COST TO CURE REPORT COMMERCIAL / MANUFACTURING FACILITY

9TH STREET EQUITIES LLC 86 KENT AVENUE BETWEEN & INCLUDING NORTH 9TH AND NORTH 10TH STREETS BLOCK 2301, LOTS 1, 50, 60 & 70 BROOKLYN, NEW YORK

DDC PROJECT NO. – BEGS2005027 CONTRACT REGISTRATION NO. 20040028082 TASK 3099

Prepared for:

City of New York Department of Design and Construction Bureau of Environmental and Geotechnical Services 30-30 Thomson Avenue Fifth Floor Long Island City, New York 11101

PREPARED BY:

METCALF & EDDY OF NEW YORK, INC. 1140 ROUTE 22 EAST – SUITE 101 BRIDGEWATER, NEW JERSEY 08807

AUGUST 2006

WOL NOS. 3099-M&E2R-3253, 3099-M&E2R-3515, 3099-M&E2R-3923

Table of Contents

1.0	INTRODUCTION	1
1.1	BACKGROUND	1
2.0	SITE DESCRIPTION	3
2.1	GENERAL PHYSICAL SETTING	3
2.2		
2	2.2.1 Fill Material	
2	2.2.2 Native Soils	4
2.3		
3.0	INVESTIGATION ACTIVITIES AND RESULTS	5
3.1	SUMMARY OF SITE INVESTIGATION ACTIVITIES	5
3.2		
ź	3.2.1 Soils	
ź	3.2.2 Groundwater	
3.3	CONCLUSIONS	8
4.0	CONCEPTUAL SITE DEVELOPMENT	10
5.0	CONCEPTUAL REMEDIAL MEASURES	13
5.1	SITE BUILDING	13
5.2		
5.3		
5.4		
4	5.4.1 Agency Interaction	15
4	5.4.2 Additional Investigation	
4	5.4.3 Use of Health and Safety Trained Construction Workers	
4	5.4.4 Health and Safety – Dust Monitoring	
4	5.4.5 Vapor Intrusion	
6.0	REMEDIAL COST ESTIMATE	16
0.0		

LIST OF FIGURES

- Figure 1 Site Location on U.S.G.S. Map
- Figure 2 Site Map with Sample Locations
- Figure 3 Site Map with Soil Sample Results
- Figure 4 Site Map with Groundwater Sample Results
- Figure 5 Conceptual Site Plan
- Figure 6 Generalized Site Elevation

LIST OF TABLES

- Table 1 Soil Analytical Results, Volatile Organic Compounds
- Table 2 Soil Analytical Results, Semi-Volatile Organic Compounds
- Table 3 Soil Analytical Results, Pesticides
- Table 4 Soil Analytical Results, PCBs
- Table 5 Soil Analytical Results, TAL Metals
- Table 6 Groundwater Analytical Results, Volatile Organic Compounds
- Table 7 Groundwater Analytical Results, Semi-Volatile Organic Compounds
- Table 8 Groundwater Analytical Results, TAL Metals

1.0 INTRODUCTION

On behalf of the City of New York Department of Design & Construction ("DDC"), Metcalf & Eddy of New York, Inc. ("M&E") has prepared this Cost to Cure ("CTC") report for the property owned by the 9th Street Equities LLC (Block 2301, Lots 1, 50, 60 & 70), also known as the Levine Property ("the Site"), located at 86 Kent Avenue in the Borough of Brooklyn (Figure 1). The purpose of this CTC report is to provide the DDC with an order of magnitude cost estimate to remediate any contaminated soil and groundwater that may be encountered as part of the construction of a generic manufacturing facility on the subject property.

This CTC report is based on the findings of the Site Investigation (SI) conducted by M&E and documented in the M&E's August 2006 Site Investigation Report for the site,. The investigation conducted at the site is representative of the type of environmental investigation that a purchaser would undertake prior to acquiring real property.

This report is divided into the following sections:

- § Section 1 Introduction
- § Section 2 Description of the Property
- § Section 3 Investigation Activities and Results
- § Section 4 Remedial Approach
- § Section 5 Property Acquisition Environmental Cost Estimates

1.1 Background

Recognized environmental conditions ("RECs") related to historic fill at the site have been identified by several previous investigations of the Site and surrounding area. Previous investigations reviewed by M&E include a Preliminary Assessment Report prepared by Montgomery Watson in 1996, a Site Assessment report prepared by Fleming Lee Shue ("FLS") in 2002, and a Phase I Environmental Site Assessment report prepared by FLS in 2003.

The CitiStorage property located north of the Site was the location of a former Standard Oil bulk petroleum storage facility. The facility operated from the turn of the 20^{th} Century to sometime in the 1930s or 1940s. Based upon our review of the previous environmental assessments, an underground storage tank ("UST") area was located on the former bulk storage facility, immediately adjacent to the northern property boundary of the Site. Further north of the Site, a former manufactured gas plant ("MGP") was owned and operated by the Brooklyn Union Gas

Company. Based upon our review of Sanborn Fire Insuurance Maps, the MGP facility appears to have ceased operations sometime during the 1920s or 1930s.

A review of the Sanborn Fire Insurance Maps and aerial photographs dating back to 1916 indicate that the site contained several warehouses and storage buildings along with numerous railroad spurs. Buildings formerly located near the corner of North 9th and Kent Streets were identified as storing flour. A building formerly located at the corner of North 10th Street and Kent Avenue was identified as the Brooklyn Terminal Stores and was used to store a variety of items. In a 2003 aerial photograph, the buildings and railroad spurs are no longer visible. There is no historical evidence which provides additional information as to the demolition of the former buildings and railroad spurs at the site.

M&E conducted a SI of the property from December 7, 2005 through January 4, 2006. The purpose of the SI, as requested by the New York City Office of Environmental Coordination ("OEC") and DDC, was to evaluate the lateral and vertical extent of potential onsite contamination in subsurface soil and groundwater as a result of historic and current on-site and off-site operations.

2.0 SITE DESCRIPTION

2.1 General Physical Setting

The property owner is listed by the City of New York Department of Finance as 9th Street Equities LLC, and is identified as Block 2301, Blocks 1, 50, 60, and 70. The site is currently occupied by an Enterprise Rent-a-Car parking lot that contains parked vehicles. There is some miscellaneous trash and debris located along the shoreline of the East River. The topography is generally flat with a gentle west-northwesterly slope towards the East River. According to property survey conducted in early 2006 by the DDC, the elevation ranges from 0 to 15 feet above mean sea level. The Site and overall area consists of fill material used to fill in low-lying areas to allow for the commercial development of the waterfront. The Site is bound by the East River to the west, a warehouse occupied by CitiStorage to the north, vacant property to the south, and various light commercial operations to the east. The formerly a Standard Oil Company petroleum facility is currently occupied by CitiStorage.

2.2 Geology

Two major stratigraphic units were identified during the SI drilling program. The two major stratigraphic units; in order of increasing depth, consist of fill and native soil. Bedrock was not encountered during this investigation

2.2.1 Fill Material

Based on information obtained from the previous environmental site investigations conducted in the area, and from observations made during the SI performed at the Site, the subsurface consists of 5- to 20-foot thick layer of fill. The fill generally consists of sand and silty sand with crushed stone, coal, wood, concrete, ash, cinders, and brick. The thickness of the fill decreases across the Site from west to east, which suggests that the portion of the Site along the East River was filled to create land for waterfront development. Fill was encountered in each of the soil boring advanced during the SI.

2.2.2 Native Soils

The fill is underlain by alternating strata of fine sandy silts and silty clays to approximately 50 to 60 feet below grade. A discontinuous layer of peat was encountered in several of the soil borings at a depth of approximately 20 feet below grade.

2.3 Hydrogeology

Groundwater was encountered at depths ranging from 5 to 10 feet bgs throughout the Site.

Based upon groundwater elevations measured from the nine (9) monitoring wells installed at the site, groundwater flows in a westerly direction towards the East River.

3.0 INVESTIGATION ACTIVITIES AND RESULTS

The purpose of the SI as requested by the DDC was for the initial evaluation of the lateral and vertical extent of contamination in subsurface soil and groundwater that may exist from the historic and current on-site and off-site operations prior to the redevelopment of the site. The investigation was performed in general accordance with New York State Department of Environmental Conservation ("NYSDEC") Draft DER-10 Technical Guidance for Site Investigation and Remediation dated December 2002. The investigation findings were evaluated based on the Technical and Administrative Guidance Memorandum ("TAGM") No. 4046, Spill Technology and Remediation Services ("STARS") Memorandum No.1, Toxicity Characteristic Leachate Procedure ("TCLP") Alternative Guidance Values, and the NYSDEC Technical and Operational Guidance Series ("TOGS") 1.1.1 Memorandum (Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations).

3.1 Summary of Site Investigation Activities

The SI activities were conducted from December 7, 2005 through January 4, 2006 and consisted of the advancement of soil borings and installation of monitoring wells for the collection of soil and groundwater samples, respectively. Soil and groundwater samples were collected to characterize groundwater conditions at the Site.

The SI field work included:

- Advancement of twenty (20) soil borings (LPB-1 through LPB-20) using truck mounted hollow stem auger drill rigs.
- Installation of nine (9) monitoring wells through nine (9) boring locations (MW-1 through MW-9) using truck mounted hollow stem auger drill rigs.
- Containment of drill cuttings and well development water into 55-gallon drums.
- Survey of all boring/monitoring well locations by the DDC.

The following samples were collected from each of these investigation points.

- Forty-five (45) soil samples were collected from twenty (20) boring locations.
- Nine (9) groundwater samples were collected from nine (9) monitoring well locations.

• Two (2) composite soil and one (1) composite groundwater sample were collected from the drill cuttings and well development water respectively, generated during the SI for the purposes of waste classification.

3.2 Results of the Investigation Activities

3.2.1 Soils

In order to evaluate the subsurface soil quality, laboratory analytical results were compared with New York State Department of Environmental Conservation ("NYSDEC") regulatory standards identified in:

- Technical and Administrative Guidance Memorandum ("TAGM") No. 4046 (Recommended Soil Cleanup Objectives ["RSCO"] and Soil Cleanup Objectives to Protect Groundwater Quality ["SCOPGQ"]); and,
- Spill Technology and Remediation Series ("STARS") Memo No.1, TCLP Alternative Guidance Values.

The laboratory results of the samples are summarized in Tables 1 through 5 and on Figure 3. The analytical data revealed the following:

- The Site predominantly contains SVOCs and metals at concentrations the NYSDEC TAGM and STARS Alternative TCLP Guidance Value criteria. SVOCs consisting of polyaromatic hydrocarbons ("PAHs") were detected above the NYSDEC TAGM RSCO and SCOPGQ criterion primarily near the former underground storage tank ("UST") area (LPB-8/MW-4) and former fuel storage facility (LPB-1/MW-1 and LPB-6/MW-9) located on the adjacent property occupied by CitiStorage. The CitiStorage property was formerly occupied by the Standard Oil Company at the turn of the 20th Century. Metals were detected above applicable NYSDEC TAGM RSCO and Eastern U.S. Background criteria in all of the soil samples collected at the Site;
- The detection of SVOCs, particularly PAHs above NYSDEC TAGM and/or STARS
 Alternative TCLP Guidance Value criteria indicate that the fill material throughout the
 Site (consisting of ash and cinders) contains these compounds at elevated levels. Thus,
 there is a limited, potential exposure risk during construction activities, especially in the
 areas where SVOCs were elevated.

- Samples obtained near the former UST area and the former fuel storage facility located in the northern portion of the Site generally contained generally higher levels of SVOCs than those encountered elsewhere on the site. The source of these compounded are likely due to residual undocumented petroleum releases. The detection of SVOCs in the remaining soil borings are attributed to contaminants within the historic fill throughout the Site. Thus, the potential exposure risk during construction activities in these areas may be slightly higher.
- A limited exposure risk is also posed by metals such as arsenic, cadmium, chromium, mercury, lead, nickel, and zinc which were detected above the NYSDEC TAGM and Eastern U.S. Background criteria. The presence of these compounds, along with other metals detected below NYSDEC TAGM criteria suggests that the presence of these metals are attributed to contaminants from historic fill material present throughout the site.

3.2.2 Groundwater

The groundwater results were compared with the following regulatory criteria:

 NYSDEC Technical and Operational Guidance Series ("TOGS") 1.1.1 Memorandum (Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations).

The laboratory results of the samples are summarized in Tables 6 through 8 and on Figure 4. The analytical data revealed the following:

- Levels of the VOCs benzene, toluene, ethylbenzene, and xylene ("BTEX"), a few SVOCs and several metals were detected above the NYSDEC TOGS Groundwater Criteria. The greatest concentrations of these compounds were detected in MW-1, which is located near the former Standard Oil fuel storage facility (occupied by CitiStorage). The presence of BTEX compounds is generally associated with refined petroleum products such as gasoline.
- The TAL Metals aluminum, barium, arsenic, chromium, calcium, copper, iron, magnesium, manganese, lead, mercury, potassium, sodium, vanadium, and zinc were detected in all the nine groundwater samples (MW-1 through MW-9). Barium, arsenic, iron, magnesium, lead, manganese, mercury, potassium, sodium, and zinc were detected above the NYSDEC TOGS criteria. The remaining metals, including antimony, beryllium, cadmium, cobalt, nickel, potassium, sodium, silver, selenium, and thallium were detected below NYSDEC TOGS criteria or were not detected above the MDLs. The detection of

inorganic compounds such as iron, magnesium, manganese, and sodium above the NYSDEC TOGS criteria are likely from compounds associated with the East River which have a hydrogeological connection to groundwater at the Site. The detection of these compounds as well as the other inorganic compounds detected may also be from the sampling and analytical procedures used for this investigation. Since the samples were analyzed for total metals, some suspended sediment from the historic fill may have been included in the groundwater sample submitted for analysis. Due to the methods used by the laboratory to extract and analyze the samples, the possibility exists that some of the results may be indicative of the inorganic compounds that have been leached from the historic fill rather than the inorganic compounds that are dissolved in the groundwater.

3.3 Conclusions

The site contains contaminated historic fill that is typically found throughout the City of New York, especially where lowlands or marsh areas near the East River were filled so that properties could be developed for residential, commercial, and manufacturing uses. The contaminants present in the historic fill such as ash and cinders typically associated with the burning of coal were prevalent throughout New York City during the 19th and early 20th Centuries. Many of the areas which were filled in were associated with waterfront properties, since the rivers and streams of the city were used as a primary transportation route for goods and materials in and out of New York, and thus were valuable commercial properties.

Based upon the contamination detected at the Site and the Site's physical setting, there are three (3) receptors described below that may be impacted:

- Impacts to the East River through surface runoff;
- Impacts to humans on-site through direct contact with surface water runoff and inhalation; and,
- Impacts of petroleum contamination to groundwater as a result of petroleum contamination.

The East River may be impacted through several means of transport including surface water runoff from the site which could potentially carry contaminated sediments, contaminated dust

particles from historic fill carried by the wind, and contaminated groundwater flowing towards the river.

Human receptors may be exposed to contaminants via dermal contact through swimming or wading in the East River or through direct contact with historic fill when digging or performing other invasive activities at the Site. Exposure by inhalation of dust blown from contaminated areas also provides an additional path to human receptors.

Based upon the results of the samples collected from the northern portion of the site, groundwater has been impacted from potential undocumented petroleum discharges such as gasoline. As previously discussed, the petroleum contamination appears to be from both a former UST area and from the operations of the former Standard Oil bulk petroleum storage facility on the adjacent property.

4.0 CONCEPTUAL SITE DEVELOPMENT

The DDC has requested that M&E develop a conceptual site plan associated with the redevelopment of the site as a manufacturing facility in accordance with the present zoning classification of the property. The development of a conceptual site plan will assist M&E in preparing an order of magnitude cost estimate for the remediation of contaminated soil and groundwater that may be encountered should actual redevelopment of the Site occur based upon the conceptual site plan.

In order to prepare the conceptual site plan, M&E used the following assumptions, based upon information provided by the City and collected during the field investigation:

- The area of the Site is 296,400 square feet ("SF"), which consists of approximately 154,000 SF of upland and approximately 142,400 SF of land underwater (the City of New York Department of Citywide Administrative Services ["DCAS"]). For the purposes of this report, only the upland portion of the site will be impacted by the conceptual development.
- The property is zoned M3-1 **heavy** manufacturing (The New York City Department of City Planning ["DCP"]). The City restricts manufacturing operations that may have potentially noxious uses in the M3-1 Zone, however, some commercial operations such as the CitiStorage facility adjacent to the Site are allowed in these zones. Thus, the conceptual site plan has been developed for either a commercial or manufacturing operations.
- The Floor Area Ratio in the M3-1 Zone is 2.0 which allows for a maximum of 308,000 SF of floor space to be developed within the 154,000 SF upland portion of the Site.
- Height and setback requirements for manufacturing facilities are similar to those required for residential and commercial districts. For this report, we assumed the height and setback requirements as 210 feet and 30 feet, respectively.
- The topographic map prepared for the Site indicates that approximately 40% of the upland portion of the Site (61,600 SF) is classified as a flood zone. It is assumed that any building constructed on the Site would be constructed outside the boundary of the flood zone. However, a waiver may be obtained to extend the building into the flood zone (such as the case with CitiStorage).

- Based upon the soil lithology, depth to groundwater, and construction information obtained concerning the buildings owned by CitiStorage, it is anticipated that any structure constructed on the Site would be built upon a concrete slab at grade, supported by concrete piles. Thus, there would be no need for the excavation of soil or dewatering activities to take place for the construction of basement. The number and depth of the piles would be determined as part of a final design. However, for the purposes of this report such information is not required.
- The historic fill remaining onsite will be geotechnically suitable for construction purposes.
- All subsurface utilities entering the conceptual building would be obtained from the underground utilities located along Kent Avenue.
- North 9th Street would require repaying in order to provide vehicle access to a proposed parking lot.

Based upon these assumptions, M&E's conceptual site plan for the property is as follows:

- The building would consist of four (4) stories, each with a floor plate of 63,000 SF, yielding a cumulative floor area of 252,000 SF. An additional 13,500 SF would be required for loading docks and vehicular access, yielding a total floor area of 285,500 SF and a FAR of 1.85. As previously discussed, it is assumed that the building will not extend beyond the identified flood zone.
- Setback and side yard areas would comprise 23,600 SF of the site. These areas would be paved with concrete or asphalt (similar to the CitiStorage properties) and would act as a cap to limit any direct contact of the contaminated fill to employees, visitors, and/or trespassers.
- An asphalt open parking lot would comprise of 49,200 SF of the Site. In addition to providing parking for employee vehicles, the parking lot would act as a cap to limit any direct contact of the contaminated fill to employees, visitors, and/or trespassers.
- The remaining 18,200 square feet of the property would either be landscaped for use by employees of the facility or reconstructed as vegetated open space. This area would be located adjacent to the East River and would act as a buffer between the developed portions of the Site and the East River. For the purposes of the CTC, this area would remain as vegetated open space and be capped with a minimum of two (2) feet of certified clean fill.

Figure 5 provides a conceptual site plan for the subject property. Please note that this is a simple conceptual design for the development of either a commercial or manufacturing facility based upon the assumptions previously identified. This conceptual design was developed only as a means to evaluate the potential costs to manage contaminated soil and groundwater at the site, should the property be developed. There are numerous other development plans that could be pursued on this property. However, it is likely that any costs associated with managing contaminated soil and groundwater at the site would be similar to the costs that M&E has identified in this conceptual plan.

5.0 CONCEPTUAL REMEDIAL MEASURES

The majority of the remedial activities would be associated with excavation and offsite disposal of contaminated historic fill. Petroleum contaminated, non-hazardous soil may be present in the northern portion of the site. Dewatering may be minimal since depth to groundwater ranges from five (5) to ten (10) ft bgs and the conceptual design assumes construction on an at-grade slab. Additionally, excavations for utilities would likely extend less than five (5) ft bgs.

For the purposes of this CTC Report, we have assumed that the entire site will be capped with a minimum of two (2) feet of clean fill or one (1) foot of clean fill/one (1) foot of pavement to act as a barrier to reduce potential employee, visitor, and trespasser contact with contaminated historic fill. In order to maintain existing grades for drainage and access purposes, this would result in the excavation of historic fill across most of the Site, and reuse of some of the cut material to bring low lying areas up to developed grade. Thus, this will reduce the costs offsite disposal of the historic fill. Figure 6 provides a generalized site elevation illustrating the present topographic profile of the Site and a profile illustrating the conceptual design.

The conceptual remedial measures have been divided into three (3) construction categories:

- Site Building;
- Parking Area;
- Open Space/Landscaped area.

5.1 Site Building

The elevation where the conceptual manufacturing facility decreases to the west from approximately 14 feet above mean sea level ("msl") at Kent Avenue to seven (7) feet above msl, approximately 420 feet west of Kent Avenue. If the foundation slab is set at the elevation of Kent Avenue (14 feet above msl), an additional 6,000 cubic yards of historic fill and clean fill (as a two foot barrier) would be needed to raise the elevation of that area (Figure 6). It is estimated that 4,000 cubic yards of fill will be removed from this area, of which 3,000 cubic yards can be relocated to raise the property grade. The remaining 3,000 cubic yards would consist of clean fill to act as the two (2) foot buffer to the historic fill. The remaining 1,000 cubic yards of historic fill and any petroleum contaminated soil would require offsite disposal.

5.2 Parking Area

In addition to providing vehicular parking, the parking lot would also serve to cap the historic fill outside the building floor plate. The parking area would also allow vehicle access to loading docks and storage areas.

The conceptual parking area would be located where the existing grade is fairly flat and ranges in elevation between 6 - 7 feet above msl. The conceptual design grade of the parking area would be six (6) feet msl, requiring about 4,000 CY of the historic fill and petroleum contaminated soil to be removed and disposed off-site. To balance the grade in the parking area, 2,000 CY of clean fill would be imported and placed in a one (1) foot lift, overlain by six (6) inches of crushed stone and six (6) inches of asphalt.

5.3 Open Space/Landscaped Area

This area would act as a buffer between the East River and the developed areas of the Site. It could be landscaped to allow for recreational use for the employees or left as open space as part of the remedial measures.

The elevation of this area is fairly flat (5 to 6 feet above msl), with the exception of a few feet from the bulkhead along the East River that grades steeply to approximately two (2) ft msl. It is estimated that that 3,000 cubic yards of historic fill and petroleum contaminated soil would be removed from this area and disposal off-site. A two (2) foot layer of clean fill would replace the historic fill in order to maintain the original grade of the area. Subsequent to regarding, appropriate landscaping measures would be taken to stabilize the soil.

5.4 Miscellaneous Remedial Concerns

Based upon our experience with similar sites in New York City, the NYSDEC typically will only get involved in cases of significant contamination or if there are petroleum spill indicators at the site. Though there is evidence of a historic petroleum discharge in the northern portion of the Site, the petroleum discharge appears to be associated with the adjacent property. In other cases, the New York City Department of Environmental Protection ("NYCDEP") may decide to have the NYSDEC get involved with construction activities at the Site. This is more likely to happen if there is a vapor intrusion issue at the site, which does not appear to be the case, based upon the results of the soil and groundwater samples collected during the SI.

However, for additional costing purposes, the following tasks may be required for the site.

5.4.1 Agency Interaction

The possibility always exists for the need to interact with the NYSDEC and/or the NYCDEP as to the proposed re-use of historic fill at the site or its offsite disposal. Thus, we have assumed a cost for coordinating construction activities with these agencies.

5.4.2 Additional Investigation

It is our opinion that the SI activities conducted at the site, along with previous investigation activities substantially fulfill the sampling requirements of the NYSDEC and the NYCDEP. However, once specific site plans have been developed for the site, some additional SI activities may be required by the NYSDEC, the NYCDEP, or the prospective site developer.

5.4.3 Use of Health and Safety Trained Construction Workers

It is likely that excavation and grading activities will require health and safety trained construction workers. Although it is not difficult to locate construction companies that employ such people, the additional cost may be up to 30% above a laborer cost at a typical construction site.

5.4.4 Health and Safety – Dust Monitoring

Due to the presence of contaminated historic fill, there will likely be a need to monitor the amount of dust that is generated during construction activities at the site. A Community Air-Monitoring Program ("CAMP") is a regulatory requirement that will need to be developed and implemented during construction activities, A CAMP is an environmental cost that results from the presence of contaminants in site soils. Personnel will need to operate and calibrate air monitoring equipment to assess if levels of dust are exceeding the requirements of the CAMP. For the purposes of this report, we have assumed a cost for monitoring dust generated during construction activities.

5.4.5 Vapor Intrusion

Based upon the depth to shallow groundwater and the presence of VOCs and SVOCs slightly exceeding the NYSDEC TOGS 1.1.1 criteria in a limited number of groundwater samples, the NYSDEC and the NYCDEP may require measures to be taken to prevent vapor intrusion into the conceptual manufacturing facility. Any additional costs required to prevent vapor intrusion are dependent upon the actual design of a building to be constructed at the site.

6.0 REMEDIAL COST ESTIMATE

Based upon the conceptual site plan and remedial measures discussed in Sections 4 and 5, the following table summarizes the order of magnitude costs that could be encountered.

SITE BUILDING						
Environmental Task	Quantity	Unit	Unit Cost (\$)	Extended Cost (\$)	Comments	
Excavation, Grading, and Loading of Historic Fill/Non-Hazardous Petroleum Contaminated Soil	4,000	Cubic Yard	No Cost	No Cost	The costs associated with this task would be associated with typical site development activities even if the historic fill was not contaminated with ash, cinders, or petroleum hydrocarbons.	
Transportation and Disposal of Historic Fill/Non-Hazardous Petroleum Contaminated Soil	1,400	Ton	\$50	\$70,000	This is for 1,000 cubic yards of historic fill / petroleum contaminated soil that can't be reused under the building. It assumes 1.4 tons per cubic yard.	
Clean Fill	4,200	Ton	\$30	\$126,000	This cost is only for the 2 foot cap that would act as a barrier to the historic fill. It is based upon 3,000 cubic yards at 1.4 tons per cubic yard.	
SUBTOT	AL ESTIMA		\$196,000			

PARKING AREA							
Environmental Task	Quantity	Unit	Unit Cost (\$)	Extended Cost (\$)	Comments		
Excavation, and Loading of Historic Fill/Non-Hazardous Petroleum Contaminated Soil	5,600	Ton	\$20	\$112,000	This is for 4,000 cubic yards of historic fill/petroleum contaminated soil that can't be reused at the site. It assumes 1.4 tons per cubic yard.		
Transportation and Disposal of Historic Fill/Non-Hazardous Petroleum Contaminated Soil	5,600	Ton	\$50	\$280,000	This is for 4,000 cubic yards of historic fill/petroleum contaminated soil that can't be reused at the site. It assumes 1.4 tons per cubic yard.		
Clean Fill	2,800	Ton	\$30	\$84,000	A 1 foot lift of clean fill will subsequently be covered by crushed stone and asphalt pavement. It is based upon 2,000 cubic yards at 1.4 tons per cubic yard.		
Crushed stone for parking lot base	600	Cubic Yard	No Cost	No Cost	Normal site development would require the construction of a parking lot whether or not contaminated historic fill exists.		
Asphalt Pavement – 6 inches thick	5,000	Square Yard	No Cost	No Cost	Normal site development would require the construction of a parking lot whether or not contaminated historic fill exists.		
SUBTOT	AL ESTIMA		\$476,000				

OPEN SPACE/LANDSCAPED AREA						
Environmental Task	Quantity	Unit	Unit Cost (\$)	Extended Cost (\$)	Comments	
Excavation, and Loading of Historic Fill/ Non-Hazardous Petroleum Contaminated Soil	4,200	Ton	\$20	\$84,000	This is for 3,000 cubic yards of historic fill/petroleum contaminated soil that can't be reused at the site. It assumes 1.4 tons per cubic yard.	
Transportation and Disposal of Historic Fill/Non-Hazardous Petroleum Contaminated Soil	4,200	Ton	\$50	\$210,000	This is for 3,000 cubic yards of historic fill/petroleum contaminated soil that can't be reused at the site. It assumes 1.4 tons per cubic yard.	
Clean Fill – 2 foot cap	2,800	Ton	\$30	\$84,000	Clean fill to limit exposure to historic fill.	
Landscaping – Hydroseeding	2,000	Square Yard	\$0.50	\$1,000	Hydroseeding for grass cover only.	
SUBTOT	AL ESTIMA		\$379,000			

MISCELLANEOUS REMEDIAL CONCERNS					
Environmental Task	Quantity	Unit	Unit Cost (\$)	Extended Cost (\$)	Comments
Agency Interaction	1	Lump Sum	\$40,000	\$40,000	Estimated cost should involvement by the NYSDEC and/or NYCDEP be required.
Additional Investigation	1	Lump Sum	\$60,000	\$60,000	Estimated cost should the NYSDEC, NYSDEC, or the developer require further investigation based upon site design.
Use of Health & Safety Trained Construction Workers	1	Lump Sum	\$227,000	\$227,000	This cost is based upon 30% of the costs associated with the excavation and disposal of historic fill.
Health & Safety Dust Monitoring	1	Lump Sum	\$100,000	\$100,000	Cost estimated for budgeting purposes only.
Vapor Intrusion	60,000	Square Foot	\$5.00	\$300,000	This cost would only apply if the NYSDEC or the NYCDEP require the installation of a vapor barrier. This is not likely at the Site based upon the field and analytical results from the SI.
SUBTOT	AL ESTIMA	\$727,000			
TOTAL	ESTIMAT		\$1,778,000		
CONTINGENCY (25% OF TOTAL ESTIMATE) \$445,000					
CONTINGLINE (25% OF TOTAL ESTIMATE) \$445,000					
TOTAL ESTIMATED COST TO CURE					\$2,223,000

This conceptual cost to cure estimate is based upon only those activities that would be outside typical construction activities as a result of contaminated historic fill at the site. The costs are only to be used for budgeting purposes, as discussed with the DDC. Significant differences may arise between the conceptual and actual costs of managing the historic fill depending upon the actual redevelopment scenario.

FIGURES

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

TABLE 2 SOIL ANALYTICAL RESULTS SEMI-VOLATILE ORGANIC COMPOUNDS

TABLE 3 SOIL ANALYTICAL RESULTS PESTICIDES

TABLE 4 SOIL ANALYTICAL RESULTS POLYCHLORINATED BIPHENYLS

TABLE 5 SOIL ANALYTICAL RESULTS TARGET ANALYTE LIST METALS

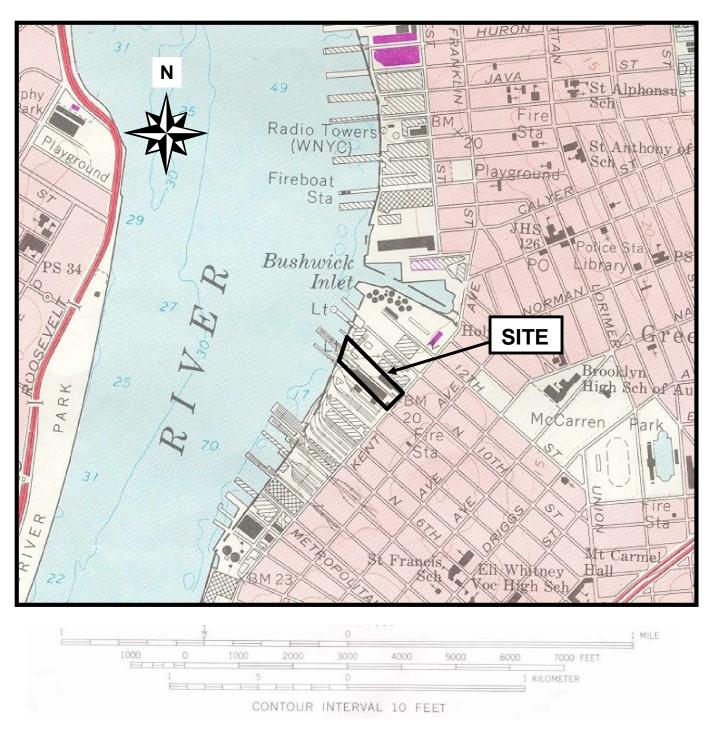
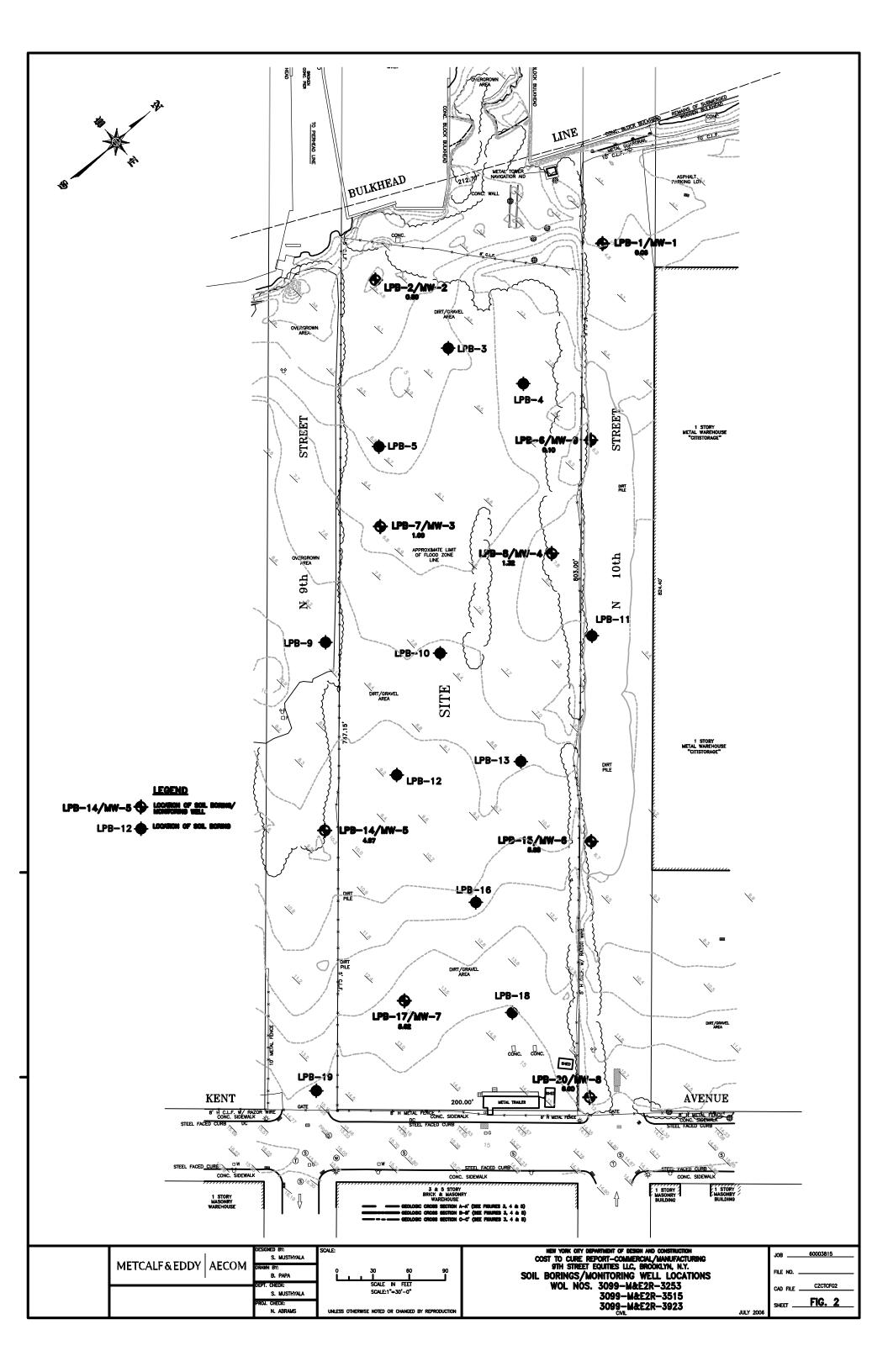
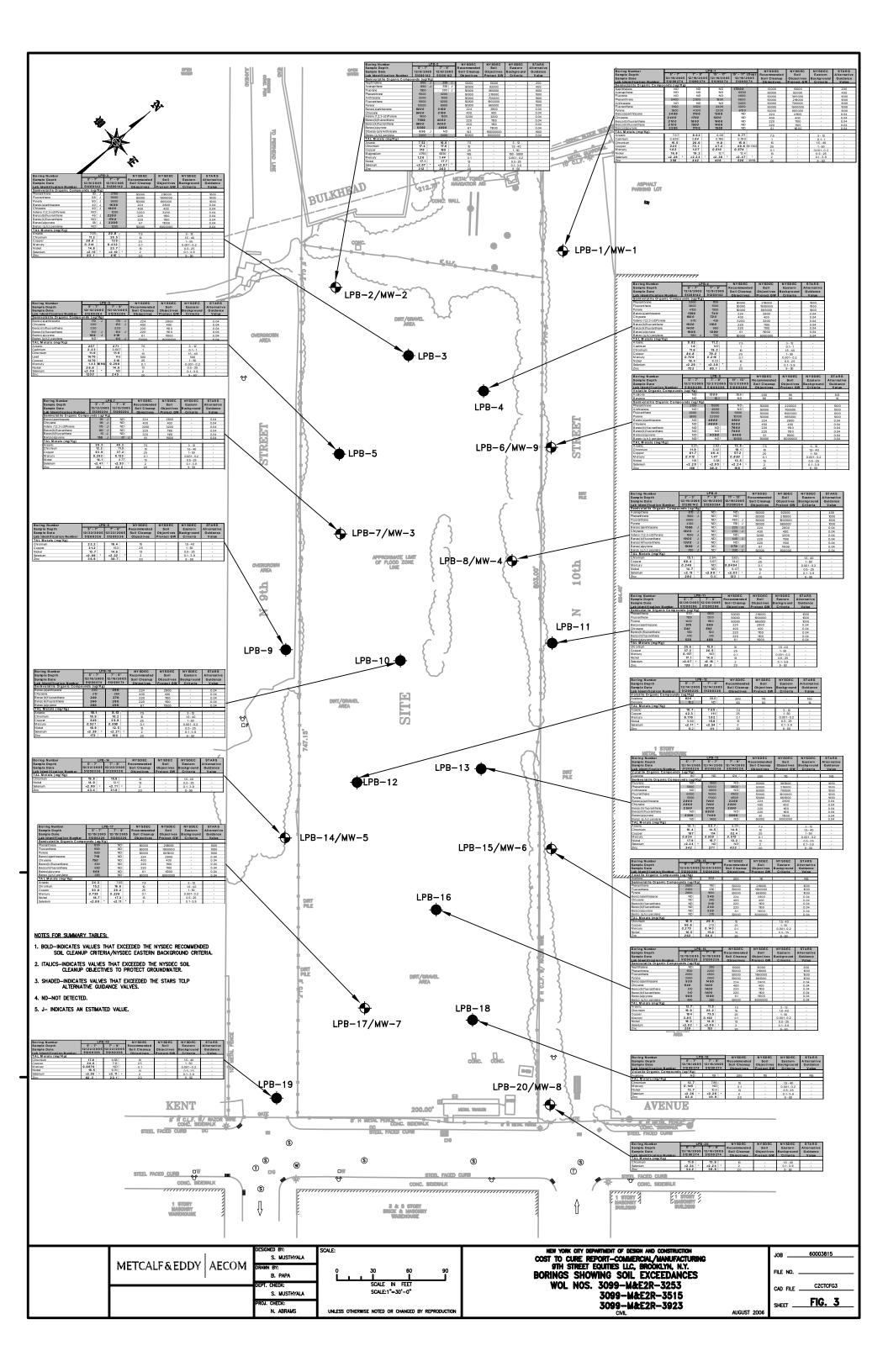
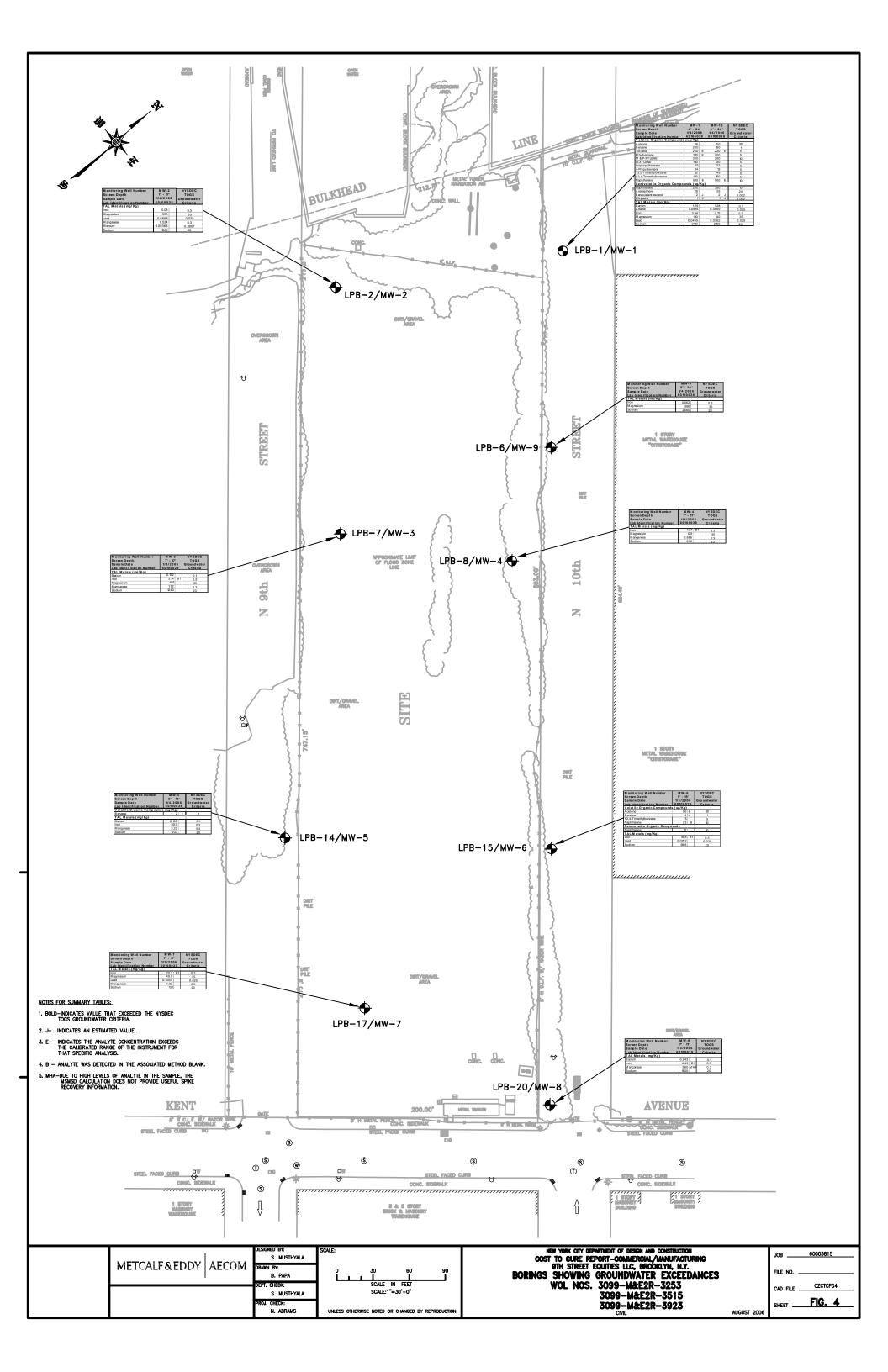
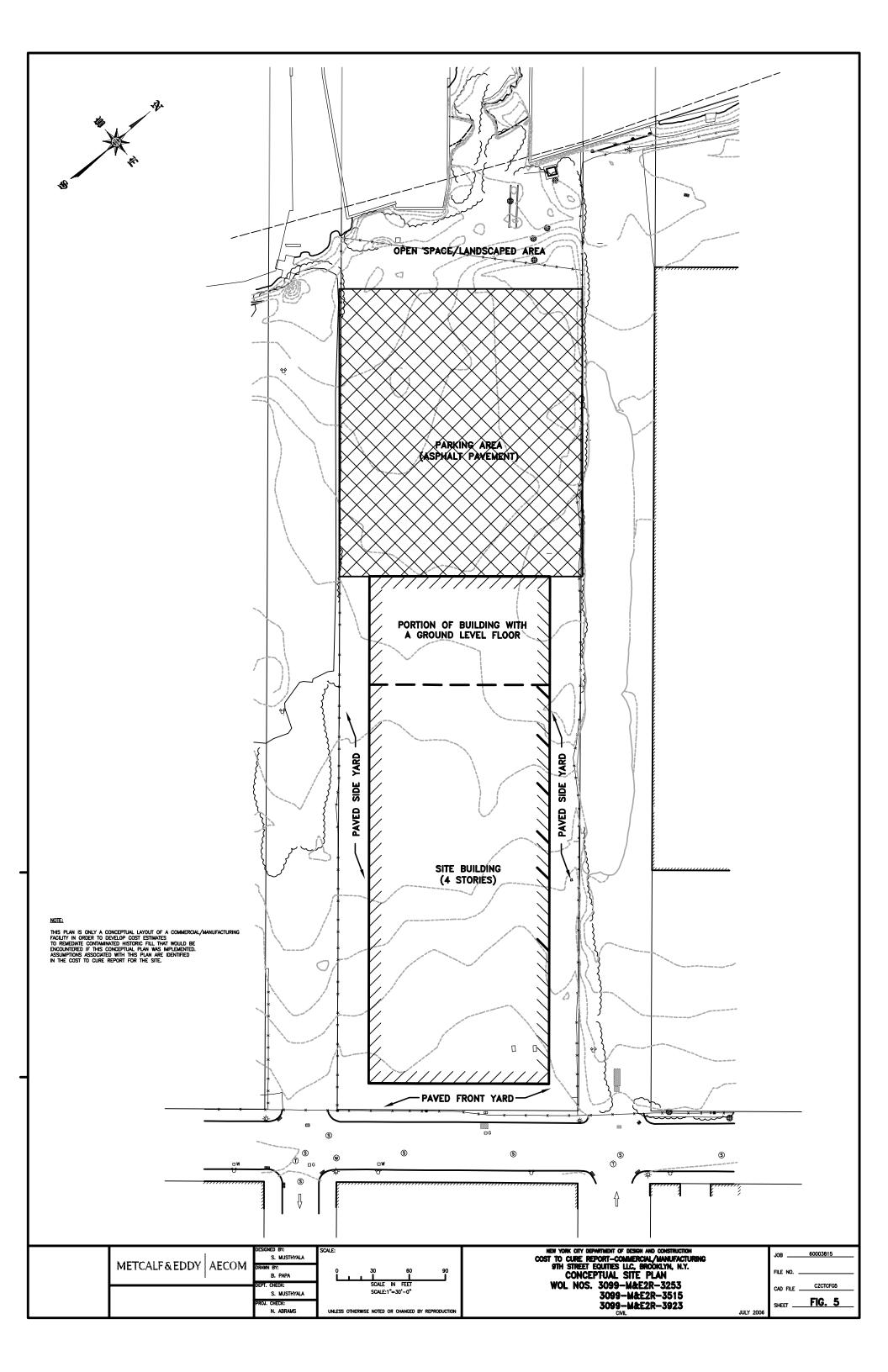

TABLE 6 GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

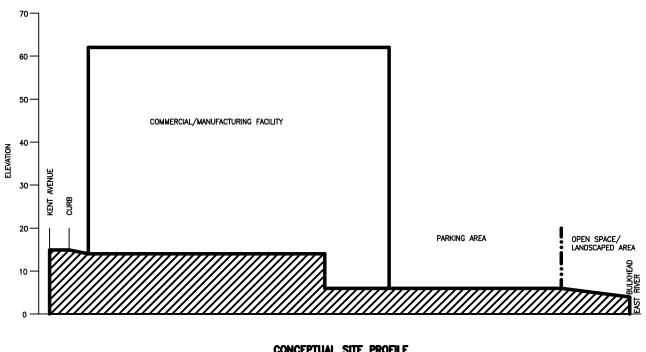
TABLE 7 GROUNDWATER ANALYTICAL RESULTS SEMI-VOLATILE ORGANIC COMPOUNDS

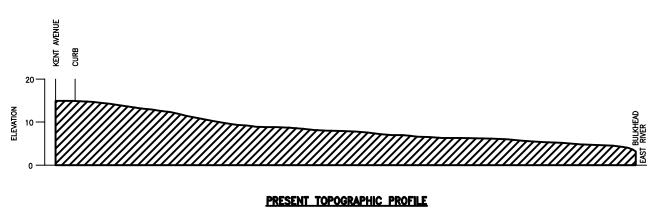

TABLE 8 GROUNDWATER ANALYTICAL RESULTS TARGET ANALYTE LIST METALS




Brooklyn, NY 7.5 Minute U.S.G.S. Quadrangle – 1967, photorevised 1979


METCALF & EDDY | AECOM


WOL NOS. 3099-M&E2R-3252 3099-M&E2R-3515 3099-M&E2R-3923 Figure 1
Site Location Map
9th Street Equities LLC Property
86 Kent Avenue
Brooklyn, New York



CONCEPTUAL SITE PROFILE

SCALE: HORIZONTAL 1"=60' VERTICAL 1"=10'

SCALE: HORIZONTAL 1"=60' VERTICAL 1"=10'

	Designed By: S. Musthyala	SCALE:	NEW YORK CITY DEPARTMENT OF DESIGN AND CONSTRUCTION COST TO CURE REPORT—COMMERCIAL/MANUFACTURING	JOB60003815
METCALF&EDDY AECOM	DRAWN BY:		9TH STREET EQUITIES LLC, BROOKLYN, N.Y.	FILE NO.
	B. PAPA DEPT. CHECK:	as noted	GENERALIZED SITE ELEVATIONS WOL NOS. 3099-M&E2R-3253	07070508
	S. MUSTHYALA		3099-M&E2R-3515	SHEET FIG. 6
	PROJ. CHECK: N. ABRAMS	Unless otherwise noted or changed by reproduction	3099-M&E2R-3923 CML JULY 2006	SHEET FIG. 6

Boring Number Sample Depth (ft)	LPB-1 5-7	LPB-1 7.9	LPB-1 15-17	LPB-1D 15-17	LPB-2 5-7	NYSDEC Recommended	NYSDEC Soil Cleanup	STARS TCLP Alternative
Sample Date Lab Idenification Number	12/19/2005 51200274	12/19/2005 51200274	12/19/2005 51200274	12/19/2005 51200274	12/8/2005 51200142	Soil Cleanup Objectives	Objectives to Protect GW	Guidance Value
Volatile Organic Compounds (ug/Kg)								
Acetone	S	53.2	Q.	105	10 JB	200	110	SN
Methylene Chloride	Ω	Q	8	Q	ر 9	100	100	SN
Benzene	Ω Z	Ω	S	Q	Q	09	09	14
Toluene	2	Ω	2	2	Q	1500	1500	100
1,3,5-Trimethylbenzene	2	2	21.0	15.4	Q	NS	SN	100
1,2,4-Trimethylbenzene	9	2	15.1	28.4	2	NS	SN	100
4-Isopropyltoluene	2	2	Q	26.4	2	NS	SN	SN
Naphthalene	9	2	Q	28.2	2	NS	NS	200
1,2,3-Trichlorobenzene	9	2	9	9	Q	SN	NS	NS

Boring Number	LPB-2	LPB-3	LPB-3	LPB-4	LPB-4	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	6-2	5-7	7-9	5-7	7-9	Recommended	Soil Cleanup	Alternative
Sample Date	12/8/2005	12/9/2005	12/9/2005	12/9/2005	12/9/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200142	51200142	51200142	51200142	51200142	Objectives	Protect GW	Value
Volatile Organic Compounds (ug/Kg)								
Acetone	13 JB	16 JB	16 JB	20 JB	17 JB	200	110	SN
Methylene Chloride	23 J	40	09	4	Z6 J	100	100	SN
Benzene	2	4 J	2	9	4 ا	09	09	14
Toluene	<u>ი</u>	g	2	2	Q.	1500	1500	100
1,3,5-Trimethylbenzene	S	9	9	9	9	NS	SN	100
1,2,4-Trimethylbenzene	2	9	2	9	9	NS	SN	100
4-Isopropyltoluene	2	Ω	Q.	2	Q	NS	SN	SN
Naphthalene	4 JB	Ω	2	Q.	7 JB	NS	SN	200
1.2.3-Trichlorobenzene	2	9	9	2	2	SN	SN	NS

Table 1
Levine Property Site Investigation
Soil Sample Results

Boring Number Sample Depth (ft) Sample Date Lab Idenification Number	LPB-5 5-7 12/12/2005 51200204	LPB-5 7-9 12/12/2005 51200204	LPB-6 5-7 12/21/2005 51200286	LPB-6 7-9 12/21/2005 51200286	LPB-6 11-13 12/21/2005 51200286	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to Protect GW	STARS TCLP Alternative Guidance Value
Volatile Organic Compounds (ug/Kg)								
Acetone	26 JB			1300	55.6	200	110	NS
Methylene Chloride	14 JB	25 JB		g	9	100	100	SN
Benzene	Q	Q	S	16.1	9	09	09	4
Toluene	2	S	Q N	29.2	19.2	1500	1500	100
I,3,5-Trimethylbenzene	2	2	10.3	Q	9	NS	SN	100
1,2,4-Trimethylbenzene	S	Q N	31.5	32.3	2	NS	SN	100
4-IsopropyItoluene	2	Ω	2	S	Q.	SN	NS	NS
Naphthalene	2	Q.	16.9	46.4	Q.	SN	SN	200
1.2.3-Trichlorobenzene	2	2	2	9	2	SN	SN	SN

Boring Number	LPB-7	LPB-7	FB-8	LPB-8	8-Bd7	NYSDEC	NYSDEC	STARS TOLP
Sample Depth (ft)	5-7	6-2	2-3	7-9	11-13	Recommended	Soil Cleanup	Alternative
Sample Date	12/13/2005	12/13/2005	12/9/2005	12/12/2005	12/12/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200204	51200204	51200142	51200204	51200204	Objectives	Protect GW	Value
Volatile Organic Compounds (ug/Kg)								
Acetone	36 JB	80 JB	15 JB	24 JB	100 B	200	110	NS
Methylene Chloride	18 JB	25 JB	17 J	BC 6	18 JB	100	100	NS
Benzene	9	9	9	9	9	09	09	14
Toluene	7 9	4 Ն	9	g	Q	1500	1500	100
1,3,5-Trimethylbenzene	2	9	9	S	9	NS	NS	100
1,2,4-Trimethylbenzene	Q	P	Q	S	Q	NS	NS	100
4-Isopropyltoluene	Q	Q	Ω	Q	2	NS	NS	NS
Naphthalene	9	g	Q	12	9	NS	NS	200
1,2,3-Trichlorobenzene	9	S	2	2	9	NS	SN	SN

Table 1
Levine Property Site Investigation
Soil Sample Results

STARS TCLP		Ō	Value		SN	SN	14	100	100	100	SN	200	SN
NYSDEC	Soil Cleanup	Objectives to	Protect GW		110	100	09	1500	SN	SN	SN	SN	SN
NYSDEC	Recommended	Soil Cleanup	Objectives		200	100	09	1500	NS	NS	NS	NS	SZ
LPB-11	5-7	12/20/2005	51200286		ΩN	Q	Q	Q	Q	Ω	Q	Q	9
LPB-10	7-9	12/16/2005	51200274		QN	Q.	R	R	Q	S	Q	2	2
LPB-10	5-7	12/16/2005	51200274		ΩN	2	g	2	Q	Q	Q	9	Q
LPB-9	6-2	12/22/2005	51200336		98	17	g	Q	QN	2	2	2	2
F-8-7	5-7	12/22/2005	51200336		44	21	Q.	9	9	2	9	9	9
Boring Number	Sample Depth (ft)	Sample Date	Lab Idenification Number	Volatile Organic Compounds (ug/Kg)	Acetone	Methylene Chloride	Benzene	Toluene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	4-Isopropyitoluene	Naphthalene	1.2.3-Trichlorobenzene

Boring Number Sample Depth (ft)	LPB-11 7-9	LPB-12 5-7	LPB-12 7-9	LPB-13 5-7	LPB-13D 5-7	NYSDEC Recommended	NYSDEC Soil Cleanup	STARS TCLP Alternative
Sample Date Lab Idenification Number	12/20/2005 51200286	12/14/2005 51200226	12/14/2005 51200226	72/14/2005 51200226		Soil Cleanup Objectives	Objectives to Protect GW	Guidance Value
Volatile Organic Compounds (ug/Kg)								
Acetone	53.7	826	58.6	80.0	QN	200	110	SN
Methylene Chloride	2	93.6	9	Q	2	100	100	SN
Benzene	9	18.2	2	Q	9	09	09	14
Toluene	2	72.0	9	Q	2	1500	1500	100
1,3,5-Trimethylbenzene	9	2	2	Q	2	SN	SN	100
1,2,4-Trimethylbenzene	9	2	2	S	2	SN	SN	100
4-Isopropyltoluene	9	9	9	87.5	31.9	SN	SN	SN
Naphthalene	g	14.0	9	15.7	g	NS	SN	200
1,2,3-Trichlorobenzene	2	2	2	9	9	SZ	SN	NS

Boring Number Sample Depth (ft) Sample Date	LPB-13 7-9 12/14/2005	LPB-14 5-7 12/22/2005	LPB-14 7-9 12/22/2005	LPB-15 5-7 12/20/2005	LPB-15 7-9 12/20/2005	NYSDEC Recommended Soil Cleanup	NYSDEC Soil Cleanup Objectives to	STARS TCLP Alternative Guidance
Lab Idenification Number	51200226	51200336	51200336	51200286	51200286	Objectives	Protect GW	Value
Volatile Organic Compounds (ug/Kg)								
Acetone	124	37 JB	35 JB	149	85.8	200	110	SN
Methylene Chloride	Q	14 JB		2	2	100	100	SN
Benzene	9	2	g	2	2	09	09	14
Toluene	13.3	2	2	Q	2	1500	1500	100
1,3,5-Trimethylbenzene	2	2	Q	2	2	SN	SN	100
1,2,4-Trimethylbenzene	2	2	Ω	2	2	NS	NS	100
4-IsopropyItoluene	161	2	2	2	2	SN	SN	SN
Naphthalene	12.1	2	2	2	9.92	SN	SN	200
1,2,3-Trichlorobenzene	Ω	Q	Q	N Q	Q	NS	NS	NS

STARS TCLP Alternative Guidance Value		NS	SN	14	100	100	100	SN	200	NS
NYSDEC Soil Cleanup Objectives to Protect GW		110	100	09	1500	SN	SN	SN	SN	NS
NYSDEC Recommended Soil Cleanup Objectives		200	100	09	1500	NS	NS	NS	NS	NS
LPB-18 5-7 12/16/2005 51200274		QN	S	Q.	QN	2	Q	Q	S	ND
LPB-17 7-9 12/15/2005 51200226		Q	2	2	2	2	2	2	2	ND
LPB-17 5-7 12/15/2005 51200226		QN	2	2	2	2	2	2	2	2
LPB-16 7-9 12/15/2005 51200226		57.7	2	2	2	Q.	S	Ω	2	9
LPB-16 5-7 12/15/2005 51200226		9	9	9	9	2	9	g	12.2	9
Boring Number Sample Depth (ft) Sample Date Lab Idenification Number	Volatile Organic Compounds (ug/Kg)	Acetone	Methylene Chloride	Benzene	Toluene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	4-IsopropyItoluene	Naphthalene	1,2,3-Trichlorobenzene

Levine Property Site Investigation Soil Sample Results Table 1

Boring Number Sample Depth (ft) Sample Date Lab Idenffication Number	LPB-18 7-9 12/16/2005 51200274	LPB-19 5-7 12/22/2005 51200336	LPB-19 7-9 (2/22/2005 51200336	LPB-20 5-7 12/16/2005 51200274	LPB-20 7-9 12/16/2005 51200274	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to Protect GW	STARS TCLP Alternative Guidance Value
Volatile Organic Compounds (ug/Kg)								
Acetone	119	33 JB	47	Ð	Q.	200	110	NS
Methylene Chloride	Ω	19 JB	20	Ω	Q	100	100	SN
Benzene	Q.	2	2	S	S	09	09	14
Toluene	2	9	2	S	2	1500	1500	100
1,3,5-Trimethylbenzene	Q	9	Q	2	S	SN	NS	100
1,2,4-Trimethylbenzene	QN N	2	Q	Ω	Q	SN	NS	100
4-IsopropyItoluene	Ω	2	Q	S	Q	SN	NS	SN
Naphthalene	S	4 JB	9	Q	2	SN	SN	200
1,2,3-Trichlorobenzene	ND	4 JB	ND	ND	ΩN	NS	NS	NS

Bold - Indicates value that exceeded the NYSDEC Recommended Soil Cleanup Objectives
 Italic - Indicates value that exceeded the NYSDEC Soil Cleanup Objectives to Protect GW
 Shaded - Indicates value that exceeded the STARS TCLP Alternative Guidance Value
 ND - Non-detected above laboratory method detection limit
 NS - No Standard
 JB - Indicates an estimated value and the analyte was found in the blank
 J - Indicates an estimated value

Boring Number	LPB-1	LPB-1	LPB-1	LPB-1D 16.17	LPB-2	NYSDEC	NYSDEC	STARS TCLP
Sample Debth (rt)	12/19/2005	12/19/2005	12/19/2005	12/19/2005	12/8/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200274	51200274	51200274	51200274	51200142	Objectives	Protect GW	Value
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	QN	ΩN	ΩN	17000	r 099	13000	13000	200
2-Methyl Naphthalene	3500	Ð	Q	10000		36400	36400	SN
Acenaphthylene	9	Q	Q	2	7 09E	41000	41000	SN
Dimethyl Phthalate	2	Q	QN	2	9	2000	2000	SN
Acenapthene	Q	Q	Q	9200	S90 J	20000	00006	400
Dibenzofuran	2	2	Q	2	9	6200	6200	SN
Fluorene	2	Q	Q	4000	1500	20000	350000	1000
Phenanthrene	5400	2900	1800	0096	11000	20000	220000	1000
Anthracene	Q	9	9	3200	3200	20000	200000	1000
Carbazole	2	Q	Q	9	9	NS	SN	SN
Di-n-butylphthalate	9	g	Q	S	2	8100	8100	SN
Fluoranthene	5100	3600	2400	3000	11000	20000	1900000	1000
Pyrene	5500	4000	3200	6100	12000	20000	000599	1000
Benzo(a)anthracene	2400	1700	1300	2	5400	224	300	0.04
Chrysene	2400	1700	1300	2	5400	400	400	0.04
bis(2-Ethylhexyl)phthalate	2	2	Q	2	420 J	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	2	2	Q	Q	1900	3200	3200	0.04
Benzo(b)fluoranthene	2100	1800	1600	Q	7500	1100	1100	0.04
Benzo(k)fluoranthene	2100	1500	1400	9	5800	1100	1100	0.04
Benzo(a)pyrene	2200	1700	1500	2	6500	61	11000	0.04
Dibenzo(a,h)Anthracene	2	2	Q	2	630 J	14	165000000	1000
Benzo (g,h,i) perylene	QN	ND	QN	Q	3300	50000	800000	0.04

Boring Number Sample Depth (ft) Sample Date	LPB-2. 7-9	LPB-3 5-7	LPB-3 7-9	LPB-4 5-7	LPB-4 7-9	NYSDEC Recommended	NYSDEC	STARS TCLP	
Lab Idenification Number Semivolatile Organic Compounds (ug/Kg)	51200142	123/2005 51200142	12/9/2005 51200142	12/9/2005 51200142	12/9/2005 51200142	Soil Cleanup Objectives	Objectives to	Suidance Veloc	
Naphthalene	250 J	QN	CZ					Value	
Z-Wetnyl Naphthalene Acenaphthylene	ΩN	Q	2	2 2	9 2	13000	13000	200	_
Dimethyl Phthalata	240 J	S	9	2	2 5	36400	36400	SN	
Acenaphene	2	2	2	2	2 5	41000	41000	SN	
Dibenzofuran	000	2	230 J	380	110	2000	2000	SN	
Fluorene	- - - - - -	2	2	2	52	6200	0000	400	
Phenanthrene	390 J	- - - -	260 J	260 J	110	50000	350000	NS 2006	
Anthracene	1000	2 2 2 3 4	2700	3300	1100	20000	220000	1000	
Carbazole	QV	2	2 5	. 04/ 	270	20000	700000	1000	
UI-n-butyiphthalate	9	2	2 5	2 2	2 5	SN	SN	SN	
Fiuoranmene	6200	f 89	3600	3800	O 904	8100	8100	NS	
Benzo(a)authorosa	0069	F 08	3600	4100	200	20000	1900000	1000	
Chrysene	3700	40 J	1600	1500	0001	50000	665000	1000	
bis(2-Ethylhexyl)phthalate	3100	ر 40	1600	1500	720	400	300	40.0	
Indeno (1.2.3-cd)Pvrene	530 J	87 J	260 J	Q.	200	2000	400	0.04	
Benzo(b)fluoranthene	1600	2	1200	970	450	3200	435000	S	
Benzo(k)flioranthene	4000	46 J	2200	1900	1400	3200	3200	0.04	
Benzo(a) bytean	4000	Q	1700	1400	200	1100	1100	0.04	
Dihanzo(a h)\without	4000	58 J	2200	1800	000	0011	1100	0.04	
Benzo (a h i) pendono	2	Q.	9	CN	170	10	11000	0.04	
Solicity payiette	2400	9	1200	580	730	50000	165000000	1000	
							20000	0.04	

Table 2
Levine Property Site Investigation
Soil Sample Results

Boring Number	LPB-5 5-7	LPB-5 7-9	LPB-6 5-7	LPB-6 7-9	LPB-6 11-13	NYSDEC Recommended	NYSDEC Soil Cleanup	STARS TCLP Alternative
Sample Date	12/12/2005	12/12/2005	12/21/2005	12/21/2005	12/21/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200204	51200204	51200286	51200286	51200286	Objectives	Protect GW	Value
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	QN	67 J	ΩN	QN	QN	13000	13000	200
2-Methyl Naphthalene	2	2	2	Q	2	36400	36400	SN
Acenaphthylene	Ω	Q	Q	Q	2	41000	41000	SN
Dimethyl Phthalate	g	Q	Ω	Q	2	2000	2000	SN
Acenapthene	41 J	40 J	Q	Q	2	20000	00006	400
Dibenzofuran	2	Q	Q	Q	2	6200	6200	SN
Fluorene	2	52 J	9	2	Ð	20000	350000	1000
Phenanthrene	310	450	2100	15000	2	20000	220000	1000
Anthracene	81 J	r 66	9	4600	2	20000	200000	1000
Carbazole	2	S	9	Q	2	SN	SN	SN
Di-n-butylphthalate	47 J	49 J	9	Q	2	8100	8100	SN
Fluoranthene	330	430	2600	10000	2600	20000	1900000	1000
Pyrene	330	430	5800	22000	10000	20000	000299	1000
Benzo(a)anthracene	170 J	J. 071	9	4800	5500	224	300	0.04
Chrysene	200	180	Q	4600	5300	400	400	0.04
bis(2-Ethylhexyl)phthalate	L 68	920	Q	9	2	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	2	140	S	2	2	3200	3200	0.04
Benzo(b)fluoranthene	230	220	Q	Q	7900	1100	1100	0.04
Benzo(k)fluoranthene	100	160 J	Q	Ω	7400	1100	1100	0.04
Benzo(a)pyrene	180 J	210	2	4300	8400	19	11000	0.04
Dibenzo(a,h)Anthracene	9	9	2	2	9	14	165000000	1000
Benzo (g,h,i) perylene	Q	ر 100	Q	Q	10000	20000	800000	0.04

Boring Number	LPB-7	LPB-7	LPB-8	LPB-8	LPB-8	NYSDEC	NYSDEC	STARS TCLP
Sample Date	12/13/2005	12/13/2005	12/9/2005	12/12/2005	12/12/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200204	51200204	51200142	51200204	51200204	Objectives	Protect GW	Value
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	ΩN	QN	QN	QN N	Q	13000	13000	200
2-Methyl Naphthalene	Q	Q	2	2	9	36400	36400	SN
Acenaphthylene	Q	2	2	46 J	2	41000	41000	SN
Dimethyl Phthalate	S	2	2	2	9	2000	2000	SN
Acenapthene	S N	9	610 J	2	Q	20000	00006	400
Dibenzofuran	2	2	9	2	2	6200	6200	SN
Fluorene	2	2	410 J	2	2	20000	350000	1000
Phenanthrene	110	51 J	1500	2	2	20000	220000	1000
Anthracene	<u>Q</u>	Q	200 J	Q	9	20000	700000	1000
Carbazole	2	2	2	2	9	SN	SN	SN
Di-n-buty/phthalate	2	2	2	2	9	8100	8100	SN
Fluoranthene	160	59 J	3000	2	460 J	20000	1900000	1000
Pyrene	170 J	64	4100	2	750	20000	000599	1000
Benzo(a)anthracene	f 66	9	1500	2	220 J	224	300	0.04
Chrysene	r 66	2	1600 J	2	230 J	400	400	0.04
bis(2-Ethylhexyl)phthalate	270	420	410 J	2	310 J	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	170 J	2	1600 J	2	9	3200	3200	0.04
Benzo(b)fluoranthene	140 J	9	1900 J	2	440	1100	1100	0.04
Benzo(k)fluoranthene	75 کا	2	1300	2	9	1100	1100	0.04
Benzo(a)pyrene	150	57 J	1900	2	370 J	61	11000	0.04
Dibenzo(a,h)Anthracene	9	2	Ð	2	9	4	165000000	1000
Benzo (g,h,i) perylene	Ω	Q	f 002	Q	330 J	50000	800000	0.04

Table 2
Levine Property Site Investigation
Soil Sample Results

Boring Number	6-847	LPB-9	LPB-10	LPB-10	LPB-11	NYSDEC	NYSDEC	STARSTCLP
Sample Depth (ft) Sample Date	5-7	7-9	5-7 12/16/2005	12/16/2005	5-7	Recommended Soil Cleanup	Soil Cleanup Objectives to	Alternative Guidance
Lab Idenification Number	51200336	51200336	51200274	51200274	51200286	Objectives	Protect GW	Value
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	Q.	QN	QN	ΩN	Q	13000	13000	200
2-Methyl Naphthalene	2	Q	9	Q	2	36400	36400	SN
Acenaphthylene	2	2	2	2	2	41000	41000	SN
Dimethyl Phthalate	2	2	Q	QN	2	2000	2000	SN
Acenapthene	2	2	Q	Ω	2	20000	00006	400
Dibenzofuran	9	2	2	Q	2	6200	6200	SN
Fluorene	9	9	Q.	Q	2	20000	350000	1000
Phenanthrene	2	Q	290	320	930	20000	220000	1000
Anthracene	Q	Q	2	Q	9	20000	200000	1000
Carbazole	2	2	2	Q	2	SN	SN	SN
Di-n-butylphthalate	9	2	2	Ω	2	8100	8100	SN
Fluoranthene	2	2	360	410	1100	20000	1900000	1000
Pyrene	2	2	430	490	1400	20000	000599	1000
Benzo(a)anthracene	2	<u>Q</u>	220	260	570	224	300	0.04
Chrysene	Q	9	210	260	540	400	400	0.04
bis(2-Ethylhexyl)phthalate	2	9	2	430	2	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	2	2	2	Q	Q.	3200	3200	0.04
Benzo(b)fluoranthene	S	2	240	270	550	1100	1100	0.04
Benzo(k)fluoranthene	2	Q	260	280	470	1100	1100	0.04
Benzo(a)pyrene	2	9	280	290	520	61	11000	0.04
Dibenzo(a,h)Anthracene	2	Q	Q	Q	9	4	165000000	1000
Benzo (g,h,i) perylene	ND	ND	ND	QN	ND	50000	800000	0.04

Table 2
Levine Property Site Investigation
Soil Sample Results

Boring Number	LPB-11	LPB-12	LPB-12	LPB-13	LPB-13D	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	7-9	5-7	7-9	5-7	5.7	Recommended	Soil Cleanup	Alternative
Sample Date	12/20/2005	12/14/2005	12/14/2005	12/14/2005	12/14/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200286	51200226	51200226	51200226	51200226	Objectives	Protect GW	Value
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	Ð	Q	Ð	9	Q	13000	13000	200
2-Methyl Naphthalene	9	g	2	Ð	9	36400	36400	SN
Acenaphthylene	9	2	2	2	2	41000	41000	SN
Dimethyl Phthalate	9	Q	9	9	2	2000	2000	NS
Acenapthene	190	9	2	9	1200	20000	00006	400
Dibenzofuran	2	9	9	2	2	6200	6200	SN
Fluorene	9	9	2	g	1200	20000	320000	1000
Phenanthrene	1300	9	Q	5800	12000	20000	220000	1000
Anthracene	360	9	2	Q	3000	20000	200000	1000
Carbazole	2	9	9	9	1600	NS	NS	SN
Di-n-butylphthalate	2	9	Q	9	9	8100	8100	NS
Fluoranthene	1200	2	g	0009	15000	20000	1900000	1000
Pyrene	1500	2	g	5500	17000	20000	000299	1000
Benzo(a)anthracene	009	2	g	2800	7400	224	300	0.04
Chrysene	280	9	Q	2800	7400	400	400	0.04
bis(2-Ethylhexyl)phthalate	210	S	2	9	9	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	2	Q	Q	9	2	3200	3200	0.04
Benzo(b)fluoranthene	520	Q	Q	2500	8700	1100	1100	0.04
Benzo(k)fluoranthene	510	Q	9	9	0069	1100	1100	0.04
Benzo(a)pyrene	480	Q	Q	2300	7400	61	11000	0.04
Dibenzo(a,h)Anthracene	9	Q	Q	9	9	14	165000000	1000
Benzo (g,h,i) perylene	ND	Q	Q	Q	1400	20000	800000	0.04

Pg. 11 of 28

Boring Number	LPB-13	LPB-14	LPB-14	LPB-15	LPB-15	NYSDEC	NYSDEC	STARSTCLP
Sample Depth (ft)	7-9	5-7	7-9	5-7	7-9	Recommended	Soil Cleanup	Alternative
Sample Date	12/14/2005	12/22/2005	12/22/2005	12/20/2005	12/20/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200226	51200336	51200336	51200286	51200286	Objectives	Protect GW	Value
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	QN	QN	QN	QN	190	13000	13000	200
2-Methyl Naphthalene	9	2	2	Q	290	36400	36400	SN
Acenaphthylene	S	S	2	2	Q	41000	41000	SN
Dimethyl Phthalate	Ω	2	S	9	8	2000	2000	SN
Acenapthene	2	9	2	Q	380	20000	00006	400
Dibenzofuran	9	g	2	2	2	6200	6200	SN
Fluorene	2	2	2	2	220	20000	350000	1000
Phenanthrene	3600	9	2	2600	780	20000	220000	1000
Anthracene	Q	2	2	2	Q	20000	200000	1000
Carbazole	9	2	2	2	2	NS	SN	SN
Di-n-butylphthalate	2	9	2	2	9	8100	8100	SN
Fluoranthene	4900	2	9	2400	650	20000	1900000	1000
Pyrene	4600	2	2	2800	1600	20000	965000	1000
Benzo(a)anthracene	2200	2	2	2	340	224	300	0.04
Chrysene	2200	2	2	2	340	400	400	0.04
bis(2-Ethylhexyl)phthalate	Q	2	2	2	530	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	2	2	2	2	2	3200	3200	0.04
Benzo(b)fluoranthene	2000	2	2	2	310	1100	1100	0.04
Benzo(k)fluoranthene	2	2	2	2	230	1100	1100	0.04
Benzo(a)pyrene	2000	2	2	2	320	61	11000	0.04
Dibenzo(a,h)Anthracene	9	2	2	2	2	14	165000000	1000
Benzo (g,h,i) perylene	ND	ND	ND	ND	270	50000	800000	0.04

Boring Number	LPB-16	LPB-16	LPB-17	LPB-17	LPB-18	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	5-7	7-9	5-7	6-2	2-2	Recommended	Soil Cleanup	Alternative
Sample Date	12/15/2005	12/15/2005	12/15/2005	12/15/2005	12/16/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200226	51200226	51200226	51200226	51200274	Objectives	Protect GW	Value
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	QN	200	QΝ	QN	QN	13000	13000	200
2-Methyl Naphthalene	Ω N	S	2	S	9	36400	36400	SN
Acenaphthylene	Q	2	2	2	2	41000	41000	SN
Dimethyl Phthalate	2	9	320	2	2	2000	2000	SN
Acenapthene	2	240	9	S	2	20000	00006	400
Dibenzofuran	S	Q	2	Q	2	6200	6200	SN
Fluorene	Q	230	2	S	9	20000	350000	1000
Phenanthrene	1500	2200	1200	Q	240	20000	220000	1000
Anthracene	360	510	240	2	9	20000	700000	1000
Carbazole	N	340	2	Q.	2	SN	NS	NS
Di-n-butylphthalate	2	Q	2	Q	2	8100	8100	SN
Fluoranthene	2000	2600	1500	S	240	20000	1900000	1000
Pyrene	2000	2900	1500	9	300	20000	665000	1000
Benzo(a)anthracene	930	1400	710	S	9	224	300	0.04
Chrysene	940	1400	750	Q.	Q	400	400	0.04
bis(2-Ethylhexyl)phthalate	230	270	290	Q.	Q	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	2	Q.	2	Q	g	3200	3200	0.04
Benzo(b)fluoranthene	910	1400	830	Q	Q.	1100	1100	0.04
Benzo(k)fluoranthene	810	1400	069	Q	9	1100	1100	0.04
Benzo(a)pyrene	900	1300	099	2	2	61	11000	0.04
Dibenzo(a,h)Anthracene	Q	9	9	S	2	14	165000000	1000
Benzo (g,h,i) perylene	490	520	280	Q	Q	20000	800000	0.04

Levine Property Site Investigation Soil Sample Results Table 2

Boring Number Sample Depth (ff)	LPB-18 7-9	LPB-19 5-7	LPB-19 7-9	LPB-20 5-7	LPB-20 7-9	NYSDEC Recommended	NYSDEC Soil Cleanup	STARS TCLP Alternative
Sample Date Lab Idenification Number	12/16/2005 51200274	12/22/2005 51200336	12/22/2005 51200336	12/16/2005 51200274	12/16/2005	Soil Cleanup Objectives	Objectives to Protect GW	Guidance
Semivolatile Organic Compounds (ug/Kg)								
Naphthalene	QN	QN	QN	QN	QN	13000	13000	200
2-Methyl Naphthalene	2	Q	Q.	QN	2	36400	36400	SN
Acenaphthylene	2	Ω	Q	Q	2	41000	41000	SN
Dimethyl Phthalate	2	Q	Q	Q	2	2000	2000	SN
Acenapthene	2	2	2	Ω	9	20000	00006	400
Dibenzofuran	2	Q.	2	Ω	2	6200	6200	SN
Fluorene	2	9	2	Ω	2	20000	350000	1000
Phenanthrene	9	9	2	2	2	20000	220000	1000
Anthracene	2	Q	Q	Q	2	20000	700000	1000
Carbazole	2	Q.	2	Q.	9	SN	NS	SN
Di-n-butylphthalate	2	2	8	Q	2	8100	8100	SN
Fluoranthene	2	26 J	2	Ω	9	20000	1900000	1000
Pyrene	2	54 J	2	2	2	20000	000599	1000
Benzo(a)anthracene	2	2	2	Q	2	224	300	0.04
Chrysene	2	2	2	2	2	400	400	0.04
bis(2-Ethylhexyl)phthalate	9	2	Q.	Q	2	20000	435000	SN
Indeno (1,2,3-cd)Pyrene	2	9	Q.	Q	2	3200	3200	0.04
Benzo(b)fluoranthene	9	Q.	2	Q	2	1100	1100	0.04
Benzo(k)fluoranthene	9	2	Q.	Q	2	1100	1100	0.04
Benzo(a)pyrene	9	Q.	2	2	2	61	11000	0.04
Dibenzo(a,h)Anthracene	9	Q	Q.	Q	2	14	165000000	1000
Benzo (g,h,i) perylene	Q	QN	ND	ND	QN	20000	800000	0.04
				!				

- Notes:

 (1) Bold Indicates value that exceeded the NYSDEC Recommended Soil Cleanup Objectives
 (2) Italic Indicates value that exceeded the NYSDEC Soil Cleanup Objectives to Protect GW
 (3) Shaded Indicates value that exceeded the STARS TCLP Alternative Guidance Value
 (4) ND Non-detected above laboratory method detection limit
 (5) NS No Standard
 (6) JB Indicates an estimated value and the analyte was found in the blank
 (7) J Indicates an estimated value

Boring Number	LPB-1	LPB-1	LPB-1	LPB-1D	LPB-2	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	5-7	7-9	15-17	15-17	5-7	Recommended	Soil Cleanu	
Sample Date	12/19/2005	12/19/2005	12/19/2005	12/19/2005	12/8/2005	Soil Cleanup	Objectives to	o Guidance
Lab Idenification Number	51200274	51200274	51200274	51200274	51200142	Objectives	Protect GW	
Pesticides (ug/Kg)								
Dieldrin	P	9	R	S	2	44	100	NS

	LPB-2	LPB-3	LPB-3	LF84	LPB-4	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	7-9	5-7	7-9	5-7	7-9	Recommended	Soil Cleanup	Alternative
Sample Date	12/8/2005	12/9/2005	12/9/2005	12/9/2005	12/9/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200142	51200142	51200142	51200142	51200142	Objectives	Protect GW	Value
Pesticides (ug/Kg)								
Dieldrin	Q	QN	QN	QN	ΩN	44	100	SN

Sample Depth (ft) 5-7 7-9 Sample Date 12/12/2005 12/12/2005 Lab identification Number 51200204 51200204	-9 5-7 2/2005 12/21/2005	7-9	11-13	Recommended Soil Cleanup	Soil Cleanup Objectives to	Alternative Guidance
12/1	2/2005 12/21/2005	12/21/2005	12/21/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number 51200204 51200204 5						The second secon
	30204 51200286	51200286	51200286	Objectives	Protect GW	Value
Pesticides (ug/Kg)						
Dieldrin	QN Q1	ND	QN	44	100	SN

Boring Number	LPB-7	LPB-7	LPB-8	LPB-8	LPB-8	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	5-7	7-9	2.3	7-9	11-13	Recommended	Soil Cleanup	Alternative
Sample Date	12/13/2005	12/13/2005	12/9/2005	12/12/2005	12/12/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200204	51200204	51200142	51200204	51200204	Objectives	Protect GW	Value
Pesticides (ug/Kg)								
Dieldrin	ΩN	QN	QN	N	Q	44	100	NS

Boring Number	LPB-9	LPB-9	LPB-10	LPB-10	LPB-11	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	5-7	7-9	5-7	7-9	5-7	Recommended	Soil Cleanup	Alternative
Sample Date	12/22/2005	12/22/2005	12/16/2005	12/16/2005	12/20/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200336	51200336	51200274	51200274	51200286	Objectives	Protect GW	Value
Pesticides (ug/Kg)								
Dieldrin	QN	QN	QN	9	7.26	44	100	NS

Levine Property Site Investigation Soil Sample Results Table 3

STARS TCLP Alternative Guidance Value		SN
NYSDEC Soil Cleanup Objectives to Protect GW		100
NYSDEC Recommended Soil Cleanup Objectives		44
LPB-13D 5-7 12/14/2005 51200226		QN
LPB-13 5-7 12/14/2005 51200226		QN
LPB-12 7-9 12/14/2005 51200226		QN
LPB-12 5-7 12/14/2005 51200226		QN
LPB-11 7-9 12/20/2005 51200286		QN
a Number le Depth (ft) le Date le Date le Date le Date le nification Number	ides (ug/Kg)	u
Borin Samp Samp Lab le	Pesti	Dieldr

Boring Number	LPB-13	LPB-14	LPB-14	LPB-15	LPB-15	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	7-9	5-7	7.9	5-7	7-9	Recommended	Soil Cleanup	Alternative
Sample Date	12/14/2005	12/22/2005	12/22/2005	12/20/2005	12/20/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200226	51200336	51200336	51200286	51200286	Objectives	Protect GW	Value
Pesticides (ug/Kg)								
Dieldrin	ND	ND	ND	ND	QN.	44	100	NS

Boring Number	LPB-16	LPB-16	LPB-17	LPB-17	LPB-18	NYSDEC	NYSDEC	STARS TCLP
Sample Depth (ft)	5-7	7-9	5-7	7-9	5-7	Recommended	Soil Cleanup	Alternative
Sample Date	12/15/2005	12/15/2005	12/15/2005	12/15/2005	12/16/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200226	51200226	51200226	51200226	51200274	Objectives	Protect GW	Value
Pesticides (ug/Kg)								
Dieldrin	QN	QN	QN	QN	Q.	44	100	NS

LPB-19 LPB-20 LPB-20 NYSDEC NYSDEC STARS TCLP 5-7 7-9 5-7 7-9 Recommended Soil Cleanup Alternative 5 12/22/2005 12/16/2005 12/16/2005 12/16/2005 Soil Cleanup Alternative 5 12/00336 512/0274 512/0274 Objectives Protect GW Value ND ND ND ND NS NS
9 LPB-20 LPB-20 NYSDEC NYSDEC S 5-7 7-9 Recommended Soil Cleanup A 36 51200274 51200274 Objectives Protect GW ND ND 44 100
LPB-20
NYSDEC NYSDEC S Recommended Soil Cleanup Soil Cleanup Objectives to Profect GW 4 Objectives 100
NYSDEC Soil Cleanup Cobjectives to Protect GW
<u>σ</u>
STARS TCLP Alternative Guidance Value

- Notes:
 (1) Bold Indicates value that exceeded the NYSDEC Recommended Soil Cleanup Objectives
 (2) Italic Indicates value that exceeded the NYSDEC Soil Cleanup Objectives to Protect GW
 (3) Shaded Indicates value that exceeded the STARS TCLP Alternative Guidance Value
 (4) ND Non-detected above laboratory method detection limit
 (5) NS No Standard
 (6) JB Indicates an estimated value and the analyte was found in the blank
 (7) J Indicates an estimated value

Boring Number	LPB-1	LPB-1	LPB-1	LPB-1D	LPB-2	NYSDEC	NYSDEC	STARS TOLP
Sample Depth (ft)	5-7	7-9	15-17	15-17	5-7	Recommended	Soil Cleanup	Alternative
Sample Date	12/19/2005	12/19/2005	12/19/2005	12/19/2005	12/8/2005	Soil Cleanup	Objectives to	Guidance
Lab Idenification Number	51200274	51200274	51200274	51200274	51200142	Objectives	Protect GW	Value
Polychlorinated Biphenyls (PCBs) (ug/Kg)								
PCB-1242	QN	ΩN	QN	QN	Q	10000	10000	SN
PCB-1260	Ð	S	Q	Q	2	10000	10000	SN
PCB-1262	2	2	<u>Q</u>	Q	890	10000	10000	SN

Boring Number Sample Depth (ft) Sample Date Lab Idenification Number	LPB-2 7-9 12/8/2005 51200142	LPB-3 5-7 12/9/2005 51200142	LPB-3 7-9 12/9/2005 51200142	LPB-4 5-7 12/9/2005 51200142	LPB-4 7-9 12/9/2005 51200142	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to Protect GW	STARS TCLP Alternative Guidance Value
Polychlorinated Biphenyls (PCBs) (ug/Kg)								
PCB-1242	ΩN	Q	2	Q.	2	10000	10000	SN
PCB-1260	Q	2	Q.	9	9	10000	10000	SN
PCB-1262	1400	Ð	2	Q	S	10000	10000	NS

Boring Number Sample Depth (ft) Sample Date Lab Idenification Number	LPB-5 5-7 12/12/2005 51200204	LPB-5 7-9 12/12/2005 51200204	LPB-6 5-7 12/21/2005 51200286	LPB-6 7-9 12/21/2005 51200286	LPB-6 11-13 12/21/2005 51200286	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to Protect GW	STARS TCLP Alternative Guidance Value
Polychlorinated Biphenyls (PCBs) (ug/Kg)								
PCB-1242	QN	QN	QN	QN	QN	10000	10000	NS
PCB-1260	2	9	2	2	2	10000	10000	SN
PCB-1262	ND	Q	2	Q	2	10000	10000	NS

Boring Number Sample Depth (ft) Sample Date Lab Idenification Number	LPB-7 5-7 12/13/2005 51200204	LPB-7 7-9 12/13/2005 51200204	LPB-8 2-3 12/9/2005 51200142	LPB-8 7-9 12/12/2005 51200204	LPB-8 11-13 12/12/2005 51200204	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to Protect GW	STARS TCLP Alternative Guidance Value
Polychlorinated Biphenyls (PCBs) (ug/Kg)								
PCB-1242	QN	QN	QN	QN	QN	10000	10000	SN
PCB-1260	Q	2	Q	2	2	10000	10000	SN
PCB-1262	2	9	2	2	2	10000	10000	SN

Boring Number Sample Depth (ft) Sample Date Lab Idenification Number	LPB-9 5-7 12/22/2005 51200336	LPB-9 7-9 12/22/2005 51200336	LPB-10 5-7 12/16/2005 51200274	LPB-10 7-9 12/16/2005 51200274	LPB-11 5-7 12/20/2005 51200286	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to Protect GW	STARS TCLP Alternative Guidance Value
Polychlorinated Biphenyls (PCBs) (ug/Kg)								
PCB-1242	Q	QN	QΝ	QN	QN	10000	10000	SN
PCB-1260	2	QN	2	Q	2	10000	10000	SN
PCB-1262	2	2	9	9	2	10000	10000	SN

STARS TCLP Alternative Guidance Value		SN	SN	NS
NYSDEC Soil Cleanup Objectives to Protect GW		10000	10000	10000
NYSDEC Recommended Soil Cleanup Objectives		10000	10000	10000
LPB-13D 5-7 12/14/2005 51200226		ΩN	2	41
LPB-13 5-7 12/14/2005 51200226		QN	2	340
LPB-12 7-9 12/14/2005 51200226		Q	Q	ON.
LPB-12 5-7 12/14/2005 51200226		ΩN	Q	Q
LPB-11 7-9 12/20/2005 51200286		QN	Q	QN
Boring Number Sample Depth (ff) Sample Date Lab Idenification Number	Polychlorinated Biphenyls (PCBs) (ug/Kg)	PCB-1242	PCB-1260	PCB-1262

Boring Number Sample Depth (ft) Sample Date Lab idenification Number	LPB-13 7-9 12/14/2005 51200226	LPB-14 5-7 12/22/2005 51200336	LPB-14 7 - 9 12/22/2005 51200336	LPB-15 5-7 12/20/2005 51200286	LPB-15 7-9 12/20/2005 51200286	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to Protect GW	STARS TCLP Alternative Guidance Value
Polychlorinated Biphenyls (PCBs) (ug/Kg)								
PCB-1242	QN	Q	Q	457	2	10000	10000	SN
PCB-1260	Q	2	S	86.3	2	10000	10000	SN
PCB-1262	ND	QN	ND	ND	QN	10000	10000	NS

Boring Number (Sample Depth (R) Sample Date	LPB-16 5-7 12/15/2005	LPB-16 7-9 12/15/2005	LPB-17 5-7 12/15/2005	LPB-17 7-9 12/15/2005	LPB-18 5-7 12/16/2005	NYSDEC Recommended Soil Cleanup	NYSDEC Soil Cleanup Objectives to	STARS TCLP Alternative Guidance
Lab Idenification Number	51200226	51200226	51200226	51200226	51200274	Objectives	Protect GW	Value
Polychlorinated Biphenyls (PCBs) (ug/Kg)								
PCB-1242	QN	QN	2	Q	Q	10000	10000	SN
PCB-1260	2	2	2	Q	Q	10000	10000	SN
PCB-1262	ΩN	ND	Q	Q	ND	10000	10000	NS

Levine Property Site Investigation Soil Sample Results Table 4

LPB-18 LPB-19 LPB-19 7-9 5-7 7-9 12/16/2005 12/22/2005 51200274 51200336	LPB-20 5-7 12/16/2005 51200274	LPB-20 7-9 12/16/2005 51200274	NYSDEC Recommended Soil Cleanup Objectives	NYSDEC Soil Cleanup Objectives to	STARS TCLP Alternative
7.9 5-7 7-9 12/16/2005 12/22/2005 51200274 51200336 51200336	5-7 12/16/2005 51200274	7-9 12/16/2005 51200274	月元 5	Soil Cleanup Objectives to	Alternative
12/16/2005 12/22/2005 12/22/2005 51200274 51200336 51200336	12/16/2005 51200274	12/16/2005 51200274	Soil Cleanup.	Objectives to	
51200274 51200336 51200336	51200274	51200274	Objectives		Guidance
		CONTROL OF THE PROPERTY OF THE	32130000	Protect GW	Value
QN QN QN	Q	9	10000	10000	SN
QN QN QN	9	2	10000	10000	SN
ON ON ON	QN	N	10000	10000	NS
ΩΩ	2 g	2 Z	2 2	10000 10000 10000	

Notes:

(1) Bold - Indicates value that exceeded the NYSDEC Recommended Soil Cleanup Objectives
(2) Italic - Indicates value that exceeded the NYSDEC Soil Cleanup Objectives to Protect GW
(3) Shaded - Indicates value that exceeded the STARS TCLP Alternative Guidance Value
(4) ND - Non-detected above laboratory method detection limit
(5) NS - No Standard
(6) JB - Indicates an estimated value and the analyte was found in the blank
(7) J - Indicates an estimated value

Table 5
Levine Property Site Investigation
Soil Sample Results

Boring Number Sample Depth (ff)	LPB-1 5-7	LPB-1 7-9		LPB-1 15-17	LPB-1D	-10 17	LPB-2 5-7		NYSDEC Recommended	NYSDEC Eastern USA
Sample Date	12/19/2005	12/19/2005		12/19/2005	12/19/	2005	12/8/2005		Soil Cleanup	Background
Lab Identification Number	51200274	51200274		51200274	51200274	1274	51200142		Objective	Criteria
TAL Metals (mg/Kg)										
Antimony	QN	QV		QN	9	M2	Q		NS	SN
Aluminum	6040	6580		4270	3550		5220		SN	33000
Arsenic	7.37	8.62		60.9	8.77		7.52		7.5	3 - 12
Barium	165	192		134	127		170		NS	15 - 600
Beryllium	S	Q		Q	2		2		1.6	0 - 1.75
Cadmium	0.629	1.04		0.785	0.790		0.762		_	0.1 - 1
Chromium	15.5	26.0		11.0	15.0		17.4		10	1.5 - 40
Calcium	16600	25100		17900	13900	ž	•		NS	130 - 35000
Iron	15400 B1		 B1	12100 B1	13800	B1 MHA	15300	B1	NS	2000 - 550000
Cobalt	6.69	5.85		g	2		5.38		NS	2.5 - 60
Copper	225	73.1		47.2	49.6		175		25	1 - 50
Lead	181	231		155	160	M1 M2	270		200	200
Magnesium	4700	3530		3840	3030		4790		NS	100 - 5000
Manganese	191	270		206	128	M T	230		NS	20 - 20000
Mercury	1.62	1.07		0.510	0.574		1.26		0.1	0.001 - 0.2
Nickel	16.8	19.2		12.1	12.4		17.1		13	0.5 - 25
Vanadium	27.1	23.9		17.2	20.3		21.5		NS	1 - 300
Selenium	<2.28 *	<2.23	*	<2.30 *	<2.47	*	<2.07	*	2	0.1 - 3.9
Potassium	820	826		537	531	••••	1080		NS	8500 - 43000
Silver	0.774	0.858		2	2		9		NS	SN
Sodium	303	264		926	1120		261		NS	0008 - 0009
Thallium	Q	Q		Q	2		2		NS	SN
Zinc	358	442		406	526	MHA	312		20	9 - 50

Boring Number Sample Deoth (ft)	LPB-2 7-9	LPB-3		LPB-3 7-9	LPB-4 5-7		LPB-4	NYSDEC Recommended	NYSDEC Eastern USA
Sample Date	12/8/2005	12/9/2005		12/9/2005	12/9/200	S	12/9/2005	Soil Cleanup	Background
Lab Identification Number	51200142	51200142	-	51200142	5120014	2	51200142	Objective	Criteria
TAL Metals (mg/Kg)									
Antimony	QN	QN		ND M2	ΩN		QN	NS	SN
Aluminum	5200	7190			3270		1260	NS	33000
Arsenic	10.8	7.03	-	22.8	9.62		11.2	7.5	3 - 12
Barium	183	13.5		176	159		37.7	SN	15 - 600
Beryllium	QN	S		0.438	Ω		Q	1.6	0 - 1.75
Cadmium	0.825	Q.		0.770	1.00		2	-	0.1-1
Chromium	17.6	11.2		20.5	11.6		19.2	10	1.5 - 40
Calcium	23700	431		14800	12700		4870	SN	130 - 35000
Iron	14800 B1			18700 B1 MHA	15800	B1	12100 B1	NS	2000 - 550000
Cobalt	5.26	10.2		7.28	6.24		2	SN	2.5 - 60
Copper	165	28.6		139	84.8		79.0	25	1 - 50
Lead	288	41.0		309	142		63.0	200	200
Magnesium	5630	2360		2810	4320	_	1570	SN	100 - 5000
Manganese	228	283		232 MHA	331		147	SN	20 - 20000
Mercury	1.44	0.314		0.432	0.709		0.216	0.1	0.001 - 0.2
Nickel	17.7	14.8		23.7	16.4		8.22	13	0.5 - 25
Vanadium	20.7	15.5		19.9	16.7		15.2	SN	1 - 300
Selenium	<2.07	<2.15	*	<2.10 *	<2.29	*	<2.38	2	0.1 - 3.9
Potassium	755	664		633	445		230	SN	8500 - 43000
Silver	Q	Q		0.546	2		2	SN	SN
Sodium	269	1140	-	244	g		693	SN	0008 - 0009
Thallium	Q	Q	_	S	Q	-	Ω	SN	NS
Zinc	363	93.1		615	722		85.1	20	9 - 50

Table 5
Levine Property Site Investigation
Soil Sample Results

Boring Number	LPB-5		LPB-5	FPB-6	LPB-6		LPB-6	NYSDEC	NYSDEC
Sample Depth (ft)	5-7		7-9	5-7	7-9		11-13	Recommended	Eastern USA
Sample Date	12/12/200	ıo	12/12/2005	12/21/2005	12/21/20	05	12/21/2005	Soil Cleanup	Background
Lab Identification Number	51200204		51200204	51200286	51200286	36	51200286	Objective	Criteria
TAL Metals (mg/Kg)								:	
Antimony	3.92		QN	QN.	QV		QN	SN	NS
Aluminum	2760		3020	3510	1370		2480	SN	33000
Arsenic	257		271	6.51	3.83		12.5	7.5	3 - 12
Barium	82.1		68.7	104	33.2		53.9	SN	15 - 600
Beryllium	Q.		S	2	2		Q	1.6	0 - 1.75
Cadmium	2.23		0.607	0.570	Q		0.510	_	0.1 - 1
Chromium	11.0		11.6	11.9	6.42		10.1	10	1.5 - 40
Calcium	5050		14600	9020	2420		3370	SN	130 - 35000
Iron	37400		11900	12800	2780	<u>В</u>	8110 B1	SN	2000 - 550000
Cobalt	11.6		4.81	2	2		2	SN	2.5 - 60
Copper	1270		216	61.7	46.4		57.2	25	1 - 50
Lead	1670		146	145	81.0		121	200	200
Magnesium	1430		3260	1420	512		711	SN	100 - 2000
Manganese	323		272	223	40.8		160	SN	20 - 20000
Mercury		MHA	0.298	0.412	1.47		0.850	0.1	0.001 - 0.2
Nickel	26.6		14.6	11.9	5.58		13.5	13	0.5 - 25
Vanadium	16.0		11.1	15.0	5.98		12.4	SN	1 - 300
Selenium	<2.06	*	Q.	<2.20 *	<2.05	*	<2.24 *	2	0.1 - 3.9
Potassium	588		708	441	218		339	SN	8500 - 43000
Silver	1.08	-	0.817	g	9		9	SN	NS
Sodium	180		177	178	829		1110	SN	0008 - 0009
Thallium	<u>Q</u>		Q	Q	2		2.48	SN	SN
Zinc	1200		245	156	38.0		198	20	9 - 20

Table 5
Levine Property Site Investigation
Soil Sample Results

Boring Number Sample Depth (ft)	LPB-7 5-7	LPB-7 7-9	LPB-8 2-3	LPB-8 7-9	LPB-8 11-13	NYSDEC Recommended	NYSDEC Eastern USA
Sample Date	12/13/2005	12/13/2005	12/9/2005	12/12/2005	12/12/2005	Soil Cleanup	Background
Lab Identification Number	51200204	51200204	51200142	51200204	51200204	Objective	Criteria
TAL Metals (mg/Kg)							
Antimony	2	9	9	2	9	SN	SN
Aluminum	2420	1080	4890	421	927	SN	33000
Arsenic	29.3	49.2	6.77	3.11	5.50	7.5	3 - 12
Barium	6.06	45.8	128	2.00	15.9	SN	15 - 600
Beryllium	2	Q	Q	9	9	1.6	0 - 1.75
Cadmium	9	Q	0.489	S	9	•	0.1-1
Chromium	12.2	11.5	15.1	2.84	5.63	10	1.5 - 40
Calcium	0688	2670	9530	215	1470	SN	130 - 35000
Iron	16300	11400	16600 B1	3630	7470	NS	2000 - 550000
Cobalt	7.41	7.58	6.29	S	9	SN	2.5 - 60
Copper	93.9	37.2	66.4	5.67	14.4	25	1 - 50
Lead	119	61.8	179	8	38.5	200	200
Magnesium	792	623	2350	207	458	SN	100 - 5000
Manganese	224	324	260	27.7	44.9	SN	20 - 20000
Mercury	0.263	0.122	0.346	2	0.0494	0.1	0.001 - 0.2
Nickel	14.1	8.77	14.7	2	6.47	13	0.5 - 25
Vanadium	21.7	10.3	25.5	2	9	SN	1 - 300
Selenium	<2.41 *	<2.93	<2.13 *	× <2.09	<2.03 *	2	0.1 - 3.9
Potassium	360	222	856	2	220	SN	8500 - 43000
Silver	2	2	Q	2	9	SN	NS
Sodium	732	1450	248	Q	192	SN	0008 - 0009
Thallium	2	Q.	Q	2	9	SN	NS
Zinc	134	62.5	280	13.0	123	20	9 - 20

Table 5
Levine Property Site Investigation
Soil Sample Results

Boring Number	6-847	LPB-9	LPB-10	LPB-10	LPB-11	NYSDEC	NYSDEC
Sample Depth (ft)	5-7	7-9	5-7	7-9	5-7	Recommended	Eastern USA
Sample Date	12/22/2005	12/22/2005	12/16/2005	12/16/2005	12/20/2005	Soil Cleanup	Background
Lab Identification Number	51200336	51200336	51200274	51200274	51200286	Objective	Criteria
TAL Metals (mg/Kg)							
Antimony	9	QV	9:00	Q	Q	SN	SN
Aluminum	8150	7270	2460	2060	9630	SN	33000
Arsenic	2.34	1.92	18.1	8.13	4.28	7.5	3 - 12
Barium	28.5	36.4	9.69	39.2	58.2	NS	15 - 600
Beryllium	9	2	2	2	0.436	1.6	0 - 1.75
Cadmium	9	Q	0.458	9	0.316	_	0.1 - 1
Chromium	22.2	16.4	10.9	10.2	25.6	10	1.5 - 40
Calcium	951	1470	2490	1760	3040	NS	130 - 35000
Iron	14700 B1	16000	21900 B1	8530 B1	30100 B1	NS	2000 - 550000
Cobalt	5.33	6.41	7.04	9	9.16	NS	2.5 - 60
Copper	31.2	15.3	649	29.9	37.2	25	1 - 50
Lead	7.35	6.28	213	41.9	59.1	200	200
Magnesium	1520	1990	640	528	1980	SN	100 - 5000
Manganese	88	256	178	0.66	499	SN	20 - 20000
Mercury	9	Q	0.521	0.558	0.157	0.1	0.001 - 0.2
Nickel	13.7	14.6	18.9	12.5	17.1	13	0.5 - 25
Vanadium	41.7	28.8	13.5	11.7	29.2	NS	1 - 300
Selenium	<2.08	<2.22	<2.39 *	<2.21 *	<2.07	2	0.1 - 3.9
Potassium	1030	1180	394	431	926	SN	8500 - 43000
Silver	9	Q	0.647	2	2	SN	NS
Sodium	2	Q	9	9	2	SN	0008 - 0009
Thallium	Q	2.23	2	2	2	SN	SN
Zinc	36.9	30.7	173	106	109	20	9 - 20

Table 5
Levine Property Site Investigation
Soil Sample Results

Boring Number	LPB-11	LPB-12	LPB-12	LPB-13	LPB-13D	NYSDEC	NYSDEC
Sample Depth (ft)	7-9	5-7	7-9	5-7	5-7	Recommended	Eastern USA
Sample Date	12/20/2005	12/14/2005	12/14/2005	12/14/2005	12/14/2005	Soil Cleanup	Background
Lab Identification Number	51200286	51200226	51200226	51200226	51200226	Objective	Criteria
TAL Metals (mg/Kg)							
Antimony	Q	QN	69.6	2	Q	NS	SN
Aluminum	8470	1590	6150	6300	4500	NS	33000
Arsenic	3.78	10.7	7.60	12.1	22.7	7.5	3 - 12
Barium	58.4	38.0	108	193	182	NS	15 - 600
Beryllium	2	Q	2	0.338	0.290	1.6	0 - 1.75
Cadmium	Q	9	9	0.999	0.977	-	0.1 - 1
Chromium	15.9	8.78	7.80	16.4	14.5	10	1.5 - 40
Calcium	3240	2920	5200	48600	32500	NS	130 - 35000
Iron	17400 B1	23700	28400	13500	24700	NS	2000 - 550000
Cobalt	6.85	9	8.14	<5.61	2	SN	2.5 - 60
Copper	26.5	42.3	111	107	114	25	1 - 50
Lead	77.5	50.6	19.3	198	181	200	200
Magnesium	1950	1040	816	4250	3900	SN	100 - 5000
Manganese	360	210	294	220	392	NS	20 - 20000
Mercury	Q	0.170	1.02	0.634	0.539	0.1	0.001 - 0.2
Nickel	14.6	9.69	15.8	17.9	15.7	13	0.5 - 25
Vanadium	24.1	13.5	18.1	29.9	19.0	NS	1 - 300
Selenium	<2.16 *	* 42.11	<2.54 *	<2.24 *	2	2	0.1 - 3.9
Potassium	874	268	227	688	663	NS	8500 - 43000
Silver	S	Q	9	9	0.480	NS	SN
Sodium	Q	Q	Q	270	205	NS	0008 - 0009
Thallium	S	2	Q	2	2	SN	NS
Zinc	80.9	19.2	111	342	271	20	9 - 20

Table 5
Levine Property Site Investigation
Soil Sample Results

Boring Number	LPB-13	LPB-14	LPB-14	LPB-15	LPB-15	NYSDEC	NYSDEC
Sample Depth (ft)	7.9	5-7	7.9	5-7	6-2	Recommended	Eastern USA
Sample Date	12/14/2005	12/22/2005	12/22/2005	12/20/2005	12/20/2005	Soil Cleanup	Background
Lab Identification Number	51200226	51200336	51200336	51200286	51200286	Objective	Criteria
TAL Metals (mg/Kg)							
Antimony	QN	QN	QN	QN	ND M2	NS	SN
Aluminum	3630	8560	9360	6450		NS	33000
Arsenic	6.04	3.35	4.15	6.20	3.44	7.5	3 - 12
Barium	110	56.0	45.7	137	50.3	NS	15 - 600
Beryllium	9	0.306	2	Q	Q	1.6	0 - 1.75
Cadmium	0.585	9	9	0.785	9	-	0.1 - 1
Chromium	14.6	19.8	15.8	18.9	20.8	10	1.5 - 40
Calcium	20500	1290	2790	21500	2510	NS	130 - 35000
Iron	10300	19600 B1	18400	12400 B1	21200 B1 MHA	SN	2000 - 550000
Cobalt	2	6.95	7.74	5.03	7.65	NS	2.5 - 60
Copper	52.4	24.7	21.6	8.09	21.2	25	1 - 50
Lead	134	21.7	65.8	160	20.4	200	200
Magnesium	2280	2370	1640	3630		NS	100 - 5000
Manganese	138	314	526	204	407 MHA	NS	20 - 20000
Mercury	0.572	0.0455	2	0.275	0.143	0.1	0.001 - 0.2
Nickel	13.2	14.0	12.1	16.5	15.0	13	0.5 - 25
Vanadium	18.3	29.3	26.8	24.0	29.0	SN	1 - 300
Selenium	2	<2.00	<2.11 *	9	2	2	0.1 - 3.9
Potassium	733	1780	1270	746	1480	SN	8500 - 43000
Silver	Q	8	9	9	2	NS	SN
Sodium	167	325	249	9	2	SN	0008 - 0009
Thallium	9	3.18	2.35	g	2.04	NS	SN
Zinc	433	43.4	31.9	262	54.0	20	9 - 50

Table 5
Levine Property Site Investigation
Soil Sample Results

Boring Number	LPB-16	LPB-16	LPB-17	LPB-17	LPB-18	NYSDEC	NYSDEC
Sample Depth (ft)	5-7	7-9	5-7	7-9	5-7	Recommended	Eastern USA
Sample Date	12/15/2005	12/15/2005	12/15/2005	12/15/2005	12/16/2005	Soil Cleanup	Background
Lab Identification Number	51200226	51200226	51200226	51200226	51200274	Objective	Criteria
TAL Metals (mg/Kg)	=						=
Antimony	QN	Q	QN	Ð	QV	SN	NS
Aluminum	7550	4720	0096	10700	0606	SN	33000
Arsenic	12.7	11.0	24.3	7.05	3.20	7.5	3 - 12
Barium	122	78.3	119	64.0	45.1	NS	15 - 600
Beryllium	0.597	0.360	0.835	0.435	9	1.6	0 - 1.75
Cadmium	0.574	0.340	0.352	9	2	_	0.1 - 1
Chromium	19.9	26.2	15.2	16.6	12.7	10	1.5 - 40
Calcium	32100	8280	7480	1260	947	SN	130 - 35000
Iron	19400	15300	16600	17500	13700 B1	NS	2000 - 550000
Cobalt	5.50	2	6.76	7.28	6.40	NS	2.5 - 60
Copper	184	75.5	93.0	29.2	14.0	25	1 - 50
Lead	229	156	215	110	87.1	200	200
Magnesium	3660	1700	2400	2590	2190	SN	100 - 5000
Manganese	383	129	224	365	387	SN	20 - 20000
Mercury	3.85	0.192	0.739	0.226	0.145	0.1	0.001 - 0.2
Nickel	18.3	14.0	18.7	17.3	13.7	13	0.5 - 25
Vanadium	22.8	20.5	21.4	20.2	13.8	NS	1 - 300
Selenium	<2.02	<2.06 *	<2.00	42.11	<2.36	2	0.1 - 3.9
Potassium	1170	813	725	926	702	SN	8500 - 43000
Silver	Q	2	2	2	g	SN	SN
Sodium	302	207	167	9	9	NS	0008 - 0009
Thallium	Q	Q	Q	9	Q	SN	SN
Zinc	259	153	172	105	63.6	20	9 - 20

Levine Property Site Investigation Soil Sample Results Table 5

Boring Number	LPB-18	LPB-19	LPB-19	LPB-20	LPB-20	NYSDEC	NYSDEC
Sample Depth (II)	400000000000000000000000000000000000000	7-6	6-/	7-6	Suddenice.	Kecommended	Eastern USA
Sample Date	51200274	51200336	51200336	51200274	51200274	Ohiective	Background
TAL Metals (mg/Kg)						2 100	
Antimony	QV	Q	Q	9	Q	SN	SN
Aluminum	5760	10500	9630	8470	9200	NS	33000
Arsenic	3.21	4.48	1.96	2.90	4.09	7.5	3 - 12
Barium	12.5	55.4	16.1	19.9	20.6	NS	15 - 600
Beryllium	g	9	Q	9	9	1.6	0 - 1.75
Cadmium	QN	9	Q	R	9	-	0.1 - 1
Chromium	7.86	17.8	9.58	11.0	13.6	10	1.5 - 40
Calcium	477	2620	416	580	514	NS	130 - 35000
Iron	12200 B1	14600 B1	9220 B1	13400 B1	16100 B1	NS	2000 - 550000
Cobalt	2	S	Q	S	2	NS	2.5 - 60
Copper	8.40	30.6	7.13	13.8	15.0	25	1-50
Lead	4.79	49.7	5.88	6.30	8.55	200	200
Magnesium	2210	2810	1760	2570	2510	NS	100 - 5000
Manganese	217	137	83.7	122	134	NS	20 - 20000
Mercury	9	0.0870	2	Q	2	0.1	0.001 - 0.2
Nickel	10.9	15.5	9.70	11.1	12.3	13	0.5 - 25
Vanadium	9.52	20.5	11.7	14.0	17.9	NS	1 - 300
Selenium	<2.28 *	<2.56 *	<2.11 *	<2.24 *	<2.24 *	2	0.1 - 3.9
Potassium	596	1320	923	637	670	NS	8500 - 43000
Silver	S	Q	Q	2	9	NS	NS
Sodium	Q	556	374	283	337	NS	0008 - 0009
Thallium	Q	S	9	S	2	NS	SN
Zinc	39.9	82.3	22.1	34.2	38.8	20	9 - 20

- Bold Indicates value that exceeded the NYSDEC Recommended Soil Cleanup Objectives.
 Italic Indicates value that exceeded the NYSDEC Eastern USA Background Criteria.
 Italic Indicates value that exceeded the NYSDEC Eastern USA Background Criteria.
 Italic Indicates the Method Detection Limit (MDL) for the compound is above the NYSDEC Recommended Soil Cleanup Objectives.
 ND Non-detected above laboratory method detection limit
 NS No Standard
 NS No Standard
 B1 Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
 M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference.
 MAA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information.

Table 6
Levine Property Site Investigation
Groundwater Sample Results

Monitoring Well Number	1-WM	DI-WW	MW-2	MW-3	MW-4	NYSDEC
Screen Depth (ft)	4 - 24	4 - 24	71-17	71-17	71-17	T0GS
Sample Date	01/04/06	01/04/06	01/04/06	01/03/06	01/03/06	Groundwater
Lab Idenification Number	60100038	60100038	60100038	60100029	60100029	Criteria
Volatile Organic Compounds (ug/I)						
Acetone		120	QN		10 JB	20
Carbon Disulfide	ر 18	Г 6	9	10 J	2	09
Methylene Chloride	-	-	2 JB		3 JB	2
Acrylonitrile	Q	Q	Q	Q	Q	2
Methyl-Tert-Butyl-Ether	Q	Q	Q	Ω	2	10
2-Butanone-(MEK)	28 B	26 B	Q.	Q	2	SN
Chloroform		Q.	2	Q	2	7
Benzene	200	190	Q.	2	Q N	_
4-Methyl-2-Pentanone (MIBK)	Q	QN.	Q.	Ω	Q.	SN
Toluene	240 E	220 E	Q.	Q.	Q	S
2-Hexanone		QN.	2	2	2	20
Tetrachloroethylene	Ω	QN	9	Q	2 J	5
Ethylbenzene	210 E	200	2	Q.	S	2
M & P-XYLENE	300	300	Q.	Q.	Q	10
O-XYLENE	130	130	Q.	2	2	2
Styrene	4 J	4 J	<u>Q</u>	2	2	2
Isopropylbenzene	25	23	Q.	<u>Q</u>	Q.	5
n-Propylbenzene	4	13	2	2	2	ည
1,3,5-Trimethylbenzene	52	49	Q.	Ω	Q.	5
1,2,4-Trimethylbenzene	160	150	2	2	2	ഗ
4-Isopropyltoluene	6	œ	2	2	2	വ
n-Butylbenzene	2 7	Q	Q	2	2	2
Naphthalene	580 E	500 E	Q	3 JB	QN	10

Levine Property Site Investigation **Groundwater Sample Results** Table 6

Monitoring Well Number	MW-5	MW-6	4-WW	MW-8	6-WW	NYSDEC
Screen Depth (ft)	5-15	5 - 15	71-17	7 - 17	5-20	TOGS
Sample Date	01/04/06	01/03/06	01/03/06	01/03/06	01/04/06	Groundwater
Lab Idenification Number	60100038	60100029	60100029	60100029	60100038	Criteria
Volatile Organic Compounds (ug/I)						
Acetone	Q	96 B	17 JB	20 JB	QN	20
Carbon Disulfide	2	<u>Q</u>		ΩN	S	09
Methylene Chloride		3 JB	3 JB		-	Ŋ
Acrylonitrile		Q.	2			ιΩ
Methyl-Tert-Butyl-Ether	4 ا	9	2	2 JB	g	10
2-Butanone-(MEK)		10 J	ر 7			SN
Chloroform		4 ا	2		Q	7
Benzene		4 J	2	2		_
4-Methyl-2-Pentanone (MIBK)	9	2	2	Q	4	SN
Toluene	g	٦	2	Ω		5
2-Hexanone	Q	Q.	5 5	Q.	e JB	20
Tetrachloroethylene	2	<u>Q</u>	2	4 J	QN	J.
Ethylbenzene	2	Q	2	2	Q	5
M & P-XYLENE	2	4 ا	2	r 9	Q	10
O-XYLENE	2	4 U	9	4 U	2	5
Styrene	2	2	2	2	Q	2
Isopropylbenzene	2	Q	g	2	9	2
n-Propylbenzene	2	Q.	2		2	2
1,3,5-Trimethylbenzene	2	<u>-</u>	9	4 J	Q	2
1,2,4-Trimethylbenzene	2	2	2	13	2	S
4-Isopropyltoluene	2	9	2	2	2	2
n-Butylbenzene	2	Q	2	Ð	Q.	2
Naphthalene	2 J	23 B	1 JB	8 B	2 J	10

- Notes:

 (1) Bold Indicates value that exceeded the NYSDEC TOGS Groundwater Criteria

 (2) ND Non-detected above laboratory method detection limit

 (3) NS No Standard

 (4) JB Indicates an estimated value and the analyte was found in the blank

 (5) J Indicates an estimated value

 (6) E Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis

Table 7
Levine Property Site Investigation
Groundwater Sample Results

Moniforing Well Number Screen Depth (ft)	MW-1 4 - 24	MW-1D 4 - 24 04104106	MW-2 7 - 17 04/04/06	MW-3 7 - 17	MW-4 7 - 17	NYSDEC TOGS
Sample Date Lab Idenification Number	60100038	60100038	60100038	60100029	60100029	Criteria
Semivolatile Organic Compounds (ug/l)						
Phenol	420	380	QN	ΩN	QN	NS
3&4-Methyl Phenol	250	240	Ω	8	S	SN
Naphthalene	240	350	2	Q	Q	10
2-Methylnaphthalene	65	81	Q	Q	2	SN
Acenapthene	28	39	Q	2	2	20
Dibenzofuran	Q	Q.	2	2	Q	SN
Fluorene	13	19	2	2	g	20
Phenanthrene	19	24	<u>Q</u>	2	2	20
Anthracene	9	2	9	2	2	20
Fluoranthene	3 9	3 7	<u>Q</u>	2	2	20
Pyrene	5 J	4 U	g	2	9	20
Benzo(a)anthracene	2 7	2 J	9	2	2	0.002
Chrysene	<u>۔</u> ب	<u>۔</u> ب	2	Q	2	0.002
bis(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	5

Levine Property Site Investigation **Groundwater Sample Results** Table 7

Monitoring Well Number Screen Depth (ff) Sample Date	MW-5 5 - 15 01/04/06	MW-6 5 - 15 01/03/06	MW-7 7 -17 01/03/06	MW-8 7 - 17 01/03/06	MW-9 5 - 20 01/04/06	NYSDEC TOGS Groundwater
Lab Idenification Number	60100038	60100029	60100029	60100029	60100038	Criteria
Semivolatile Organic Compounds (ug/l)						
Phenol	QN	QN	QN	QN	QN	SN
3&4-Methyl Phenol	Q	Q	Q	Q	Q	NS
Naphthalene	2	12	2	Q	Q.	10
2-Methylnaphthalene	2	80	Q	Q.	2	NS
Acenapthene	Ω	80	Q	Q	Q	20
Dibenzofuran	S	٦ ٣	Q	Q	S	NS
Fluorene	Q	Э Э	S	Q.	Q	20
Phenanthrene	2	٦ ٤	Q.	Q.	2	20
Anthracene	2	2	2	2	Ω	20
Fluoranthene	Q	2	Q	2	Q.	20
Pyrene	9	2	Q	Ω	Q	20
Benzo(a)anthracene	2	Q	Q	Q	Ω	0.002
Chrysene	2	2	2	2	Q	0.002
bis(2-Ethylhexyl)phthalate	S	٦ ل	QN	Q	<u>Q</u>	5

- Notes:
 (1) Bold Indicates value that exceeded the NYSDEC TOGS Groundwater Criteria
 (2) ND Non-detected above laboratory method detection limit
 (3) NS No Standard
 (4) J Indicates an estimated value

Table 8
Levine Property Site Investigation
Groundwater Sample Results

Screen Death (ft)	MW-1 4 - 24	MW-1D 4 - 24	MW-2 7 - 17	MW-3 7 - 17	MW-4 7 17	NYSDEC TOGS
Sample Date	01/04/06	01/04/06	01/04/06	01/03/06	01/03/06	Groundwater
Lab Idenification Number	60100038	60100038	60100038	60100029	60100029	Criteria
TAL Metals (mg/l)						
Aluminum	2.59	0.892	3.00	1.85	0.327	NS
Barium	1.29	1.28	0.0863	0.132	0.0654	0.1
Arsenic	0.0919	0.0869	Q	Q	9	0.025
Chromium	0.0110	0.00642	0.00965	0.00868	2	0.05
Calcium	1130	1120	172	147	292	SN
Copper	0.0333	0.0241	0.0214	0.0125	0.00714	0.2
Iron	3.94	2.12	5.08	3.74 B1	1.37 B1	0.3
Magnesium	140	140	330	185	129	35
Lead	0.0490	0.0362	0.0668	0.0168	2	0.025
Manganese	6960.0	0.0756	0.524	1.92	0.686	0.3
	0.000216	Q	0.00363	Q	S	0.0007
Potassium	308	306	141	59.8	41.5	SN
Sodium	2150	2150	1560	1240	836	20
Zinc	0.141	0.124	0.143	0.0993	0.0817	2
Vanadium	ND	ND	ND	ND	ND	NS

Levine Property Site Investigation **Groundwater Sample Results** Table 8

Monitoring Well Number	S-WW	MW-6	NW-7	8-MM	6-MM	NYSDEC
Screen Depth (ft)	5-15	5-15	7-17	71-17	5-20	TOGS
Sample Date	01/04/06	01/03/06	01/03/06	01/03/06	01/04/06	Groundwater
Lab Idenification Number	60100038	60100029	60100029	60100029	60100038	Criteria
TAL Metals (mg/l)						
Aluminum	19.4	12.2	13.3	1.92 M1	QN	SN
Barium	0.199	0.0991	0.0893	0.243	0.0886	0.1
Arsenic	Q	0.0149	9	9	9	0.025
Chromium	0.0439	0.0268	0.0222	0.00731	Q	0.05
Calcium	73.1	48.5	231	196	222	SN
Copper	0.0592	0.0403	0.0240	0.00733	Q	0.2
Iron	39.0	19.8 B1	20.2 B1	4.49 B1	0.562	0.3
Magnesium	23.8	3.70	49.0	26.4	556	35
Lead	0.0604	0.0752	0.0404	Q	S	0.025
Manganese	3.22	0.283	4.92	5.60 MHA	0.0301	0.3
Mercury	Q.	0.000220	0.000204	QN	Q	0.0007
Potassium	22.2	25.0	26.0	18.3	256	SN
Sodium	203	59.8	131	1600	2680	20
Zinc	0.114	0.407	0.0942	Q	Q	2
Vanadium	0.0574	0.0692	ΩN	ND	Q	NS

- Bold Indicates value that exceeded the NYSDEC TOGS Groundwater Criteria.
 ND Non-detected above laboratory method detection limit
 NS No Standard
 NS No Standard
 B1 Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the mthod blank.
 I Internal Standard recovery was outside of method limits. Matrix interference was confirmed by reanalysis.
 MS and/or MSD were below the acceptance limits due to sample matrix interference.
 MA The MS and/or MSD were below the sample, the MS/MSD calculation does not provide useful spike recovery information.