.9	20
Pentachloronitrobenzene	Α	50.0	45.8	3.145017E-02	0.02881		-8.4	20
Pentachlorophenol	Α	50.0	48.1	0.1093209	0.1051994		-3.8	20
Phenanthrene	Α	50.0	50.7	1.035671	1.050698		1.5	20
Phenol	Α	50.0	56.3	1.978329	2.228175		12.6	20
Pyrene	Α	50.0	48.5	1.249758	1.211949		-3.0	20
Pyridine	Α	50.0	58.0	1,517645	1.759706		15.9	20
1,2,4,5-Tetrachlorobenzene	Α	50.0	49.4	0.47941	0.4734931		-1.2	20
1,2,4-Trichlorobenzene	Α	50.0	46.0	0.3121802	0.2871346		-8.0	20
2,4,5-Trichlorophenol	Α	50.0	50.3	0.346071	0.3481444		0.6	20
2,4,6-Trichlorophenol	Α	50.0	48.9	0.3343909	0.3270258		-2.2	20
2-Fluorophenol	Α	50.0	52.7	1,461692	1.540282		5.4	

Page 1030 of 1197 B075050_01 06/28/13 16:54:10

7 - FORM VII

CONTINUING CALIBRATION VERIFICATION

SW-846 8270D

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13F0478

Client:

URS Corp. Clifton Park

Project:

20121210 Bronx PC

Instrument ID:

GCMSSV2

Calibration:

1300063

Lab File ID:

B061903.D

Calibration Date:

05/29/13 12:47

Sequence:

S004335

Injection Date:

06/19/13

Lab Sample ID:

S004335-CCV1

Injection Time:

10:19

		CONC.	(µg/mL)	RESP	ONSE FACTOR		% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1-Methylnaphthalene	Α	50.0	47.3	0.642798	0.6082791		-5.4	20
2-Methylnaphthalene	Α	50.0	46.5	0.6831472	0.6353634		-7.0	20
2-Methylphenol	Α	50.0	52.6	1.386391	1.45756		5.1	20
3/4-Methylphenol	Α	100	116	1.492887	1.737749		16.4	20
Naphthalene	Α	50.0	47.8	1.016888	0.9714987		-4.5	20
2-Nitroaniline	Α	50.0	51.1	0.3589516	0.3670349		2.3	20
3-Nitroaniline	Α	50.0	46.8	0.348696	0.3267285		-6.3	20
4-Nitroaniline	Α	50.0	42.3	0.3603762	0.3049475		-15.4	20
Nitrobenzene	Α	50.0	48.5	0.3633814	0.3522889		-3.1	20
2-Nitrophenol	Α	50.0	50.7	0.1881495	0.1909115		1.5	20
4-Nitrophenol	Α	50.0	40.5	0.1612328	0.130596		-19.0	20
N-Nitrosodimethylamine	Α	50.0	46.2	0.828061	0.764632		-7.7	20
N-Nitrosodiphenylamine	Α	50.0	50.3	0.4928568	0.4959548		0.6	20
N-Nitrosodi-n-propylamine	Α	50.0	54.0	1.064936	1.151066	`.	8.1	20
Pentachloronitrobenzene	Α	50.0	45.0	3.145017E-02	2.832505E-02)	-9.9	20
Pentachlorophenol	Α	50.0	45.8	0.1093209	0.1001169		-8.4	20
Phenanthrene	Α	50.0	47.7	1.035671	0.9887326		-4.5	20
Phenol	Α	50.0	56.2	1.978329	2.222977		12.4	20
Pyrene	Α	50.0	49.4	1.249758	1.234657		-1.2	20
Pyridine	Α	50.0	52.9	1.517645	1.604539		5.7	20
1,2,4,5-Tetrachlorobenzene	Α	50.0	47.3	0.47941	0.4535019		-5.4	20
1,2,4-Trichlorobenzene	Α	50.0	45.8	0.3121802	0.2860499		-8.4	20
2,4,5-Trichlorophenol	Α	50.0	46.8	0.346071	0.3237609		-6.4	20
2,4,6-Trichlorophenol	Α	50.0	47.9	0.3343909	0.3204356		-4.2	20
2-Fluorophenol	Α	50.0	51.6	1.461692	1.507044		3.1	

FORM 10 IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

T2-SS03 (0-8in)

SW-846 8082A

Lab S	ample ID: 13F0478-05		D	ate(s) Anal	yzed: 06/27/2013	06/27/2013 06/27		
Instru	ument ID (1):	ECD5		Ir	strument IE	O (2): EC	D5	
GC C	Column (1):	ID:	(n	nm) G	C Column ((2):	ID:	(mm)
ANALYTE		COL	RT	RT W	INDOW	CONCENTRATION	%D	
		COL	17.1	FROM	то	CONCENTRATION	760	
	Aroclor-1260	1	0.00	0.00	0.00	0.084		
		2	0.00	0.00	0.00	0.11	26.0)

FORM 10

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

T2-SS04 12-14

SW-846 8082A

Lab Sample ID:	13F0478-11		ŗ	Date(s) Analyzed: 06/27/2013		06/27	/2013
Instrument ID (1):	ECD5		1	nstrument IE) (2): EC	D5	_
GC Column (1):	ID:	(r	nm) (3C Column ((2):	ID:	(mm)
ANALYTE	COL	RT	RTV	VINDOW	CONCENTRATION	%D	
ANALTIE	COL	KI	FROM	то	CONCENTRATION	760	
Aroclor-1260	1	0.00	0.00	0.00	0.030		Si
	2	0.00	0.00	0.00	0.045	38.7)

DATA USABILITY SUMMARY REPORT

BRONX PSYCHIATRIC CENTER – TRANSFORMER ROOM 1 SITE BRONX, NEW YORK

Analyses Performed by:

CHEMTECH MOUNTAINSIDE, NEW JERSEY

Prepared for:

DORMITORY AUTHORITY OF THE STATE OF NEW YORK

Prepared by:

URS CORPORATION
257 WEST GENESEE STREET, SUITE 400
BUFFALO, NY 14202-2657

SEPTEMBER 2014

TABLE OF CONTENTS

		<u>Page No</u> .
I.	INTRODUCTION	1
II.	ANALYTICAL METHODOLOGIES	
III.	DATA DELIVERABLE COMPLETENESS	
IV.	SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES	2
V.	NON-CONFORMANCES	3
VI.	SAMPLE RESULTS AND REPORTING	5
VII.	SUMMARY	5

TABLES (Following Text)

Table 1 Summary of Data Qualifications

ATTACHMENTS

Attachment A - Validated Form 1s

 $Attachment \ B-Support \ Documentation$

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for Data Deliverables and Development of Data Usability Summary Reports, May 2010.

This DUSR discusses the data usability of eleven (11) soil samples plus one (1) field duplicate and one (1) matrix spike/matrix spike duplicate (MS/MSD) pair; and two (2) groundwater samples plus one (1) MS/MSD pair and one (1) trip blank collected by URS personnel on July 23, 2014, as part of the sampling program at the Bronx Psychiatric Center – Transformer Room 1 Site located in Bronx, New York. This work has been performed for the Dormitory Authority of the State of New York (DASNY).

II. ANALYTICAL METHODOLOGIES

The soil and groundwater samples were sent to Chemtech located in Mountainside, New Jersey for analysis, and were analyzed for the following parameters:

- Volatile Organic Compounds (VOCs) plus Tentatively Identified Compounds (TICs) by United States Environmental Protection Agency (USEPA) Method 8260C,
- Semivolatile Organic Compounds (SVOCs) plus TICs by USEPA Method 8270D,
- Pesticides by USEPA Method 8081B.
- Polychlorinated biphenyls (PCBs) by USEPA Method 8082A,
- Herbicides by USEPA Method 8151A, and
- Total and Dissolved (groundwater only) Metals by USEPA Methods 6010C/7470A/7471A.

A limited data validation was performed in accordance with the following USEPA Region II guidelines:

Low/Medium Volatile Data Validation, SOP HW-33, Rev. 3, March 2013;

- Semivolatile Data Validation, SOP HW-35, Rev. 2, March 2013;
- Pesticide Data Validation, SOP HW-36, Rev. 4, May 2013;
- Polychlorinated Biphenyl (PCB) Data Validation, SOP HW-37, Rev. 3, May 2013;
- Validating Chlorinated Herbicides, GC, SW-846, Method 8151A, SOP HW-17, Rev. 2, September 2006;
- ICP-AES Data Validation, SOP HW-2a, Rev. 15, December 2012; and
- Mercury and Cyanide Data Validation, SOP HW-2c, Rev. 15, December 2012.

Qualifications applied to the data during the limited validation include 'J' (estimated concentration), 'UJ' (estimated quantitation limit), 'N' (tentatively identified), and 'R' (rejected). Definitions of USEPA data qualifiers are presented at the end of this text. A summary of data qualifications is presented in Table 1. Copies of the validated laboratory results (i.e., Form 1s) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC Analytical Services Protocol (ASP) Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved and under proper chain-of-custody (COC), except for the following instance.

 The trip blank associated with the groundwater samples was not referenced on the COC. The laboratory notified URS of this non-conformance, whereupon, they were instructed to proceed with the VOC analysis accordingly.

All samples were analyzed within the required holding times.

V. NON-CONFORMANCES

Initial and Continuing Calibrations

For VOCs, the minimum relative response factors (RRFs) for the initial calibrations (ICALs) and continuing calibrations (CCALs) were less than 0.01 for 1,4-dioxane. The 1,4-dioxane result for all soil, groundwater, field QC samples was rejected and qualified 'R', as listed on Table 1.

Documentation supporting the qualification of data (i.e., Form 5, 6, and Form 7) is presented in Attachment B.

Surrogates (Organics only)

The SVOC analysis of soil sample TI-SB-04 (10-WT) (performed at a 2x dilution) exhibited poor percent recoveries (%Rs) (<10%) for acid-phenol (AP) surrogate 2,4,5-tribromophenol. The subsequent reanalysis (performed at a 4x dilution) exhibited similar surrogate results. The AP compound results from the 2x dilution analysis were rejected and qualified 'R', as listed on Table 1.

Documentation supporting the qualification of data (i.e., Form 2) is presented in Attachment B.

Internal Standards (VOC and SVOC only)

The VOC analysis of soil sample TI-SB06D [field duplicate of TI-SB-03 (0-2)] exhibited a low %R (<50%) for internal standard (IS) 1,4-dichlorobenzene-d₄. The subsequent reanalysis exhibited a similar IS result, but the %R was not as low-biased. The reanalysis result was reported in its entirety with the non-detect results associated with this IS outlier qualified as estimated 'UJ', as listed on Table 1.

The VOC analysis of soil sample TI-SB04 (5-10) exhibited a low R (<50%) for IS 1,4-dichlorobenzene-d₄. The subsequent reanalysis data was deemed unusable by the

laboratory due to poor instrument purge efficiency. The non-detect results associated with this IS outlier were qualified as estimated 'UJ', as listed on Table 1.

The VOC analysis of soil sample TI-SB05 (5-10) exhibited low %Rs (<50%) for ISs pentafluorobenzene, 1,4-difluorobenzene, and chlorobenzene-d₅; and poor %R (<25%) for 1,4-dichlorobenzene-d₄. The subsequent reanalysis data was deemed unusable by the laboratory due to poor instrument purge efficiency. The non-detect results associated with these IS outliers were qualified as estimated 'J' or 'UJ', or rejected 'R', as listed on Table 1.

Documentation supporting the qualification of data (i.e., Form 8) is presented in Attachment B.

Method Blanks

The SVOC soil method blank associated with the soil samples exhibited contamination for several TICs (e.g., aldol condensation products). The corresponding TICs in the soil samples were crossed out.

Documentation supporting the qualification of data (i.e., Form 1 and 4) is presented in Attachment B.

Matrix Spikes and Laboratory Control Samples

The metals MS/MSD analyses for soil sample TI-SB03 (0-2) exhibited high %Rs for lead (Pb) and a low %R for selenium (Se). The detect Pb and Se results for this sample and its corresponding field duplicate TI-SB06D were estimated and qualified 'J', as listed on Table 1.

Documentation supporting the qualification of data (i.e., Form 5a) is presented in Attachment B.

Serial Dilution

The metals serial dilution analysis for soil sample TI-SB03 (0-2) exhibited high %Ds for arsenic (As), barium (Ba), chromium (Cr), copper (Cu), and manganese (Mn). The As, Ba, Cr, Cu, and Mn results for this sample and its corresponding field duplicate TI-SB06D were estimated and qualified 'J', as listed on Table 1.

Documentation supporting the qualification of data (i.e., Form 9) is presented in Attachment B.

VI. SAMPLE RESULTS AND REPORTING

All quantitation/reporting limits were reported in accordance with method requirements and were adjusted for sample size, percent moisture (soils only), and dilution factors.

During the limited data review, positive TIC results were qualified as tentatively identified and qualified 'N'. Furthermore, the laboratory quantitated some TIC results from the ICAL standards (i.e., carbon disulfide, naphthalene and p-isopropyltoluene). These TIC results should be considered accurate, thus do not require further qualification.

For pesticides, the percent differences (%Ds) between the dual-column analyses for several soil samples were >25%. The detected pesticide results for the affected samples were qualified 'J', as listed on Table 1. Documentation supporting the qualification of data (i.e., Form 10) is presented in Attachment B.

For soil sample TI-SB02 (5-10), the laboratory applied 'J' qualifier was removed from the Se result during the data review because the concentration is at the reporting limit, not below.

VII. SUMMARY

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified 'J' or 'UJ' are considered conditionally usable. Those TIC

results crossed out are considered non-detect, while those TIC results qualified 'N' are considered "tentatively identified'. Those results qualified 'R' are unusable. All other sample results are usable as reported. URS does not recommend the recollection of any samples at this time.

Prepared By: Peter R. Fairbanks, Senior Chemist

Date: 9/17/14

Reviewed By: Ann Marie Kropovitch, Chemist

Date: 9/17/14

DEFINITIONS OF USEPA DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- N The analysis indicates the presence of a TIC that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

TABLE 1 SUMMARY OF DATA QUALIFICATIONS

BRONX PSYCHIATRIC CENTER – BUILDING 1 SITE

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
All soil, groundwater, and field QC samples	VOC	ICAL and CCAL minimum RRFs < 0.01 for 1,4-dioxane.	Qualify non-detect results 'R'.
Soil sample TI-SB-04 (10-WT)	SVOC	Acid-phenol (AP) surrogate %R < 10%.	Qualify non-detect AP results 'R'.
Soil sample TI-SB06D	VOC	IS %R <50% for 1,4-dichlorobenzene-d ₄ .	Qualify non-detect results associated with IS outlier from reanalysis 'UJ'.
Soil sample TI-SB04 (5-10)	VOC	IS %R <50% for 1,4-dichlorobenzene-d ₄ .	Qualify non-detect results associated with IS outlier 'UJ'.
Soil sample TI-SB05 (5-10)	VOC	IS %R <50% for pentafluorobenzene, 1,4-difluorobenzene, and chlorobenzene-d ₅ ; and %R <25 for 1,4-dichlorobenzene-d ₄ .	Qualify detected results associated with IS outliers 'J' and nondetect results 'UJ' or 'R'.
Soil sample TI-SB03 (0-2) and field duplicate TI-SB06D	Metals	MS/MSD %Rs > QC limits for Pb and < QC limits for Se.	Qualify detected results 'J'.
Soil sample TI-SB03 (0-2) and field duplicate TI-SB06D	Metals	Serial dilution %Ds > QC limits for As, Ba, Cr, Cu, and Mn.	Qualify detected results 'J'.
Soil sample TI-SB02 (5-10)	Metals	Se result at RL, not below.	Remove 'J' qualifier.
Soil sample TI-SB02 (0-2)	Pest	%D between dual-column analyses >25% for 4,4'-DDD and dieldrin.	Qualify detected results 'J'.
Soil sample TI-SB02 (5-10)	Pest	%D between dual-column analyses >25% for 4,4'-DDT.	Qualify detected results 'J'.
Soil sample TI-SB03 (10-WT)	Pest	%D between dual-column analyses >25% for 4,4'-DDE.	Qualify detected results 'J'.

ATTACHMENT A

VALIDATED FORM 1s

D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB02(0-2)	SDG No.:	F3304
Lab Sample ID:	F3304-01	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	8.5
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

File ID/Qc Batc	ch: Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VF042443.D	1		07/28/14	VF072814	
CAS Number	Parameter	Conc.	Qualifier MDI	LOD LOO/CROL	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-01-4	Vinyl Chloride	5.5	U	0.55	0.55	5.5	ug/Kg
75-35-4	1,1-Dichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
67-64-1	Acetone	27.3	U	2.7	2.7	27.3	ug/Kg ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
75-09-2	Methylene Chloride	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
75-34-3	1,1-Dichloroethane	5.5	Ū	0.55	0.55	5.5	ug/Kg ug/Kg
78-93-3	2-Butanone	27.3	U	3.4	8.2	27.3	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
156-59-2	cis-1.2-Dichloroethene	5.5	U	0.55	0.55	5.5	
67-66-3	Chloroform	5.5	Ü	0.55	0.55	5.5	ug/Kg ug/Kg
71-55-6	1,1,1-Trichloroethane	5.5	Ü	0.55	0.55	5.5	ug/Kg ug/Kg
71-43-2	Benzene	5.5	Ü	0.42	0.55	5.5	ug/Kg ug/Kg
107-06-2	1,2-Dichloroethane	5.5	Ü	0.55	0.55	5.5	ug/Kg ug/Kg
79-01-6	Trichloroethene	5.5	U	0.55	0.55	5.5	
108-88-3	Toluene	5.5	U	0.55	0.55	5.5	ug/Kg
127-18-4	Tetrachloroethene	5.5	Ü	0.55	0.55	5.5	ug/Kg
108-90-7	Chlorobenzene	5.5	Ü	0.55	0.55	5.5	ug/Kg
100-41-4	Ethyl Benzene	5.5	Ű	0.55	0.55	5.5	ug/Kg
1330-20-7	Total Xylenes	16.4	Ü	1.34	1.65	16.4	ug/Kg
103-65-1	n-propylbenzene	5.5	Ü	0.39	0.55	5.5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	5.5	Ü	0.49	0.55	5.5 5.5	ug/Kg
98-06-6	tert-Butylbenzene	5.5	U	0.55	0.55		ug/Kg
95-63-6	1.2,4-Trimethylbenzene	5.5	Ü	0.55	0.55	5.5	ug/Kg
135-98-8	sec-Butylbenzene	5.5	U	0.55	0.55	5.5	ug/Kg
541-73-1	1.3-Dichlorobenzene	5.5	U	0.33		5.5	ug/Kg
106-46-7	1,4-Dichlorobenzene	5.5	U	0.45	0.55	5.5	ug/Kg
104-51-8	n-Butylbenzene	5.5	U	0.43	0.55	5.5	ug/Kg
95-50-1	1,2-Dichlorobenzene	5.5	U		0.55	5.5	ug/Kg
123-91-1	1,4-Dioxane	110		0.55	0.55	5.5	ug/Kg
SURROGATES	-,	110	υŖ	110	110	110	ug/Kg

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB02(0-2)	SDG No.:	F3304
Lab Sample ID:	F3304-01	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	8.5
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18		•
	1D. 0.10	Level:	LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042443.D I 07/28/14 VF072814

AS Number Parameter Conc. Qualifier MDI LOD LOG/CROL

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	39.1		56 - 120		78%	SPK: 50
1868-53-7	Dibromofluoromethane	45.2		57 - 135		90%	SPK: 50
2037-26-5	Toluene-d8	41.3		67 - 123		83%	SPK: 50
460-00-4	4-Bromofluorobenzene	38.8		33 - 141		78%	SPK: 50
INTERNAL ST	ANDARDS					7020	31 K. 30
363-72-4	Pentafluorobenzene	144841	4.91				
540-36-3	1,4-Difluorobenzene	235090	5.64				
3114-55-4	Chlorobenzene-d5	196768	9.79				
3855-82-1	1,4-Dichlorobenzene-d4	84074	12.55				

U = Not Detected

LOQ = Limit of Quantitation MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB02(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-02	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	17.6
Sample Wt/Vol:	5.01 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VF042450.D	1		07/28/14	VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CRQL	Units
TARGETS					·		
75-01-4	Vinyl Chloride	6.1	U	0.61	0.61	6.1	ug/Kg
75-35-4	1,1-Dichloroethene	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
67-64-1	Acetone	30.3	U	3	3	30.3	ug/Kg
1634-04-4	Methyl tert-butyl Ether	6.1	U	0.61	0.61	6.1	ug/Kg
75-09-2	Methylene Chloride	6.1	U	0.61	0.61	6.1	ug/Kg
156-60-5	trans-1,2-Dichloroethene	6.1	U	0.61	0.61	6.1	ug/Kg
75-34-3	1.1-Dichloroethane	6.1	Ü	0.61	0.61	6.1	ug/Kg ug/Kg
78-93-3	2-Butanone	30.3	U	3.8	9.1	30.3	ug/Kg
56-23-5	Carbon Tetrachloride	6.1	Ü	0.61	0.61	6.1	ug/Kg
156-59-2	cis-1,2-Dichloroethene	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
67-66-3	Chloroform	6.1	Ū	0.61	0.61	6.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
71-43-2	Benzene	6.1	U	0.46	0.61	6.1	ug/Kg ug/Kg
107-06-2	1,2-Dichloroethane	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
79-01-6	Trichloroethene	6.1	U	0.61	0.61	6.1	ug/Kg
108-88-3	Toluene	6.1	Ü	0.61	0.61	6.1	ug/Kg
127-18-4	Tetrachloroethene	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
108-90-7	Chlorobenzene	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
100-41-4	Ethyl Benzene	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
330-20-7	Total Xylenes	18.2	U	1.48	1.81	18.2	ug/Kg
103-65-1	n-propylbenzene	6.1	Ū	0.44	0.61	6.1	ug/Kg ug/Kg
108-67-8	1,3,5-Trimethylbenzene	6.1	U	0.55	0.61	6.1	ug/Kg ug/Kg
98-06-6	tert-Butylbenzene	6.1	Ü	0.61	0.61	6.1	ug/Kg ug/Kg
95-63-6	1.2.4-Trimethylbenzene	6.1	Ü	0.61	0.61	6.1	ug/Kg
135-98-8	sec-Butylbenzene	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
41-73-1	1,3-Dichlorobenzene	6.1	U	0.45	0.61	6.1	ug/Kg
06-46-7	1.4-Dichlorobenzene	6.1	U	0.5	0.61	6.1	ug/Kg ug/Kg
04-51-8	n-Butylbenzene	6.1	U	0.56	0.61	6.1	ug/Kg ug/Kg
95-5 0-1	1,2-Dichlorobenzene	6.1	U	0.61	0.61	6.1	ug/Kg ug/Kg
123-91-1	1,4-Dioxane	120	UR	120	120	120	ug/Kg ug/Kg
SURROGATES		-		- = 0	120	120	uk/12k

9/4/14

34 of 483

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB02(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-02	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	17.6
Sample Wt/Vol:	5.01 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VF042450.D	1		07/28/14	VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL LOI	LOQ/CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	43.2		56 - 120	86%	SPK: 50
1868-53-7	Dibromofluoromethane	48.9		57 - 135	98%	SPK: 50
2037-26-5	Toluene-d8	49		67 - 123	98%	SPK: 50 SPK: 50
460-00-4	4-Bromofluorobenzene	44.5		33 - 141	89%	SPK: 50
INTERNAL ST	ANDARDS				0770	31 K. 30
363-72-4	Pentafluorobenzene	148799	4.91			
540-36-3	1,4-Difluorobenzene	240622	5.63			
3114-55-4	Chlorobenzene-d5	195787	9.78			
3855-82-1	1,4-Dichlorobenzene-d4	78106	12.55			
TENTATIVE II	DENTIFIED COMPOUNDS					
91-20-3	Naphthalene	1.7	J		14.45	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB02(10-WT)	SDG No.:	F3304
Lab Sample ID:	F3304-03	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	
Sample Wt/Vol:	4.99 Units: g	•	19.5
Soil Aliquot Vol:	5	Final Vol:	5000 uL
•	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

D

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042445.D 07/28/14 VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							2
75-01-4	Vinyl Chloride	6.2	U	0.62	0.62	6.2	ug/Kg
75-35-4	1.1-Dichloroethene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
67-64-1	Acetone	31.1	Ü	3.1	3.1	31.1	ug/Kg ug/Kg
1634-04-4	Methyl tert-butyl Ether	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
75-09-2	Methylene Chloride	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	6.2	U	0.62	0.62	6.2	
75-34-3	1,1-Dichloroethane	6.2	U	0.62	0.62	6.2	ug/Kg
78-93-3	2-Butanone	31.1	U	3.9	9.3	31.1	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	6.2	Ū	0.62	0.62	6.2	
156-59-2	cis-1,2-Dichloroethene	6.2	U	0.62	0.62	6.2	ug/Kg
67-66-3	Chloroform	6.2	U	0.62	0.62	6.2	ug/Kg
71-55-6	1,1,1-Trichloroethane	6.2	U	0.62	0.62	6.2	ug/Kg
71-43-2	Benzene	6.2	U	0.47	0.62	6.2	ug/Kg
107-06-2	1,2-Dichloroethane	6.2	U	0.62	0.62	6.2	ug/Kg
79-01-6	Trichloroethene	6.2	Ü	0.62	0.62	6.2	ug/Kg
108-88-3	Toluene	6.2	Ü	0.62	0.62	6.2	ug/Kg
127-18-4	Tetrachloroethene	6.2	Ü	0.62	0.62	6.2	ug/Kg
108-90-7	Chlorobenzene	6.2	Ü	0.62	0.62	6.2	ug/Kg
100-41-4	Ethyl Benzene	6.2	Ü	0.62	0.62	6.2	ug/Kg
1330-20-7	Total Xylenes	18.6	Ü	1.52	1.82	18.6	ug/Kg
103-65-1	n-propylbenzene	6.2	Ü	0.45	0.62	6.2	ug/Kg
108-67-8	1,3,5-Trimethy lbenzene	6.2	Ü	0.56	0.62	6.2	ug/Kg
98-06-6	tert-Butylbenzene	6.2	Ü	0.62	0.62	6.2	ug/Kg
95-63-6	1,2,4-Trimethy benzene	6.2	U	0.62	0.62	6.2	ug/Kg
135-98-8	sec-Butylbenzene	6.2	U	0.62	0.62	6.2	ug/Kg
541-73-1	1,3-Dichlorobenzene	6.2	U	0.46	0.62	6.2	ug/Kg
106-46-7	1,4-Dichlorobenzene	6.2	U	0.40	0.62	6.2	ug/Kg
104-51-8	n-Butylbenzene	6.2	U	0.57	0.62	6.2	ug/Kg
95-50-1	1,2-Dichlorobenzene	6.2	U	0.62	0.62		ug/Kg
123-91-1	1,4-Dioxane	120	UR	120	120	6.2	ug/Kg
SURROGATES		120		120	120	120	ug/Kg

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB02(10-WT)	SDG No.:	F3304
Lab Sample ID:	F3304-03	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	19.5
Sample Wt/Vol:	4.99 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042445.D 1 07/28/14 VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	35.5		56 - 120	71%	SPK: 50
1868-53-7	Dibromofluoromethane	36.8		57 - 135	74%	SPK: 50
2037-26-5	Toluene-d8	33.3		67 - 123	67%	SPK: 50 SPK: 50
460-00-4	4-Bromofluorobenzene	29.4		33 - 141	59%	
INTERNAL ST	ANDARDS	2711		JJ " 141	J970	SPK: 50
363-72-4	Pentafluorobenzene	147168	4.9			
540-36-3	1,4-Difluorobenzene	241382	5.63			
3114-55-4	Chlorobenzene-d5	181812	9.79			
3855-82-1	1.4-Dichlorobenzene-d4	66157	12.54			
TENTATIVE II	DENTIFIED COMPOUNDS		.2.5			
91-20-3	Naphthalene	7.9	J		14.44	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

F3304

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB03(0-2) SDG No.: F3304 Lab Sample ID: F3304-04 Matrix: SOIL Analytical Method: SW8260 % Moisture: 6.1 Sample Wt/Vol: Units: g Final Vol: 5000 uL Soil Aliquot Vol: uLTest: VOCMS Group1 GC Column: RTX-VMS ID: 0.18 Level: LOW

D

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042446.D 1 07/28/14 VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS						***	-
75-01-4	Vinyl Chloride	5.3	U	0.53	0.53	5.3	ug/Kg
75-35-4	1,1-Dichloroethene	5.3	U	0.53	0.53	5.3	ug/Kg
67-64-1	Acetone	26.6	U	2.7	2.7	26.6	ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.3	U	0.53	0.53	5.3	ug/Kg
75-09-2	Methylene Chloride	5.3	U	0.53	0.53	5.3	ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.3	U	0.53	0.53	5.3	ug/Kg
75-34-3	1,1-Dichloroethane	5.3	U	0.53	0.53	5.3	ug/Kg
78-93-3	2-Butanone	26.6	U	3.3	8	26.6	ug/Kg
56-23-5	Carbon Tetrachloride	5.3	U	0.53	0.53	5.3	ug/Kg ug/Kg
156-59-2	cis-1,2-Dichloroethene	5.3	U	0.53	0.53	5.3	ug/Kg
67-66-3	Chloroform	5.3	U	0.53	0.53	5.3	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.3	Ū	0.53	0.53	5.3	ug/Kg
71-43-2	Benzene	5.3	U	0.4	0.53	5.3	ug/Kg
107-06-2	1,2-Dichloroethane	5.3	U	0.53	0.53	5.3	ug/Kg
79-01-6	Trichloroethene	5.3	U	0.53	0.53	5.3	ug/Kg
108-88-3	Toluene	5.3	U	0.53	0.53	5.3	ug/Kg
127-18-4	Tetrachloroethene	5.3	U	0.53	0.53	5.3	ug/Kg
108-90-7	Chlorobenzene	5.3	U	0.53	0.53	5.3	ug/Kg
100-41-4	Ethyl Benzene	5.3	U	0.53	0.53	5.3	ug/Kg
1330-20-7	Total Xylenes	15.9	U	1.3	1.63	15.9	ug/Kg
103-65-1	n-propylbenzene	5.3	U	0.38	0.53	5.3	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	5.3	U	0.48	0.53	5.3	ug/Kg
98-06-6	tert-Butylbenzene	5.3	U	0.53	0.53	5.3	ug/Kg
95-63-6	1.2,4-Trimethylbenzene	5.3	Ü	0.53	0.53	5.3	ug/Kg
135-98-8	sec-Butylbenzene	5.3	U	0.53	0.53	5.3	ug/Kg
541-73-1	1,3-Dichlorobenzene	5.3	U	0.39	0.53	5.3	ug/Kg
106-46-7	1,4-Dichlorobenzene	5.3	U	0.44	0.53	5.3	ug/Kg
104-51-8	n-Butylbenzene	5.3	U	0.49	0.53	5.3	ug/Kg
95-50-1	1.2-Dichlorobenzene	5.3	Ü	0.53	0.53	5.3	ug/Kg
123-91-1	1,4-Dioxane	110	UR	110	110	110	ug/Kg
SURROGATES							

9/4/14

38 of 483

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB03(0-2) SDG No.: F3304 Lab Sample ID: F3304-04 Matrix: SOIL Analytical Method: SW8260 % Moisture: 6.1 Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042446.D 1 07/28/14 VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	41.3		56 - 120	-	83%	CDV . 50
1868-53-7	Dibromofluoromethane	47.9		57 - 135		96%	SPK: 50 SPK: 50
2037-26-5	Toluene-d8	42.2		67 - 123		84%	SPK: 50 SPK: 50
460-00-4	4-Bromofluorobenzene	32,9		33 - 141		66%	SPK: 50
INTERNAL ST	ANDARDS			33 141		0070	3FK: 30
363-72-4	Pentafluorobenzene	149531	4.91				
540-36-3	1,4-Difluorobenzene	246219	5.63				
3114-55-4	Chlorobenzene-d5	179462	9.78				
3855-82-1	1.4-Dichlorobenzene-d4	57975	12.55				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB03(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-05	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	9.7
Sample Wt/Vol:	5.01 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VF042447.D	1		07/28/14	VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-01-4	Vinyl Chloride	5.5	U	0.55	0.55	5.5	ug/Kg
75-35-4	1,1-Dichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
67-64-1	Acetone	27.6	U	2.8	2.8	27.6	ug/Kg ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
75-09-2	Methylene Chloride	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
75-34-3	1,1-Dichloroethane	5.5	Ü	0.55	0.55	5.5	ug/Kg ug/Kg
78-93-3	2-Butanone	27.6	Ü	3.4	8.3	27.6	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	5.5	U	0.55	0.55	5.5	ug/Kg ug/Kg
156-59-2	cis-1,2-Dichloroethene	5.5	Ü	0.55	0.55	5.5	
67-66-3	Chloroform	5.5	Ü	0.55	0.55	5.5	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.5	Ü	0.55	0.55	5.5	ug/Kg
71-43-2	Benzene	5.5	U	0.42	0.55	5.5	ug/Kg
107-06-2	1,2-Dichloroethane	5.5	U	0.55	0.55	5.5	ug/Kg
79-01-6	Trichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg
108-88-3	Toluene	5.5	Ü	0.55	0.55	5.5	ug/Kg
127-18-4	Tetrachloroethene	5.5	U	0.55	0.55	5.5	ug/Kg
108-90-7	Chlorobenzene	5.5	Ü	0.55	0.55	5.5	ug/Kg
100-41-4	Ethyl Benzene	5.5	Ü	0.55	0.55	5.5	ug/Kg
1330-20-7	Total Xylenes	16.6	Ü	1.35	1.65	16.6	ug/Kg
103-65-1	n-propylbenzene	5.5	U	0.4	0.55	5.5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	5.5	U	0.5	0.55	5.5	ug/Kg
98-06-6	tert-Butylbenzene	5.5	Ü	0.55	0.55	5.5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	5.5	U	0.55	0.55	5.5	ug/Kg
135-98-8	sec-Butylbenzene	5.5	U	0.55	0.55	5.5	ug/Kg
541-73-1	1,3-Dichlorobenzene	5.5	U	0.33	0.55	5.5 5.5	ug/Kg
106-46-7	1,4-Dichlorobenzene	5.5	U	0.41	0.55		ug/Kg
104-51-8	n-Butylbenzene	5.5	U	0.43	0.55	5.5	ug/Kg
95-50-1	1,2-Dichlorobenzene	5.5	U	0.55		5.5	ug/Kg
123-91-1	1,4-Dioxane	110	UR	110	0.55 110	5.5	ug/Kg
SURROGATES		110	0 10	110	110	110	ug/Kg

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB03(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-05	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	9.7
Sample Wt/Vol:	5.01 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL.	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

D

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VF042447.D	1		07/28/14	VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL LOI	LOQ/CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	47.4	R do sy	56 - 120	95%	SPK: 50
1868-53-7	Dibromofluoromethane	49.1		57 - 135	98%	SPK: 50
2037-26-5	Toluene-d8	44.1		67 - 123	88%	SPK: 50
460-00-4	4-Bromofluorobenzene	40.9		33 - 141	82%	SPK: 50
INTERNAL ST	ANDARDS				0270	31 K. 30
363-72-4	Pentafluorobenzene	135988	4.91			
540-36-3	1,4-Difluorobenzene	226485	5.63			
3114-55-4	Chlorobenzene-d5	187522	9.78			
3855-82-1	1,4-Dichlorobenzene-d4	72211	12.55			
TENTATIVE II	DENTIFIED COMPOUNDS					
91-20-3	Naphthalene	7.9	J		14.45	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

LOW

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB03(10-WT) SDG No.: F3304 Lab Sample ID: F3304-06 Matrix: SOIL Analytical Method: SW8260 % Moisture: 21.9 Sample Wt/Vol: Units: g Final Vol: 5000 uLSoil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RTX-VMS ID: 0.18 Level: LOW

D

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042448.D 07/28/14 VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
7 5-01 - 4	Vinyl Chloride	6.4	U	0.64	0.64	6.4	ug/Kg
75-35-4	1,1-Dichloroethene	6.4	Ü	0.64	0.64	6.4	ug/Kg ug/Kg
67-64-1	Acetone	32	Γī	3.2	3.2	32	ug/Kg ug/Kg
1634-04-4	Methyl tert-butyl Ether	6.4	U	0.64	0.64	6.4	ug/Kg ug/Kg
75-09-2	Methylene Chloride	6.4	U	0.64	0.64	6.4	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	6.4	U	0.64	0.64	6.4	ug/Kg ug/Kg
75-34-3	1,1-Dichloroethane	6.4	U	0.64	0.64	6.4	
78-93-3	2-Butanone	32	Ü	4	9.6	32	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	6.4	U	0.64	0.64	6.4	
156-59-2	cis-1,2-Dichloroethene	6.4	Ü	0.64	0.64	6.4	ug/Kg
67-66-3	Chloroform	6.4	Ü	0.64	0.64	6.4	ug/Kg
71-55-6	1,1,1-Trichloroethane	6.4	U	0.64	0.64	6.4	ug/Kg
71-43-2	Benzene	6.4	Ü	0.49	0.64	6.4	ug/Kg
107-06-2	1,2-Dichloroethane	6.4	U	0.64	0.64	6.4	ug/Kg
79-01-6	Trichloroethene	6.4	Ü	0.64	0.64	6.4	ug/Kg
108-88-3	Toluene	6.4	Ü	0.64	0.64	6.4	ug/Kg
127-18-4	Tetrachloroethene	6.4	Ü	0.64	0.64	6.4	ug/Kg
108-90-7	Chlorobenzene	6.4	U	0.64	0.64	6.4	ug/Kg
100-41-4	Ethyl Benzene	6.4	U	0.64	0.64	6.4	ug/Kg
1330-20-7	Total Xylenes	19.2	Ü	1.56	1.94	0.4 19.2	ug/Kg
103-65-1	n-propylbenzene	6.4	Ü	0.46	0.64	6.4	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	6.4	U	0.58	0.64		ug/Kg
98-06-6	tert-Butylbenzene	6.4	U	0.58	0.64	6.4	ug/Kg
95-63-6	1.2,4-Trimethylbenzene	6.4	U	0.64		6.4	ug/Kg
135-98-8	sec-Butylbenzene	6.4	U	0.64	0.64 0.64	6.4	ug/Kg
541-73-1	1,3-Dichlorobenzene	6.4	U	0.64		6.4	ug/Kg
106-46-7	1,4-Dichlorobenzene	6.4	U		0.64	6.4	ug/Kg
104-51-8	n-Butylbenzene	6.4	U	0.52 0.59	0.64	6.4	ug/Kg
95-50-1	1,2-Dichlorobenzene	6.4	U		0.64	6.4	ug/Kg
123-91-1	1,4-Dioxane	130	UR	0.64	0.64	6.4	ug/Kg
SURROGATES	- 1 - North Charles & North Ch	130	U	130	130	130	ug/Kg

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB03(10-WT)	SDG No.:	F3304
Lab Sample ID:	F3304-06	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	21.9
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VF042448.D	1		07/28/14	VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL L	OD LOQ/CROL	Units
17060-07-0	1,2-Dichloroethane-d4	42		56 - 120	84%	
1868-53-7	Dibromofluoromethane	46.6		57 - 135	93%	SPK: 50
2037-26-5	Toluene-d8	42.2		67 - 123	19.	SPK: 50
460-00-4	4-Bromofluorobenzene	36.3		33 - 141	84%	SPK: 50
INTERNAL ST	ANDARDS	30.3		33 - 141	73%	SPK: 50
363-72-4	Pentafluorobenzene	123734	4.91			
540-36-3	1,4-Difluorobenzene	201142	5.64			
3114-55-4	Chlorobenzene-d5	156185	9.79			
3855-82-1	1,4-Dichlorobenzene-d4	57201	12.54			
TENTATIVE ID	DENTIFIED COMPOUNDS	5.20.	12.54			
000079-92-5	Camphene	13.5	JN		11.23	ug/Kg
99-87-6	p-Isopropyltoluene	1.5	J		12.47	,
91-20-3	Naphthalene	2.4	J		14.44	ug/Kg ug/Kg

D

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB04(0-2)	SDG No.:	F3304
Lab Sample ID:	F3304-07	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	9.4
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	LOW

D

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT009145.D 1 07/28/14 VT072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS		•••••					
75-01-4	Vinyl Chloride	5.5	U	0.55	0.55	5.5	ug/Kg
75-35-4	1,1-Dichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg
67-64-1	Acetone	27.6	U	2.8	2.8	27.6	ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.5	U	0.55	0.55	5.5	ug/Kg
75-09-2	Methylene Chloride	5.5	U	0.55	0.55	5.5	ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.5	Ü	0.55	0.55	5.5	ug/Kg
75-34-3	1,1-Dichloroethane	5.5	U	0.55	0.55	5.5	ug/Kg
78-93-3	2-Butanone	27.6	U	3.4	8.3	27.6	ug/Kg
56-23-5	Carbon Tetrachloride	5.5	Ü	0.55	0.55	5.5	ug/Kg
156-59-2	cis-1,2-Dichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg
67-66-3	Chloroform	5.5	U	0.55	0.55	5.5	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.5	U	0.55	0.55	5.5	ug/Kg
71-43-2	Benzene	5.5	U	0.42	0.55	5.5	ug/Kg
107-06-2	1,2-Dichloroethane	5.5	U	0.55	0.55	5.5	ug/Kg
79-01-6	Trichloroethene	5.5	U	0.55	0.55	5.5	ug/Kg
108-88-3	Toluene	5.5	U	0.55	0.55	5.5	ug/Kg
127-18-4	Tetrachloroethene	5.5	U	0.55	0.55	5.5	ug/Kg
108-90-7	Chlorobenzene	5.5	U	0.55	0.55	5.5	ug/Kg
100-41-4	Ethyl Benzene	5.5	Ü	0.55	0.55	5.5	ug/Kg
1330-20-7	Total Xylenes	16.5	U	1.34	1.65	16.5	ug/Kg
103-65-1	n-propylbenzene	5.5	U	0.4	0.55	5.5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	5.5	U	0.5	0.55	5.5	ug/Kg
98-06-6	tert-Butylbenzene	5.5	U	0.55	0.55	5.5	ug/Kg
95-63-6	1.2,4-Trimethylbenzene	5.5	U	0.55	0.55	5.5	ug/Kg
135-98-8	sec-Butylbenzene	5.5	Ü	0.55	0.55	5.5	ug/Kg
541-73-1	1,3-Dichlorobenzene	5.5	U	0.41	0.55	5.5	ug/Kg
106-46-7	1,4-Dichlorobenzene	5.5	U	0.45	0.55	5.5	ug/Kg
104-51-8	n-Butylbenzene	5.5	U	0.51	0.55	5.5	ug/Kg
95-50-1	1,2-Dichlorobenzene	5.5	U	0.55	0.55	5.5	ug/Kg
123-91-1	1,4-Dioxane	110	UR	110	110	110	ug/Kg
SURROGATES							

9/4/14

F3304

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB04(0-2)	SDG No.:	F3304
Lab Sample ID:	F3304-07	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	9.4
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25		•
	15, 0.45	Level:	LOW

File ID/Qc Bat	ch: Dilution:	Prep Date	Date A	nalyzed		Prep Batch ID	
VT009145.D	1	07/28/14		14		VT072814	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	50.9		56 - 120		102%	SPK: 50
1868-53-7	Dibromofluoromethane	55.1		57 - 135		110%	SPK: 50

2037-26-5 Toluene-d8 54.3 460-00-4 4-Bromofluorobenzene 47.8 INTERNAL STANDARDS 363-72-4 Pentafluorobenzene 709581 7.43 540-36-3 1,4-Difluorobenzene 1149180 8.37 3114-55-4 Chlorobenzene-d5 913741 11.21 3855-82-1 1,4-Dichlorobenzene-d4 415210 13.15

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

67 - 123

33 - 141

SPK: 50

SPK: 50

109%

96%

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB04(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-08	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	9.6
Sample Wt/Vol:	4.95 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	$\mathbf{u}\mathbf{L}$	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VT009146.D	1		07/28/14	VT072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-01-4	Vinyl Chloride	5.6	U	0.56	0.56	5.6	ug/Kg
75-35-4	1,1-Dichloroethene	5.6	U	0.56	0.56	5.6	ug/Kg
67-64-1	Acetone	11.9	J	2.8	2.8	27.9	ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.6	U	0.56	0.56	5.6	ug/Kg
75-09-2	Methylene Chloride	5.6	U	0.56	0.56	5.6	ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.6	U	0.56	0.56	5.6	ug/Kg
75-34-3	1,1-Dichloroethane	5.6	U	0.56	0.56	5.6	ug/Kg
78-93-3	2-Butanone	27.9	U	3.5	8.4	27.9	ug/Kg
56-23-5	Carbon Tetrachloride	5.6	U	0.56	0.56	5.6	ug/Kg
156-59-2	cis-1,2-Dichloroethene	5.6	U	0.56	0.56	5.6	ug/Kg
67-66-3	Chloroform	5.6	U	0.56	0.56	5.6	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.6	U	0.56	0.56	5.6	ug/Kg
71-43-2	Benzene	5.6	U	0.42	0.56	5.6	ug/Kg
107-06-2	1,2-Dichloroethane	5.6	U	0.56	0.56	5.6	ug/Kg
79-01-6	Trichloroethene	5.6	U	0.56	0.56	5.6	ug/Kg
108-88-3	Toluene	5.6	U	0.56	0.56	5.6	ug/Kg
127-18-4	Tetrachloroethene	5.6	U	0.56	0.56	5.6	ug/Kg
108-90-7	Chlorobenzene	5.6	U	0.56	0.56	5.6	ug/Kg
100-41-4	Ethyl Benzene	5.6	U	0.56	0.56	5.6	ug/Kg
1330-20-7	Total Xylenes	16.8	U	1.36	1.66	16.8	ug/Kg
103-65-1	n-propylbenzene	5.6	UJ	0.4	0.56	5.6	ug/Kg
108-67-8	1,3.5-Trimethylbenzene	5.6	U	0.5	0.56	5.6	ug/Kg
98-06-6	tert-Butylbenzene	5.6	U	0.56	0.56	5.6	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	5.6	U	0.56	0.56	5.6	ug/Kg
135-98-8	sec-Butylbenzene	5.6	U	0.56	0.56	5.6	ug/Kg
541-73-1	1,3-Dichlorobenzene	5.6	U	0.41	0.56	5.6	ug/Kg
106-46-7	1,4-Dichlorobenzene	5.6	U	0.46	0.56	5.6	ug/Kg
104-51-8	n-Butylbenzene	5.6	U	0.51	0.56	5.6	ug/Kg
95-50-1	1,2-Dichlorobenzene	5.6	υŪ	0.56	0.56	5.6	ug/Kg
123-91-1	1,4-Dioxane	110	υR	110	110	110	ug/Kg
SURROGATES							

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB04(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-08	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	9.6
Sample Wt/Vol:	4.95 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VT009146.D	1		07/28/14	VT072814

CAS Number	Parameter	Conc.	Qualifier	MDL LO	D LOQ/CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	53.2		56 - 120	106%	SPK: 50
1868-53-7	Dibromofluoromethane	56.2		57 - 135	112%	SPK: 50
2037-26-5	Toluene-d8	52.6		67 - 123	105%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.5		33 - 141	83%	SPK: 50
INTERNAL ST	ANDARDS				0370	51 K. 50
363-72-4	Pentafluorobenzene	681657	7.44			
540-36-3	1,4-Difluorobenzene	1078920	8.38			
3114-55-4	Chlorobenzene-d5	809688	11.21			
3855-82-1	1,4-Dichlorobenzene-d4	311074	13.15			
TENTATIVE II	DENTIFIED COMPOUNDS	5.1.6 7.1	13.15			
75-15-0	Carbon Disulfide	3.3	J		3.86	ug/Kg
91-20-3	Naphthalene	3.9	J		14.94	ug/Kg ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB04(10-WT)	SDG No.:	F3304
Lab Sample ID:	F3304-09	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	13.7
Sample Wt/Vol:	4.98 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT009147.D 1 07/28/14 VT072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS		•		•			-
75-01-4	Vinyl Chloride	5.8	U	0.58	0.58	5.8	ug/Kg
75-35-4	1,1-Dichloroethene	5.8	Ü	0.58	0.58	5.8	ug/Kg ug/Kg
67-64-1	Acetone	10.2	J	2.9	2.9	29.1	ug/Kg ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
75-09-2	Methylene Chloride	5.8	Ü	0.58	0.58	5.8	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
75-34-3	1,1-Dichloroethane	5.8	Ū	0.58	0.58	5.8	ug/Kg ug/Kg
78-93-3	2-Butanone	29.1	Ū	3.6	8.7	29.1	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	5.8	Ū	0.58	0.58	5.8	ug/Kg ug/Kg
156-59-2	cis-1,2-Dichloroethene	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
67 - 66-3	Chloroform	5.8	U	0.58	0.58	5.8	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
71-43-2	Benzene	5.8	U	0.44	0.58	5.8	ug/Kg ug/Kg
107-06-2	1,2-Dichloroethane	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
79-01-6	Trichloroethene	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
108-88-3	Toluene	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
127-18-4	Tetrachloroethene	5.8	Ü	0.58	0.58	5.8	ug/Kg ug/Kg
108-90-7	Chlorobenzene	5.8	U	0.58	0.58	5.8	ug/Kg
100-41-4	Ethyl Benzene	5.8	U	0.58	0.58	5.8	ug/Kg
1330-20-7	Total Xylenes	17.4	U	1.42	1.78	17.4	ug/Kg
103-65-1	n-propylbenzene	5.8	U	0.42	0.58	5.8	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	5.8	U	0.52	0.58	5.8	ug/Kg
98-06-6	tert-Butylbenzene	5.8	U	0.58	0.58	5.8	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	5.8	U	0.58	0.58	5.8	ug/Kg
135-98-8	sec-Butylbenzene	5.8	U	0.58	0.58	5.8	ug/Kg
541-73-1	1,3-Dichlorobenzene	5.8	U	0.43	0.58	5.8	ug/Kg ug/Kg
106-46-7	1,4-Dichlorobenzene	5.8	U	0.48	0.58	5.8	ug/Kg
104-51-8	n-Butylbenzene	5.8	U	0.54	0.58	5.8	ug/Kg ug/Kg
95-50-1	1,2-Dichlorobenzene	5.8	U	0.58	0.58	5.8	ug/Kg ug/Kg
123-91-1	1.4-Dioxane	120	UR	120	120	120	ug/Kg ug/Kg
SURROGATES							why y pla

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB04(10-WT)	SDG No.:	F3304
Lab Sample ID:	F3304-09	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	13.7
Sample Wt/Vol:	4.98 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT009147.D 1 07/28/14 VT072814

CAS Number	Parameter	Conc.	Qualifier	MDL LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	44.9		56 - 120	90%	SPK: 50
1868-53-7	Dibromofluoromethane	47.6		57 - 135	95%	SPK: 50
2037-26-5	Toluene-d8	47.5		67 - 123	95%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.2		33 - 141	82%	SPK: 50
INTERNAL ST	ANDARDS				0270	SI IX. 50
363-72-4	Pentafluorobenzene	788805	7.42			
540-36-3	1,4-Difluorobenzene	1265250	8.38			
3114-55-4	Chlorobenzene-d5	1008650	11.21			
3855-82-1	1,4-Dichlorobenzene-d4	447239	13.15			
TENTATIVE ID	DENTIFIED COMPOUNDS					
91-20-3	Naphthalene	1.7	J		14.94	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB05(0-2)	SDG No.:	F3304
Lab Sample ID:	F3304-10	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	24.5
Sample Wt/Vol:	5 Units: g	Final Vol:	10000 uL
Soil Aliquot Vol:	100 uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	MFD

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VR014401.D	1		07/30/14	VR073014

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CRQL	Units
TARGETS					-		
75-01-4	Vinyl Chloride	660	U	66.2	66.2	660	ug/Kg
75-35-4	1,1-Dichloroethene	660	U	66.2	66.2	660	ug/Kg ug/Kg
67-64-1	Acetone	3300	U	330	330	3300	ug/Kg ug/Kg
1634-04-4	Methyl tert-butyl Ether	660	U	66.2	66.2	660	ug/Kg ug/Kg
75-09-2	Methylene Chloride	660	Ü	66.2	66.2	660	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	660	U	66.2	66.2	660	ug/Kg ug/Kg
75-34-3	1,1-Dichloroethane	660	Ü	66.2	66.2	660	ug/Kg ug/Kg
78-93-3	2-Butanone	3300	U	410	990	3300	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	660	U	66.2	66.2	660	ug/Kg ug/Kg
156-59-2	cis-1,2-Dichloroethene	660	U	66.2	66.2	660	ug/Kg ug/Kg
67-66-3	Chloroform	660	U	66.2	66.2	660	ug/Kg ug/Kg
71-55-6	1,1,1-Trichloroethane	660	Ū	66.2	66.2	660	ug/Kg ug/Kg
71-43-2	Benzene	660	Ū	50.3	66.2	660	ug/Kg ug/Kg
107-06-2	1,2-Dichloroethane	660	Ū	66.2	66.2	660	ug/Kg ug/Kg
79-01-6	Trichloroethene	660	U	66.2	66.2	660	ug/Kg ug/Kg
108-88-3	Toluene	660	U	66.2	66.2	660	ug/Kg ug/Kg
127-18-4	Tetrachloroethene	660	U	66.2	66.2	660	ug/Kg ug/Kg
108-90-7	Chlorobenzene	660	U	66.2	66.2	660	ug/Kg ug/Kg
100-41-4	Ethyl Benzene	660	U	66.2	66.2	660	ug/Kg ug/Kg
1330-20-7	Total Xylenes	1960	U	161	196	1960	ug/Kg ug/Kg
103-65-1	n-propylbenzene	660	U	47.7	66.2	660	ug/Kg ug/Kg
108-67-8	1,3.5-Trimethylbenzene	660	U	59.6	66.2	660	ug/Kg ug/Kg
98-06-6	tert-Butylbenzene	660	U	66.2	66.2	660	ug/Kg ug/Kg
95 - 63-6	1.2,4-Trimethylbenzene	660	U	66.2	66.2	660	ug/Kg ug/Kg
135-98-8	sec-Butylbenzene	660	Ü	66.2	66.2	660	ug/Kg ug/Kg
541-73-1	1,3-Dichlorobenzene	660	Ü	49	66.2	660	ug/Kg ug/Kg
106-46-7	1,4-Dichlorobenzene	660	Ü	54.3	66.2	660	ug/Kg ug/Kg
104-51-8	n-Butylbenzene	660	Ū	60.9	66.2	660	
95-50-1	1,2-Dichlorobenzene	660	Ū _	66.2	66.2	660	ug/Kg
123-91-1	1,4-Dioxane	13200	UdTR	13200	13200	13200	ug/Kg
SURROGATES		-5200	ا طاعات	10200	13200	13200	ug/Kg

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB05(0-2)	SDG No.:	F3304
Lab Sample ID:	F3304-10	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	24.5
Sample Wt/Vol:	5 Units: g	Final Vol:	10000 uL
Soil Aliquot Vol:	100 uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	MED

File ID/Qc Batch:

VR014401.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

07/30/14

VR073014

CAS Number	Parameter	Conc.	Qualifier	MDL LOI	LOQ/CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	57		56 - 120	114%	SPK: 50
1868-53-7	Dibromofluoromethane	45.3		57 - 135	91%	SPK: 50
2037-26-5	Toluene-d8	50.5		67 - 123	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.8		33 - 141	108%	SPK: 50
INTERNAL ST	ANDARDS				10070	51 14. 50
363-72-4	Pentafluorobenzene	1061640	7.5			
540-36-3	1,4-Difluorobenzene	1760880	8.43			
3114-55-4	Chlorobenzene-d5	1533010	11.28			
3855-82-1	1,4-Dichlorobenzene-d4	564973	13.22			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB05(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-11	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	19.2
Sample Wt/Vol:	4.99 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	ul.	Test:	VOCMS Group I
GC Column:	RXI-624 ID: 0.25	Level:	LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT009153.D 1 07/28/14 VT072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-01-4	Vinyl Chloride	6.2	UJ	0.62	0.62	6.2	ug/Kg
75-35-4	1,1-Dichloroethene	6.2	UJ	0.62	0.62	6.2	ug/Kg ug/Kg
67-64-1	Acetone	17	J	3.1	3.1	31	ug/Kg
1634-04-4	Methyl tert-butyl Ether	6.2	UJ	0.62	0.62	6.2	ug/Kg
75-09-2	Methylene Chloride	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
75-34-3	1,1-Dichloroethane	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
78-93-3	2-Butanone	31	U	3.9	9.3	31	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
156-59-2	cis-1,2-Dichloroethene	6.2	U	0.62	0.62	6.2	ug/Kg
67-66-3	Chloroform	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
71-55-6	1,1,1-Trichloroethane	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
71-43-2	Benzene	6.2	U	0.47	0.62	6.2	ug/Kg ug/Kg
107-06-2	1,2-Dichloroethane	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
79-01-6	Trichloroethene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
108-88-3	Toluene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
127-18-4	Tetrachloroethene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
108-90-7	Chlorobenzene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
100-41-4	Ethyl Benzene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
1330-20-7	Total Xylenes	18.6	U	1.51	1.82	18.6	ug/Kg ug/Kg
103-65-1	n-propylbenzene	6.2	UR	0.45	0.62	6.2	ug/Kg ug/Kg
108-67-8	1,3,5-Trimethylbenzene	6.2	U	0.56	0.62	6.2	ug/Kg ug/Kg
98-06-6	tert-Butylbenzene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
95-63-6	1,2,4-Trimethylbenzene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
135-98-8	sec-Buty Ibenzene	6.2	U	0.62	0.62	6.2	ug/Kg ug/Kg
541-73-1	1,3-Dichlorobenzene	6.2	Ū	0.46	0.62	6.2	ug/Kg ug/Kg
106-46-7	1,4-Dichlorobenzene	6.2	U	0.51	0.62	6.2	ug/Kg ug/Kg
104-51-8	n-Butylbenzene	6.2	U	0.57	0.62	6.2	ug/Kg ug/Kg
95-50-1	1,2-Dichlorobenzene	6.2	U 🗸	0.62	0.62	6.2	ug/Kg ug/Kg
123-91-1	1.4-Dioxane	120	UTO	120	120	120	ug/Kg ug/Kg
SURROGATES				120	120	120	ug/Ng

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB05(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-11	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	19.2
Sample Wt/Vol:	4.99 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
V′Г009153.D	1		07/28/14	VT072814

CAS Number	Parameter	Conc.	Qualifier	MDL I	L OD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	59.4		56 - 120		119%	SPK: 50
1868-53-7	Dibromofluoromethane	59.3		57 - 135		119%	SPK: 50
2037-26-5	Toluene-d8	54		67 - 123		108%	SPK: 50
460-00-4	4-Bromofluorobenzene	38.7		33 - 141		77%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	370462	7.44				
540-36-3	1,4-Ditluorobenzene	602130	8.38				
3114-55-4	Chlorobenzene-d5	437768	11.21				
3855-82-1	1,4-Dichlorobenzene-d4	156402	13.15				
TENTATIVE II	DENTIFIED COMPOUNDS						
91-20-3	Naphthalene	2.1	J			14.94	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

53 of 483

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB06D 71-SB03(0-2)	SDG No.:	F3304
Lab Sample ID:	F3304-12	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	7.6
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level:	LOW
File ID/Qc Batch:	Dilution: Prep Date	Date Analyzed	Prep Batch ID
VD042772.D	1	07/25/14	VD072514

	1						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS	\			1			
75-01-4	Vinyl Chloride	5.4	U	0.54	0.54	5.4	ug/Kg
75-35-4	1,1-Dichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
67-64-1	Acetone	27.1	U	2.7	2.7	27.1	ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.4	U /	0.54	0.54	5.4	ug/Kg
75-09-2	Methylene Chloride	1.3	J /	0.54	0.54	5.4	ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
75-34-3	1.1-Dichloroethane	5.4	/U	0.54	0.54	5.4	ug/Kg
78-93-3	2-Butanone	27.1	U	3.4	8.1	27.1	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	5.4	U	0.54	0.54	5.4	ug/Kg
156-59-2	cis-1,2-Dichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
67-66-3	Chloroform	5,4	U	0.54	0.54	5.4	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.4	U	0.54	0.54	5.4	ug/Kg
71-43-2	Benzene	5.4	U	0.41	0.54	5.4	ug/Kg
107-06-2	1,2-Dichloroethane	5.4	UQ	0.54	0.54	5.4	ug/Kg
79-01-6	Trichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
108-88-3	Toluene	5.4	U	0.54	0.54	5.4	ug/Kg
127-18-4	Tetrachloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
108-90-7	Chlorobenzene	5.4	U	0.54	0.54	5.4	ug/Kg
100-41-4	Ethyl Benzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
1330-20-7	Total Xylenes	16.2	UQ	1.32	1.64	16.2	ug/Kg ug/Kg
103-65-1	n-propylbenzene	5.4	U	0.39	0.54	5.4	ug/Kg ug/Kg
108-67-8	1,3,5-Trimethylbenzene	5.4	U	0.49	0.54	5.4	ug/Kg ug/Kg
98-06-6	tert-Buty Ibenzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
95-63-6	1,2,4-Trimethy benzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
135-98-8	sec-Butylbenzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
541-73-1	1,3-Dichforobenzene	5.4	U	0.4	0.54	5.4	ug/Kg ug/Kg
106-46-7	1,4-Dichlorobenzene	5.4	U	0.44	0.54	5.4	ug/Kg ug/Kg
104-51-8	n-Butylbenzene	5.4	Ü	0.5	0.54	5.4	ug/Kg ug/Kg
95-50-1	1,2-Dichlorobenzene	5.4	U	0.54	0.54	5.4	
123-91-1	1,4-Dioxane	110	U	110	110	110	ug/Kg ug/Kg
SURROGATE	S		•	•••	110	110	ug/ rcg

9/3/14

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14	
Project:	Bronx Psy. Center	Date Received:	07/24/14	
Client Sample ID:	TI-SB06D [T1-S603 (0-2)]	SDG No.:	F3304	
Lab Sample ID:	F3304-12	Matrix:	SOIL	
Analytical Method:	SW8260	% Moisture:	7.6	
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL	
Soil Aliquot Vol:	uL	Test:	VOCMS Group1	
GC Column:	RTX-VMS ID: 0.18	Level :	LOW	

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD042772.D 1 07/25/14 VD072514

CAS Number	Parameter	Conc.	Qualifier	MDL LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	43.7		56 - 120	87%	SPK: 50
1868-53-7	Dibromofluoromethane	42.2		57 - 135	84%	SPK: 50
2037-26-5	Toluene-d8	38.9		67 - 123	78%	SPK: 50
460-00-4	4-Bromofluorobenzene	31.6		33 - 141	63%	SPK: 50
INTERNAL ST	ANDARDS					0.11.50
363-72-4	Pentafluorobenzene	435914	6.48			
540-36-3	1,4-Difluorobenzene	633805	7.6			
3114-55-4	Chlorobenzene-d5	388058	11.7			
3855-82-1	1,4-Dichlorobenzene-d4	108824	14.04			
TENTATIVE II	DENTIFIED COMPOUNDS					
91-20-3	Naphthalene	18.3	J		15.96	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center		
-	•	Date Received:	07/24/14
Client Sample ID:	TI-SB06DRE	SDG No.:	F3304
Lab Sample ID:	F3304-12RE	Matrix:	SOIL
Analytical Method:	SW8260	% Moisture:	7.6
Sample Wt/Vol:	5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RTX-VMS ID: 0.18	Level :	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VF042449.D	1		07/28/14	VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CRQL	Ünits
TARGETS						-	
75-01-4	Vinyl Chloride	5.4	U	0.54	0.54	5.4	ug/Kg
75-35-4	1,1-Dichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
67-64-1	Acetone	27.1	U	2.7	2.7	27.1	ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.4	U	0.54	0.54	5.4	ug/Kg
75-09-2	Methylene Chloride	5.4	U	0.54	0.54	5.4	ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
75-34-3	1,1-Dichloroethane	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
78-93-3	2-Butanone	27.1	U	3.4	8.1	27.1	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	5.4	U	0.54	0.54	5.4	ug/Kg
156-59-2	cis-1,2-Dichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
67-66-3	Chloroform	5.4	U	0.54	0.54	5.4	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.4	U	0.54	0.54	5.4	ug/Kg
71-43-2	Benzene	5.4	U	0.41	0.54	5.4	ug/Kg
107-06-2	1,2-Dichloroethane	5.4	U	0.54	0.54	5.4	ug/Kg
79-01-6	Trichloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
108-88-3	Toluene	5.4	U	0.54	0.54	5.4	ug/Kg
127-18-4	Tetrachloroethene	5.4	U	0.54	0.54	5.4	ug/Kg
108-90-7	Chlorobenzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
100-41-4	Ethyl Benzene	5.4	U	0.54	0.54	5.4	ug/Kg
1330-20-7	Total Xylenes	16.2	U	1.32	1.64	16.2	ug/Kg
103-65-1	n-propylbenzene	5.4	U	0.39	0.54	5.4	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	5.4	U	0.49	0.54	5.4	ug/Kg
98-06-6	tert-Butylbenzene	5.4	U	0.54	0.54	5.4	ug/Kg
95-63-6	1,2,4-Trimethy Ibenzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
135-98-8	sec-Butylbenzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
541-73-1	1.3-Dichlorobenzene	5.4	U	0.4	0.54	5.4	ug/Kg ug/Kg
106-46-7	1,4-Dichlorobenzene	5.4	U	0.44	0.54	5.4	ug/Kg ug/Kg
104-51-8	n-Butylbenzene	5.4	U	0.5	0.54	5.4	ug/Kg ug/Kg
95-50-1	1,2-Dichlorobenzene	5.4	U	0.54	0.54	5.4	ug/Kg ug/Kg
123-91-1	1,4-Dioxane	110	UR	110	110	110	ug/Kg ug/Kg
SURROGATES						110	ug/INg

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 [+1-5603(0-2)] Client Sample ID: TI-SB06DRE SDG No.: F3304 Lab Sample ID: F3304-12RE Matrix: SOIL Analytical Method: SW8260 % Moisture: 7.6 Sample Wt/Vol: 5 Units: Final Vol: 5000 uL Soil Aliquot Vol: uLTest: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042449.D 1 07/28/14 VF072814

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	34.5		56 - 120		69%	SPK: 50
1868-53-7	Dibromofluoromethane	37.4		57 - 135		75%	SPK: 50
2037-26-5	Toluene-d8	33.9		67 - 123		68%	SPK: 50
460-00-4	4-Bromofluorobenzene	29.6		33 - 141		59%	SPK: 50
INTERNAL ST	ANDARDS					3370	51 14. 50
363-72-4	Pentafluorobenzene	106623	4.91				
540-36-3	1.4-Difluorobenzene	179774	5.63				
3114-55-4	Chlorobenzene-d5	139991	9.79				
3855-82-1	1,4-Dichlorobenzene-d4	51883	12.55				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Co	rporation				Date Collected:		07/23/1	4
Project:	Bronx P	sy. Center				Date Received:		07/24/1	4
Client Sample ID:	TI-SB02	2(0-2)				SDG No.:		F3304	
Lab Sample ID:	F3304-0	ì				Matrix:		SOIL	
Analytical Method:	SW8270)				% Moisture:		8.5	
Sample Wt/Vol:	30.1	Units:	g			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCM	IS Group 1
Extraction Type:				Decanted:	N	Level:		LOW	
Injection Volume:			GPC	Factor: 1.0		GPC Cleanup:	N		PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072800.D	1	07/25/14	07/26/14	PB78047

CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS				-				•	
108-95-2	Phenol		360	U	8.4	36.3	360	ug/Kg	
95-48-7	2-Methylphenol		360	Ü	19.7	36.3	360	ug/Kg ug/Kg	
65794-96-9	3+4-Methylphenols		360	U	18.8	36.3	360	ug/Kg ug/Kg	
91-20-3	Naphthalene		190	J	12.5	36.3	360	ug/Kg ug/Kg	
208-96-8	Acenaphthylene		360	Ū	9.1	36.3	360	ug/Kg ug/Kg	
83-32-9	Acenaphthene		440	_	10.2	36.3	360	ug/Kg ug/Kg	
132-64-9	Dibenzofuran		330	J	14.2	36.3	360	ug/Kg ug/Kg	
86-73-7	Fluorene		500	•	13.7	36.3	360	ug/Kg ug/Kg	
118-74-1	Hexachlorobenzene		360	U	14.8	36.3	360	ug/Kg ug/Kg	
87-86-5	Pentachlorophenol		360	Ū	24.8	36.3	360	ug/Kg ug/Kg	
85-01-8	Phenanthrene	4000	3300	D E	2.8 19.6	3 6.3 72.6		ug/Kg ug/Kg	
120-12-7	Anthracene	4004	1000	10000	7.4	36.3	360	ug/Kg ug/Kg	
206-44-0	Fluoranthene	4400	3600	D E	2314.6	26.3 7 2.6			
129-00-0	Pyrene	3000	2900	DE	87174	3 6.3	360	ug/Kg ug/Kg	9/4/
56-55-3	Benzo(a)anthracene		1700	77 P	17.3	36.3	360	ug/Kg ug/Kg	
218-01-9	Chrysene		1600		16.4	36.3	360	ug/Kg ug/Kg	
205-99-2	Benzo(b)fluoranthene		1600		11.9	36.3	360	ug/Kg	
207-08-9	Benzo(k)fluoranthene		690		17.1	36.3	360	ug/Kg	
50-32-8	Benzo(a)pyrene		1500		7.8	36.3	360	ug/Kg	
193-39-5	Indeno(1,2,3-cd)pyrene		830		12.1	36.3	360	ug/Kg	
53-70-3	Dibenzo(a,h)anthracene		170	j	10.5	36.3	360	ug/Kg ug/Kg	
191-24-2	Benzo(g,h,i)perylene		810		14.7	36.3	360	ug/Kg ug/Kg	
SURROGATES								, min 1 min	
367-12-4	2-Fluorophenol		100		28 - 127		70%	SPK: 150	
13127-88-3	Phenol-d6		110		34 - 127		75%	SPK: 150	
4165-60-0	Nitrobenzene-d5		82.8		31 - 132		83%	SPK: 130	
321-60-8	2-Fluorobiphenyl		80.4		39 - 123		80%	SPK: 100	
118-79-6	2,4,6-Tribromophenol		99.8		30 - 133		67%	SPK: 100 SPK: 150	
1718-51-0	Terphenyl-d14		82		37 - 115		82%	SPK: 150 SPK: 100	
INTERNAL STA	ANDARDS				_		, -		

135 of 483

3855-82-1 1,4-Dichlorobenzene-d4 171848 6.4

F3304

Report of Analysis

Client:	URS Co	rporation				Date Collected:		07/23/14	4
Project:	Bronx P	sy. Center				Date Received:		07/24/14	4
Client Sample ID:	TI-SB02	2(0-2)				SDG No.:	F3304		
Lab Sample ID:	F3304-0)1				Matrix:		SOIL	
Analytical Method:	SW8270)				% Moisture:		8.5	
Sample Wt/Vol:	30.1	Units:	g			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCM	IS Group I
Extraction Type:				Decanted:	N	Level:		LOW	
Injection Volume:			GPC	Factor: 1.0		GPC Cleanup:	N		PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072800.D	1	07/25/14	07/26/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	661933	8.34					
15067-26-2	Acenaphthene-d10	370776	11.14					
1517-22-2	Phenanthrene-d10	682925	13.55					
1719-03-5	Chrysene-d12	723401	17.23					
1520-96-3	Perylene-d12	699023	18.89					
TENTATIVE ID	ENTIFIED COMPOUNDS							
	unknown1.37	7500	J			1.37	ug/Kg	
000994-05-8	Butane, 2-methoxy-2-methyl-	950	JМ			1.64	ug/Kg	
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	1800	AB			4.08	ug/Kg	-
	unknown6.09	2700	J			6.09	ug/Kg	
91-57-6	2-Methylnaphthalene	82.8	J			9.49	ug/Kg	1.4
131-11 - 3	Dimethylphthalate	640	J			10.79	ug/Kg	9 41
86-74-8	Carbazole	540	J			13.96	ug/Kg	
002531-84-2	Phenanthrene, 2-methyl-	200	J₩			14.32	ug/Kg	
000203-64-5	4H-Cyclopenta[def]phenanthrene	530	JM			14.48	ug/Kg	
005672-97-9	5,16[1,2]:8,13[1,2]-Dibenzen	260	JΝ			14.78	ug/Kg	
018435-45-5	1-Nonadecene	300	JŊ			15.21	ug/Kg	
117 - 81-7	Bis(2-ethylhexyl)phthalate	270	j			17.28	ug/Kg	
002498-66-0	Benz(A)anthracene-7,12-dione	220	JN			18.11	ug/Kg	
000192-97-2	Benzo[e]pyrene	440	JN			18.59	ug/Kg	
000198-55-0	Perylene	880	JN			18.78	ug/Kg	
000192-65-4	1,2:4,5-Dibenzopyrene	380	JN			22.38	ug/Kg	
005385-75-1	Dibenz(a,e)aceanthrylene	240	JM			22.54	ug/Kg ug/Kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

 $Q = indicates \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

= Not Detected

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

F3304

CHENTIECH284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

			Report of A	nalysis				
Client:	URS Corpo	oration			Date	: Collected:	07/23/14	
Project:	Bronx Psy.	Center				Received:	07/24/14	
Client Sample	-							
-	`				SDC	No.:	F3304	
Lab Sample ID	: F3304-01D	DL /			Matı	rix:	SOIL	
Analytical Met	hod: SW8270				% M	oisture:	8.5	
Sample Wt/Vol	: 30.1	Units: g			Fina	l Vol:	1000	uL
Soil Aliquot Vo	ıl:	/ uL			Test:	1		
-		/ "				1	SVOCMS	Group1
Extraction Type			Decanted:	N	Leve	:1:	LOW	
Injection Volum	ne :	GI	PC Factor: 1.0		GPC	Cleanup:	N	PH :
Eile ID/Os Batak	Dil di					/		
File ID/Qc Batch			Prep Date		te Analyze	d	Prep Batch ID	
BF072891.D	2		07/25/14	07	7/31/14		PB78047	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS				-	1			
108-95-2	Phenol		720	UD/	16.8	72.6	720	ug/Kg
95-48-7	2-Methylphenol		720	UD	39.4	72.6	720	ug/Kg ug/Kg
65794-96-9	3+4-Methylphenols		720	UD	37.7	72.6	720	ug/Kg ug/Kg
91-20-3	Naphthalene	1	200	/JD	25.1	72.6	720	ug/Kg
208-96-8	Acenaphthylene	1	720	/ UD	18.3	72.6	720	ug/Kg
83-32-9	Acenaphthene	1	490	√ JD	20.5	72.6	720	ug/Kg
132-64-9	Dibenzofuran		350	/JD	28.3	72.6	720	ug/Kg
86-73-7	Fluorene	1	540	JD	27.4	72.6	720	ug/Kg
118-74-1	Hexachlorobenzene	1	720	UD	29.6	72.6	720	ug/Kg
87-86-5	Pentachlorophenol		720	UD	49.7	72.6	720	ug/Kg
85-01-8	Phenanthrene	1	4000	D	19.6	72.6	720	ug/Kg
120-12-7	Anthracene	/	/ 1100	D	14.8	72.6	720	ug/Kg
206-44-0	Fluoranthene		4400	D	14.6	72.6	720	ug/Kg
129-00-0	Pyrene		3000	D	17.4	72.6	720	ug/Kg
56-55-3	Benzo(a)anthracene		1800	D	34.6	72.6	720	ug/Kg
218-01-9	Chrysene	/	1600	D	32.9	72.6	720	ug/Kg
205-99-2	Benzo(b)fluoranther		1900	D	23.7	72.6	720	ug/Kg
207-08-9	Benzo(k)fluoranther	ne /	570	JD	34.2	72.6	720	ug/Kg
50-32-8	Benzo(a)pyrene		1600	D	15.7	72.6	720	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyr		860	D	24.2	72.6	720	ug/Kg
53-70-3	Dibenzo(a,h)anthrac	7	190	JD	20.9	72.6	720	ug/Kg
191-24-2	Benzo(g.h,i)perylen	e/	910	D	29.4	72.6	720	ug/Kg
SURROGATES	/							
367-12-4	2-Fluorophenol		110	1	28 - 127		75%	SPK: 150
13127-88-3	Phenol-d6		110		34 - 127		75%	SPK: 150
4165-60-0	Nitrobenzene-d5		90.2	1	31 - 132		90%	SPK: 100
321-60-8	2-Fluorobiphenyl		89.4	1	39 - 123		89%	SPK: 100
118-79-6	2,4,6-Tribromophen	ol	96.4		30 - 133		64%	SPK: 150
1718-51-0	Terphenyl-d14		75.9		37 - 115		76%	SPK: 100
INTERNAL STA					1	alth	†	
3855-82-1	1,4-Dichlorobenzene	e-d4	118256	6.26	1	0	•	
204								

137 of 483

exchair of Thursday	Report	of Analysis
---------------------	--------	-------------

1146-65-2	Naphthalene-d8		452109 8.	2		
CAS Number	Parameter		Conc. Qualif	ier MDL LOD	LOQ / CRQI	Units
BF072891.D	2	07/25/14		07/31/14	PB78047	
File ID/Qc Batch:	Dilution;	Prep Date	/	Date Analyzed	Prep Batch	ID
Injection Volume	:	GPC Factor:	1,0	GPC Cleanup:	N	PH:
Extraction Type:		Decar	nted: N	Level:	LOW	
Soil Aliquot Vol:		uL		Test:	SVOCM	IS Group1
Sample Wt/Vol:	30.1 Units:	g		Final Vol:	1000	uL
Analytical Metho	od: SW8270			% Moisture:	8.5	
Lab Sample ID:	F3304-01DL			Matrix:	SOIL	
Client Sample ID): TI-SB02(0-2)DL			SDG No.:	F3304	
Project:	Bronx Psy. Center			Date Received:	07/24/14	4
Client:	URS Corporation			Pate Collected:	07/23/14	4

255167

474180

553999

513403

10.98

13.37

17.07

18.72

15067-26-2

1517-22-2

1719-03-5

1520-96-3

Acenaphthene-d10

Phenanthrene-d10

Chrysene-d12

Perylene-d12

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

284 Sheffield Street. Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB02(5-10) SDG No.: F3304 Lab Sample ID: F3304-02 Matrix: SOIL Analytical Method: SW8270 % Moisture: 17.6 Sample Wt/Vol: 30.05 Units: Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072804.D 1 07/25/14 07/26/14 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CRQL	Units
TARGETS			-				
108-95-2	Phenol	400	U	9.3	40.4	400	ug/Kg
95-48-7	2-Methylphenol	400	Ŭ	21.9	40.4	400	ug/Kg ug/Kg
65794-96-9	3+4-Methylphenols	400	Ü	21.5	40.4	400	ug/Kg ug/Kg
91-20-3	Naphthalene	400	Ŭ	13.9	40.4	400	ug/Kg ug/Kg
208-96-8	Acenaphthylene	400	Ü	10.2	40.4	400	ug/Kg ug/Kg
83-32-9	Acenaphthene	400	Ū	11.4	40.4	400	ug/Kg ug/Kg
132-64-9	Dibenzofuran	400	Ü	15.8	40.4	400	ug/Kg ug/Kg
86-73-7	Fluorene	400	Ū	15.3	40.4	400	ug/Kg ug/Kg
118-74-1	Hexachlorobenzene	400	Ü	16.5	40.4	400	ug/Kg ug/Kg
87-86-5	Pentachlorophenol	400	Ū	27.6	40.4	400	ug/Kg ug/Kg
85-01-8	Phenanthrene	130	J	10.9	40.4	400	ug/Kg ug/Kg
120-12-7	Anthracene	400	Ü	8.2	40.4	400	ug/Kg ug/Kg
206-44-0	Fluoranthene	120	J	8.1	40.4	400	ug/Kg ug/Kg
129-00-0	Pyrene	98.1	J	9.7	40.4	400	ug/Kg ug/Kg
56-55-3	Benzo(a)anthracene	400	U	19.3	40.4	400	ug/Kg ug/Kg
218-01-9	Chrysene	400	U	18.3	40.4	400	ug/Kg
205-99-2	Benzo(b)fluoranthene	400	U	13.2	40.4	400	ug/Kg
207-08-9	Benzo(k)fluoranthene	400	U	19	40.4	400	ug/Kg
50-32-8	Benzo(a)pyrene	400	Ū	8.7	40.4	400	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	400	U	13.4	40.4	400	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	400	U	11.6	40.4	400	ug/Kg
191-24-2	Benzo(g,h,i)perylene	400	U	16.4	40.4	400	ug/Kg ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	93.2		28 - 127	•	62%	SPK: 150
13127-88-3	Phenol-d6	98.3		34 - 127		66%	SPK: 150
4165-60-0	Nitrobenzene-d5	73.3		31 - 132		73%	SPK: 100
321-60-8	2-Fluorobiphenyl	64.8		39 - 123		65%	SPK: 100
118-79-6	2,4,6-Tribromophenol	88.4		30 - 133		59%	SPK: 150
1718-51-0	Terphenyl-d14	63.1		37 - 115		63%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	177225	6.4				

F3304 139 of 483

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB02(5-10)		SDG No.:	F3304
Lab Sample ID:	F3304-02		Matrix:	SOIL
Analytical Method:	SW8270		% Moisture:	17.6
Sample Wt/Vol:	30.05 Units: g	7	Final Vol:	1000 uL
Soil Aliquot Vol:	ι	ıL	Test:	SVOCMS Group1
Extraction Type:		Decanted: N	Level:	LOW
Injection Volume:		GPC Factor: 1.0	GPC Cleanup: N	PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072804.D	1	07/25/14	07/26/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	681995	8.34					
15067-26-2	Acenaphthene-d10	379630	11.16					
1517-22-2	Phenanthrene-d10	693017	13.55					
1719-03-5	Chrysene-d12	763880	17.23					
1520-96-3	Perylene-d12	702740	18.89					
TENTATIVE ID	ENTIFIED COMPOUNDS							
	unknown1.37	8600	J			1.37	ug/Kg	
000994-05-8	Butane, 2-methoxy-2-methyl-	1500	JN			1.64	ug/Kg	
000123-42-2	2 Pentanone, 4-hydroxy 4 methyl-	1600	AB			4.08	ug/Kg	
	unknown6.09	2500	J			6.09	ug/Kg	
131-11-3	Dimethylphthalate	720	J			10.79	ug/Kg	
074685-29-3	9-Eicosene, (E)-	180	J N			15.21	ug/Kg ug/Kg	
1000282-97-3	Heptafluorobutanoic acid, heptadec	130	J			17.1	ug/Kg	9/4/14
117-81-7	Bis(2-ethylhexyl)phthalate	190	J			17.28	ug/Kg ug/Kg	•
	unknown17.50	88.8	JM			17.5	ug/Kg	
000080-09-1	4,4-Dihydroxydiphenylsulphone	89.7	J			18.25	ug/Kg ug/Kg	
000192-97-2	Benzo[e]pyrene	110	J 🗸			18.47	ug/Kg ug/Kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

 $Q = indicates \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

File ID/Qc Batch:

F3304

Dilution:

284 Sheffield Street. Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corp	oration				Date Collected:		07/23/14	
Project:	Bronx Psy	. Center				Date Received:		07/24/14	
Client Sample ID:	TI-SB02(1	0-WT)				SDG No.:		F3304	
Lab Sample ID:	F3304-03					Matrix:		SOIL	
Analytical Method:	SW8270					% Moisture:		19.5	
Sample Wt/Vol:	30.04	Units:	g			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCMS Group	I
Extraction Type:				Decanted:	N	Level :		LOW	
Injection Volume:			GPC F	actor: 1.0		GPC Cleanup:	N	PH:	

Date Analyzed

Prep Batch ID

Prep Date

BF072808.D	F072808.D 2 07/25/14		07	//27/14		PB78047	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS			· · · · · ·				
108-95-2	Phenol	820	U	19.1	82.7	820	ug/Kg
95-48-7	2-Methylphenol	820	U	44.9	82.7	820	ug/Kg
65794-96-9	3+4-Methylphenols	820	U	42.9	82.7	820	ug/Kg
91-20-3	Naphthalene	820	U	28.5	82.7	820	ug/Kg
208-96-8	Acenaphthylene	410	J	20.8	82.7	820	ug/Kg
83-32-9	Acenaphthene	190	J	23.3	82.7	820	ug/Kg
132-64-9	Dibenzofuran	200	J	32.3	82.7	820	ug/Kg
86-73-7	Fluorene	290	J	31.3	82.7	820	ug/Kg ug/Kg
118-74-1	Hexachlorobenzene	820	U	33.7	82.7	820	ug/Kg ug/Kg
87 - 86-5	Pentachlorophenol	820	U	56.6	82.7	820	ug/Kg ug/Kg
85-01-8	Phenanthrene	3300	-	22.3	82.7	820	ug/Kg ug/Kg
120-12-7	Anthracene	680	J	16.9	82.7	820	ug/Kg ug/Kg
206-44-0	Fluoranthene	4100		16.6	82.7	820	ug/Kg ug/Kg
129-00-0	Pyrene	3300		19.8	82.7	820	ug/Kg ug/Kg
56-55-3	Benzo(a)anthracene	1800		39.5	82.7	820	ug/Kg ug/Kg
218-01-9	Chrysene	2000		37.5	82.7	820	ug/Kg ug/Kg
205-99-2	Benzo(b)fluoranthene	2600		27	82.7	820	ug/Kg
207-08-9	Benzo(k)fluoranthene	530	J	39	82.7	820	ug/Kg ug/Kg
50-32-8	Benzo(a)pyrene	1700	•	17.9	82.7	820	ug/Kg ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1000		27.5	82.7	820	ug/Kg ug/Kg
53-70-3	Dibenzo(a,h)anthracene	260	J	23.8	82.7	820	ug/Kg ug/Kg
191-24-2	Benzo(g,h,i)perylene	1100		33.5	82.7	820	ug/Kg ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	120		28 - 127	,	77%	SPK: 150
13127-88-3	Phenol-d6	130		34 - 127		84%	SPK: 150
4165-60-0	Nitrobenzene-d5	93.2		31 - 132		93%	SPK: 100
321-60-8	2-Fluorobiphenyl	91.6		39 - 123		92%	SPK: 100
118-79-6	2,4,6-Tribromophenol	94.3		30 - 133		63%	SPK: 100
1718-51-0	Terphenyl-d14	92.7		37 - 115		93%	SPK: 100
INTERNAL STA							
3855-82-1	1,4-Dichlorobenzene-d4	173013	6.41				

141 of 483

Report of Analysis

Client:	URS Corporation	Date Collected: 07/23/14
Project:	Bronx Psy. Center	Date Received: 07/24/14
Client Sample ID:	TI-SB02(10-WT)	SDG No.: F3304
Lab Sample ID:	F3304-03	Matrix: SOIL
Analytical Method:	SW8270	% Moisture: 19.5
Sample Wt/Vol:	30.04 Units: g	Final Vol: 1000 uL
Soil Aliquot Vol:	uL	Test: SVOCMS Group1
Extraction Type:	Decanted: N	Level: LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072808.D 2 07/25/14 07/27/14 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8	682031	8.34	=	-		
15067-26-2	Acenaphthene-d10	382175	11.16				
1517-22-2	Phenanthrene-d10	724566	13.55				
1719-03-5	Chrysene-d12	801346	17.23				
1520-96-3	Perylene-d12	707121	18.91				
TENTATIVE ID	ENTIFIED COMPOUNDS						
-000077-76-9	Propane, 2,2-dimethoxy-	10500	JB			1.37	ug/Kg
000994-05-8	Butane, 2-methoxy-2-methyl-	1200	J 🔥			1.64	ug/Kg
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	2400	AB			4.08	ug/Kg
	unknown6.09	3300	J			6.09	ug/Kg
131-11-3	Dimethylphthalate	1200	J			10.79	ug/Kg
86-74-8	Carbazole	290	J			13.96	ug/Kg
002531-84-2	Phenanthrene, 2-methyl-	380	J 🔥			14.33	ug/Kg
000832-69-9	Phenanthrene, 1-methyl-	510	J			14.37	ug/Kg
000203-64-5	4H-Cyclopenta[def]phenanthrene	650	J			14.48	ug/Kg
000610-48-0	Anthracene, 1-methyl-	260	j			14.52	ug/Kg
137235-51-9	1,2,4,8-Tetramethylbicyclo[6.3.0]u	530	j			14.78	ug/Kg
003674-66-6	Phenanthrene, 2,5-dimethyl-	250	J			15.12	ug/Kg
005737-13-3	Cyclopenta(def)phenanthrenone	310	J 🌗			15.23	ug/Kg
000123-95-5	Octadecanoic acid, butyl ester	350	JB			16.63	це/Ке
	unknown16.94	240	J			16.94	ug/Kg
117-81-7	Bis(2-ethylhexyl)phthalate	320	J			17.28	ug/Kg
000192-97-2	Benzo[e]pyrene	330	Jγ			18.6	ug/Kg

9/4/14/2

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

284 Sheffield Street. Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB03(0-2) SDG No.: F3304 Lab Sample ID: F3304-04 Matrix: SOIL Analytical Method: SW8270 % Moisture: 6.1 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF072809.D
 2
 07/25/14
 07/27/14
 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS			-			<u> </u>	-
108-95-2	Phenol	700	U	16.4	70.9	700	ug/Kg
95-48-7	2-Methylphenol	700	U	38.5	70.9	700	ug/Kg ug/Kg
65794-96-9	3+4-Methylphenols	700	Ü	36.8	70.9	700	ug/Kg ug/Kg
91-20-3	Naphthalene	700	Ŭ	24.5	70.9	700	ug/Kg ug/Kg
208-96-8	Acenaphthylene	700	U	17.9	70.9	700	ug/Kg ug/Kg
83-32-9	Acenaphthene	700	Ŭ	20	70.9	700	ug/Kg ug/Kg
132-64-9	Dibenzofuran	700	Ū	27.6	70.9	700	ug/Kg ug/Kg
86-73-7	Fluorene	700	Ū	26.8	70.9	700	ug/Kg ug/Kg
118-74-1	Hexachlorobenzene	700	Ü	28.9	70.9	700	ug/Kg ug/Kg
87-86-5	Pentachlorophenol	700	Ü	48.5	70.9	700	ug/Kg ug/Kg
85-01-8	Phenanthrene	620	J	19.1	70.9	700	ug/Kg ug/Kg
120-12-7	Anthracene	160	J	14.5	70.9	700	ug/Kg
206-44-0	Fluoranthene	1000		14.2	70.9	700	ug/Kg
129-00-0	Pyrene	800		17	70.9	700	ug/Kg
56-55-3	Benzo(a)anthracene	510	J	33.8	70.9	700	ug/Kg ug/Kg
218-01-9	Chrysene	420	J	32.1	70.9	700	ug/Kg
205-99-2	Benzo(b)fluoranthene	610	J	23.2	70.9	700	ug/Kg
207-08-9	Benzo(k)fluoranthene	180	J	33.4	70.9	700	ug/Kg
50-32-8	Benzo(a)pyrene	480	J	15.3	70.9	700	ug/Kg
193 - 39-5	Indeno(1,2,3-cd)pyrene	250	J	23.6	70.9	700	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	700	U	20.4	70.9	700	ug/Kg
191-24-2	Benzo(g,h,i)perylene	300	J	28.7	70.9	700	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	84.1		28 - 127	•	56%	SPK: 150
13127-88-3	Phenol-d6	87.9		34 - 127	7	59%	SPK: 150
4165-60-0	Nitrobenzene-d5	63.5		31 - 132	!	63%	SPK: 100
321-60-8	2-Fluorobiphenyl	65.9		39 - 123		66%	SPK: 100
118-79-6	2,4,6-Tribromophenol	78.1		30 - 133		52%	SPK: 150
1718-51-0	Terphenyl-d14	67.2		37 - 115		67%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1.4-Dichlorobenzene-d4	169645	6.41				

3855-82-1 1,4-Dichlorobenzene-d4 169645 6.41

F3304

143 of 483

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected: 07/23/14
Project:	Bronx Psy. Center	Date Received: 07/24/14
Client Sample ID:	TI-SB03(0-2)	SDG No.: F3304
Lab Sample ID:	F3304-04	Matrix: SOIL
Analytical Method:	SW8270	% Moisture: 6.1
Sample Wt/Vol:	30.05 Units: g	Final Vol: 1000 uL
Soil Aliquot Vol:	uL	Test: SVOCMS Group1
Extraction Type:	Decanted: N	Level: LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup: N PH:

File ID/Qc Batch: BF072809.D	Dilution:	Prep Date 07/25/14			e Analyze 27/14	d	Prep Batch ID PB78047	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8		677983	8.34	·			
15067-26-2	Acenaphthene-d10		384854	11.16				
1517-22-2	Phenanthrene-d10		694191	13.55				
1719-03-5	Chrysene-d12		823744	17.23				
1520-96-3	Perylene-d12		717320	18.91				
TENTATIVE IDE	NTIFIED COMPOUNDS							
-000077-76-9	Propane, 2,2-dimethoxy		5400	JD.			1.37	ug/Kg
000994-05-8	Butane, 2-methoxy-2-methyl-		560	JN			1.64	ug/Kg
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl		1500	AB			4.08	ug/Kg
	unknown6.09		2100	J			6.09	ug/Kg
131-11-3	Dimethylphthalate		620	J			10.79	ug/Kg
000203-64-5	4H-Cyclopenta[def]phenanthrene		160	JΝ			14.48	ug/Kg
000110-36-1	n-Butyl myristate		150	JM			16.63	ug/Kg ug/Kg
	unknown17,11		150	J			17.11	ug/Kg ug/Kg
000629-97-0	Docosane		200	JN			18.62	
000192-97-2	Benzo[e]pyrene		280	J			18.79	ug/Kg
000629-99-2	Pentacosane		200	J			19.35	ug/Kg ug/Kg

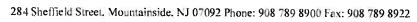
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range


 $Q = indicates \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

CHEMIECH

Report of Analysis

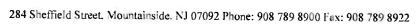
Client:	URS Corporation	Date Collected: 07/23/14
Project:	Bronx Psy. Center	Date Received: 07/24/14
Client Sample ID:	TI-SB03(5-10)	SDG No.: F3304
Lab Sample ID:	F3304-05	Matrix: SOIL
Analytical Method:	SW8270	% Moisture: 9.7
Sample Wt/Vol:	30.09 Units: g	Final Vol: 1000 uL
Soil Aliquot Vol:	uL	Test: SVOCMS Group!
Extraction Type:	Decanted: N	Level: LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup: N PH:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF072810.D
 2
 07/25/14
 07/27/14
 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS					**************************************			-10
108-95-2	Phenol	730	U	17	73.6	730	ug/Kg	
95-48-7	2-Methylphenol	730	Ū	40	73.6	730	ug/Kg	
65794-96-9	3+4-Methylphenols	730	U	38.2	73.6	730	ug/Kg	
91-20-3	Naphthalene	730	U	25.4	73.6	730	ug/Kg	
208-96-8	Acenaphthylene	490	J	18.5	73.6	730	ug/Kg	
83-32-9	Acenaphthene	300	J	20.8	73.6	730	ug/Kg	
132-64-9	Dibenzofuran	180	J	28.7	73.6	730	ug/Kg	
86-73-7	Fluorene	380	J	27.8	73.6	730	ug/Kg	
118-74-1	Hexachlorobenzene	730	U	30	73.6	730	ug/Kg	
87-86-5	Pentachlorophenol	730	U	50.3	73.6	730	ug/Kg	
85-01-8	Phenanthrene	4300		19.9	73.6	730	ug/Kg	
120-12-7	Anthracene	1200		15	73.6	730	ug/Kg	
206-44-0	Fluoranthene	7300 -6600	DE	14.8 29	16 73.6 ISU	730-150 V	ug/Kg	
129-00-0	Pyrene	5600	1884	17.7	73.6	730	ug/Kg	
56-55-3	Benzo(a)anthracene	3500		35.1	73.6	730	ug/Kg	
218-01-9	Chrysene	3100		33.3	73.6	730	ug/Kg	-1.1
205-99-2	Benzo(b)fluoranthene	3600		24.1	73.6	730	ug/Kg	41414
207-08-9	Benzo(k)fluoranthene	1200		34.7	73.6	730	ug/Kg	•
50-32-8	Benzo(a)pyrene	2900		15.9	73.6	730	ug/Kg	
193-39-5	Indeno(1,2,3-cd)pyrene	1600		24.5	73.6	730	ug/Kg	
53-70-3	Dibenzo(a,h)anthracene	410	J	21.2	73.6	730	ug/Kg	
191-24-2	Benzo(g,h,i)perylene	1700		29.8	73.6	730	ug/Kg	
SURROGATES								
367-12-4	2-Fluorophenol	130		28 - 127	7	86%	SPK: 150	
13127-88-3	Phenol-d6	140		34 - 127	7	92%	SPK: 150	
4165-60-0	Nitrobenzene-d5	100		31 - 132	2	102%	SPK: 100	
321-60-8	2-Fluorobiphenyl	100		39 - 123	3	104%	SPK: 100	
118-79 - 6	2,4,6-Tribromophenol	120		30 - 133		77%	SPK: 150	
1718-51-0	Terphenyl-d14	100		37 - 115		104%	SPK: 100	
INTERNAL STA	NDARDS							

3855-82-1 1,4-Dichlorobenzene-d4 130973 6.41


F3304 145 of 483

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB03(5-10)		SDG No.:	F3304
Lab Sample ID:	F3304-05		Matrix:	SOIL
Analytical Method:	SW8270		% Moisture:	9.7
Sample Wt/Vol:	30.09 Units:	g	Final Vol:	1000 uL
Soil Aliquot Vol:		uL	Test:	SVOCMS Group1
Extraction Type:		Decanted: N	Level:	LOW
Injection Volume:		GPC Factor: 1.0	GPC Cleanup: N	PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072810.D	2	07/25/14	07/27/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	519758	8.34					
15067-26-2	Acenaphthene-d10	291422	11.16					
1517-22-2	Phenanthrene-d10	553147	13.56					
1719-03-5	Chrysene-d12	624129	17.23					
1520-96-3	Perylene-d12	582432	18.91					
TENTATIVE ID	DENTIFIED COMPOUNDS							
	unknown1.37	14500	J			1.37	ug/Kg	
000994-05-8	Butane, 2-methoxy-2-methyl-	980	JŊ			1.62	ug/Kg	
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	2000	AB			4.08	ug/Kg	_
	unknown6.09	3200	J			6.09	ug/Kg	
105-60-2	Caprolactam	260	J			9.04	ug/Kg	
131-11-3	Dimethylphthalate	1100	J			10.79	ug/Kg	
86-74-8	Carbazole	360	J			13.96	ug/Kg	
016587-52-3	Dibenzothiophene, 3-methyl-	370	JŊ			14.07	ug/Kg	el.
000832-69-9	Phenanthrene, 1-methyl-	760	J			14.33	ug/Kg	41
002531-84-2	Phenanthrene, 2-methyl-	980	J			14.37	ug/Kg	
000203-64-5	4H-Cyclopenta[def]phenanthrene	1400	J			14.48	ug/Kg	
107426-38-0	Naphtho[2,3-b]norbornadiene	550	J			14.52	ug/Kg	
035465-71-5	2-Phenylnaphthalene	860	J			14.78	ug/Kg	
003674-66-6	Phenanthrene, 2,5-dimethyl-	760	J			15.13	ug/Kg	
005737-13-3	Cyclopenta(def)phenanthrenone	470	J			15.24	ug/Kg	
000243-17-4	11H-Benzo[b]fluorene	420	J∳			16.09	ug/Kg	
117-81-7	Bis(2-ethylhexyl)phthalate	570	J			17.28	ug/Kg	
000192-97-2	Benzo[e]pyrene	820	JM			18.6	ug/Kg	
000198-55-0	Perylene	1800	J			18.79	ug/Kg	
068351-74-6	1-Methyl-1-hydridotetrachlorocyclo	780	J			20.03	ug/Kg	
000213-46-7	1,2:7,8-Dibenzophenanthrene	490	j 🌡			20.32	ug/Kg	

CHEMITECH

Client:	URS Corporation	1			Da	te Collected:	07/23/14	
Project:	Bronx Psy. Cente	er				te Received:	07/24/14	
Client Sample ID:	•					G No.:		
Lab Sample ID:	F3304-05DL					\	F3304	
· ·					Ma	trix;	SOIL	
Analytical Method	d: SW8270				%	Moisture:	9.7	
Sample Wt/Vol:	30.09 Units	: / g			Fin	al Vol:	1000	uL
Soil Aliquot Vol:		/ uL			Tes	t:	SVOCMS	Group I
Extraction Type:	/	Deca	nted :	N	Les	vel :	LOW	G. Cup I
Injection Volume	· /	GPC Factor:	1.0			C Cleanup:		PH:
Eile ID/Oc Beach	District of the second					/		
File ID/Qc Batch:	Dilution:	Prep Date		Dat	e Analyz	zed /	Prep Batch ID)
BF072892.D	4	07/25/14		07/	31/14	/	PB78047	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS								
108-95-2	Phenol		1500	UD	34	150	1500	ug/Kg
95-48-7	2-Methylphenol		1500	UD	79.9	150	1500	ug/Kg ug/Kg
65794-96-9	3+4-Methylphenols		1500	UD /	76.4	150	1500	ug/Kg ug/Kg
91-20-3	Naphthalene		1500	UD	50.8	150	1500	ug/Kg ug/Kg
208-96-8	Acenaphthylene		390	JD	37.1	150	1500	ug/Kg
83-32-9	Acenaphthene		310	/JD	41.5	150	1500	ug/Kg
132-64-9	Dibenzofuran		1500	/ UD	57.4	150	1500	ug/Kg
86-73-7	Fluorene		390	/ JD	55.6	150	1500	ug/Kg
118-74-1	Hexachlorobenzene		1500	UD	60.1	150	1500	ug/Kg
87-86-5	Pentachlorophenol		1500	UD	100	150	1500	ug/Kg
85-01-8	Phenanthrene		4500	D	39.7	150	1500	ug/Kg
120-12-7	Anthracene		1100	JD	30	150	1500	ug/Kg
206-44-0	Fluoranthene		7300	D	29.6	150	1500	ug/Kg
129-00-0	Pyrene		5400	D	35.3	150	1500	ug/Kg
56-55-3	Benzo(a)anthracene		3500	D	70.2	150	1500	ug/Kg
218-01-9	Chrysene		3200	D	66.7	150	1500	ug/Kg
205-99-2	Benzo(b)fluoranthene		3600	D	48.1	150	1500	ug/Kg
207-08-9	Benzo(k)fluoranthene		1200	JD	69.3	150	1500	ug/Kg
50-32-8	Benzo(a)pyrene		2900	D	31.8	150	1500	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		1700	D	49	150	1500	ug/Kg
53-70-3	Dibenzo(a,h)anthracene		420	JD	42.4	150	1500	ug/Kg
191-24-2	Benzo(g,h,i)perylene		1800	D	59.6	150	1500	ug/Kg
SURROGATES				1				
367-12-4	2-Fluorophenol		120		28 - 12	7	81%	SPK: 150
13127-88-3	Phenol-d6		130		34 - 12	7	83%	SPK: 150
4165-60-0	Nitrobenzene-d5		100		31 - 13		101%	SPK: 100
321-60-8	2-Fluorobiphenyl		100		39 - 12		101%	SPK: 100
118-79-6	2,4,6-Tribromophenol		98.5		30 - 13		66%	SPK: 150
1718-51-0	Terphenyl-d14		91.2		37 - 11	5	91%	SPK: 100
INTERNAL STANE							1.1	
3855-82-1	1,4-Dichlorobenzene-d4		108066	6.26		1	914114	
304			148 of				**	

Report	of A	nalveie	
Menori	UI A	Haivsis	

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB03(5-10)DL	SDG No.:	F3304
Lab Sample ID:	F3304-05DL	Matrix:	SOIL
Analytical Method:	SW8270	% Moisture:	9.7
Sample Wt/Vol:	30.09 Units: g	Final Vol:	1000 uL
Soil Aliquot Vol:	uL	Test:	SVOCMS Group1
Extraction Type:	Decanted: N	Level:	LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup:	N PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072892.D	4	07/25/14	07/31/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	416889	8.2		,			
15067-26-2	Acenaphthene-d10	234510	10.98					
1517-22-2	Phenanthrene-d10	453207	13.37					
1719-03-5	Chrysene-d12	524625	17.07					
1520-96-3	Perylene-d12	502603	18.73					

9/4/14

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

 $Q = indicates \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB03(10-WT) SDG No.: F3304 Lab Sample ID: F3304-06 Matrix: SOIL Analytical Method: SW8270 % Moisture: 21.9 Sample Wt/Vol: 30.04 Units: Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: Decanted: Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072811.D 2 07/25/14 07/27/14 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS		-					
108-95-2	Phenol	840	U	19.7	85.2	840	ug/Kg
95-48-7	2-Methylphenol	840	Ü	46.3	85.2	840	ug/Kg ug/Kg
65794-96-9	3+4-Methylphenols	840	Ü	44.2	85.2	840	ug/Kg ug/Kg
91-20-3	Naphthalene	840	Ŭ	29.4	85.2	840	ug/Kg ug/Kg
208-96-8	Acenaphthylene	360	J	21.5	85.2	840	ug/Kg ug/Kg
83-32-9	Acenaphthene	840	Ū	24	85.2	840	ug/Kg ug/Kg
132-64-9	Dibenzofuran	840	Ü	33.2	85.2	840	ug/Kg ug/Kg
86 - 73-7	Fluorene	840	Ū	32.2	85.2	840	ug/Kg ug/Kg
118-74-1	Hexachlorobenzene	840	Ü	34.8	85.2	840	ug/Kg ug/Kg
87-86-5	Pentachlorophenol	840	Ü	58.3	85.2	840	ug/Kg ug/Kg
85-01-8	Phenanthrene	1100	_	23	85.2	840	ug/Kg ug/Kg
120-12-7	Anthracene	330	J	17.4	85.2	840	ug/Kg ug/Kg
206-44-0	Fluoranthene	1900	•	17.1	85.2	840	ug/Kg ug/Kg
129-00-0	Ругеле	2400		20.5	85.2	840	ug/Kg ug/Kg
56-55-3	Benzo(a)anthracene	1300		40.7	85.2	840	ug/Kg ug/Kg
218-01-9	Chrysene	1200		38.6	85.2	840	ug/Kg ug/Kg
205-99-2	Benzo(b)fluoranthene	1900		27.9	85.2	840	ug/Kg ug/Kg
20 7- 08-9	Benzo(k)fluoranthene	510	J	40.2	85.2	840	ug/Kg ug/Kg
50-32-8	Benzo(a)pyrene	1600	_	18.4	85.2	840	ug/Kg ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	930		28.4	85.2	840	ug/Kg ug/Kg
53-70-3	Dibenzo(a,h)anthracene	200	J	24.6	85.2	840	ug/Kg ug/Kg
191-24-2	Benzo(g,h,i)perylene	1500	-	34.5	85.2	840	ug/Kg ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	120		28 - 127		83%	SPK: 150
13127-88-3	Phenol-d6	130		34 - 127		89%	SPK: 150
4165-60-0	Nitrobenzene-d5	100		31 - 132		103%	SPK: 100
321-60-8	2-Fluorobiphenyl	90.5		39 - 123		90%	SPK: 100
118-79-6	2,4,6-Tribromophenol	110		30 - 133		74%	SPK: 150
1718-51-0	Terphenyl-d14	87.8		37 - 115		88%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	176445	6.41				

3855-82-1 1,4-Dichlorobenzene-d4 176445 6.41

F3304

150 of 483

Client:		URS Cor	poration				Date Collected:		07/23/14	
Project:		Bronx Ps	y. Center				Date Received:		07/24/14	
Client Sample I	D:	TI-SB03(10-WT)				SDG No.:		F3304	
Lab Sample ID	:	F3304-06					Matrix:		SOIL	
Analytical Meth	nod:	SW8270					% Moisture:		21.9	
Sample Wt/Vol	:	30.04	Units:	g			Final Vol:		1000	uL
Soil Aliquot Vo	l:			uL			Test:		SVOCMS	Group 1
Extraction Type	::				Decanted:	N	Level:		LOW	•
Injection Volum	e:			GPC I	Factor: 1.0		GPC Cleanup:	N	P.	Н:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072811.D	2	07/25/14	07/27/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	671163	8.36					
15067-26-2	Acenaphthene-d10	383781	11.16					
1517-22-2	Phenanthrene-d10	702446	13.56					
1719-03-5	Chrysene-d12	789133	17.23					
1520-96-3	Perylene-d12	703493	18.91					
TENTATIVE IDI	ENTIFIED COMPOUNDS							
	unknown1.37	16400	J			1.37	ug/Kg	
000994-05-8	Butane, 2-methoxy-2-methyl-	1200	JN			1.64	ug/Kg	
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	2300	AĐ			4.08	ug/Kg	
	unknown6.09	3700	J			6.09	ug/Kg	
131-11-3	Dimethylphthalate	980	J			10.79	ug/Kg	
000832-69-9	Phenanthrene, 1-methyl-	190	JM			14.37	ug/Kg	
000203-64-5	4H-Cyclopenta[def]phenanthrene	390	J			14.48	ug/Kg	1.1
000612-94-2	Naphthalene, 2-phenyl-	260	J			14.78	ug/Kg	9/4/14
005737-13-3	Cyclopenta(def)phenanthrenone	210	J			15.23	ug/Kg	•
025732-74-5	Cyclopenta(cd)pyrene, 3,4-dihydro-	240	J			16.94	ug/Kg	
018835-32-0	1-Tricosene	240	J 🖟			17.11	ug/Kg	
117-81-7	Bis(2-ethylhexyl)phthalate	630	J			17.28	ug/Kg	
016452-37-2	Benz[a]anthracene, 1,2,3,4,7,7a,8,	210	JN			17.9	ug/Kg	
001090-13-7	5,12-Naphthacenedione	220	J			18.11	ug/Kg	
000192-97-2	Benzo[e]pyrene	490	J			18.6	ug/Kg	
074003-55-7	3,4-Dibromobenzaldehyde	230	յ			19.39	ug/Kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

 $Q = \mbox{indicates} \; LCS \; \mbox{control} \; \mbox{criteria} \; \mbox{did} \; \mbox{not} \; \mbox{meet} \; \mbox{requirements} \; \mbox{F3304}$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

284 Sheffield Street. Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB04(0-2) SDG No.: F3304 Lab Sample ID: F3304-07 Matrix: SOIL Analytical Method: SW8270 % Moisture: 9.4 Sample Wt/Vol: 30.04 Units: Final Vol: g 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072798.D 1 07/25/14 07/26/14 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS						· ·	
108-95-2	Phenol	360	U	8.5	36.7	360	ug/Kg
95-48-7	2-Methylphenol	360	Ū	20	36.7	360	ug/Kg
65794-96-9	3+4-Methylphenols	360	Ū	19.1	36.7	360	ug/Kg
91-20-3	Naphthalene	360	U	12.7	36.7	360	ug/Kg
208-96-8	Acenaphthylene	360	U	9.3	36.7	360	ug/Kg
83-32-9	Acenaphthene	360	U	10.4	36.7	360	ug/Kg
132-64-9	Dibenzofuran	360	U	14.3	36.7	360	ug/Kg
86-73-7	Fluorene	360	U	13.9	36.7	360	ug/Kg
118-74-1	Hexachlorobenzene	360	U	15	36.7	360	ug/Kg
87 - 86-5	Pentachlorophenol	360	U	25.1	36.7	360	ug/Kg
85-01-8	Phenanthrene	410		9.9	36.7	360	ug/Kg
120-12-7	Anthracene	84.5	J	7.5	36.7	360	ug/Kg
206-44-0	Fluoranthene	530		7.4	36.7	360	ug/Kg
129-00-0	Pyrene	400		8.8	36.7	360	ug/Kg
56-55-3	Benzo(a)anthracene	230	J	17.5	36.7	360	ug/Kg
218-01-9	Chrysene	210	J	16.6	36.7	360	ug/Kg
205-99-2	Benzo(b)fluoranthene	240	J	12	36.7	360	ug/Kg
207-08-9	Benzo(k)fluoranthene	89.3	J	17.3	36.7	360	ug/Kg
50-32-8	Benzo(a)pyrene	180	J	7.9	36.7	360	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	97.7	J	12.2	36.7	360	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	360	U	10.6	36.7	360	ug/Kg
191-24-2	Benzo(g,h,i)perylene	97.7	J	14.9	36.7	360	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	120		28 - 127	,	78%	SPK: 150
13127-88-3	Phenol-d6	130		34 - 127	,	83%	SPK: 150
4165-60-0	Nitrobenzene-d5	91.9		31 - 132	!	92%	SPK: 100
321-60-8	2-Fluorobiphenyl	83.4		39 - 123	;	83%	SPK: 100
118-79-6	2,4,6-Tribromophenol	110		30 - 133	;	75%	SPK: 150
1718-51-0	Terphenyl-d14	82.4		37 - 115		82%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1 4-Dichlorobenzene d4	169760	<i>4 A</i>				

3855-82-1 1,4-Dichlorobenzene-d4 168760 6.4

F3304 152 of 483

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation	Date Collected: 07/23/14
Project:	Bronx Psy. Center	Date Received: 07/24/14
Client Sample ID:	TI-SB04(0-2)	SDG No.: F3304
Lab Sample ID:	F3304-07	Matrix: SOIL
Analytical Method:	SW8270	% Moisture: 9.4
Sample Wt/Vol:	30.04 Units: g	Final Vol: 1000 uL
Soil Aliquot Vol:	uL	Test: SVOCMS Group1
Extraction Type:	Decanted: N	Level: LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup: N PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072798.D	1	07/25/14	07/26/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8	645284	8,34				
15067-26-2	Acenaphthene-d10	361489	11.14				
1517-22-2	Phenanthrene-d10	718055	13.55				
1719-03-5	Chrysene-d12	785698	17.23				
1520-96-3	Perylene-d12	703796	18.89				
TENTATIVE ID	DENTIFIED COMPOUNDS						
000077-76-9	Propane, 2,2-dimethoxy	11200	JB.			1.37	це/Ке
000994-05-8	Butane, 2-methoxy-2-methyl-	1200	JΝ			1.64	ug/Kg
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	1700	AB			4.08	па/Ка
	unknown6.09	2900	J			6.09	ug/Kg
131-11-3	Dimethylphthalate	970	J			10.79	ug/Kg
000192-97-2	Benzo[e]pyrene	110	J 🙌			18.78	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client:	URS Corporation	Date Collected: 07/23/14
Project:	Bronx Psy. Center	Date Received: 07/24/14
Client Sample ID:	TI-SB04(5-10)	SDG No.: F3304
Lab Sample ID:	F3304-08	Matrix: SOIL
Analytical Method:	SW8270	% Moisture: 9.6
Sample Wt/Vol:	30.06 Units: g	Final Vol: 1000 uL
Soil Aliquot Vol:	uL	Test: SVOCMS Group1
Extraction Type:	Decanted: N	Level: LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072814.D 2 07/25/14 07/27/14 PB78047

CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS				_				
108-95-2	Phenol		730	U	17	73.6	730	ug/Kg
95-48-7	2-Methylphenol		730	Ū	40	73.6	730	ug/Kg ug/Kg
65794-96-9	3+4-Methylphenols		730	Ū	38.2	73.6	730	ug/Kg ug/Kg
91-20-3	Naphthalene		1100	_	25.4	73.6	730	ug/Kg ug/Kg
208-96-8	Acenaphthylene		640	J	18.5	73.6	730	ug/Kg ug/Kg
83-32-9	Acenaphthene		1400	_	20.8	73.6	730	ug/Kg
132-64-9	Dibenzofuran		540	J	28.7	73.6	730	ug/Kg
86-73-7	Fluorene		1200		27.8	73.6	730	ug/Kg
118-74-1	Hexachlorobenzene		730	U	30	73.6	730	ug/Kg
87-86-5	Pentachlorophenol		730	Ü	50.3	73.6	730	ug/Kg
85-01-8	Phenanthrene	8400	6700	DE		7 73.6 150	230 1500	ug/Kg ug/Kg
120-12-7	Anthracene	-10-0	2100	50000	15	73.6	730	ug/Kg ug/Kg
206-44-0	Fluoranthene	10000	7400	DE		4 73.6 150	730 1500	ug/Kg ug/Kg
129-00-0	Pyrene	8500	8100	DE		3 73.6 150	730 1500	ug/Kg ug/Kg
56-55-3	Benzo(a)anthracene		5300	-	35.1	73.6	730	ug/Kg ug/Kg
218-01-9	Chrysene		4400		33.3	73.6	730	ug/Kg ug/Kg
205-99-2	Benzo(b)fluoranthene	6300	6600	DE		1736150	730 /500	ug/Kg ug/Kg
207-08-9	Benzo(k)fluoranthene	5.3	1100	0.000	34.7	73.6	730	ug/Kg
50-32-8	Benzo(a)pyrene		4800		15.9	73.6	730	ug/Kg 9 4
193-39-5	Indeno(1,2,3-cd)pyrene		2800		24.5	73.6	730	ug/Kg ug/Kg
53-70-3	Dibenzo(a,h)anthracene		710	J	21.2	73.6	730	ug/Kg
191-24-2	Benzo(g,h,i)perylene		3500	•	29.8	73.6	730	ug/Kg ug/Kg
SURROGATES							750	wp, 11g
367-12-4	2-Fluorophenol		100		28 - 127		67%	CDV. 150
13127-88-3	Phenol-d6		110		34 - 127		71%	SPK: 150
4165-60-0	Nitrobenzene-d5		78.8		31 - 132		71% 79%	SPK: 150
321-60-8	2-Fluorobiphenyl		71.4		39 - 123			SPK: 100
118-79-6	2,4,6-Tribromophenol		93.4		39 - 123		71%	SPK: 100
1718-51-0	Terphenyl-d14		70.7		30 - 133 37 - 115		62% 71%	SPK: 150 SPK: 100
INTERNAL STAI	NDARDS				- · · · · ·		, 0	St 14. 100

3855-82-1 1,4-Dichlorobenzene-d4 156534 6.41

F3304 154 of 483

File ID/Qc Batch:

Dilution:

Report of Analysis

Client:	URS Corporation	n	Date Collected:	07/23/14	
Project:	Bronx Psy. Cente	er	Date Received:	07/24/14	
Client Sample ID:	TI-SB04(5-10)		SDG No.:	F3304	
Lab Sample ID:	F3304-08		Matrix:	SOIL	
Analytical Method:	SW8270		% Moisture:	9.6	
Sample Wt/Vol:	30.06 Units	; g	Final Vol:	1000 uL	
Soil Aliquot Vol:		uL	Test:	SVOCMS Group1	
Extraction Type:		Decanted: N	Level:	LOW	
Injection Volume:		GPC Factor: 1.0	GPC Cleanup:	N PH:	

Prep Date

BF072814.D 2		07/25/14		07/27/14			PB78047	
CAS Number	Parameter	Co	nc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8	62	9355	8.34				
15067-26-2	Acenaphthene-d10		7717	11.16				
1517-22-2	Phenanthrene-d10		7926	13.56				
1719-03-5	Chrysene-d12		4437	17.24				
1520-96-3	Perylene-d12		3980	18.91				
TENTATIVE ID	DENTIFIED COMPOUNDS							
	unknown1.37	12.	500	J			1.37	ug/Kg
000994-05-8	Butane, 2-methoxy-2-methyl-	90	0	JN			1.62	ug/Kg
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	150	00	AB			4.08	ug/Kg
	unknown6.09	250	00	J			6.09	ug/Kg
91-57-6	2-Methylnaphthalene	790	0	J			9.49	ug/Kg
131-11 - 3	Dimethylphthalate	820	0	J			10.79	ug/Kg
86-74-8	Carbazole	800)	J			13.96	ug/Kg ug/Kg
002531-84-2	Phenanthrene, 2-methyl-	120	00	1 ¼			14.33	ug/Kg ug/Kg
000832-69-9	Phenanthrene, 1-methyl-	120	00	j 🏏			14.37	ug/Kg ug/Kg
000203-64-5	4H-Cyclopenta[def]phenanthrene	210	00	J			14.48	ug/Kg ug/Kg
035465-71-5	2-Phenylnaphthalene	130	00	J			14.78	ug/Kg ug/Kg
000781-43-1	9,10-Dimethylanthracene	880)	J			15.13	ug/Kg ug/Kg
001090-13-7	5,12-Naphthacenedione	910)	J			18.11	ug/Kg ug/Kg
000192-97-2	Benzo[e]pyrene	110	0	J↓			18.6	ug/Kg ug/Kg
	unknown19.40	120	00	J			19.4	ug/Kg ug/Kg
000192-65-4	1,2:4,5-Dibenzopyrene	150		1 M			22.43	ug/Kg ug/Kg
000189-64-0	3,4:8,9-Dibenzopyrene	110		JN			22.57	ug/Kg ug/Kg
							~~	ug/12g

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

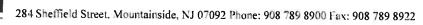
Date Analyzed

Prep Batch ID

D = Dilution

U = Not Detected

LOQ = Limit of Quantitation


MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

F3304

Report of Analysis

	and the second s		
Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB04(5-10)DL	SDG No.:	F3304
Lab Sample ID:	F3304-08DL	Matrix:	SOIL
Analytical Method:	SW8270	% Moisture:	9.6
Sample Wt/Vol:	30.06 Units: g	Final Vol:	1000 uL
Soil Aliquot Vol:	uL	Test:	SVOCMS Group1
Extraction Type:	Decanted:	N Level:	LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup:	N PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072894.D	4	07/25/14	07/31/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARCETC				/			
TARGETS 108-95-2	Phenol	1500	UD	34	150	1500	177
95-48-7	2-Methylphenol	1500	UD	34 79.9	150	1500	ug/Kg
65794-96-9	3+4-Methylphenols	1500			150	1500	ug/Kg
91-20-3	Naphthalene	1200	UD	76.4	150	1500	ug/Kg
208-96-8	Acenaphthylene	480	ND ND	50.8 37.1	150	1500	ug/Kg
83-32-9	Acenaphthene	1600	D		150	1500	ug/Kg
132-64-9	Dibenzofuran	620	JD	41.5	150	1500	ug/Kg
86-73-7	Fluorene	1300	JD	57.4 55.6	150	1500	ug/Kg
118-74-1	Hexachlorobenzene	1500	UD	60.1	150	1500	ug/Kg
87 - 86-5	Pentachlorophenol	1500	UD	100	150	1500	ug/Kg
85 - 01-8	Phenanthrene	8400	D D	39.7	150	1500	ug/Kg
120-12-7	Anthracene	2300	D	39.7 30	150	1500	ug/Kg
206-44-0	Fluoranthene	10000	D	30 29.6	150	1500	ug/Kg
29-00-0	Pyrene	8500	D	35.3	150	1500	ug/Kg
56-55-3	Benzo(a)anthracene	5600	D D		150	1500	ug/Kg
218-01-9	Chrysene	5000	D	70.2 66.7	150	1500	ug/Kg
205-99-2	Benzo(b)fluoranthene	6300	D	48.1	150	1500	ug/Kg
07-08-9	Benzo(k)fluoranthene	2300	D		150	1500	ug/Kg
50-32-8	Benzo(a)pyrene	5700		69.3	150	1500	ug/Kg
93-39-5	Indeno(1,2,3-cd)pyrene	3600	D	31.8 49	150	1500	ug/Kg
3-70-3	Dibenzo(a,h)anthracene	4	D		150	1500	ug/Kg
191-24-2	Benzo(g,h,i)perylene	900)D	42.4	150	1500	ug/Kg
		4300	D	59.6	150	1500	ug/Kg
URROGATES							
367-12-4	2-Fluorophenol	100		28 - 127		69%	SPK: 150
3127-88-3	Phenol-d6	110		34 - 127		72%	SPK: 150
165-60-0	Nitrobenzene-d5	87.1		31 - 132		87%	SPK: 100
21-60-8	2-Fluorobiphenyl	80.5		39 - 123		81%	SPK: 100
18-79-6	2,4,6-Tribromophenol	91.6		30 - 133		61%	SPK: 150
718-51-0	Terphenyl-d14	66.2		37 - 115		66%	SPK: 100
NTERNAL STA	ANDARDS					Later	
3855-82-1	1,4-Dichlorobenzene-d4	122129	6.26			dis.	

F3304

156 of 483

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB04(5-10)DL SDG No.: F3304 Lab Sample ID: F3304-08DL Matrix: SOIL Analytical Method: SW8270 % Moisture: 9.6 Sample Wt/Vol: 30.06 Units: Final Vol: g 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group I Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch:

BF072894.D

Dilution:

4

Prep Date 07/25/14

Date Analyzed

Analyzed Prep Batch ID

07/31/14

PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL LOI	D LOQ/CRQL	Units
1146-65-2 15067-26-2 1517-22-2 1719-03-5 1520-96-3	Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	46273 26068 49834 58672 56293	1 10.98 4 13.37 2 17.07			

9/4/14

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

F3304

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB04(10-WT) SDG No.: F3304 Lab Sample ID: F3304-09 Matrix: SOIL Analytical Method: SW8270 % Moisture: 13.7 Sample Wt/Vol: 30.01 Units: Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group I Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072813.D 2 07/25/14 07/27/14 PB78047

CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS	·							
108-95-2	Phenol		760	UR	17.8	77.2	760	/V.~
95-48-7	2-Methylphenol		760	U	41.9	77.2 77.2	760	ug/Kg
65794-96-9	3+4-Methylphenols		760	U	40.1	77.2	760	ug/Kg ug/Kg
91-20-3	Naphthalene		760	U	26.6	77.2	760	
208-96-8	Acenaphthylene		1100	Ü	19.5	77.2	760	ug/Kg ug/Kg
83-32-9	Acenaphthene		760	U	21.8	77.2	760	ug/Kg ug/Kg
132-64-9	Dibenzofuran		760	Ū	30.1	77.2	760	
86-73-7	Fluorene		160	J	29.2	77.2	760 760	ug/Kg ug/Kg
118-74-1	Hexachlorobenzene		760	U	31.5	77.2	760 760	
87-86-5	Pentachlorophenol		760	ÜR	52.8	77.2	760 760	ug/Kg ug/Kg
85-01-8	Phenanthrene		790		20.9	77.2	760 760	
120-12-7	Anthracene		360	J	15.8	77.2 77.2	760 760	ug/Kg
206-44-0	Fluoranthene		3200		15.5	77.2	760 760	ug/Kg
129-00-0	Pyrene	8100	7500	DE	18.5 37.1	77.2 150	760 1500	ug/Kg
56-55-3	Benzo(a)anthracene		3100		36.8	77.2	760	ug/Kg ug/Kg
218-01-9	Chrysene		2400		35	77.2	760 760	
205-99-2	Benzo(b)fluoranthene		4000		25.3	77.2	760 760	ug/Kg
207-08-9	Benzo(k)fluoranthene		1700		36.4	77.2	760 760	ug/Kg
50-32-8	Benzo(a)pyrene		4800		16.7	77.2	760 760	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		2500		25.7	77.2	760 760	ug/Kg
53-70-3	Dibenzo(a,h)anthracene		540	J	22.2	77.2	760 760	ug/Kg
191-24-2	Benzo(g,h,i)perylene		4300	•	31.3	77.2	760 760	ug/Kg ug/Kg
SURROGATES								
367-12-4	2-Fluorophenol		18.9	*	28 - 127		13%	SPK: 150
13127-88-3	Phenol-d6		75.1		34 - 127)	50%	SPK: 150
4165-60-0	Nitrobenzene-d5		74.1		31 - 132		74%	SPK: 150 SPK: 100
321-60-8	2-Fluorobipheny!		71.4		39 - 123		74% 71%	SPK: 100
118-79-6	2,4,6-Tribromophenol		4.6	*	30 - 133		3%	
1718-51-0	Terphenyl-d14		72.7		37 - 115		73%	SPK: 150 SPK: 100
INTERNAL STA	NDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		163164	6.41		abt 14		

nzene-d4 163164 6.41 **4**

CHEMIECH

Client:	URS Corp	oration				Date Collected:		07/23/14	
Project:	Bronx Psy	. Center				Date Received:		07/24/14	
Client Sample ID:	TI-SB04(1	10-WT)				SDG No.:		F3304	
Lab Sample ID:	F3304-09					Matrix:		SOIL	
Analytical Method:	SW8270					% Moisture:		13.7	
Sample Wt/Vol:	30.01	Units:	g			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCMS Group	1
Extraction Type:			Dec	anted:	N	Level:		LOW	
Injection Volume:			GPC Factor	: 1.0		GPC Cleanup:	N	PH:	

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072813.D	2	07/25/14	07/27/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	636782	8.36				XII.	
15067-26-2	Acenaphthene-d10	359548	11.16					
1517-22-2	Phenanthrene-d10	672564	13.56					
1719-03-5	Chrysene-d12	736185	17.23					
1520-96-3	Perylene-d12	701289	18.91					
TENTATIVE ID	ENTIFIED COMPOUNDS							
000077-76-9	Propane, 2,2-dimethoxy-	12300	JB			1.37	па/Ка	-
000994-05-8	Butane, 2-methoxy-2-methyl-	790	JŊ			1.62	ug/Kg	
000141-79-7	3-Penten-2-one, 4-methyl-	3100	AB			3.42	ug/Kg	
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	2900	AB			4.08	ug/Kg	
	unknown6.09	1100	J			6.09	ug/Kg	
000083-33-0	1H-Inden-1-one, 2,3-dihydro-	820	JN			9.32	ug/Kg	-1.d14
131-11-3	Dimethylphthalate	810	J			10.79	ug/Kg	9/41
000082-86-0	1,2-Accnaphthylenedione	1100	J 📈			14.16	ug/Kg	
000203-64-5	4H-Cyclopenta[def]phenanthrene	750	J			14.48	ug/Kg	
005672-97-9	5,16[1,2]:8,13[1,2]-Dibenzen	380	J			14.78	ug/Kg	
005737-13-3	Cyclopenta(def)phenanthrenone	770	J 🆊			15.24	ug/Kg	
117-81-7	Bis(2-ethylhexyl)phthalate	290	J			17.28	ug/Kg	
000192-97-2	Benzo[e]pyrene	2700	JN			18.79	ug/Kg	
000239-85-0	13H-Dibenzo[a,h]fluorene	550	J			19.08	ug/Kg	
074003-55-7	3,4-Dibromobenzaldehyde	880	J			19.4	ug/Kg	
000191-26-4	Dibenzo[def,mno]chrysene	940	J			20.04	ug/Kg	
000215-58-7	Benzo[b]triphenylene	460	J 🖡			20.38	ug/Kg	
	unknown21.55	400	J			21.55	ug/Kg	
000189-64-0	3,4:8,9-Dibenzopyrene	470	JΝ			22.57	ug/Kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

Client:	URS Corporation			Date	e Collected	9: 07/23/14	
Project:	Bronx Psy. Center					07/25/11	
Client Sample I	-				Received	07/24/14	
		DL /		SDC	3 No.:	F3304	
Lab Sample ID:	F3304-09DL			Mat	rix:	SOIL	
Analytical Meth	od: SW8270			% M	loisture:	13.7	
Sample Wt/Vol:	30.01 Units:	g		Fina	i Vol:	1000	uL
Soil Aliquot Vol		uL /					
		/		Test	8	SVOCMS	Group 1
Extraction Type		Decanted:	N	Leve	el :	L ó w	
Injection Volume	e:	GPC Factor: 1.0		GPC	Cleanup:	N /	PH:
		/					
File ID/Qc Batch:	Dilution:	Prep Date	Г	ate Analyze	-d	Prep Batch ID	
BF072893.D	4	07/25/14		-	Ju	/	,
		07/23/14	U	7/31/14		PB78047	
CAS Number	Parameter	Conc	. Qualifier	MDL	LOD	LOQ/CRQL	Units
TARGETS							
108-95-2	Phenol	1500	UD	35.7	150	1500	
95-48-7	2-Methylphenol	1500		83.9	150	1500	ug/Kg
65794-96-9	3+4-Methylphenols	1500		80.2	150	1500	ug/Kg ug/Kg
91-20-3	Naphthalene	1500		53.3	150	1500	
208-96-8	Acenaphthylene	850	JD	38.9	150	1500	ug/Kg
83-32-9	Acenaphthene	1500	UD	43.6	150	1500	ug/Kg
132-64-9	Dibenzofuran	1500	UD	60.2	150	1500	ug/Kg
86-73-7	Fluorene	1500	UD	58.4	150	1500	ug/Kg
118-74-1	Hexachlorobenzene	1500	UD'	63	150	1500	ug/Kg
87-86-5	Pentachlorophenol	1500	UD	110	150	1500	ug/Kg ug/Kg
85-01-8	Phenanthrene	880	JD	41.7	150	1500	ug/Kg ug/Kg
120-12-7	Anthracene	330	JD	31.5	150	1500	ug/Kg ug/Kg
206-44-0	Fluoranthene	3900	D	31	150	1500	ug/Kg ug/Kg
129-00-0	Pyrene	8100	D	37.1	150	1500	ug/Kg ug/Kg
56-55 - 3	Benzo(a)anthracene	3200	D	73.7	150	1500	
218-01-9	Chrysene	2600	D	70	150	1500	ug/Kg ug/Kg
205-99-2	Benzo(b)fluoranthene	4600	D	50.5	150	1500	ug/Kg ug/Kg
207-08-9	Benzo(k)fluoranthene	1700	D	72.7	150	1500	ug/Kg ug/Kg
50-32-8	Benzo(a)pyrene	5500	D	33.4	150	1500	ug/Kg ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	3000	D	51.4	150	1500	ug/Kg ug/Kg
53-70-3	Dibenzo(a,h)anthracene	560	D.	44.5	150	1500	ug/Kg ug/Kg
191-24-2	Benzo(g,h,i)perylene	5100	D	62.6	150	1500	ug/Kg ug/Kg
SURROGATES							., .,
367-12-4	2-Fluorophenol	18.4	*	28 - 127		12%	SPK: 150
13127-88-3	Phenol-d6	75.6		34 - 127		50%	SPK: 150
4165-60-0	Nitrobenzene-d5	76.5		31 - 132		76%	SPK: 100
321-60-8	2-Fluorobiphenyl	79.8		39 - 123	1	80%	SPK: 100
118-79-6	2,4,6-Tribromophenol	3.4	*	30 - 133	1	2%	SPK: 150
1718-51-0	Terphenyl-d14	68.6		37 - 115		69%	SPK: 100
INTERNAL STAN	DARDS						
3855-82-1	1,4-Dichlorobenzene-d4	12102	3 6.26		duly.		
F3304			f 483	•	4171		

		/			1				
Client:	URS Corporation				Date Collected:		07/23/14		
Project:	Bronx Psy. Center				Date Received:		07/24/14		
Client Sample ID:	TI-SB04(10-WT)DI	.			SDG No.:		F3304		
Lab Sample ID:	F3304-09DL				Matrix:		SOIL		
Analytical Method:	SW8270			1	% Moisture:		13.7		
Sample Wt/Vol:	30.01 Units:	g			Final Vol:		1000	uL	
Soil Aliquot Vol:		uL			Test:		SVOCMS	Group l	
Extraction Type :			Decanted:	N	Level:		LOW		
Injection Volume:		GPC	Factor: 1.0	and the second	GPC Cleanup:	N	F	ЭΗ:	
		1		and the second					

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072893.D	4	07/25/14	07/31/14	PB78047

CAS Number	Parameter	d	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8		479352	8.2				
15067-26-2	Acenaphthene-d10		262026	10.99				
1517-22-2	Phenanthrene-d10		498681	13.37				
1719-03-5	Chrysene-d12		587876	17.05				
1520-96-3	Perylene-d12		554624	18.73				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB05(0-2) SDG No.: F3304 Lab Sample ID: F3304-10 Matrix: SOIL Analytical Method: SW8270 % Moisture: 24.5 Sample Wt/Vol: 30.11 Units: Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group I Extraction Type: Decanted: Level: N LOW Injection Volume: GPC Cleanup: GPC Factor: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072799.D 1 07/25/14 07/26/14 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS					_		
108-95-2	Phenol	440	U	10.2	44	440	ug/Kg
95-48-7	2-Methylphenol	440	Ü	23.9	44	440	ug/Kg
65794-96-9	3+4-Methylphenols	440	Ū	22.8	44	440	ug/Kg
91-20-3	Naphthalene	440	Ū	15.2	44	440	ug/Kg
208-96-8	Acenaphthylene	440	Ū	11.1	44	440	ug/Kg
83-32-9	Acenaphthene	440	Ū	12.4	44	440	ug/Kg
132-64-9	Dibenzofuran	440	Ū	17.2	44	440	ug/Kg
86-73-7	Fluorene	440	U	16.6	44	440	ug/Kg
118-74-1	Hexachlorobenzene	440	U	17.9	44	440	ug/Kg
87-86-5	Pentachlorophenol	440	U	30.1	44	440	ug/Kg
85-01-8	Phenanthrene	140	J	11.9	44	440	ug/Kg
120-12-7	Anthracene	440	U	9	44	440	ug/Kg
206-44-0	Fluoranthene	230	J	8.8	44	440	ug/Kg
129-00-0	Pyrene	190	J	10.6	44	440	ug/Kg
56-55-3	Benzo(a)anthracene	110	J	21	44	440	ug/Kg
218-01-9	Chrysene	100	J	19.9	44	440	ug/Kg
205-99-2	Benzo(b)fluoranthene	130	J	14.4	44	440	ug/Kg
207-08-9	Benzo(k)fluoranthene	440	U	20.7	44	440	ug/Kg
50-32-8	Benzo(a)pyrene	94.6	J	9.5	44	440	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	440	U	14.6	44	440	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	440	U	12.7	44	440	ug/Kg
191-24-2	Benzo(g,h,i)perylene	440	U	17.8	44	440	ug/Kg
SURROGATES	i e						
367-12-4	2-Fluorophenol	63.2		28 - 127	7	42%	SPK: 150
13127-88-3	Phenol-d6	64.2		34 - 127	7	43%	SPK: 150
4165 - 60-0	Nitrobenzene-d5	51		31 - 132	2	51%	SPK: 100
321-60-8	2-Fluorobiphenyl	45.3		39 - 123	3	45%	SPK: 100
118-79-6	2,4,6-Tribromophenol	58.2		30 - 133	3	39%	SPK: 150
1718-51-0	Terphenyl-d14	44.9		37 - 115	5	45%	SPK: 100
INTERNAL ST	ANDARDS						

3855-82-1 1,4-Dichlorobenzene-d4 164104 6.4

F3304 162 of 483

284 Sheffield Street. Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corp	oration				Date Collected:		07/23/14	
Project:	Bronx Psy	. Center				Date Received:		07/24/14	
Client Sample ID:	TI-SB05(0)-2)				SDG No.:		F3304	
Lab Sample ID:	F3304-10					Matrix:		SOIL	
Analytical Method:	SW8270					% Moisture:		24.5	
Sample Wt/Vol:	30.11	Units:	g			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCMS Group	1
Extraction Type :			Decan	ted:	N	Level:		LOW	
Injection Volume:			GPC Factor:	1.0		GPC Cleanup:	N	PH:	

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072799.D	1	07/25/14	07/26/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8	620100	8.34				
15067-26-2	Acenaphthene-d10	349413	11.14				
1517-22-2	Phenanthrene-d10	666484	13.55				
1719-03-5	Chrysene-d12	736497	17.21				
1520-96-3	Perylene-d12	659678	18.89				
TENTATIVE II	DENTIFIED COMPOUNDS						
	unknown1.37	8700	J			1.37	ug/Kg
000994-05-8	Butane, 2-methoxy-2-methyl-	680	JД			1.62	ug/Kg
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	1100	AB			4.08	ug/Kg
	unknown6.09	1900	J			6.09	ug/Kg
131-11-3	Dimethylphthalate	630	J			10.79	ug/Kg

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

284 Sheffield Street. Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB05(5-10) SDG No.: F3304 Lab Sample ID: F3304-11 Matrix: SOIL Analytical Method: SW8270 % Moisture: 19.2 Sample Wt/Vol: 30.07 Units: Final Vol: g 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072812.D 2 07/25/14 07/27/14 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS			-				
108-95-2	Phenol	810	U	19	82.3	810	ug/Kg
95-48-7	2-Methylphenol	810	Ū	44.7	82.3	810	ug/Kg
65794-96-9	3+4-Methylphenols	810	Ū	42.7	82.3	810	ug/Kg
91-20-3	Naphthalene	500	J	28.4	82.3	810	ug/Kg
208-96-8	Acenaphthylene	630	j	20.7	82.3	810	ug/Kg
83-32-9	Acenaphthene	620	J	23.2	82.3	810	ug/Kg
132-64-9	Dibenzofuran	240	J	32.1	82.3	810	ug/Kg
86-73-7	Fluorene	530	j	31.1	82.3	810	ug/Kg
118-74-1	Hexachlorobenzene	810	U	33.6	82.3	810	ug/Kg
87-86-5	Pentachlorophenol	810	Ū	56.3	82.3	810	ug/Kg
85-01-8	Phenanthrene	3400	_	22.2	82.3	810	ug/Kg
120-12-7	Anthracene	970		16.8	82.3	810	ug/Kg
206-44-0	Fluoranthene	4000		16.5	82.3	810	ug/Kg
129-00-0	Pyrene	4900		19.8	82.3	810	ug/Kg
56-55-3	Benzo(a)anthracene	3100		39.3	82.3	810	ug/Kg
218-01 - 9	Chrysene	2300		37.3	82.3	810	ug/Kg
205-99 - 2	Benzo(b)fluoranthene	3700		26.9	82.3	810	ug/Kg
207-08-9	Benzo(k)fluoranthene	1000		38.8	82.3	810	ug/Kg
50-32-8	Benzo(a)pyrene	3300		17.8	82.3	810	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1900		27.4	82.3	810	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	410	J	23.7	82.3	810	ug/Kg
191-24-2	Benzo(g,h,i)perylene	2700	-	33.3	82.3	810	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	97.7		28 - 127	,	65%	SPK: 150
13127-88-3	Phenol-d6	100		34 - 127		68%	SPK: 150
4165-60-0	Nitrobenzene-d5	75.6		31 - 132		76%	SPK: 100
321-60-8	2-Fluorobiphenyl	53		39 - 123		53%	SPK: 100
118-79-6	2,4,6-Tribromophenol	84.4		30 - 133		56%	SPK: 150
1718-51-0	Terphenyl-d14	47.8		37 - 115		48%	SPK: 100
INTERNAL ST	ANDARDS						
3855-82-1	1.4-Dichlorobenzene d4	1/5/100	C 41				

3855-82-1 1,4-Dichlorobenzene-d4 165488 6.41

F3304 164 of 483

Report of Analysis

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/24/14
Client Sample ID:	TI-SB05(5-10)	SDG No.:	F3304
Lab Sample ID:	F3304-11	Matrix:	SOIL
Analytical Method:	SW8270	% Moisture:	19.2
Sample Wt/Vol:	30.07 Units: g	Final Vol:	1000 uL
Soil Aliquot Vol:	uL	Test:	SVOCMS Group1
Extraction Type:	Decanted: N	Level:	LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup: N	PH:

File ID/O- Details				
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072812.D	2	07/25/14	07/27/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	647035	8.34	200	311			
15067-26-2	Acenaphthene-d10	377190	11.16					
1517-22-2	Phenanthrene-d10	693609	13.55					
1719-03-5	Chrysene-d12	780528	17.23					
1520-96-3	Perylene-d12	722056	18.91					
TENTATIVE ID	ENTIFIED COMPOUNDS							
000077-76-9	Propane, 2,2-dimethoxy-	13700				1,37	ug/Kg	_
000994-05-8	Butane, 2-methoxy-2-methyl-	920	J 🔥			1.62	ug/Kg	
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	1600	AB			4.09	по/Ко	
	unknown6.09	2800	J			6.09	ug/Kg	
91-57-6	2-Methylnaphthalene	400	j			9.49	ug/Kg	
000090-12-0	Naphthalene, 1-methyl-	450	JN			9.64	ug/Kg	
000571-61-9	Naphthalene, 1,5-dimethyl-	310	JN			10.62	ug/Kg	
131-11-3	Dimethylphthalate	970	j			10.79	ug/Kg	
86-74-8	Carbazole	320	J			13.96	ug/Kg	
000082-86-0	1,2-Acenaphthylenedione	400	JN			14.16	ug/Kg	
002531-84-2	Phenanthrene, 2-methyl-	520	Jj			14.33	ug/Kg	
000613-12-7	Anthracene, 2-methyl-	580	J			14.37	ug/Kg	
000203-64-5	4H-Cyclopenta[def]phenanthrene	1100	J 🌡			14.48	ug/Kg	
014251-57-1	Benzene, 1,1-(1,2-propadienyliden	390	J			14.52	ug/Kg	
000612-94-2	Naphthalene, 2-phenyl-	630	J			14.78	ug/Kg	
003674-66-6	Phenanthrene, 2,5-dimethyl-	460	J			15.13	ug/Kg	9/4/1
005737-13-3	Cyclopenta(def)phenanthrenone	350	j 📗			15.23	ug/Kg	
000192-97-2	Benzo[e]pyrene	1400	J			18.78	ug/Kg	12
000220-97-3	11H-Indeno[2,1-a]phenanthrene	310	J			19.07	ug/Kg	
000189-64-0	3,4:8,9-Dibenzopyrene	400	J 🖟			22.4	ug/Kg	

U = Not Detected

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements F3304

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 Client Sample ID: TI-SB06D SDG No.: F3304 Lab Sample ID: F3304-12 Matrix: SOIL Analytical Method: SW8270 % Moisture: 7.6 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: Decanted: Ν Level: LOW Injection Volume: GPC Factor: GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072801.D 1 07/25/14 07/26/14 PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							_
108-95-2	Phenol	360	U	8.3	36	360	ug/Kg
95-48-7	2-Methylphenol	360	Ū	19.6	36	360	ug/Kg ug/Kg
65794-96-9	3+4-Methylphenols	360	U	18.7	36	360	ug/Kg
91-20-3	Naphthalene	360	U	12.4	36	360	ug/Kg
208-96-8	Acenaphthylene	93.3	J	9.1	36	360	ug/Kg
83-32-9	Acenaphthene	92.2	J	10.2	36	360	ug/Kg
132-64-9	Dibenzofuran	360	U	14	36	360	ug/Kg
86-73-7	Fluorene	110	J	13.6	36	360	ug/Kg
118-74-1	Hexachlorobenzene	360	U	14.7	36	360	ug/Kg
87-86-5	Pentachlorophenol	360	U	24.6	36	360	ug/Kg
85-01-8	Phenanthrene	1100		9.7	36	360	ug/Kg ug/Kg
120-12-7	Anthracene	260	j	7.3	36	360	ug/Kg
206-44-0	Fluoranthene	1400		7.2	36	360	ug/Kg
129-00-0	Pyrene	1300		8.6	36	360	ug/Kg
56-55-3	Benzo(a)anthracene	730		17.2	36	360	ug/Kg
218-01-9	Chrysene	730		16.3	36	360	ug/Kg
205-99-2	Benzo(b)fluoranthene	770		11.8	36	360	ug/Kg
207-08-9	Benzo(k)fluoranthene	370		17	36	360	ug/Kg
50-32-8	Benzo(a)pyrene	690		7.8	36	360	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	400		12	36	360	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	92.9	J	10.4	36	360	ug/Kg
191-24-2	Benzo(g,h,i)perylene	450	-	14.6	36	360	ug/Kg
SURROGATES	i						
367-12-4	2-Fluorophenol	78.4		28 - 127	•	52%	SPK: 150
13127-88-3	Phenol-d6	81.7		34 - 127	•	54%	SPK: 150
4165-60-0	Nitrobenzene-d5	64.2		31 - 132		64%	SPK: 100
321 - 60-8	2-Fluorobiphenyl	62.7		39 - 123		63%	SPK: 100
18-79-6	2,4,6-Tribromophenol	72.7		30 - 133		48%	SPK: 150
1718-51-0	Terphenyl-d14	61.3		37 - 115		61%	SPK: 100
INTERNAL ST	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	180172	6.4				

F3304 166 of 483

Report of Analysis

Client:	URS Corp	oration				Date Collected:		07/23/14	
Project:	Bronx Psy	. Center				Date Received:		07/24/14	
Client Sample ID:	TI-SB06D					SDG No.:		F3304	
Lab Sample ID:	F3304-12					Matrix:		SOIL	
Analytical Method:	SW8270					% Moisture:		7.6	
Sample Wt/Vol:	30.05	Units:	g			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCMS (Group 1
Extraction Type:				Decanted:	N	Level:		LOW	
Injection Volume:			GPC F	actor: 1.0		GPC Cleanup:	N	Pi	Н:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072801.D	1	07/25/14	07/26/14	PB78047

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	692142	8.34		φ !			
15067-26-2	Acenaphthene-d10	397566	11.16					
1517-22-2	Phenanthrene-d10	732941	13.55					
1719-03-5	Chrysene-d12	811757	17.23					
1520-96-3	Perylene-d12	738299	18.91					
TENTATIVE ID	ENTIFIED COMPOUNDS							
	unknown1.37	7700	J			1.37	ug/Kg	
000994-05-8	Butane, 2-methoxy-2-methyl-	1300	JN			1.64	ug/Kg	
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	1200	AB			4.08	ug/Kg	-
	unknown6.09	2000	J			6.09	ug/Kg	
105-60-2	Caprolactam	580	J			9.04	ug/Kg	
131-11-3	Dimethylphthalate	610	J			10.79	ug/Kg	
86-74-8	Carbazole	110	J			13.96	ug/Kg	
000832-69-9	Phonanthrene, 1-methyl-	150	JΑ			14.32	ug/Kg	,
002531-84-2	Phenanthrene, 2-methyl-	200	JΝ			14.37	ug/Kg	9/4
	unknown14.48	290	J .			14.48	ug/Kg	
035465-71-5	2-Phenylnaphthalene	170	JN			14.78	ug/Kg	1
000781-43-1	9,10-Dimethylanthracene	130	J			15.12	ug/Kg	
003674-66-6	Phenanthrene, 2,5-dimethyl-	120	J			15.24	ug/Kg	
000243-17-4	11H-Benzo[b]fluorene	150	J			16.09	ug/Kg	
000110-36-1	n-Butyl myristate	120	J			16.63	ug/Kg	
117-81-7	Bis(2-ethylhexyl)phthalate	120	J			17.28	ug/Kg	
000198-55-0	Perylene	440	JN			18.78	ug/Kg	
000191-26-4	Dibenzo[def,mno]chrysene	140	J			20.03	ug/Kg	
000215-58-7	Benzo[b]triphenylene	120	J			20.31	ug/Kg	
003319-31-1	tri(2-Ethylhexyl) trimellitate	160	J			21	ug/Kg ug/Kg	

U = Not Detected

D = Dilution

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

⁻ Dilai-

Report of Analysis

Client:	URS Corporation			Date Collected:	07/23/14		
Project:	Bronx Psy. Center			Date Received:	07/24/14		
Client Sample ID:	TI-SB02(0-2)			SDG No.:	F3304		
Lab Sample ID:	F3304-01			Matrix:	SOIL		
Analytical Method:	SW8081			% Moisture:	8.5	Decanted:	
Sample Wt/Vol:	30.11 Units:	g		Final Vol:	10000	uL	
Soil Aliquot Vol:		uL		Test:	PESTICIDE	Group1	
Extraction Type:				Injection Volume:			
GPC Factor:	1.0	PH:					
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed	Prep	Batch ID	
PD023544.D	1		07/25/14	07/28/14	PB78		

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQI	L Units
TARGETS					777		
319-84-6	alpha-BHC	1.9	U	0.142	0.359	1.9	ug/kg
319-85-7	beta-BHC	1.9	U	0.196	0.359	1.9	ug/kg
319-86-8	delta-BHC	1.9	U	0.109	0.359	1.9	ug/kg
58-89-9	gamma-BHC (Lindane)	1.9	U	0.163	0.359	1.9	ug/kg
76-44-8	Heptachlor	1.9	U	0.152	0.359	1.9	ug/kg
309-00-2	Aldrin	1.9	Ū	0.109	0.359	1.9	ug/kg
959-98-8	Endosulfan I	1.9	U	0.163	0.359	1.9	ug/kg ug/kg
60-57-1	Dieldrin	5.9	x 5	0.142	0.359	1.9	ug/kg ug/kg
72-55-9	4,4-DDE	130 270	ED			619 18.5	ug/kg
72-20-8	Endrin	1.9	U	0.196	0.359	1.9	ug/kg
33213-65-9	Endosulfan II	1.9	Ū	0.152	0.359	1.9	ug/kg ug/kg
72-54-8	4,4-DDD	6.2	PJ	0.185	0.359	1.9	ug/kg ug/kg
1031-07-8	Endosulfan Sulfate	1.9	Ū	0.163	0.359	1.9	ug/kg ug/kg
50-29-3	4,4-DDT	120 160	ED	9.1527.5		6 1.9 18.5	ug/kg
5103-71 - 9	alpha-Chlordane	1.9	U	0.152	0.359	1.9	ug/kg ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	20.2		10 - 169		101%	SPK: 20
877-09-8	Tetrachloro-m-xylene	20.3		31 - 151		102%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

D

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB02(0-2)DL		SDG No.:	F3304
Lab Sample ID:	F3304-01DL		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	8.5 Decanted:
Sample Wt/Vol:	30.11 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PD023562.D	10	07/25/14	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS					2 30		*
319-84-6	alpha-BHC	18.5	UD	1.4	3.6	18.5	ug/kg
319-85-7	beta-BHC	18.5	UD	2	3.6	18.5	ug/kg
319-86-8	delta-BHC	18.5	UD	1.1	3.6	18.5	ug/kg
58-89-9	gamma-BHC (Lindane)	18.5	UD	1.6	3.6	18.5	ug/kg
76-44-8	Heptachlor	18.5	UD /	1.5	3.6	18.5	ug/kg
309-00-2	Aldrin	18.5	UD	1.1	3.6	18.5	ug/kg
959-98-8	Endosulfan I	18.5	UD	1.6	3.6	18.5	ug/kg
60-57-1	Dieldrin	18.5	/ UD	1.4	3.6	18.5	ug/kg
72-55-9	4,4-DDE	130	D	2.2	3.6	18.5	ug/kg
72-20-8	Endrin	18.5	UD	2	3.6	18.5	ug/kg
33213-65-9	Endosulfan II	18.5	UD	1.5	3.6	18.5	ug/kg
72-54-8	4,4-DDD	18.5	UD	1.9	3.6	18.5	ug/kg
1031-07-8	Endosulfan Sulfate	18.5	UD	1.6	3.6	18.5	ug/kg
50-29-3	4,4-DDT	120	D	1.5	3.6	18.5	ug/kg
5103-71-9	alpha-Chlordane	18.5	UD	1.5	3.6	18.5	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	0	*	10 - 169		0%	SPK: 20
877-09-8	Tetrachloro-m-xylene	0	*	31 - 151		0%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB02(5-10)		SDG No.:	F3304
Lab Sample ID:	F3304-02		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	17.6 Decanted:
Sample Wt/Vol:	30.08 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PD023545.D	1	•	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifie	r MDL	LOD	LOQ / CI	RQL Units
TARGETS							
319-84-6	alpha-BHC	2.1	U	0.157	0.399	2.1	ug/kg
319-85-7	beta-BHC	2.1	U	0.218	0.399	2.1	ug/kg
319-86-8	delta-BHC	2.1	U	0.121	0.399	2.1	ug/kg
58-89-9	gamma-BHC (Lindane)	2.1	U	0.182	0.399	2.1	ug/kg
76-44-8	Heptachlor	2.1	U	0.169	0.399	2.1	ug/kg
309-00-2	Aldrin	2.1	U	0.121	0.399	2.1	ug/kg
959-98-8	Endosulfan I	2.1	U	0.182	0.399	2.1	ug/kg
60-57-1	Dieldrin	2.1	U	0.157	0.399	2.1	ug/kg
72-55-9	4,4-DDE	2.5		0.242	0.399	2.1	ug/kg
72-20-8	Endrin	2.1	U	0.218	0.399	2.1	ug/kg
33213-65-9	Endosulfan II	2.1	U	0.169	0.399	2.1	ug/kg
72-54-8	4,4-DDD	2.1	U	0.206	0.399	2.1	ug/kg
1031-07-8	Endosulfan Sulfate	2.1	U	0.182	0.399	2.1	ug/kg
50-29-3	4,4-DDT	5.3	PJ	0.169	0.399	2.1	ug/kg
5103-71-9	alpha-Chlordane	2.1	U	0.169	0.399	2.1	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	16.6		10 - 169)	83%	SPK: 20
877-09-8	Tetrachloro-m-xylene	19.2		31 - 151		96%	SPK: 20

D

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates > 25% difference for detected

Q = indicates LCS control criteria did not meet requirements

concentrations between the two GC columns

O = indicates LCS control criterio did not most a

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB02(10-WT)		SDG No.:	F3304
Lab Sample ID:	F3304-03		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	19.5 Decanted:
Sample Wt/Vol:	30.02 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PD023546.D	1	07/25/14	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifie	r MDL	LOD	LOQ / CI	RQL Units
TARGETS							
319-84-6	alpha-BHC	2.1	U	0.161	0.41	2.1	ug/kg
319-85-7	beta-BHC	2.1	U	0.223	0.41	2.1	ug/kg
319-86-8	delta-BHC	2.1	U	0.124	0.41	2.1	ug/kg
58-89-9	gamma-BHC (Lindane)	2.1	U	0.186	0.41	2.1	ug/kg
76-44-8	Heptachlor	2.1	U	0.174	0.41	2.1	ug/kg
309-00-2	Aldrin	2.1	U	0.124	0.41	2.1	ug/kg
959-98-8	Endosulfan I	2.1	Ū	0.186	0.41	2.1	ug/kg
60-57-1	Dieldrin	2.1	U	0.161	0.41	2.1	ug/kg
72-55-9	4,4-DDE	7.7		0.248	0.41	2.1	ug/kg
72-20-8	Endrin	2.1	U	0.223	0.41	2.1	ug/kg
33213-65-9	Endosulfan II	2.1	U	0.174	0.41	2.1	ug/kg
72-54-8	4,4-DDD	1.6	J	0.211	0.41	2.1	ug/kg
1031-07-8	Endosulfan Sulfate	2.1	U	0.186	0.41	2.1	ug/kg
50-29-3	4,4-DDT	17.3		0.174	0.41	2.1	ug/kg
5103-71-9	alpha-Chlordane	2.1	U	0.174	0.41	2.1	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	19.8		10 - 169)	99%	SPK: 20
877-09-8	Tetrachloro-m-xylene	16		31 - 151		80%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB03(0-2)		SDG No.:	F3304
Lab Sample ID:	F3304-04		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	6.1 Decanted:
Sample Wt/Vol:	30.04 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PD023547.D	1	07/25/14	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.8	U	0.138	0.351	1.8	ug/kg
319-85-7	beta-BHC	1.8	U	0.191	0.351	1.8	ug/kg
319-86-8	delta-BHC	1.8	U	0.106	0.351	1.8	ug/kg
58-89-9	gamma-BHC (Lindane)	1.8	U	0.16	0.351	1.8	ug/kg
76-44-8	Heptachlor	1.8	U	0.149	0.351	1.8	ug/kg
309-00-2	Aldrin	1.8	U	0.106	0.351	1.8	ug/kg
959-98-8	Endosulfan I	1.8	U	0.16	0.351	1.8	ug/kg
60-57-1	Dieldrin	1.8	U	0.138	0.351	1.8	ug/kg
72-55-9	4,4-DDE	34.8 37.3	ED	0.2130.4	0.3510	1.8 3.6	ug/kg
72-20-8	Endrin	1.8	U	0.191	0.351	1.8	ug/kg
33213-65-9	Endosulfan II	1.8	U	0.149	0.351	1.8	ug/kg
72-54-8	4,4-DDD	1.8	U	0.181	0.351	1.8	ug/kg
1031-07-8	Endosulfan Sulfate	1.8	U	0.16	0.351	1.8	ug/kg
50-29-3	4,4-DDT	37. 4 40.9	ED	0.1490.3	0.351	18 3.6	ug/kg
5103-71-9	alpha-Chlordane	1.8	U	0.149	0.351	1.8	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.4		10 - 169		92%	SPK: 20
877-09-8	Tetrachloro-m-xylene	16.8		31 - 151		84%	SPK: 20

D

U = Not Detected

F3304

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected

Q = indicates LCS control criteria did not meet requirements

concentrations between the two GC columns

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

C	lient:	URS Corporation		Date Collected:	07/23/1	4
Pı	roject:	Bronx Psy. Center		Date Received:	07/24/1	4
C	lient Sample ID:	TI-SB03(0-2)DL		SDG No.:	F3304	
La	ab Sample ID:	F3304-04DL		Matrix:	SOIL	
A	nalytical Method:	SW8081		% Moisture:	6.1	Decanted:
Sa	ample Wt/Vol:	30.04 Units:	g	Final Vol:	10000	uL
So	oil Aliquot Vol:		uL	Test:	PESTIC	CIDE Group1
E	xtraction Type:			Injection Volume:		
G	PC Factor:	1.0	PH:			
Fi	le ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	/	Prep Batch ID
	D023563.D	2	07/25/14	07/28/14		PB78046
		_	07725717	01120117		1 15/0040

CAS Number	Parameter	Conc.	Qualifie	er MDL	LOD	LOQ / CRQI	Units
TARGETS						-XX	500 E
319-84-6	alpha-BHC	3.6	UD /	0.277	0.702	3.6	ug/kg
319-85-7	beta-BHC	3.6	UD /	0.383	0.702	3.6	ug/kg
319-86-8	delta-BHC	3.6	UD	0.213	0.702	3.6	ug/kg
58-89-9	gamma-BHC (Lindane)	3.6	UD	0.319	0.702	3.6	ug/kg
76-44-8	Heptachlor	3.6	UD	0.298	0.702	3.6	ug/kg
309-00-2	Aldrin	3.6	UD	0.213	0.702	3.6	ug/kg
959-98-8	Endosulfan I	3.6	UD	0.319	0.702	3.6	ug/kg
60-57-1	Dieldrin	3.6	UD	0.277	0.702	3.6	ug/kg
72-55-9	4,4-DDE	34.8	D	0.425	0.702	3.6	ug/kg
72-20-8	Endrin	3.6	UD	0.383	0.702	3.6	ug/kg
33213-65-9	Endosulfan II	3.6	UD	0.298	0.702	3.6	ug/kg
72-54-8	4,4-DDD	3.6	UD	0.362	0.702	3.6	ug/kg
1031-07-8	Endosulfan Sulfate	3.6	UD	0.319	0.702	3.6	ug/kg
50-29-3	4,4-DDT	37.4	D	0.298	0.702	3.6	ug/kg
5103-71-9	alpha-Chlordane	3.6	UD	0.298	0.702	3.6	ug/kg
*****							-66
SURROGATES	B 11 111 1						
2051-24-3	Decachlorobiphenyl	18.1		10 - 169		90%	SPK: 20
877-09-8	Tetrachloro-m-xylene	16.3		31 - 151		82%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14	
Project:	Bronx Psy. Center		Date Received:	07/24/14	
Client Sample 1D:	TI-SB03(5-10)		SDG No.:	F3304	
Lab Sample ID:	F3304-05		Matrix:	SOIL	
Analytical Method:	SW8081		% Moisture:	9.7 Decanted:	
Sample Wt/Vol:	30 Units: g		Final Vol:	10000 uL	
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1	
Extraction Type:			Injection Volume:		
GPC Factor:	1.0 PH:				
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
PD023550.D	1	07/25/14	07/28/14	PB78046	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.9	U	0.144	0.365	1.9	ug/kg
319-85-7	beta-BHC	1.9	U	0.199	0.365	1.9	ug/kg
319-86-8	delta-BHC	1.9	U	0.111	0.365	1.9	ug/kg
58-89-9	gamma-BHC (Lindane)	1.9	U	0.166	0.365	1.9	ug/kg
76-44-8	Heptachlor	1.9	U	0.155	0.365	1.9	ug/kg
309-00-2	Aldrin	1.9	U	0.111	0.365	1.9	ug/kg
959-98-8	Endosulfan I	1.9	U	0.166	0.365	1.9	ug/kg
60-57-1	Dieldrin	1.9	U	0.144	0.365	1.9	ug/kg
72-55-9	4,4-DDE	11.5		0.221	0.365	1.9	ug/kg
72-20-8	Endrin	1.9	U	0.199	0.365	1.9	ug/kg
33213-65-9	Endosulfan II	1.9	U	0.155	0.365	1.9	ug/kg
72-54-8	4,4-DDD	1.9	Ū	0.188	0.365	1.9	ug/kg
1031-07-8	Endosulfan Sulfate	1.9	Ū	0.166	0.365	1.9	ug/kg
50-29-3	4,4-DDT	16.5		0.155	0.365	1.9	ug/kg
5103-71-9	alpha-Chlordane	1.9	U	0.155	0.365	1.9	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.2		10 - 169		91%	SPK: 20
877-09-8	Tetrachloro-m-xylene	15.7		31 - 151		78%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = indicates \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14	
Project:	Bronx Psy. Center		Date Received:	07/24/14	
Client Sample ID:	TI-SB03(10-WT)		SDG No.:	F3304	
Lab Sample ID:	F3304-06		Matrix:	SOIL	
Analytical Method:	SW8081		% Moisture:	21.9 Decanted:	
Sample Wt/Vol:	30.11 Units: g		Final Vol:	10000 uL	
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1	
Extraction Type:			Injection Volume:		
GPC Factor:	1.0 PH:				
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
PD023551.D	1	07/25/14	07/28/14	PB78046	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CF	RQL Units
TARGETS							
319-84-6	alpha-BHC	2.2	U	0.166	0.421	2.2	ug/kg
319-85-7	beta-BHC	2.2	U	0.23	0.421	2.2	ug/kg
319-86-8	delta-BHC	2.2	U	0.128	0.421	2.2	ug/kg
58-89-9	gamma-BHC (Lindane)	2.2	U	0.191	0.421	2.2	ug/kg
76-44-8	Heptachlor	2.2	U	0.179	0.421	2.2	ug/kg
309-00-2	Aldrin	2.2	U	0.128	0.421	2.2	ug/kg
959-98-8	Endosulfan I	2.2	U	0.191	0.421	2.2	ug/kg
60-57-1	Dieldrin	2.2	U,	0.166	0.421	2.2	ug/kg
72-55-9	4,4-DDE	1.6	J) ^a	0.255	0.421	2.2	ug/kg
72-20-8	Endrin	2.2	Ú	0.23	0.421	2.2	ug/kg
33213-65-9	Endosulfan II	2.2	U	0.179	0.421	2.2	ug/kg
72-54-8	4,4-DDD	2.2	U	0.217	0.421	2.2	ug/kg
1031-07-8	Endosulfan Sulfate	2.2	U	0.191	0.421	2.2	ug/kg
50-29-3	4,4-DDT	2.6		0.179	0.421	2.2	ug/kg
5103-71-9	alpha-Chlordane	2.2	U	0.179	0.421	2.2	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	17.2		10 - 169)	86%	SPK: 20
877-09-8	Tetrachloro-m-xylene	15.8		31 - 151		79%	SPK: 20

D

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB04(0-2)		SDG No.:	F3304
Lab Sample ID:	F3304-07		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	9.4 Decanted:
Sample Wt/Vol:	30.08 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PD023552.D	1	07/25/14	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.9	U	0.143	0.363	1.9	ug/kg
319-85-7	beta-BHC	1.9	U	0.198	0.363	1.9	ug/kg
319-86-8	delta-BHC	1.9	U	0.11	0.363	1.9	ug/kg
58-89-9	gamma-BHC (Lindane)	1.9	U	0.165	0.363	1.9	ug/kg
76-44-8	Heptachlor	1.9	U	0.154	0.363	1.9	ug/kg
309-00-2	Aldrin	1.9	U	0.11	0.363	1.9	ug/kg
959-98-8	Endosulfan I	1.9	U	0.165	0.363	1.9	ug/kg
60-57-1	Dieldrin	1.9	U	0.143	0.363	1.9	ug/kg
72-55-9	4,4-DDE	1.4	J	0.22	0.363	1.9	ug/kg
72-20-8	Endrin	1.9	U	0.198	0.363	1.9	ug/kg
33213-65-9	Endosulfan II	1.9	U	0.154	0.363	1.9	ug/kg
72-54-8	4,4-DDD	1.9	U	0.187	0.363	1.9	ug/kg
1031-07-8	Endosulfan Sulfate	1.9	U	0.165	0.363	1.9	ug/kg
50-29-3	4,4-DDT	1.9	U	0.154	0.363	1.9	ug/kg
5103-71-9	alpha-Chlordane	1.9	U	0.154	0.363	1.9	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	17.2		10 - 169)	86%	SPK: 20
877-09-8	Tetrachloro-m-xylene	17.7		31 - 151		88%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation			Date Collected:	07/23/14	
Project:	Bronx Psy. Center			Date Received:	07/24/14	
Client Sample ID:	TI-SB04(5-10)			SDG No.:	F3304	
Lab Sample ID:	F3304-08			Matrix:	SOIL	
Analytical Method:	SW8081			% Moisture:	9.6	Decanted:
Sample Wt/Vol:	30.07 Units:	g		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	PESTICIDE	E Group1
Extraction Type:				Injection Volume	:	
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed	Pre	p Batch ID
PD023553.D	1		07/25/14	07/28/14	•	78046

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS						·	
319-84-6	alpha-BHC	1.9	U	0.143	0.364	1.9	ug/kg
319-85-7	beta-BHC	1.9	U	0.199	0.364	1.9	ug/kg
319-86-8	delta-BHC	1.9	U	0.11	0.364	1.9	ug/kg
58-89-9	gamma-BHC (Lindane)	1.9	U	0.166	0.364	1.9	ug/kg
76-44-8	Heptachlor	1.9	U	0.155	0.364	1.9	ug/kg
309-00-2	Aldrin	1.9	U	0.11	0.364	1.9	ug/kg
959-98-8	Endosulfan I	1.9	U	0.166	0.364	1.9	ug/kg
60-57-1	Dieldrin	1.9	U	0.143	0.364	1.9	ug/kg
72-55-9	4,4-DDE	2.1		0.221	0.364	1.9	ug/kg
72-20-8	Endrin	1.9	U	0.199	0.364	1.9	ug/kg
33213-65-9	Endosulfan II	1.9	Ū	0.155	0.364	1.9	ug/kg
72-54-8	4,4-DDD	1.9	Ū	0.188	0.364	1.9	ug/kg
1031-07-8	Endosulfan Sulfate	1.9	Ū	0.166	0.364	1.9	ug/kg
50-29-3	4,4-DDT	4		0.155	0.364	1.9	ug/kg
5103-71-9	alpha-Chlordane	1.9	U	0.155	0.364	1.9	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	19.8		10 - 169)	99%	SPK: 20
877-09-8	Tetrachloro-m-xylene	15.8		31 - 151		79%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB04(10-WT)		SDG No.:	F3304
Lab Sample ID:	F3304-09		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	13.7 Decanted:
Sample Wt/Vol:	30.11 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PD023554.D	1	07/25/14	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CR	QL Units
TARGETS							
319-84-6	alpha-BHC	2	U	0.15	0.381	2	ug/kg
319-85-7	beta-BHC	2	U	0.208	0.381	2	ug/kg
319-86-8	delta-BHC	2	U	0.115	0.381	2	ug/kg
58-89-9	gamma-BHC (Lindane)	2	U	0.173	0.381	2	ug/kg
76-44-8	Heptachlor	2	U	0.162	0.381	2	ug/kg
309-00-2	Aldrin	2	U	0.115	0.381	2	ug/kg
959-98-8	Endosulfan I	2	U	0.173	0.381	2	ug/kg
60-57-1	Dieldrin	2	U	0.15	0.381	2	ug/kg
72-55-9	4,4-DDE	2	U	0.231	0.381	2	ug/kg
72-20-8	Endrin	2	U	0.208	0.381	2	ug/kg
33213-65-9	Endosulfan II	2	Ū	0.162	0.381	2	ug/kg
72-54-8	4,4-DDD	2	U	0.196	0.381	2	ug/kg
1031-07-8	Endosulfan Sulfate	2	Ü	0.173	0.381	2	ug/kg
50-29-3	4,4-DDT	2	Ü	0.162	0.381	2	ug/kg
5103-71-9	alpha-Chlordane	2	U	0.162	0.381	2	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	15.5		10 - 169)	77%	SPK: 20
877-09-8	Tetrachloro-m-xylene	16.1		31 - 151		80%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

URS Corporation		Date Collected:	07/23/14
Bronx Psy. Center		Date Received:	07/24/14
TI-SB05(0-2)		SDG No.:	F3304
F3304-10		Matrix:	SOIL
SW8081		% Moisture:	24.5 Decanted:
30 Units: g		Final Vol:	10000 uL
uL		Test:	PESTICIDE Group1
		Injection Volume:	
1.0 PH:			
Dilution:	Prep Date	Date Analyzed	Prep Batch ID
1	07/25/14	07/28/14	PB78046
	Bronx Psy. Center TI-SB05(0-2) F3304-10 SW8081 30 Units: g	Bronx Psy. Center TI-SB05(0-2) F3304-10 SW8081 30 Units: g	Bronx Psy. Center

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQI	Units
TARGETS			·			·	
319-84-6	alpha-BHC	2.3	U	0.172	0.437	2.3	ug/kg
319-85-7	beta-BHC	2.3	Ü	0.238	0.437	2.3	ug/kg ug/kg
319-86-8	delta-BHC	2.3	U	0.132	0.437	2.3	ug/kg ug/kg
58-89 - 9	gamma-BHC (Lindane)	2.3	Ū	0.199	0.437	2.3	ug/kg ug/kg
76-44-8	Heptachlor	2.3	Ŭ	0.185	0.437	2.3	ug/kg ug/kg
309-00-2	Aldrin	2.3	U	0.132	0.437	2.3	ug/kg ug/kg
959-98-8	Endosulfan I	2.3	Ü	0.199	0.437	2.3	ug/kg
60-57-1	Dieldrin	2.3	U	0.172	0.437	2.3	ug/kg ug/kg
72-55-9	4,4-DDE	24.6	Ü	0.265	0.437	2.3	ug/kg ug/kg
72-20-8	Endrin	2.3	U	0.238	0.437	2.3	ug/kg ug/kg
33213-65-9	Endosulfan II	2.3	Ū	0.185	0.437	2.3	ug/kg ug/kg
72-54-8	4,4-DDD	2.3	U	0.225	0.437	2.3	ug/kg ug/kg
1031-07-8	Endosulfan Sulfate	2.3	U	0.199	0.437	2.3	ug/kg ug/kg
50-29-3	4,4-DDT	26.2	Ü	0.185	0.437	2.3	ug/kg ug/kg
5103-71-9	alpha-Chlordane	2.3	U	0.185	0.437	2.3	ug/kg ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.2		10 - 169		91%	SPK: 20
877-09-8	Tetrachloro-m-xylene	19		31 - 151		95%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS \ \mbox{control} \ \mbox{criteria} \ \mbox{did} \ \mbox{not} \ \mbox{meet} \ \mbox{requirements} \ \mbox{F3304}$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB05(5-10)		SDG No.:	F3304
Lab Sample ID:	F3304-11		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	19.2 Decanted:
Sample Wt/Vol:	30.08 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor :	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Deem Detail ID
1 12, Qu Batotti	Dilation.	Trep Date	Date Allalyzeu	Prep Batch ID
PD023556.D	1	07/25/14	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	2.1	U	0.16	0.407	2.1	ug/kg
319-85-7	beta-BHC	2.1	U	0.222	0.407	2.1	ug/kg
319-86-8	delta-BHC	2.1	U	0.123	0.407	2.1	ug/kg
58-89-9	gamma-BHC (Lindane)	2.1	U	0.185	0.407	2.1	ug/kg
76-44-8	Heptachlor	2.1	U	0.173	0.407	2.1	ug/kg
309-00-2	Aldrin	2.1	U	0.123	0.407	2.1	ug/kg
959-98-8	Endosulfan I	2.1	U	0.185	0.407	2.1	ug/kg
60-57-1	Dieldrin	2.1	U	0.16	0.407	2,1	ug/kg
72-55-9	4,4-DDE	2.1	U	0.247	0.407	2.1	ug/kg
72-20-8	Endrin	2.1	U	0.222	0.407	2.1	ug/kg
33213-65-9	Endosulfan II	2.1	U	0.173	0.407	2.1	ug/kg
72-54-8	4,4-DDD	2.1	Ū	0.21	0.407	2.1	ug/kg ug/kg
1031-07-8	Endosulfan Sulfate	2.1	Ū	0.185	0.407	2.1	ug/kg
50-29-3	4,4-DDT	2.1	Ū	0.173	0.407	2.1	ug/kg
5103-71-9	alpha-Chlordane	2.1	Ū	0.173	0.407	2.1	ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	16.3		10 - 169		81%	SPK: 20
877-09-8	Tetrachloro-m-xylene	15.2		31 - 151		76%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB06D		SDG No.:	F3304
Lab Sample ID:	F3304-12		Matrix:	SOIL
Analytical Method:	SW8081		% Moisture:	7.6 Decanted:
Sample Wt/Vol:	30.07 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PESTICIDE Group1
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PD023557.D	1	07/25/14	07/28/14	PB78046

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQ	L Units
TARGETS							
319-84-6	alpha-BHC	1.8	U	0.14	0.356	1.8	ug/kg
319-85-7	beta-BHC	1.8	Ū	0.194	0.356	1.8	ug/kg
319-86-8	delta-BHC	1.8	Ū	0.108	0.356	1.8	ug/kg
58-89-9	gamma-BHC (Lindane)	1.8	Ū	0.162	0.356	1.8	ug/kg ug/kg
76-44-8	Heptachlor	1.8	Ū	0.151	0.356	1.8	ug/kg ug/kg
309-00-2	Aldrin	1.8	Ū	0.108	0.356	1.8	ug/kg
959-98-8	Endosulfan I	1.8	Ü	0.162	0.356	1.8	ug/kg ug/kg
60-57-1	Dieldrin	1.8	U	0.14	0.356	1.8	ug/kg
72-55-9	4,4-DDE	21.2	Ü	0.216	0.356	1.8	ug/kg
72-20-8	Endrin	1.8	U	0.194	0.356	1.8	ug/kg
33213-65-9	Endosulfan II	1.8	U	0.151	0.356	1.8	ug/kg ug/kg
72-54-8	4,4-DDD	1.8	U	0.184	0.356	1.8	ug/kg ug/kg
1031-07-8	Endosulfan Sulfate	1.8	U	0.162	0.356	1.8	ug/kg ug/kg
50-29-3	4,4-DDT	22.2	Ü	0.151	0.356	1.8	ug/kg ug/kg
5103-71-9	alpha-Chlordane	1.8	U	0.151	0.356	1.8	ug/kg ug/kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.1		10 - 169		91%	SPK: 20
877-09-8	Tetrachloro-m-xylene	16.8		31 - 151		84%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = indicates \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corpora	ation	Date Collected:	07/23/14	
Project:	Bronx Psy. C	enter	Date Received:	07/24/14	
Client Sampl	e ID: TI-SB02(0-2)	SDG No.:	F3304	
Lab Sample l	D: F3304-01		Matrix:	SOIL	
Analytical M	ethod: SW8082A		% Moisture:	8.5	Decanted:
Sample Wt/V	ol: 30.04 U	nits: g	Final Vol:	10000	uL
Soil Aliquot	Vol:	uL	Test:	РСВ	
Extraction Ty	pe:		Injection Volume	e:	
GPC Factor:	1.0	PH:			
File ID/Qc Ba	atch: Dilution:	Prep Date	Date Analyzed	Pre	p Batch ID
PO016931.D	1	07/25/14	07/29/14	PB'	78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CI	RQL Units
TARGETS							
12674-11 - 2	Aroclor-1016	18.6	U	3.6	3.6	18.6	ug/kg
11104-28-2	Aroclor-1221	18.6	U	3.6	3.6	18.6	ug/kg
11141-16-5	Aroclor-1232	18.6	U	3.6	3.6	18.6	ug/kg
53469-21-9	Aroclor-1242	18.6	U	3.6	3.6	18.6	ug/kg
12672-29-6	Aroclor-1248	18.6	U	3.6	3.6	18.6	ug/kg
11097-69-1	Aroclor-1254	18.6	U	1.6	3.6	18.6	ug/kg
11096-82-5	Aroclor-1260	18.6	U	3.6	3.6	18.6	ug/kg
SURROGATES							
877-09-8	Tetrachioro-m-xylene	18.2		10 - 166	5	91%	SPK: 20
2051-24-3	Decachlorobiphenyl	16.3		60 - 125	5	82%	SPK: 20

U = Not Detected

LOQ ≈ Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation			Date Collected:	07/23/1	14
Project:	Bronx Psy. Center			Date Received:	07/24/1	14
Client Sample ID:	TI-SB02(5-10)			SDG No.:	F3304	
Lab Sample ID:	F3304-02			Matrix:	SOIL	
Analytical Method:	SW8082A			% Moisture:	17.6	Decanted:
Sample Wt/Vol:	30.08 Units:	g		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	PCB	
Extraction Type:				Injection Volume:		
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed		Prep Batch ID
PO016933.D	1		07/25/14	07/29/14		PB78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	20.6	U	4	4	20.6	ug/kg
11104-28-2	Aroclor-1221	20.6	U	4	4	20.6	ug/kg
11141-16-5	Aroclor-1232	20.6	U	4	4	20.6	ug/kg
53469-21-9	Aroclor-1242	20.6	U	4	4	20.6	ug/kg
12672-29-6	Aroclor-1248	20.6	U	4	4	20.6	ug/kg
11097-69-1	Aroclor-1254	20.6	U	1.8	4	20.6	ug/kg
11096-82-5	Aroclor-1260	20.6	U	4	4	20.6	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	18.1		10 - 166	5	90%	SPK: 20
2051-24-3	Decachlorobiphenyl	15.6		60 - 125	5	78%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = indicates \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB02(10-WT)		SDG No.:	F3304
Lab Sample ID:	F3304-03		Matrix:	SOIL
Analytical Method:	SW8082A		% Moisture:	19.5 Decanted:
Sample Wt/Vol:	30.1 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	PCB
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PO016934.D	1	07/25/14	07/29/14	PB78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	21	U	4.1	4.1	21	ug/kg
11104-28-2	Aroclor-1221	21	U	4.1	4.1	21	ug/kg
11141-16-5	Aroclor-1232	21	U	4.1	4.1	21	ug/kg
53469-21-9	Aroclor-1242	21	U	4.1	4.1	21	ug/kg
12672-29-6	Aroclor-1248	21	U	4.1	4.1	21	ug/kg
11097-69-1	Aroclor-1254	21	U	1.8	4.1	21	ug/kg
11096-82-5	Aroclor-1260	21	U	4.1	4.1	21	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	15.3		10 - 166	5	77%	SPK: 20
2051-24-3	Decachlorobiphenyl	21.4		60 - 125	5	107%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected

concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS \ \mbox{control} \ \mbox{criteria} \ \mbox{did} \ \mbox{not} \ \mbox{meet} \ \mbox{requirements} \ \mbox{F3304}$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB03(0-2)		SDG No.:	F3304
Lab Sample ID:	F3304-04		Matrix:	SOIL
Analytical Method:	SW8082A		% Moisture:	6.1 Decanted:
Sample Wt/Vol:	30.01 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	uL		Test:	РСВ
Extraction Type:			Injection Volume:	
GPC Factor:	1.0 PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PO016935.D	1	07/25/14	07/29/14	PB78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	18.1	U	3.5	3.5	18.1	ug/kg
11104-28-2	Aroclor-1221	18.1	U	3.5	3.5	18.1	ug/kg
11141-16-5	Aroclor-1232	18.1	U	3.5	3.5	18.1	ug/kg
53469-21-9	Aroclor-1242	18.1	U	3.5	3.5	18.1	ug/kg
12672-29-6	Aroclor-1248	18.1	U	3.5	3.5	18.1	ug/kg
11097-69-1	Aroclor-1254	18.1	U	1.6	3.5	18.1	ug/kg
11096-82-5	Aroclor-1260	18.1	U	3.5	3.5	18.1	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	14.9		10 - 166	5	75%	SPK: 20
2051-24-3	Decachlorobiphenyl	18.1		60 - 125	5	90%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation				Date Collected:	07/23/1	14	
Project:	Bronx Psy. Center				Date Received:	07/24/1	14	
Client Sample ID:	TI-SB03(5-10)				SDG No.:	F3304		
Lab Sample ID:	F3304-05				Matrix:	SOIL		
Analytical Method:	SW8082A				% Moisture:	9.7	Decanted:	
Sample Wt/Vol:	30.11 Units:	g			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	PCB		
Extraction Type:					Injection Volume:			
GPC Factor:	1.0	PH:						
File ID/Qc Batch:	Dilution:		Prep Date]	Date Analyzed		Prep Batch ID	
PO016938.D	1		07/25/14		07/29/14		PB78045	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	18.8	U	3.7	3.7	18.8	ug/kg
11104-28-2	Aroclor-1221	18.8	U	3.7	3.7	18.8	ug/kg
11141-16-5	Aroclor-1232	18.8	U	3.7	3.7	18.8	ug/kg
53469-21-9	Aroclor-1242	18.8	U	3.7	3.7	18.8	ug/kg
12672-29-6	Aroclor-1248	18.8	U	3.7	3.7	18.8	ug/kg
11097-69-1	Aroclor-1254	18.8	U	1.6	3.7	18.8	ug/kg
11096-82-5	Aroclor-1260	18.8	U	3.7	3.7	18.8	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	17.8		10 - 166	5	89%	SPK: 20
2051-24-3	Decachlorobiphenyl	19.6		60 - 125	5	98%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB03(10-WT)		SDG No.:	F3304
Lab Sample ID:	F3304-06		Matrix:	SOIL
Analytical Method:	SW8082A		% Moisture:	21.9 Decanted:
Sample Wt/Vol:	30.03 Units:	g	Final Vol:	10000 uL
Soil Aliquot Vol:		uL	Test:	PCB
Extraction Type:			Injection Volume	:
GPC Factor:	1.0 F	РН:		
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PO016939.D	1	07/25/14	07/29/14	PB78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	21.7	U	4.3	4.3	21.7	ug/kg
11104-28-2	Aroclor-1221	21.7	U	4.3	4.3	21.7	ug/kg
11141-16-5	Aroclor-1232	21.7	U	4.3	4.3	21.7	ug/kg
53469-21-9	Aroclor-1242	21.7	U	4.3	4.3	21.7	ug/kg
12672-29-6	Aroclor-1248	21.7	U	4.3	4.3	21.7	ug/kg
11097-69-1	Aroclor-1254	21.7	U	1.9	4.3	21.7	ug/kg
11096-82-5	Aroclor-1260	21.7	U	4.3	4.3	21.7	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	13.9		10 - 166	5	69%	SPK: 20
2051-24-3	Decachlorobiphenyl	15.3		60 - 125	5	77%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS \ \mbox{control} \ \mbox{criteria} \ \mbox{did} \ \mbox{not} \ \mbox{meet} \ \mbox{requirements} \ \mbox{F3304}$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation		Date Collected:	07/23/14	
Project:	Bronx Psy. Center		Date Received:	07/24/14	
Client Sample 1D:	TI-SB04(0-2)		SDG No.:	F3304	
Lab Sample ID:	F3304-07		Matrix:	SOIL	
Analytical Method:	SW8082A		% Moisture:	9.4	Decanted:
Sample Wt/Vol:	30.1 Units:	g	Final Vol:	10000	uL
Soil Aliquot Vol:		uL	Test:	PCB	
Extraction Type:			Injection Volume:		
GPC Factor:	1.0	РН:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Pre	ep Batch ID
PO016940.D	1	07/25/14	07/29/14	PB	378045

CAS Number	Parameter	Conc.	Qualific	er MDL	LOD	LOQ/CR	RQL Units
TARGETS							
12674-11-2	Aroclor-1016	18.7	U	3.7	3.7	18.7	ug/kg
11104-28-2	Aroclor-1221	18.7	U	3.7	3.7	18.7	ug/kg
11141-16-5	Aroclor-1232	18.7	U	3.7	3.7	18.7	ug/kg
53469-21-9	Aroclor-1242	18.7	U	3.7	3.7	18.7	ug/kg
12672-29-6	Aroclor-1248	18.7	U	3.7	3.7	18.7	ug/kg
11097-69-1	Aroclor-1254	18.7	U	1.6	3.7	18.7	ug/kg
11096-82-5	Aroclor-1260	18.7	U	3.7	3.7	18.7	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	15.8		10 - 160	5	79%	SPK: 20
2051-24-3	Decachlorobiphenyl	12.8		60 - 125	5	64%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $[\]ensuremath{\mathsf{Q}} = \ensuremath{\mathsf{indicates}}$ LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Client:	URS Corporation			Date Collected:	07/23/14	
Project:	Bronx Psy. Center			Date Received:	07/24/14	
Client Sample ID:	TI-SB04(5-10)			SDG No.:	F3304	
Lab Sample ID:	F3304-08			Matrix:	SOIL	
Analytical Method:	SW8082A			% Moisture:	9.6	Decanted:
Sample Wt/Vol:	30.05 Units:	g		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	PCB	
Extraction Type:				Injection Volume:		
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed	Pre	p Batch ID
PO016941.D	1		07/25/14	07/29/14	PB	78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	18.8	U	3.7	3.7	18.8	ug/kg
11104-28-2	Aroclor-1221	18.8	U	3.7	3.7	18.8	ug/kg
11141-16-5	Aroclor-1232	18.8	U	3.7	3.7	18.8	ug/kg
53469-21-9	Aroclor-1242	18.8	U	3.7	3.7	18.8	ug/kg
12672-29-6	Aroclor-1248	18.8	U	3.7	3.7	18.8	ug/kg
11097-69-1	Aroclor-1254	18.8	U	1.6	3.7	18.8	ug/kg
11096-82-5	Aroclor-1260	18.8	U	3.7	3.7	18.8	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	14.2		10 - 166	5	71%	SPK: 20
2051-24-3	Decachlorobiphenyl	20.8		60 - 125	5	104%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client:	URS Corporation			Date Collected:	07/23/1	4
Project:	Bronx Psy. Center			Date Received:	07/24/1	4
Client Sample ID:	TI-SB04(10-WT)			SDG No.:	F3304	
Lab Sample ID:	F3304-09			Matrix:	SOIL	
Analytical Method:	SW8082A			% Moisture:	13.7	Decanted:
Sample Wt/Vol:	30.05 Units:	g		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	PCB	
Extraction Type:				Injection Volume:		
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed		Prep Batch ID
PO016942.D	1		07/25/14	07/29/14		PB78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	19.7	Ū	3.9	3.9	19.7	ug/kg
11104-28-2	Aroclor-1221	19.7	U	3.9	3.9	19.7	ug/kg
11141-16-5	Aroclor-1232	19.7	U	3.9	3.9	19.7	ug/kg
53469-21-9	Aroclor-1242	19.7	U	3.9	3.9	19.7	ug/kg
12672-29-6	Aroclor-1248	19.7	U	3.9	3.9	19.7	ug/kg
11097-69-1	Aroclor-1254	19.7	U	1.7	3.9	19.7	ug/kg
11096-82-5	Aroclor-1260	19.7	U	3.9	3.9	19.7	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	16.9		10 - 166	5	85%	SPK: 20
2051-24-3	Decachlorobiphenyl	17.5		60 - 125	5	87%	SPK: 20

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements F3304

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

D

Report of Analysis

Client:	URS Corporation		Date Collected:	07/23/14	
Project:	Bronx Psy. Center		Date Received:	07/24/14	
Client Sample ID:	TI-SB05(0-2)		SDG No.:	F3304	
Lab Sample ID:	F3304-10		Matrix:	SOIL	
Analytical Method:	SW8082A		% Moisture:	24.5	Decanted:
Sample Wt/Vol:	30.09 Units:	g	Final Vol:	10000	uL
Soil Aliquot Vol:		uL	Test:	PCB	
Extraction Type:			Injection Volume:		
GPC Factor:	1.0	PH:			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Pr	ep Batch ID
PO016943.D	1	07/25/14	07/29/14	PE	378045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	22.4	U	4.4	4.4	22.4	ug/kg
11104-28-2	Aroclor-1221	22.4	U	4.4	4.4	22.4	ug/kg
11141-16-5	Aroclor-1232	22.4	U	4.4	4.4	22.4	ug/kg
53469-21-9	Aroclor-1242	22.4	U	4.4	4.4	22.4	ug/kg
12672-29-6	Aroclor-1248	22.4	U	4.4	4.4	22.4	ug/kg
11097-69-1	Aroclor-1254	22.4	U	2	4.4	22.4	ug/kg
11096-82-5	Aroclor-1260	120		4.4	4.4	22.4	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	17.7		10 - 166	5	88%	SPK: 2
2051-24-3	Decachlorobiphenyl	16.4		60 - 125	5	82%	SPK: 2

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS \ \mbox{control} \ \mbox{criteria} \ \mbox{did} \ \mbox{not} \ \mbox{meet} \ \mbox{requirements} \ \mbox{F3304}$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation		Date Collected:	07/23/14		
Project:	Bronx Psy. Center		Date Received:	07/24/14		
Client Sample ID:	TI-SB05(5-10)		SDG No.:	F3304		
Lab Sample ID:	F3304-11		Matrix:	SOIL		
Analytical Method:	SW8082A		% Moisture:	19.2	Decanted:	
Sample Wt/Vol:	30.07 Units: g		Final Vol:	10000	uL	
Soil Aliquot Vol:	u	L	Test:	PCB		
Extraction Type:			Injection Volume:			
GPC Factor :	1.0 PH	•				
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Pre	p Batch ID	
PO016944.D	1	07/25/14	07/29/14	PB	78045	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	21	U	4.1	4.1	21	ug/kg
11104-28-2	Aroclor-1221	21	U	4.1	4.1	21	ug/kg
11141-16-5	Aroclor-1232	21	U	4.1	4.1	21	ug/kg
53469-21-9	Aroclor-1242	21	U	4.1	4.1	21	ug/kg
12672-29-6	Aroclor-1248	21	U	4.1	4.1	21	ug/kg
11097-69-1	Aroclor-1254	21	U	1.8	4.1	21	ug/kg
11096-82-5	Aroclor-1260	21	U	4.1	4.1	21	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	13.8		10 - 166	5	69%	SPK: 20
2051-24-3	Decachlorobiphenyl	13		60 - 125	5	65%	SPK: 20

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

D = Dilution

Report of Analysis

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB06D		SDG No.:	F3304
Lab Sample ID:	F3304-12		Matrix:	SOIL
Analytical Method:	SW8082A		% Moisture:	7.6 Decanted:
Sample Wt/Vol:	30.02 Units: g		Final Vol:	10000 uL
Soil Aliquot Vol:	u	L	Test:	PCB
Extraction Type:			Injection Volume:	
GPC Factor :	1.0 PH	:		
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PO016932.D	1	07/25/14	07/29/14	PB78045

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQI	Units
TARGETS							-
12674-11-2	Aroclor-1016	18.4	U	3.6	3.6	18.4	ug/kg
11104-28-2	Aroclor-1221	18.4	U	3.6	3.6	18.4	ug/kg
11141-16-5	Aroclor-1232	18.4	U	3.6	3.6	18.4	ug/kg
53469-21-9	Aroclor-1242	18.4	U	3.6	3.6	18.4	ug/kg
12672-29-6	Aroclor-1248	18.4	U	3.6	3.6	18.4	ug/kg
11097-69-1	Aroclor-1254	18.4	U	1.6	3.6	18.4	ug/kg
11096-82-5	Aroclor-1260	18.4	U	3.6	3.6	18.4	ug/kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	16.7		10 - 166	5	84%	SPK: 20
2051-24-3	Decachlorobiphenyl	19.2		60 - 125	5	96%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates}\ LCS$ control criteria did not meet requirements F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corpora	tion		Date Collected:	07/23/14	
Project:	Bronx Psy. Co	enter		Date Received:	07/24/14	
Client Sample ID:	TI-SB02(0-2)			SDG No.:	F3304	
Lab Sample ID:	F3304-01			Matrix:	SOIL	
Analytical Method:	SW8151A			% Moisture:	8.5	Decanted:
Sample Wt/Vol:	30.04 U	nits: g		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	Herbicide	Group I
Extraction Type:				Injection Volume	:	
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed	Pr	ep Batch ID
PE010685.D	1		07/29/14	07/31/14	PF	378075

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CF	RQL Units
TARGETS 93-72-1	2,4,5-TP (Silvex)	73.1	U	11.9	18.2	73.1	ug/Kg
SURROGATES 19719-28-9	2,4-DCAA	228		12 - 189)	46%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

D

Report of Analysis

CAS Number	Parameter		Conc. Qualifier MDL	LOD LOQ/CRQL Units
PE010686.D	1	07/29/14	07/31/14	PB78075
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
GPC Factor:	1.0	PH:		
Extraction Type:			Injection Volume	:
Soil Aliquot Vol:		uL	Test:	Herbicide Group1
Sample Wt/Vol:	30.08 Unit	s: g	Final Vol:	10000 uL
Analytical Method:	SW8151A		% Moisture:	17.6 Decanted:
Lab Sample ID:	F3304-02		Matrix:	SOIL
Client Sample ID:	TI-SB02(5-10)		SDG No.:	F3304
Project:	Bronx Psy. Cent	er	Date Received:	07/24/14
Client:	URS Corporation	n	Date Collected:	07/23/14

		Conc.	Quanne	MIDL	LOD	LOQ/CR	CQL Units
TARGETS 93-72-1	2,4,5-TP (Silvex)	81.1	U	13.2	20.2	81.1	ug/Kg
SURROGATES 19719-28-9	2,4-DCAA	340		12 - 189)	68%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ F3304$

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

J = Estimated Value

Report of Analysis

Client:	URS Corporation			Date Collected:	07/23/14		
Project:	Bronx Psy. Center	r		Date Received:	07/24/14		
Client Sample ID:	TI-SB02(10-WT)			SDG No.:	F3304		
Lab Sample ID:	F3304-03			Matrix:	SOIL		
Analytical Method:	SW8151A			% Moisture:	19.5	Decanted:	
Sample Wt/Vol:	30.05 Units:	g		Final Vol:	10000	uL	
Soil Aliquot Vol:		uL		Test:	Herbicide	Group1	
Extraction Type:				Injection Volume	:		
GPC Factor:	1.0	PH:					
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed	Pr	ep Batch ID	
PE010687.D	1		07/29/14	07/31/14	PI	378075	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ/CRQL Units	
TARGETS 93-72-1	2,4,5-TP (Silvex)	83.1	U	13.5	20.7	83.1	ug/Kg
SURROGATES 19719-28-9	2,4-DCAA	257		12 - 189	,	52%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS \ control \ criteria \ did \ not \ meet \ requirements \ \mbox{\bf F3304}$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

S Number	Parameter			Conc.	Qualifier MDL	LOD	LOQ/CRQL Units
PE010688.D	1		07/29/14		07/31/14	P	PB78075
File ID/Qc Batch:	Dilution:		Prep Date		Date Analyzed	P	rep Batch ID
GPC Factor:	1.0	PH:					
Extraction Type:					Injection Volume:		
Soil Aliquot Vol:		uL			Test:	Herbicide	e Group1
Sample Wt/Vol:	30.03 Uni	ts: g			Final Vol:	10000	uL
Analytical Method:	SW8151A				% Moisture:	6.1	Decanted:
Lab Sample ID:	F3304-04				Matrix:	SOIL	
Client Sample ID:	TI-SB03(0-2)				SDG No.:	F3304	
Project:	Bronx Psy. Cen	ter			Date Received:	07/24/14	
Client:	URS Corporation	on			Date Collected:	07/23/14	

CAS Number	Parameter	Conc. Qualifier		ier MDL	r MDL LOD		RQL Units
TARGETS 93-72-1	2,4,5-TP (Silvex)	71.3	U	11.6	17.7	71.3	ug/Kg
SURROGATES 19719-28-9	2,4-DCAA	288		12 - 189)	58%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

AS Number	Parameter			Conc.	Qualifier MDL	LOD	LOQ/CRQL Units
PE010689.D	1		07/29/14		07/31/14	I	PB78075
File ID/Qc Batch:	Dilution:		Prep Date		Date Analyzed	I	Prep Batch ID
GPC Factor :	1.0	PH:					
Extraction Type:					Injection Volume:		
Soil Aliquot Vol:		uL			Test:	Herbicid	e Group1
Sample Wt/Vol:	30.09 Unit	s: g			Final Vol:	10000	uL
Analytical Method:	SW8151A				% Moisture:	9.7	Decanted:
Lab Sample ID:	F3304-05				Matrix:	SOIL	
Client Sample ID:	TI-SB03(5-10)				SDG No.:	F3304	
Project:	Bronx Psy. Cent	er			Date Received:	07/24/14	
Client:	URS Corporation	n			Date Collected:	07/23/14	

74

256

U

12

12 - 189

18.4

74

51%

ug/Kg

SPK: 500

U = Not Detected

TARGETS 93-72-1

SURROGATES 19719-28-9

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3304

2,4,5-TP (Silvex)

2,4-DCAA

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Parameter			Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1		07/29/14		07/31/14]	PB78075	
Dilution:		Prep Date		Date Analyz	zed	1	Prep Batch ID	
1.0	PH:							
				Injection \	Volume :			
	uL			Test:		Herbicid	e Group1	
30.01 Units:	g			Final Vol:		10000	uL	
SW8151A				% Moistur	re:	21.9	Decanted:	
F3304-06				Matrix:		SOIL		
TI-SB03(10-WT)				SDG No.:		F3304		
Bronx Psy. Center	г			Date Rece	eived:	07/24/14		
URS Corporation				Date Coll	ected:	07/23/14		
	Bronx Psy. Center TI-SB03(10-WT) F3304-06 SW8151A 30.01 Units: 1.0 Dilution: 1	SW8151A 30.01 Units: g	Bronx Psy. Center TI-SB03(10-WT) F3304-06 SW8151A 30.01 Units: g	Bronx Psy. Center TI-SB03(10-WT) F3304-06 SW8151A 30.01 Units: g	Bronx Psy. Center TI-SB03(10-WT) F3304-06 SW8151A 30.01 Units: g uL Test: Injection of the content of t	Date Received: TI-SB03(10-WT) SDG No.: F3304-06 Matrix: SW8151A % Moisture: 30.01 Units: g Final Vol:	Bronx Psy. Center Date Received: 07/24/14 TI-SB03(10-WT) SDG No.: F3304 F3304-06 Matrix: SOIL SW8151A % Moisture: 21.9 30.01 Units: g Final Vol: 10000 uL Test: Herbicid Injection Volume : 1.0 PH : Dilution: Prep Date Date Analyzed Date	Date Received: 07/24/14

297

SURROGATES 19719-28-9

2,4-DCAA

12 - 189

59%

SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Client:	URS Corporati	ion		Date Collected:	07/23/14	
Project:	Bronx Psy. Cer	nter		Date Received:	07/24/14	
Client Sample ID:	TI-SB04(0-2)			SDG No.:	F3304	
Lab Sample ID:	F3304-07			Matrix:	SOIL	
Analytical Method:	SW8151A			% Moisture:	9.4	Decanted:
Sample Wt/Vol:	30.07 Un	its: g		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	Herbicide	Group 1
Extraction Type:				Injection Volume	:	
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:]	Prep Date	Date Analyzed	Pr	ep Batch ID
PE010691.D	1	(07/29/14	07/31/14	PI	378075

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQ	L Units
TARGETS 93-72-1	2,4,5-TP (Silvex)	73.8	U	12	18.4	73.8	ug/Kg
SURROGATES 19719-28-9	2,4-DCAA	344		12 - 189	ı	69%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Dilution: 1 Parameter	Prep Date 07/29/14 Conc.	Date Analyzed 07/31/14 Qualifier MDL	PB7	Deatch ID 8075 LOQ / CRQL Units
Dilution:	•	•	-	
Dilution:	Lich Date	Date Analyzed	Prep	Baich ID
	Prop Data			Detak ID
1.0 PH:		Injection Volume:		
uL		Test:	Herbicide G	roup1
30.08 Units: g		Final Vol:	10000	uL
SW8151A		% Moisture:	9.6	Decanted:
F3304-08		Matrix:	SOIL	
TI-SB04(5-10)		SDG No.:	F3304	
•		Date Received:	07/24/14	
Bronx Psy. Center				
	•	Bronx Psy. Center TI-SB04(5-10)		THE OPPOSITE TO

352

SURROGATES 19719-28-9

2,4-DCAA

12 - 189

70%

SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

F3304

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

AS Number	Parameter			Conc.	Qualifier MDL	LOD	LOQ/CRQL Units
PE010693.D	1		07/29/14		07/31/14	1	PB78075
File ID/Qc Batch:	Dilution:		Prep Date		Date Analyzed	I	Prep Batch ID
GPC Factor:	1.0	PH:					
Extraction Type:					Injection Volume:		
Soil Aliquot Vol:		uL			Test:	Herbicid	e Group l
Sample Wt/Vol:	30.03 Unit	s: g			Final Vol:	10000	uL
Analytical Method:	SW8151A				% Moisture:	13.7	Decanted:
Lab Sample ID:	F3304-09				Matrix:	SOIL	
Client Sample ID:	TI-SB04(10-W)	T)			SDG No.:	F3304	
Project:	Bronx Psy. Cent	er			Date Received:	07/24/14	
Client:	URS Corporation	n			Date Collected:	07/23/14	

77.6

123

U

12.6

12 - 189

19.3

77.6

25%

ug/Kg

SPK: 500

U = Not Detected

TARGETS 93-72-1

SURROGATES

19719-28-9

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected

concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

2,4,5-TP (Silvex)

2,4-DCAA

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Client:	URS Corporation		Date Collected:	07/23/14	
Project:	Bronx Psy. Center		Date Received:	07/24/14	
Client Sample ID:	TI-SB05(0-2)		SDG No.:	F3304	
Lab Sample ID:	F3304-10		Matrix:	SOIL	
Analytical Method:	SW8151A		% Moisture:	24.5 Decanted:	
Sample Wt/Vol:	30.09 Units: g		Final Vol:	10000 uL	
Soil Aliquot Vol:	uI	_	Test:	Herbicide Group1	
Extraction Type:			Injection Volume	:	
GPC Factor:	1.0 PH				
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
PE010696.D	1	07/29/14	08/01/14	PB78075	

CAS Number	Parameter	Conc.	Qualifier MDI	LOD	LOQ / CI	RQL Units
TARGETS 93-72-1	2,4,5-TP (Silvex)	88.5	U 14.4	22	88.5	ug/Kg
SURROGATES 19719-28-9	2,4-DCAA	248	12 -	189	50%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:	URS Corporation		Date Collected:	07/23/14
Project:	Bronx Psy. Center		Date Received:	07/24/14
Client Sample ID:	TI-SB05(5-10)		SDG No.:	F3304
Lab Sample ID:	F3304-11		Matrix:	SOIL
Analytical Method:	SW8151A		% Moisture:	19.2 Decanted:
Sample Wt/Vol:	30.11 Units:	g	Final Vol:	10000 uL
Soil Aliquot Vol:		uL	Test:	Herbicide Group1
Extraction Type:			Injection Volum	e:
GPC Factor:	1.0	PH:		
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PE010697.D	1	07/29/14	08/01/14	PB78075
S Number	Parameter		Cone Qualifier MD	I IOD IOO/CDOL II-ii-

CAS Number	Parameter	Conc.	Qualifie	MDL	LOD	LOQ / CRQL	Units
TARGETS 93-72-1	2,4,5-TP (Silvex)	82.6	U	13.5	20.6	82.6	ug/Kg
SURROGATES 19719-28-9	2,4-DCAA	387		12 - 189)	78%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibrationwas not performed prior to analyte detection in sample.

Report of Analysis

Project: Bronx Psy. Center Date Received: Client Sample ID: TI-SB06D SDG No.: Lab Sample ID: F3304-12 Matrix: Analytical Method: SW8151A % Moisture: Sample Wt/Vol: 30.05 Units: g Final Vol: Soil Aliquot Vol: uL Test: Extraction Type: Injection Volum GPC Factor: 1.0 PH: File ID/Qc Batch: Dilution: Prep Date Date Analyzed PE010698.D 1 07/29/14 08/01/14	PB78075
Client Sample ID: TI-SB06D SDG No.: Lab Sample ID: F3304-12 Matrix: Analytical Method: SW8151A % Moisture: Sample Wt/Vol: 30.05 Units: g Final Vol: Soil Aliquot Vol: uL Test: Extraction Type: Injection Volum GPC Factor: 1.0 PH:	
Client Sample ID: TI-SB06D SDG No.: Lab Sample ID: F3304-12 Matrix: Analytical Method: SW8151A % Moisture: Sample Wt/Vol: 30.05 Units: g Final Vol: Soil Aliquot Vol: uL Test: Extraction Type: Injection Volume	Prep Batch ID
Client Sample ID: TI-SB06D SDG No.: Lab Sample ID: F3304-12 Matrix: Analytical Method: SW8151A % Moisture: Sample Wt/Vol: 30.05 Units: g Final Vol: Soil Aliquot Vol: uL Test:	
Client Sample ID: TI-SB06D SDG No.: Lab Sample ID: F3304-12 Matrix: Analytical Method: SW8151A % Moisture: Sample Wt/Vol: 30.05 Units: g Final Vol:	e:
Client Sample ID: TI-SB06D SDG No.: Lab Sample ID: F3304-12 Matrix: Analytical Method: SW8151A % Moisture:	Herbicide Group1
Client Sample ID: TI-SB06D SDG No.: Lab Sample ID: F3304-12 Matrix:	10000 uL
Client Sample ID: TI-SB06D SDG No.:	7.6 Decanted:
	SOIL
Project: Bronx Psy. Center Date Received:	F3304
	07/24/14
Client: URS Corporation Date Collected:	07/23/14

72.4

198

U

11.8

12 - 189

18

72.4

40%

ug/Kg

SPK: 500

TARGETS 93-72-1

SURROGATES 19719-28-9

2,4,5-TP (Silvex)

2,4-DCAA

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

Client: URS Corporation Date Collected:
Project: Bronx Psy. Center Date Received:

 Client Sample ID:
 TI-SB02(0-2)
 SDG No.:
 F3304

 Lab Sample ID:
 F3304-01
 Matrix:
 SOIL

Lab Sample ID: F3304-01 Matrix: SOII

Level (low/med): low % Solid: 91.5

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CR	QL Uni	ts Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	6.96		1	0.304	0.461	0.922	mg/Kg	07/28/14	07/28/14	SW6010
7440-39-3	Barium	233		1	0.369	2.31	4.61	mg/Kg	07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.635		1	0.055	0.138	0.277	mg/Kg	07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.277	U	1	0.055	0.138	0.277	mg/Kg	07/28/14	07/28/14	SW6010
7440-47-3	Chromium	21.9		1	0.12	0.231	0.461	mg/Kg	07/28/14	07/28/14	SW6010
7440-50-8	Copper	47.2		1	0.295	0.461	0.922	mg/Kg	07/28/14	07/28/14	SW6010
7439-92-1	Lead	62.4	×	1	0.111	0.277	0.553	mg/Kg	07/28/14	07/28/14	SW6010
7439-96-5	Manganese	309		1	0.175	0.461	0.922	mg/Kg	07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.078		1	0.005	0.005	0.011	mg/Kg	07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	42.7	1000	1	0.424	0.922	1.84	mg/Kg	07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.46	M	1	0.378	0.461	0.922	mg/Kg	07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.461	U	1	0.138	0.231	0.461	mg/Kg	07/28/14	07/28/14	SW6010
7440-66-6	Zinc	152		1	0.646	0.922	1.84	mg/Kg	07/28/14	07/28/14	SW6010

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

07/23/14

07/24/14

D

OR = Over Range

Report of Analysis

Client:

URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/24/14

D

Client Sample ID:

TI-SB02(5-10)

SDG No.:

F3304

Lab Sample ID:

F3304-02

Matrix:

SOIL

Level (low/med):

low

% Solid:

82.4

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	4.29		1	0.339	0.514	1.03	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	172]	0.411	2.57	5.14	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.542		1	0.062	0.154	0.309	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.309	U	1	0.062	0.154	0.309	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	19.9		1	0.134	0.257	0.514	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	57.2		1	0.329	0.514	1.03	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	125	M	1	0.123	0.309	0.617	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	238		1	0.195	0.514	1.03	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.342		1	0.005	0.005	0.01	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	39.7		1	0.473	1.03	2.06	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.03	M	1	0.422	0.514	1.03	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.514	U	1	0.154	0.257	0.514	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	144		1	0.72	1.03	2.06	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: **URS** Corporation Project:

Bronx Psy. Center

Client Sample ID: TI-SB02(10-WT)

Lab Sample ID: F3304-03

Level (low/med): low Date Collected:

07/23/14

Date Received:

07/24/14

SDG No.:

F3304

Matrix:

SOIL

% Solid:

80.5

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CI	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	9.39		1	0.335	0.507	1.01	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	472		1	0.406	2.54	5.07	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.659		1	0.061	0.152	0.304	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	1.53		1	0.061	0.152	0.304	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	36.2		1	0.132	0.254	0.507	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	77.3	- 2	1	0.325	0.507	1.01	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	488	M	1	0.122	0.304	0.608	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	277		1	0.193	0.507	1.01	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.278		1	0.006	0.006	0.011	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	38.1		1	0.466	1.01	2.03	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.06	M	1	0.416	0.507	1.01	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.267	J	1	0.152	0.254	0.507	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	429		1	0.71	1.01	2.03	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/24/14

D

Client Sample ID:

TI-SB03(0-2)

SDG No.:

F3304

Lab Sample ID:

F3304-04

Matrix:

SOIL

Level (low/med):

low

% Solid:

93.9

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	15.6	7	1	0.304	0.461	0.922	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	216	7	1	0.369	2.31	4.61	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.611		1	0.055	0.138	0.277	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.277	U	1	0.055	0.138	0.277	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	22.5	5	1	0.12	0.231	0.461	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	39.1	3	1	0.295	0.461	0.922	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	197	NJ	l	0.111	0.277	0.553	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	273	J	1	0.175	0.461	0.922	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.161	_	1	0.005	0.005	0.011	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	34.6		1	0.424	0.922	1.84	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.54	XJ	1	0.378	0.461	0.922	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.461	U	1	0.138	0.231	0.461	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	218		1	0.645	0.922	1.84	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/24/14 TI-SB03(5-10) Client Sample ID: SDG No.: F3304 Lab Sample ID: F3304-05 Matrix: SOIL

Level (low/med): low % Solid: 90.3

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	12.3		1	0.308	0.467	0.935	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	328		1	0.374	2.34	4.67	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.601		1	0.056	0.14	0.28	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.079	J	1	0.056	0.14	0.28	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	21.6		1	0.121	0.234	0.467	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	36.9		1	0.299	0.467	0.935	mg/Kg 07/28/14	07/28/14	SW6010
439-92-1	Lead	276	M	1	0.112	0.28	0.561	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	266		1	0.178	0.467	0.935	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.208		1	0.005	0.005	0.011	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	32.7		1	0.43	0.935	1.87	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.1	M	1	0.383	0.467	0.935	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.467	U	1	0.14	0.234	0.467	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	302		1	0.654	0.935	1.87	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

D

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/24/14

Client Sample ID:

TI-SB03(10-WT)

SDG No.:

F3304

Lab Sample ID:

F3304-06

Matrix:

SOIL

Level (low/med):

low

% Solid:

78.1

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	22.9		1	0.363	0.55	1.1	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	341		1	0.44	2.75	5.5	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.741		1	0.066	0.165	0.33	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	2.06		1	0.066	0.165	0.33	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	29.1		1	0.143	0.275	0.55	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	65		1	0.352	0.55	1.1	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	326	M	1	0.132	0.33	0.659	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	269		1	0.209	0.55	1.1	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.195		1	0.006	0.006	0.012	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	38.3		1	0.506	1.1	2.2	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.3	M	1	0.451	0.55	1.1	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.55	Ú	1	0.165	0.275	0.55	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	372		1	0.769	1.1	2.2	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Client: URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/24/14

D

Client Sample ID:

TI-SB04(0-2)

SDG No.:

F3304

Lab Sample ID:

F3304-07

Matrix:

SOIL

Level (low/med):

low

% Solid:

90.6

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CI	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	6.28		1	0.309	0.468	0.935	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	180		1	0.374	2.34	4.68	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.545		1	0.056	0.14	0.281	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.281	U	1	0.056	0.14	0.281	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	20.3		1	0.122	0.234	0.468	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	35.2		1	0.299	0.468	0.935	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	134	M	1	0.112	0.281	0.561	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	281	1	1	0.178	0.468	0.935	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.109		1	0.005	0.005	0.01	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	31.9		1	0.43	0.935	1.87	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.11	M	1	0.384	0.468	0.935	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.468	U	1	0.14	0.234	0.468	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	186		1	0.655	0.935	1.87	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/24/14

D

Client Sample ID:

TI-SB04(5-10)

SDG No.:

F3304

Lab Sample ID:

F3304-08

Matrix:

SOIL

Level (low/med):

low

% Solid:

90.4

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	6.11		1	0.32	0.485	0.97	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	290		l	0.388	2.43	4.85	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.711		1	0.058	0.146	0.291	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.26	J	1	0.058	0.146	0.291	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	25		1	0.126	0.243	0.485	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	54.6		1	0.311	0.485	0.97	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	273	M	1	0.116	0.291	0.582	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	288	/	1	0.184	0.485	0.97	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.388		1	0.005	0.005	0.011	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	55		1	0.446	0.97	1.94	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.28	M	1	0.398	0.485	0.97	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.485	ΰ	1	0.146	0.243	0.485	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	289		1	0.679	0.97	1.94	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Gray

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: URS Corporation

Bronx Psy. Center

Client Sample ID:

Project:

TI-SB04(10-WT)

Lab Sample ID:

F3304-09

Level (low/med): low

Date Collected:

07/23/14

Date Received:

07/24/14

SDG No.:

F3304

Matrix:

SOIL

% Solid:

86.3

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	5.11		1	0.317	0.481	0.962	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	390		1	0.385	2.4	4.81	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.733		1	0.058	0.144	0.288	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.174	J	1	0.058	0.144	0.288	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	23.9		1	0.125	0.24	0.481	mg/Kg 07/28/14	07/28/14	SW6010
7440-50 - 8	Copper	47.1		1	0.308	0.481	0.962	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	267	×	1	0.115	0.288	0.577	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	310		1	0.183	0.481	0.962	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.179		1	0.005	0.005	0.01	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	40.7		1	0.442	0.962	1.92	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.24	×	1	0.394	0.481	0.962	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.481	U	1	0.144	0.24	0.481	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	274		1	0.673	0.962	1.92	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

No

Color After:

Yellow

Clarity After:

Artifacts:

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/24/14

Client Sample ID:

TI-SB05(0-2)

SDG No.:

F3304

Lab Sample ID:

F3304-10

Matrix:

SOIL

Level (low/med):

low

% Solid:

75.5

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/CR	QL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	20.4		1	0.374	0.566	1.13	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	181		1	0.453	2.83	5.66	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	0.5		1	0.068	0.17	0.34	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	0.34	U	1	0.068	0.17	0.34	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	19.1		1	0.147	0.283	0.566	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	28.3		1	0.362	0.566	1.13	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	155	M	1	0.136	0.34	0.679	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	252	/	1	0.215	0.566	1.13	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.123		1	0.006	0.006	0.012	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	22.8		1	0.521	1.13	2.26	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	0.895	JM.	1	0.464	0.566	1.13	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.566	Ü	1	0.17	0.283	0.566	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	120		1	0.792	1.13	2.26	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Client:

URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/24/14

D

Client Sample ID:

TI-SB05(5-10)

SDG No.:

F3304

Lab Sample ID:

F3304-11

Matrix:

SOIL

Level (low/med):

low

% Solid:

80.8

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	18.8		1	0.358	0.543	1.09	mg/Kg 07/28/14	07/28/14	SW6010
7440-39-3	Barium	455		1	0.434	2.71	5.43	mg/Kg 07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	1.04		1	0.065	0.163	0.326	mg/Kg 07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	1.69		1	0.065	0.163	0.326	mg/Kg 07/28/14	07/28/14	SW6010
7440-47-3	Chromium	21.9		1	0.141	0.271	0.543	mg/Kg 07/28/14	07/28/14	SW6010
7440-50-8	Copper	80.2		1	0.347	0.543	1.09	mg/Kg 07/28/14	07/28/14	SW6010
7439-92-1	Lead	580	Х	1	0.13	0.326	0.651	mg/Kg 07/28/14	07/28/14	SW6010
7439-96-5	Manganese	314	*	1	0.206	0.543	1.09	mg/Kg 07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.468		1	0.006	0.006	0.012	mg/Kg 07/25/14	07/28/14	SW7471A
7440-02-0	Nickel	44.6		1	0.499	1.09	2.17	mg/Kg 07/28/14	07/28/14	SW6010
7782-49-2	Selenium	1.25	M	1	0.445	0.543	1.09	mg/Kg 07/28/14	07/28/14	SW6010
7440-22-4	Silver	0.31	J	1	0.163	0.271	0.543	mg/Kg 07/28/14	07/28/14	SW6010
7440-66-6	Zinc	769		1	0.76	1.09	2.17	mg/Kg 07/28/14	07/28/14	SW6010

Color Before:

Gray

Clarity Before:

Texture:

Medium

Color After: Comments:

Yellow

Metals Group1

Clarity After:

Artifacts:

No

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

0.005

0.426

0.379

0.139

0.648

0.005

0.925

0.463

0.231

0.925

0.01

1.85

0.925

0.463

1.85

Client: URS Corporation

Parameter

Arsenic

Barium

Beryllium

Cadmium

Chromium

Manganese

Mercury

Selenium

Nickel

Silver

Zinc

Copper

Lead

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Conc.

7.49

306

0.531

0.278

33.1

48.4

285

259

37

1.02

0.463

387

0.226

Date Received:

07/24/14

Client Sample ID:

TI-SB06D

SDG No.:

F3304

D

SW7471A

SW6010

SW6010

SW6010

SW6010

07/28/14

07/28/14

07/28/14

07/28/14

07/28/14

Lab Sample ID:

F3304-12

Matrix: % Solid:

SOIL 92.4

Level (low/med):

Cas

7440-38-2

7440-39-3

7440-41-7

7440-43-9

7440-47-3

7440-50-8

7439-92-1

7439-96-5

7439-97-6

7440-02-0

7782-49-2

7440-22-4

7440-66-6

low

Qua.	DF	MDL	LOD	LOQ/C	RQL Units Prep Date	Date Ana.	Ana Met.
ゴ	i	0.305	0.463	0.925	mg/Kg 07/28/14	07/28/14	SW6010
ナ	1	0.37	2.31	4.63	mg/Kg 07/28/14	07/28/14	SW6010
	1	0.056	0.139	0.278	mg/Kg 07/28/14	07/28/14	SW6010
U	1	0.056	0.139	0.278	mg/Kg 07/28/14	07/28/14	SW6010
<u>J</u>	1	0.12	0.231	0.463	mg/Kg 07/28/14	07/28/14	SW6010
3	1	0.296	0.463	0.925	mg/Kg 07/28/14	07/28/14	SW6010
NJ	1	0.111	0.278	0.555	mg/Kg 07/28/14	07/28/14	SW6010
J	1	0.176	0.463	0.925	mg/Kg 07/28/14	07/28/14	SW6010

mg/Kg 07/25/14

mg/Kg 07/28/14

mg/Kg 07/28/14

mg/Kg 07/28/14

mg/Kg 07/28/14

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

s: No

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/25/14 Client Sample ID: MW-2 SDG No.: F3308 Lab Sample ID: F3308-01 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25

D

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR014427.D 1 07/31/14 VR073114

New years of the control of the cont			0//3/14 VR0/3114					
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
75-01-4	Vinyl Chloride	5	U	0.34	0.5	5	ug/L	
75-35-4	1,1-Dichloroethene	5	U	0.47	0.5	5	ug/L	
67 - 64-1	Acetone	25	U	0.5	2.5	25	ug/L	
1634-04-4	Methyl tert-butyl Ether	5	U	0.35	0.5	5	ug/L	
75-09-2	Methylene Chloride	5	U	0.41	0.5	5	ug/L	
156-60 - 5	trans-1,2-Dichloroethene	5	U	0.41	0.5	5	ug/L	
75-34-3	1,1-Dichloroethane	5	U	0.36	0.5	5	ug/L	
78-93-3	2-Butanone	25	U	1.3	2.5	25	ug/L	
56-23-5	Carbon Tetrachloride	5	U	0.2	0.5	5	ug/L	
156-59-2	cis-1,2-Dichloroethene	5	U	0.35	0.5	5	ug/L	
67-66-3	Chloroform	5	U	0.34	0.5	5	ug/L	
71-55-6	1,1,1-Trichloroethane	5	U	0.4	0.75	5	ug/L	
71-43-2	Benzene	5	U	0.32	0.5	5	ug/L	
107-06-2	1,2-Dichloroethane	5	U	0.48	0.75	5	ug/L	
79-01-6	Trichloroethene	5	U	0.28	0.5	5	ug/L	
108-88-3	Toluene	5	U	0.37	0.5	5	ug/L	
127-18-4	Tetrachloroethene	5	U	0.27	0.5	5	ug/L	
108-90-7	Chlorobenzene	5	U	0.49	0.5	5	ug/L	
100-41-4	Ethyl Benzene	5	U	0.2	0.5	5	ug/L	
1330-20-7	Total Xylenes	15	U	1.38	1.5	15	ug/L	
103-65-1	n-propylbenzene	5	U	0.45	0.5	5	ug/L	
108-67-8	1,3,5-Trimethylbenzene	5	U	0.46	0.5	5	ug/L	
98-06-6	tert-Butylbenzene	5	U	0.44	0.5	5	ug/L	
95-63-6	1,2,4-Trimethylbenzene	5	U	0.38	0.5	5	ug/L	
135-98-8	sec-Butylbenzene	5	U	0.46	0.5	5	ug/L	
541-73-1	1,3-Dichlorobenzene	5	U	0.43	0.5	5	ug/L	
106-46-7	1,4-Dichlorobenzene	5	U	0.32	0.5	5	ug/L	
104-51-8	n-Butylbenzene	5	U	0.41	0.5	5	ug/L	
95-50-1	1,2-Dichlorobenzene	5	U	0.45	0.5	5	ug/L	
123-91-1	1,4-Dioxane	100	UR	50	50	100	ug/L	
SURROGATES			- 4				••	

Level:

LOW

31 of 292

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/25/14 Client Sample ID: MW-2 SDG No.: F3308 Lab Sample ID: F3308-01 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: **VOCMS** Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR014427.D 1 07/31/14 VR073114

				-		***************************************	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	49.9		61 - 141	Hal	100%	SPK: 50
1868-53-7	Dibromofluoromethane	44		69 - 133		88%	SPK: 50
2037-26-5	Toluene-d8	50.5		65 - 126		101%	SPK: 50
460-00-4	4-Bromofluorobenzene	53		58 - 135		106%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	936281	7.5				
540-36-3	1,4-Difluorobenzene	1616820	8.44				
3114-55-4	Chlorobenzene-d5	1436410	11.28				
3855-82-1	1,4-Dichlorobenzene-d4	519731	13.22				
TENTATIVE II	DENTIFIED COMPOUNDS						
000115-11-7	1-Propene, 2-methyl-	21.9	ΙŊ			2.08	ug/L
			•				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

Client:	URS Corporation	Date Collected:	07/23/14
Project:	Bronx Psy. Center	Date Received:	07/25/14
Client Sample ID:	MW-3D	SDG No.:	F3308
Lab Sample ID:	F3308-02	Matrix:	Water
Analytical Method:	SW8260	% Moisture:	100
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level:	LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR014428.D 07/31/14 VR073114

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-01-4	Vinyl Chloride	5	U	0.34	0.5	5	ug/L
75-35-4	1,1-Dichloroethene	5	U	0.47	0.5	5	ug/L
67-64-1	Acetone	25	U	0.5	2.5	25	ug/L
1634-04-4	Methyl tert-butyl Ether	5	U	0.35	0.5	5	ug/L
75-09-2	Methylene Chloride	5	U	0.41	0.5	5	ug/L
156-60-5	trans-1,2-Dichloroethene	5	U	0.41	0.5	5	ug/L
75-34-3	1,1-Dichloroethane	5	U	0.36	0.5	5	ug/L
78-93-3	2-Butanone	25	U	1.3	2.5	25	ug/L
56-23-5	Carbon Tetrachloride	5	U	0.2	0.5	5	ug/L
156-59-2	cis-1,2-Dichloroethene	5	U	0.35	0.5	5	ug/L
67-66-3	Chloroform	5	U	0.34	0.5	5	ug/L
71-55-6	1,1,1-Trichloroethane	5	U	0.4	0.75	5	ug/L
71-43-2	Benzene	5	U	0.32	0.5	5	ug/L
107-06-2	1.2-Dichloroethane	5	U	0.48	0.75	5	ug/L
79-01-6	Trichloroethene	5	U	0.28	0.5	5	ug/L
108-88-3	Toluene	5	U	0.37	0.5	5	ug/L
127-18-4	Tetrachloroethene	5	U	0.27	0.5	5	ug/L
108-90-7	Chlorobenzene	5	U	0.49	0.5	5	ug/L
100-41-4	Ethyl Benzene	5	U	0.2	0.5	5	ug/L
1330-20-7	Total Xylenes	15	U	1.38	1.5	15	ug/L
103-65-1	n-propylbenzene	5	U	0.45	0.5	5	ug/L
108-67-8	1,3,5-Trimethylbenzene	5	U	0.46	0.5	5	ug/L
98-06-6	tert-Butylbenzene	5	U	0.44	0.5	5	ug/L
95-63-6	1,2,4-Trimethylbenzene	5	U	0.38	0.5	5	ug/L
135-98-8	sec-Butylbenzene	5	U	0.46	0.5	5	ug/L
541-73-1	1,3-Dichlorobenzene	5	U	0.43	0.5	5	ug/L
106-46-7	1,4-Dichlorobenzene	5	U	0.32	0.5	5	ug/L
104-51-8	n-Butylbenzene	5	U	0.41	0.5	5	ug/L
95-50-1	1,2-Dichlorobenzene	5	U	0.45	0.5	5	ug/L
123-91-1	1,4-Dioxane	100	υR	50	50	100	ug/L
SURROGATES	6						

Client:	URS Corporation	Date Collected:	07/23/14	
Project:	Bronx Psy. Center	Date Received:	07/25/14	
Client Sample ID:	MW-3D	SDG No.:	F3308	
Lab Sample ID:	F3308-02	Matrix:	Water	
Analytical Method:	SW8260	% Moisture:	100	
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL	
Soil Aliquot Vol:	uL	Test:	VOCMS Group1	
GC Column:	RXI-624 ID: 0.25	Level:	LOW	

File ID/Qc Batch VR014428.D	: Dilution:	Prep Date	Date Analyzed 07/31/14			Prep Batch ID VR073114	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	49.9		61 - 141	- :	100%	SPK: 50
1868-53-7	Dibromofluoromethane	43.7		69 - 133		87%	SPK: 50
2037-26-5	Toluene-d8	50.1		65 - 126		100%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.1		58 - 135		104%	SPK: 50
INTERNAL STAP	NDARDS						
363-72-4	Pentafluorobenzene	931112	7.5				
540-36-3	1,4-Difluorobenzene	1600890	8.44				

1407450

502663

11.28

13.22

3114-55-4

3855-82-1

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

Chlorobenzene-d5

1,4-Dichlorobenzene-d4

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

CHEMITECH

GC Column:

RXI-624

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 07/25/14 Date Received: Project: Bronx Psy. Center TB-072314 SDG No.: F3308 Client Sample ID: Water Matrix: Lab Sample ID: F3308-09 100 SW8260 % Moisture: Analytical Method: 5000 uL Final Vol: Sample Wt/Vol: 5 Units: mL Test: VOCMS Group1 Soil Aliquot Vol: uL

Date Analyzed Prep Batch ID File ID/Qc Batch: Dilution: Prep Date 07/31/14 VR073114 VR014426.D 1

ID: 0.25

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS		<u></u>	<u>-</u>				
75-01-4	Vinyl Chloride	5	U	0.34	0.5	5	ug/L
75-35-4	1,1-Dichloroethene	5	U	0.47	0.5	5	ug/L
67-64-1	Acetone	25	U	0.5	2.5	25	ug/L
1634-04-4	Methyl tert-butyl Ether	5	U	0.35	0.5	5	ug/L
75-09-2	Methylene Chloride	5	U	0.41	0.5	5	ug/L
156-60-5	trans-1,2-Dichloroethene	5	U	0.41	0.5	5	ug/L
75-34-3	1,1-Dichloroethane	5	U	0.36	0.5	5	ug/L
78-93-3	2-Butanone	25	U	1.3	2.5	25	ug/L
56-23-5	Carbon Tetrachloride	5	U	0.2	0.5	5	ug/L
156-59-2	cis-1,2-Dichloroethene	5	U	0.35	0.5	5	ug/L
67-66-3	Chloroform	5	U	0.34	0.5	5	ug/L
71-55-6	1,1,1-Trichloroethane	5	U	0.4	0.75	5	ug/L
71-43-2	Benzene	5	U	0.32	0.5	5	ug/L
107-06-2	1,2-Dichloroethane	5	U	0.48	0.75	5	ug/l_
79-01-6	Trichloroethene	5	U	0.28	0.5	5	ug/L
108-88-3	Toluene	5	U	0.37	0.5	5	ug/L
127-18-4	Tetrachloroethene	5	U	0.27	0.5	5	ug/L
108-90-7	Chlorobenzene	5	U	0.49	0.5	5	ug/L
100-41-4	Ethyl Benzene	5	U	0.2	0.5	5	ug/L
1330-20-7	Total Xylenes	15	U	1.38	1.5	15	ug/L
103-65-1	n-propylbenzene	5	U	0.45	0.5	5	ug/L
108-67-8	1,3,5-Trimethylbenzene	5	U	0.46	0.5	5	ug/L
98-06-6	tert-Butylbenzene	5	U	0.44	0.5	5	ug/L
95-63-6	1,2,4-Trimethylbenzene	5	U	0.38	0.5	5	ug/L
135-98-8	sec-Butylbenzene	5	U	0.46	0.5	5	ug/L
541-73-1	1,3-Dichlorobenzene	5	U	0.43	0.5	5	ug/L
106-46-7	1,4-Dichlorobenzene	5	U	0.32	0.5	5	ug/L
104-51-8	n-Butylbenzene	5	U	0.41	0.5	5	ug/L
95-50-1	1,2-Dichlorobenzene	5	U	0.45	0.5	5	ug/L
123-91-1	1,4-Dioxane	100	υR	50	50	100	ug/L
SURROGATES	S						

LOW

Level:

35 of 292 F3308

GC Column:

RXI-624

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected: 07/23/14 Client: **URS** Corporation Date Received: 07/25/14 Project: Bronx Psy. Center SDG No.: F3308 TB-072314 Client Sample ID: Lab Sample ID: F3308-09 Matrix: Water % Moisture: 100 Analytical Method: SW8260 Final Vol: 5000 uL Sample Wt/Vol: 5 Units: mL Soil Aliquot Vol: uL Test: VOCMS Group1 ID: 0.25 Level: LOW

Prep Batch ID Prep Date Date Analyzed File ID/Qc Batch: Dilution: VR073114 VR014426.D 1 07/31/14

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
17060-07-0	1,2-Dichloroethane-d4	50.6		61 - 141		101%	SPK: 50
1868-53-7	Dibromofluoromethane	43.1		69 - 133		86%	SPK: 50
2037-26-5	Toluene-d8	49.6		65 - 126		99%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.3		58 - 135		107%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	941147	7.5				
540-36-3	1,4-Difluorobenzene	1621560	8.44				
3114-55-4	Chlorobenzene-d5	1447300	11.28				
3855-82-1	1,4-Dichlorobenzene-d4	543122	13.22				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

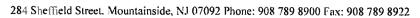
LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank


N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

D

CHEMITECH

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/25/14 Client Sample ID: MW-2 SDG No.: F3308 Lab Sample ID: F3308-01 Matrix: Water Analytical Method: SW8270 % Moisture: 100 Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group 1 Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072846.D 1 07/29/14 07/29/14 PB78096

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
108-95-2	Phenol	10	U	0.21	1	10	ug/L
95-48-7	2-Methylphenol	10	U	0.24	1	10	ug/L
65794-96-9	3+4-Methylphenols	10	U	0.38	1	10	ug/L
91-20-3	Naphthalene	10	U	0.12	1	10	ug/L
208-96-8	Acenaphthylene	10	U	0.7	1	10	ug/L
83-32-9	Acenaphthene	10	U	0.21	1	10	ug/L
132-64-9	Dibenzofuran	10	U	0.24	1	10	ug/L
86-73 - 7	Fluorene	10	U	0.31	1	10	ug/L
118-74-1	Hexachlorobenzene	10	U	0.18	1	10	ug/L
87-86-5	Pentachlorophenol	10	U	1	1	10	ug/L
85-01-8	Phenanthrene	10	U	0.26	1	10	ug/L
120-12-7	Anthracene	10	U	0.16	1	10	ug/L
206-44-0	Fluoranthene	10	U	0.4	1	10	ug/L
129-00-0	Pyrene	10	U	0.2	1	10	ug/L
56-55-3	Benzo(a)anthracene	10	U	0.16	1	10	ug/L
218-01-9	Chrysene	10	U	0.18	1	10	ug/L
205-99-2	Benzo(b)fluoranthene	10	U	0.29	1	10	ug/L
207-08-9	Benzo(k)fluoranthene	10	U	0.18	1	10	ug/L
50-32-8	Benzo(a)pyrene	10	U	0.14	1	10	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	10	U	0.15	1	10	ug/L
53-70-3	Dibenzo(a,h)anthracene	10	U	0.42	1	10	ug/L
191-24-2	Benzo(g,h,i)perylene	10	U	0.29	1	10	ug/L
SURROGATES	i						
367-12-4	2-Fluorophenol	50.9		10 - 130)	34%	SPK: 150
13127-88-3	Phenol-d6	35.6		10 - 130)	24%	SPK: 150
4165-60-0	Nitrobenzene-d5	100		36 - 131		103%	SPK: 100
321-60-8	2-Fluorobiphenyl	110		39 - 131		106%	SPK: 100
118-79-6	2,4,6-Tribromophenol	140		25 - 155	5	97%	SPK: 150
1718-51-0	Terphenyl-d14	110		23 - 130)	109%	SPK: 100
INTERNAL ST	ANDARDS						
2055 00 1							

3855-82-1 1,4-Dichlorobenzene-d4

190909 6.3

F3308

66 of 292

D

Report of Analysis

Client:	URS Corpo	oration				Date Collected:		07/23/14	
Project:	Bronx Psy.	Center				Date Received:		07/25/14	
Client Sample ID:	MW-2					SDG No.:		F3308	
Lab Sample ID:	F3308-01					Matrix:		Water	
Analytical Method:	SW8270					% Moisture:		100	
Sample Wt/Vol:	1000	Units:	mL			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCMS Group	pl
Extraction Type:			Decant	led:	N	Level:		LOW	
Injection Volume:			GPC Factor:	1.0		GPC Cleanup:	N	PH:	

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072846.D	1	07/29/14	07/29/14	PB78096

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8	746721	8.23				
15067-26-2	Acenaphthene-d10	435367	11.03				
1517-22-2	Phenanthrene-d10	823823	13.42				
1719-03-5	Chrysene-d12	785839	17.1				
1520-96-3	Perylene-d12	638396	18.79				
TENTATIVE ID	DENTIFIED COMPOUNDS						
000994-05-8	Butane, 2-methoxy-2-methyl-	56	J 👌			1.53	ug/L
-000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	14.5	AB			3.98	ug/L
	unknown5.98	64.9	J			5.98	ug/L
020324-32-7	2-Propanol, 1-(2-methoxy-1-methyle	2.3	JN			6.07	ug/L
034590-94-8	Dipropylene glycol monomethyl ethe	2.2	J			6.12	ug/L
131-11-3	Dimethylphthalate	5.1	J 🌡			10.68	ug/L

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/25/14 Client Sample ID: MW-3D SDG No.: F3308 Lab Sample ID: F3308-02 Matrix: Water Analytical Method: SW8270 % Moisture: 100 Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group 1 Extraction Type: Decanted: N Level: LOW Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072881.D 1 07/29/14 07/30/14 PB78096

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
108-95-2	Phenol	10	U	0.21	1	10	ug/L
95-48-7	2-Methylphenol	10	Ŭ	0.24	1	10	ug/L ug/L
65794-96-9	3+4-Methylphenols	10	Ŭ	0.38	1	10	ug/L ug/L
91-20-3	Naphthalene	10	Ŭ	0.12	1	10	ug/L ug/L
208-96-8	Acenaphthylene	10	Ŭ	0.7	1	10	ug/L ug/L
83-32-9	Acenaphthene	10	Ŭ	0.21	1	10	ug/L ug/L
132-64-9	Dibenzofuran	10	Ü	0.24	1	10	ug/L ug/L
86-73-7	Fluorene	10	Ŭ	0.31	1	10	ug/L ug/L
118-74-1	Hexachlorobenzene	10	Ū	0.18	1	10	ug/L ug/L
87-86-5	Pentachlorophenol	10	Ü	1	1	10	ug/L ug/L
85-01-8	Phenanthrene	10	Ū	0.26	1	10	ug/L ug/L
120-12-7	Anthracene	10	Ü	0.16	1	10	ug/L ug/L
206-44-0	Fluoranthene	10	Ū	0.4	1	10	ug/L ug/L
129-00-0	Pyrene	10	Ü	0.2	1	10	ug/L ug/L
56-55-3	Benzo(a)anthracene	10	Ü	0.16	1	10	ug/L ug/L
218-01-9	Chrysene	10	Ū	0.18	1	10	ug/L
205-99-2	Benzo(b)fluoranthene	10	Ü	0.29	1	10	ug/L
207-08-9	Benzo(k)fluoranthene	10	Ü	0.18	1	10	ug/L
50-32-8	Benzo(a)pyrene	10	Ū	0.14	1	10	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ü	0.15	1	10	ug/L
53-70-3	Dibenzo(a,h)anthracene	10	Ū	0.42	1	10	ug/L
191-24-2	Benzo(g,h,i)perylene	10	Ü	0.29	1	10	ug/L ug/L
SURROGATES	S						
367-12-4	2-Fluorophenol	65.7		10 - 130)	44%	SPK: 150
13127-88-3	Phenol-d6	41.6		10 - 130		28%	SPK: 150
4165-60-0	Nitrobenzene-d5	120		36 - 131		121%	SPK: 100
321-60-8	2-Fluorobiphenyl	120		39 - 131		123%	SPK: 100
118-79-6	2,4,6-Tribromophenol	150		25 - 155		101%	SPK: 150
1718-51-0	Terphenyl-d14	110		23 - 130		110%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	118162	6.26				

1,4-Dichlorobenzene-d4

118162 6.26

F3308

68 of 292

Report of Analysis

Client:	URS Corp	oration					Date Collected:		07/23/14	
Project:	Bronx Psy	. Center					Date Received:		07/25/14	
Client Sample ID:	MW-3D						SDG No.:		F3308	
Lab Sample ID:	F3308-02						Matrix:		Water	
Analytical Method:	SW8270						% Moisture:		100	
Sample Wt/Vol:	1000	Units:	mL				Final Vol:		1000	uL
Soil Aliquot Vol:			uL				Test:		SVOCMS Groo	ıpl
Extraction Type:				Decanted:	:	N	Level:		LOW	
Injection Volume:			GPC F	actor: 1.	0		GPC Cleanup:	N	PH:	

D

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072881.D	1	07/29/14	07/30/14	PB78096

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8	448968	8.2				
15067-26-2	Acenaphthene-d10	246149	10.98				
1517-22-2	Phenanthrene-d10	470428	13.37				
1719-03-5	Chrysene-d12	536102	17.05				
1520-96-3	Perylene-d12	495323	18.72				
TENTATIVE ID	ENTIFIED COMPOUNDS						
000994-05-8	Butane, 2-methoxy-2-methyl-	88.3	JΝ			1.5	ug/L
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	17.7	AB			3.94	ue/L
	unknown5.96	79.9	J			5.96	ug/L
034590-94-8	Dipropylene glycol monomethyl ethe	3.7	J 🖊			6.04	ug/L
054305-61-2	2-Butanol, 3,3-oxybis-	3.5	J			6.08	ug/L
131-11-3	Dimethylphthalate	3.2	J 👃			10.64	ug/L

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

Report of Analysis

Client: **URS** Corporation Date Collected: 07/23/14 Project: Bronx Psy. Center Date Received: 07/25/14 Client Sample ID: MW-2 SDG No.: F3308 Lab Sample ID: F3308-01 Matrix: Water Analytical Method: SW8081 % Moisture: 100 Decanted: Sample Wt/Vol: 1000 Units: mL Final Vol: 10000 uLSoil Aliquot Vol: Test: PESTICIDE Group1 uL Injection Volume: **Extraction Type:** GPC Factor: 1.0 PH: File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD023590.D 1 07/29/14 07/29/14 PB78095

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
319-84-6	alpha-BHC	0.05	U	0.005	0.01	0.05	ug/L
319-85-7	beta-BHC	0.05	U	0.009	0.01	0.05	ug/L
319-86-8	delta-BHC	0.05	U	0.006	0.01	0.05	ug/L
58-89-9	gamma-BHC (Lindane)	0.05	U	0.006	0.01	0.05	ug/L
76-44-8	Heptachlor	0.05	U	0.007	0.01	0.05	ug/L
309-00-2	Aldrin	0.05	U	0.006	0.01	0.05	ug/L
959-98-8	Endosulfan I	0.05	U	0.006	0.01	0.05	ug/L
60-57-1	Dieldrin	0.05	U	0.005	0.01	0.05	ug/L
72-55-9	4,4-DDE	0.05	U	0.005	0.01	0.05	ug/L
72-20-8	Endrin	0.05	U	0.006	0.01	0.05	ug/L
33213-65-9	Endosulfan II	0.05	U	0.006	0.01	0.05	ug/L
72-54-8	4,4-DDD	0.05	U	0.007	0.01	0.05	ug/L
1031-07-8	Endosulfan Sulfate	0.05	U	0.006	0.01	0.05	ug/L
50-29-3	4,4-DDT	0.05	U	0.006	0.01	0.05	ug/L
5103-71-9	alpha-Chlordane	0.05	U	0.005	0.01	0.05	ug/L
SURROGATES							
2051-24-3	Decachlorobiphenyl	14.9		10 - 192	!	75%	SPK: 20
877-09-8	Tetrachloro-m-xylene	19.9		10 - 172	!	100%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Client:	URS Corporation			Date Collected:	07/23/14	1
Project:	Bronx Psy. Center			Date Received:	07/25/14	1
Client Sample ID:	MW-3D			SDG No.:	F3308	
Lab Sample ID:	F3308-02			Matrix:	Water	
Analytical Method:	SW8081			% Moisture:	100	Decanted:
Sample Wt/Vol:	1000 Units:	mL		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	PESTIC	IDE Group1
Extraction Type:				Injection Volume:		
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed		Prep Batch ID
PD023591.D	1		07/29/14	07/29/14		PB78095

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.05	U	0.005	0.01	0.05	ug/L
319-85-7	beta-BHC	0.05	U	0.009	0.01	0.05	ug/L
319-86-8	delta-BHC	0.05	U	0.006	0.01	0.05	ug/L
58-89-9	gamma-BHC (Lindane)	0.05	U	0.006	0.01	0.05	ug/L
76-44-8	Heptachlor	0.05	U	0.007	0.01	0.05	ug/L
309-00-2	Aldrin	0.05	U	0.006	0.01	0.05	ug/L
959-98-8	Endosulfan I	0.05	U	0.006	0.01	0.05	ug/L
60-57-1	Dieldrin	0.05	U	0.005	0.01	0.05	ug/L
72-55-9	4,4-DDE	0.05	U	0.005	0.01	0.05	ug/L
72-20-8	Endrin	0.05	U	0.006	0.01	0.05	ug/L
33213-65-9	Endosulfan II	0.05	U	0.006	0.01	0.05	ug/L
72-54-8	4,4-DDD	0.05	U	0.007	0.01	0.05	ug/L
1031-07-8	Endosulfan Sulfate	0.05	U	0.006	0.01	0.05	ug/L
50-29-3	4,4-DDT	0.05	U	0.006	0.01	0.05	ug/L
5103-71-9	alpha-Chlordane	0.05	U	0.005	0.01	0.05	ug/L
SURROGATES							
2051-24-3	Decachlorobiphenyl	14.4		10 - 192	2	72%	SPK: 20
877-09-8	Tetrachloro-m-xylene	20.1		10 - 172	2	101%	SPK: 20

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected

concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements F3308

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Client:	URS Corporation			Date Collected:	07/23/1	4	
Project:	Bronx Psy. Center			Date Received:	07/25/1	4	
Client Sample ID:	MW-2			SDG No.:	F3308		
Lab Sample ID:	F3308-01			Matrix:	Water		
Analytical Method:	SW8082A			% Moisture:	100	Decanted:	
Sample Wt/Vol:	1000 Units:	mL		Final Vol:	10000	uL	
Soil Aliquot Vol:		uL		Test:	PCB		
Extraction Type:				Injection Volume:			
GPC Factor:	1.0	PH:					
File ID/Oc Batch:	Dilution:		Prep Date	Date Analyzed		Prep Batch ID	
PO016992.D	1		07/28/14	07/30/14		PB78073	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQI	Units
TARGETS							
12674-11-2	Aroclor-1016	0.5	U	0.096	0.1	0.5	ug/L
11104-28-2	Aroclor-1221	0.5	U	0.1	0.1	0.5	ug/L
11141-16-5	Aroclor-1232	0.5	U	0.1	0.1	0.5	ug/L
53469-21-9	Aroclor-1242	0.5	U	0.089	0.1	0.5	ug/L
12672-29-6	Aroclor-1248	0.5	U	0.1	0.1	0.5	ug/L
11097-69-1	Aroclor-1254	0.5	U	0.044	0.1	0.5	ug/L
11096-82-5	Aroclor-1260	0.5	U	0.081	0.1	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	18		35 - 137	,	90%	SPK: 20
2051-24-3	Decachlorobiphenyl	16.7		40 - 135	i	83%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3308

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

Client:	URS Corporation	vn		Date Collected:	07/23/14	
	•					
Project:	Bronx Psy. Cent	ter		Date Received:	07/25/14	
Client Sample ID:	MW-3D			SDG No.:	F3308	
Lab Sample ID:	F3308-02			Matrix:	Water	
Analytical Method:	SW8082A			% Moisture:	100	Decanted:
Sample Wt/VoI:	1000 Unit	s: mL		Final Vol:	10000	uL
Soil Aliquot Vol:		uL		Test:	PCB	
Extraction Type:				Injection Volume	:	
GPC Factor:	1.0	PH:				
File ID/Qc Batch:	Dilution:		Prep Date	Date Analyzed	Pr	ep Batch ID
PO016993.D	1		07/28/14	07/30/14	PI	378073

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	0.5	U	0.096	0.1	0.5	ug/L
11104-28-2	Aroclor-1221	0.5	U	0.1	0.1	0.5	ug/L
11141-16-5	Aroclor-1232	0.5	U	0.1	0.1	0.5	ug/L
53469-21-9	Aroclor-1242	0.5	U	0.089	0.1	0.5	ug/L
12672-29-6	Aroclor-1248	0.5	U	0.1	0.1	0.5	ug/L
11097-69-1	Aroclor-1254	0.5	U	0.044	0.1	0.5	ug/L
11096-82-5	Aroclor-1260	0.5	U	0.081	0.1	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	18.1		35 - 137	,	91%	SPK: 20
2051-24-3	Decachlorobiphenyl	15.1		40 - 135	5	75%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates > 25% difference for detected

concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS$ control criteria did not meet requirements F3308

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

ile ID/Qc Batch: E010704.D	Dilution:		Prep Date 07/29/14	Date Analyzed 08/01/14		ep Batch ID 378094
PC Factor:	1.0	PH:				
xtraction Type:				Injection Volume	:	
oil Aliquot Vol:		uL		Test:	Herbicide	group l
sample Wt/Vol:	1000 U	Jnits: mL		Final Vol:	10000	uL
analytical Method:	SW8151A			% Moisture:	100	Decanted:
ab Sample ID:	F3308-01			Matrix:	Water	
Client Sample ID:	MW-2			SDG No.:	F3308	
roject:	Bronx Psy. C	Center		Date Received:	07/25/14	
lient:	URS Corpora	ation		Date Collected:	07/23/14	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQI	Units
TARGETS 93-72-1	2,4,5-TP (Silvex)	2	U	0.151	0.5	2	ug/L
SURROGATES 19719-28-9	2,4-DCAA	387		43 - 172		77%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \; LCS \; \mbox{control} \; \mbox{criteria} \; \mbox{did} \; \mbox{not} \; \mbox{meet} \; \mbox{requirements} \; \mbox{F3308}$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Report of Analysis

S Number	Paramet	er			Conc.	Qualifier MDL	LOD	LOQ/CRQL Units
PE010705.D	1			07/29/14		08/01/14	F	PB78094
-	Dilation.			Prep Date		Date Analyzed	I	Prep Batch ID
File ID/Qc Batch:	Dilution:			Prop Data		Park I I		
GPC Factor:	1.0		PH:					
Extraction Type:						Injection Volume:		
Soil Aliquot Vol:			uL			Test:	Herbicid	e group l
Sample Wt/Vol:	1000	Units:	mL			Final Vol:	10000	uL
Analytical Method:	SW8151A					% Moisture:	100	Decanted:
Lab Sample ID:	F3308-02					Matrix:	Water	
Client Sample ID:	MW-3D					SDG No.:	F3308	
Project:	Bronx Psy	. Center				Date Received:	07/25/14	
Client:	URS Corp	oration				Date Collected:	07/23/14	

93-72-1	2,4,5-TP (Silvex)	2	U	0.151 0.5	2	ug/L
SURROGATES 19719-28-9	2,4-DCAA	430		43 - 172	86%	SPK: 500

U = Not Detected

TARGETS

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

 $Q = \mbox{indicates} \ LCS \ \mbox{control} \ \mbox{criteria} \ \mbox{did} \ \mbox{not} \ \mbox{meet} \ \mbox{requirements} \ \mbox{F3308}$

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

J = Estimated Value

Report of Analysis

Client:

URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/25/14

Client Sample ID:

MW-2

F3308-01

SDG No.:

F3308

Lab Sample ID:

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/0	CRQL Un	its Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	8.11	J	1	4.2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-39-3	Barium	269		1	4	25.0	50	ug/L	07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	3	U	1	0.7	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	3	U	1	0.5	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-47-3	Chromium	1.67	J	1	1.1	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-50-8	Copper	10	U	1	2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-92-1	Lead	2.83	J	1	2.6	3.0	6	ug/L	07/28/14	07/28/14	SW6010
7439-96-5	Manganese	166		1	1.7	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.2	U	1	0.1	0.1	0.2	ug/L	07/28/14	07/29/14	SW7470A
7440-02-0	Nickel	20	Ū	1	4.2	10.0	20	ug/L	07/28/14	07/28/14	SW6010
7782-49-2	Selenium	10	Ū	1	4.8	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-22-4	Silver	5	Ü	1	1.5	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-66-6	Zinc	69.4	-	1	6.5	10.0	20	ug/L	07/28/14	07/28/14	SW6010

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client:

URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/25/14

Client Sample ID:

MW-3D

SDG No.:

F3308

Lab Sample ID:

F3308-02

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Сопс.	Qua.	DF	MDL	LOD	LOQ/(CRQL Uni	ts Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	7.59	J	1	4.2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-39 - 3	Barium	278		1	4	25.0	50	ug/L	07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	3	U	1	0.7	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	3	U	1	0.5	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-47-3	Chromium	5	U	1	1.1	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-50-8	Copper	10	U	1	2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-92-1	Lead	3.77	J	1	2.6	3.0	6	ug/L	07/28/14	07/28/14	SW6010
7439-96-5	Manganese	153		1	1.7	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.2	U	1	0.1	0.1	0.2	ug/L	07/28/14	07/29/14	SW7470A
7440-02-0	Nickel	20	Ū	i	4.2	10.0	20	ug/L	07/28/14	07/28/14	SW6010
7782-49-2	Selenium	10	U	1	4.8	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-22-4	Silver	5	U	1	1.5	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-66-6	Zinc	64.3		1	6.5	10.0	20	ug/L	07/28/14	07/28/14	SW6010

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client:

URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/25/14

Client Sample 1D:

MW-2

SDG No.:

F3308

Lab Sample ID:

F3308-05

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/	CRQL Uni	its Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	8.32	J	1	4.2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-39-3	Barium	269		1	4	25.0	50	ug/L	07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	3	U	1	0.7	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-43 - 9	Cadmium	3	U	1	0.5	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-47-3	Chromium	5	U	1	1.1	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-50-8	Copper	2.62	J	1	2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-92-1	Lead	6	U	1	2.6	3.0	6	ug/L	07/28/14	07/28/14	SW6010
7439-96-5	Manganese	171		1	1.7	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-97-6	Mercury	0.2	U	1	0.1	0.1	0.2	ug/L	07/28/14	07/29/14	SW7470A
7440-02-0	Nickel	20	U	1	4.2	10.0	20	ug/L	07/28/14	07/28/14	SW6010
7782 - 49-2	Selenium	10	U	1	4.8	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-22-4	Silver	5	U	1	1.5	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-66-6	Zinc	7.59	J	1	6.5	10.0	20	ug/L	07/28/14	07/28/14	SW6010

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client:

URS Corporation

Date Collected:

07/23/14

Project:

Bronx Psy. Center

Date Received:

07/25/14

Client Sample ID:

MW-3D

SDG No.:

F3308

Lab Sample ID:

F3308-06

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/	CRQL Uni	its Prep Date	Date Ana.	Ana Met.
7440-38-2	Arsenic	10	U	1	4.2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-39-3	Barium	249		1	4	25.0	50	ug/L	07/28/14	07/28/14	SW6010
7440-41-7	Beryllium	3	U	1	0.7	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-43-9	Cadmium	3	U	i	0.5	1.5	3	ug/L	07/28/14	07/28/14	SW6010
7440-47-3	Chromium	5	U	1	1.1	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-50-8	Copper	10	U	1	2	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-92-1	Lead	6	U	1	2.6	3.0	6	ug/L	07/28/14	07/28/14	SW6010
7439-96 - 5	Manganese	135		1	1.7	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7439-97 - 6	Mercury	0.2	U	1	0.1	0.1	0.2	ug/L	07/28/14	07/29/14	SW7470A
7440-02-0	Nickel	20	U	1	4.2	10.0	20	ug/L	07/28/14	07/28/14	SW6010
7782-49-2	Selenium	10	U	1	4.8	5.0	10	ug/L	07/28/14	07/28/14	SW6010
7440-22-4	Silver	5	U	1	1.5	2.5	5	ug/L	07/28/14	07/28/14	SW6010
7440-66-6	Zinc	20	U	1	6.5	10.0	20	ug/L	07/28/14	07/28/14	SW6010

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

ATTACHMENT B

SUPPORT DOCUMENTATION

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. F3304
QUOTE NO. CIT 3002
COC Number 032422

 Specify Preservatives SHIPPED VIA: CLIENT: HAND DELIVERED OVERNIGHT SHIPMON COMPIONS: CHENTECH: PICKED UP OVERNIGHT. VES NO B-HNO, D-NaOH F-Other TYES DNO COMMENTS ce in Cooler?: YCS A-HCI C-H,SQ, E-ICE ZIP: Cooler Temp. CLIENT BILLING INFORMATION PO#: AAB) PHONE STATE ANALYSIS O 6 THE REAL PROPERTY. SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY Non Compliant **P** 1 Mg かれの万 **PRESERVATIVES** ATTENTION MeOH extraction requires an additional 4 oz lar for percer Comments: ADDRESS: ☐ Compliant BILL TO: Oil Othas Como CITY: TR BROTK, NY Canditions of battles or coolers at receipt: □ LEVEL 1: Results only
□ LEVEL 2: Results + QC
□ LEVEL 3: Results (plus results raw data) + QC
□ LEVEL 4: Results + QC (all raw data) PHONE: 518. 1088. 0015 | FAX 518, 1088, e-mail: Irnike. Gillies Quez, com DATA DELIVERABLE INFORMATION CLIENT PROJECT INFORMATION PROJECT MANAGER: JRY GINIAS OCATION: 7/23/41 7255 12/2014 211 1630 25 mg 155 2314930 135 NACE TIME COLLECTION PHOJECT NAME: BRINK PC 5 121 SAMPLE DATE SAMPLE BARĐ TYPE (1) (1) PROJECT NO. COMP SAMPLE Soil 3 (assanors RECEIVED FOR LAB BY: STATE: AY ZIP: 1206 12x2x RECEIVED BY RECEIVED BY DAYS. DAYS. DAYS. * STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS 10-01 PHONE 518, 1688, 0015 | FAX: 518. 1/2 18. PROJECT SAMPLE IDENTIFICATION 7-0 DATA TURNAROUND INFORMATION 7 M-0 5-10 0-7 COMPANY: UAS Corporation - ny T-24-14 H EST CLIENT INFORMATION REPORT TO BE SENT TO 10:30 Spoot Dr. pmail Brolls, ad PREAPPROVED TATE IN YES IN NO 5Ps 05 808 **5B04** 580E -SB02 5804 විරය ATTENTION: JON GillieS SP-02 -52002 HARD COPY: RELINQUISHED BY: 3. FEDE RELINGUISHED BY: CHENTECH SAMPLE CITY: EDD: 6. તાં က αį

Revision 8/2007 F3304-VOCMS Group1

PINK - SAMPLER COPY YELLOW - CHEMTECH COPY WHITE - CHEMTECH COPY FOR RETURN TO CLIENT

2392 of 2401

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. CHEMTECH PROJECT NO. QUOTE NO. CALLI COC Number 032423

- Specify Preservatives Buent II SB 13 B - HNO, D - NaOH F - Other Kingt TI-SB03 Shipment Complete: ☐ YES ☐ NO COMMENTS ce in Cooler?: Ve S ZIP A-HCI C-H.SQ. E-ICE Cooler Temp. CLIENT BILLING INFORMATION como PQ#: SHIPPED VIA: CLIEÑT: DHAND DELIVERED DOVERNIGHT PHONE STATE ANALYSIS Q SAMPLE CUȘTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHÂNGE POSSESSION INCLUDINIA COURIER GELIVERY all others œ MeOH extraction requires an additional 4 oz jar for percent solid. œ BILL TO: CAPARE PRESERVATIVES Ŧ ATTENTION: 应 ADDRESS: YOCS and encore and ; やくなっている □ Compliant CITY: M 7 \$3. Conditions of bottles or coolers at receipt: PHONE SIS, LORY, DOIS FAX 518, LARY 17 e-mail: Prinikr, gillirs @ Lys. Can DATA DELIVERABLE INFORMATION CLIENT PROJECT INFORMATION □ LEVEL 1: Results only
□ LEVEL 2: Results + QC
□ LEVEL 3: Results (plus results raw data) + QC
□ LEVEL 4: Results + QC (all raw data) Thalm 10 10 Draw 100 PROJECT MANAGER: [RO GI] [165 # OF BOTTLES PROJECT NAME: BROOK PL 光過1010 TIME Fize M 1010 COLLECTION SAMPLE Page Section Apply DATE SAMPLE BARĐ PROJECT NO. CONP SAMPLE প্ত 3. C. Herie 3 RECEIVED BY: FEODER RECEIVED FOR LAB BY: STATE: ON ZIP: 20165 FAX: 518, UTT. 0073 203 RECEIVED BY: DAYS. DAYS. DAYS. STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS 1-3806(5-10) PROJECT SAMPLE IDENTIFICATION SCHOOL SAIK Corporation-M -Sport to wr DATA TURNAROUND INFORMATION DATECTIME: 10-24-14 CLIENT INFORMATION REPORT TO BE SENT TO -SBOWD STATE OF THE PARTY 10:30 ATTENTION: JON GIVI PS 723 -723 OXCH & TOO PHONE SIB. 1088, 1015 liften Poux PREAPPROVED TAT: D YES MSD a tedo HARD COPY: CHEMTECH SAMPLE RELINQUISHED BY COMPANY: RELINQUISHED BY RELINQUISHED BY EDO 9 તાં က

Revision 8/2007 F3304-VOCMS Group1

PINK - SAMPLER COPY YELLOW - CHEMTECH COPY WHITE - CHEMTECH COPY FOR RETURN TO CLIENT

2393 of 2401

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3304 Test Name: VOCMS Group1

A. Number of Samples and Date of Receipt:

14 Solid samples were received on 07/24/2014.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide Group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for VOCMS Group1.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_T were done using GC column RXI-624SIL MS 30m 0.25mm 1.4um 872456. The analysis performed on instrument MSVOA_R were done using GC column RXI-624SIL MS 30m 0.25mm 1.4um 872456. The analysis performed on instrument MSVOA_D were done using GC column RTX-VMS which is 20 meters, 0.18 mm id, 1.0 um df, Restek Cat. #49914. The Trap was supplied by SUPELCO, K (VOACARB 3000), TEKMAR LSC-2000 Concentrator. The analysis performed on instrument MSVOA_F were done using GC column RTX-VMS, which is 20 meters, 0.18 mm id, 1.0 um df, Restek Cat. #49914. The Trap was supplied by Supelco, VOCARB 3000, Tekmar 2000 Concentrator. The analysis of VOCMS Group1 was based on method 8260C.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for TI-SB03(0-2)MS [Toluene-d8 - 61%].

The Internal Standards Areas met the acceptable requirements except for TI-SB04(5-10), TI-SB05(5-10), TI-SB06D and TI-SB06DRE.

There is Sample # TI-SB04(5-10) &TI-SB05(5-10) were received as Encores.

Sample # TI-SB04(5-10) has A vial has internal fail, B vial was not purge well therefore For Sample # TI-SB05(5-10) has A vial was not purge well, B vial has internal failed therefore no other vial left for further analysis, therefore this run was reported as final analysis.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

F3304-VOCMS Group1 5 of 2401

CHITECH

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

The RPD for {F3304-14MSD} with File ID: VD042770.D recoveries met criteria except for 1,2,4-Trimethylbenzene[23%], 1,3,5-Trimethylbenzene[21%], 1,4-Dioxane[27%], Sec-butylbenzene[22%] and Vinyl chloride[26%].

The Blank Spike for {VD0725SBS01} with File ID: VD042768.D met requirements for all samples except for 1,2-Dichloroethane[126%], m/p-Xylenes [135%] & o-Xylene [130%].

The Blank Spike for {VR0730MBS02} with File ID: VR014404.D met requirements for all samples except for 1,4-Dioxane[46%].

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The %RSD is greater than 20% in the Initial Calibration (Method 82D072514S.M) for m/p-Xylenes & o-Xylene these compounds are passing on Quadratic regression. The %RSD is greater than 15% in the Initial Calibration (Method 82R073014W.M) for Acetone this compound is passing on Linear regression.

The Continuous Calibration File ID VF042435.D met the requirements except for Acetone and Methylene Chloride but they were not detected in any samples. The Tuning criteria met requirements.

E. Additional Comments:

Sample # TI-SB05(0-2) has both vial A vial and B vial were not purge well, therefore lab analyzed the data with straight medium level run.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis for instrument R. Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis for instrument D and T.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_ If I duid V Reys (APPROVED)

By Mildred V Reyes at 4:53 pm, Aug 06, 2014

F3304-VOCMS Group1 6 of 2401

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.:

F3304

Client:

URS Corporation

Analytical Method:

SW8260C

Datafile:

VR014404.D

								Liı	mits	
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Low	High	RPD
VR0730MBS02	Vinyl chloride	2000	1900	ug/Kg	95			67	130	
	1,1-Dichloroethene	2000	2000	ug/Kg	100			74	130	
	Acetone	10000	7800	ug/Kg	78			57	135	
	Methyl tert-butyl Ether	2000	2100	ug/Kg	105			76	123	
	Methylene Chloride	2000	2100	ug/Kg	105			73	134	
	trans-1,2-Dichloroethene	2000	2100	ug/Kg	105			76	125	
	1,1-Dichloroethane	2000	2000	ug/Kg	100			78	124	
	2-Butanone	10000	9200	ug/Kg	92			68	132	
	Carbon Tetrachloride	2000	1900	ug/Kg	95			76	127	
	cis-1,2-Dichloroethene	2000	2100	ug/Kg	105			78	122	
	Chloroform	2000	2000	ug/Kg	100			79	122	
	1,1,1-Trichloroethane	2000	2000	ug/Kg	100			76	126	
	Benzene	2000	2000	ug/Kg	100			79	124	
	1,2-Dichloroethane	2000	1900	ug/Kg	95			78	124	
	Trichloroethene	2000	2000	ug/Kg	100			78	124	
	Toluene	2000	2000	ug/Kg	100			78	124	
	Tetrachloroethene	2000	2000	ug/Kg	100			67	134	
	Chlorobenzene	2000	2000	ug/Kg	100			80	121	
	Ethyl Benzene	2000	2000	ug/Kg	100			80	123	
	m/p-Xylenes	4000	4000	ug/Kg	100			79	126	
	o-Xylene	2000	2000	ug/Kg	100			80	122	
	N-propylbenzene	2000	2000	ug/Kg	100			80	125	
	1,3,5-Trimethylbenzene	2000	2000	ug/Kg	100			81	123	
	tert-Butylbenzene	2000	2000	ug/Kg	100			81	123	
	1,2,4-Trimethylbenzene	2000	2000	ug/Kg	100			81	122	
	Sec-butylbenzene	2000	2000	ug/Kg	100			81	126	
	1,3-Dichlorobenzene	2000	2000	ug/Kg	100			82	120	
	1,4-Dichlorobenzene	2000	2000	ug/Kg	100			81	120	
	n-Butylbenzene	2000	1900	ug/Kg	95			75	129	
	1,2-Dichlorobenzene	2000	2000	ug/Kg	100			82	118	
	1,4-Dioxane	40100	18300	ug/Kg	46	*		50	150	

F3304-VOCMS Group1

Raw Data: VD042759.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: _	CHEMTECH			Contract: _	URSC05		
Lab Code:	СНЕМ	Case No.:	F3304	SAS No.:	F3304	SDG NO.:	F3304
Lab File ID:	VD042759.D			BFB Injection	n Date:	07/25/2014	
Instrument ID:	MSVOA_D			BFB Injection	n Time:	08:42	
GC Column: R	TX-VMS ID: 0.	18 (mm)		Heated Purge	: Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	38.2
75	30.0 - 60.0% of mass 95	56.2
95	Base Peak, 100% relative abundance	100
96	5.0 ~ 9.0% of mass 95	6.4
173	Less than 2.0% of mass 174	0.2 (0.2) 1
174	50.0 - 100.0% of mass 95	72
175	5.0 - 9.0% of mass 174	5.5 (7.6) 1
176	95.0 - 101.0% of mass 174	72.1 (100.2) 1
177	5.0 - 9.0% of mass 176	4.4 (6.1) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
VSTDICC005	VSTDICC005	VD042760.D	07/25/2014	09:50
VSTDICC010	VSTDICC010	VD042761.D	07/25/2014	10:41
VSTDICC020	VSTDICC020	VD042762.D	07/25/2014	11:07
VSTDICCC050	VSTDICCC050	VD042763.D	07/25/2014	11:33
VSTDICC100	VSTDICC100	VD042764.D	07/25/2014	12:00
VSTDICC150	VSTDICC150	VD042765.D	07/25/2014	12:26
VD0725SBL01	VD0725SBL01	VD042767.D	07/25/2014	13:51
VD0725SBS01	VD0725SBS01	VD042768.D	07/25/2014	14:23
TI-SB03(0-2)MS	F3304-13MS	VD042769.D	07/25/2014	14:49
TI-SB03(0-2)MSD	F3304-14MSD	VD042770.D	07/25/2014	15:16
TI-SB06D	F3304-12	VD042772.D	07/25/2014	16:09

F3304-VOCMS Group1

Raw Data: VF042434.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name	: <u> </u>	HEMTECH		•	Contract: _	URSC05		
Lab Code	: <u> </u>	CHEM	Case No.:	F3304	SAS No.:	F3304	SDG NO.:	F3304
Lab File	ID:	VF042434.D			BFB Injection	Date:	07/28/2014	
Instrume	nt ID:	MSVOA	<u> </u>		BFB Injection	Time:	09:33	
GC Colum	n: RTX	-VMS ID:	0.18 (mm)		Heated Purge:	Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	17.9
75	30.0 - 60.0% of mass 95	41.5
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	77.7
175	5.0 - 9.0% of mass 174	4.8 (6.1) 1
176	95.0 ~ 101.0% of mass 174	73.8 (95.1) 1
177	5.0 - 9.0% of mass 176	4.7 (6.3) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
VSTDCCC050	VSTDCCC050	VF042435.D	07/28/2014	10:08
VF0728SBL01	VF0728SBL01	VF042436.D	07/28/2014	11:11
VF0728SBS01	VF0728SBS01	VF042437.D	07/28/2014	11:44
TI-SB02(0-2)	F3304-01	VF042443.D	07/28/2014	15:09
TI-SB02(10-WT)	F3304-03	VF042445.D	07/28/2014	16:04
TI-SB03(0-2)	F3304-04	VF042446.D	07/28/2014	16:31
TI-SB03(5-10)	F3304-05	VF042447.D	07/28/2014	16:59
TI-SB03(10-WT)	F3304-06	VF042448.D	07/28/2014	17:26
TI-SB06DRE	F3304-12RE	VF042449.D	07/28/2014	17:53
TI-SB02(5-10)	F3304-02	VF042450.D	07/28/2014	18:20

F3304-VOCMS Group1 30 of 2401

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: _	CHEMTECH			Contract: _	URSC05		
Lab Code:	CHEM	Case No.:	F3304	SAS No.:	F3304	SDG NO.:	F3304
Lab File ID:	VR014394.D			BFB Injection	Date:	07/30/2014	
Instrument ID	MSVOA_R			BFB Injection	Time:	17:34	
GC Column: E	XI-624 ID: 0.3	25 (mm)		Heated Purge:	Y/N	N	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	21.1
75	30.0 - 60.0% of mass 95	50.5
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	90.2
175	5.0 - 9.0% of mass 174	7 (7.7) 1
176	95.0 - 101.0% of mass 174	87 (96.4) 1
177	5.0 - 9.0% of mass 176	5.9 (6.7) 2
		

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTDCCC050	VSTDCCC050	VR014395.D	07/30/2014	18:53
VR0730MBL01	VR0730MBL01	VR014396.D	07/30/2014	19:47
TI-SB05(0-2)	F3304-10	VR014401.D	07/30/2014	22:03
VR0730MBS02	VR0730MBS02	VR014404.D	07/30/2014	23:25

F3304-VOCMS Group1 32 of 2401

Raw Data: VT009140.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	CHEMTECH			Contract:	URSC05	 -		
Lab Code:	СНЕМ	Case No.:	F3304	SAS No.:	F3304	SDG NO.:	F3304	
Lab File II): VT009140.D	<u> </u>		BFB Injectio	n Date:	07/28/2014		
Instrument	ID: MSVOA T			BFB Injectio	n Time:	09:57		
GC Column:	RXI-624 ID: 0.	25 (mm)		Heated Purge	: Y/N	¥		

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	25
75	30.0 - 60.0% of mass 95	55.2
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.0 (0.1) 1
174	50.0 - 100.0% of mass 95	70
175	5.0 - 9.0% of mass 174	5.3 (7.6) 1
176	95.0 - 101.0% of mass 174	67.5 (96.4) 1
177	5.0 - 9.0% of mass 176	4.7 (7) 2
	· · · · · · · · · · · · · · · · · · ·	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
VSTDCCC050	VSTDCCC050	VT009141.D	07/28/2014	10:33
VT0728SBL01	VT0728SBL01	VT009142.D	07/28/2014	11:40
VT0728SBS01	VT0728SBS01	VT009143.D	07/28/2014	12:07
TI-SB04(0-2)	F3304-07	VT009145.D	07/28/2014	12:59
TI-SB04(5-10)	F3304-08	VT009146.D	07/28/2014	13:26
TI-SB04 (10-WT)	F3304-09	VT009147.D	07/28/2014	13:52
TI-SB05(5-10)	F3304-11	VT009153.D	07/28/2014	16:33

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	CHEMTECH		Contract: URSC05	URSC05		
Lab Code:	CHEM	Case No · F3304	SAS NO · F3304	SDG NO + F3304		

 Lab File ID:
 VD042763.D
 Date Analyzed:
 07/25/2014

 Instrument ID:
 MSVOA_D
 Time Analyzed:
 11:33

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

	IS4 AREA #	RT #		
12 HOUR STD	254563	14.03		
UPPER LIMIT	509126	14.53		
LOWER LIMIT	127282	13.53		
EPA SAMPLE NO.				
TI-SB06D	108824 *	14.04		
TI-SB03(0-2)MS	164075	14.04		
TI-SB03(0-2)MSD	152987	14.03		
VD0725SBL01	179521	14.03		
VD0725SBS01	221364	14.04		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

F3304-VOCMS Group1 36 of 2401

CHEM

Lab Code:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

SAS No.:

F3304

SDG NO.:

F3304

Lab Name:	CHEMTECH	Contract:	URSC05
		•	

 Lab File ID:
 VF042435.D
 Date Analyzed:
 07/28/2014

 Instrument ID:
 MSVOA_F
 Time Analyzed:
 10:08

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

Case No.: F3304

	IS4 AREA #	RT #		
12 HOUR STD	106809	12.55		
UPPER LIMIT	213618	13.05		
LOWER LIMIT	53404.5	12.05		
EPA SAMPLE NO.				
TI-SB02(0-2)	84074	12.55		
TI-SB02(5-10)	78106	12.55		
TI-SB02(10-WT)	66157	12.54		
TI-SB03(0-2)	57975	12.55		
TI-SB03(5-10)	72211	12.55		
TI-SB03(10-WT)	57201	12.54		
TI-SB06DRE	51883 *	12.55		
VF0728SBL01	99500	12.55		
VF0728SBS01	85819	12.55		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT \pm +100% of internal standard area AREA LOWER LIMIT \pm -50% of internal standard area RT UPPER LIMIT \pm +0.50 minutes of internal standard RT RT LOWER LIMIT \pm -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

F3304-VOCMS Group1 38 of 2401

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH Contract: URSC05

Lab File ID: VT009141.D Date Analyzed: 07/28/2014

Instrument ID: MSVOA_T Time Analyzed: 10:33

GC Column: RXI-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

	IS1	RT #	IS2	RT #	IS3 AREA #	RT #
12 HOUR STD	885793	7.43	1409710	8.37	1207500	11.21
UPPER LIMIT	1771590	7.93	2819420	8.87	2415000	11.71
LOWER LIMIT	442897	6.93	704854	7.87	603751	10.71
EPA SAMPLE NO.						
TI-SB04(0-2)	709581	7.43	1149180	8.37	913741	11.21
TI-SB04(5-10)	681657	7.44	1078920	8.38	809688	11.21
TI-SB04(10-WT)	788805	7.42	1265250	8.38	1008650	11.21
TI-SB05(5-10)	370462 *	7.44	602130 *	8.38	437768 *	11.21
VT0728SBL01	830158	7.43	1391220	8.37	1181670	11.21
VT0728SBS01	875058	7.42	1414420	8.37	1221130	11.21

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

F3304-VOCMS Group1 41 of 2401

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH Contract: URSC05 SDG NO.: F3304 CHEM Case No.: F3304 Lab Code: F3304

SAS No.:

VT009141.D Lab File ID: Date Analyzed: 07/28/2014

MSVOA_T Instrument ID: Time Analyzed: 10:33

RXI-624 ID: 0.25 (mm) GC Column: Heated Purge: (Y/N) Y

	IS4 AREA #	RT #		
12 HOUR STD	662199	13.15		
UPPER LIMIT	1324400	13.65		
LOWER LIMIT	331100	12.65		
EPA SAMPLE NO.				
TI-SB04(0-2)	415210	13.15		
TI-SB04(5-10)	311074 *	13.15		
TI-SB04(10-WT)	447239	13.15	ļ	
TI-SB05(5-10)	156402 *	13.15		
VT0728SBL01	591467	13.15		
VT0728SBS01	636534	13.15		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

F3304-VOCMS Group1 42 of 2401

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: URSC05 Lab Code: CHEM F3304 Case No.: F3304 SAS No.: SDG No.: F3304 Instrument ID: MSVOA D Calibration Date(s): 07/25/2014 07/25/2014 Heated Purge: (Y/N) Calibration Time(s): 09:50 12:26

GC Column: RTX-VMS ID: 0.18 (mm)

LAB FILE ID:			RRF010 = VD042761.D RRF100 = VD042764.D			RRF020 = VD042762.D RRF150 = VD042765.D		
COMPOUND	 RRF005	RRF010	RRF020	RRF050	RRF100	RRF150	RRF	% RSD
4-Bromofluorobenzene	 0.273	0.298	0.328	0.303	0.340	0.381	0.321	11.8
1,4-Dioxane	0.001	0.001	0.001	0.001	0.001	0.001	0.001	20.5

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

Lab Name:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE ORGANICS INITIAL CALIBRATION DATA

CHEMTECH Contract: URSC05

Instrument ID: MSVOA_F Calibration Date(s): 07/10/2014 07/10/2014

Heated Purge: (Y/N) Y Calibration Time(s): 10:51 16:27

GC Column: RTX-VMS ID: 0.18 (mm)

LAB FILE ID:	RRF005 = VF042270.D		RRF010 = VF042271.D			RRF020 = VF042272.D			
	RRF100	0 = VF042275.D		RRF050 = VF042277.D			RRF075 = VF042278.D		
COMPOUND		RRF005	RRF010	RRF020	RRF100	RRF050	RRF075	RRF	% RSD
4-Bromofluorobenzene		0.413	0.394	0.413	0.401	0.469	0.406	0.416	6.4
1,4-Dioxane		0.002	0.003	0.003	0.003	0.003	0.003	0.003	9.5

^{*} Compounds with required minimum RRF and maximum %RSD values.
All other compounds must meet a minimum RRF of 0.010.

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: URSC05

Instrument ID: MSVOA_R Calibration Date(s): 07/30/2014 07/30/2014

Heated Purge: (Y/N) N Calibration Time(s): 12:38 16:14

GC Column: RXI-624 ID: 0.25 (mm)

The state of the s			THE PARTY OF THE P					200	
LAB FILE ID:	RRF005	RRF005 = VR014387.D		RRF010	= VR014:	388.D	RRF020 = VR014389.D		
	RRF040 = VR014390.D		RRF050	= VR0143	391.D	RRF100 = VR014392.D			
COMPOUND		RRF005	RRF010	RRF020	RRF040	RRF050	RRF100	RRF	% RSD
4-Bromofluorobenzene		0.273	0.295	0.310	0.319	0.353	0.372	0.320	11.5
1,4-Dioxane		0.001	0.001	0.001	0.001	0.001	0.001	0.001	11.7

^{*} Compounds with required minimum RRF and maximum %RSD values.
All other compounds must meet a minimum RRF of 0.010.

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: URSC05

Instrument ID: MSVOA_T Calibration Date(s): 07/23/2014 07/23/2014

Heated Purge: (Y/N) Y Calibration Time(s): 13:15 16:21

GC Column: RXI-624 ID: 0.25 (mm)

LAB FILE ID:	 = VT00911 = VT00911		RRF010 RRF075			RRF020 = RRF100 =		
COMPOUND	RRF005	RRF010	RRF020	RRF050	RRF075	RRF100	RRF	% RSD
4-Bromofluorobenzene	0.443	0.387	0.402	0.458	0.475	0.485	0.442	9
1,4-Dioxane	0.002	0.002	0.002	0.002	0.003	0.002	0.002	13.1

^{*} Compounds with required minimum RRF and maximum %RSD values.
All other compounds must meet a minimum RRF of 0.010.

Raw Data: VF042435.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: URSC05

Lab Code: CHEM Case No.: F3304 SAS No.: F3304 SDG No.: F3304

Instrument ID: MSVOA_F Calibration Date/Time: 07/28/2014 10:08

Lab File ID: VF042435.D Init. Calib. Date(s): 07/10/2014 07/10/2014

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:51 16:27

GC Column: RTX-VMS ID: 0.18 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Vinyl Chloride	0.671	0.575		-14.31	20
1,1-Dichloroethene	0.441	0.401		-9.07	20
Acetone	0.207	0.251		21.26	20
Methyl tert-butyl Ether	0.765	0.813		6.28	20
Methylene Chloride	0.565	0.450		-20.35	20
trans-1,2-Dichloroethene	0.492	0.456		-7.11	20
1,1-Dichloroethane	0.981	0.938	0.1	-4.38	20
2-Butanone	0.466	0.445		-4.51	20
Carbon Tetrachloride	0.283	0.252		-10.95	20
cis-1,2-Dichloroethene	0.616	0.565		-8.28	20
Chloroform	0.863	0.829		-3.94	20
1,1,1-Trichloroethane	0.564	0.561		-0.53	20
Benzene	1.342	1.178		-12.22	20
1,2-Dichloroethane	0.323	0.295		-8.67	20
Trichloroethene	0.320	0.288		-10	20
Toluene	0.816	0.728		-10.78	20
Tetrachloroethene	0.306	0.273		-10.78	20
Chlorobenzene	0.961	0.866	0.3	-9.89	20
Ethyl Benzene	1.674	1.527		-8.78	20
m/p-Xylenes	0.643	0.585		-9.02	20
o-Xylene	0.631	0.596		-5.55	20
n-propylbenzene	4.579	3.983		-13.02	20
1,3,5-Trimethylbenzene	2.924	2.651		-9.34	20
tert-Butylbenzene	2.792	2.501		-10.42	20
1,2,4-Trimethylbenzene	2.918	2.646		-9.32	20
sec-Butylbenzene	3.862	3.446		-10.77	20
1,3-Dichlorobenzene	1.514	1.419		-6.28	20
1,4-Dichlorobenzene	1.541	1.436		-6.81	20
n-Butylbenzene	3.116	2.891		-7.22	20
1,2-Dichlorobenzene	1.391	1.326		-4.67	20
1,2-Dichloroethane-d4	0.446	0.373		-16.37	20
Dibromofluoromethane	0.283	0.262		-7.42	20
Toluene-d8	1.049	0.898		-14.4	20
4-Bromofluorobenzene	0.416	0.364		-12.5	20
1,4-Dioxane	0.003	0.003	0.05	0	50

All other compounds must meet a minimum RRF of 0.010.

F3304-VOCMS Group1 1704 of 2401

Raw Data: VR014395.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: URSC05

Instrument ID: MSVOA_R Calibration Date/Time: 07/30/2014 18:53

Lab File ID: VR014395.D Init. Calib. Date(s): 07/30/2014 07/30/2014

Heated Purge: (Y/N) N Init. Calib. Time(s): 12:38 16:14

GC Column: RXI-624 ID: 0.25 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX&D
Vinyl Chloride	0.610	0.589		-3.44	20
1,1-Dichloroethene	0.574	0.567		-1.22	20
Acetone	0.087	0.070		-19.54	20
Methyl tert-butyl Ether	0.842	0.830		-1.42	20
Methylene Chloride	0.412	0.399		-3.15	20
trans-1,2-Dichloroethene	0.447	0.452		1.12	20
1,1-Dichloroethane	0.868	0.865	0.1	-0.35	20
2-Butanone	0.109	0.103		-5.51	20
Carbon Tetrachloride	0.409	0.410		0.24	20
cis-1,2-Dichloroethene	0.481	0.491		2.08	20
Chloroform	0.819	0.809		-1.22	20
1,1,1-Trichloroethane	0.602	0.620		2.99	20
Benzene	1.447	1.487		2.76	20
1,2-Dichloroethane	0.371	0.362		-2.43	20
Trichloroethene	0.345	0.364		5.51	20
Toluene	0.890	0.936		5.17	20
Tetrachloroethene	0.397	0.423		6.55	20
Chlorobenzene	1.076	1.082	0.3	0.56	20
Ethyl Benzene	1.900	2.027		6.68	20
m/p-Xylenes	0.752	0.803		6.78	20
o-Xylene	0.674	0.731		8.46	20
n-propylbenzene	4.684	4.886		4.31	20
1,3,5-Trimethylbenzene	3.098	3.227		4.16	20
tert-Butylbenzene	2.538	2.654		4.57	20
1,2,4-Trimethylbenzene	3.105	3.259		4.96	20
sec-Butylbenzene	3.312	3.480		5.07	20
1,3-Dichlorobenzene	1.724	1.755		1.8	20
1,4-Dichlorobenzene	1.717	1.707		-0.58	20
n-Butylbenzene	2.222	2.402		8.1	20
1,2-Dichlorobenzene	1.388	1.370		-1.3	20
1,2-Dichloroethane-d4	0.462	0.475		2.81	20
Dibromofluoromethane	0.299	0.318		6.36	20
Toluene-d8	1.233	1.369		11.03	20
4-Bromofluorobenzene	0.320	0.365	1	14.06	20
1,4-Dioxane	0.001	9.001	0.05	0	50

All other compounds must meet a minimum RRF of 0.010.

Raw Data: VT009141.D

CHEMIECH

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: URSC05

Instrument ID: MSVOA_T Calibration Date/Time: 07/28/2014 10:33

Lab File ID: VT009141.D Init. Calib. Date(s): 07/23/2014 07/23/2014

Heated Purge: (Y/N) Y Init. Calib. Time(s): 13:15 16:21

GC Column: RXI-624 ID: 0.25 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Vinyl Chloride	0.731	0.684		-6.43	20
1,1-Dichloroethene	0.589	0.610		3.57	20
Acetone	0.153	0.176		15.03	20
Methyl tert-butyl Ether	1.157	1.142		-1.3	20
Methylene Chloride	0.483	0.478		-1.03	20
trans-1,2-Dichloroethene	0.477	0.486		1.89	20
1,1-Dichloroethane	0.955	0.942	0.1	-1.36	20
2-Butanone	0.205	0.226		10.24	20
Carbon Tetrachloride	0.426	0.424		-0.47	20
cis-1,2-Dichloroethene	0.505	0.516		2.18	20
Chloroform	0.921	0.880		-4.45	20
1,1,1-Trichloroethane	0.638	0.681		6.74	20
Benzene	1.344	1.361		1.26	20
1,2-Dichloroethane	0.449	0.404	1	-10.02	20
Trichloroethene	0.305	0.312		2.3	20
Toluene	0.798	0.816	<u> </u>	2.26	20
Tetrachloroethene	0.294	0.301		2.38	20
Chlorobenzene	0.969	0.993	0.3	2.48	20
Ethyl Benzene	1.814	1.903		4.91	20
m/p-Xylenes	0.673	0.710		5.5	20
o-Xylene	0.637	0.686		7.69	20
n-propylbenzene	4.212	4.462		5.93	20
1,3,5-Trimethylbenzene	2.934	3.070	†	4.64	20
tert-Butylbenzene	2.651	2.872		8.34	20
1,2,4-Trimethylbenzene	3.078	3.207		4.19	20
sec-Butylbenzene	3.768	4.108		9.02	20
1,3-Dichlorobenzene	1.580	1.658	1	4.94	20
1,4-Dichlorobenzene	1.562	1.604	T	2.69	20
n-Butylbenzene	3.272	3.591		9.75	20
1,2-Dichlorobenzene	1.386	1.422		2.6	20
1,2-Dichloroethane-d4	0.623	0.588	1	-5.62	20
Dibromofluoromethane	0.270	0.284		5.18	20
Toluene-d8	1.157	1.245		7.61	20
4-Bromofluorobenzene	0.442	0.462		4.53	20
1,4-Dioxane	0.002	0.002	0.05	0	50

All other compounds must meet a minimum RRF of 0.010.

11

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3304 Test Name: SVOCMS Group1

A. Number of Samples and Date of Receipt:

14 Solid samples were received on 07/24/2014.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide Group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for SVOCMS Group1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column RTX-5 which is 20 meters, 0.18 mm ID, 0.36 um dfThe analysis of SVOCMS Group1 was based on method 8270D and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for TI-SB04(10-WT) [2,4,6-

Tribromophenol - 3%, 2-Fluorophenol - 13%], TI-SB04(10-WT)DL [2,4,6-

Tribromophenol - 2% and 2-Fluorophenol - 12%].

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD {F3304-14MSD} with File ID: BF072803.D recoveries met the acceptable requirements except for 2-Methylphenol[46%], 3+4-Methylphenols[44%],

Benzo(k)fluoranthene[31%] and Hexachlorobenzene[43%].

The RPD for {F3304-14MSD} with File ID: BF072803.D recoveries met criteria except for 3+4-Methylphenols[24%], Anthracene[21%], Benzo(k)fluoranthene[39%],

Pentachlorophenol[47%] and Phenol[21%].

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The %RSD is greater than 15% in the Initial Calibration (Method 8270-BF072514.M) for Pentachlorophenol this compound is passing on Linear Regression.

The %RSD is greater than 15% in the Initial Calibration (Method 8270-BF072914.M) for Pentachlorophenol this compound is passing on Linear Regression.

The Continuous Calibration File ID BF072888.D met the requirements except for Benzo(b)fluoranthene.

F3304 17 of 483

The Tuning criteria met requirements. Samples TI-SB02(10-WT), TI-SB03(0-2), TI-SB03(5-10), TI-SB03(10-WT), TI-SB04(5-

10), TI-SB04(10-WT) and TI-SB05(5-10) were diluted due to bad matrices. Samples TI-SB02(0-2), TI-SB03(5-10), TI-SB04(5-10) and TI-SB04(10-WT) were diluted due to high concentrations.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature

APPROVED

By Mildred V Reyes at 4:47 pm, Aug 06, 2014

Surrogate Summary

SW-846

SDG No.: F3304

Client:

URS Corporation

Analytical Method:

8270D

						Lir	nits (%)
Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Low	High
F3304-07	TI-SB04(0-2)	2,4,6-Tribromophenol	150	112.61	75	30	133
	11 020 ((0 2)	Terphenyl-d14	100	82.37	82	37	115
F3304-08	TI-SB04(5-10)	2-Fluorophenol	150	100.94	67	28	127
		Phenol-d6	150	105.82	71	34	127
		Nitrobenzene-d5	100	78.80	79	31	132
		2-Fluorobiphenyl	100	71.38	71	39	123
		2,4,6-Tribromophenol	150	93.38	62	30	133
		Terphenyl-d14	100	70.68	71	37	115
F3304-08DL	TI-SB04(5-10)DL	2-Fluorophenol	150	103.80	69	28	127
1 3304-00DL	11-3D04(3-10)DL	Phenol-d6	150	108.32	72	34	127
		Nitrobenzene-d5	100	87.08	87	31	132
		2-Fluorobiphenyl	100	80.52	81	39	123
			150			39	-
		2,4,6-Tribromophenol		91.56	61		133
E2204 00	TI CDA4(10 WT)	Terphenyl-d14	100	66.20	66 13 *	37	115
F3304-09	TI-SB04(10-WT)	2-Fluorophenol	150	18.88	1.5	28	127
		Phenol-d6	150	75.06	50	34	127
		Nitrobenzene-d5	100	74.06	74	31	132
		2-Fluorobiphenyl	100	71.38	71	39	123
		2,4,6-Tribromophenol	150	4.56	3 *	30	133
		Terphenyl-d14	100	72.70	73	37	115
F3304-09DL	TI-SB04(10-WT)DL	2-Fluorophenol	150	18.36	12 *	28	127
		Phenol-d6	150	75.60	50	34	127
		Nitrobenzene-d5	100	76.48	76	31	132
		2-Fluorobiphenyl	100	79.80	80	39	123
		2,4,6-Tribromophenol	150	3.40	2 *	30	133
		Terphenyl-d14	100	68.64	69	37	115
F3304-10	TI-SB05(0-2)	2-Fluorophenol	150	63.18	42	28	127
		Phenol-d6	150	64.21	43	34	127
		Nitrobenzene-d5	100	50.96	51	31	132
		2-Fluorobiphenyl	100	45.26	45	39	123
		2,4,6-Tribromophenol	150	58.17	39	30	133
		Terphenyl-d14	100	44.87	45	37	115
F3304-11	TI-SB05(5-10)	2-Fluorophenol	150	97.70	65	28	127
	, ,	Phenol-d6	150	101.84	68	34	127
		Nitrobenzene-d5	100	75.60	76	31	132
		2-Fluorobiphenyl	100	53.04	53	39	123
		2,4,6-Tribromophenol	150	84.38	56	30	133
		Terphenyl-d14	100	47.76	48	37	115
F3304-12	TI-SB06D	2-Fluorophenol	150	78.38	52	28	127
		Phenol-d6	150	81.68	54	34	127
		Nitrobenzene-d5	100	64.24	64	31	132
		2-Fluorobiphenyl	100	62.66	63	39	123
		2,4,6-Tribromophenol	150	72.65	48	30	133
		Terphenyl-d14	100	61.31	61	37	115
F3304-13MS	TI-SB03(0-2)MS	2-Fluorophenol	150	96.92	65	28	127
T 2204-12IAIO	11-0000(0-2)1410	Phenol-d6	150	101.66	68	34	127
		Nitrobenzene-d5	100	76.20	76	34 31	
							132
		2-Fluorobiphenyl	100	70.93	71	39	123
		2,4,6-Tribromophenol	150	93.34	62	30	133
F2204 14140F	TI 0000/0 001/00	Terphenyl-d14	100	70.65	71	37	115
F3304-14MSD	TI-SB03(0-2)MSD	2-Fluorophenol	150	75.61	50	28	127
		Phenol-d6	150	79.47	53	34	127

4B SEMIVOLATILE METHOD BLANK SUMMARY

EPA	SAMPLE	NO.
-----	--------	-----

PB78047BL

Lab Name: CHEMTECH Contract: URSC05

Lab File ID: BF072868.D Lab Sample ID: PB78047BL

Instrument ID: BNA_F Date Extracted: 07/25/2014

Matrix: (soil/water) SOIL Date Analyzed: 07/30/2014

Level: (low/med) LOW Time Analyzed: 15:54

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE IN	DATE ANAT.YZED
PB78047BS	PB78047BS	BF072912.D	07/31/2014
TI-SB02(0-2)	F3304-01	BF072800.D	07/26/2014
TI-SB02(5-10)	F3304-02	BF072804.D	07/26/2014
TI-SB02(10-WT)	F3304-03	BF072808.D	07/27/2014
TI-SB03(0-2)	F3304-04	BF072809.D	07/27/2014
TI-SB03(5-10)	F3304-05	BF072810.D	07/27/2014
TI-SB03(10-WT)	F3304-06	BF072811.D	07/27/2014
TI-SB04(0-2)	F3304-07	BF072798.D	07/26/2014
TI-SB05(0-2)	F3304-10	BF072799.D	07/26/2014
TI-SB06D	F3304-12	BF072801.D	07/26/2014
TI-SB03(0-2)MS	F3304-13MS	BF072802.D	07/26/2014
TI-SB03(0-2)MSD	F3304-14MSD	BF072803.D	07/26/2014
TI-SB05(5-10)	F3304-11	BF072812.D	07/27/2014
TI-SB04(10-WT)	F3304-09	BF072813.D	07/27/2014
TI-SB04(5-10)	F3304-08	BF072814.D	07/27/2014

COMMENTS:			

7

Œ

Report of Analysis

Client:	URS Corporation	Date Collected:
Project:	Bronx Psy. Center	Date Received:
Client Sample 1D:	PB78047BL	SDG No.: F3304
Lab Sample ID:	PB78047BL	Matrix: SOIL
Analytical Method:	SW8270	% Moisture: 0
Sample Wt/Vol:	30.02 Units: g	Final Vol: 1000 uL
Soil Aliquot Vol:	uL	Test: SVOCMS Group1
Extraction Type:	Decanted: N	Level: LOW
Injection Volume:	GPC Factor: 1.0	GPC Cleanup: N PH:

File ID/Qc Batch: BF072868.D	Dilution:	Dilution: Prep Date 1 07/25/14			e Analyze	d	Prep Batch ID		
BFU/2808.D	1			07/30/14			PB78047		
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8		516585	8.2					
15067-26-2	Acenaphthene-d10		291256	10.99					
1517-22-2	Phenanthrene-d10		549918	13.37					
1719-03-5	Chrysene-d12		634234	17.07					
1520-96-3	Perylene-d12		572799	18.83					

		210202	0.2		
15067-26-2	Acenaphthene-d10	291256	10.99		
1517-22-2	Phenanthrene-d10	549918	13.37		
1719-03-5	Chrysene-d12	634234	17.07		
1520-96-3	Perylene-d12	572799	18.83		
TENTATIVE ID	ENTIFIED COMPOUNDS				
000077-76-9	Propane, 2,2-dimethoxy-	2800	JΝ	1.27	ug/Kg
	unknown1.35	75.3	J	1.35	ug/Kg
000141-79-7	3-Penten-2-one, 4-methyl-	480	Α	3.28	ug/Kg
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	2100	Α	3.94	ug/Kg
	unknown5.96	2800	J	5.96	ug/Kg
031158-91-5	Hexadecanoic acid, 1,1-dimethyleth	110	JΝ	15.57	ug/Kg
000123-95-5	Octadecanoic acid, butyl ester	93.3	114	16.49	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3304

Test Name: PESTICIDE Group1

A. Number of Samples and Date of Receipt:

14 Solid samples were received on 07/24/2014.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide Group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for PESTICIDE Group1.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_D. The front column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HM-G017-11. The rear column is ZBMR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 7HM-G016-17. The analysis of PESTICIDE Group1s was based on method 8081B and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for TI-SB02(0-2)DL

[Decachlorobiphenyl(1) - 0%, Decachlorobiphenyl(2) - 0%, Tetrachloro-m-xylene(1) - 0% and Tetrachloro-m-xylene(2) - 0%].

The Retention Times were acceptable for all samples except for sample # TI-SB02(0-2)DL because of high dilution of the sample.

The MS {F3304-13MS} with File ID: PD023558.D recoveries met the requirements for all compounds except for 4,4-DDE[-90%] and 4,4-DDT[-98%].

The MSD {F3304-14MSD} with File ID: PD023559.D recoveries met the acceptable requirements except for 4,4-DDE[-84%] and 4,4-DDT[-92%].

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

Samples TI-SB02(0-2), TI-SB03(0-2) were diluted due to high concentrations.

F3304-PESTICIDE Group1

7

an rus

16

5 of 473

E Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature W. Solved V. Reys

APPROVED

By Mildred V Reyes at 4:51 pm, Aug 06, 2014

COMPOUND DETECTION SUMMARY

CLIENT SAMPLE NO.

TI-SB02(0-2)

Contract:

URSC05

Lab Code:

CHEM

F3304 Case No.:

SAS No.:

F3304

SDG NO.:

F3304

Lab Sample ID:

F3304-01

Date(s) Analyzed:

07/28/2014

07/28/2014

Instrument ID (1):

ECD_D

Instrument ID (2):

ECD_D

GC Column: (1):

ZB-MR2

ID: 0.32 (mm)

GC Column:(2):

ZB-MR1

ID: 0.32 (mm)

ANALYTE	COL	RT	RT WIN	NDOW TO	CONCENTRATION	%RPE
4,4'-DDD	1	6.57	6.52	6.62	6.2	
	2	5.97	5.92	6.02	1.5	122.1
4,4'-DDT	1	6.86	6.81	6.91	160	
	2	6.21	6.16	6.26	160	0
4,4'-DDE	1	6.08	6.03	6.13	170	
	2	5.46	5.41	5.51	160	6.1
Dieldrin	1	6.22	6.17	6.27	3.7	_
	2	5.59	5.54	5.64	5.9	45.8

COMPOUND DETECTION SUMMARY

CLIENT SAMPLE NO.

TI-SB02(5-10)

Contract:

URSC05

Lab Code:

CHEM

Case No.:

o.: F3304

ID: 0.32 (mm)

SAS No.:

F3304

SDG NO.:

F3304

Lab Sample ID:

GC Column: (1):

F3304-02

Date(s) Analyzed:

07/28/2014

07/28/2014

Instrument ID (1):

ECD_D

ZB-MR2

Instrument ID (2):

GC Column:(2):

ECD_D

ZB-MR1

ID: 0.32 (mm)

ANALYTE	COL	RT	RT WINDOW FROM TO		CONCENTRATION	%RPD	
4,4'-DDT	1	6.86	6.81	6.91	5.3	_	
	2	6.20	6.15	6.25	3.3	46.5	
4,4'-DDE	1	6.08	6.03	6.13	2.1		
	2	5.46	5.41	5.51	2.5	17.4	

COMPOUND DETECTION SUMMARY

CLIENT SAMPLE NO.
TI-SB03(10-WT)

Contract:

Lab Code:

URSC05

CHEM

HEM Case No.:

: F3304

SAS No.: F33

F3304

SDG NO.:

F3304

Lab Sample ID:

F3304-06

Date(s) Analyzed:

07/28/2014

07/28/2014

Instrument ID (1):

ECD_D

Instrument ID (2):

ECD_D

GC Column: (1):

ZB-MR2

ID: 0.32 (mm)

GC Column:(2):

ZB-MR1

ID: 0.32 (mm)

ANALYTE	COL	RT	RT WINDOW FROM TO		CONCENTRATION	%RPD	
4,4'-DDT	1	6.86	6.81	6.91	2.6		
	2	6.21	6.16	6.26	2.3	12.2	
4,4'-DDE	1	6.08	6.03	6.13	1.2		
	2	5.46	5.41	5.51	1.6	28.6	

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3304

Test Name: PCB

A. Number of Samples and Date of Receipt:

14 Solid samples were received on 07/24/2014.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide Group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD O. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 µm; Catalogue # 7HM-G017-11. The analysis of PCBs was based on method 8082A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for TI-SB04(0-2)

[Decachlorobiphenyl(2) - 59%], TI-SB05(5-10) [Decachlorobiphenyl(2) - 54%] and TI-SB03(0-2)MSD [Decachlorobiphenyl(1) - 126%].

The Retention Times were acceptable for all samples.

The MS {F3304-13MS} with File ID: PO016945.D recoveries met the requirements for all compounds except for AR1016[153%], AR1260[209%].

The MSD {F3304-14MSD} with File ID: PO016946.D recoveries met the acceptable requirements except for AR1260[485%].

The RPD for {F3304-14MSD} with File ID: PO016946.D recoveries met criteria except for AR1260[80%].

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

F3304 19 of 483

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature A Jacob War Reyes at 4:47 pm, Aug 06, 2014

20 of 483 F3304

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3304 Test Name: Herbicide Group1

A. Number of Samples and Date of Receipt:

14 Solid samples were received on 07/24/2014.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide Group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for Herbicide Group1.

C. Analytical Techniques:

The analyses were performed on instrument GCECD E. The front column is ZB-35-HT Inferno which is 30 meters, 0.25 mm ID, 0.25 um df, Catalog # 7HG-G025-11. The rear column is ZB-XLB-HT Inferno which is 30 meters, 0.25 mm ID, 0.25 um df, Catalog # 7HG-G024-11. The analysis of Herbicide Group1s was based on method 8151A and extraction was done based on method 3541.

D. OA/ OC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for TI-SB03(0-2)MS [2,4-DCAA(2) - 9%].

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD for {F3304-14MSD} with File ID: PE010700.D recoveries met criteria except for 2,4,5-TP(Silvex)[30%].

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID PE010707.D met the requirements except for 2,4,5-

TP (Silvex) and 2,4-DCAA are failing in 2nd column but passing in 1st column.

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

F3304 21 of 483

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

APPROVED

By Mildred V Reyes at 4:47 pm, Aug 06, 2014

F3304 22 of 483

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3304

Test Name: Mercury, Metals ICP-Group1

A. Number of Samples and Date of Receipt:

14 Solid samples were received on 07/24/2014.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Herbicide Group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for Mercury, Metals ICP-Group1.

C. Analytical Techniques:

The analysis of Metals ICP-Group1 was based on method 6010C, digestion based on method 3050 (soils). The analysis of Mercury was based on method 7471A and digestion was based on method 7471B (soils).

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike(TI-SB03(0-2)MS) analysis met criteria for all samples except for Lead and Selenium.

The Matrix Spike Duplicate (TI-SB03(0-2)MSD)analysis met criteria for all samples except for Lead.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution (TI-SB03(0-2)L) met criteria for all samples except for Arsenic,

Barium, Chromium, Copper, Manganese and Moreury.
The Serial Dilution (DW-3L) met criteria for all samples except for Zinc.

E. Additional Comments:

The %Recovery was outside the acceptance limit for Barium of ICV01 in analytical sequence #LB72035 but no samples were analyzed under these calibrations.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_ Moderation Reverse APPROVED

By Mildred V Reves at 4:47 pm, Aug 06, 2014

F3304 23 of 483

metals - 5a -MATRIX SPIKE SUMMARY

URS Corporation F3304 client: level: low sdg no.: URSC05 CHEM case no.: F3304 F3304 lab code: contract: sas no.: TI-SB03(0-2)MS Solid F3304-04 client id: matrix: sample id:

Percent Solids	s for Sample:	93.9	Spiked IE): F	3304-13		Percent Sol	ids for Spike Sa	mple:	93.9	-
Analyte U	Units	Acceptance Limit %R	Spiked Result		ample Result	С	Spike Added	% Recovery	Qual	M	
Arsenic	mg/Kg	73 - 117	48.7	15	.6		42	79		P	
Barium	mg/Kg	39 - 158	252	21	6		10.5	343		P	
Beryllium	mg/Kg	79 - 112	9.23	0.6	511		10.5	82		P	
Cadmium	mg/Kg	73 - 114	10.51	0.2	277	U	10.5	100.1		P	
Chromium	mg/Kg	68 - 122	41.4	22	5		21	90		P	
Copper	mg/Kg	59 - 132	55.8	39	.1		15.8	106		P	
Lead	mg/Kg	66 - 125	274	19	7		52.5	147	N	P	11
Manganese	mg/Kg	10 - 205	318	27	3		10.5	429		P	4.1
Mercury	mg/Kg	34 - 153	0.362	0.1	161		0.22	91		CV	
Nickel	mg/Kg	64 - 129	65.1	34	.6		26.3	116		P	79/6
Selenium	mg/Kg	69 - 105	75.8	1.3	54		110	68	N	P	
Silver	mg/Kg	54 - 131	3.09	0.4	4 61	U	3.9	79.2		P	
Zinc	mg/Kg	67 - 127	255	21	8		10.5	352		P	

F3304-METALS 53 of 440

metals - 5a -MATRIX SPIKE DUPLICATE SUMMARY

 client:
 URS Corporation
 level:
 low
 sdg no.:
 F3304

 contract:
 URSC05
 lab code:
 CHEM
 case no.:
 F3304
 sas no.:
 F3304

matrix: Solid sample id: F3304-04 client id: TI-SB03(0-2)MSD

Percent Solids	for Sample:	93.9	Spiked II	D: 1	F3304-14		Percent Sol	ids for Spike Sa	mple:	92.4	
Analyte	Units	Acceptance Limit %R	MSD Result		Sample Result	C	Spike Added	% Recovery	Qual	M	
Arsenic	mg/Kg	73 - 117	49.5	1.	5.6		42.4	80		P	
Barium	mg/Kg	39 - 158	254	2	16		10.6	358		P	
Beryllium	mg/Kg	79 - 112	9.3	0	.611		10.6	82		P	
Cadmium	mg/Kg	73 - 114	10.6	0	.277	U	10.6	100		P	
Chromium	mg/Kg	68 - 122	41.7	2	2.5		21.2	91		P	
Copper	mg/Kg	59 - 132	56.6	3	9.1		15.9	110		P	
Lead	mg/Kg	66 - 125	277	1	97		53.1	151	N	P	11
Manganese	mg/Kg	10 - 205	321	2	73		10.6	453		P	11
Mercury	mg/Kg	34 - 153	0.356	0	.161		0.22	89		CV	
Nickel	mg/Kg	64 - 129	65.9	3	4.6		26.5	118		P	1675
Selenium	mg/Kg	69 - 105	77.2	1	.54		110	69		P	
Silver	mg/Kg	54 - 131	3.12	0	.461	U	4	78		P	
Zinc	mg/Kg	67 - 127	260	2	18		10.6	396		P	

F3304-METALS 54 of 440

Metals

-9 -

ICP SERIAL DILUTIONS

TI CD02(0.2)I	 SAMPLE	NO.	
11-5B03(0-2)L	TI-SB03(0)-2)L	

 Lab Name:
 Chemtech Consulting Group
 Contract:
 URSC05

 Lab Code:
 CHEM
 Lb No.:
 lb72035
 Lab Sample ID :
 F3304-04L
 SDG No.:
 F3304

 Matrix (soil/water):
 Solid
 Level (low/med):
 LOW

Analyte	Initial Sample Result (I)		С	Serial Dilution Result (S)	C		% Differ- ence	Q	М
Arsenic		15.6			18.7		(20)		P
Barium		216			250		16		P
Beryllium		0.611			0.71	J	16		P
Cadmium		0.277	U		1.38	U	6		P
Chromium		22.5			27.3		21		P
Copper		39.1			46.6		(19)		P
Lead		197			193		2		P
Manganese		273			340		25		P
Mercury		0.161			0.124		23		CV
Nickel		34.6			34.1		1		P
Selenium		1.54			4.61	U	100.0		P
Silver		0.461	U		2.31	Ü			P
Zinc		218			227		4		P
			_						_

11

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

QUOTE NO. CALL 2002 CHEMTECH PROJECT NO.

COC Number

*	La.		S		p	3	2																	¥ 8			
CLIENT BILLING INFORMATION	(4)00	THE T	STATE JUN ZIP:	Public	SIS	TA THE THE PARTY OF THE PARTY O			COMMENTS	0	C-HSQ D-NaOH					Q					0	A STATE OF THE PARTY OF THE PAR	Cooler Temp. 4°C.	Ice in Cooler?:	THOVERNIGHT Shipment Complete:	□ OVERNIGHT. 12 THE	
BILLING			S	()		1	ダダ			\vdash	00	-				H	-			1	-	IVERY	fiant		1	л	
CLIENT	Seno Care					000			IVES		6 7	×	X	>	×							VEACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	Conditions of bottles or coolers at receipt: 19' Compilant Non Compilant MeOH extraction requires an additional 4 oz lar for percent solid		MAND DELIVERED	H: □ PICKED UP	
	BILL TO		CITY:	ATTENTION					PRESERVATIVES		4	X	×	ア	×							ION INCLUDING	C Compliant oz iar for percent		SHIPPED VIA: CLENT:		
		hurs	-		X DOZZ		137	かし		-	2	E	×	×	×	-						POSSESS	receipt: dditional 4	5	SHIPP		
MATION		LOCATION: BROOK, NU	S	Ų.	FAX 518, 188 , 002	MATION	Station Whitehal	So V		77110	-	×	×	~	>	,						CHANGE	Conditions of bottles or coolers at receipt: MeOH extraction requires an addition	ODO	} ~	J	
CLIENT PROJECT INFORMATION	Ze Ze	LOCATION	Gillie	C. GILLIES@ WCS.Com				LEVEL 3: Results (plus results raw data) + QC LEVEL 4: Results + QC (all raw data) D EDD Format*	u	NOL	TIME	F60 9	2	B	州外		\					SAMPLES	s of bottles o	its:	-	o	
JENT PRO	Agaz	•	R/Kn	QIII ies	SIS.	ELIVERA	only + OC	(plus resulf + OC (all ra	CAMBIE	COLLECTION	DATE	Thom!	-) }		1	·				ACH TIME	Condition MeOH e	Comme		Page	
ថ	PROJECT NAME: BROW PL	NO:	MANAGE		No log	DATA	☐ LEVEL 1: Results only ☐ LEVEL 2: Results + QC	3: Results 4: Results -	CAMBIE	TYPE	COMP	×			≯	1						BELOW E					
	PROJECT	PROJECT NO.:	PROJECT	e-mail: Venni	PHONE	DATA DELIVERAE	O LEVEL	O LEVEL :	•	SAMPLE	MATRIX	3			7							MENTED	×		, <u>.</u>		
		203	STATE ALY ZIP. 1940/25 PROJECT MANAGER, JEN GININS															1				SAMPLE CUSTODY MUST BE DOCUMENTED BELOW	RECEIVED BY:	RECEIVED BY:	RECEIVED FOR LAB BY:	P.U	
	٦	N. A.	ZIP:	_	10884	NOITY	_ DAYS'	— DAYS		NO.E.	200											ODY MUS	PECEI	RECEI	_	က်	
MATION	SENT TO:	S A	STATE	<i>y</i>	FAX: 5(8:1088-0022	INFORM/		O NO		PROJECT	SAMPLE IDENTIFICATION	7		-2m5	d				\			PLE CUST	PATEURE 14	TRAVE:	DATE/TIME: 920	2/14.	-
CLIENT INFORMATION	DODOCTION OF	Sak.	M.K.	illie.		151		VES O			SAMPLI	MJ-Z	1-3D		2msD							SAM	ক্র	tya	DATE	2	
TO CI	\$50	Corporate Dr. Suit 203	Withon Park	Service Services	LOSS. D	DATA TURNAROUND INFORMATION	1	ED TATE OF				7 00	M	MM	My -							1000	Source:				
1 2 F20	COMPANY: URS (DIPORCHION—T)	ADDRESS 3	E	ATTENTION JOHN GILLIES	PHONE: SIE, LORG. DD15		D COPY:	EDD: ACA 1 DAYS PREAPPROVED TAI: D YES D NO STANDARD TI IDMARPO IND TIME IS 10 BI ISINESS DAYS		CHEMTECH	₽						1				1		RELINGUISIEU S	RELINGUISHED BY:	RELINGUISHED BY:	Feder	
	Ö	ADC	CITY:	¥	PHC		FAX:	EDD:		를 35		-	ci.	6,	4	6	ق (۲,	αġ	o;	3		RELINO 1.	RELING	15		

Revision 8/2007 F3308-VOCMS Group1

WHITE - CHEMTECH COPY FOR RETURN TO CLIENT YELLOW - CHEMTECH COPY PINK - SAMPLER COPY

798 of 802

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3308 Test Name: VOCMS Group1

A. Number of Samples and Date of Receipt:

S Water samples were received on 07/25/2014.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Dissolved ICP-Group Metals, Dissolved Mercury, Dissolved Metals Group1, Herbicide group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for VOCMS Group1.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_R were done using GC column RXI-624SIL MS 30m 0.25mm 1.4um 872456The analysis of VOCMS Group1 was based on method 8260C.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD for {VR0731WBSD01} with File ID: VR014410.D recoveries met criteria except for 1,4-Dioxane[60%].

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements. The %RSD is greater than 15% in the Initial Calibration (Method 82R073014W.M) for Acetone this compound is passing on Linear regression.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

E. Additional Comments: TB-072314 was added and it is not part of COC.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial

Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Aldred V Reys (APPROVED By Mildred V Reyes at 3:18 pm, Aug 06, 2014

F3308 18 of 292

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3308 **Test Name: SVOCMS Group1**

A. Number of Samples and Date of Receipt:

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Dissolved ICP-Group Metals, Dissolved Mercury, Dissolved Metals Group1, Herbicide group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for SVOCMS Group1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA F using GC Column RTX-5 which is 20 meters, 0.18 mm ID, 0.36 um dfThe analysis of SVOCMS Group1 was based on method 8270D and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The %RSD is greater than 15% in the Initial Calibration (Method 8270-BE070214.M) for

Pentachlorophenol this compound is passing on Linear Regression.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial

F3308 19 of 292

Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Where V Reyes at 3:18 pm, Aug 06, 2014

F3308 20 of 292

Level: (low/med)

LOW

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

4B SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PB78096BL

19:46

Lab Name: C	CHEMTECH	Contract: URSCO	5
Lab Code:	CHEM Case No.: F3308	SAS No.: <u>F3308</u>	SDG NO.: F3308
Lab File ID:	BF072844.D	Lab Sample ID:	PB78096BL
Instrument I	D: <u>BNA_F</u>	Date Extracted:	07/29/2014
Matrix: (soi	1/water) Water	Date Analyzed:	07/29/2014

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

Time Analyzed:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB RII.R. III	DATE ANALYZED
PB78096BS	PB78096BS	BF072845.D	07/29/2014
MW-3D	F3308-02	BF072881.D	07/30/2014
MW-2MS	F3308-03MS	BF072882.D	07/30/2014
MW-2MSD	F3308-04MSD	BF072883.D	07/30/2014
MW-2	F3308-01	BF072846.D	07/29/2014

COMMENTS:

Report of Analysis

Client:	URS Corp	oration				Date Collected:			
Project:	Bronx Psy	. Center				Date Received:			
Client Sample ID:	PB78096E	BL				SDG No.:		F3308	
Lab Sample ID:	PB78096E	BL				Matrix:		Water	
Analytical Method:	SW8270					% Moisture:		100	
Sample Wt/Vol:	1000	Units:	mL			Final Vol:		1000	uL
Soil Aliquot Vol:			uL			Test:		SVOCMS Group	1
Extraction Type:			Decant	ted:	N	Level:		LOW	
Injection Volume:			GPC Factor:	1.0		GPC Cleanup:	N	PH:	

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF072844.D	1	07/29/14	07/29/14	PB78096

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
1146-65-2	Naphthalene-d8	730675	8.23					
15067-26-2	Acenaphthene-d10	429260	11.03					
1517-22-2	Phenanthrene-d10	861563	13.42					
1719-03-5	Chrysene-d12	828971	17.1					
1520-96-3	Perylene-d12	655689	18.8					
TENTATIVE II	DENTIFIED COMPOUNDS							
000077-76-9	Propane, 2,2-dimethoxy-	36.2	J			1.3	ug/L	
000141-79-7	3-Penten-2-one, 4-methyl-	6.2	Α			3.33	ug/L	
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	62.4	Α			3.98	ug/L	
	unknown5.99	90.1	J			5.99	ug/L	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: URSC05

Lab Code: CHEM Case No.: F3308 SAS No.: F3308 SDG No.: F3308

Instrument ID: MSVOAR Calibration Date(s): 07/30/2014 07/30/2014

Heated Purge: (Y/N) N Calibration Time(s): 12:38 16:14

GC Column: RXI-624 ID: 0.25 (mm)

LAB FILE ID:	ID: RRF005 = VR014387.D RRF040 = VR014390.D			RRF010 RRF050			RRF020 = VR014389.D RRF100 = VR014392.D			
COMPOUND		RRF005	RRF010	RRF020	RRF040	RRF050	RRF100	RRF	% RSD	
4-Bromofluorobenzene		0.273	0.295	0.310	0.319	0.353	0.372	0.320	11.5	
1,4-Dioxane		0.001	0.001	0.001	0.001	0.001	0.001	0.001	11.7	

11

Compounds with required minimum RRF and maximum %RSD values.
All other compounds must meet a minimum RRF of 0.010.

Raw Data: VR014407.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: URSC05

Lab Code: CHEM Case No.: F3308 SAS No.: F3308 SDG No.: F3308

Instrument ID: MSVOA_R Calibration Date/Time: 07/31/2014 09:36

Lab File ID: VR014407.D Init. Calib. Date(s): 07/30/2014 07/30/2014

Heated Purge: (Y/N) N Init. Calib. Time(s): 12:38 16:14

GC Column: RXI-624 ID: 0.25 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Vinyl Chloride	0.610	0.625		2.46	20
1,1-Dichloroethene	0.574	0.564		-1.74	20
Acetone	0.087	0.073		-16.09	20
Methyl tert-butyl Ether	0.842	0.774		-8.08	20
Methylene Chloride	0.412	0.373		-9.47	20
trans-1,2-Dichloroethene	0.447	0.433		-3.13	20
1,1-Dichloroethane	0.868	0.791	0.1	-8.87	20
2-Butanone	0.109	0.091		-16.51	20
Carbon Tetrachloride	0.409	0.419		2.44	20
cis-1,2-Dichloroethene	0.481	0.476		-1.04	20
Chloroform	0.819	0.758		-7.45	20
1,1,1-Trichloroethane	0.602	0.594		-1.33	20
Benzene	1.447	1.456		0.62	20
1,2-Dichloroethane	0.371	0.342		-7.82	20
Trichloroethene	0.345	0.363		5.22	20
Toluene	0.890	0.940		5.62	20
Tetrachloroethene	0.397	0.408		2.77	20
Chlorobenzene	1.076	1.100	0.3	2.23	20
Ethyl Benzene	1.900	2.002		5.37	20
m/p-Xylenes	0.752	0.807		7.31	20
o-Xylene	0.674	0.741		9.94	20
n-propylbenzene	4.684	4.917		4.97	20
1,3,5-Trimethylbenzene	3.098	3.306		6.71	20
tert-Butylbenzene	2.538	2.726		7.41	20
1,2,4-Trimethylbenzene	3.105	3.338	1	7.5	20
sec-Butylbenzene	3.312	3.496		5.56	20
1,3-Dichlorobenzene	1.724	1.820	1	5.57	20
1,4-Dichlorobenzene	1.717	1.737	1	1.16	20
n-Butylbenzene	2.222	2.357	1	6.08	20
1,2-Dichlorobenzene	1.388	1.397	1	0.65	20
1,2-Dichloroethane-d4	0.462	0.409	1	-11.47	20
Dibromofluoromethane	0.299	0.302	<u> </u>	1	20
Toluene~d8	1.233	1.300		5.43	20
4-Bromofluorobenzene	0.320	0.338		5.63	20
1,4-Dioxane	0.001	0.001	0.05	0	50

All other compounds must meet a minimum RRF of 0.010.

11

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3308 Test Name: Herbicide group1

A. Number of Samples and Date of Receipt:

Water samples were received on 07/25/2014.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Dissolved ICP-Group Metals, Dissolved Mercury, Dissolved Metals Group1, Herbicide group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for Herbicide group1.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_E. The front column is ZB-35-HT Inferno which is 30 meters, 0.25 mm ID, 0.25 um df, Catalog # 7HG-G025-11. The rear column is ZB-XLB-HT Inferno which is 30 meters, 0.25 mm ID, 0.25 um df, Catalog # 7HG-G024-11. The analysis of Herbicide group1s was based on method 8151A and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID PE010707.D met the requirements except for 2,4,5-

TP (Silvex) and 2,4-DCAA are failing in 2nd column but passing in 1st column.

E. Additional Comments:

F3308 21 of 292

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Wolled V Reyes

APPROVED

By Mildred V Reyes at 3:18 pm, Aug 06, 2014

F3308 22 of 292

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3308

Test Name: Dissolved ICP-Group Metals, Dissolved Mercury, Mercury, Metals ICP-

Group1

A. Number of Samples and Date of Receipt:

Water samples were received on 07/25/2014.

B. Parameters:

F3308

According to the Chain of Custody document, the following analyses were requested: Dissolved ICP-Group Metals, Dissolved Mercury, Dissolved Metals Group1, Herbicide group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for Dissolved ICP-Group Metals, Dissolved Mercury, Mercury, Metals ICP-Group1.

C. Analytical Techniques:

The analysis of Dissolved ICP-Group Metals, Metals ICP-Group1 was based on method 6010C, digestion based on method 3010 (waters). The analysis and digestion of Dissolved Mercury, Mercury was based on method 7470A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike analysis met criteria for all samples.

The Matrix Spike Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

The %Recovery was outside the acceptance limit for Barium of ICV01 in analytical sequence #LB72035 but no samples were analyzed under these calibrations. Sample #F3308-05 and #F3308-06 were analyzed as Dissolved Metals.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Wildred V Reys

APPROVED

By Mildred V Reyes at 3:17 pm, Aug 06, 2014

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3308

Test Name: PCB

A. Number of Samples and Date of Receipt:

Mater samples were received on 07/25/2014.

B. Parameters

9/15/14

According to the Chain of Custody document, the following analyses were requested: Dissolved ICP-Group Metals, Dissolved Mercury, Dissolved Metals Group1, Herbicide group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_O. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11. The analysis of PCBs was based on method 8082A and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID PO017000.D met the requirements except for

Decachlorobiphenyl is failing in 1st column but passing in 2nd column.

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

F3308 24 of 292

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_ If I deed V Reys (APPROVED)

By Mildred V Reyes at 3:17 pm, Aug 06, 2014

F3308 25 of 292

CASE NARRATIVE

URS Corporation

Project Name: Bronx Psy. Center

Project # N/A

Chemtech Project # F3308

Test Name: PESTICIDE Group1

A. Number of Samples and Date of Receipt:

Water samples were received on 07/25/2014.

B. Parameters

9/15/14

According to the Chain of Custody document, the following analyses were requested: Dissolved ICP-Group Metals, Dissolved Mercury, Dissolved Metals Group1, Herbicide group1, Mercury, Metals Group1, Metals ICP-Group1, PCB, PESTICIDE Group1, SVOCMS Group1 and VOCMS Group1. This data package contains results for PESTICIDE Group1.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_D. The front column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HM-G017-11. The rear column is ZBMR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 7HM-G016-17. The analysis of PESTICIDE Group1s was based on method 8081B and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

F3308 **26 of 292**

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_ User VReys (APPROVED By Mildred V Reyes at 3:17 pm, Aug 06, 2014

F3308

APPENDIX D AVAILABLE SOIL SAMPLE DESCRIPTIONS AND SOIL BORING LOGS

APPENDIX D

BUILDING 1-TRANSFORMER ROOMS SOIL SAMPLE DESCRIPTIONS PRELIMINARY SITE ASSESSMENT BRONX PSYCHIATRIC CENTER

Sample	Sample	Depth	Description
Location	Date	(feet)	
Room No. 1 (N	orth)		
	8/29/00	0-2	Brown sand and silt, brown/gray fine sand, trace of rock fragments
	0/23/00	0-2	with silt, moist, trace of chemical odor.
	8/29/00	2-4	Dark brown fine sand, fragments of schist, brick, and concrete. Trace of
Drain	0/23/00	<u> </u>	chemical odor. Trace of silt, dry/damp.
			Dark-gray-brown, fill with grayish silt grading into brown coarse sand
	8/30/00	4-6	and fine gravel and brick fragments, yellow fire-brick, gray at top
			coarse sand; wet poorly sorted, no odor.
	8/29/00	0-2	Brown poorly sorted sand, some silt, moist. Trace of rock and brick
	0/23/00	0-2	fragments.
	8/29/00	2-4	Brown poorly sorted sand, some silt, moist. Trace of rock and brick
N15W0	0/25/00	2 7	fragments with pieces of wood and coal.
	8/29/00	4-6	Wet at 5.8'; brown poorly sorted sand with brick fragments.
	8/30/00	6-8	Brown-gray silt fine medium sand; fragments of brick and glass no
	8/30/00	0-0	odor, wet.
	8/29/00	0-2	Brown poorly sorted sand, fragments of rock and brick.
	8/29/00	2-4	Light brown silt and sand; gray clay.
N15W5	8/30/00	4-6	Dark brown fine sand some silt, of red brick fragments, trace of glass
1113113	0/30/00		fragments.
	8/30/00	6-8	Brick/cobble red in top with grayish brown tight silty-sand; saturated
			from 6' to 7'. No odor.
N25W0	8/29/00	0-2	Brown sand, silt, red brick, trace of concrete. Damp, no odor.
	8/30/00	2-4	Refusal; No recovery.
	8/30/00	0-2	Fill; brown fine coarse sand; trace of tan silt, some red brick fragments,
	0/30/00	0 2	trace of glass and rock fragments, damp, no odor.
	8/30/00	2-4	No recovery.
N25W15			Fill; 5.5-6' wet 4-5'; dark gray brown crushed stone and fine-medium
	8/30/00	4-6	sand, moist, some red and yellow bricks and traces of concrete. 5-6'
	0,30,00	40	wet brown coarse-medium sand; some silt; rock and red brick
			fragments.
	8/29/00	0-2	Brown to light brown poorly sorted sand trace of rock fragments, no
	6/29/00	0-2	odor.
N30W5	8/29/00	2-4	Brown fine sand, trace of silt, trace of concrete, brick and rock
143047	0/23/00	4 -4	fragments. Dry-damp.
	8/30/00	4-6	Wet at 5.8'; no odor poorly sorted sand, fragments of rock.
	8/31/00	6-8	Brown-light brown silt

APPENDIX D BUILDING 1-TRANSFORMER ROOMS SOIL SAMPLE DESCRIPTIONS PRELIMINARY SITE ASSESSMENT BRONX PSYCHIATRIC CENTER

Sample Location	Sample Date	Depth (feet)	Description
Location	Date	(leet)	
	8/29/00	0-2	Dark brown fine sand and silt, red brick fragments, traces of concrete.
N40W5	8/29/00	2-4	Dark brown fine sand, red brick, concrete, rock schist fragment, trace
	0/23/00	Z- 4	of coal, and trace of silt; dry.
	8/30/00	4-6	Refusal; No recovery.
	8/29/00	0-2	Brown poorly sorted fine sand, fragments of coal and brick.
N40W15	8/29/00	2-4	Brown fine grain sand, fragments of coal and brick.
11401113	8/29/00	4-6	Brown poorly sorted fine sand, fragments of coal and brick, gray wet
	8/29/00	4-6	poorly sorted fine sand.

URS Corporation Soil Boring Log SOIL BORING INFORMATION PROJECT INFORMATION Bronx Psychiatric Center Boring/Well ID: T1-SB02 Depth to GW: N/A Project: **Borehole Depth:** Address: 1500 Waters Place, Bronx, NY 10461 Sheet: 1 of 1 15' Client: 7/23/2014 DASNY-OMH Date Started: Geologist: Michael Kuzia-Carmel Project No: 38395331.00000 Date Finished: 7/23/2014 Reviewed By: J. Gillies NYSDEC Spill No: N/A Borehole Dia: 5" DRILLING INFORMATION Drilling Company: Associated Environmental Services, Ltd. Driller: John V., Jose G. Drilling Method: Geoprobe 7822-DH with Automatic Drop Hammer

Sampler Length: SAMPLE DESCRIPTION WELL PID DEPTH BLOWS DEPTH CONSTRUCTION MATERIAL DESCRIPTION STRATA (FT) REC **PER 6"** USCS (ppm) Color DIAGRAM (FT) 0-2' - SAND: Fine to medium-grained sand, trace silt. Fill material (fragments N/A N/A Reddish Brown SP 0.0 of brick, cement, and rock). N/A N/A 5 YR 4/3 N/A <u>2-5'</u> - SAND: SAA. N/A 0.0 Reddish Brow SP N/A N/A N/A 5 YR 4/3 N/A N/A 5 0.0 <u>5-7'</u> - SAND: SAA 6 6 Strong Brown SP 6/24 10 8 0.0 <u>7-9'</u> - SAND: SAA. 21 12 Strong Brown N/A SP 5 0.0 9-11' - SAND: SAA. 6 10 9 10 Strong Brown N/A SP 7.5 YR 4/6 7 4 0.0 11-12.5' - SAND: SAA 6 4 Strong Brown 14/24 SP 0.0 12.5-15' - CLAY: Medium to high plasticity clay layer approximately 20" thick. 18 9 Reddish Gray 5 18/24 CH Water table observed at upper margin of clay layer. 0.0 15 15 EOE 20 20 25 30 30

SAMPLES COLLECTED: Soil samples T1-SB02 (0'-2'), T1-SB02 (5'-10'), and T1-SB02 (10'-WT) were collected and sent to ChemTech Laboratories (ChemTech) of

Mountainside, NJ for analysis of TCL VOCs + TICs by EPA Method 8260C, TCL SVOCs + TICs by EPA Method 8270D, TAL Inorganics by EPA Method 6010C/7471B,

PCBs by EPA Method 8082, pesticides by EPA Method 8081A, and herbicides by EPA Method 8151A.

Sampler:

2" Dia. Split Spoon

COMMENTS: Hand auger used to collect soil sample from 0-2 ft bgs. Driller augered through interval from 2ft-5ft bgs due to obstruction

LEGEND: Sand (G.S. #200 - #4 sieve) Peat/Organic Soils SAA: Same As Above ppm: parts per million Gravel (G.S. #4 sieve - 3/4") Cement/Bentonite Grout NA: Not Applicable Cobble (G.S. >3") Seal PID: Photo-ionization Detector ND: Not Determined Z Fill Material/RCA G.S.: Grain Size NAPL: Non-Aqueous Phase Liquid ▼ water table Clay (G.S. <#200 sieve) EOB: End of Boring

URS Corporation Soil Boring Log SOIL BORING INFORMATION PROJECT INFORMATION Bronx Psychiatric Center Boring/Well ID: T1-SB03 Depth to GW: N/A Project: **Borehole Depth:** Address: 1500 Waters Place, Bronx, NY 10461 Sheet: 1 of 1 16' Client: DASNY-OMH Date Started: 7/23/2014 Geologist: Michael Kuzia-Carmel Project No: 38395331.00000 Date Finished: 7/23/2014 Reviewed By: J. Gillies NYSDEC Spill No: N/A Borehole Dia: 5" DRILLING INFORMATION Drilling Company: Associated Environmental Services, Ltd. Driller: John V., Jose G. Drilling Method: Geoprobe 7822-DH with Automatic Drop Hammer

Sampler Length: SAMPLE DESCRIPTION WELL PID DEPTH BLOWS DEPTH CONSTRUCTION STRATA **PER 6"** (FT) REC USCS (ppm) Color MATERIAL DESCRIPTION DIAGRAM (FT) 0-2' - SAND: Fine to medium-grained sand, trace silt. Fill material (fragments 8 8 Dark Reddish 8/24 SP 0.0 of brick, cement, and rock). 3rown 5 YR 3/3 5 4 <u>2-4'</u> - SAND: SAA. 6 4 SP 8/24 0.0 3/3 Brown 5 YR 21 11 4-6' - SAND: SAA. 4 5 5 Dark Reddish SP 0.0 6/24 3 2 Dark Reddish <u>6-8'</u> - SAND: SAA. 3 11 SP 6/24 0.0 Brown 5 YR 4 5 2.5/2 <u>8-10'</u> - SAND: SAA. 7 Dark Reddish 8/24 SP 0.0 4 10 2 10 <u>10-12'</u> - SAND: SAA. 6 7 Dark Reddish N/A SP 0.0 Brown 5 YR 3/3 7 11 17 28 12-14' - SAND: SAA Dark Reddish 3/24 SP 0.0 Brown 5 YR 3/3 14 29 <u>14-15.5'</u> - SAND: SAA. 6 4 SP 15 15 N/A 0.0 15.5-16' - CLAY: Medium to high plasticity. Water table observed at upper margin of clay layer 8 CH EOB 20 20 25 30 30

SAMPLES COLLECTED: Soil samples T1-SB03 (0'-2'), T1-SB03 (5'-10'), and T1-SB03 (10'-WT) were collected and sent to ChemTech Laboratories (ChemTech) of

Mountainside, NJ for analysis of TCL VOCs + TICs by EPA Method 8260C, TCL SVOCs + TICs by EPA Method 8270D, TAL Inorganics by EPA Method 6010C/7471B,

PCBs by EPA Method 8082, pesticides by EPA Method 8081A, and herbicides by EPA Method 8151A.

Sampler:

2" Dia. Split Spoon

COMMENTS: Three attempts to sample 0-2' interval. Blow count on boring log is from first attempt.

Duplicate sample T1-SB06D, Matrix Spike sample MS-723, and Matrix Spike Duplicate sample MSD-723 were all collected from interval 0-2' bgs.

LEGEND: Sand (G.S. #200 - #4 sieve) Peat/Organic Soils SAA: Same As Above ppm: parts per million Gravel (G.S. #4 sieve - 3/4") Cement/Bentonite Grout NA: Not Applicable Cobble (G.S. >3") Seal PID: Photo-ionization Detector ND: Not Determined Fill Material/RCA G.S.: Grain Size NAPL: Non-Aqueous Phase Liquid ▼ water table /// Clay (G.S. <#200 sieve) EOB: End of Boring

URS Corporation Soil Boring Log PROJECT INFORMATION SOIL BORING INFORMATION Boring/Well ID: T1-SB04 Project: Bronx Psychiatric Center Depth to GW: N/A Borehole Depth: Address: 1500 Waters Place, Bronx, NY 10461 Sheet: 1 of 1 15' Client: DASNY-OMH Date Started: 7/23/2014 Geologist: Michael Kuzia-Carmel Project No: 38395331.00000 Date Finished: 7/23/2014 Reviewed By: J. Gillies NYSDEC Spill No: Borehole Dia: DRILLING INFORMATION Associated Environmental Services, Ltd. Drilling Company: Driller: Drilling Method: Geoprobe 7822-DH with Automatic Drop Hammer Sampler: 2" Dia. Split Spoon Sampler Length:

Sample	r Lengtn:	2								
	SA				MEL 1					
DEPTH (FT)	STRATA	REC	BLO	SWS	USCS	PID (ppm)	Color	MATERIAL DESCRIPTION	WELL CONSTRUCTION DIAGRAM	DEPTH (FT)
()			N/A	N/A	SP	0.0	Reddish Brown 5	0-1' - SAND: Fine to medium-grained sand, trace silt. Fill material (fragments of brick, rock,	2210.12111	(,
 -		N/A	N/A	N/A	CH		YR 4/3 Reddish Gray 5	and cement). 1-1.5' - CLAY: 6" thick layer of medium-high plasticity clay.		_
_		6/24	N/A	N/A	SP	0.0	YR 6/1 Reddish Brown 5 YR 4/3	1.5-4' - SAND: Fine to medium-grained sand, trace silt. Fill material		_
_			N/A	N/A				(fragments of brick, cement, and rock).		_
 5		12/24	N/A	N/A	SP SP	0.0	Reddish Brown 5 YR 4/3	<u>4-6'</u> - SAND: SAA.		5
			30	18						3
 -			5	4		0.0	Reddish Brown 5 YR 4/3	<u>6-8'</u> - SAND: SAA.		_
_			3	5						_
		13/24	8	7	SP	0.0	Reddish Brown 5 YR 4/3	<u>8-10'</u> - SAND: SAA.		_
10			4	3						10
			2	3	SP	0.0	Reddish Brown 5 YR 4/3			10
		12/24	3	4						_
l v			. 3	5	SP	0.0	Reddish Brown 5 YR 4/3	<u>12-13'</u> - SAND: SAA.		-
		12/24	2	1	011		Reddish Gray 5 YR 6/1	13-15' - CLAY: Medium to high plasticity clay. Water table observed at upper	per	
15		10/12	16	29	CH			margin of clay layer.		15
	EOB	•							•	
										_
20										20
										_
										_
										_
										_
25										25
 										_
 										_
L										_
 										_
30										30
L										_
L										_
L										_
L										_
35	l									35

Soil samples T1-SB04 (0'-2'), T1-SB04 (5'-10'), and T1-SB04 (10'-WT) were collected and sent to ChemTech Laboratories (ChemTech) of

Mountainside, NJ for analysis of TCL VOCs + TICs by EPA Method 8260C, TCL SVOCs + TICs by EPA Method 8270D, TAL Inorganics by EPA Method 6010C/7471B,

PCBs by EPA Method 8082, pesticides by EPA Method 8081A, and herbicides by EPA Method 8151A.

COMMENTS: Hand auger to collect soil sample from 0-2' bgs. Blow counts for interval 2-5' bgs were not recorded as Associated Environmental encountered obstructions.

LEGEND:

Sand (G.S. #200 - #4 sieve)

Peat/Organic Soils

SAA: Same As Above

ppm: parts per million

Referent/Bentonite Grout

NA: Not Applicable

ft: feet

Cobble (G.S. >3")

Seal

PID: Photo-ionization Detector

ND: Not Determined

Clay (G.S. <#200 sieve)
 ▼ water table
 EOB: End of Boring
</p>

URS Corporation Soil Boring Log PROJECT INFORMATION SOIL BORING INFORMATION Depth to GW: Project: Bronx Psychiatric Center Boring/Well ID: T1-SB05 N/A Address: 1500 Waters Place, Bronx, NY 10461 Borehole Depth: Sheet: 1 of 1 Client: DASNY-OMH Date Started: 7/23/2014 Geologist: Michael Kuzia-Carmel Project No: 38395331.00000 Date Finished: 7/23/2014 Reviewed By: J. Gillies NYSDEC Spill No: Borehole Dia: DRILLING INFORMATION Drilling Company: Associated Environmental Services, Ltd. Driller: Geoprobe 7822-DH with Automatic Drop Hammer Drilling Method: Sampler: 2" Dia. Split Spoon Sampler Length:

Sample	r Length:	2								
	SA	MPLE					DESCRIPTION	WELL		
DEPTH (FT)	STRATA	REC	BLC PER	OWS R 6"	USCS	PID (ppm)	Color	MATERIAL DESCRIPTION	CONSTRUCTION DIAGRAM	DEPTH (FT)
		N/A	N/A N/A	N/A N/A	SP	0.0	Reddish Brown 5 YR 4/3	<u>0-2'</u> - SAND: Fine to medium-grained sand, trace silt. Fill material (fragments of brick, cement, and rock).		_
_		N/A	N/A	N/A	SP SP	0.0	Reddish Brown 5 YR 4/3 Reddish Brown	<u>2-5'</u> - SAND: SAA.		-
			N/A	N/A						_
5			N/A 2	N/A 2				<u>5-7'</u> - SAND: SAA.		5
_		16/24	2	3	SP	0.0	Reddish Brown			_
		11/24	2	5	31	0.0	5 YR 4/3	<u>7-9</u> ' - SAND: SAA.		_
10			3 14	1	SP 0.0	Reddish Brown 5 YR 4/3	9-11' - SAND: SAA. Water table observed at approximately 11' bgs.		10	
▼		14/24	7	6	SP	0.0	Reddish Brown	11-13 - SAND: SAA.		
		8/24	37		OI .					_
_		4/24	14 12	6 7	SP	0.0	Reddish Brown 5 YR	<u>13-15</u> - SAND: SAA.		_
15			6	5	SP	0.0	4/3			15
_	EOB									_
										_
20										20
20										20
										_
_										_
25										25
_										_
_										-
30										30
										_
_										_
35										35

SAMPLES COLLECTED: Soil samples T1-SB05 (0'-2'), and T1-SB05 (5'-10') were collected and sent to ChemTech Laboratories (ChemTech) of Mountainside, NJ for analysis of TCL VOCs + TICs by EPA Method 8260C, TCL SVOCs + TICs by EPA Method 8270D, TAL Inorganics by EPA Method 6010C/7471B, PCBs by EPA Method 8082, pesticides by EPA Method 8081A, and herbicides by EPA Method 8151A.

COMMENTS: Hand auger to collect soil sample from 0-2' bgs. Driller augered through interval from 2-5' bgs due to repeated obstruction

LEGEND: Sand (G.S. #200 - #4 sieve) Peat/Organic Soils ppm: parts per million SAA: Same As Above Gravel (G.S. #4 sieve - 3/4") Cement/Bentonite Grout NA: Not Applicable ft: feet Cobble (G.S. >3") ND: Not Determined PID: Photo-ionization Detector ||||| Silt (G.S. <#200 sieve) G.S.: Grain Size NAPL: Non-Aqueous Phase Liquid ▼ water table /// Clay (G.S. <#200 sieve) EOB: End of Boring