Remedial Investigation Report K – Williamsburg Works Brooklyn, New York August 29, 2025

Appendix L Matrices from Guidance for Evaluating Soil Vapor Intrusion in the State of New York

APPENDIX K

Forensic Assessment of Hydrocarbons – Williamsburg Former MGP Facility

John G. Huntington, Gateway Enterprises 9/15/2023

Executive Summary

Soil samples were collected by GEI from the former Williamsburg MGP facility in Q3 2022. Laboratory testing was conducted on these samples at ESS Laboratory, Cranston, RI. Results were provided to Gateway Enterprises in June of 2023. Gateway Enterprises conducted a forensic review of these data, and the results of Gateway Enterprises' review are summarized in this report. The main forensic conclusion from this evaluation is that there is clear evidence of both petrogenic and pyrogenic hydrocarbon sources contributing to the polycyclic aromatic hydrocarbons (PAHs) at this site.

Samples Collected and Laboratory Analyses Conducted

The soil samples collected and analyzed are summarized in Table 1 and shown in Figure 1. Twenty-seven (27) soil samples and two duplicate soil samples were collected at varying depths from 18 locations, and each sample was analyzed for the following laboratory methods: MAEPH; SW 8100 M; SW 8270 M; and SW 8015 M. The results from these laboratory analyses provide appropriate forensic information to support an assessment of the overall dominant hydrocarbon fingerprint observed in each sample collected at the site.

Discussion of Hydrocarbon Source Evaluations

Figure 2 includes a plot showing the levels of total aliphatics, C19-C36 aliphatics, and C9-C18 aliphatics by sample. In addition, it shows the C11-C22 aromatics fraction from the EPH analysis. Figure 2 provides structural information about the samples. Aromatic hydrocarbons are comprised of unsaturated ring systems (containing less hydrogen than the maximum possible for carbon assemblies), whereas aliphatics are both linear chains and ring systems that contain the maximum amount of hydrogen possible. Samples with high aliphatic concentrations compared to aromatic concentrations primarily consist of hydrocarbon contamination from petroleum sources. Note that the total aromatics fraction includes all aromatic hydrocarbons, including PAHs.

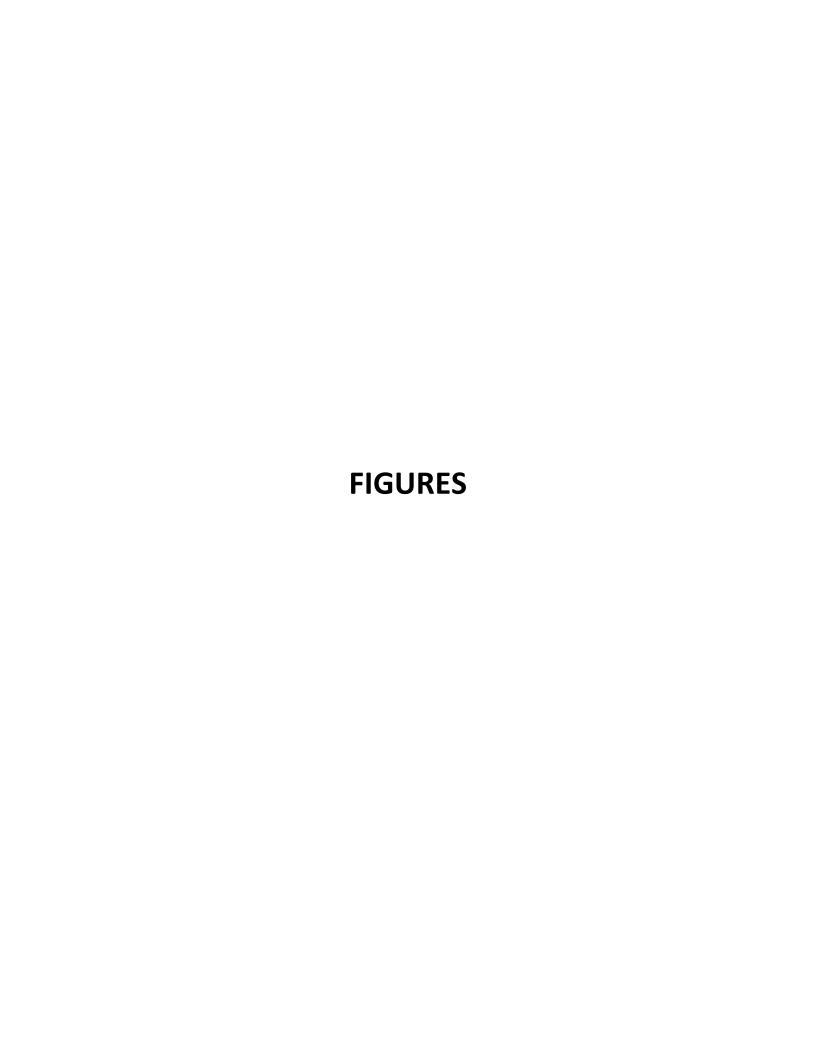
Figure 3 displays a bar chart comparing the C11-C22 aromatics fraction to the Total PAH (TPAH) fraction. This is useful for several purposes. It demonstrates that the data are reasonable, showing generally that the total PAH levels are less than or equal to the total aromatics from the EPH analysis. Only WW-SB-249 (0-5) and WW-TP-202C-10 fail this check outside of typical data variability windows, with very high TPAH levels relative to total C11-C22 aromatics.

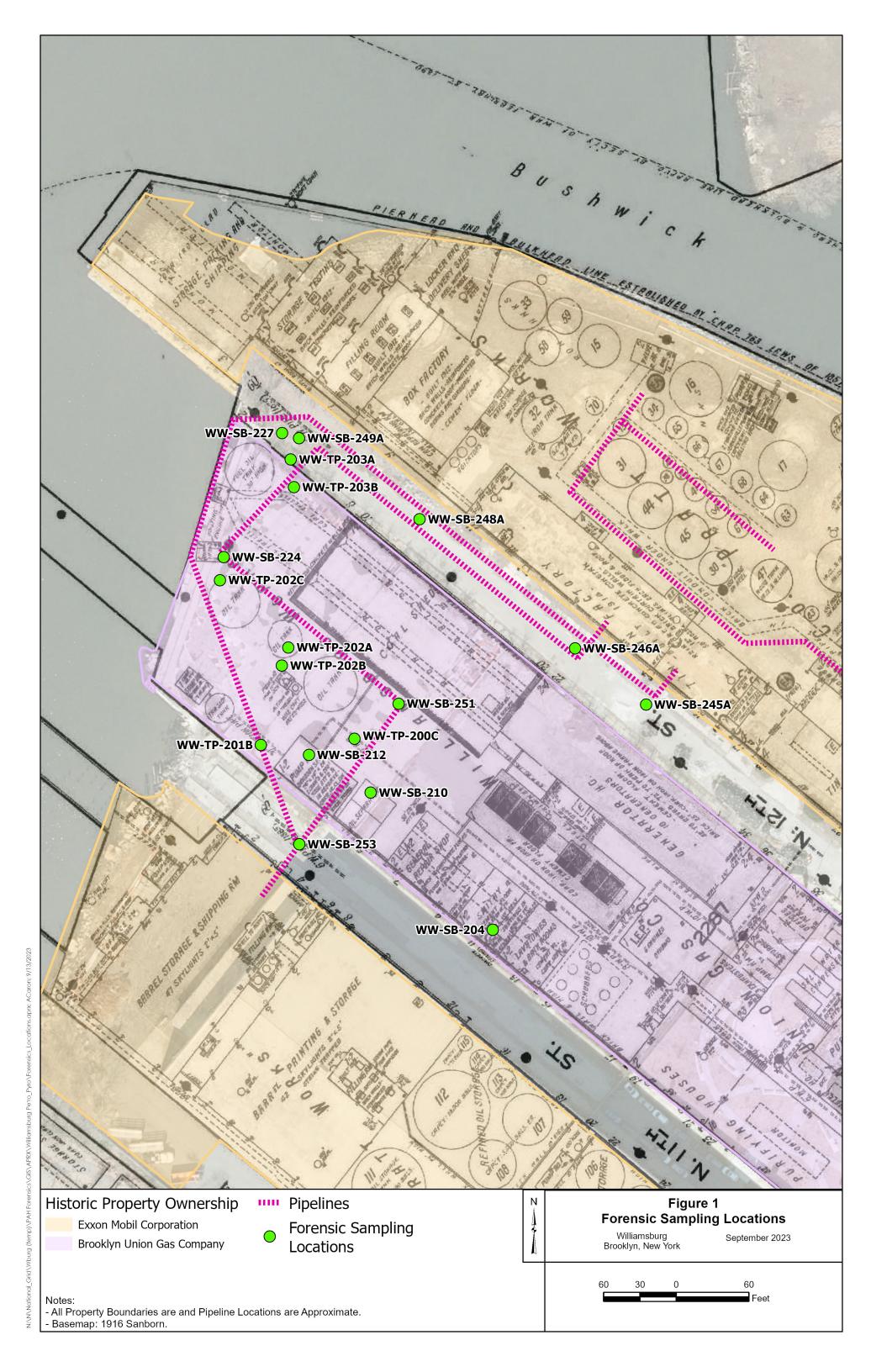
Figure 3 also shows the TPAH/total aliphatics ratio plotted on the alternate y-axis, which shows that most samples have a ratio less than 1. This is expected for petroleum-sourced hydrocarbons. Higher ratios are associated with samples that are mainly composed of pyrogenic PAHs.

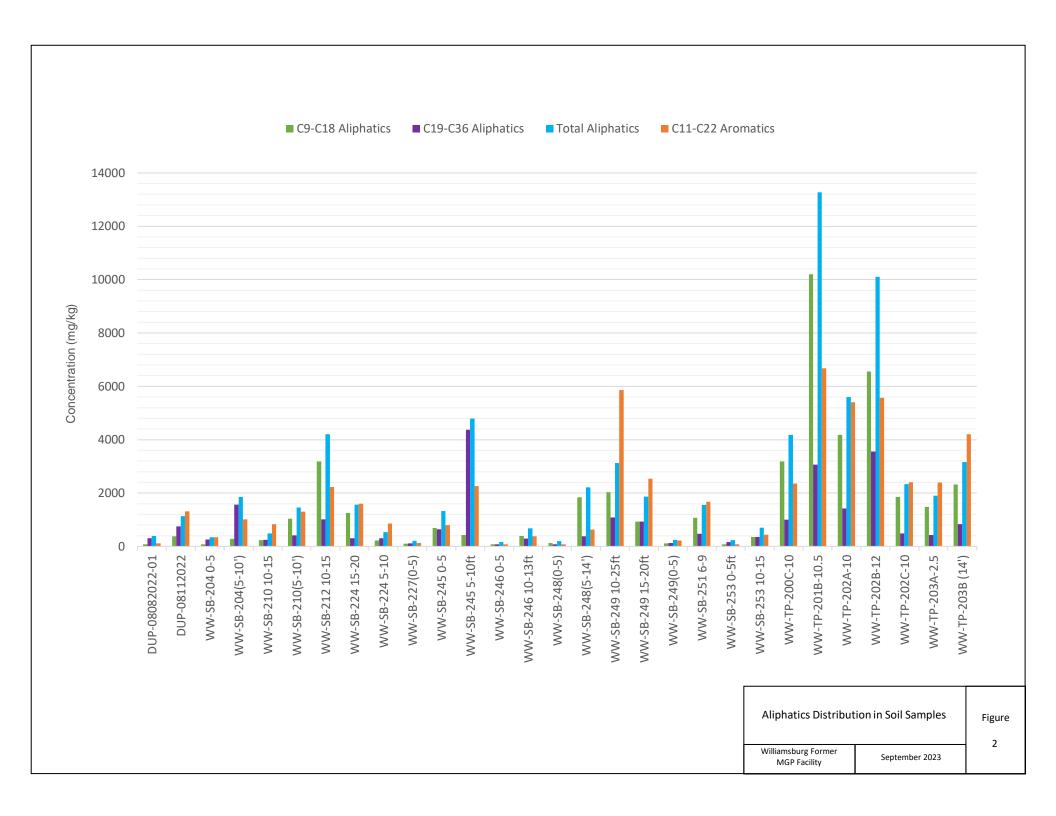
The fact that many of the samples are dominated by aliphatics or have a significant amount of aliphatics relative to aromatics indicates that petrogenic hydrocarbons are a major component of most samples. Pyrogenic tars are typically very low in aliphatic content. This clearly demonstrates that PAHs of petrogenic origin contribute to the composition of these samples.

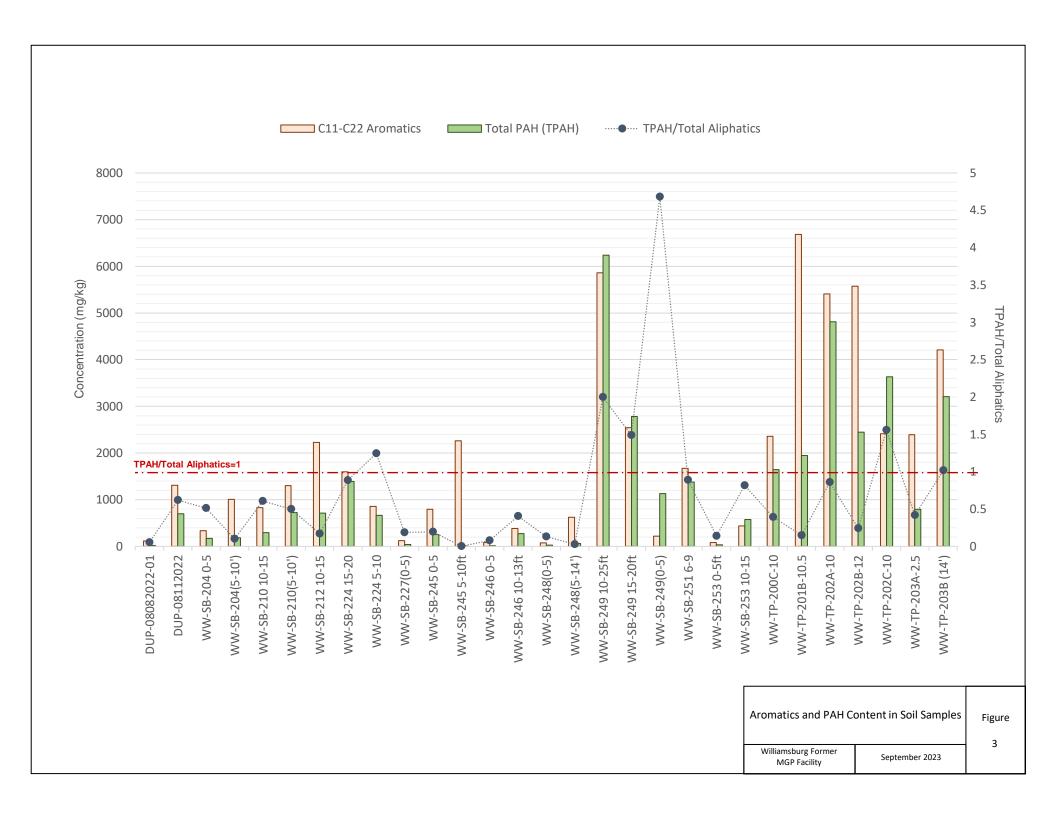
Most evaluations of PAH patterns make use of the observation that petrogenic (from petroleum) PAHs has a different distribution of alkyl-substituted PAHs relative to the unsubstituted PAH than is the case for pyrogenic PAHs (PAHs from high-temperature treatment of organic matter). Empirically, PAHs in petroleum exist as alkyl-substituted core PAHs in roughly normal distributions based on the number of alkyl substituents. This produces the well-documented "bell-shaped" pattern of alkyl PAHs from petroleum oils. For PAHs formed from high-temperature pyrolysis such those found in MGP operations or creosote manufacture, the alkyl patterns are dominated by the parent unsubstituted PAHs with the substituted PAHs at progressively lower levels depending on the number of alkyl substituents. This is the well-known "sawtooth" pattern (Boehm, 2005). Attachment 1 presents the PAH bar charts along with the aliphatics, TPH, and aromatics chromatographic patterns for all the samples evaluated.

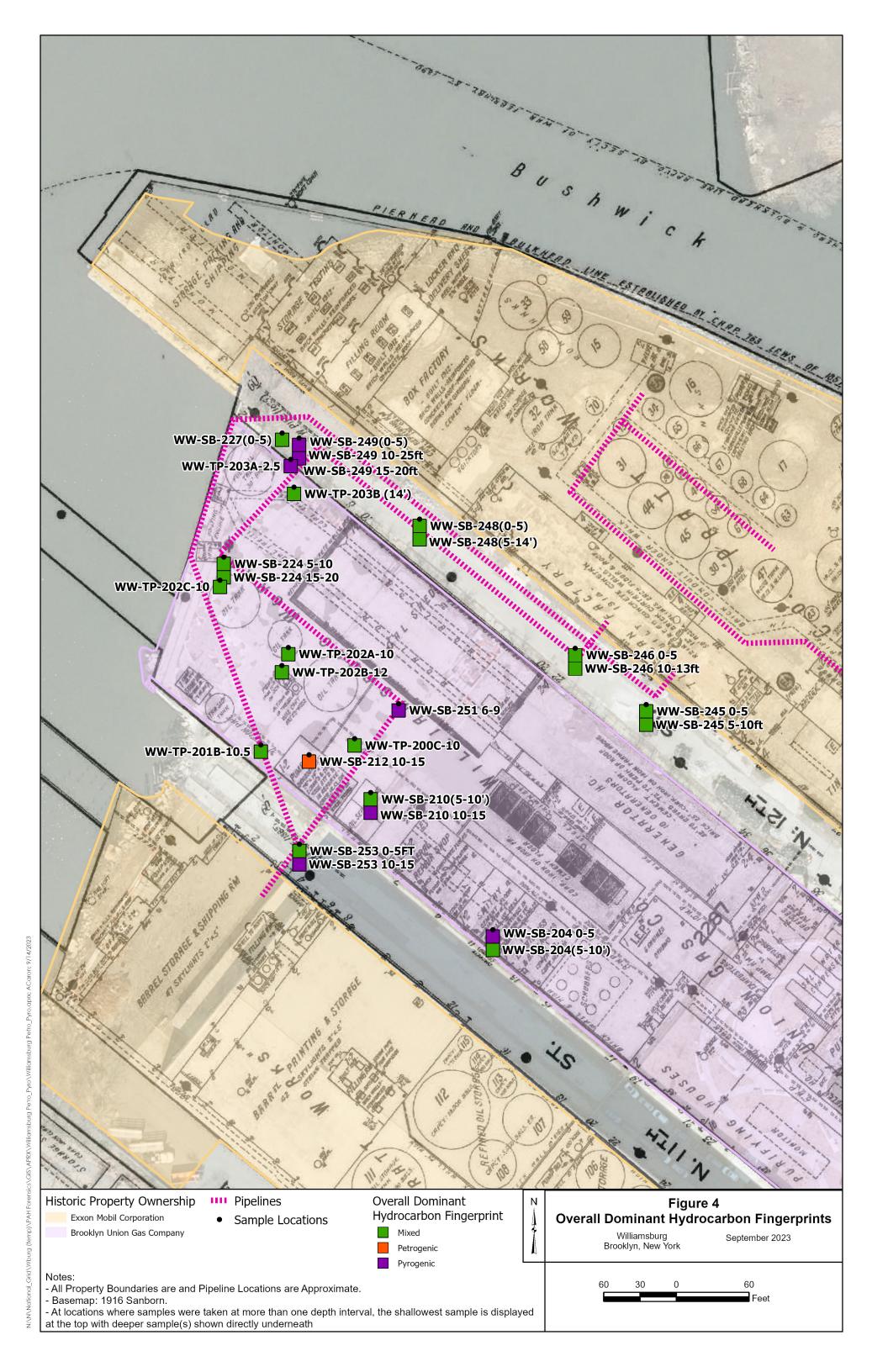
The actual patterns observed in real samples do not always fall neatly into petrogenic or pyrogenic substitution patterns. Intermediate patterns can be observed, depending on processing history, distillation cut points, weathering, and mixing of sources (Goto, 2021). Nonetheless, a particular pattern of alkyl PAHs can be classified as pyrogenic, petrogenic, or mixtures of petrogenic and pyrogenic.


Table 2 summarizes the dominant hydrocarbon structure types and dominant PAH type assignments interpreted with reference to the preceding discussion. The laboratory data reviewed provide evidence that petroleum-sourced hydrocarbons are present in many of the samples collected at the site. It is also apparent that many samples have pyrogenic character in the observed PAH patterns. Figure 4 is a map showing the overall dominant hydrocarbon fingerprint of the samples, which considers the relative magnitude of aliphatics vs. aromatics in a given sample, as well as the dominant PAH type assignment in the same sample.


Conclusions


The forensic data collected at the Williamsburg Site have been analyzed with the goal of evaluating the types of hydrocarbon sources that contribute to the PAHs found in soil at this site. The data indicate that petrogenic hydrocarbons and petrogenic PAHs exist in samples, in addition to pyrogenic PAHs. There are also samples that are mainly comprised of pyrogenic hydrocarbons of various molecular weight distributions suggestive of different origins of pyrogenic PAHs. The mixed nature of pyrogenic and petrogenic PAHs coming from diverse hydrocarbon sources must be considered in any effort to further develop an understanding of PAH sources on this site.


References


- Paul D. Boehm, Chapter 15, "Environmental Forensics Contaminant Specific Guide", 2005, Elsevier Inc., edited by R.D. Morrison and B.L. Murphy, Table 15.2.1.
- Yuta Goto, Keiko Nakamuta, Haruhiko Nakata, "Parent and alkylated PAHs profiles in 11 petroleum fuels and lubricants: Application for oil spill accidents in the environment", Ecotoxicology and Environmental Safety, Aug. 2021.

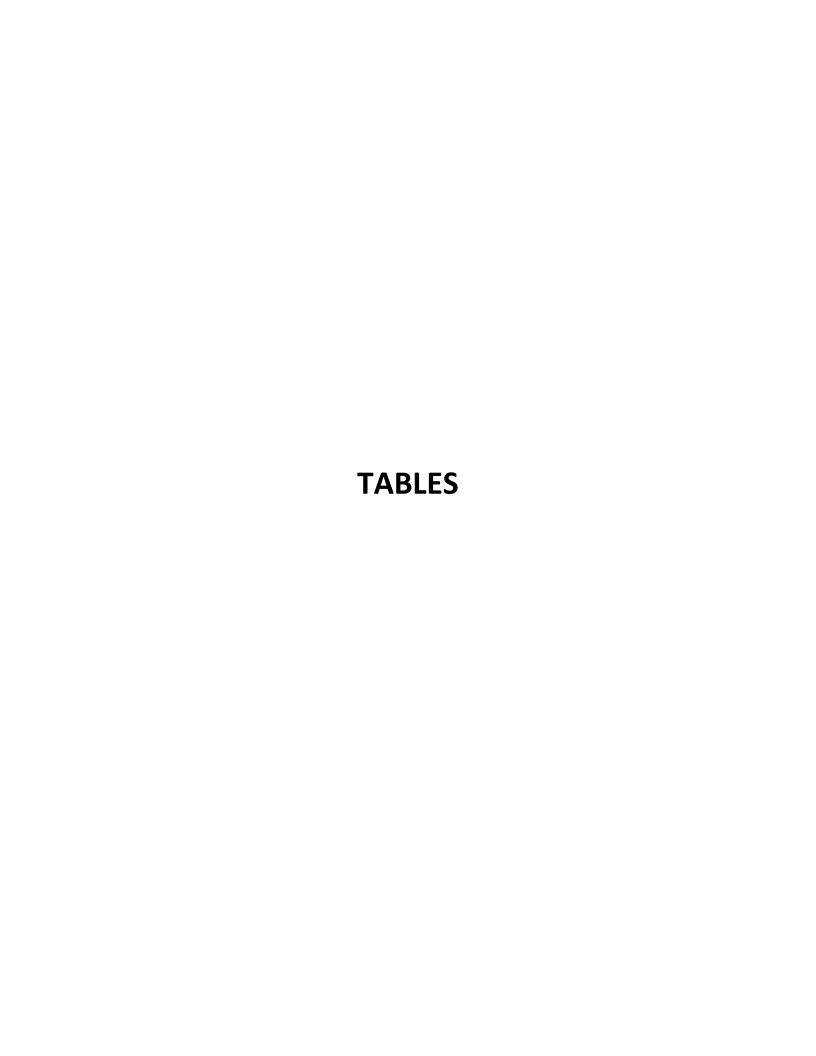
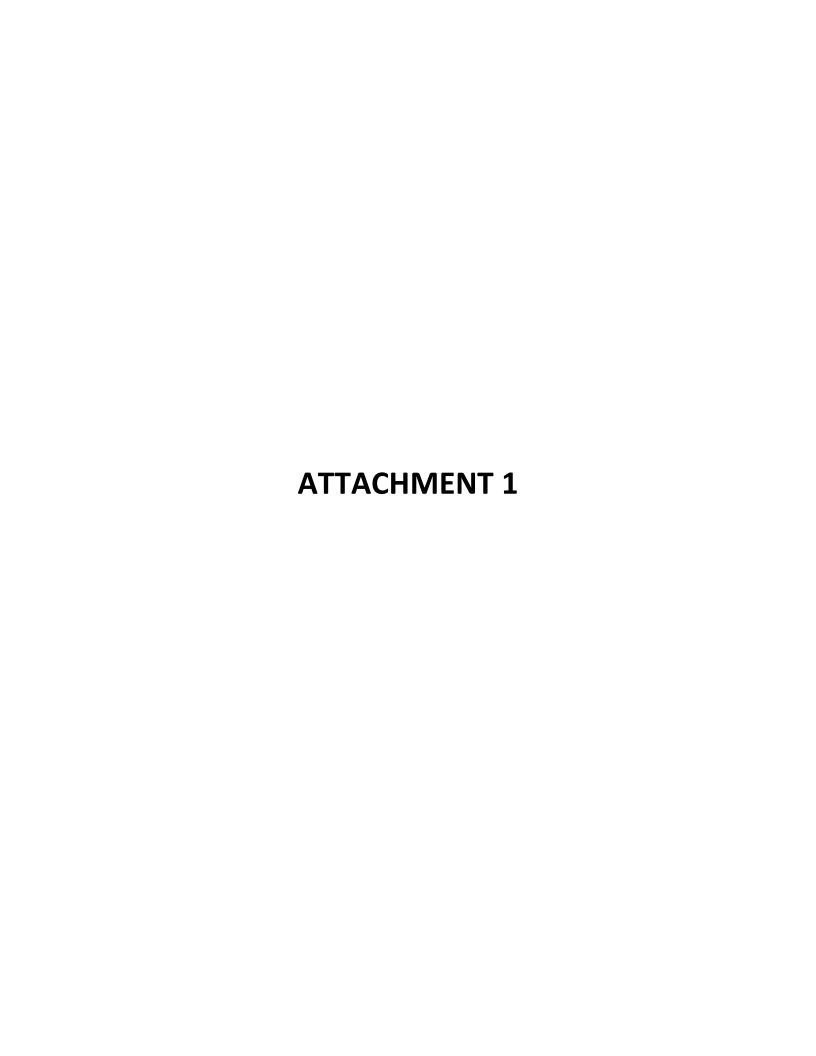
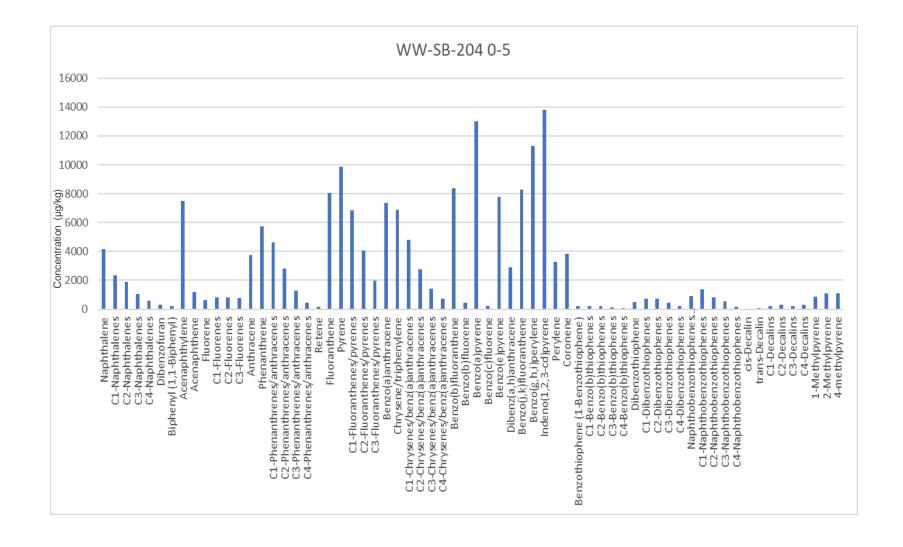


Table 1Summary of Soil Samples Collected and Analyzed

Sample Name	Parent Sample Name	Lab Sample ID	START DEPTH (feet)	END DEPTH (feet)	SAMPLE DATE	MAEPH ¹	SW 8015 M ²	SW 8100 M ³	SW 8270 M ⁴
WW-SB-204 0-5		F220035-01	0	5	21-Jul-22	Χ	Χ	Χ	Х
WW-SB-204(5-10')		F220038-06	5	10	11-Aug-22	Χ	Χ	Х	Х
WW-SB-210 10-15		F220038-08	10	15	11-Aug-22	Х	Х	Х	Χ
DUP-08112022	WW-SB-210 10-15	F220038-09	10	15	11-Aug-22	Χ	Χ	Х	Х
WW-SB-210(5-10')		F220038-07	5	10	11-Aug-22	Х	Х	Χ	Χ
WW-SB-212 10-15		F220038-10	10	15	11-Aug-22	Х	Х	Х	Х
WW-SB-224 15-20		F220038-05	15	20	10-Aug-22	Х	Х	Χ	Х
WW-SB-224 5-10		F220038-04	5	10	10-Aug-22	Х	Х	Χ	Х
WW-SB-227(0-5)		F220035-06	0	5	28-Jul-22	Х	Х	Χ	Х
WW-SB-245 0-5		F220035-03	0	5	26-Jul-22	Х	Х	Χ	Х
WW-SB-245 5-10ft		F220063-01	5	10	28-Sep-22	Х	Х	Χ	Х
WW-SB-246 0-5		F220035-04	0	5	27-Jul-22	Х	Х	Χ	Х
WW-SB-246 10-13ft		F220058-02	10	13	23-Sep-22	Х	Х	Χ	Х
WW-SB-248(0-5)		F220035-07	0	5	29-Jul-22	Х	Х	Χ	Х
WW-SB-248(5-14')		F220060-01	5	14	22-Sep-22	Х	Х	Χ	Х
WW-SB-249 10-25ft		F220058-01	10	25	22-Sep-22	Х	Х	Х	Х
WW-SB-249 15-20ft		F220061-01	15	20	26-Sep-22	Х	Х	Х	Х
WW-SB-249(0-5)		F220035-05	0	5	28-Jul-22	Х	Х	Х	Х
WW-SB-251 6-9		F220035-02	6	9	25-Jul-22	Х	Х	Χ	Х
WW-SB-253 0-5ft		F220038-01	0	5	8-Aug-22	Х	Х	Х	Х
DUP-08082022-01	WW-SB-253 0-5ft	F220038-02	0	5	8-Aug-22	Х	Х	Χ	Х
WW-SB-253 10-15		F220038-03	10	15	9-Aug-22	Х	Х	Χ	Х
WW-TP-200C-10		F220041-01	10	10	23-Aug-22	Х	Х	Χ	Х
WW-TP-201B-10.5		F220041-05	10.5	10.5	26-Aug-22	Х	Х	Х	Χ
WW-TP-202A-10		F220041-03	10	10	25-Aug-22	Х	Х	Χ	Х
WW-TP-202B-12		F220041-02	12	12	24-Aug-22	Х	Х	Χ	Х
WW-TP-202C-10		F220041-04	10	10	25-Aug-22	Х	Х	Х	Х
WW-TP-203A-2.5		F220045-01	2.5	2.5	29-Aug-22	Х	Х	Х	Х
WW-TP-203B (14')		F220045-02	2.5	2.5	30-Aug-22	Х	Х	Х	Х

Notes:

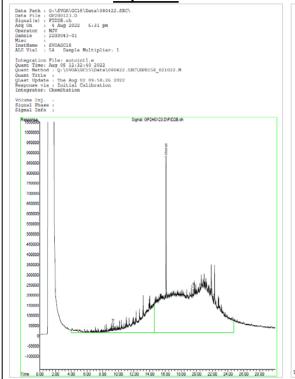

- 1. MAEPH analyzes for extractable petroleum hydrocarbons (EPH) per Massachusetts Department of Environmental Protection.
- 2. SW 8100 M analyzes for total petroleum hydrocarbons (TPH).
- 3. SW 8270 M analyzes for polycyclic aromatic hydrocarbons (PAHs), monoaromatic compounds, and petroleum biomarkers by gas chromatography-mass spectrometry (GCMS).
- 4. SW 8015 M analyzes for saturated hydrocarbons, TPH, and diesel range organics (DRO).


Table 2Summary of Hydrocarbon Evaluation

	Dominant Hydrocarbon	Dominant PAH Type	Overall Dominant		
Sample Name	Structure Type ¹	Assignment ²	Hydrocarbon Fingerprint ³		
WW-SB-204 0-5	Aromatics	Pyrogenic	Pyrogenic		
WW-SB-204(5-10')	Aliphatics	Pyrogenic	Mixed		
WW-SB-210 10-15	Aromatics	Pyrogenic	Pyrogenic		
DUP-08112022	Aromatics	Pyrogenic	Pyrogenic		
WW-SB-210(5-10')	Similar	Pyrogenic	Mixed		
WW-SB-212 10-15	Aliphatics	Petrogenic	Petrogenic		
WW-SB-224 15-20	Aromatics	Mixed	Mixed		
WW-SB-224 5-10	Aromatics	Mixed	Mixed		
WW-SB-227(0-5)	Aliphatics	Mixed	Mixed		
WW-SB-245 0-5	Aliphatics	Mixed	Mixed		
WW-SB-245 5-10ft	Aliphatics	Mixed	Mixed		
WW-SB-246 0-5	Aliphatics	Mixed	Mixed		
WW-SB-246 10-13ft	Aliphatics	Mixed	Mixed		
WW-SB-248(0-5)	Aliphatics	Pyrogenic	Mixed		
WW-SB-248(5-14')	Aliphatics	Mixed	Mixed		
WW-SB-249 10-25ft	Aromatics	Pyrogenic	Pyrogenic		
WW-SB-249 15-20ft	Aromatics	Pyrogenic	Pyrogenic		
WW-SB-249(0-5)	Aromatics	Pyrogenic	Pyrogenic		
WW-SB-251 6-9	Aromatics	Pyrogenic	Pyrogenic		
WW-SB-253 0-5ft	Aliphatics	Pyrogenic	Mixed		
DUP-08082022-01	Aliphatics	Pyrogenic	Mixed		
WW-SB-253 10-15	Aromatics	Pyrogenic	Pyrogenic		
WW-TP-200C-10	Aliphatics	Mixed	Mixed		
WW-TP-201B-10.5	Aliphatics	Mixed	Mixed		
WW-TP-202A-10	Similar	Pyrogenic	Mixed		
WW-TP-202B-12	Aliphatics	Pyrogenic	Mixed		
WW-TP-202C-10	Similar	Mixed	Mixed		
WW-TP-203A-2.5	Aromatics	Pyrogenic	Pyrogenic		
WW-TP-203B (14')	Aromatics	Mixed	Mixed		

Notes:

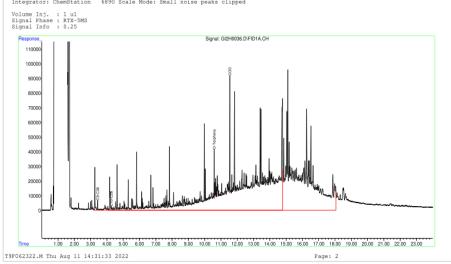
- 1. This column summarizes whether aromatics or aliphatics comprise the majority of the UCM envelope present in the SW 8100 M chromatograms for each sample. Samples designated as "similar" have roughly equivalent amounts of aromatics and aliphatics.
- 2. This column summarizes the dominant PAH (part of the aromatic fraction) type assignment based on review of the chromatographic and PAH concentration data for each sample, which is also presented in Attachment 1.
- 3. This column summarizes the overall dominant hydrocarbon fingerprint observed in each sample. Assignments in this column consider the relative magnitude of aliphatics vs. aromatics in a given sample, as well as the dominant PAH type assignment in the same sample.

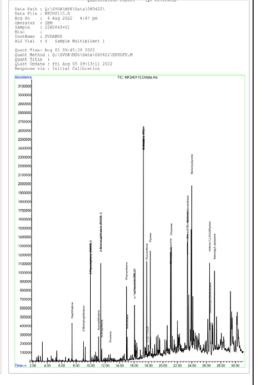


PAH Histogram for WW-SB-204 0-5ft

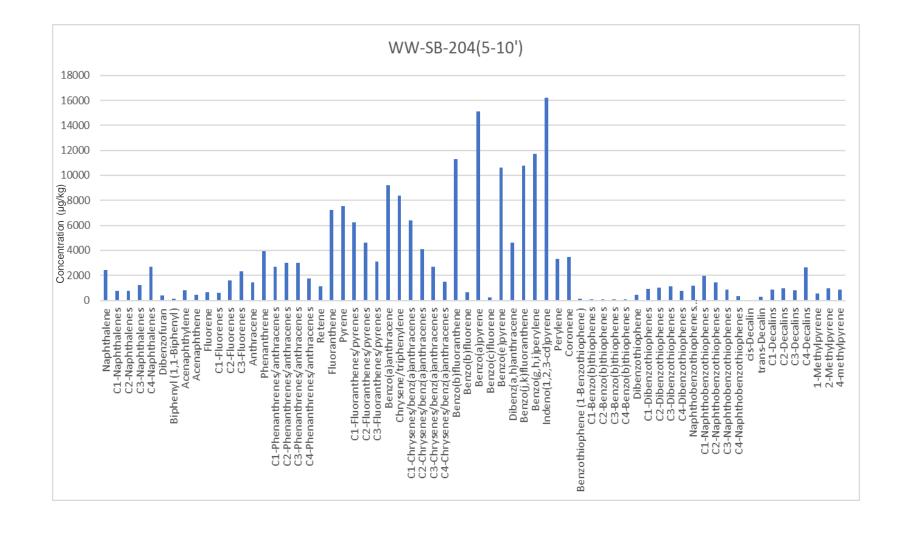
Figure Att1.1

Williamsburg Former MGP Facility


Aliphatics


TPH-FID

Quantitation Report



Chromatograms for WW-SB-204 0-5ft (Lab ID F220035-01)

Williamsburg Former MGP Facility

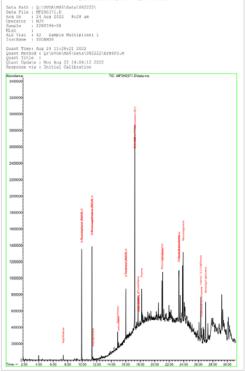
September 2023

Figure

PAH Histogram for WW-SB-204 5-10ft

Att1.3 September 2023

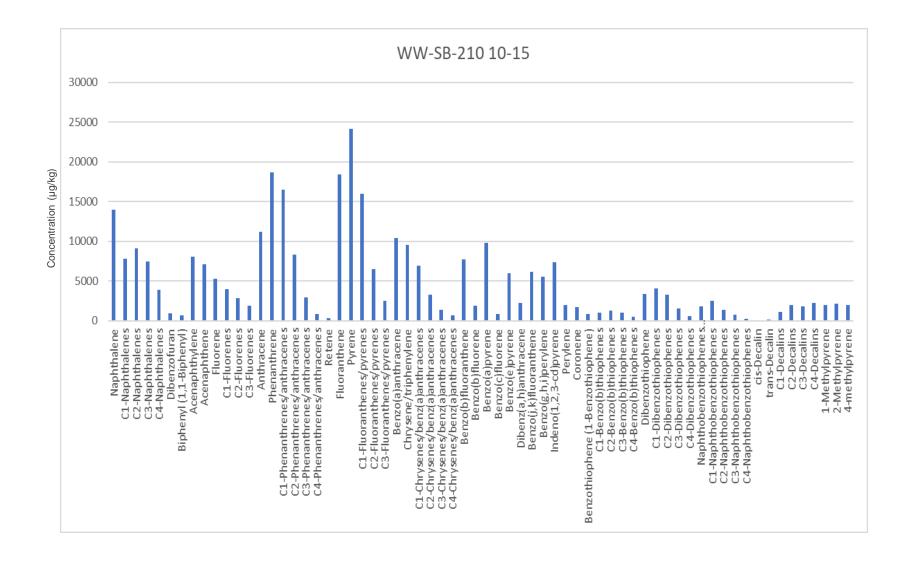

Figure


Williamsburg Former MGP Facility

Aliphatics TPH-FID Aromatics

Data Path : 0:\SYOA\OCIS\Data\082322.88C\
Data Pile : GPZH0921.D
Acq On : 23 Aug 2022 0:44 pm
Operator : M.
Sample : 22H0596-06
Misc : InskManc : SYOAOCIS
Als Vial : 59 Sample Multiplier: 1 Integration File: autointl.e
Quant Time: Aug 24 10:33:28 2022
Quant Method: 0.19W030QD15Data082322.SBC\EPHISR_081522.M
QUant Title:
Quant Title:
Quant Title:
Quant Title:
Quant Title:
Quant District Company
Quant Title:
Quant District Company
Quant Dis Volume Inj. Signal Phase Signal Info Signal: GP2H0821.D\FID2B.ch

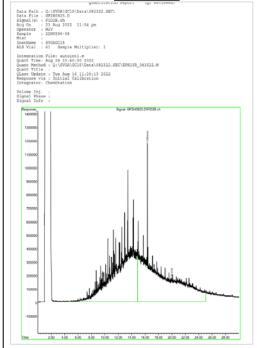
Time 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00



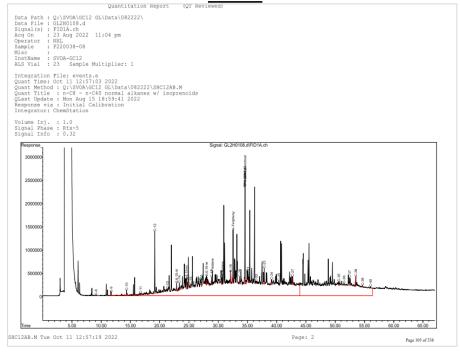
Chromatograms for WW-SB-204 5-10ft (Lab ID F220038-06)

Williamsburg Former MGP Facility

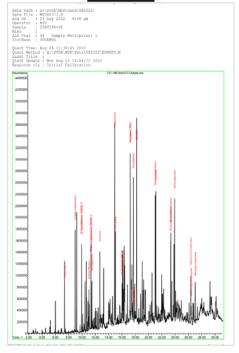
September 2023



PAH Histogram for WW-SB-210 10-15ft

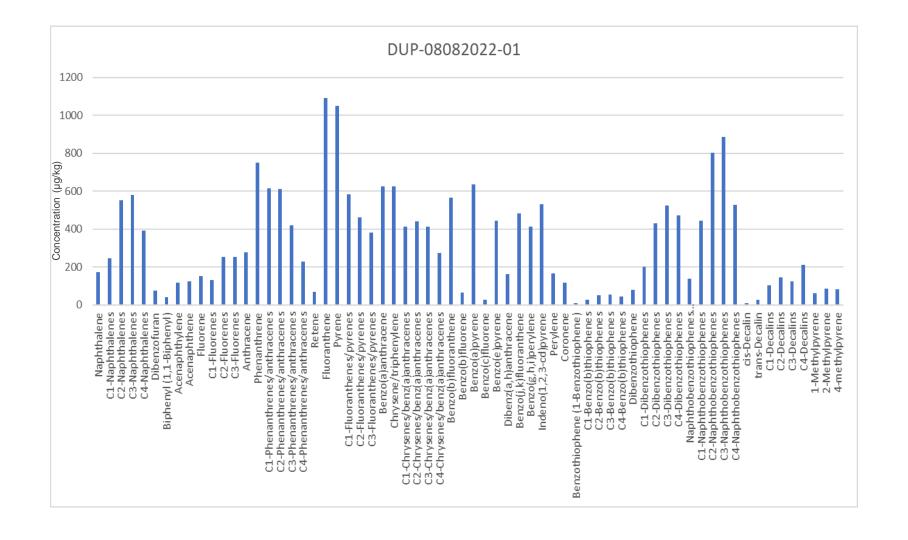

Figure Att1.5

Williamsburg Former MGP Facility


Aliphatics

TPH-FID

Aromatics



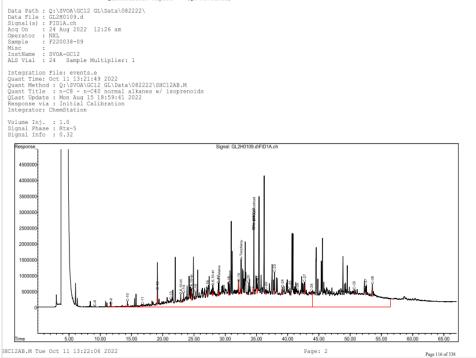
Chromatograms for WW-SB-210 10-15ft (Lab ID F220038-08)

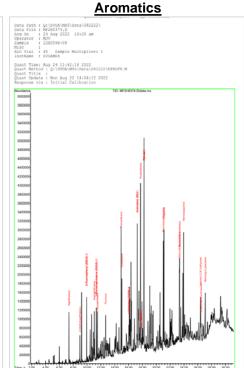
Williamsburg Former MGP Facility

September 2023

Figure

PAH Histogram for DUP08112022 10-15ft

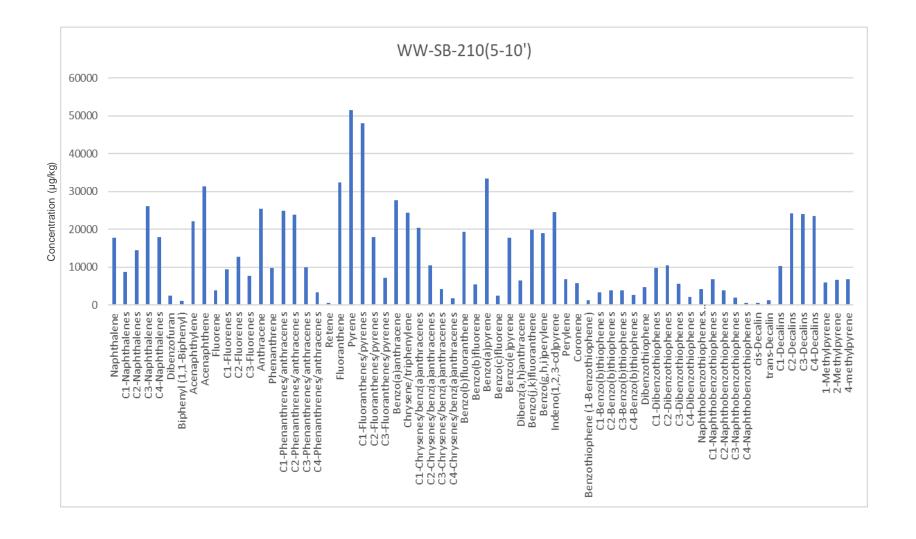

Williamsburg Former MGP Facility


September 2023

Aliphatics

| Data Path | 0 | 1998/1075 | Data | 1998 | Value | 1998 | Value

UNABELITATION REPORT (UT REVIEWED)

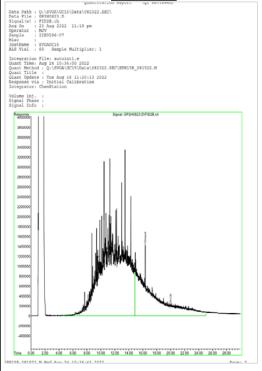


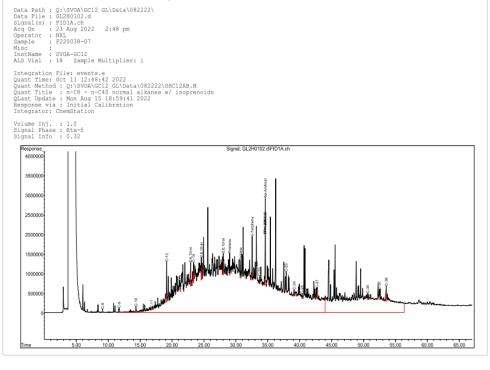
Chromatograms for DUP08112022 10-15ft (Lab ID F220038-08)

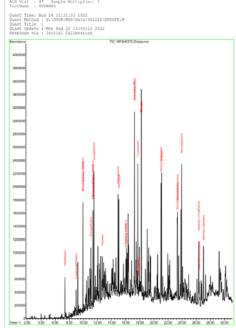
Williamsburg Former MGP Facility

September 2023

Figure

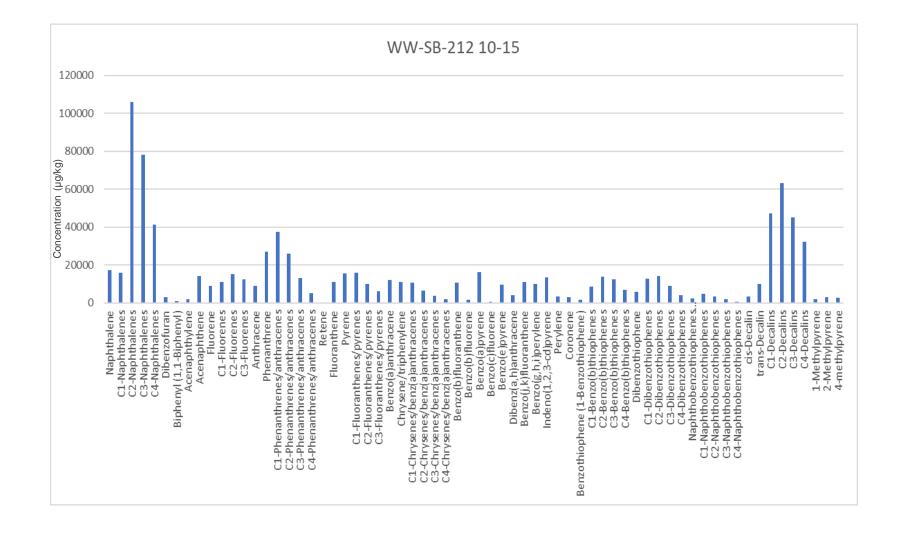

PAH Histogram for WW-SB-210 5-10ft


Figure Att1.9


Williamsburg Former MGP Facility

Aliphatics
TPH-FID
Quantitation Report (QT Reviewed)

Aromatics

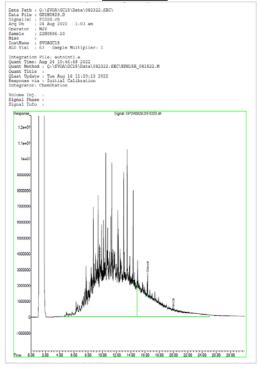


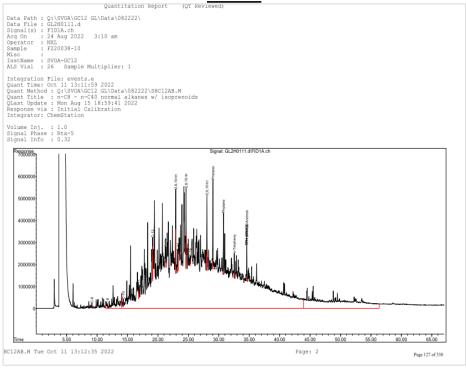
Chromatograms for WW-SB-210 5-10ft (Lab ID F220038-07)

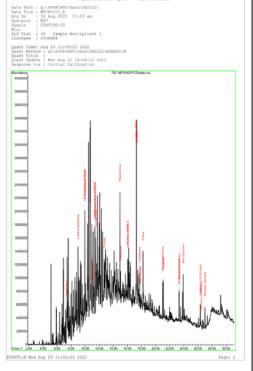
Williamsburg Former MGP Facility

September 2023

Figure

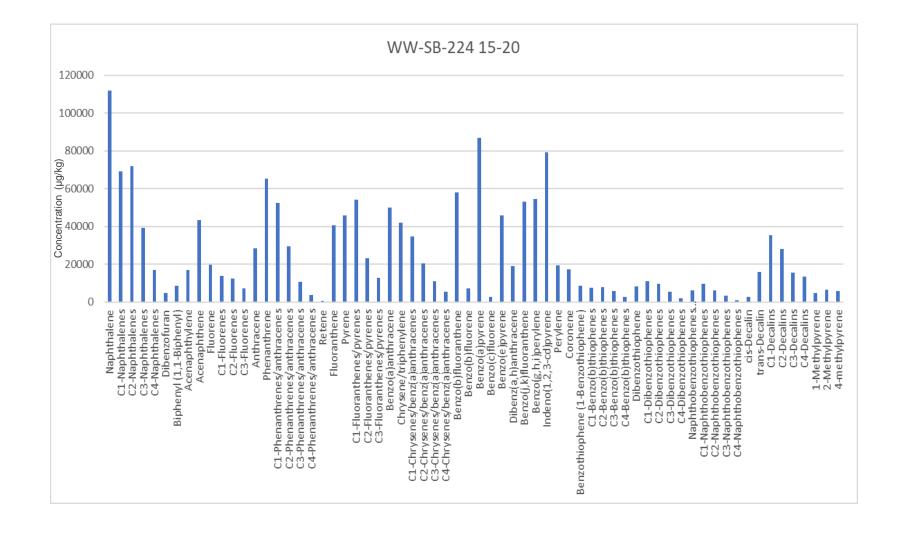

PAH Histogram for WW-SB-212 10-15ft


Figure
Att1.11


Williamsburg Former MGP Facility **Aliphatics**

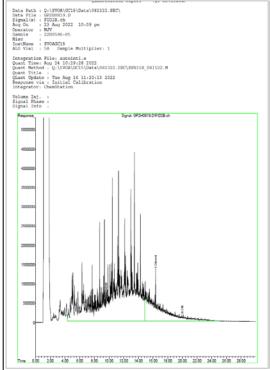
TPH-FID

Aromatics



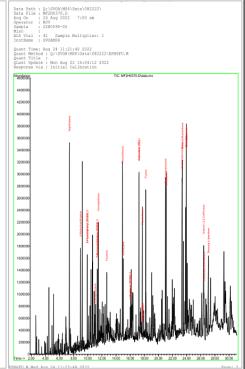
Chromatograms for WW-SB-212 10-15ft (Lab ID F220038-01)

Williamsburg Former MGP Facility


September 2023

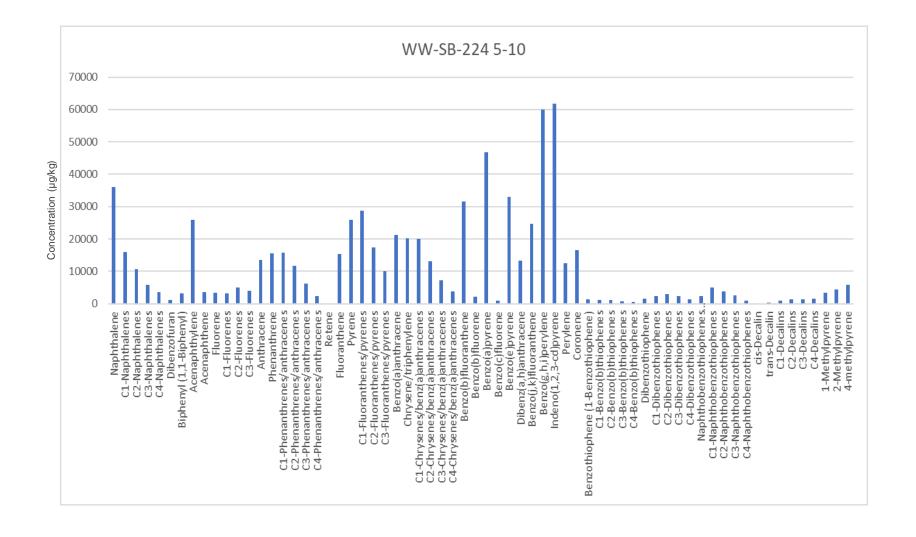
PAH Histogram for WW-SB-224 15-20ft

Williamsburg Former
MGP Facility
September 2023


Aliphatics TPH-FID Aromatics

100000 500000

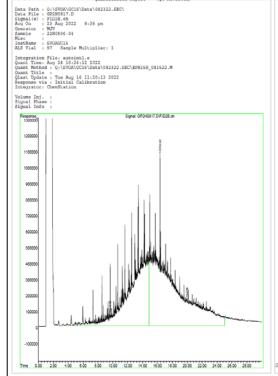
HC12AR M Tue Oct 11 12:36:11 2022


Data Path : 0:\SVOA\GC12 GL\Data\082222\
Data File : GG2R0100.d
Signal(s) : FIDIA.ch
Acq On : 23 Aug 2022 12:04 pm
Operator : NKL
Sample : F22038-05
Misc : F22038-05
InstHame : SVOA-GC12
ALS Vial : 16 Sample Multiplier: 1 Integration File: events.e Quant Time: Oct 11 12:35:46 2022 Quant Method: Q:\SVOA\GG12 GL\Data\082222\SHC12AB.M Quant Title : n-C8 - n-C40 normal alkanes w/ isoprenoids QLast Update : Mon Aug 15 18:59:41 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 1.0 Signal Phase : Rtx-5 Signal Info : 0.32 Signal: GL2H0100.d/FID1A.ch Response 45000001 4000000 3500000 3000000 250000 2000000 1500000

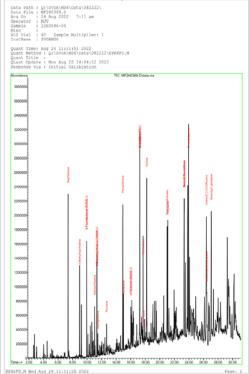
Chromatograms for WW-SB-224 15-20ft (Lab ID F220038-05)

Williamsburg Former MGP Facility

Figure Att1.14

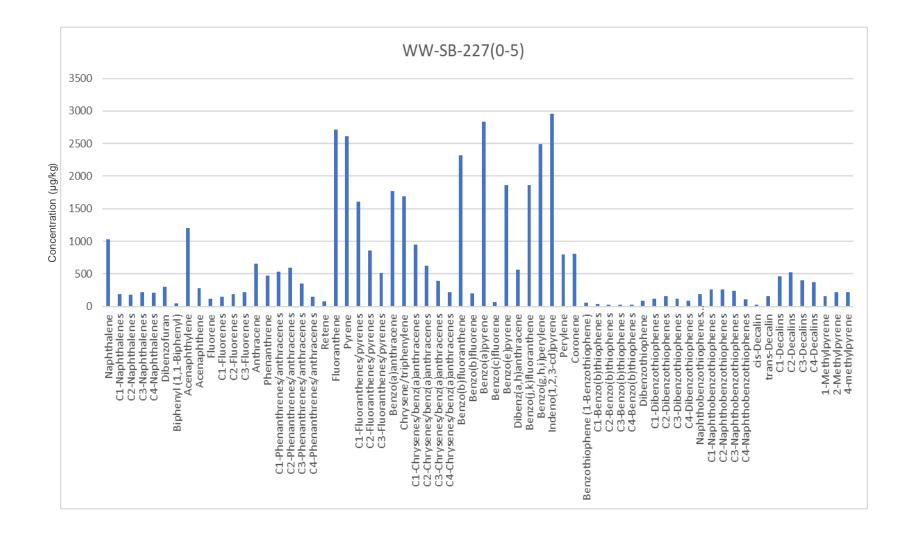



PAH Histogram for WW-SB-224 5-10ft


Figure Att1.15

Williamsburg Former MGP Facility

Aliphatics TPH-FID Aromatics



Chromatograms for WW-SB-224 5-10ft (Lab ID F220038-04)

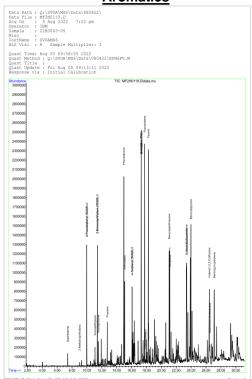
Williamsburg Former MGP Facility

September 2023

Figure

PAH Histogram for WW-SB-227 0-5ft

Figure Att1.17

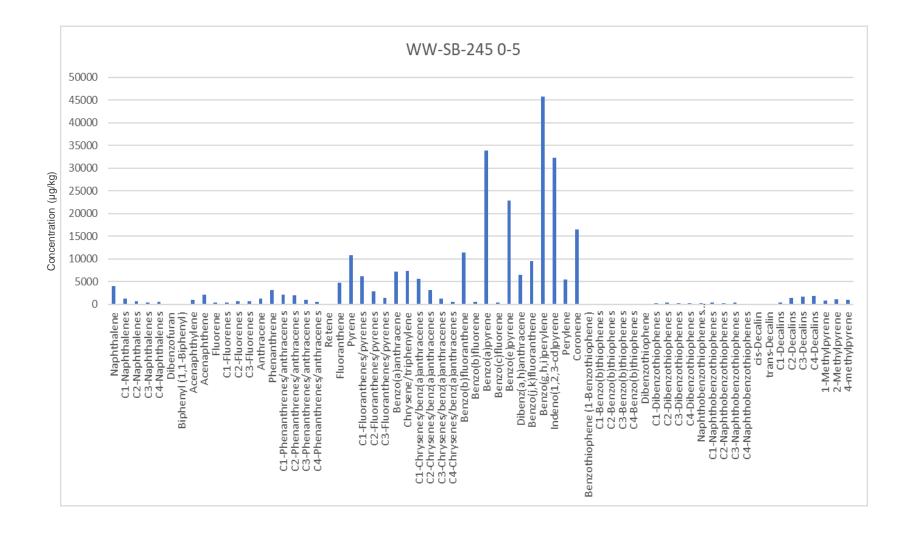

Williamsburg Former MGP Facility

Aliphatics Data Path : 0:\SYON\C215\Data\080422.SEC\
Data Pile : UFFUNDI3.0.D
Signal(s) : FDIDS.ch
Acq On : 4 Apg 2072 9:25 pm
Coerator : 4 Apg 2072 9:25 pm
Coerator : 4 Apg 2072 9:25 pm
Kisc : 7280043-06
Kisc : Incition : 6VAGCUS
ALE Vial : 59 Sample Multiplier: 1 Integration File: autointl.e Count Time: Aug OS 12:53:19:2022 Quant Method : ()\COM\(Q(CIS)\)Quant Action : ()\COM\(Q(CIS)\)Quant Count Title : () Cuant Title : () Cuant Title : () Clast Optate : Twe Aug O2 09:59:26 2022 Response via : Initial Calibration Integrator: Chemidation Signal: GP2H0133.DIFI028.ch 1050000 950000 900000 850000 800000 700000 500000 450000 400000 300000 260000 200000-150000-100000-50000-200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

TPH-FID

Data Path : Q:\SV0A\GC_GR\Data\080522\ Data File GIZHO04.B Signal(s) : FIDIA.CH Operator : IIM Sample : 2260043-06 Misc : 2 2260043-06 Misc : 2 Cannot Time: SV0AGS Untergration File: EVENTS.E Quant Time: Aug | 11.5:13:42 2022 Quant Method : Q:\SV0ACG_GR\Data\080522\T9F062322.M Quant Update : Thu Aug | 11.11:41:02 2022 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Volume Inj. : lul Signal Phase : RTX-SMS Signal Info : 0.25 Nesponse Volume Inj. : 0.

Aromatics

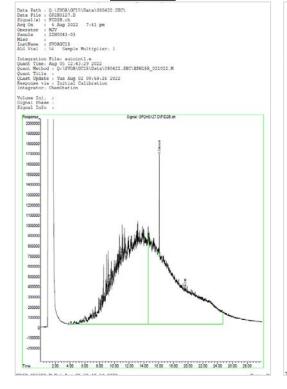


Chromatograms for WW-SB-277 0-5ft (Lab ID F220035-06)

Williamsburg Former MGP Facility

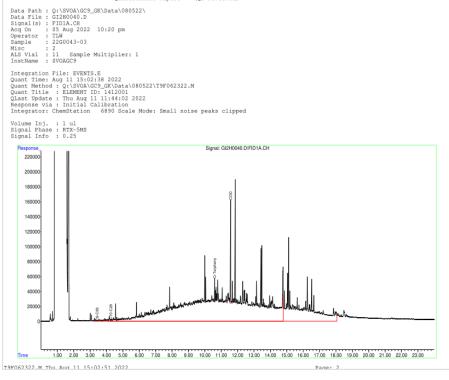
September 2023

Figure

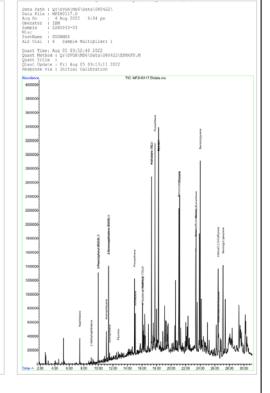


PAH Histogram for WW-SB-245 0-5ft

Figure Att1.19

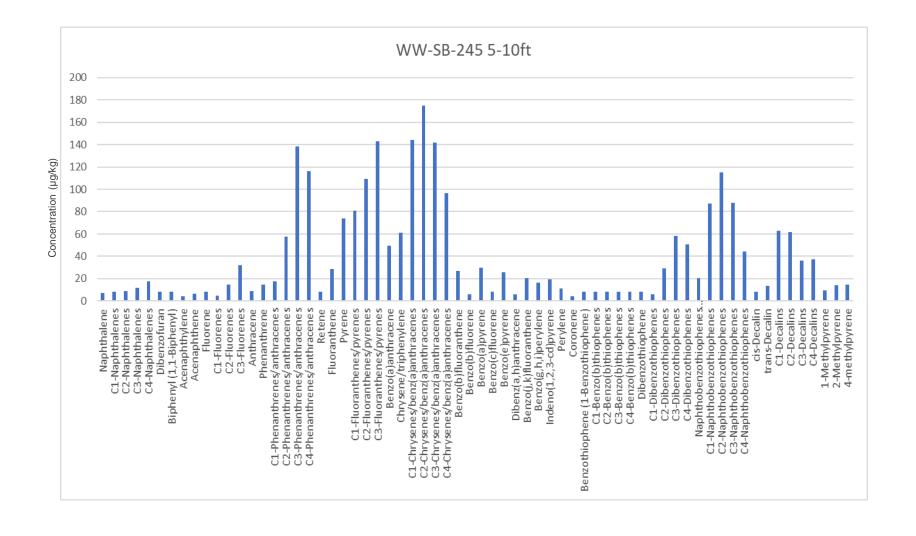

Williamsburg Former MGP Facility

Aliphatics



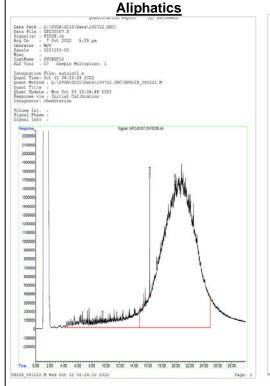
TPH-FID

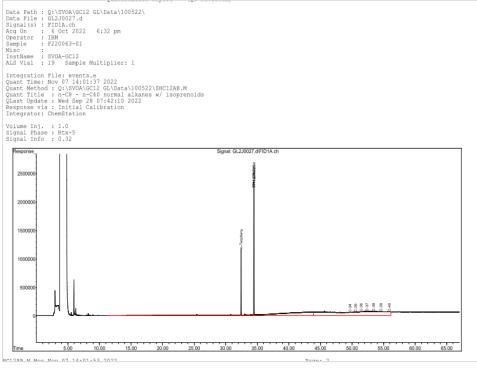
Quantitation Report


Aromatics

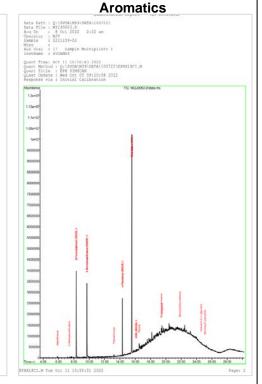
Chromatograms for WW-SB-245 0-5ft (Lab ID F220035-03)

Williamsburg Former MGP Facility

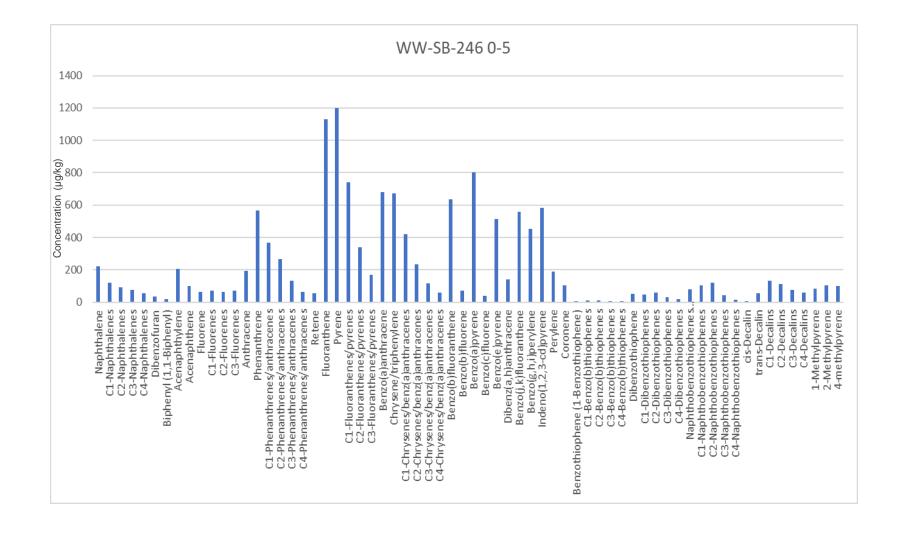

September 2023



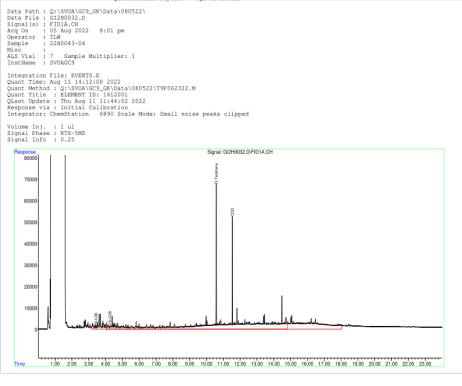
PAH Histogram for WW-SB-245 5-10ft

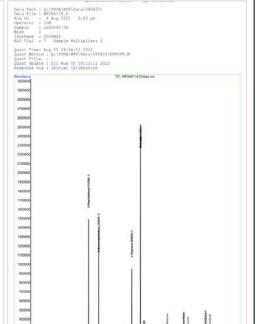

Williamsburg Former MGP Facility

September 2023


TPH-FID

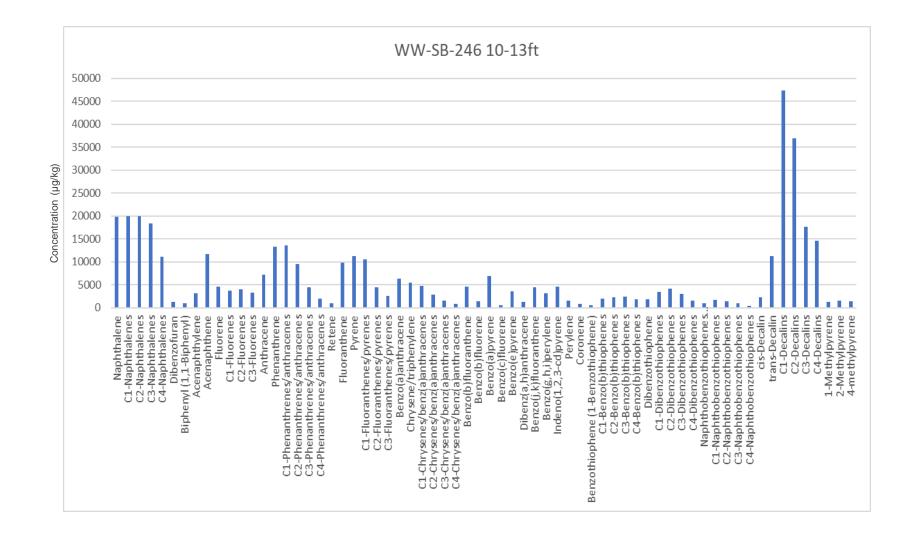
Chromatograms for WW-SB-245 5-10ft (Lab ID F220063-01)


Williamsburg Former MGP Facility


Figure Att1.22

PAH Histogram for WW-SB-246 0-5ft

TPH-FID

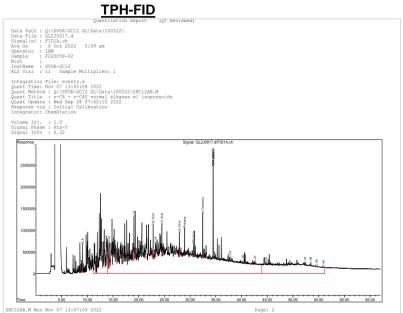

Aromatics

Chromatograms for WW-SB-246 0-5ft (Lab ID F220035-04)

EPH6FU.M FE1 Aug 05 09:54:32 2022

Williamsburg Former MGP Facility

September 2023



PAH Histogram for WW-SB-246 10-13ft

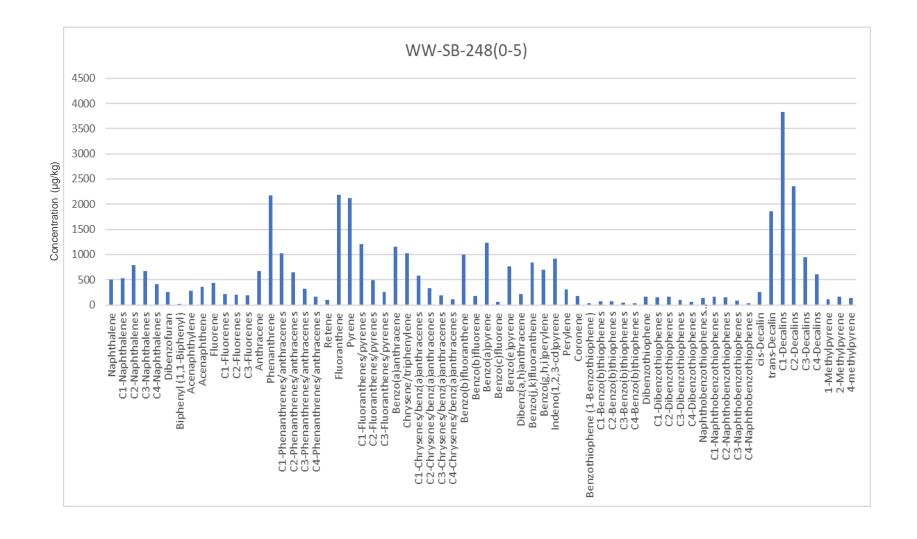
September 2023

Williamsburg Former MGP Facility

Data Path: G:\SNCA\CDIS\Data\11222\ Data Path: G:\SNCA\CDIS\Data\1122\ Data Path: G:\SNCA\CDIS\Data\11222\ Data Path: G:\SNCA\CDIS\Data\11222\Dat

Chromatograms for WW-SB-246 10-13ft (Lab ID F220058-02)

Williamsburg Former MGP Facility

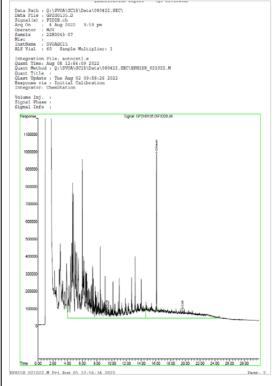

September 2023

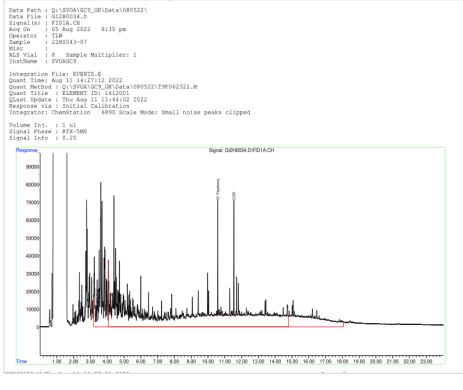
Aromatics

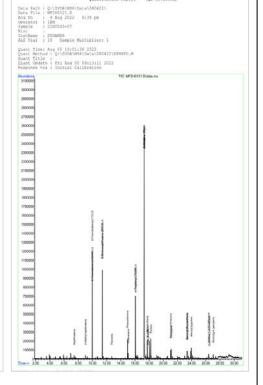
Quant Time: Nov 22 05:48:50 2002 Quant Method: Q:1970ANDSVIMERA:1171274EFFELNCL.H Quent Till: 1:578 2170CAM QCast Opdate: The New 17 11:55:38 2022 Response via : Initial Calibratio

> Figure Att1.26

emher 2023




PAH Histogram for WW-SB-248 0-5ft


Williamsburg Former MGP Facility

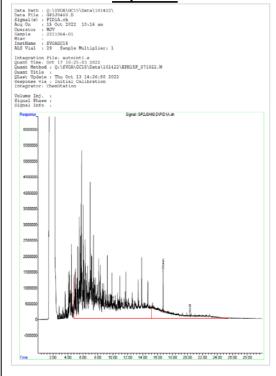
September 2023

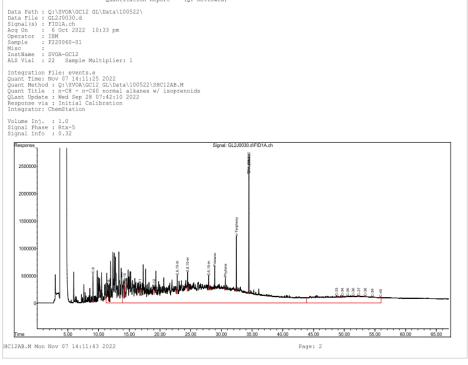
Aliphatics TPH-FID Aromatics

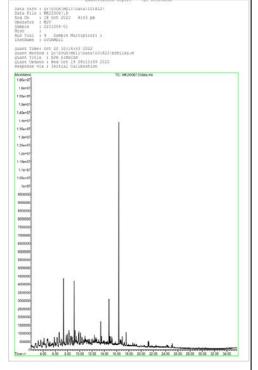
Chromatograms for WW-SB-248 0-5ft (Lab ID F220035-07)

Williamsburg Former MGP Facility

Figure Att1.28

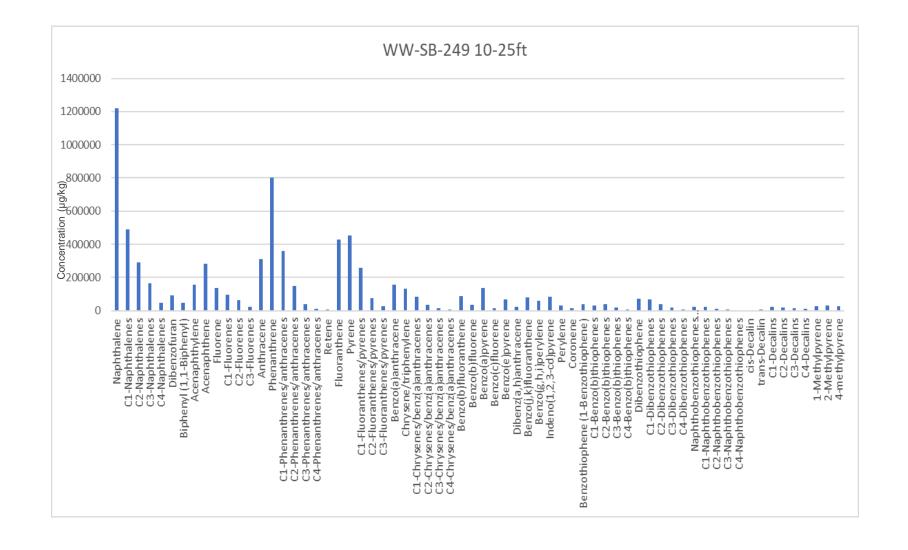

PAH Histogram for WW-SB-248 5-14ft	
------------------------------------	--


Williamsburg Former MGP Facility


September 2023

Aliphatics TPH-FID Aromatics

Quantitation Report (OT Reviewed)

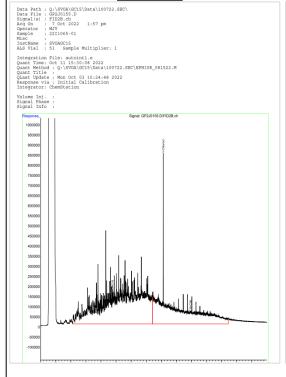


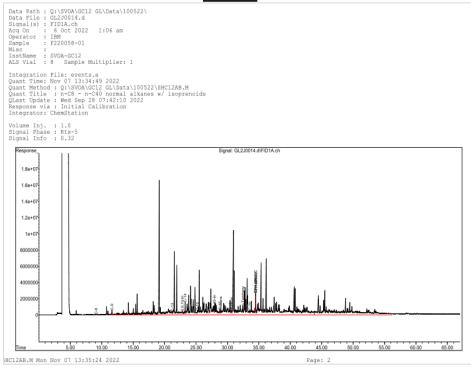
Chromatograms for WW-SB-248 5-14ft (Lab ID F220060-01)

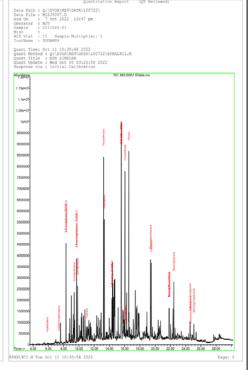
Williamsburg Former MGP Facility

September 2023

Figure

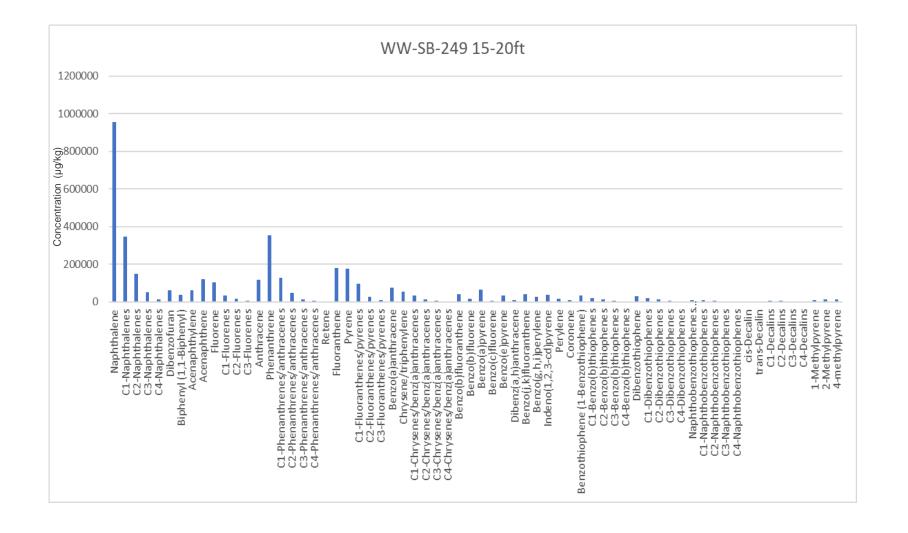



PAH Histogram for WW-SB-249 10-25ft


Figure
Att1.31

Williamsburg Former MGP Facility

Aliphatics TPH-FID Aromatics

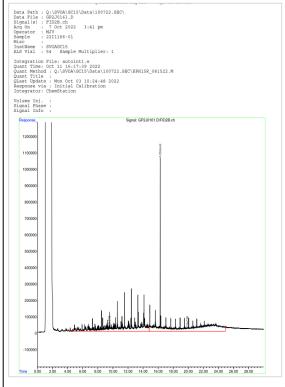


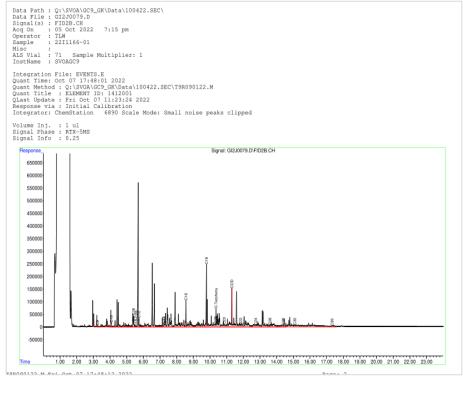
Chromatograms for WW-SB-249 10-25ft (Lab ID F220058-01)

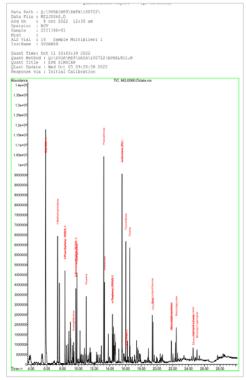
Williamsburg Former MGP Facility

September 2023

Figure

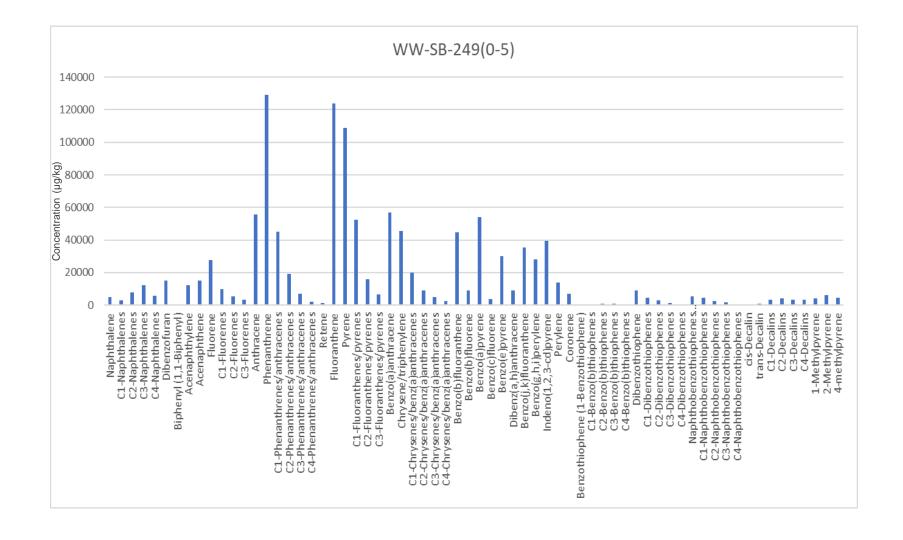



PAH Histogram for WW-SB-249 15-20ft


Figure Att1.33

Williamsburg Former MGP Facility

Aliphatics TPH-FID Aromatics



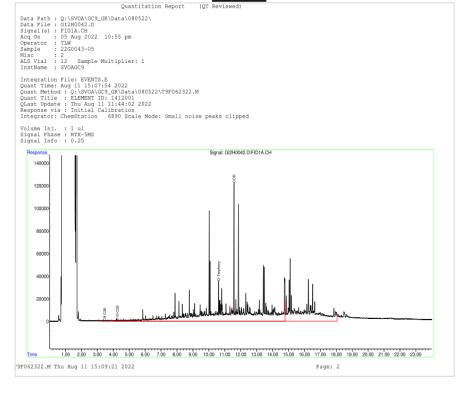
Chromatograms for WW-SB-249 15-20ft (Lab ID F220061-01)

Williamsburg Former MGP Facility

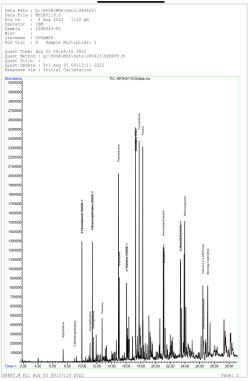
September 2023

Figure

PAH Histogram for WW-SB-249 0-5ft

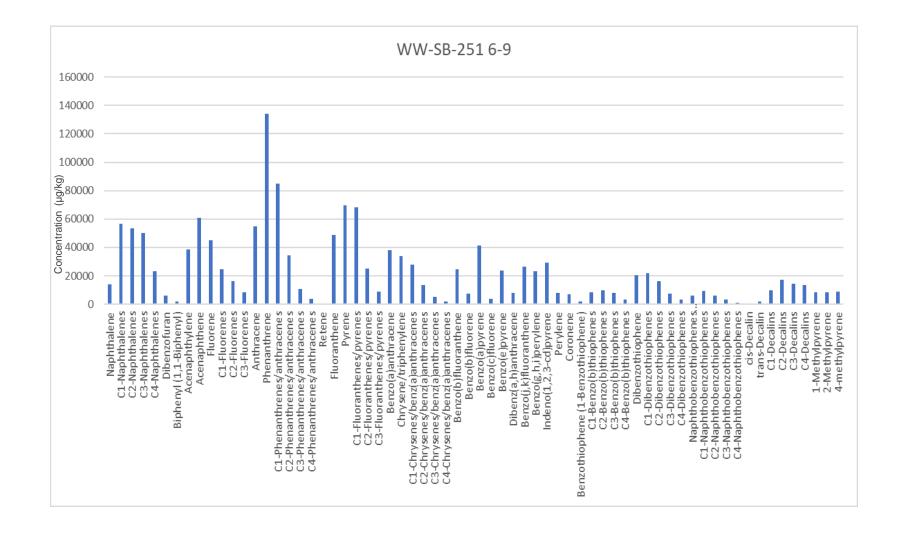

Figure Att1.35

Williamsburg Former MGP Facility


Aliphatics

TPH-FID

Aromatics



Chromatograms for WW-SB-249 0-5ft (Lab ID F220035-05)

Williamsburg Former MGP Facility

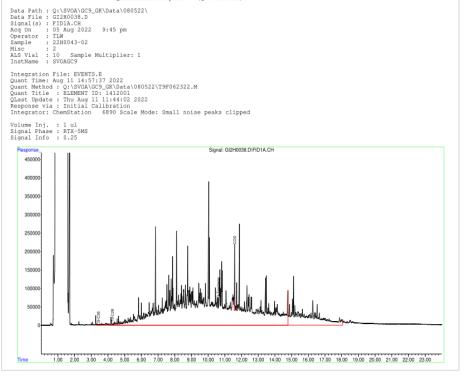
September 2023

Figure

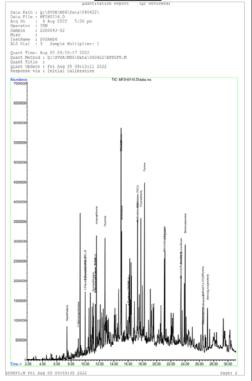
PAH Histogram for WW-SB-51 6-9ft

Figure Att1.37

Williamsburg Former MGP Facility

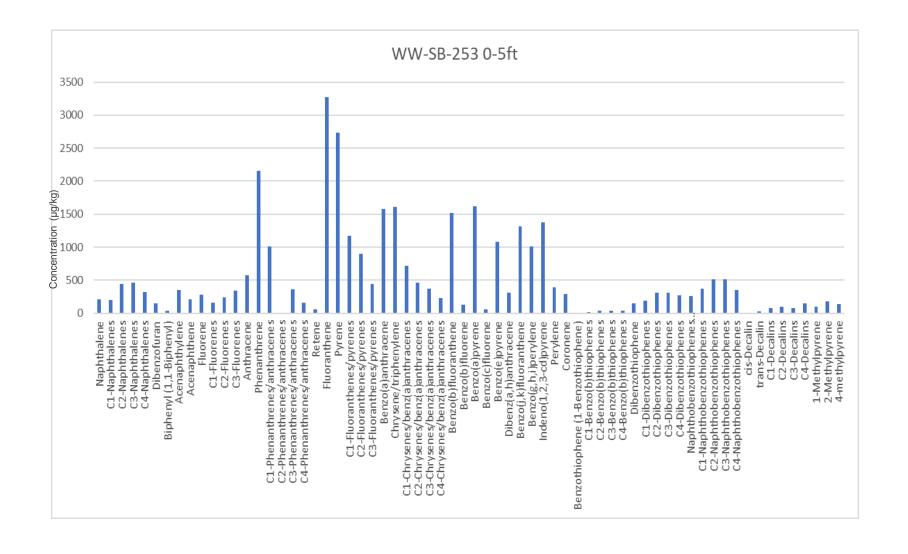

Aliphatics

Data Path : Q-14000A)CDIS\Data Path : Q-14000ACDIS\Data Path : Q-1400ACDIS\Data Path : Q-1400ACDIS


Time 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00

TPH-FID

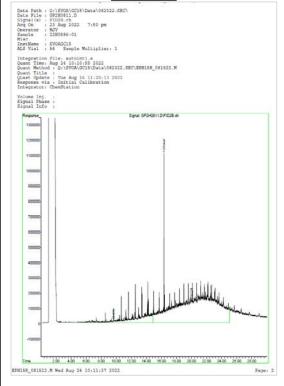
Quantitation Report

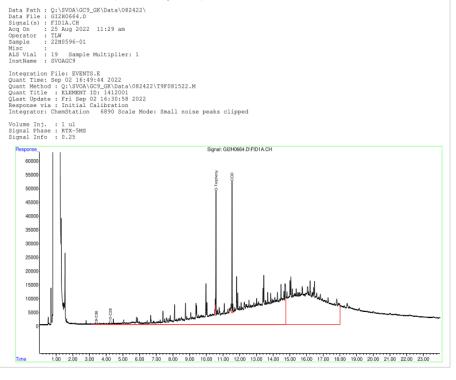

Aromatics

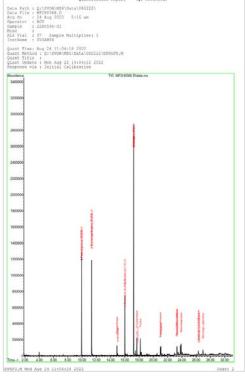
Chromatograms for WW-SB-51 6-9ft (Lab ID F220035-02)

Williamsburg Former MGP Facility

September 2023

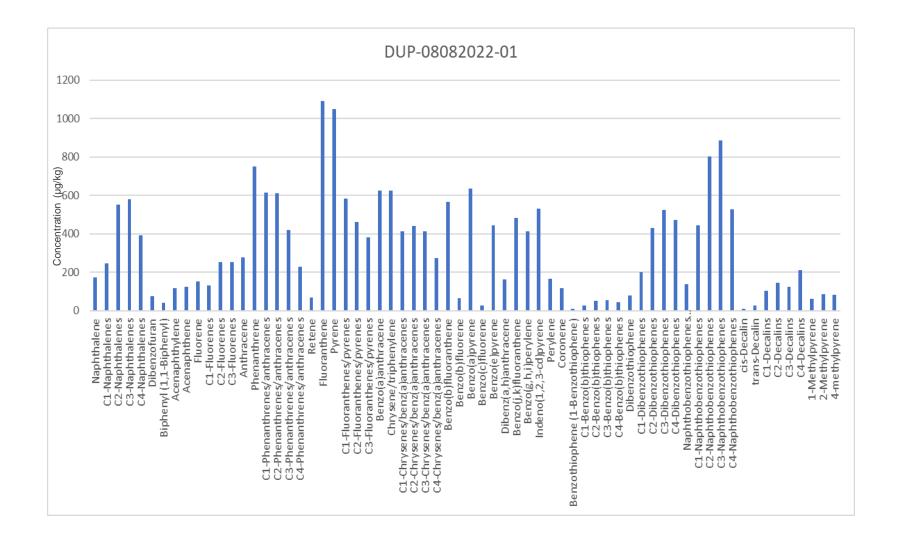



PAH Histogram for WW-SB-253 0-5ft


Figure Att1.39

Williamsburg Former MGP Facility

Aliphatics TPH-FID Aromatics Quantitation Report

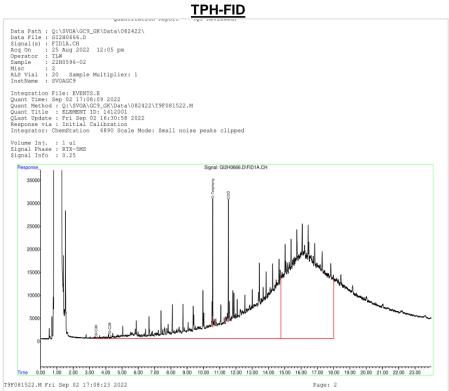


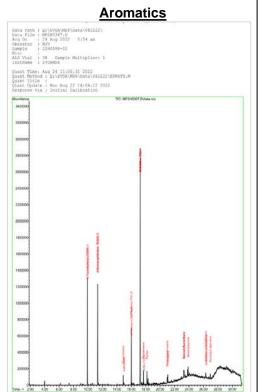
Chromatograms for WW-SB-253 0-5ft (Lab ID F220038-01)

Williamsburg Former MGP Facility

September 2023

PAH Histogram for DUP-08082022-01 0-5ft

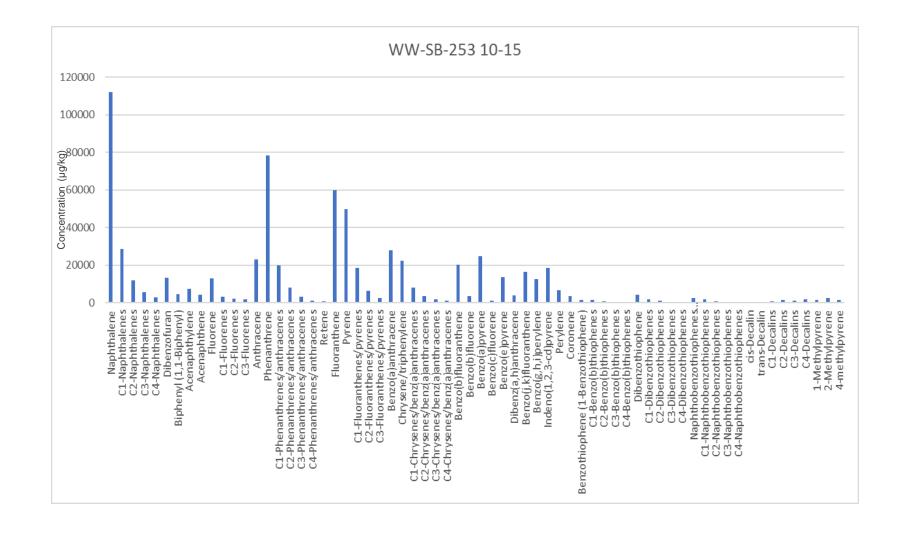

Att1.41


Figure

Williamsburg Former September 2023 MGP Facility

Data Path: 0.\SPOANOTIS\Data\082322.SEC\ Data File: GP288813.D Signal(a): 91728.e0 Socrator: MV Semble: STANOSE-02 Finathame: SVANOTIS ALS Vial: SS Sample Nultiplier: 1 Integration File: avoidate. Count Time. Amg 24 10:1447 7022 Response via: Initial Calibration Volume Tile: Very Nultiplier: 1 Signal Train: Signar Count Time. Signar Count

EPH15R 081522.M Wed Aug 24 10:15:02 2022

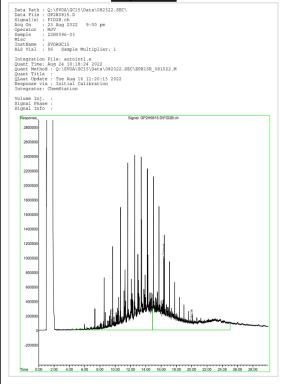


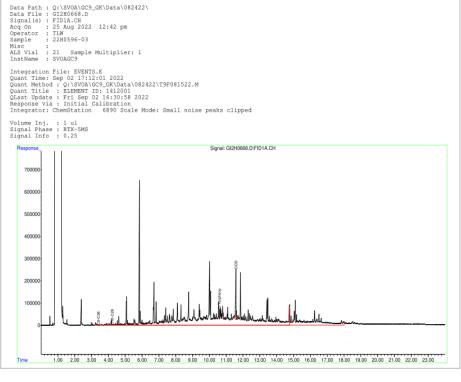
Chromatograms for DUP-08082022-01 0-5ft (Lab ID F220038-02)

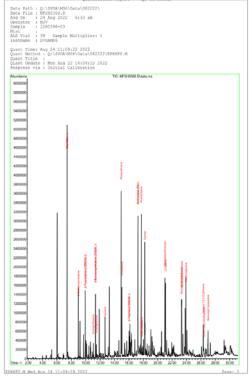
Williamsburg Former MGP Facility

September 2023

Figure

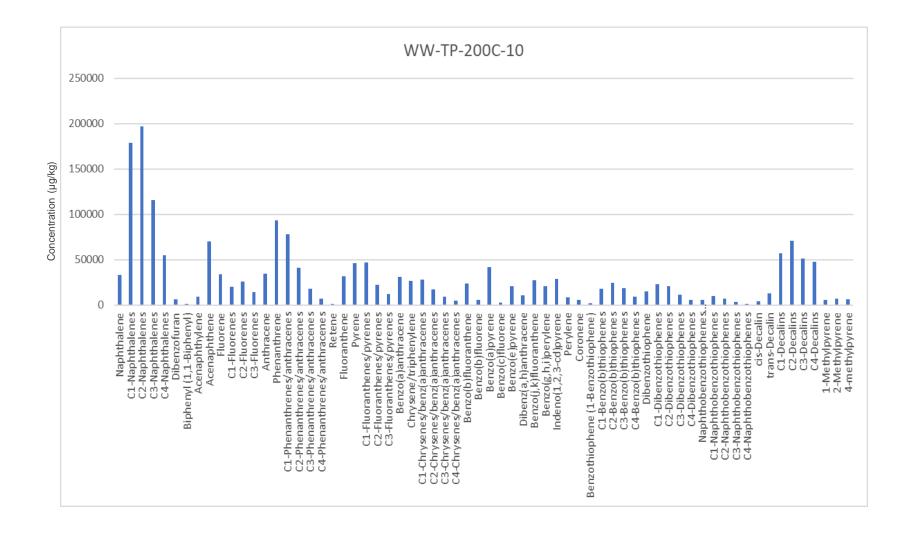



PAH Histogram for WW-SB-253 10-15


Figure Att1.43

Williamsburg Former MGP Facility

Aliphatics TPH-FID Aromatics

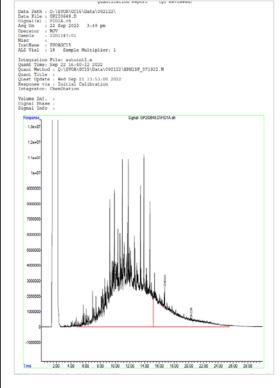


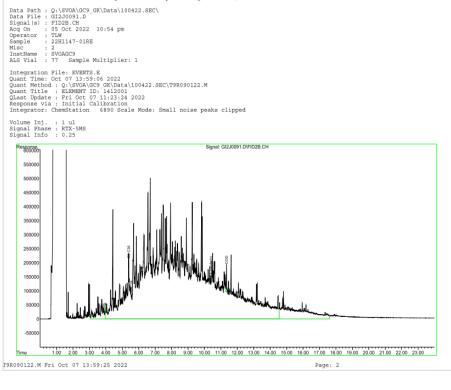
Chromatograms for WW-SB-253 10-15ft (Lab ID F220038-03)

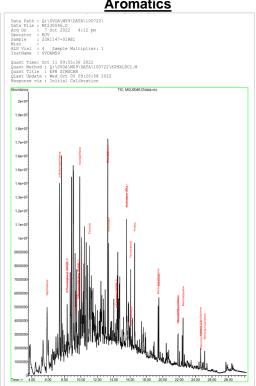
Williamsburg Former MGP Facility

September 2023

Figure

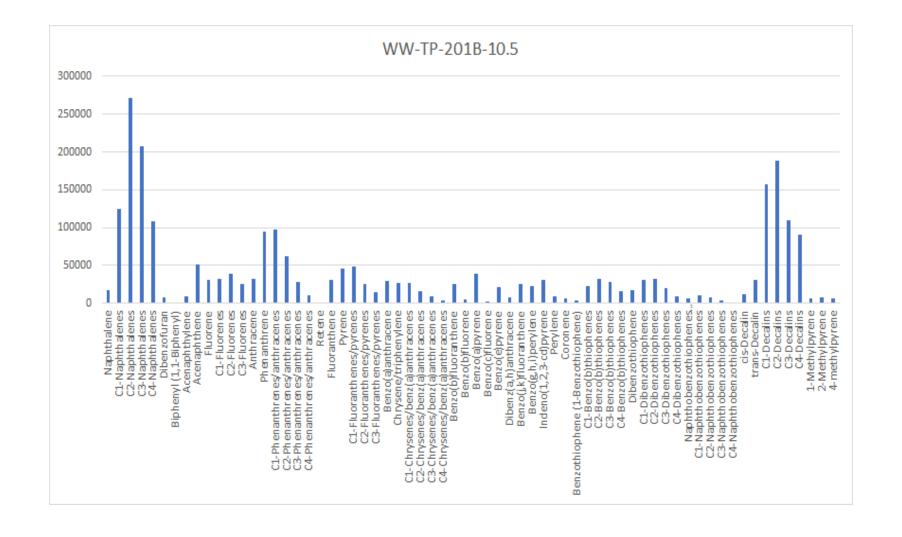



PAH Histogram for WW-TP-200C 10ft


Figure Att1.45

Williamsburg Former MGP Facility

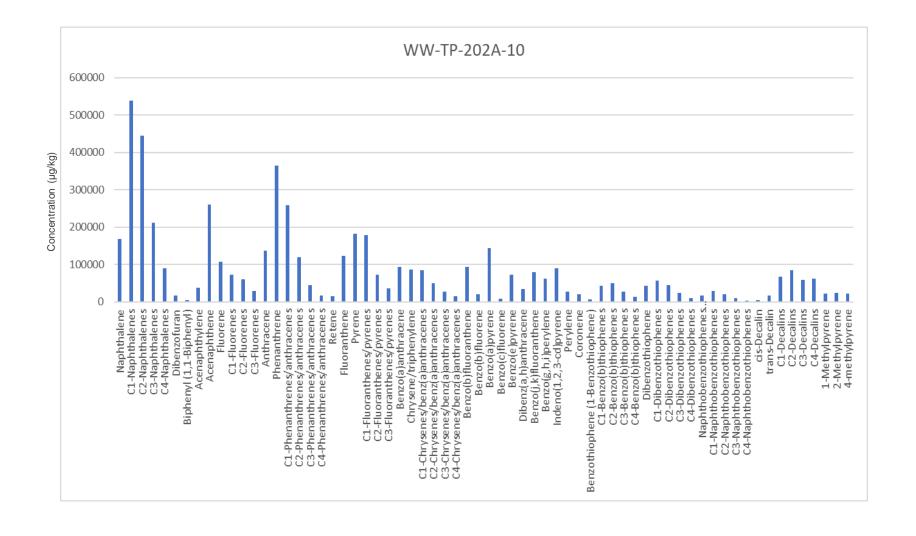
Aliphatics TPH-FID Aromatics Quantitation Report



Chromatograms for WW-TP-200 10ft (Lab ID F220041-01)

Williamsburg Former MGP Facility

September 2023


PAH Histogram for WW-TP-201B-10.5

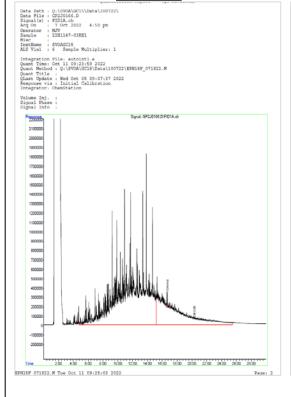
Aliphatics TPH-FID Aromatics Data Path : 0\SVGA\CCIS\Data\land100722\
Data Pile : GP200170.D
Signal(s) : PIDIA.ch
Acq On : 7 Oct 2022 5:59 pm
Operator : MAV
Sample : 22H147-058EH
Mise : SVGACCIS
AG Vial : 8 Sample Multiplier: 1 Data Path : 0:\SYOA\MS9\DATA\100722\ Data Pile : M12J0050.D Acd On : 7 Oct 2022 6:36 pm Operator : MIV Sample : 22H1147-058E1 M146 Data Path : Q:\SVOA\GC12 GL\Data\091922\
Data File : GL2I0122.d
Signal(s) : FIDIA.ch
Acq On : 20 Sep 2022 4:05 am
Operator : IBM Acq On : 20 Sep 2022 4:05 am
Operator : IBM
Sample : F220041-05
Misc : 5
InotName : SVOA-GC12
ALS Vial : 7 Sample Multiplier: 1 Quant Time: Oct 11 10:18:03 2022 Quant Method: 0.\gwca\mas\punta\\100722\mas\punta\circ\gramma Quant Tille: ERH SIMACON QLast Undate: Med Oct 05:09:20:58 2022 Response via: Initial Calibration Integration File: events.e Quant Time: Oct 31 16:04:45 2022 Quant Method: Q:\SVOA(9C12 GL\Data\091922\SHC12AB.M Quant Title : n-C8 - n-C40 normal alkanes w/ isoprenoids Clast Update: Thu Sep 00 60:16:42 2022 Response via : Initial Calibration Integrator: Chemitation Signal: GP2J0170.DIFID1A.ch 2.2e+07-Volume Inj. : 1.0 Signal Phase : Rtx-5 Signal Info : 0.32 1.9e+07-Signal: GL2I0122.d\FID1A.ch 1.0e+07 4000000 1.5e+07-3500000 1.5e+07-1.1e+07-2500000 2000000 1500000 1000000 500000 Page: 3 SHC12AB.M Mon Oct 31 16:04:53 2022 PH15F_071922.M Tue Oct 11 09:35:41 2022

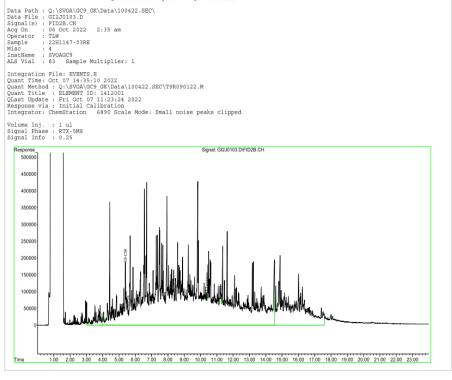
> Chromatograms for WW-TP-201B-10.5 (Lab ID F220041-01)

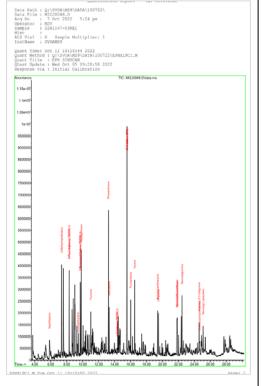
Williamsburg Former MGP Facility

September 2023

PAH Histogram for WW-TP-202A 10ft

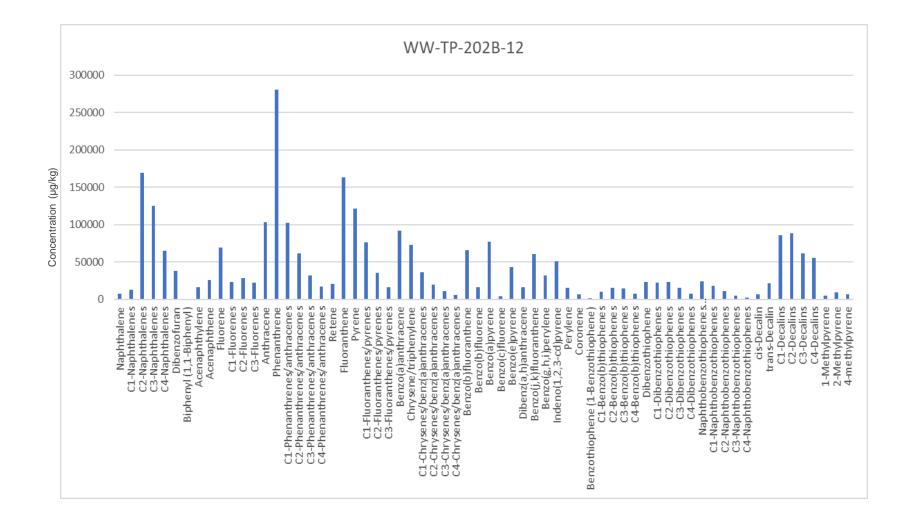

Figure Att1.49


Williamsburg Former MGP Facility


Aliphatics

TPH-FID

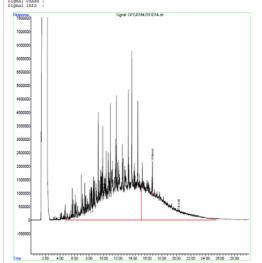
Aromatics



Chromatograms for WW-TP-202A 10ft (Lab ID F220041-03)

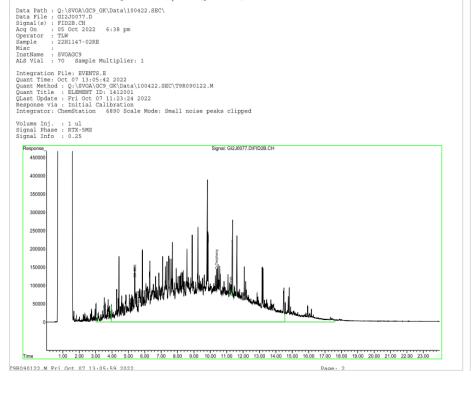
Williamsburg Former MGP Facility

September 2023

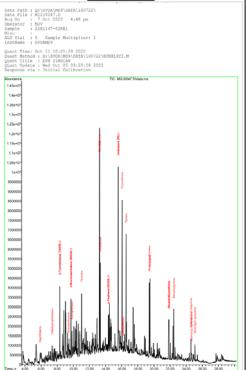


PAH Histogram for WW-TP-202B 12ft

Att1.51


Figure

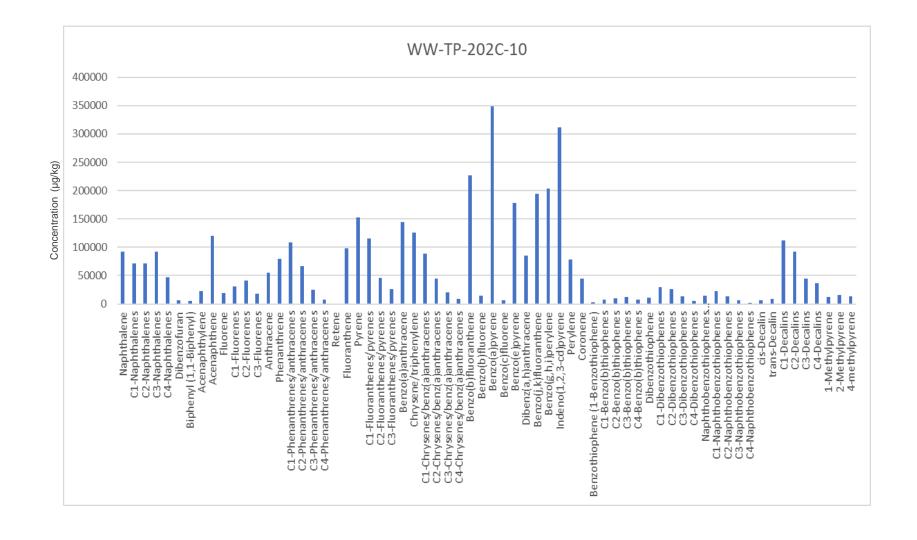
Aliphatics | Data Fath : 0.\PVGA\OCIS\Data\loop



TPH-FID

Quantitation Report

Aromatics



Chromatograms for WW-TP-202B 12ft (Lab ID F220041-02)

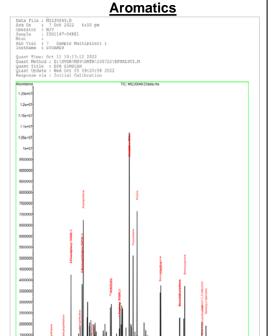
Williamsburg Former MGP Facility

September 2023

Figure

PAH Histogram for WW-TP-202C 10ft

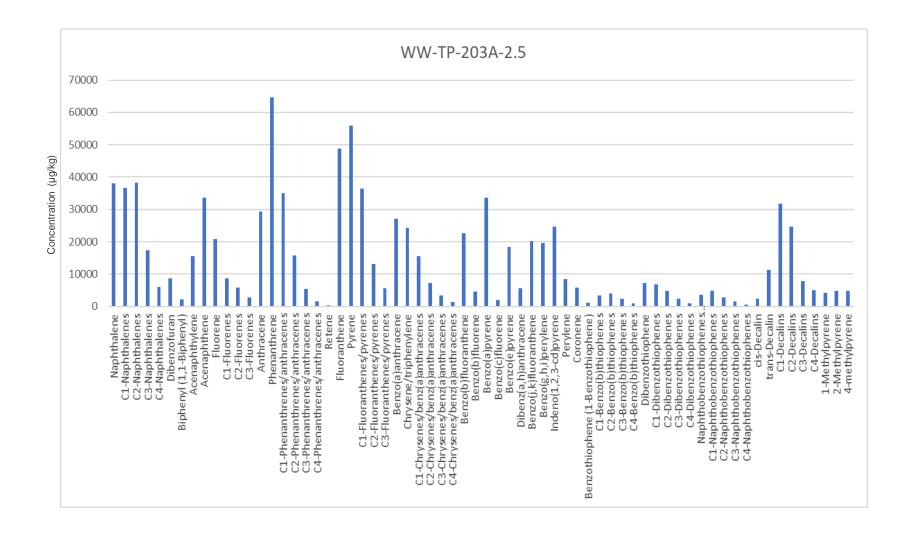
Att1.53


Figure

Williamsburg Former MGP Facility

Aliphatics

TPH-FID Quantitation Report (QT Reviewed)


Data Path : Q\SVOA\GCIS\Data\lorez\Data Pile : GP300168.D Data Pile : GP30168.D Signal(s) : FIDIA.ch Acq On : 7 Oct 2022 5:25 pm Operator : MIV Sample : 22HL147-04REI Hisc : SVOACCIS InstName : SVOACCIS ALG Vial : 7 Sample Multiplier: 1 Data Path : Q:\SVOA\GC9 GK\Data\100422.SEC\
Data File : GIZJO093.D
Signal(s) : FIDZB.CH
Acq On : 05 Oct 2022 11:31 pm
Operator : TLW
Sample : 2ZH1147-04RE
MINTENSE : SVOAGC9
InstName : SVOAGC9
ALS Vial : 78 Sample Multiplier: 1 Integration File: autoint1.e Cuant Time: Oct 11 09:28:54 2022 Cuant Method : 0;18V0AjCOS1Vpata\100722\EM915F_071922.M Cuant Title: Cleart Update: 10ed Oct 05 09:07:37 2022 Empower Via Initial Calibration Integrator: ChemStation Integration File: EVENTS.E
Quant Time: Oct 07 14:04:26 2022
Quant Method: Q:\SVOA\GCS_GK\Data\100422.SEC\T9R090122.M
Quant Title: ELEMENT ID: 1412001
Quant Title: ELEMENT ID: 1412001
Quant Title: CELEMENT ID: 31:24 2022
Response via: Initial Calibration
Integrator: ChemStation 6890 Scale Mode: Small noise peaks clipped Signal: GP2J0168.D\FID1A.ch Volume Inj. : 1 ul Signal Phase : RTX-5MS Signal Info : 0.25 Signal: GI2J0093.D\FID2B.CH 30000 250000 200000 150000 100000 50000 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 Time 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 T9R090122.M Fri Oct 07 14:04:42 2022

Chromatograms for WW-TP-202C 10ft (Lab ID F220041-04)

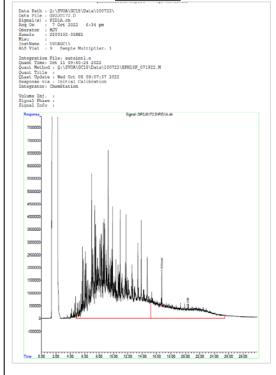
Williamsburg Former MGP Facility

September 2023

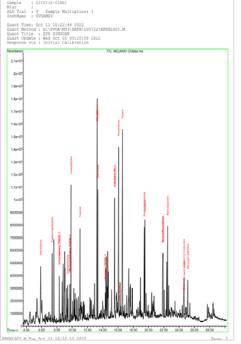
PAH Histogram for WW-TP-203A 2.5ft

Att1.55 September 2023

Figure

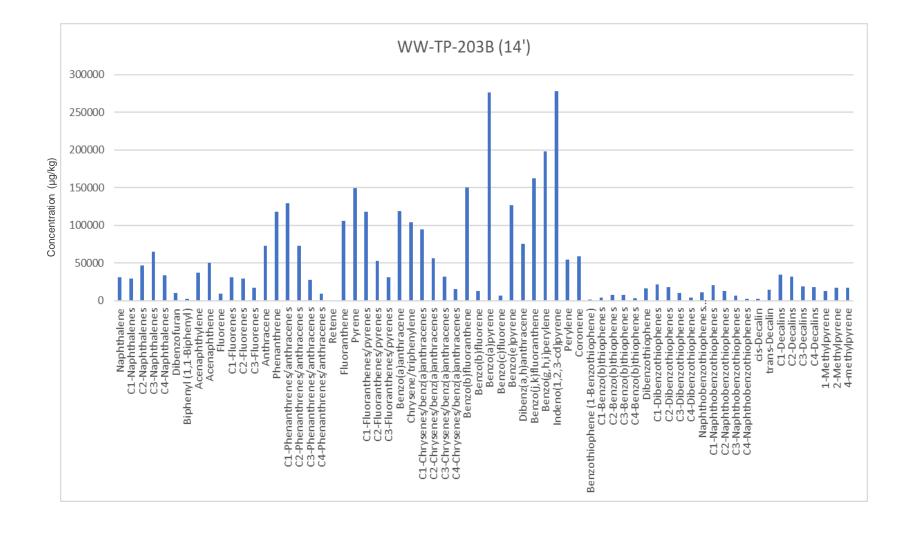

Williamsburg Former MGP Facility

Aliphatics


Quantitation Report (QT Reviewed)

Aromatics

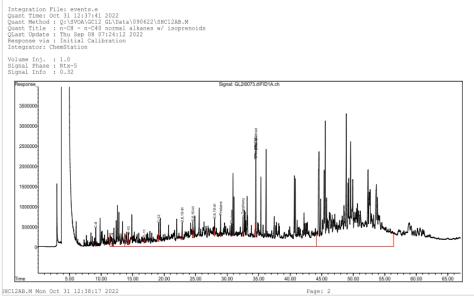
Esta Fath : QUINVOAMES/NBATA1007727
bata File : MIZZ0051.4 MIZZ005

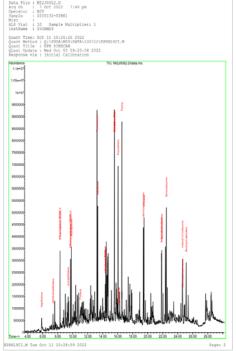

Chromatograms for WW-TP-203A 2.5ft (Lab ID F220045-01)

Williamsburg Former MGP Facility

September 2023

Figure
Att1.56


mhor 2022



PAH Histogram for WW-TP-203B 14ft

September 2023

Chromatograms for WW-TP-203B 14ft (Lab ID F220045-02)

Williamsburg Former MGP Facility

September 2023

Figure

Remedial Investigation Report K – Williamsburg Works Brooklyn, New York August 29, 2025

Appendix M Parcel 2 RI Data for IRM Remediated Area

Soil Vapor/Indoor Air Matrix A

May 2017

Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c-1,2-DCE), 1,1-Dichloroethene (1,1-DCE), Carbon Tetrachloride

	INDOOR AIR	CONCENTRATION of COMPOUN	ID (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 to < 1	1 and above
< 6	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

mcg/m³ = micrograms per cubic meter

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

ADDITIONAL NOTES FOR MATRIX A

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix B

May 2017

Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (1,1,1-TCA), Methylene Chloride

	INDOOR AIR	CONCENTRATION of COMPOUN	ID (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 3	3 to < 10	10 and above
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

mcg/m3 = micrograms per cubic meter

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

ADDITIONAL NOTES FOR MATRIX B

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion to occur is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix C

May 2017

Analytes Assigned: Vinyl Chloride

	INDOOR AIR CONCENTRATIO	ON of COMPOUND (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 and above
< 6	No further action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
6 to < 60	4. MONITOR	6. MITIGATE
60 and above	7. MITIGATE	9. MITIGATE

mcg/m³ = micrograms per cubic meter

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

ADDITIONAL NOTES FOR MATRIX C

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix D

February 2024

Analytes Assigned:

Benzene, ethylbenzene, naphthalene, cyclohexane, isooctane (2,2,4-trimethylpentane), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, o-xylene

	INDOOR AIR	CONCENTRATION of COMPOUN	ID (mcg/m³)		
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 2	2 to < 10	10 and above		
< 60	No further action	2. No Further Action	3. IDENTIFY SOURCE(S) or RESAMPLE or MITIGATE		
60 to < 600	4. No further action	5. MONITOR	6. MITIGATE		
600 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE		

mcg/m³ = micrograms per cubic meter

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) or Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation, and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building -specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX D Page 1 of 2

ADDITIONAL NOTES FOR MATRIX D

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion to occur is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix E

February 2024

Analytes Assigned:

m,p-xylene, heptane, hexane

	INDOOR AIR	CONCENTRATION of COMPOUN	ND (mcg/m³)			
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 6	6 to < 20	20 and above			
< 200	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) or RESAMPLE or MITIGATE			
200 to < 2,000	4. No further action	5. MONITOR	6. MITIGATE			
2,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE			

mcg/m³ = micrograms per cubic meter

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) or Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation, and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building -specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX E Page 1 of 2

ADDITIONAL NOTES FOR MATRIX E

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion to occur is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix F

February 2024

Analytes Assigned: Toluene

	INDOOR AIR	CONCENTRATION of COMPOUN	ND (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 10	10 to < 50	50 and above
< 300	1. No Further Action	2. No Further Action	3. IDENTIFY SOURCE(S) or RESAMPLE or MITIGATE
300 to < 3,000	4. No Further Action	5. MONITOR	6. MITIGATE
3,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

mcg/m³ = micrograms per cubic meter

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) or Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation, and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building -specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX F Page 1 of 2

ADDITIONAL NOTES FOR MATRIX F

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion to occur is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Remedial Investigation Report K – Williamsburg Works Brooklyn, New York August 29, 2025 Appendix N NYSDEC National Heritage Correspondence

Table 1M. Detected Surface Soil Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

			A	Adjacent to Parcel	2
Location:	Unrestricted	Restricted	N .12th St. ROW	N. 11th St. ROW	N .12th St. ROW
Sample Name:	SCO	Residential	WWSS-01	WWSS-02	WWSS-03
Sample Depth (feet bgs):		sco	(0-0.2)	(0-0.2)	(0-0.2)
Sample Date:			10/6/2009	10/6/2009	10/6/2009
BTEX (mg/kg)					
Toluene	0.7	100	0.00016 J	0.0052 U	0.0052 U
Total BTEX	NE	NE	0.00016	ND	ND
Other VOCs (mg/kg)					
Total VOCs	NE	NE	0.00016	ND	ND
PAHs (mg/kg)					
Acenaphthylene	100	100	0.23 J	0.51 J	0.21 J
Anthracene	100	100	0.14 J	0.21 J	0.14 J
Benz[a]anthracene	1	1	0.66 J	1.2 J	0.59 J
Benzo[a]pyrene	1	1	1 J	1.6 J	0.71 J
Benzo[b]fluoranthene	1	1	1 J	1.8 J	0.87 J
Benzo[g,h,i]perylene	100	100	1.1 J	1.8 J	0.75 J
Benzo[k]fluoranthene	0.8	3.9	0.5 J	0.73 J	0.25 J
Chrysene	1	3.9	0.73 J	1.3 J	1 J
Dibenz[a,h]anthracene	0.33	0.33	1.2 U	0.48 J	1.1 UJ
Fluoranthene	100	100	0.95 J	1.1 J	0.75 J
Fluorene	30	100	0.087 J	1.1 U	0.076 J
Indeno[1,2,3-cd]pyrene	0.5	0.5	1.1 J	1.9 J	0.73 J
Phenanthrene	100	100	0.73 J	0.43 J	0.74 J
Pyrene	100	100	1.5	2.6 J	1.7 J
Total PAHs	NE	NE	9.727	15.66	8.516
Other SVOCs (mg/kg)					
Butyl benzyl phthalate	NE	NE	0.078 J	0.18 J	0.25 J
Carbazole	NE	NE	1.2 U	1.1 U	0.063 J
Di-n-butyl phthalate	NE	NE	1.2 U	1.1 U	0.25 J
Total Other SVOCs	NE	NE	0.078	0.18	0.563
PCBs (mg/kg)					
Aroclor 1248	NE	NE	0.019 UJ	0.0071 J	0.17 U
Aroclor 1254	NE	NE	0.024 JN	0.02 J	0.17 U
Aroclor 1260	NE	NE	0.045 J	0.045 JN	0.17 U
Aroclor 1268	NE	NE	0.017 J	0.085 J	1.8 J
Total PCBs	0.1	1	0.086	0.1571	1.8
Pesticides (mg/kg)					
Alpha-chlordane	0.094	4.2	0.0026 JN	0.0056 J	0.017 UJ
Beta-BHC	0.036	0.36	0.0019 UJ	0.0014 J	0.017 UJ
Chlordane, gamma	NE	NE	0.005 JN	0.0076 JN	0.017 UJ
DDE,4,4-	0.0033	8.9	0.0037 UJ	0.0086 J	0.034 UJ
DDT,4,4-	0.0033	7.9	0.011 J	0.018 J	0.15 J
Delta-BHC	0.04	100	0.00066 J	0.0017 U	0.017 UJ
Endrin	0.014	11	0.0037 U	0.0033 UJ	0.049 JN
Endrin aldehyde	NE	NE	0.0058 J	0.01 J	0.58 JN
Heptachlor epoxide	NE	NE	0.0041 J	0.0017 UJ	0.017 UJ
Methoxychlor	NE	NE	0.019 UJ	0.017 UJ	0.21 JN

Table 1M. Detected Surface Soil Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

			A	djacent to Parcel	2
Location:	Unrestricted	Restricted	N .12th St. ROW	N. 11th St. ROW	N .12th St. ROW
Sample Name:	SCO	Residential	WWSS-01	WWSS-02	WWSS-03
Sample Depth (feet bgs):	000	sco	(0-0.2)	(0-0.2)	(0-0.2)
Sample Date:			10/6/2009	10/6/2009	10/6/2009
Metals (mg/kg)					
Aluminum	NE	NE	5580	4010	2560
Arsenic	13	16	19.9 J	4.4 J	5.3 U
Barium	350	400	77.2 J	51.3 J	40.3 J
Beryllium	7.2	72	0.4 J	0.27 J	0.17 J
Cadmium	2.5	4.3	0.6 J	0.43 J	0.34 J
Calcium	NE	NE	17000	59500	124000
Chromium	NE	NE	16.2	12.5	11.6
Cobalt	NE	NE	5.8	5	3.9 J
Copper	50	270	71.5	66.5	59.3
Iron	NE	NE	11600	11500	11800
Lead	63	400	233	166	133
Magnesium	NE	NE	5600	13700	60300
Manganese	1600	2000	208	159	205
Mercury	0.18	0.81	0.37	0.16	0.099
Nickel	30	310	21.1	15.9	14
Potassium	NE	NE	751 J	550 J	526 J
Silver	2	180	1.4 U	0.16 J	1.3 UJ
Sodium	NE	NE	182 J	383 J	176 J
Vanadium	NE	NE	23.1	31.4	31.9
Zinc	109	10000	239	171	372

Notes:

mg/kg - milligrams/kilogram or parts per million (ppm)

BTEX - benzene, toluene, ethylbenzene, and xylenes

VOCs - volatile organic compounds

PAHs - polycyclic aromatic hydrocarbons

SVOCs - semivolatile organic compounds

PCBs - polychlorinated biphenyls

Total BTEX, Total VOCs, Total PAHs, Total SVOCs, and Total PCBs are calculated using detects only.

6 NYCRR - New York State Register and Official Compilation of Codes, Rules and Regulations of the State of New York UNRESTRICTED USE SCO - regulatory comparison against 6 NYCRR, Chapter IV, Part 375-6 Unrestricted Use Soil Cleanup Objectives

RESTRICTED RESIDENTIAL USE SCO - regulatory comparison against 6 NYCRR, Chapter IV, Part 375-6 Restricted Use Restricted Residential Soil Cleanup Objectives

NE - not established

NA - not analyzed

ND - not detected; total concentration is listed as ND because no compounds were detected in the group

Bolding indicates a detected concentration

Gray shading and bolding indicates that the detected result value exceeds established UNRESTRICTED USE SCO Yellow shading and bolding indicates that the detected result value exceeds established UNRESTRICTED USE SCO and RESTRICTED RESIDENTIAL USE SCO

Validation Qualifiers:

J - estimated value

JN - analyte is presumptively present at an approximated quantity

U - indicates not detected to the reporting limit for organic analysis and the method detection limit for inorganic analysis

UJ - not detected at or above the reporting limit shown and the reporting limit is estimated

Table 2M. Detected Subsurface Soil Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

Location:		Restricted-								arcel 2 [Blocl	k 2287 at 1]							
Sample Name: Sample Depth(ft bgs): Sample Date:		Residential SCO	WW-MW-05 (0.75-5) 6/10/2009	Duplicate of WW-MW-05 (0.75-5) 6/10/2009	WW-MW-05 (12-13) 6/10/2009	WW-MW-17 (1-2) 6/8/2009	WW-SB-03 (3-5) 7/14/2009	Duplicate of WW-SB-03 (3-5) 7/14/2009	WW-SB-03 (20-22) 7/14/2009	WW-SB-04 (2-4) 10/5/2009	WW-SB-04 (18-20) 10/5/2009	Duplicate of WW-SB-04 (18-20) 10/5/2009	WW-SB-05 (3-5) 7/14/2009	WW-SB-05 (20-24) 7/14/2009	WW-SB-07 (3-5) 7/15/2009	WW-SB-07 (19-22) 7/15/2009	WW-SB-09 (2-4) 6/26/2009	WW-SB-10 (2-3) 6/26/2009
BTEX (mg/kg)																		
Benzene	0.06	4.8	3.8 J	2.1 J	84	0.0059 U	0.011	0.0076	270	0.0025 J	100 J	200 J	0.0061 J	3000	0.021	120	0.0059 U	0.0041 J
Toluene	0.7	100	26	19	220	0.0059 U	0.00034 J	0.0005 J	230	0.0015 J	56 J	110	0.0061 U	4300	0.00031 J	260	0.0059 U	0.0057 U
Ethylbenzene	1	41	38	32	320	0.0059 U	0.0057 U	0.0055 U	3000	0.0053 UJ	1100 J	1900 J	0.0012 J	2800	0.0028 J	38	0.0059 U	0.0057 UJ
Total Xylene	0.26	100	81	65	340	0.0059 U	0.0057 U	0.0055 U	2800	0.0018 J	920	1500	0.002 J	4300	0.0015 J	320	0.0059 U	0.0057 UJ
Total BTEX	NE	NE	148.8	118.1	964	ND	0.01134	0.0081	6300	0.0058	2176	3710	0.0093	14400	0.02561	738	ND	0.0041
Other VOCs (mg/kg)	2.25	100	2011		0.4.11	0.00444	0.000.111	0.000.111	0.50.11		400.11	45011	0.004444	2=2::	0.000.111	2411	0.00411	
Acetone	0.05	100	28 U	5.6 U	31 U	0.024 U	0.023 UJ	0.022 UJ	350 U	0.021 UJ	160 U	150 U	0.024 UJ	350 U	0.022 UJ	34 U	0.024 U	0.023 U
Carbon disulfide	NE	NE	11 U	2.3 U	13 U	0.0059 U	0.0057 U	0.0055 U	140 U	0.0012 J	65 U	61 U	0.0061 U	140 U	0.0054 U	14 U	0.0059 U	0.00058 J
Chloromethane	NE 0.05	NE 100	11 U	2.3 U	13 U	0.0059 U	0.0057 U	0.0055 U	140 U	0.0053 U	65 U	61 U	0.0061 U	140 U	0.0054 U	14 U	0.0059 U	0.004 J
cis-1,2-Dichloroethene	0.25	100	11 U	2.3 U	13 U	0.0059 U	0.0057 U	0.0055 U	140 U	0.0053 UJ	65 U	61 U	0.0019 J	140 U	0.0054 U	14 U	0.0059 U	0.0057 UJ
Styrene	NE 1.2	NE 10	14	11 2.3 U	13 U	0.011	0.0057 U	0.0055 U	140 U	0.0053 UJ	65 U 65 U	61 U	0.0061 U	1100	0.0054 U	270 14 U	0.0059 U	0.0057 UJ
Tetrachloroethene (PCE)	1.3 0.47	19 21	11 U 11 U	2.3 U	13 U 13 U	0.0059 U 0.0059 U	0.0057 U 0.0057 U	0.0055 U 0.0055 U	140 U	0.0053 UJ 0.0053 U	65 U	61 U 61 U	0.0061 U 0.047	140 U 140 U	0.0054 U 0.0054 U	14 U	0.00098 J 0.0042 J	0.0057 UJ 0.0057 U
Trichloroethene (TCE) Total VOCs	NE	NE	162.8	129.1	964	0.0059 U 0.011	0.0057 U	0.0055 0	140 U 6300	0.0053 0	2176	3710	0.047	15500	0.0054 0	1008	0.0042 3	0.0037 0
PAHs (mg/kg)	INE	INC	102.0	125.1	304	0.011	0.01134	0.0001	6300	0.007	2176	37 10	0.0362	15500	0.02561	1000	0.00516	0.00868
Acenaphthene	20	100	6.8 J	10 J	73	0.23 J	0.064 J	0.13 J	240	0.29 J	2500 J	690 J	4.1	590 J	0.19 J	18 J	0.063 J	0.16 J
Acenaphthylene	100	100	68	110	14 J	0.88 J	0.55	0.54 J	180 J	0.95	280 J	82 J	1.7 J	6400	1.8	180	1	1.6
Anthracene	100	100	23 J	36 J	26 J	0.6 J	0.66	0.71 J	170 J	0.81	980 J	290 J	8	2200 J	1.2	51 J	0.43	0.73
Benz[a]anthracene	1	1	12 J	19 J	14 J	5.1	1.1	1.4	82 J	2.9	470 J	140 J	20	1100 J	1.7	27 J	1.2	2.7 J
Benzo[a]pyrene	1	1	8.5 J	15 J	11 J	11	0.87	1.2	60 J	5.4 J	340 J	100 J	21	810 J	1.7	20 J	1.8	5.1 J
Benzo[b]fluoranthene	1	1	6.3 J	10 J	7.9 J	9.7	1.1	1.3	37 J	5.1 J	260 J	82 J	22	540 J	2.3	14 J	1.6	4.1 J
Benzo[g,h,i]perylene	100	100	61 U	61 U	33 U	5.2 J	1.1	1.6	26 J	4.9 J	1400 U	330 U	16	280 J	0.96	8 J	1.1	3.8 J
Benzo[k]fluoranthene	0.8	3.9	61 U	61 U	33 U	3.9	0.35	0.47 J	17 J	1.7 J	1400 U	330 U	8.4	3000 U	0.91	73 U	0.6	1.5
Chrysene	1	3.9	11 J	18 J	12 J	5.2	1.7	1.9	85 J	3.1	430 J	130 J	19	1000 J	2.1	26 J	1.3	2.8 J
Dibenz[a,h]anthracene	0.33	0.33	61 U	61 U	33 U	2.4	0.39	0.76 J	190 U	1.3 J	1400 U	330 U	4.2	3000 U	0.34	73 U	0.49	1.2
Fluoranthene	100	100	22 J	37 J	25 J	3.7	1.3	2	140 J	2	820 J	250 J	43	2000 J	3.1	48 J	0.96	3.1 J
Fluorene	30	100	38 J	63	40	1.3 U	0.11 J	1.2 U	220	0.26 J	1300 J	370	3.4	3400	0.37	80	0.11 J	0.23 J
Indeno[1,2,3-cd]pyrene	0.5	0.5	61 U	61 U	7.7 J	5.7	1	1.5	25 J	5.1 J	1400 U	38 J	16	280 J	1.1	7.8 J	1.2	4.3 J
2-Methylnaphthalene	NE	NE	200 J	300 J	200	1.3 U	0.17 J	0.21 J	1100	0.51 J	5900 J	1500 J	1.2 J	16000	0.4	430	0.28 J	0.18 J
Naphthalene	12	100	540 J	760 J	500	1.3 U	0.16 J	1.2 U	3200	0.57 U	15000 J	3700 J	3 J	38000	0.67	1200	0.41	0.33
Phenanthrene	100	100	90	140	93	1.5	0.98	1.6	580	2.3	3200 J	950 J	30	8300	2.3	180	0.89	1.7 J
Pyrene	100	100	33 J	52 J	36	4.5	1.8	2.2	230	5.4 J	1600 J	480 J	38	2900 J	1.9	73 J	0.97	2.9 J
Total PAH 17	NE	NE	1058.6	1570	1059.6	59.61	13.404	17.52	6392	42.02	33080	8802	259	83800	23.04	2362.8	14.403	36.43
Other SVOCs (mg/kg)		\	2411	2411	00.11		0.0411	4.0.11	10011			00011		222211		=0.11		
Bis(2-ethylhexyl)phthalate	NE	NE	61 U	61 U	33 U	0.44 J	0.31 U	1.2 U	190 U	0.57 UJ	1400 U	330 U	3.3 U	3000 U	1.4	73 U	0.23 J	1.3
Butyl benzyl phthalate	NE	NE	61 U	61 U	33 U	1.3 U	0.31 U	1.2 U	190 U	0.57 U	1400 U	330 U	3.3 U	3000 U	0.29 U	73 U	0.32 U	0.31 U
Carbazole	NE 7	NE FO	61 U	61 U	33 U	0.26 J	0.31 U	1.2 U	190 U	0.14 J	1400 U	330 U	2.7 J	3000 U	0.15 J	73 U	0.097 J	0.19 J
Dibenzofuran	1	59	4.4 J	6.6 J	4.2 J	1.3 U	0.31 U	1.2 U	24 J	0.14 J	120 J	41 J	1.8 J	370 J	0.14 J	9.6 J	0.068 J	0.092 J
4-Methylphenol (p-Cresol)	0.33	100	61 U	61 U	33 U	1.3 U	0.31 U	1.2 U	190 U	0.57 U	1400 U	330 U	3.3 U	3000 U	0.29 U	73 U	0.32 U	0.038 J
Pentachlorophenol Total SVOCs	0.8 NE	6.7 NE	380 U 1063	380 U 1576.6	210 U 1063.8	8 U 60.31	1.9 U 13.404	7.5 U 17.52	1200 U 6416	1.4 U 42.3	3500 U 33200	810 U 8843	21 U 263.5	19000 U 84170	1.8 U 24.73	460 U 2372.4	2 U 14.798	2.3 40.35
PCBs (mg/kg)	INE	INE	1003	19/0.0	1003.0	00.31	13.404	17.52	0410	42.3	33200	0043	203.5	041/0	24.13	2312.4	14./30	40.35
Aroclor 1242	NE	NE	0.019 U	0.019 U	NA	0.02 U	0.019 U	NA	NA	0.018 U	NA	NA	0.021 U	NA	0.018 UJ	NA	0.04 U	0.019 U
Aroclor 1254	NE NE	NE NE	0.019 U	0.019 U	NA NA	0.02 U	0.019 U	NA NA	NA NA	0.018 U	NA NA	NA NA	0.021 U	NA NA	0.018 UJ	NA NA	0.04 U	0.019 U
Aroclor 1254 Aroclor 1260	NE NE	NE NE	0.019 U	0.019 U	NA NA	0.02 U	0.019 U	NA NA	NA NA	0.018 UJ	NA NA	NA NA	0.021 U	NA NA	0.018 UJ	NA NA	0.04 U	0.019 U
Aroclor 1268	NE NE	NE NE	0.019 U	0.019 U	NA NA	0.02 U	NA	NA NA	NA NA	0.018 03 NA	NA NA	NA NA	NA	NA NA	NA	NA NA	0.04 0	0.019 U
Total PCB Aroclors	NE NE	NE NE	ND ND	ND ND	NA NA	ND ND	0.016	NA NA	NA NA	ND ND	NA NA	NA NA	ND	NA NA	ND ND	NA NA	0.54	ND ND
TOTAL POD ATOCIOIS	INE	IN⊏	עא ן	טא	NA	טא	0.016	INA	INA	טאו	NA	INA	ND	INA	טאו	INA	U.54	עאו

Table 2M. Detected Subsurface Soil Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

Location:		Restricted-							Pa	arcel 2 [Block	< 2287 at 1]							
	Unrestricted	Residential		Duplicate of				Duplicate of				Duplicate of						
Sample Name:	sco	SCO	WW-MW-05	WW-MW-05	WW-MW-05	WW-MW-17	WW-SB-03	WW-SB-03	WW-SB-03	WW-SB-04	WW-SB-04	WW-SB-04	WW-SB-05	WW-SB-05	WW-SB-07	WW-SB-07	WW-SB-09	WW-SB-10
Sample Depth(ft bgs):		333	(0.75-5)	(0.75-5)	(12-13)	(1-2)	(3-5)	(3-5)	(20-22)	(2-4)	(18-20)	(18-20)	(3-5)	(20-24)	(3-5)	(19-22)	(2-4)	(2-3)
Sample Date:			6/10/2009	6/10/2009	6/10/2009	6/8/2009	7/14/2009	7/14/2009	7/14/2009	10/5/2009	10/5/2009	10/5/2009	7/14/2009	7/14/2009	7/15/2009	7/15/2009	6/26/2009	6/26/2009
Pesticides (mg/kg)																		
Aldrin	0.005	0.097	0.0089 J	0.019 U	NA	0.002 U	0.0019 U	NA	NA	0.0018 UJ	NA	NA	0.0021 U	NA	0.0018 UJ	NA	0.002 U	0.0019 UJ
alpha-BHC	0.02	0.48	0.0096 UJ	0.019 U	NA	0.002 U	0.0019 U	NA	NA	0.0018 UJ	NA	NA	0.0022 JN	NA	0.0018 U	NA	0.002 U	0.0019 UJ
beta-BHC	0.036	0.36	0.026 J	0.018 J	NA	0.002 U	0.0019 U	NA	NA	0.0032 JN	NA	NA	0.0021 U	NA	0.0018 UJ	NA	0.002 U	0.0023 JN
gamma-BHC	0.1	1.3	0.0096 UJ	0.019 UJ	NA	0.002 U	0.0019 U	NA	NA	0.004 JN	NA	NA	0.0021 U	NA	0.0018 UJ	NA	0.002 U	0.0087 J
delta-BHC	0.04	100	0.0043 J	0.019 UJ	NA	0.002 U	0.0019 U	NA	NA	0.0018 UJ	NA	NA	0.0021 U	NA	0.0018 UJ	NA	0.002 U	0.0073 J
alpha-chlordane	0.094	4.2	0.011 JN	0.019 U	NA	0.002 U	0.0019 U	NA	NA	0.0018 UJ	NA	NA	0.0021 U	NA	0.0018 UJ	NA	0.002 U	0.0019 UJ
gamma-Chlordane	NE	NE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
gamma-Chlordane	NE 0.0000	NE 10	0.012 JN	0.019 U	NA	0.002 U	0.0019 U	NA	NA	0.0018 UJ	NA	NA	0.0035 J	NA	0.0018 UJ	NA	0.002 U	0.0039 JN
4,4-DDD	0.0033	13	0.019 U	0.037 U	NA	0.0038 UJ	0.0038 U	NA NA	NA	0.0035 UJ	NA	NA	0.004 U	NA	0.0036 UJ	NA NA	0.0039 U	0.0038 UJ
4,4'-DDE	0.0033	8.9	0.019 U	0.037 U	NA	0.0038 U	0.0038 U	NA	NA	0.0032 J	NA	NA	0.004 UJ	NA	0.0036 U	NA	0.0039 U	0.0038 UJ
4,4'-DDT	0.0033	7.9	0.35 J	0.42 J	NA	0.0038 UJ	0.0038 UJ	NA NA	NA	0.014 J	NA	NA NA	0.004 U	NA	0.0036 UJ	NA NA	0.01 J	0.0038 UJ
Dieldrin	0.005	0.2	0.019 UJ	0.043 J	NA NA	0.00078 J	0.0038 U	NA NA	NA NA	0.0097 J	NA NA	NA NA	0.004 U	NA NA	0.0036 U	NA NA	0.0022 J	0.0039 J
Endosulfan I Endosulfan II	2.4	24	0.0096 U	0.019 U	NA NA	0.002 U 0.0038 U	0.0019 U	NA NA	NA NA	0.0018 UJ 0.004 J	NA NA	NA NA	0.0021 U 0.004 U	NA NA	0.0018 UJ	NA NA	0.0027 JN	0.0019 UJ
	2.4	24	0.019 U	0.037 U	NA NA		0.0038 U					NA NA		NA NA	0.0036 UJ		0.0039 U	0.0038 UJ
Endosulfan sulfate	2.4 0.014	24	0.18 J	0.21 0.037 U	NA NA	0.0038 U	0.0038 U	NA NA	NA NA	0.0035 UJ	NA NA	NA NA	0.0046 JN	NA NA	0.0036 UJ	NA NA	0.0039 U	0.0038 UJ
Endrin Endrin aldehyde	0.014 NE	11 NE	0.019 UJ 0.065 JN	0.037 U 0.041 JN	NA NA	0.0038 U 0.0038 UJ	0.0038 U 0.0038 U	NA NA	NA NA	0.01 J 0.011 JN	NA NA	NA NA	0.013 J 0.022 J	NA NA	0.0036 UJ 0.0024 J	NA NA	0.0099 0.024 J	0.0038 UJ 0.012 JN
Endrin alderryde Endrin ketone	NE NE	NE NE	0.065 JN 0.019 U	0.041 JN 0.037 U	NA NA	0.0038 U	0.0036 U	NA NA	NA NA	0.011 JN 0.0035 U	NA NA	NA NA	0.022 J 0.004 U	NA NA	0.0024 J 0.0036 UJ	NA NA	0.024 3	0.012 JN 0.0038 UJ
Heptachlor	0.042	2.1	0.019 U 0.0096 UJ	0.037 U 0.019 UJ	NA NA	0.0038 U	0.0039 J 0.0019 U	NA NA	NA NA	0.0055 U	NA NA	NA NA	0.004 U	NA NA	0.0036 UJ	NA NA	0.074 0.002 U	0.0036 03 0.0019 J
Heptachlor epoxide	0.042 NE	NE	0.0096 UJ	0.019 UJ	NA NA	0.00065 J	0.0019 U	NA NA	NA NA	0.0034 J 0.0018 UJ	NA NA	NA NA	0.0021 U	NA NA	0.0018 UJ	NA NA	0.002 U	0.0019 J 0.0019 UJ
Methoxychlor	NE NE	NE NE	0.0096 03 0.28 J	0.019 U	NA NA	0.0032 J 0.02 UJ	0.0019 UJ	NA NA	NA NA	0.0018 UJ	NA NA	NA NA	0.0021 U	NA NA	0.0018 UJ	NA NA	0.007 J	0.0019 03 0.021 J
Herbicides (mg/kg)	INL	INL	0.20 3	0.19 0	INA	0.02 03	0.019 03	INA	INA	0.010 03	INA	INA	0.0210	INA	0.010 03	INA	0.02 0	0.0213
Silvex	3.8	100	0.023 U	0.023 U	NA	0.024 U	0.025 U	NA	NA	0.021 UJ	NA	NA	0.022 U	NA	0.023 U	NA	0.027 U	0.022 U
Metals (mg/kg)	0.0	100	0.020 0	0.020 0	14/ (0.024 0	0.020 0	14/3	14/ (0.021 00	14/ \	14/ (0.022 0	14/1	0.020 0	14/ (0.027 0	0.022 0
Aluminum	NE	NE	6230	7010	7180	7960	5530	4970	8910	7420	3090	3230	6160	1850	6220	5170	5260	6040
Antimony	NE NE	NE	4.6 UJ	4.6 UJ	4.9 UJ	4.8 UJ	4.6 UJ	4.6 UJ	5.6 UJ	4.2 UJ	5.3 UJ	5 UJ	4.9 UJ	3.2 J	4.3 UJ	5.6 UJ	4.8 UJ	4.7 UJ
Arsenic	13	16	3.6 J	3.3 J	2.7 J	4.1 J	16.2 J	25.4 J	13.7 J	10.1	21.7	14.9	9.7 J	30 J	7 J	6.9 J	20.4 J	7.6 J
Barium	350	400	56.1	64.6	39.7	55.3	547	683	63.7	83 J	132 J	151 J	95.3	328	111	1760	81.9 J	57.3 J
Beryllium	7.2	72	0.56 J	0.57 J	0.47 J	0.57 J	0.26 J	0.23 J	0.42 J	0.4 J	0.23 J	0.25 J	0.39 J	0.55 J	0.31 J	0.31 J	0.47 J	0.31 J
Cadmium	2.5	4.3	1.4 U	1.4 U	1.5 U	1.5 U	1.4 U	1.4 UJ	1.7 U	1.3 UJ	9.2 J	1.3 J	1.5 UJ	1.7 U	1.3 UJ	1.7 UJ	1.5 U	1.4 U
Calcium	NE NE	NE	1670	1510	1040	8600	35900	40500	59300	73800	46000 J	22300 J	23500	22000	77800	63400	22500 J	30900 J
Chromium	NE	NE	15.6	18.6	19.9	21.7	45.7	37.1	14.7	13.5 J	12.2 J	14.2 J	11	7.6	11.6	11.1	10.7 J	13.9 J
Cobalt	NE	NE	8.1 J	8.3 J	5.7 J	7.3 J	6.9	7.6 J	4.3	6.6	3.5	4.9 J	5.5 J	7.7	6.6 J	2.6 J	4.2	5.5
Copper	50	270	28.8	39.9	17.2	26	129	156	33.7	44	57.3	43.5	37.3	163	79.5	15	36.2 J	36.2 J
Iron	NE NE	NE	16300	17800	15300	18400	10500 J	32800 J	12800 J	17900	19500	30300	23000 J	18000 J	18000 J	7910 J	13000	17600
Lead	63	400	109 J	116 J	108 J	299 J	1180	1550	305	161	858	900	180	901	286	313	129 J	903 J
Magnesium	NE	NE	2220	2510	2020	2930	7190	5400	5790	6820	10800 J	2610 J	2870	3200	21500	9140	2070	5010
Manganese	1600	2000	324	355	314	345	163	229	290	253	183 J	454 J	406	92.2	286	366	190	409
Mercury	0.18	0.81	0.12	0.11	0.016 J	0.91	0.32	0.49	0.61	0.19	0.13 J	0.88 J	0.2	0.46	0.7	1.2	0.74 J	0.57 J
Nickel	30	310	14.9	16.3	11.6	13.8	47.4	41.7	13.9	19.5	18.3	17.3	19.6	16	20.6	11.6	11.4 J	17.3 J
Potassium	NE	NE	1070	1290	710	1010	743 J	659 J	961 J	1350 J	367 J	621 J	973 J	576 J	1220 J	1040 J	844 J	720 J
Selenium	3.9	180	10.4 UJ	10.6 UJ	11.2 UJ	11 UJ	10.4 U	10.4 UJ	12.6 U	R	R	R	11.2 UJ	10.3 J	9.8 UJ	12.8 UJ	11 UJ	10.7 UJ
Silver	2	180	1.4 U	0.087 J	1.5 U	1.5 U	0.31 J	0.22 J	0.21 J	0.92 J	0.43 J	1.5 UJ	0.24 J	0.85 J	0.37 J	1.7 UJ	0.21 J	0.38 J
Sodium	NE	NE	1320	1300	1210	358	69.1 U	69.4 U	84.1 U	1770	1370	1420	75 U	84.8 U	65.1 U	85 U	401 J	1020 J
Thallium	NE	NE	4.2 U	4.2 U	4.5 U	1.7 J	4.1 U	4.2 U	5 U	3.8 UJ	4.8 UJ	4.5 UJ	4.5 U	5.1 U	3.9 U	5.1 U	4.4 U	4.3 U
Vanadium	NE	NE	23.8	27	18.1	22.3	14.7	15.8	19.5	19.4 J	11.3 J	12.8 J	17.5	10.5	30	13.3	16.2 J	17.1 J
Zinc	109	10000	64.3	78.9	29.6	81.2	928	954	112	94.8	1900 J	381 J	95.9	651	291	720	59.4 J	90.6 J
Cyanides (mg/kg)																		
Free Cyanide	NE	NE	0.226 U	0.222 U	0.25 U	0.235 U	0.228 U	0.219 U	1.56	0.209 UJ	0.334 J	0.12 J	0.245 U	0.277	0.217 U	0.27 U	0.233 U	0.359

Table 2M. Detected Subsurface Soil Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

													Adiacent	to Parcel 2
Location:		Destricted					Parcel 2 [Blo	ock 2287 at 1	l				N. 11th St. ROW	N. 11th St. ROW
Sample Name: Sample Depth(ft bgs): Sample Date:		Restricted- Residential SCO	WW-SB-11 (1-2) 6/25/2009	WW-SB-23 (1-4) 7/16/2009	WW-SB-24 (4-5) 7/16/2009	WW-TP-01 (2-2.5) 10/29/2009	Duplicate of WW-TP-01 (2-2.5) 10/29/2009	WW-TP-02 (2-2.5) 10/29/2009	WW-TP-03 (3.5-4) 10/29/2009	WW-TP-04 (4.5-5) 10/27/2009	WWTP-05 (6-6.5) 10/28/2009	WWTP-06 (6-6.5) 10/26/2009	WW-MW-06 (0.5-1.5) 6/17/2009	WW-MW-08 (2-5) 6/19/2009
BTEX (mg/kg)														
Benzene	0.06	4.8	0.00096 J	0.0031 J	0.00073 J	0.041	0.013 J	0.0059 UJ	0.48 J	0.033	0.098	0.0074 U	0.0051 U	2.8
Toluene	0.7	100	0.0058 U	0.0064 U	0.0059 U	0.0062 U	0.006 U	0.0059 U	0.031 U	0.0063 U	0.032 U	0.0074 U	0.0051 U	4.1
Ethylbenzene	1	41	0.0058 U	0.018	0.0059 U	0.016	0.002 J	0.0059 U	0.09 J	0.023	1.1	0.0074 U	0.0051 U	7.2
Total Xylene	0.26	100	0.0058 U	0.0028 J	0.0059 U	0.016	0.0033 J	0.0013 J	0.51 J	0.0076	0.45	0.0074 U	0.0051 U	8.9
Total BTEX	NE	NE	0.00096	0.0239	0.00073	0.073	0.0183	0.0013	1.08	0.0636	1.648	ND	ND	23
Other VOCs (mg/kg)		1.2.2												
Acetone	0.05	100	0.023 U	0.026 UJ	0.024 UJ	0.025 UJ	0.024 UJ	0.024 U	0.13 UJ	0.025 UJ	0.13 U	0.03 U	0.039 J	1.6 U
Carbon disulfide	NE	NE	0.0058 U	0.0038 J	0.0059 U	0.0062 UJ	0.006 U	0.0059 UJ	0.031 U	0.0063 U	0.032 UJ	0.0074 U	0.0051 U	0.28 J
Chloromethane	NE 0.05	NE 100	0.0058 U	0.0064 U	0.0059 U	0.0062 U	0.006 U	0.0059 U	0.031 U	0.0063 U	0.032 U	0.0074 U	0.0051 U	0.63 U
cis-1,2-Dichloroethene	0.25	100	0.0058 U	0.0064 U	0.0059 U	0.0062 U	0.006 U	0.0059 U	0.031 U	0.0063 U	0.032 U	0.0074 U	0.0051 U	0.63 U
Styrene	NE 1.2	NE 10	0.0058 U	0.0064 U	0.0059 U	0.00047 J	0.006 U	0.0059 U	0.031 U	0.0063 U	0.0062 J	0.0074 U	0.0051 U	0.52 J
Tetrachloroethene (PCE) Trichloroethene (TCE)	1.3 0.47	19 21	0.001 J 0.0058 U	0.0064 U 0.0064 U	0.0059 U 0.0059 U	0.0062 U 0.0062 U	0.006 U 0.006 U	0.0059 U 0.0059 U	0.031 U 0.031 U	0.0063 U 0.0063 U	0.032 U 0.032 U	0.0074 U 0.0074 U	0.0051 U 0.0051 U	0.63 U 0.63 U
Total VOCs	NE	NE	0.0056 0	0.0064 0	0.0059 0	0.0062 0	0.006 0	0.0059 0	1.08	0.0636	1.6542	0.0074 U ND	0.0031	23.8
PAHs (mg/kg)	INC	INC	0.00190	0.0211	0.00073	0.07347	0.0163	0.0013	1.00	0.0636	1.0342	ND	0.039	23.0
Acenaphthene	20	100	0.068 J	2.1	0.16 J	0.83	4.8 J	1.6 UJ	7.4	5.9	25	0.4 U	0.15 J	21
Acenaphthylene	100	100	1.6	8.6	2.1	0.85	2 J	1.6 U	0.37 J	2.2	5.4 J	0.4 U	2.9	6.8
Anthracene	100	100	0.9	4.4	0.74	1.3	14 J	1.6 UJ	9.3	2.6	6.5 J	0.4 U	1	9.7
Benz[a]anthracene	1	1	3.2	11	2.4	1.8	20 J	0.11 J	16	3.4	5.9 J	0.043 J	2.1	11
Benzo[a]pyrene	1	1	4.2	9.6	4	2.6	22 J	1.6 UJ	17	6	11	0.055 J	3.6 J	18
Benzo[b]fluoranthene	1	1	3.9	10	3.7	2.1	23 J	1.6 UJ	17	4.4	8.9	0.4 U	3.1 J	14
Benzo[g,h,i]perylene	100	100	4.2	10	3.1	2	12 J	1.6 UJ	12	3.8	10	0.045 J	1.7 J	9.2 J
Benzo[k]fluoranthene	0.8	3.9	1.4	4.3	1.3	0.7	9.1 J	1.6 UJ	6.2	1.7	2.9 J	0.4 U	1.1 J	5.6 J
Chrysene	1	3.9	3.5	11	2.4	2	19 J	0.26 J	15	4.3	8.4	0.064 J	2.4	12
Dibenz[a,h]anthracene	0.33	0.33	1.1	3.7	0.93	0.44 J	3 J	1.6 U	3 J	1.1	2.3 J	0.4 U	0.57 J	6 J
Fluoranthene	100	100	4.5	13	2.7	3.2 J	48 J	0.17 J	30	4	8.3	0.056 J	2	15
Fluorene	30	100	0.17 J	4.2	0.3 J	0.89	6.9 J	1.6 UJ	5.2	2.6	11	0.4 U	0.28	12
Indeno[1,2,3-cd]pyrene	0.5	0.5	4.2	10	3.4	2 J	12 J	1.6 UJ	13	4	9.7	0.035 J	2 J	13
2-Methylnaphthalene	NE	NE	0.14 J	3.7	0.36	0.75	1.4 J	0.11 J	1.6 J	0.31 J	35	0.017 J	0.37	9.3
Naphthalene	12	100	0.25 J	6.3	0.31 U	2.7 J	3.1 J	1.6 U	5.6	1.7	100	0.4 U	0.64	32
Phenanthrene	100	100	1.8	10	1.9	4.3 J	50 J	1.6 UJ	29	6.9	23	0.4 U	0.96	33
Pyrene	100	100	6	22	3.1	5.7	39 J	0.3 J	37	9.1	16	0.084 J	2.3	23
Total PAH 17	NE	NE	41.128	143.9	32.59	34.16	289.3	0.95	224.67	64.01	289.3	0.399	27.17	250.6
Other SVOCs (mg/kg)	NE	NE	0.070	4 =	0.070	0.0711	0.011	4.0.11	0.411	0.0011	7.11	0.411	0.04	0.011
Bis(2-ethylhexyl)phthalate	NE	NE	0.073 J	1.7	0.076 J	0.67 U	3.2 U	1.6 U	3.4 U	0.68 U	7 U	0.4 U	0.21 J	6.6 U
Butyl benzyl phthalate	NE	NE	0.62 U	1.7 U	0.31 U	0.67 U	3.2 U	1.6 U	3.4 U	0.68 U	7 U	0.4 U	0.016 J	6.6 U
Carbazole	NE 7	NE	0.14 J	0.51 J	0.23 J	0.27 J	2.6 J	1.6 U	4.3	0.21 J	0.82 J	0.4 U	0.13 J	0.39 J
Dibenzofuran		59	0.075 J	0.97 J	0.18 J	0.32 J	2.8 J	1.6 U	2.9 J	0.4 J	1.3 J	0.4 U	0.069 J	1.2 J
4-Methylphenol (p-Cresol) Pentachlorophenol	0.33 0.8	100 6.7	0.62 U 3.9 U	1.7 U 11 U	0.31 U 2 U	0.67 U 1.7 UJ	3.2 U 8 U	1.6 U 4 U	3.4 U 8.4 U	0.68 U 1.7 U	7 U 17 U	0.4 U 0.99 U	0.021 J 1.7 UJ	6.6 U 41 U
Total SVOCs	NE	NE	41.416	147.08	33.076	34.75	294.7	0.95	231.87	64.62	291.42	0.399	27.616	252.19
PCBs (mg/kg)	INL	INL	71.410	177.00	33.070	J-7.7 J	254.1	0.90	201.07	07.02	231.42	0.033	27.010	202.10
Aroclor 1242	NE	NE	0.019 U	0.11 U	0.02 U	0.021 U	0.02 U	0.02 UJ	0.024 J	0.021 U	0.022 U	0.025 U	0.017 UJ	0.021 UJ
Aroclor 1242 Aroclor 1254	NE NE	NE	0.019 U	0.11 U	0.02 U	0.021 U	0.02 U	0.02 UJ	0.024 J	0.021 U	0.022 U	0.025 U	0.017 03 0.098 J	0.021 UJ
Aroclor 1260	NE NE	NE	0.019 U	0.11 U	0.02 U	0.021 UJ	0.02 U	0.02 03 0.0037 J	0.02 J	0.021 U	0.022 U	0.025 U	0.056 J	0.021 UJ
Aroclor 1268	NE	NE NE	NA	NA	NA	NA	0.034	NA	NA	NA	0.022 U	0.023 0 NA	NA	NA
Total PCB Aroclors	NE	NE	ND	ND	ND	ND	0.064	0.0037	0.059	ND	ND	ND	0.154	ND

Table 2M. Detected Subsurface Soil Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

													Adjacent	to Parcel 2
Location:							Parcel 2 [Blo	ock 2287 at 1]					N. 11th St. ROW
Sample Name: Sample Depth(ft bgs): Sample Date:	Unrestricted SCO	Restricted- Residential SCO	WW-SB-11 (1-2) 6/25/2009	WW-SB-23 (1-4) 7/16/2009	WW-SB-24 (4-5) 7/16/2009	WW-TP-01 (2-2.5) 10/29/2009	Duplicate of WW-TP-01 (2-2.5) 10/29/2009	WW-TP-02 (2-2.5) 10/29/2009	WW-TP-03 (3.5-4) 10/29/2009	WW-TP-04 (4.5-5) 10/27/2009	WWTP-05 (6-6.5) 10/28/2009	WWTP-06 (6-6.5) 10/26/2009	WW-MW-06 (0.5-1.5) 6/17/2009	WW-MW-08 (2-5) 6/19/2009
Pesticides (mg/kg)														
Aldrin	0.005	0.097	0.0019 U	0.012 J	0.002 UJ	0.01 U	0.002 U	0.0099 U	0.01 U	0.011 U	0.011 U	0.0025 U	0.0017 U	0.0021 U
alpha-BHC	0.02	0.48	0.0019 U	0.022 UJ	0.002 U	0.01 U	0.002 U	0.0099 U	0.01 U	0.011 U	0.011 U	0.0025 U	0.0017 U	0.0084 JN
beta-BHC	0.036	0.36	0.0019 U	0.042 J	0.002 UJ	0.01 U	0.002 U	0.0099 U	0.012 JN	0.011 U	0.011	0.0025 U	0.0014 J	0.012 J
gamma-BHC	0.1	1.3	0.0019 U	0.022 UJ	0.002 UJ	0.01 U	0.002 U	0.0099 U	0.01 U	0.011 U	0.011 U	0.0025 U	0.0017 UJ	0.0022 JN
delta-BHC	0.04	100	0.0019 UJ	0.012 J	0.002 UJ	0.01 U	0.002 U	0.0099 U	0.0056 J	0.011 U	0.011 U	0.0025 U	0.0014 J	0.0021 UJ
alpha-chlordane	0.094	4.2	0.0019 U	0.022 UJ	0.002 UJ	0.01 U	0.0044 J	0.0099 U	0.01 U	0.011 U	0.011 U	0.0025 U	0.0019 J	0.0021 UJ
gamma-Chlordane	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
gamma-Chlordane	NE	NE 10	0.0019 U	0.022 UJ	0.002 UJ	0.01 U	0.0037 J	0.0099 U	0.01 U	0.011 U	0.011 U	0.0025 U	0.0027 JN	0.0029 J
4,4-DDD	0.0033	13	0.0038 UJ	0.29 JN	0.0038 UJ	0.02 U	0.0018 J	0.019 U	0.02 U	0.021 U	0.021 U	0.0049 UJ	0.015 JN	0.0041 UJ
4,4'-DDE 4,4'-DDT	0.0033	8.9	0.0038 U	0.32 JN	0.0038 U	0.02 U	0.005 J 0.0033 J	0.019 U	0.02 U	0.021 U	0.021 U	0.0049 U	0.0036 JN	0.0041 UJ
Dieldrin	0.0033 0.005	7.9 0.2	0.015 JN 0.0038 UJ	0.24 J 0.15 JN	0.0038 UJ 0.0038 U	0.02 U 0.02 U	0.0033 J 0.0012 J	0.019 U 0.019 U	0.02 U 0.02 U	0.021 U 0.021 U	0.02 J 0.021 U	0.0049 U 0.0049 U	0.0034 UJ 0.0034 U	0.051 J 0.0041 UJ
Endosulfan I	2.4	24	0.0036 UJ 0.0019 U	0.15 JN 0.15 JN	0.0036 U 0.002 UJ	0.02 U	0.0012 J 0.002 U	0.019 U	0.02 U	0.021 U	0.021 U	0.0049 U 0.0025 U	0.0034 U 0.0017 U	0.0041 UJ
Endosulfan II	2.4	24	0.0019 U 0.0038 UJ	0.15 JN 0.15 JN	0.002 UJ	0.01 U	0.002 U	0.0099 U 0.019 U	0.01 U	0.011 U	0.011 U 0.021 U	0.0025 U 0.0049 U	0.0017 U	0.0021 UJ 0.0041 U
Endosulfan sulfate	2.4	24	0.0058 US	0.13 JN 0.042 UJ	0.0038 UJ	0.02 U	0.0039 UJ	0.019 U	0.02 U	0.021 U	0.021 U	0.0049 UJ	0.0034 U	0.0041 UJ
Endrin	0.014	11	0.0031 3N	0.042 03 0.16 J	0.0038 UJ	0.010 J	0.0039 U	0.019 U	0.02 U	0.021 U	0.022 3	0.0049 U	0.0034 U	0.0041 03 0.013 J
Endrin aldehyde	NE	NE NE	0.0038 U	0.021 U	0.029 J	0.02 UJ	0.019 UJ	0.019 UJ	0.02 UJ	0.021 U	0.021 UJ	0.0049 UJ	0.023 J	0.0041 U
Endrin ketone	NE	NE	0.011 JN	0.042 UJ	0.0038 UJ	0.02 U	0.0039 U	0.019 U	0.02 U	0.021 U	0.021 U	0.0049 U	0.0034 U	0.0041 U
Heptachlor	0.042	2.1	0.0019 U	0.022 UJ	0.002 UJ	0.01 U	0.002 U	0.0099 U	0.01 U	0.011 U	0.011 U	0.0025 U	0.0017 UJ	0.0021 U
Heptachlor epoxide	NE	NE NE	0.0019 U	0.022 UJ	0.002 UJ	0.01 U	0.002 U	0.0099 U	0.01 U	0.011 U	0.011 U	0.0025 U	0.0091	0.0021 UJ
Methoxychlor	NE	NE NE	0.019 U	0.29 JN	0.02 UJ	0.1 U	0.02 U	0.099 U	0.1 U	0.11 U	0.11 U	0.025 U	0.017 U	0.021 U
Herbicides (mg/kg)			0.0.0	0.20	0.02	, , , , , , , , , , , , , , , , , , ,	7.72	3,000	J., J	, , , , , , , , , , , , , , , , , , ,		0.000		
Silvex	3.8	100	0.022 U	0.13 U	0.025 U	0.018	0.023 U	0.022 U	0.12 U	0.025 U	0.0065	0.028 U	0.023 U	0.014
Metals (mg/kg)														
Aluminum	NE	NE	7050	6510	7930	8680	9630 J	5440 J	8050	6570	4110	2100	4850 J	6800 J
Antimony	NE	NE	2.3 J	5 UJ	4.8 UJ	4.9 UJ	4.7 UJ	4.7 UJ	5.2 UJ	5.1 UJ	5.3 UJ	6 UJ	4 UJ	5 UJ
Arsenic	13	16	20.5 J	6.9 J	7.9 J	5.6 J	9.7 J	3.3 J	5.4 J	9.3 J	8.4 J	7.6 UJ	5.1 J	6.6 J
Barium	350	400	168 J	83.1	122	125	157 J	34 J	361	194	63.8	394	65.3 J	71.4 J
Beryllium	7.2	72	0.42 J	0.34 J	0.49 J	0.54 J	0.49 J	0.23 J	0.48 J	0.32 J	0.25 J	0.1 J	0.42 J	0.7 J
Cadmium	2.5	4.3	0.8 J	1.5 U	1.5 U	1.5 U	1.4 U	1.4 UJ	1.6 UJ	1.6 UJ	1.6 U	1.8 UJ	0.25 J	1.5 U
Calcium	NE	NE	6690 J	15900	19700	14100 J	15800 J	89200 J	59100 J	57700 J	9760 J	103000 J	60600 J	1200 J
Chromium	NE	NE	18.3 J	15.3	16.4	15.4	17.5 J	9.1 J	11	9.3	21.7	5.7	11.3 J	13.2 J
Cobalt	NE	NE	7.4	4.6	7.4	8.1	8 J	4.1 J	4	3.6	5.7	14.9	6.2 J	6.7 J
Copper	50	270	102 J	43.8	50.9	46.5	67	61	87.9	256	47	84.3	88.1	38.2
Iron	NE	NE	20100	21500 J	17800 J	15500	19200	13700	10900	11000	15900	24400	11300 J	20900 J
Lead	63	400	2140 J	198	503	401	450 J	79.9 J	280	904	203	2980	176	314
Magnesium	NE 1000	NE	3340	2860	3850	8310 J	5530 J	41500 J	4990 J	6390 J	6040 J	1990 J	22800 J	1740 J
Manganese	1600	2000	413	203	351	245	335 J	179 J	258	470	158	84.8	165 J	141 J
Mercury Niekol	0.18	0.81	1.3 J 18.7 J	0.26	0.43	1.2 J 26.4	0.49 J	0.099 J	0.47 J	0.32 J	0.93 J 51.3	0.23 J	0.64	0.35
Nickel Potossium	30 NE	310 NE	18.7 J 1540 J	14 1070 J	20.7 1420 J	1350 J	28.7 J 1380 J	8.9 J 882 J	12.1 1390 J	11.7 1210 J	51.3 518 J	12.3 593 J	16.1 J 599 J	14.5 J 562 J
Potassium Selenium	3.9	180	10.5 U	1070 J 11.5 U	1420 J 11 U	1350 J 11.1 UJ	1380 J 10.7 UJ	10.7 UJ	1390 J 11.7 UJ	1210 J 11.6 UJ	11.9 UJ	13.5 UJ	799 J R	8 R
Silver	2	180	0.61 J	0.12 J	0.21 J	0.11 J	0.094 J	10.7 UJ	1.6 UJ	1.6 UJ	1.6 U	0.16 J	0.11 J	1.5 U
Sodium	NE	NE	363 J	76.3 U	73.1 U	828 J	1110 J	606 J	2440 J	1.6 03 1940 J	1350 J	4760 J	218	320
Thallium	NE NE	NE NE	4.2 UJ	4.6 U	4.4 U	4.4 UJ	4.3 UJ	4.3 UJ	4.7 UJ	4.7 UJ	4.8 UJ	5.4 UJ	1.1 J	4.6 U
Vanadium	NE NE	NE	24.2 J	23	21.5	22.8	24.6	28.4	21.2	16.6	4.8 03 17	6.4 J	25.2 J	18.2 J
Zinc	109	10000	458 J	135	158	175 J	205 J	83.5 J	307 J	171 J	97.4 J	570 J	478 J	120 J
Cyanides (mg/kg)	155	10000		.50	.50			33.00	33. 0		340	0.00		0
Free Cyanide	NE	NE	0.228 U	0.153 J	0.231 U	0.245 U	0.235 U	0.231 U	0.245 U	0.247 U	0.257 U	0.297 U	0.204 U	0.247 U
,		•												

Table 2M. Detected Subsurface Soil Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

Notes:

Analytes in blue are not detected in any sample

mg/kg - milligrams/kilogram or parts per million (ppm)

BTEX - benzene, toluene, ethylbenzene, and xylenes

VOCs - volatile organic compounds

PAHs - polycyclic aromatic hydrocarbons

SVOCs - semivolatile organic compounds

PCBs - polychlorinated biphenyls

Total BTEX, Total VOCs, Total PAHs, Total SVOCs, and Total PCBs are calculated using detects only.

Acenaphthylene, Anthracene, Benz[a]anthracene, Benzo[a]pyrene,

6 NYCRR - New York State Register and Official Compilation of Codes, Rules and Regulations of the State of New York Comparison or detected results are performed against one or more or the following

NYCRR Chanter IV Part 375-6 Soil Cleanup Objectives (SCO)s: Unrestricted Use

NE - not established

NA - not analyzed

ND - not detected; total concentrations are listed as ND because no analytes are detected in the group

Bolding indicates a detected concentration

Gray shading and bolding indicates that the detected result value exceeds the Unrestricted SCO

Yellow shading and bolding indicates that the detected result value exceeds the Restricted Residential SCO

Validation Qualifiers:

J - estimated value

JN - analyte is presumptively present at an approximated quantity

U - indicates not detected to the reporting limit

UJ - not detected at or above the reporting limit shown and the reporting limit is estimated

R - rejected

Table 3M. Detected Groundwater Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

Location:	Parcel 2 [Block 2287 ot 1]			37 ot 1]
Sample Name:	NYS AWQS	WW-SB-03	WW-SB-05	WW-SB-07
Sample Depth (feet):		(5-10)	(3-8)	(2.5-7.5)
Sample Date:		7/14/2009	7/15/2009	7/15/2009
BTEX (ug/L)				
Benzene	1	3700	3000	19000
Toluene	5	110 J	1600	3300
Ethylbenzene	5	3000	1300	2300
Total Xylene	5	1800	1600	2400
Total BTEX	NE	8610	7500	27000
Other VOCs (ug/L)				
Styrene	5	200 U	120 U	240 J
Total VOCs	NE	8610	7500	27240
PAHs (ug/L)				
Acenaphthene	20*	86 J	240 J	190 J
Fluorene	50*	400 U	86 J	800 U
Naphthalene	10*	5800	5200	8700
Phenanthrene	50*	400 U	110 J	800 U
Total PAHs	NE	6266	6533	9830
Other SVOCs (ug/L)				
2-Methylphenol (o-Cresol)	1	400 U	34 J	800 U
4-Methylphenol (p-Cresol)	1	400 U	46 J	800 U
Total SVOCs	NE	6266	6613	9830
PCBs (ug/L)				
Totoal PCBs	NE	ND	ND	ND
Pesticides (ug/L)				
beta-BHC	0.04	0.092 JN	0.05 U	0.05 UJ
delta-BHC	0.04	0.084 J	0.05 U	0.05 UJ
Heptachlor epoxide	0.03	0.04 J	0.05 U	0.05 UJ
Herbicides (ug/L)				
Total Herbicides	NE	ND	ND	ND
Total Metals (ug/L)				
Arsenic	25	17.6 J	35.2	16.4
Barium	1000	3440	131	405
Iron	300	21100	1630	8010
Lead	25	189	133	479
Magnesium	35000*	208000	11100	11400
Manganese	300	331	211	1210
Sodium	20000	3290000 J	562000 J	1600000 J
Cyanides (ug/L)				
Total Cyanide	200	517	166	319

Table 3M. Detected Groundwater Analytical Results - Removed During Parcel 2 IRM Former Williamsburg Works MGP Site Brooklyn, New York

Notes:

ug/L - micrograms per liter or parts per billion (ppb)

BTEX - benzene, toluene, ethylbenzene, and xylenes

VOCs - volatile organic compounds

PAHs - polycyclic aromatic hydrocarbons

PCBs - polychlorinated biphenyls

SVOCs - semivolatile organic compounds

Total BTEX, Total VOCs, Total PAHs, Total SVOCs and Total PCBs are calculated using detects only. Total PAHs are calculated using the EPA16 list of analytes: Acenaphthene, Acenaphthylene, Anthracene, Benza[a]anthracene, Benza[a]pyrene, Benza[b]fluoranthene, Benza[b]fluoranthene, Benza[b]fluoranthene, Chrysene, Dibenza[a,h]anthracene, Fluoranthene, Fluorene, Indena[1,2,3-cd]pyrene, Naphthalene, Phenanthrene, and Pyrene

NYS AWQS - New York State Ambient Water Quality Standards and Guidance Values for GA groundwater * indicates the value is a guidance value and not a standard

NE - not established

NA - not analyzed

ND - not detected; total concentration is listed as ND because no compounds were detected in the group

Bolding indicates a detected concentration

Gray shading indicates that the detected result value exceeds NYS AWQS

Validation Qualifiers:

J - estimated value

JN - analyte is presumptively present at an approximated quantity

U - indicates not detected to the reporting limit

UJ - not detected at or above the reporting limit shown and the reporting limit is estimated

Remedial Investigation Report K – Williamsburg Works Brooklyn, New York August 29, 2025

Appendix 0 35 Kent Avenue SVI Building Inventory

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Melissa	. Felter/Am	y Melsberre	Date/Time Prepared	11-18-09
Preparer's Affiliation GE			å	
Purpose of Investigation Re	emodial l	rvestigation	<u> </u>	
1. OCCUPANT:				
Interviewed: Y/N				
Last Name: Weiner		First Name: 2	ach "	
Address: 35 Key	nt Ave			
County: Gras	_			
Home Phone:	Uk Offi	ce Phone:		
Number of Occupants/persor	ns at this locatio	n Age	e of Occupants	
2. OWNER OR LANDLOF	Check if s	ame as occupant	\checkmark	
Interviewed: Y/N				
Last Name:	F	irst Name:	(8	
Address:				
County:	-			
Home Phone:	Offi	ce Phone:		
3. BUILDING CHARACTE	ERISTICS			
Type of Building: (Circle ap	propriate respon	nse)		
Residential Industrial	School Church	Commercial/ Other:		

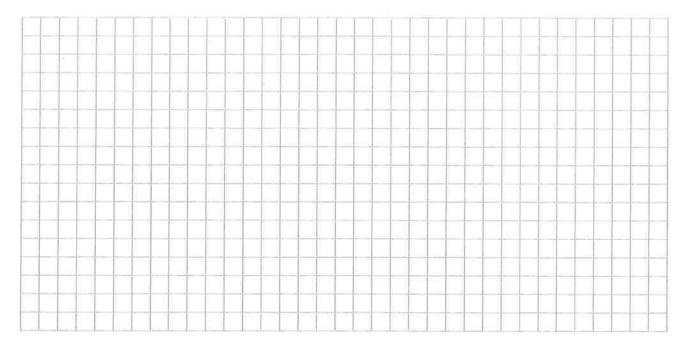
If the property is residential,	type? (Circle appropriate	te response)	
Ranch Raised Ranch	2-Family Split Level	3-Family Colonial	
Cape Cod	Contemporary	Mobile Home	
Duplex	Apartment House		
Modular	Log Home	Other: NA	
If multiple units, how many?	NA		
If the property is commercial	, type?		
Business Type(s) <u>MA</u>			
Does it include residences	(i.e., multi-use)? Y/(v	If yes, how many? <u>NA</u>	
Other characteristics:			
Number of floors 1 (smg	Moffice in Buildi	ing age	
Is the building insulated? Y		air tight? Tight / Average / Not Tight	
4. AIRFLOW			
Use air current tubes or trace	r smoke to evaluate ai:	rflow patterns and qualitatively describe:	
ese an eurrent tubes of trace	1 Shioke to evaluate an	now patterns and quantatively describe.	
Airflow between floors			
NA			
? 			
Airflow near source			
NA	α.		
Ş e			
·			
Outdoor air infiltration			
Four large gono	a e doors que	ned for vehicles entering a	
exiting			
Infiltration into air ducts			
NA			

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

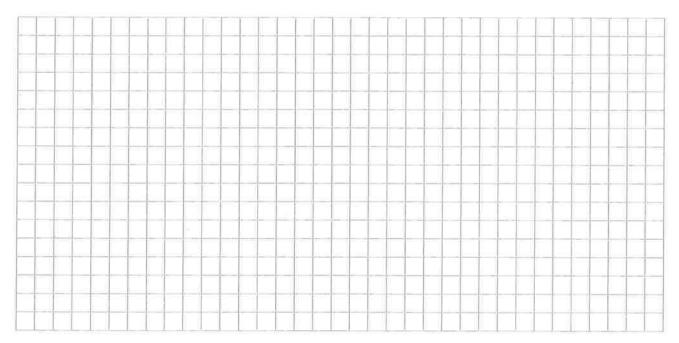
a. Above grade construct	ion: wood frame	concrete	stone	brick			
b. Basement type:	full	crawlspace	slab	other NA			
c. Basement floor:	concrete	dirt	stone	other NA			
d. Basement floor:	uncovered	covered	covered with _	NA			
e. Concrete floor:	unsealed	sealed	sealed with				
f. Foundation walls:	poured	block	stone	other Brick			
g. Foundation walls:	unsealed	sealed	sealed with	paint layer)			
h. The basement is:	wet	damp	dry	moldy NA			
i. The basement is:	finished	unfinished	partially finishe	ed NA			
j. Sump present?	YM Yes	i, bloca drai	in				
k. Water in sump?	Y/N/not applicable						
Basement/Lowest level depth	below grade: NA	_(feet)					
Identify potential soil vapor e	ntry points and appro	oximate size (e.g.,	cracks, utility p	oorts, drains)			
up to 14h wid	drain near Kent Ave, cracks throughout building up to 14h wide 6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)						
Type of heating system(s) use	d in this building: (cir	cle all that apply -	– note primary))			
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiat Wood stove	ion Radiant	ter baseboard floor r wood boiler	Other			
The primary type of fuel used	is: Furnace	room no	t availa	de for			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosen Solar	Tenar Of fu	ction. nts uncertain al type			
Domestic hot water tank fuele	ed by:			<i>J</i> 1			
Boiler/furnace located in:	Basement Outdo	oors Main Fl	oor	Other			
Air conditioning:	Central Air Wind	ow units Open W	/indows	None			

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.


NA				
7. OCCUP	PANCY			
Is basement	t/lowest level occupied? Full-time Oc	casionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyr	oom, bedro	om, laundry, w	orkshop, storage)
Basement	NA			_
1 st Floor	glass manufacturing and -	too sma	U office	reas
2 nd Floor	NA			-
3 rd Floor	NA			-
4 th Floor	NA			2
8. FACTOF	RS THAT MAY INFLUENCE INDOOR AIR	R QUALITY	7	
a. Is there	e an attached garage?		Y (N)	
b. Does th	ne garage have a separate heating unit?		Y/N(NA)	
c. Are pet stored i	roleum-powered machines or vehicles — സ in the garage (e.g., lawnmower, atv, car) bu	ns unside ilding	Please specify	cars
d. Has the	e building ever had a fire?	Main	Y When?	not that we are
e. Is a ker	osene or unvented gas space heater present?		Y (N) Where	?
f. Is there	a workshop or hobby/craft area? multiple o	work 🕅 N	Where & Type	?
g. Is there	smoking in the building?	YN	How frequently	y?
h. Have cl	eaning products been used recently?	Y/N	When & Type	?
i. Have cos	smetic products been used recently?	Y/N	When & Type	?

j. Has painting/stai	ining been done in the last 6 months?	(Ŷ)/ N	Where & When? frequent glass fourting (under hood) Where & When?
k. Is there new car	pet, drapes or other textiles?	Y (N)	Where & When?
l. Have air freshen	ers been used recently?	Y/N	When & Type?
m. Is there a kitche	en exhaust fan?	YN	If yes, where vented?
n. Is there a bathr	oom exhaust fan?	Y /N	If yes, where vented?
o. Is there a clothes	s dryer?	YN	If yes, is it vented outside? Y / N
p. Has there been a	pesticide application?	Y N	When & Type?
Are there odors in If yes, please descr	-	Y /(Ñ)	
(e.g., chemical manufa	g occupants use solvents at work? acturing or laboratory, auto mechanic or cide application, cosmetologist	Y/N auto body s	unknown shop, painting, fuel oil delivery,
If yes, what types of	Solvents are used?		
If yes, are their cloth	nes washed at work?	Y /🕦	
Do any of the building response)	g occupants regularly use or work at	a dry-clean	ing service? (Circle appropriate
Yes, use dry-c	leaning regularly (weekly) leaning infrequently (monthly or less) dry-cleaning service		No Unknown not likely
Is there a radon mitig Is the system active of	r passive? Active/Passive		Date of Installation: sem that we oserve
9. WATER AND SEV	VAGE		
Water Supply:	Rublic Water Drilled Well Driv	en Well 1	Dug Well Other:
Sewage Disposal:	Rublic Sever Septic Tank Leac	h Field 1	Dry Well Other:
10. RELOCATION II	NFORMATION (for oil spill resident	ial emergen	ncy) Section 10 > NA
a. Provide reasons	s why relocation is recommended:		
b. Residents choos	se to: remain in home relocate to fi	riends/family	y relocate to hotel/motel
c. Responsibility f	or costs associated with reimburseme	ent explaine	ed? Y/N
d. Relocation pacl	kage provided and explained to reside	ents?	Y/N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	
--	--

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
of building	Polishing Oil	1102	U			Y
" "	Glass Cleaner	1902	4			Y
Southerd of building	Spray Adhesive	17.602	· U			7
4	Moisture Guard	1502	И			Y
ц	Spray Paint	1202	U			Y
h	Metal Polish	1202	4			Y
U	Priner Sealer	13 02	И			7
d	Water Stan Remover	4002	4			Y
ζι	Gear Oil	18+	И			Y
ч	RTV Sealant	300ml	U			Y
Ц		~300M	И			Y
4	Lubicant	lat	U			7
ц	Black Ink	18+	4			Y
u	Windex	76 02	U			\mathcal{N}
η	waterbased No elastomer b	0.000	Ц			Y
ч	Denatured Aldro	Igal	Ц			}
n	Propose tank for and		4			Y
novenend of building	Handlotton	1602	U			Y
Editiding	Viscogen Spray	tou ml	И			Y

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

bothrooms Toilet Clearner 2402 U
Northwals hand soap 8,402 U
P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3,doc
Powdered hand Soap 5165 U
Clorox Ready Mop 260xes UO

YYYY

Ambient Air (Canister) Sample Collection Field Form

Project # 09360 Project Name Williamsb	urg MGP Site	Consultant Collector	GBT Nelssafe Amy Ma	7 7
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID WW- OF 11809 11809 11809 11809	0800	Vacuum gauge "ze Start Pressure ("H End Pressure ("Hg End pressure > "ze Sampling duration	g) (i) ero"?	-30+ 8hr
Tubing type used Volume purged cc	Length of tubing	cm Tubing	volume ged @ < 200cc/i	
Weather Conditions at Start of Sampling: Air temperature (°F) Barometric pressure Substantial changes in weather conditions	Rainfall Relative humidity s during sampling or over the p	ast 24 to 48 hrs:	rection peed (mph)	
Site Plan showing sample location, building	ng(s) being sampled, building	HVAC inlet, outdoor air sc	ources, wind direc	ction
35 Ker A	12th St 12th St TIth St		7	
	78		·	
Comments:				

Indoor Air (Canister) Sample Collection Field Form

Project #	093060	Consultant	GEI
Project Name	Williamsburg MGP Site	Collector	Melissa Pelter Amy Malsbary
Sample ID	WW-IA-OI and dup	licate WV Vacuum gauge	√ - ↓ A - XX • "zero" ("Hg)
Start Date/Time End Date/Time Canister ID Flow controller ID Associated ambie	10(14) 04 01	Start Pressure End Pressure End pressure > Sampling durat ated sub-slab vapo	"Hg) - "zero"? tion (intended)
Tubing type used	Length of tubing	cm Tub	ing volumecc
Volume purged	cc @min	1 to 3 volumes	purged @ < 200cc/min?
Air temperature (° Barometric pressu		Win	d direction d speed (mph)
	Indoor of the control	relative humidity (% Photograph IDs	yes
Kint Ave	N 11+h St	pproximi Samp location	ate ole m
Comments: _			

Indoor Air (Canister) Sample Collection Field Form

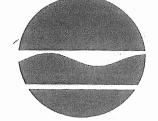
Project #	993060	Consultant GF1	
Project Name	Nilliansburg MGP Site	Collector Mulss	a Pelter
		Aluy!	Ualsbary_
Sample ID	WW-IA-02	Vacuum gauge "zero" ("Hg)	
Start Date/Time	11/18/09 0828	Start Pressure ("Hg)	-30+
End Date/Time	11/18/09	End Pressure ("Hg)	
Canister ID	7505	End pressure > "zero"?	·
Flow controller ID	K351	Sampling duration (intended)	3 >
Associated ambient a	ir sample ID WW-OA-O\ Associa	ted sub-slab vapor sample ID	WW-SV-61 WW-8V-02
Tubing type used	Length of tubing	cm Tubing volume	сс
Volume purged	cc @min	1 to 3 volumes purged @ < 20	00cc/min?
Weather Conditions a	t Start of Sampling:		
Air temperature (°F)	Rainfall	Wind direction	
Barometric pressure	Relative humidity	Wind speed (mph)	
Substantial changes i	n weather conditions during sampling or over the past	24 to 48 hrs:	
none			
-			
Same	as outdoor	- Y	
Indoor air temp (°F)		elative humidity (%)	
Building Survey and C	Chemical Inventory Form Completed?	Photograph IDs	<u> </u>
Floor Plan showing s	ample location, HVAC equipment, indoor air sources, p	preferential pathways	
	3		
	1		
1	(
N.12th Street	N. 11th Street		
Street	Street		
	* approximate		
	(ocation)		
	* approximate location Kent Ave		
Commonto	(6.70		
Comments:			

Sub-slab Vapor (Canister) Sample Collection Field Form

Project #	093060 Villiansburg MGP Site	Consultant Collector	GEI Melissa Amy M	a Pelter alsbary
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated indoor air	+eflon Length of tubing	Start Pressure End Pressure (End pressure > Sampling durat Associated ambient a	"zero" ("Hg) ("Hg) "Hg) "zero"? ion (intended) air sample ID	-30+/-22.5 -4/-4 -405 -30 min WW-0A-01
Volume purged Weather Conditions at Air temperature (°F) Barometric pressure Substantial changes in	cc @min t Start of Sampling: Rainfall n weather conditions during sampling or over the pa	Wind	purged @ < 200 d direction d speed (mph)	Jes.
Indoor air temp (°F) Building Survey and C	hemical Inventory Form Completed? WES Ample location, HVAC equipment, indoor air source.	or relative humidity (% Photograph IDs	=	0
garage doors Kent Ave garage doors Comments:	N 12th St	pproximut Sample ocution	٠.	

national**grid**Sub-slab Vapor (Canister) Sample Collection Field Form

Project # 093060 Project Name Williamshung MGP Site		a Pelter Calsbary
Sample ID WW-8V-01 Start Date/Time II(18/09 10-54 End Date/Time II(18/09 10-54 End Date/Time II(18/09 10-54 II(18/09 1	Vacuum gauge "zero" ("Hg) Start Pressure ("Hg) End Pressure ("Hg) End pressure > "zero"? Sampling duration (intended) sociated ambient air sample ID	-29.5 -3 yes 30 min ww-01-01
Weather Conditions at Start of Sampling: Air temperature (°F) Rainfall Wind direction Barometric pressure Wind speed (mph) Substantial changes in weather conditions during sampling or over the past 24 to 48 hrs:		
Indoor air temp (°F) Building Survey and Chemical Inventory Form Completed? Photograph IDs Floor Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways		
N, 12th N # Hhstreet Street 32 garage doors Kent Are Comments:		


Remedial Investigation Report K – Williamsburg Works Brooklyn, New York August 29, 2025 Appendix P NYSDEC National Heritage Correspondence

New York State Department of Environmental Conservation Division of Fish, Wildlife & Marine Resources New York Natural Heritage Program

625 Broadway, 5th Floor, Albany, New York 12233-4757 **Phone:** (518) 402-8935 • **Fax:** (518) 402-8925

Website: www.dec.nv.gov

March 12, 2013

Joe Martens Commissioner

Kimberly Bradley GEI Consultants, Inc 455 Winding Brook Drive, Suite 201 Glastonbury, CT 06033

Dear Ms. Bradley:

In response to your recent request, we have reviewed the New York Natural Heritage Program database with respect to an Environmental Assessment for Proposed Remedial Investigation – Kent Avenue, area as indicated on the map you enclosed, located in Brooklyn, Kings County.

Enclosed is a report of rare or state-listed animals and plants, and significant natural communities, which our database indicates occur, or may occur, on your site or in the immediate vicinity of your site. For most sites, comprehensive field surveys have not been conducted; the enclosed report only includes records from our databases. We cannot provide a definitive statement as to the presence or absence of all rare or state-listed species or significant natural communities. This information should not be substituted for on-site surveys that may be required for environmental impact assessment.

The enclosed report may be included in documents that will be available to the public. However, any maps displaying locations of rare species are considered sensitive information, and should not be included in any document that will be made available to the public, without permission from the New York Natural Heritage Program.

The presence of the plants and animals identified in the enclosed report may result in this project requiring additional review or permit conditions. For further guidance, and for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, as listed at www.dec.ny.gov/about/39381.html.

Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

Sincerely,

lean Pietrusiak, Information Services

NYS Department Environmental Conservation

#214

Enc.

cc: Reg. 2, Wildlife Mgr.

The following state-listed animals have been documented at your project site, or in its vicinity.

The following list includes animals that are listed by NYS as Endangered, Threatened, or Special Concern; and/or that are federally listed or are candidates for federal listing. The list may also include significant natural communities that can serve as habitat for Endangered or Threatened animals, and/or other rare animals and rare plants found at these habitats.

For information about potential impacts of your project on these populations, how to avoid, minimize, or mitigate any impacts, and any permit considerations, contact the Wildlife Manager or the Fisheries Manager at the NYSDEC Regional Office for the region where the project is located. A listing of Regional Offices is at http://www.dec.ny.gov/about/558.html.

The following species and habitats have been documented at or near the project site, generally within 0.5 mile. Potential onsite and offsite impacts from the project may need to be addressed.

COMMON NAME

SCIENTIFIC NAME

NY STATE LISTING

FEDERAL LISTING

Birds

Peregrine Falcon

Falco peregrinus

Endangered

11374

Breeding

The Peregrine Falcon is 1.0 mile from the site.

This report only includes records from the NY Natural Heritage databases. For most sites, comprehensive field surveys have not been conducted, and we cannot provide a definitive statement as to the presence or absence of all rare or state-listed species. This information should not be substituted for on-site surveys that may be required for environmental impact assessment.

If any rare plants or animals are documented during site visits, we request that information on the observations be provided to the New York Natural Heritage Program so that we may update our database.

Information about many of the listed animals in New York, including habitat, biology, identification, conservation, and management, are available online in Natural Heritage's Conservation Guides at www.guides.nynhp.org, and from NYSDEC at http://www.dec.ny.gov/animals/7494.

Information about many of the rare plants and animals, and natural community types, in New York are available online in Natural Heritage's Conservation Guides at www.guides.nynhp.org, and from NatureServe Explorer at http://www.natureserve.org/explorer.