

Monthly Progress Report 2023 No. 10

Former NuHart West Site 65 Dupont Street, Brooklyn, NY NYSDEC Site No. 224136

Reporting Period: October 1, 2023 – November 1, 2023

1. Introduction

In accordance with the reporting requirements for the Former NuHart West Site, located at 65 Dupont Street, Brooklyn, NY (Site), Haley & Aldrich of New York (Haley & Aldrich), has prepared this monthly progress report, on behalf of Dupont Street Owner LLC, to summarize the work performed at the Site from October 1 through November 1, 2023.

The Former NuHart West Site is located in the Greenpoint neighborhood of Brooklyn, NY and is identified as Block 2487 Lot 17 on the New York City tax map. The Site is listed in the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). The Site is underlain by sub-grade footings, utility networks, closed underground storage tanks (USTs), and piping and trench systems. The USTs and trench systems were cleaned out and the USTs were closed in accordance with applicable regulations in 2006. Former industrial operations at the Site have impacted onsite and offsite soil and groundwater with phthalates and lubricating oil (Hecla oil), most likely released from the tank and piping/trench systems. Phthalates and a phthalate/oil mixture are present in soil and as a light non-aqueous-phase liquid (LNAPL) plume floating on the groundwater surface primarily beneath former Lots 1, 10, and 78 of the Site and extending somewhat offsite to the southwest. Groundwater is encountered at approximately 8 to 10 feet below ground surface (ft bgs). Currently, the site is a vacant 49,000-square foot lot with a concrete slab on grade undergoing excavation and remediation.

Resource Conservation and Recovery Act (RCRA) closure activities were completed at the Site in May 2022. Interim remedial measure (IRM) activities are no longer being conducted at the Site since the product recovery systems were decommissioned as part of the RCRA Closure. IRM activities concluded in February 2022. Eastern Environmental Solutions, Inc. (Eastern) previously conducted waste management activities for disposal of product from the IBC tanks at the Site. Prior to 2022, Eastern has transported and disposed an estimated 2,116 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste. In January 2022, ACV Environmental Services Inc. (ACV) transported and disposed a total of 2,529 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste.

2. <u>Investigation or Remedial Actions Relative to the Site during this Reporting Period</u>

During this reporting period, Haley & Aldrich oversaw the relocation of the negative pressure enclosure to the western portion of the Site, excavation, stockpiling, and loadout for offsite disposal of soil within the negative pressure enclosure on the western portion of the Site and from the ramp on the eastern portion of the Site, operation of the dewatering system, and installation of support of excavation elements.

Nine USTs were uncovered on the Site during this reporting period, seven of which have begun to be cut open and cleaned by Eastern Environmental Solutions Inc. Two USTs remain in-place and will be cut open and cleaned during the next reporting period.

Haley & Aldrich performed the Community Air Monitoring Program in accordance with the approved Final 100% Remedial Design during ground intrusive activities at one upwind and two downwind locations measuring volatile organic compounds (VOCs) and dust particulates. Daily reports have been submitted the following business day to the New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) case managers.

Haley & Aldrich began the LNAPL Recovery Pilot Test in OU-2 on 24 October 2023. LNAPL is recovered daily from recovery wells and stored in totes within a containment on the southwestern portion of the Site. Weekly summaries of LNAPL recovery are included in daily reports submitted on Mondays. On 23 and 24 October 2023 Haley & Aldrich evaluated other LNAPL recovery methods including the use of bailers and Spill Buddy. The bailer method created immense emulsification throughout the column, was overall not as effective at removing LNAPL as the vacuum and had greater potential for minor releases when transferring the material to containment. The Spill Buddy was not effective and after multiple attempts was not able to recover LNAPL from either 2- or 4-inch diameter recovery wells.

Dewatering permit compliance sampling data by Chicetti Engineering PLLC is attached.

3. Monthly On-Site and Off-Site Monitoring Well Gauging

Gauging of on-site and off-site monitoring wells associated with the Site was performed on 24 October 2023. Gauging results are included in the attached table. On-site wells are inaccessible due to construction activities. Additionally, transducers are installed in MW-12, MW-14, MW-29, MW-30, and MW-38 and could not be gauged. The wells that could not be accessed are identified in the attached figure.

Due to LNAPL identified in MW-24 in previous reporting periods, an absorbent sock (New Pig) remains installed in MW-24 and is inspected on a weekly basis and replaced periodically, as needed.

4. Actions Relative to the Site Anticipated for the Next Reporting Period(s)

- Continue remedy execution including removal of the slab and excavation and off-site disposal of soil on the western portion of the Site, under the negative pressure enclosure.
- Continue the full-scale LNAPL recovery demonstration test by recovering LNAPL from the off-site recovery wells.

5. Approved Activity Modifications (changes of work scope and/or schedule)

2

There have been no modifications to the work scope.

6. Results of Sampling, Testing and Other Relevant Data

A sample of the tank contents of TK19 uncovered on-Site was collected on 30 October 2023 and samples of the tank contents were collected from TK8 and TK10 uncovered on-Site on 31 October 2023. Results of the tank content samples will be presented in the forthcoming Supplemental Contained-in Request 09.

No documentation samples were collected during this reporting period.

Air samples of each air handler unit utilized for the negative pressure enclosure were not collected during this reporting period since air handlers were not in use during the relocation and set up of the enclosure. Air samples will be collected during the next reporting period.

7. <u>Deliverables Submitted During This Reporting Period</u>

No deliverables were submitted during this reporting period.

8. Information Regarding Percentage of Completion

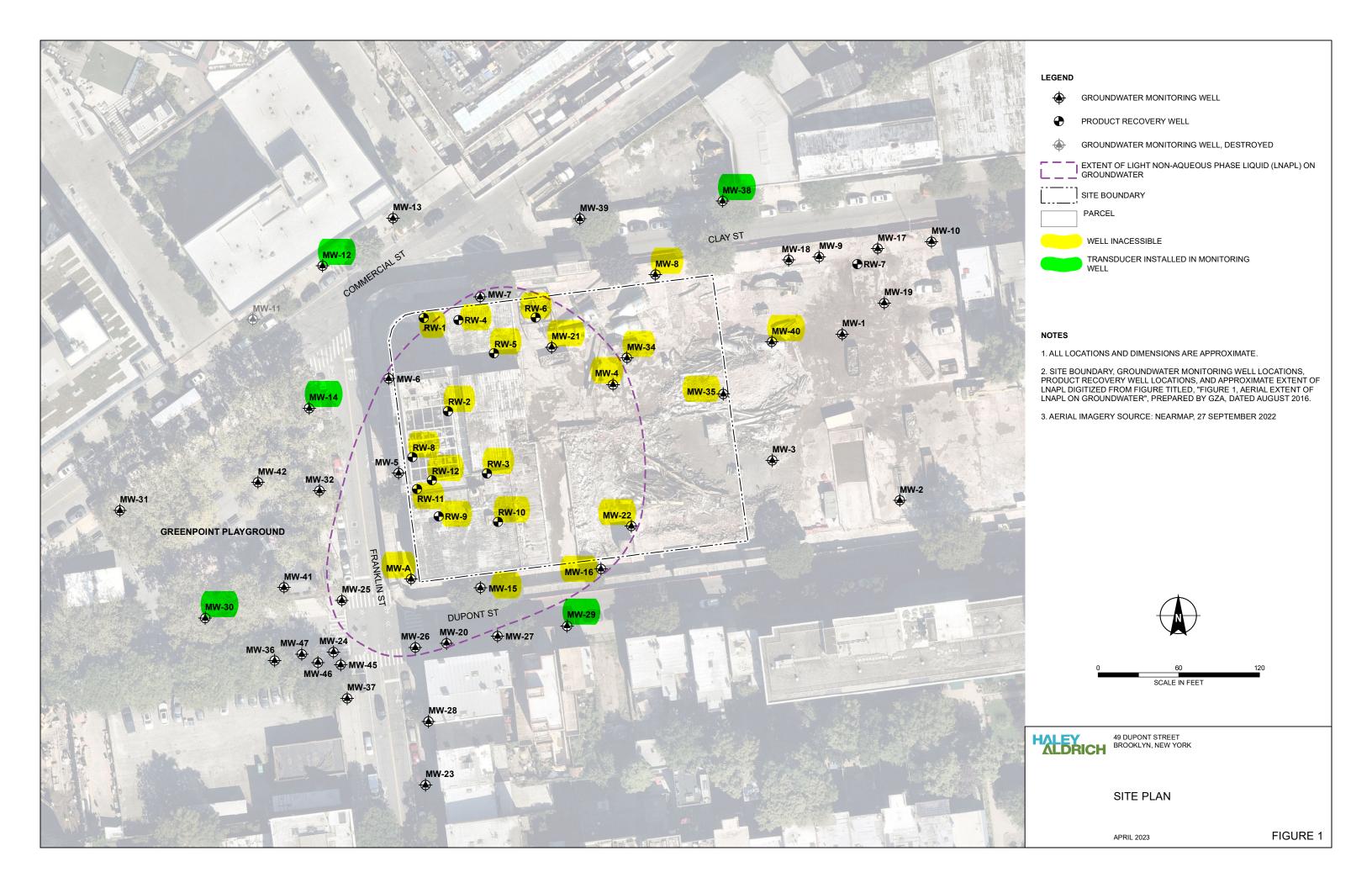
The Remedial Action is approximately 50% complete.

9. <u>Unresolved Delays Encountered or Anticipated That May Affect the Schedule and Mitigation Efforts</u>

None.

10. Community Participation (CP) Plan Activities during This Reporting Period

A Community Board Meeting was held on 10 October 2023 to discuss upcoming Site work.


11. Activities Anticipated in Support of the CP Plan for the Next Reporting Period:

None.

12. Miscellaneous Information

None.

3

LEGEND

EXTENT OF LNAPL IN GROUNDWATER

PROPOSED LNAPL BARRIER SHEET PILE WALL (OU-1)

TEMPORARY CONSTRUCTION FENCING

(4" DIAMETER WITH 0.01 SLOT SIZE)

PROPOSED LNAPL RECOVERY WELL LOCATION
(2" DIAMETER WITH 0.01 SLOT SIZE)

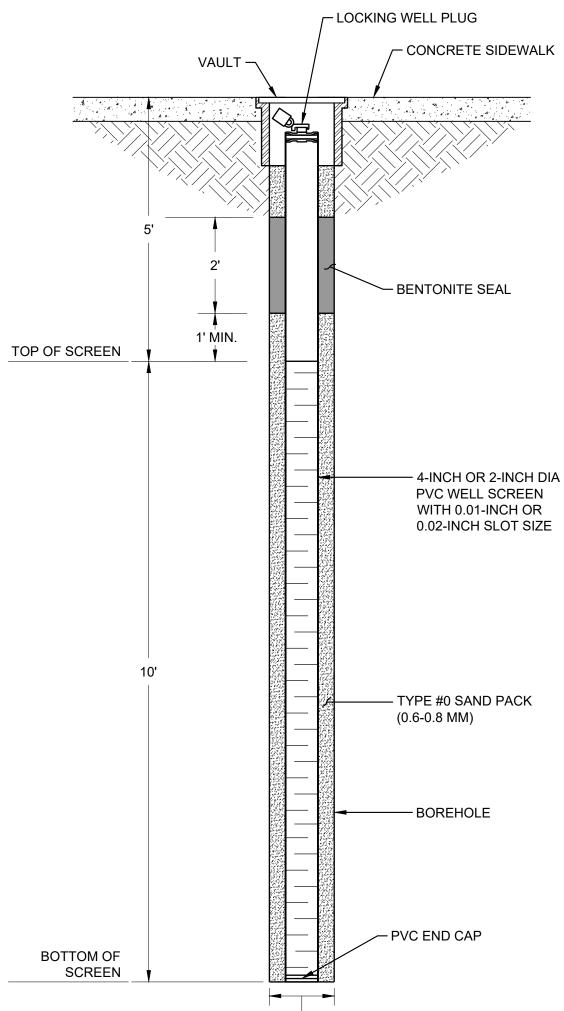
PROPOSED LNAPL RECOVERY WELL LOCATION

PROPOSED LNAPL RECOVERY WELL LOCATION (4" DIAMETER WITH 0.02 SLOT SIZE)

PROPOSED LNAPL RECOVERY WELL LOCATION (2" DIAMETER WITH 0.02 SLOT SIZE)

POTENTIAL LNAPL RECOVERY WELL TO BE INSTALLED AFTER PILOT TEST

EXISTING GROUNDWATER MONITORING WELL TO BE PROTECTED DURING CONSTRUCTION


PROPOSED LNAPL BARRIER SECANT PILE WALL (OU-2)

(- - /

OIL ABSORBANT SOCKS

NOTES

- LOCATION OF ALL EXISTING AND PROPOSED FEATURES SHOWN ON THIS PLAN ARE APPROXIMATE.
- 2. ANY WELLS DAMAGED DURING REMEDIATION WILL BE ABANDONED AND REPLACED.

1 LNAPL RECOVERY WELL
SCALE: NTS

HALEY ALBRICH

HALEY & ALDRICH, INC. 237 W 35th Street, 16th Floor New York, NY 10001 Tel: 646.277.5685 www.haleyaldrich.com

NOT FOR CONSTRUCTION

Project No.: 0203497-000
Scale: AS SHOWN
Date: NOVEMBER 7, 2022
Drawn By: JPC/KFP
Designed By: SAU
Checked By: SAU
Approved By: JMB
Stamp:

100% DESIGN SAU 4/10/2
v. Description By Date

FORMER NUHART PLASTIC MANUFACTURING SITE STATE SUPERFUND PROJECT BROOKLYN, NEW YORK

LNAPL BARRIER/LNAPL RECOVERY PLAN

C-301

Sheet: 7 of 9

Table 1:

Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136 280 Franklin Street

Brooklyn, NY

Readings taken 10/24/2023 between 8:00 am and 1:00 pm (high tide @ 6:07am and low tide @ 12:08pm)

1 of 2

	1	Denth to	1																									Apparen	t Thickness of L?	NAPL (feet)															- 0.070		tide @ 12.08pm)
Well Number	Depth to Water (fee						2023										2022										2021							2	120								2019				
	water (ree	(feet)	Oct-23	Sep-23	Aug-23	Jul-23 Jun-2	3 May-23	Apr-23	Mar-23	Feb-23	Jan-23	Dec-22	Nov-22	Nov-22	Oct-22 Sept-	22 Aug-22	Jul-22	Jun-22	fay-22 A	pr-22 ?	Mar-22 1	Feb-22 Ja	m-22 Dec-2	Nov-21	Oct-21	Sep-21	Aug-21	Jul-21 Ju	un-21 May-2	1 Apr-21	Mar-21	Nov-20 C	ct-20 Jul-20	Jun-20 May	-20 Apr-2	Mar-20	Feb-20 Jan	-20 Dec-	19 Nov-19	Oct-19	Sep-19	Aug-19 Jul-	-19 Jun-19	May-19 /	Apr-19 Mar-1	9 Feb-19	Jan-19 Dec-18
MW - 4	ND+	ND+	ND+	ND+	ND*	ND+ ND+		ND+	ND+	ND+	ND+	ND+	ND+	NA	NA NA	ND*	ND+	ND*	ND+	ND*	ND+	ND+ N	ND+ —	_	ND+	ND*	ND+	ND+	ND+ ND+	ND+	ND	ND	ND ND	ND N) ND	ND	ND+ N	D* ND	* ND*	ND+	ND*	ND ND)* ND*	**	ND+ ND+	ND+	ND+ ND+
MW - 5	9.80	9.05	0.75	0.38	0.50	3.24 2.42	2.80	0.80	4.24	5.02	0.59	5.22	6.94	NA	NA NA	4.85	4.85	4.07	4.00	4.50	3.20	2.73	5.88 3.85	0.71	4.27	2.17	3.52	0.78	0.10 0.42	0.78	0.29	3.59	4.76 2.94	5.43 3.1	1 4.18	4.46	4.21 3.	44 4.43	7 4.61	5.65	5.18	1.30 3.77	/3 5.15	2.89	2.46 2.26	3.28	2.62 2.83
MW - 6	11.00	7.98	3.02	0.12	1.00	0.53 0.48	ND	ND	ND	ND	0.74	0.99	1.55	NA	NA NA	2.63	3.20	3.36	3.01	3.05	1.65	2.55 2	2.61 2.71	2.83	2.42	2.90	3.45	2.74	3.17 0.28	3.03	3.18	3.00	2.78 2.48	0.99 3.0	0 2.20	2.29	2.39 2.	98 0.85	5 ##	***	**	au aa	å 0.50	2.35	00 ##	**	** **
MW - 7	NA	NA	NA	3.90	3.58	4.22 4.22	ND**	3.7	4.40	4.85	3.17	1.42	3.17	NA	NA NA	0.40	1.10	3.35	2.13	2.82	1.00	1.00	2.07 1.59	0.67	0.88	0.37	0.42	0.46	2.26 0.54	1.76	1.28	1.15	1.56 2.10	3.89 2.5	1 3.85	3.53	1.59 0.	99 1.63	7 1.59	1.63	1.96	0.84 0.45	5 1.30	0.14	0.35 0.26	1.54	1.14 0.93
MW - 8	NA	NA	NA	NA	NA	ND ND	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	. ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND —	ND	ND ND
MW - 12	TD	TD	TD	TD	NA	NA ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 13	7.20	ND	ND	ND	ND+	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 14	TD	TD	TD	TD	NA	NA ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 15	NA	NA	NA	NA	NA	2.47 1.47	NA	NA	0.26	0.53	1.27	1.76	2.36	NA	NA NA	0.85	1.30	0.85	1.30	3.05	4.43	0.38	1.04 1.05	0.10	0.48	0.38	0.83	0.46	0.57 0.61	2.44	4.46	0.29	1.30 1.00	3.13 2.	6 2.75	3.29	2.66 0.	83 0.83	5 1.08	1.99	0.18	0.03 0.11	1 0.87	0.08	0.08 1.08	1.00	0.84 0.26
MW - 16	NA	NA	NA	4.56	0.35	6.07 4.83	3.90	2.70	0.11	2.71	3.47	0.47	0.15	NA	NA NA	0.1	ND	0.02	0.40	0.58	0.03	0.20	0.56 0.12	0.14	0.17	0.29	0.63	0.10	1.59 1.17	1.80	0.04	0.35	0.85 0.85	0.41 0.3	2 0.84	0.36	ND N	D ND	1.95	0.56	0.81	0.01 0.0/	4 1.17	0.45	0.73 0.07	0.39	0.17 0.19
MW - 20	12.00	10.35	1.65	0.91	1.00	1.24 ND	0.70	2.50	2.05	2.25	1.41	3.66	2.69	2.36	2.80 2.7	3 3.1	3.05	2.61	2.60	2.61	2.02	3.22	2.29 1.78	2.78	2.36	3.03	3.05	2.95	3.08 2.06	2.71	1.09	2.66	3.71 1.23	2.92 2.9	1 1.01	3.12	2.18 2.	75 2.83	2 3.73	3.37	3.25	2.29 2.09	9 3.66	1.45	1.47 2.17	2.43	2.77 3.49
MW - 21	NA	NA	NA	NA	MA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	0.95	1.90	1.54	1.40	2.09	2.68	0.75	0.86 1.60	1.15	2.45	0.05	0.35	1.39	1.33 1.06	1.91	2.61	1.33	3.13 2.98	5.44 4.3	9 4.29	4.57	3.63 1.	11 2.8	8 3.07	3.13	1.99	1.51 1.47	1 1.84	0.52	1.25 1.01	1.57	1.48 2.81
MW - 22	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	1.23	1.15	ND*	NA	NA NA	0.78	1.20	5.13	1.30	1.55	ND+	ND+ (0.58 —	_	0.93	0.11	0.86	1.13	1.62 0.39	0.99	0.45	0.37	1.95 0.76	2.56 2.	3 1.54	1.55	1.59 1.	44 1.23	2 1.06	1.94	2.95	0.69 0.51	1 2.28	2.98	1.03 1.05	1.83	1.68 0.83
MW - 23	10.73	ND	ND	ND	ND*	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND	ال ND	ND	ND ND	ND	ND ND
MW - 24	10.00	ND***	ND***	ND***	ND***	ND*** ND**	* ND***	ND***	0.03	0.08	NA	NA	ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND	ال ND	ND	ND ND	ND	ND ND
MW - 25	12.71	9.79	2.92	1.38	0.31	2.91 1.10	1.30	3.60	4.02	3.72	3.23	3.06	2.86	3.83	4.71 4.5	1 4.5	4.55	5.87	4.20	1.44	3.87	3.29	3.78 3.52	4.49	3.78	3.81	3.90	3.08	4.37 3.63	3.81	3.24	3.28	4.35 4.23	3.68 0.9	8 3.79	6.72	4.57 4.	89 4.60	6 4.93	4.31	3.18	3.38 3.87	3 4.61	3.76	3.81 4.19	4.77	3.86 3.89
MW - 26	13.50	9.91	3.59	3.36	2.70	1.81 0.81	1.45	0.61	4.00	4.93	0.61	4.09	4.01	3.76	4.84 3.7	8 3.4	3.50	4.02	3.40	4.39	3.02	1.90 4	1.45 3.24	3.44	2.89	7.14	3.58	3.07	4.01 3.02	3.32	3.32	2.97	3.56 3.79	3.78 3.	1 3.47	4.13	4.14 4.	11 4.65	5 4.02	4.62	5.21	3.43 3.19	9 4.90	0.69	2.46 2.94	3.37	3.14 3.84
MW - 27	10.39	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND+	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 28	10.58	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 29	TD	TD	TD	TD	NA	N/A ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 30	TD	TD	TD	TD	NA	N/A ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 31	8.81	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 32	9.45	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 34	NA	NA	NA	NA	NA	NA NA	NA	ND	NA	NA	ND	NA	NA	NA	NA N/	ND ND	ND	ND	ND	ND	ND	ND I	ND —	_	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 35	NA	NA	NA	NA	NA	NA NA	NA	ND	ND	ND	ND	ND	ND	NA	NA N/	ND ND	ND	ND	ND	ND	ND	ND I	ND —	_	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 36	10.22	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 37	10.65	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND+	ND+	ND+	ND+	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND+ N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 38	TD	TD	TD	TD	NA	N/A ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 39	7.60	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 40	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	ND	ND	ND	ND	NA	NA NA	. ND	ND	_	-	ND	ND	ND	- ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND
MW - 41	9.33	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	-	_			-	_			_	_	-			-			
MW - 42	8.61	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND) ND	ND	ND ND	ND	ND ND+
MW - 45	10.14	ND	ND	ND	ND	ND ND	ND	ND	ND	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-			-		-	
MW - 46	10.55	ND	ND	ND	ND	ND ND	ND	ND	ND	-	- 1	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-		-	-	-		-	-	-	-		-	-	-			-		+-	
MW - 47	NA	NA	NA.	ND	ND	ND ND	ND	ND	ND	-	+ - 1	-	-	-		-	-	-	-	-	-	-		_	_	-	-	-		-	-			-	_	-			-	-	-	- + -	_			+-	- -
MW-A	NA	NA	NA	NA	NA	ND NA	NA	0.05	0.04	0.05	4.45	-	-	-														-			-					-							-			+-	1 . 1 .
RW-1	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N/	ND ND	ND	ND	ND	ND	ND	ND I	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND N) ND	ND	ND N	D ND	ND ND	ND	ND	ND ND	D ND	ND	ND ND	ND	ND ND
RW - 2	NA	NA	NA	NA	NA	NA NA	NA.	NA	NA	NA	NA	3.16	4.55	NA	NA NA	3.45	3.10	5.67	3.39	5.78	5.25	3.15	5.19 3.03	2.11	2.00	2.16	2.12	2.92	02.15 1.74	3.28	2.44	3.81	2.90 3.95	4.56 3	5 493	4.78	4.59 3	31 4.49	9 2.42	5.03	2.19	1.41 0.6	6 4.08	1.64	1.47 1.27	4.73	5.12 1.63
RW - 3	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	2.51	NA	NA NA	2.45	3,40	5.35	3.04	3.90	1.34	2.30	3.20 0.67	2.70	2.79	2.60	3.67	4.61 0	05.02 1.45	3.85	2.50	1.99	3.25 4.41	2.31 2.1	5 3.82	3.85	3.48 3	24 2.63	2 4.30	4.03	4.09	3.50 3.2	25 3.96	1.61	2.11 2.26	4.71	2.22 2.63
RW-4	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	0.40	2.18	1.53	NA	NA NA	3.23	4.40	4.97	4.01	4.40	2.97	3.13	1.92 2.89	3.50	3.17	0.86	4.35	4.52	03.87 2.64	4.35	3.69	3.23	2.99 3.94	3.35	2 3.55	2.46	3.78 2	64 3.03	2 4.15	**	4.21	3.56 3.0	37 4.72	1.13	0.53 2.85	**	## 03.37
RW - 5	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	3.47	0.86	NA	NA N/	5.85	5.85	5.02	531	5.40	5.18	5.60	2.81 0.51	5.81	3.80	1.10	6.45	1.15	591 0.73	4.78	0.67	4 93	5 30 6 32	4 59 11	0 291	491	5.18 2	54 ##	##	**	5.74	** **		0.71	** **	**	## ##
RW - 6	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	0.40	ND*	NA	NA NA	0.7	1.30	0.48	1.20	1.15	0.35	1.05	1.10 —	0.90	1.12	0.53	0.21	1.14	1.33 0.58	2.49	**	##	2.82 1.85	2.17 0.	4 121	0.98	1.05	67 1.5	1 1.61	2.19	1.49	0.7 0.4	1.57	0.28	0.55 0.49	02.33	0.91 00.73
RW - 8 ***	NA	NA	NA	NA	NA	NA NA	NA.	NA	NA	NA	0.36	0.88	1.52	NA	NA N/	3.77	3.80	4.06	4.06	3.55	2.35	_		0.70			_	_			_					-					_		_				
RW - 9	NA	NA	NA	NA	NA	NA NA	NA.	NA	NA	NA	3.55	3.92	4.46	NA	NA N/	4.07	6.65	4.02	3.70	6.55	2.50	3.70	5 97 4 46	2.54	2.70	0.78	4.12	2.95	3.65 3.42	4 39	5.42	6.45	164 430	490 4	5 4.22	5.01	5 36 4	08 4.6	5 437	5 59	4.23	2 99 3.5	55 4.57	2 32	1.73 2.23	3.79	1.53 3.45
RW - 10	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA	2.13	NA	NA NA	3	42	531	5.74	4.02	3.00	3.30	3.61 1.65	2.95	3.04	0.70	2.90	3 30	471 31	4.32	1.38	5.96	3.88 3.59	431 21	3 286	3.80	3.59 4	58 3.6	4 441	4 37	3.99	0.76 3.0	4 392	3.25	3.11 3.24	4.53	3.80 4.06
RW - 11	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	2.92	2.48	3.76	NA	NA NA	41	4.0	3.48	401	5.22	3 35	2.85	1.03	4.13	3.64	111	4.48	2.67	611 200	4.20	1.43	3.25	124 3.45	3.89 4	2 431	5.77	5.13 3	80 5.50	8 4.54	630	4.85	4 12 3.7	/8 4.65	3.32	192 2.35	4.74	2.69 3.02
RW-12 ***	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA	5.42	6.10	NA	NA NA	4.17	4.7	7.02	3.86	3 30	3.50		- 4.70			1				7.20		-		_ +-	+31	5.77		- 3.3	-	0.50				John		_	
MW - 1	NG.	NG:	NG	NG	NG	NG NG	NG.	NG	NG	NG	NG	NG	NG	NG	NG NG	NG.	NG.	NG	NG .	NG	NG	NG	NG NG		NG	NG	NG	NG	NG NG	NG	NG	NG	NG NG	NG N	, NG	NG	NG N	IG NO	NG.	NG	NG	NG NC	G NG	NG	NG NG	NG NG	_ NG
MW - 9	NG.	NG	NG	NG	NG	NG NG	NG.	NG	NG	NG	NG	NG	NG	NG	NG NG	NG.	NG.	NG	NG	NG	NG	NG	NG NG	ND.	NG NG	NG NG	NG	NG	NG NG	NG NG	NG	NG	NG NG	NG N	, NG	NG	NG N	IG NO	NG NG	NG	NG	NG NC	G NG	NG	NG NG	NG NG	- NG
MW - 10	NG.	NG.	NG	NG	NG	NG NG	NG.	NG	NG	NG	NG	NG	NG	NG	NG NG	NG.	NG.	NG	NG	NG	NG	NG	NG NG	ND ND	NG	NG	NG	NG	NG NG	NG	NG	NG	NG NG	NG N	, NG	NG	NG N	IG NO	NG NG	NG	NG	NG NC	G NG	NG	NG NG	NG NG	ND NG
MW - 17	NG NG	NG NG	NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG	NG NG	NG NG	NG NG	NG NG	NG	NG.	NG	NG I	NG NG	ND ND	NG NG	NG NG	NG.	NG	NG NG	NG NG	NG.	NG.	NG NG	NG N	NG NG	NG NG	NG N	IG NO	NG NG	NG NG	NG NG	NG NG	G NG	NG NG	NG NG	NG NG	ND NG
MW - 18	NC NC	NG	NG	NG NG	NG	NG NG	NC NC	NG	NG NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG NG	NG NG	NG NG	NG	NG.	NG	110	NG NG	, ND	NG NG	NG NG	NG	NG	NG NC	NG NG	NG.	NG	NG NG	NG N	, NO	NG NG	NG N	IG NO	NC NC	NG NG	NG	NG NG	G NC	NG NG	NG NG	NG	ND NG
MW - 18	NG NG	NG NG	NG NG	NC NC	NG	NG NG	NC NC	NG NG	NC NC	NG NG	NG NG	NG	NG NG	NG	NG NG	NG NG	NG NG	NG NG	NC NC	NC NC	NG NG	NC	NG NG	+-	NC NC	NG NG	NC	NC	NC NG	NC NC	NC	NG	NG NG	NC N	, NG	NG NC	NO N	C NO	NO NO	NG NG	NG NG	NG NG	C NC	NG NG	NG NG	NG NG	MC NG
KW - 7	NG	NG	NG	NG	NO	ivo NG	NG	NG	NG	NG	NG	NG	NG	NG	NG NO	NG	NG	NG	NO	NU	NU	NU	NG NG		NG	NG	NG	NU	NG NG	NG	NG	NG	NU NU	NO N	ı NG	NG	NG N	O NO	NG NG	NG	NG	NG NG	NG	NG	NG NG	NG	- NG

Notes:

Data recorded using an oil/water interface probe, measurements from the tops of well casings:

NAPL, observed, apparent thickness not determined
NI = Not Installed
NI = No Installed

NA= No Access

NG = Not Gauged TD = Transducer installed

1 of 2

Table 1: Attachment A: Apparent Thickness of LNAPL Former NuHart Plastic Manufacturing Site, NYSDEC #224136 280 Franklin Street

Brooklyn, NY

	Depth to	1										-1	1																																										
Well Number Depth	to n			2018						2017			_		2017							201	16				1					2015								2014							2013						20	012	
Water ((feet)		18 Jun-18	Iny-18 Ap	r-18 Mar-1	8 Feb-18	Jan-18	Nov-17	Oct-17	Sep-17 Au	g-17 Jul-	I-17 Jun-1	7 May-1	7 Apr-1	7 Mar-17	Feb-17	Jan-17	Dec-16 N	ov-16 Oc	t-16 Sep	p-16 Aug	-16 Jul-	-16 Jun-16	6 May-1	5 Apr-16	Mar-16	Feb-16	Jan-16 Dec	c-15 Nov	-15 Oct-15	Sep-15	Aug-15	Jul-15 Ju	m-15 May-15	Apr-15	Mar-15	Jan-15 Sep-14	4 Aug-14	Jul-14 Ju	n-14 May-14	4 Apr-14	Mar-14 Fel	-14 Jan-	14 Dec-1	3 Nov-13	Oct-13	Sep-13	Aug-13 Ju	ıl-13 Apr-1	13 Mar-13	3 Feb-13	Jan-13 Do	Dec-12 Nov	v-12 Oct-1	2 Sep-12
MW – 4 ND ⁴	ND*	ND+	0.12	1.13 0	65 0.73	ND+	0.92	2.12	0.81	1.76 1	.73 1.2	.23 1.77	ND+	1.32	1.61	1.13	1.31	1.30	1.00 1	.18 1.	.35 1.3	71 1.7	73 1.80	1.53	1.73	1.43	1.85	1.77 1.5	.96 2.0	4 1.99	1.77	2.22	4.27 0	0.35 0.44	-	0.56	- 1.75	1.90	1.24 Tr	ace —	0.01	Trace 0.	13 0.23	2 0.30	0.66	0.78	en .	3.49	2.22 0.59	9 0.67	0.44	0.44	0.80 0.	31 0.33	3.13
MW - 5 9.80	9.05	4.12	1.66	1.83 2	77 2.19	2.21	4.65	5.83	2.19	4.44	4.4 3.1	.71 3.54	2.81	2.80	3.13	4.05	3.00	3.55	4.43 3	.64 3.	.22 4.3	81 4.0	03 4.29	3.07	3.18	3.14	1.85	3.24 4.8	.83 5.4	1 4.16	4.26	4.45	4.22 2	2.41	2.55	3.10	4.40 4.79	5.03	1.97 3	.39 —	3.14	2.80 2.	18 -	6.46	7.17	5.54	00	5.08	3.92 3.00	2.39	4.32	3.00	4.11 3.	50 3.41	5.58
MW - 6 11.00	7.98	ND	0.55	0.50 2	47 0.74	**	***	##	1.22	3.19 3	.15 m	** **	***	**	00	00	an	**	an :	***	ve e	v ##	" ""	00	00	**	***	** **	10 01		***	**	## 2	2.30 ##	**	en e	00 00	***	00	**	-	2.84 3.	13 —	2.89	2.76	2.00	00	2.42	2.82	_	-	_		3.49	2.14
MW – 7 NA	NA	0.54	1.89	1.99 1	80 2.03	2.55	3.32	4.91	1.48	1.45	.41 0.	0.00	1.50	1.92	2.53	3.71	1.28	0.78	1.73 0	.91 0.	.04 1.8	89 1.5	58 2.22	2.11	1.90	1.66	2.31	2.47 3.4	.44 3.3	1 2.58	1.46	1.28	0.99 1	1.58 ND	1.94	1.79	## 2.01	2.16	0.60 0	.01 —	0.17	0.17 -		4.78	4.70	4.00	en .	2.77	1.06 1.92	2 4.92	5.45	1.30	1.36 2.	00 1.84	1.83
MW – 8 NA	NA	ND	ND	ND ?	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ND N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI	O ND	ND	ND	ND N	ND ND	ND	ND	- ND	ND	ND N	dD —	ND	ND -		- ND	ND	ND	ND	ND :	ND ND	ND ND	ND	ND	ND N	ID ND	ND
MW - 12 TD	TD	ND	ND		ID ND		ND	ND	ND		ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ND N	D NI	D ND	ND	ND	_	_	- N	ID NI	- (_	_	- >	ND ND	ND	ND	- ND	_	ND N	dD —	ND	ND -		- ND	ND	ND	ND	ND :	ND ND	ND ND	ND	ND	ND N	ID ND	
MW - 13 7.20) ND	ND	ND	ND ?	ID ND	ND	ND	ND	ND		ND N	ND ND	ND	ND	ND	ND	ND	ND	ND N	ND N	ND N	D NI	D ND	ND	ND	ND	-	- N	ID NI		_	_	- >	ND ND	ND	ND	- ND	_	ND N	dD —	ND	ND -		- ND	ND	ND	ND	ND :	ND ND	ND	ND	ND	ND N	ID ND	
MW – 14 TD	TD	ND	140		ID ND		ND	ND	ND	.40	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ND N	D NI	D ND	ND		ND	ND	ND N	ID NI	,	ND	ND	ND N	ND ND	ND	ND	ND ND	ND		dD —	ND	ND -		- ND	ND	ND	ND	ND :	ND ND	ND ND	ND	ND	ND N	ID ND	.412
MW – 15 NA MW – 16 NA	. NA	0.12			0.07	0.08	3.16	1.78	0.31	0.29 0	.26 0.2	.26 0.24	0.12	0.22	0.28	0.40	0.31	0.20	0.80 0	.20 0.	.17 0.8	81 0.0	0.48	0.22	0.71	0.03	0.04	0.60 3.6	.08 3.0	7 1.97	1.05	1.05	ND I	1.24 1.21	1.56	1.67	1.71 2.19		en O	.45 —	0.61	0.30 0.	18 —	3.11	3.19	3.34	en .	2.14).70 –	0.32	1.07		1.56 0.	99 0.76	
	. NA	0.20	0.06	0.10 0	13 —	0.1	0.34	0.25	0.35	0.37 0	.35 0.0	.08 0.28	0.03	0.10	0.23	0.20	0.31	ND	ND N	iD N	ID N	D 0.0	0.25	0.02	0.01	0.02	0.16	0.02 0.1	.11 0.0	2 0.12	0.05	0.05	0.14 0	0.13 0.15	0.03	0.08	0.02	0.03	0.99 Ti	ace —	0.01	0.01 0.	10 —	0.23	0.22	0.19	88	0.05	0.07 0.02	2 0.01	0.10	0.25	0.20 N	D 0.24	
MW – 20 12.0	0 10.35	2.51	1.4	1.55 2	52 1.77	1.02	3.15	3.99	2.52	2.58 2	1.63 2.	1.9 2.83	2.61	2.94	2.33	3.02	3.02	2.88	3.28 2	.90 3.	.16 2.8	89 2.8	88 2.85	2.22	2.49	2.43	1.99	2.46 3.5	.52 3.0	2 3.33	3.25	3.12	2.88 2	2.58 2.79	3.84	4.38	5.13 1.87	1.71	2.92 2	.06 —	1.47	2.90 2.	8 4.19	9 5.07	4.90	4.11	88	3.33	1.37 3.32	2 1.20	1.10	1.35	1.38 3.	39 3.15	3.80
MW – 21 NA	. NA	1.73	1.43	1.42 1	62 1.38	2.29	3.83	4.79	3.26	3.35 2	.13 1.4	.45 2.75	3.31	3.30	3.04	3.62	7.59	3.27	3.32 1	.25 2.	.39 3.6	51 2.5	96 2.95	2.63	4.18	2.68	2.42	2.97 4.4	.46 3.8	5 4.51	3.63	3.32	2.97 2	2.53 2.77	2.98	3.46	3.23 3.62	4.64	4.90 1	.99 —	2.69	2.47 2.	18 3.3	7 3.13	3.72	4.66	en en	4.37	3.38	3.43	3.75	4.10	4.23 2.	89 2.04	4.15
MW – 22 NA	NA NA	0.69	0.97	0.89 0	76 1.11	0.28	0.37	1.77	1.25	1.24 1	.21 0.3	.75 0.66	0.66	0.78	0.64	0.65	0.50	0.51	0.38 0	.30 0.	.01 0.5	51 0.8	87 0.62	0.45	0.48	0.44	0.15	0.22 1.3	.33 1.0	0.49	1.17	1.04	0.79 0	0.86 0.84	0.74	1.33	1.27 1.03	1.02	0.54 0	.85 —	0.74	0.86 0.	1.23	2 1.07	0.69	0.50	en e	1.12	0.86 0.50	0.62	1.15	1.20	0.18 0.	21 0.18	1.80
MW – 23 10.7	3 ND	ND	ND ND	ND 1	ID ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND P	ID N	ID N	D NI	D ND	ND	ND	ND	ND	ND N	D NI) ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	ND N	(D —	ND	ND N	D NE) ND	ND	ND	ND	ND I	ND ND	ND	ND	ND !	ND N	ID ND	ND
MW - 24 10:0 MW - 25 12:7	0 ND***	ND	ND	ND I	D ND	ND	ND 2.66	ND 4.64	ND 4.02	A OF	(D) N	D ND	ND	ND	ND	ND 2.47	ND	ND 2.62	ND N	O N	O N	D NI	D ND	ND	ND	ND 2.42	ND	ND N	(D NI) ND	ND	ND 2.60	ND N	ND ND	ND	ND	ND ND	ND	ND N	(D —	ND	ND -		ND	ND	ND	ND	ND	ND ND	ND	ND 424	ND)	ND N	86 440	ND 3.96
MW - 25 12.7 MW - 26 13.5	9.79	3.44	2.85	2.89 4	14 2.40	3.44	3.00	5.50	3.81	3.82 2	70 24	65 2.10	3.85	3.70	3.74	3.47	3.89	3.02	3.00 4	.20 3.	20 10	0 4.0	3.75	3.55	3.33	3.42	3.32	3.43 3.4	.08 3.5	3 3.63	3.53	3.68	3.53 2	3.24	3.36	1.07	1.03 3.16	4.02	3.65 3	.48 —	3.91	3.75	10 12	5.66	5.56	4.01	00	4.41 3	3.96	3.96	4.34	3.70 2	1.62 7.	80 4.40	3.96 4.02
MW - 26 13.3 MW - 27 10.3	9 ND	3.45 ND	ND.	2.33 3 ND 3	D ND	3:19 ND	3.93 ND	ND	ND	ND 2	ND N	ID ND	3.29 ND	3:73 ND	3.04 ND	3.24 ND	3.14 ND	3.20 ND	3.30 4 ND N	.00 3.	.20 4.3	D NO	3.82 D MD	3.41 ND	3.57 ND	2.97 ND	3.82 ND	3.41 4.3 ND N	23 4.0	3.77 ND	4.00 ND	3.70 ND	3:00 3 ND N	ND ND	3.04 ND	4:14 ND	ND ND	3.70 NP	4.50 3 ND N	7D .	2.71 ND	3.48 3.	4.3	4 4.44	4.47 ND	4.02 ND	ND	4.18	ND ND	2.33	1.00 ND	2.43 ND	ND 0	- 2.61	4.02 ND
MW - 27 10.5 MW - 28 10.5	8 ND	ND	ND	ND 2	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND.	ND.	ND	ND.	ND 3	iD N	ID N	D NI	D ND	ND ND	ND	ND	ND.	ND N	ID NI) ND	ND.	ND	ND 3	ND ND	ND	ND ND	ND ND	ND ND	ND N	D -	ND ND	ND N	D ND	ND ND	ND.	ND ND	ND	ND :	ND ND	ND ND	ND ND	ND I	NI N	NI NI	NI
MW - 29 TD	TD	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ID N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI) ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	ND N	ID -	ND	ND N	D NE) ND	ND	ND.	ND	ND I	ND ND	ND.	ND.	ND.	NI N	I NI	NI
MW - 30 TD	TD	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ID N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI) ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	ND N	ID -	ND	ND -		ND.	ND	ND.	ND	ND .	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 31 8.81	l ND	ND	ND		ID ND		ND	ND	ND		ND N	ID ND	ND	ND	ND	ND	ND	-				- NI	D ND	ND		ND	ND	ND N	iD -	· ND		ND	ND N	ND ND	ND		ND ND	ND	ND N	(D -	ND	ND -		- ND	ND	ND	ND	ND	NI NI	NI	NI	NI	NI N	NI NI	
MW - 32 9.45	S ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ND N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI	O ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	ND N	(D -	ND	ND -		- ND	ND	ND	ND	ND	NI NI	NI	NI	NI	NI N	NI NI	NI
MW – 34 NA	. NA	ND	ND	ND !	ID ND	ND	ND	ND	ND	ND 1	ND N	ND ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ID N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI	O ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	ND N	ID —	ND	ND N	D NE) ND	ND	ND	ND	ND	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 35 NA	. NA	ND	ND	ND !	ID ND	ND	ND	ND	ND	ND 1	ND N	ND ND	ND	ND	ND	ND	ND	ND	ND N	ND N	ND N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI	O ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	ND N	dD —	ND	ND N	D NE) ND	ND	ND	ND	ND	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 36 10.2	2 ND	ND	ND	ND !	ID ND	ND	ND	ND	ND	ND 1	ND N	ND ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ND N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI	O ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	NI I	NI NI	NI	NI N	I NI	I NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 37 10.6	5 ND	ND+	ND	ND ?	ID ND	ND	ND	ND	ND	ND 1	ND N	ND ND	ND	ND	ND	ND	ND	ND	ND N	ND N	ND N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI) ND	ND	ND	ND N	ND ND	ND	ND	ND ND	ND	NI I	NI NI	NI	NI N	I NI	I NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 38 TD	TD	ND	ND	ND ?	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND	ND	ND	-	-			- NI	D ND	ND	ND	ND	ND	ND N	ID NI	O ND	ND	ND	ND N	ND ND	ND	ND	- ND	NI	NI I	NI NI	NI	NI P	I NI	I NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 39 7.60) ND	ND	ND	ND ?	ID ND	ND	ND	ND	ND	ND 1	ND N	ND ND	ND	ND	ND	ND	ND	ND	ND N	ND N	ND N	D NI	D ND	ND	ND	ND	ND	ND N	ID NI	O ND	ND	ND	ND N	ND ND	ND	ND	ND ND	NI	NI I	NI NI	NI	NI P	I NI	I NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	NI NI	NI
MW – 40 NA	. NA	ND	ND	ND ?	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	iD N	ND N	D NI	D ND	ND		ND	ND	ND N	ID —	- ND	ND	ND	ND N	ND ND	ND	ND	ND ND	NI	NI I	NI NI	NI	NI P	I NI	I NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 41 9.33	ND ND		ND	ND !	ID ND	ND	ND	ND	ND	ND !	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND N	ND N	ND N	D NI	D ND	ND		ND	ND	ND N	ID NI) ND	ND	ND	ND N	ND ND	ND	1410	ND NI	NI	NI I	NI NI	NI	NI P	I NI	I NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 42 8.61	ND	ND*	ND ND	ND 1	ID ND	ND	ND	ND	ND	ND 1	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND P	iD N	ND N	D NI	D ND	ND		ND	ND	ND N	ID NI) ND	ND	ND	ND P	ND ND	ND	ND	ND NI	NI	NI I	NI NI	NI	NI N	I NI	I NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	NI NI	NI
MW - 45 10.1	4 ND		-	-		-	-	-	-	-			-	-		-	-	-	-	-				-	-	-	-			-	-	-	-		-	-		-	-		-	-		-	-	-	-	-		-	-		-		
MW - 46 10.5	5 ND		-	-			-	-	-	-				-		-	-	-	-	-							-				-	-	-		-	-		-	-		-	-		-	-	-	-	-			-		-		
MW - 47 NA	. NA		-	-			-	-	-	-					$+$ $\dot{-}$	-	-	-	-	-						-	-					-	-			-		-	-			-		-			-	-			-		-		
MW-A NA	. NA	-	-				-	-	-	-			-	-		-		-		-						-	-					-			-	-		-									-				-	-			ND.
	. NA	ND	ND ND	ND I	ID ND	ND 5.53	ND 4.01	ND 5.10	ND 0.56	ND I	ND N	OD ND	ND	ND	ND	ND 2.00	ND	ND LCC	ל עמ	an N	OF N	NI NI	D ND	ND	ND	ND	ND	ND N	ω –	ND ND	ND	ND	ND P	ND ND	ND 2.02	ND	ND ND	ND	ND N	(D —	ND	ND N	D NE	ND ND	ND	ND	ND	ND I	ND -	ND	ND	ND 7	ND N	ID ND	ND 5.05
RW – 2 NA RW – 3 NA	NA NA	3.54	2.08	2.02	60.08	3.52	4.01 ND	3.19	3.17	3.15	22 24	28 2.11	0.42	1.13	2.90	3.09	3.53	1.05	2.05	40 1	.33 1.8	8 2.0	2.41	3.02	2.12	3.34	2.70	2.83 4.1	27 20	2.64	2.97	3.41	5.54 5	1.28 5.44	2.82	4.19	4.52 4.52	4.53	4.52 0	12	1.30	3.05 2.	2.8	3.19	5.09	3.86	00	2.06	2.90	3.48	3.75	4.20 2	2.52 1.	92 1.50 84 3.50	5.85 3.88
RW – 3 NA	NA NA	3.77	2.06	2.03 2	00 2.12	3.03	2.06	4.22	4.22	4.17 4	10 2	20 3,44	2.85	2./1	3.40	2.98	3.10	2.00	3.93 2	.40 2.	.50 3.0	18 1.5	97 2.49	1.04	2.17	2.09	1.04	2.37 4	.27 2.9	4.14	1.39	2.14	4.31 2	2.23	1.81	3.28	3.41 3.50	3.43	3.30 4	.12 —	1.58	2.90 2.	8 4.00 (est) 3.00	3.33	1.08	011	2.96	1.44 3.90	3.20	3.34	3.70 3	3.38 2.	3.50	3.88
RW - 5 NA	. NA	ND+	0.44	0.33 0	65 0.34	4.64	0.49	4.49	5.28	5.27 5	.26 5.4	.42 3.75	5.00	5.44	5.10	0.70	2.05	1.55	3.05 0	42 0	36 04	0 49	07 2.32	2.02	2.66	2.93	2.03	1.92 1.9	96 56	4 4 18	2.03	5.70	4 87 A	1.60 4.75	0.70	0.85	0.91 0.95	0.43	0.17 0	17 _	0.12	0.93 0.	13 0.5	2 0.60	0.70	0.54	**	0.69	1.00 3.00	3.13	3.00	3.00	2.93	00 1.88	3.33
RW - 6 NA			0.83		96 0.91	00.90		1.64	0.73	-	61 05	93 5.25	1.05	1.27	1.22	0.70	0.90	0.85	0.68 0	87 0	92 1/	16 13	29 0.81	0.67	0.73	0.24	0.76	0.74 0.3	27 0.6	3 0.66	0.65	0.61	0.78	96 2.35	0.71	1.19	1.14 0.71	0.43	0.78 0	79	0.12	1.28 0.	6 0.4	1 0.00	1.30	0.67	**	0.10	0.08 0.45	5 0.50	0.21	0.40		90 0.22	
RW - 8 *** NA	NA.		0.02	0.00 0	03 0.03	0.96	1.99	_	1.15	2.2 3	.62 1.	.2 234	0.02	0.01	-	- 0.70	-	_						-	- 0.75	-	-		- 0.0		-	-			2.14	2.93	2 92 4 01	4.48	## 2	95 —	0.65	1.47 0.	6 23	7 2.46	3.92	4.13	**	4 59	8.64 —	- 0.50	-	-			
RW – 9 NA	. NA	4.52	0.11	2.38 2	28 1.51	2.88	4.32	5.58	3.72	3.77 3	.69 2.8	.84 3.25	2.70	2.69	3.50	3.66	2.47	3.09	3.57 2	.45 2.	.35 3.1	19 2.1	15 3.18	2.75	3.09	3.81	2.42	3.46 4.4	.62 4.3	7 3.52	2.68	3.23	3.04 4	1.82 4.79	4.28	5.68	5.65 4.81	4.59	4.92 4	.14 —	1.02	2.90 2.	1 4.3	4 5.25	4.88	3.08	00	4.09	2.37 4.40	2.62	3.11	3.50	3.08 3.	83 2.98	5.33
RW - 10 NA	. NA	2.46	1.52	1.60 3	70 0.66	3.48	4.64	4.28	3.65	3.67 3	.71 3.6	.67 3.78	4.07	3.79	4.27	4.70	4.15	3.86	3.45 3	.80 3.	.36 4.4	14 3.9	91 3.69	3.74	3.66	3.67	4.69	4.77 4.4	.46 5.3	2 4.45	4.12	4.12	5.71 3	3.95	3.65	4.96	5.04 3.93	3.74	3.57 3	.18 —	3.38	3.89 3.	18 3.81	0 3.81	3.99	4.11	en .	4.11 3	3.55 —	_	-			- -	_
RW - 11 NA	NA	2.21	2.51	2.52 4	34 2.41	2.50	5.01	5.5	2.97	4.57 3	.93 2.3	.33 3.00	2.92	3.00	3.55	3.73	2.65	1.90	2.04 2	.43 2.	.12 3.6	56 2.5	98 3.43	3.08	2.94	3.05	2.45	3.07 4.6	.65 4.3	9 3.59	3.24	3.62	3.43 3	3.66 3.67	3.00	3.87	3.97 4.43	4.42	4.46 3	.87 —	2.03	2.54 2.	9 3.6	6 4.27	5.48	2.65	en .	3.91	3.49 3.15	5 2.67	3.11	3.50	2.93 4.	49 2.58	4.40
RW- 12 *** NA	. NA	_	0.11	0.02 2	61 0.02	1.12	1.5	5.96	3.65	5.4 2	.68 0.0	.01 0.03	0.01	0.02	0.80	3.89	-	- 1	-		- -	- -		_	-		- 1		- -	-	-	-	-		T - T	-		-	T - T		_				_	- 1	-	-		_	_			- -	1 - 1
MW - 1 NG	NG	NG	NG	NG 1	IG NG	NG	NG	NG	NG	NG 1	NG N	iG NG	NG	NG	NG	NG	NG	NG	NG 1	NG N	NG N	G No	G NG	NG	NG	NG	NG	NG N	iG No	G NG	NG	NG	NG 1	NG NG	NG	NG	NG NG	NG	NG N	iG NG	NG	NG N	G NO	G NG	NG	NG	NG	NG	NG NG	NG	NG	NG	NG N	IG NG	NG
MW - 9 NG	NG	NG	NG	NG 1	IG NG	NG	NG	NG	NG	NG P	NG N	iG NG	NG	NG	NG	NG	NG	NG	NG P	NG N	NG N	G No	G NG	NG	NG	NG	NG	NG N	iG No	G NG	NG	NG	NG 1	NG NG	NG	NG	NG NG	NG	NG N	iG NG	NG	NG N	G NO	G NG	NG	NG	NG	NG	NG NG	NG	NG	NG	NG N	IG NG	NG
MW - 10 NG	NG	NG	NG	NG 1	IG NG	NG	NG	NG	NG	NG 1	NG N	iG NG	NG	NG	NG	NG	NG	NG	NG 1	NG N	NG N	G No	G NG	NG	NG	NG	NG	NG N	iG No	G NG	NG	NG	NG 1	NG NG	NG	NG	NG NG	NG	NG N	iG NG	NG	NG N	G NO	G NG	NG	NG	NG	NG	NG NG	NG	NG	NG	NG N	IG NG	NG
MW - 17 NG	NG	NG	NG		IG NG	NG	NG	NG	NG		NG N	iG NG	NG	NG	NG	NG	NG	NG	NG P	NG N	NG N	G No	G NG	NG		NG	NG	NG N	iG No	G NG	NG	NG	NG ?	NG NG	NG	NG	NG NG	NG	NG N	iG NG	NG	NG N	G NO	G NG	NG	NG	NG	NG	NG NG	NG	NG	NG		IG NG	
MW - 18 NG	NG	NG	NG	NG 1	IG NG	NG	NG	NG	NG	NG 1	NG N	iG NG	NG	NG	NG	NG	NG	NG	NG 1	NG N	NG N	G No	G NG	NG	_	NG	NG	NG N	iG No	G NG	NG	NG	NG ?	NG NG	NG		NG NG	NG	NG P	NG NG	NG	NG N	G NO	G NG	NG	NG	NG	NG	NG NG	NG NG	NG	NG		IG NG	
RW - 7 NG	NG	NG	NG	NG 1	IG NG	NG	NG	NG	NG	NG 1	NG N	iG NG	NG	NG	NG	NG	NG	NG	NG ?	NG N	NG N	G No	G NG	NG	NG	NG	NG	NG N	iG No	G NG	NG	NG	NG ?	NG NG	NG	NG	NG NG	NG	NG P	NG NG	NG	NG N	G NO	G NG	NG	NG	NG	NG	NG NG	NG NG	NG	NG	NG N	IG NG	NG

Notes:

Data recorded using an oil/water interface prob
= NAPL observed, apparent thickness not d
NI = No Installed
ND = Not Det
MWA, MWA, MWA, MWA, MWA, MWA, TV,
ests Estimated Value
= Water m
= Well was direct
Well were gauged on 24 October 2023

TABLE 2
LNAPL RECOVERY PILOT TEST RECOVERY LOG - OCTOBER

FORMER NUHART WEST SITE

65 DUPONT STREET, BROOKLYN, NEW YORK

	Recovery Well ID	RW-13	RW-15	RW-17	RW-19	RW-21	RW-23	RW-25	RW-27	RW-29	RW-31	RW-33	RW-35	RW-37	RW-39	RW-41
Date	Diameter (in.)	4	2	4	2	4	2	4	2	4	2	4	2	4	2	4
Date	Slot Screen Size	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02
	Recovery Method	N/A	Vacuum	IA	Vacuum	IA	IA	IA	Vacuum							
	Vacuum Duration (mins)	-	10	-	10	15	15	15	15	15	-	10	-	-	-	-
10/24/2023	LNAPL Thickness	-	4.2	0.0	0.9	2.4	3.8	2.0	4.0	3.0	-	1.4	-	-	-	0.1
	LNAPL Recovered	-	0.3	0.0	0.9	1.5	1.5	2.0	1.5	2.5	-	2.0	-	-	-	0.0
	Vacuum Duration (mins)	-	-	-	-	10	10	5	-	10	-	5	-	-	-	-
10/25/2023	LNAPL Thickness	-	0.3	0.0	0.3	3.6	4.8	2.0	0.4	1.8	-	0.5	-	-	-	Sheen
	LNAPL Recovered	-	0.0	0.0	0.0	2.5	1.7	0.9	0.0	1.3	-	0.5	-	-	-	0.0
	Vacuum Duration (mins)	-	-	-	10	10	10	15	-	10	-	5	-	-	-	-
10/26/2023	LNAPL Thickness	-	Sheen	Sheen	4.68	3.5	4.3	2.7	Sheen	1.6	-	0.45	-	-	-	Sheen
	LNAPL Recovered	-	0.0	0.0	0.13	0.0	1.2	2.5	0.0	0.0	-	0.0	-	-	-	0.0
	Vacuum Duration (mins)	-	-	-	-	15	10	10	-	10	-	10	-	-	-	-
10/27/2023	LNAPL Thickness	-	0.1	0.0	0.1	5.0	4.4	2.1	0.3	1.5	-	0.8	-	-	-	0.2
	LNAPL Recovered	-	0.0	0.0	0.0	2.5	1.5	0.0	0.0	1.5	-	0.0	-	-	-	0.0
	Vacuum Duration (mins)	-	-	-	-	15	15	-	-	15	-	-	-	-	-	-
10/30/2023	LNAPL Thickness	-	-	0	4.7	3.55	4.18	4.3	1	2.3	-	1.55	-	-	-	Sheen
	LNAPL Recovered	-	0.0	0.0	NR	1.9	1.7	NR	NR	1.7	-	0.0	-	-	-	0.0
	Vacuum Duration (mins)	-	-	-	10	15	-	-	-	15	-	15	-	-	-	-
10/31/2023	LNAPL Thickness	-	-	0.0	4.7	3.6	4.2	4.3	1.0	2.5	-	1.3	-	-	-	Sheen
	LNAPL Recovered	-	0.0	0.0	0.3	2.2	NR	NR	NR	1.6	-	1.3	-	-	-	0.0
TOTAL	40.93	N/A	0.25	0.00	1.35	10.58	7.58	5.35	1.50	8.57	IA	3.75	IA	IA	IA	0.00

Notes:

- 1. LNAPL was not extracted from wells with minimal product as gauged on a daily basis
- 2. Sock = Recovery well located outside of the construction fence; absorbent sock installed
- 3. N/A = no LNAPL present
- 4. IA = Well inaccessible.
- 5. NR = No recovery taken place, replacement batteries for vacuum to be delivered this week

TABLE 2
LNAPL RECOVERY PILOT TEST RECOVERY LOG - OCTOBER

FORMER NUHART WEST SITE

65 DUPONT STREET, BROOKLYN, NEW YORK

	Recovery Well ID	RW-43	RW-45	RW-46	RW-47	RW-48	RW-49	RW-50	RW-51	RW-52	RW-53
Date	Diameter (in.)	2	4	2	4	2	4	4	2	4	4
Date	Slot Screen Size	0.02	0.01	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.01
	Recovery Method	Vacuum	Vacuum	Vacuum	N/A	N/A	N/A	N/A	Sock	N/A	N/A
	Vacuum Duration (mins)	10	-	10	-	-	-	-	-	-	-
10/24/2023	LNAPL Thickness	2.9	-	2.1	-	-	-	-	-	-	-
	LNAPL Recovered	1.3	0.0	0.8	-	-	-	-	-	-	-
	Vacuum Duration (mins)	-	-	-	-	-	-	-	-	-	-
10/25/2023	LNAPL Thickness	0.2	-	0.1	-	-	-	-	-	-	-
	LNAPL Recovered	0.0	0.0	0.0	-	-	-	-	-	-	-
	Vacuum Duration (mins)	-	-	-	-	-	-	-	-	-	-
10/26/2023	LNAPL Thickness	Sheen	-	0.25	-	-	-	-	-	-	-
	LNAPL Recovered	0.0	0.0	0.0	-	-	-	-	-	-	-
	Vacuum Duration (mins)	-	-	-	-	-	-	-	-	-	-
10/27/2023	LNAPL Thickness	0.1	-	0.1	-	-	-	-	-	-	-
	LNAPL Recovered	0.0	0.0	0.0	-	-	-	-	-	-	-
	Vacuum Duration (mins)	-	-	-	-	-	-	-	-	-	-
10/30/2023	LNAPL Thickness	Sheen	-	0.35	-	-	-	-	-	-	-
	LNAPL Recovered	0.0	0.0	0.0	-	-	-	-	-	-	-
	Vacuum Duration (mins)	-	-	-	-	-	-	-	-	-	-
10/31/2023	LNAPL Thickness	Sheen	-	0.6	-	-	-	-	-	-	-
	LNAPL Recovered	0.0	0.0	0.0	-	-	-	-	-	-	-
TOTAL	40.93	1.25	0.00	0.75	N/A						

Notes:

- 1. LNAPL was not extracted f
- 2. Sock = Recovery well locat
- 3. N/A = no LNAPL present
- 4. IA = Well inaccessible.
- 5. NR = No recovery taken pl

October 16, 2023

Yuk Yin Wong NYSDEC – Division of Environmental Remediation

Reference: Groundwater Sampling and Gauging Report

75 Dupont Street Brooklyn, NY DEC Permit # 224136 and C224287

Dear Mr. Wong,

Enclosed please find the groundwater sampling and gauging report for the above referenced project. The report consists of the daily logs, groundwater levels and water sample analytical results retrieved from monitoring wells 12, 14, 29, 30, 38 and 43 by Cichetti Engineering, PLLC. Water samples and gauging were retrieved as follows:

10/05: Monthly dewatering sample

The dewatering report enclosed is associated with the foundation portion of the project which is under construction by the general contractor OmniBuild and foundation contractor MonCon. Monthly groundwater sampling and gauging will continue to be performed on a monthly basis.

We've compiled a comparative summary table of the water analytical results for each monitoring well. The groundwater results were compared to New York TOGS 1.1.1 Ambient water quality standards.

Sincerely,

Matthew Cichetti, PE

Cichetti Engineering PLLC

att Cichte

Cichetti Engineering P.O. Box 195 Germantown, NY 12526

DAILY PROGRESS REPORT

PROJECT NAME	DATE	WEATHER AND TEMPERATURE
75 Dupont Street	10/05/2023	Clear – 70 Degrees

TODAY'S OVERALL PROGRESS

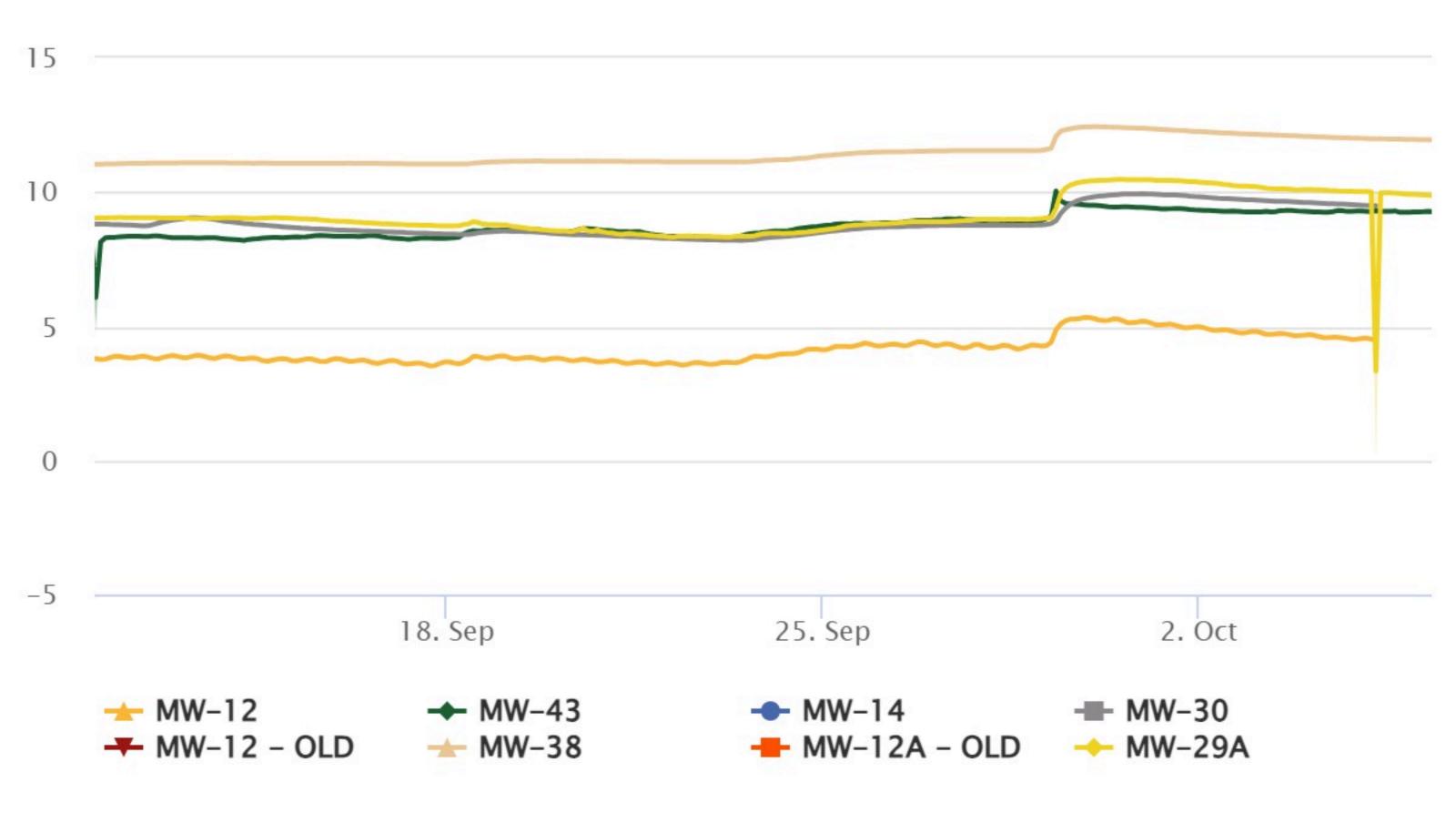
See attached Groundwater Monitoring Table for water level monitoring.

Retrieved monthly water samples from Monitoring Wells 12, 14, 29, 30, 38, 43 as follows:

- 1. Purged stagnant water in monitoring wells in accordance with USEPA "Low Stress" guidelines
- 2. Pumped monitoring wells and filled sampling bottles in accordance with USEPA "Low Stress" guidelines
- 3. Delivered water samples to lab facility and tested for the following: VOCs SVOCs

Metals

NYSDEC list PFAS Compounds


1,4-Dioxane

ESTIMATED QUANTITIES

TASK LOCATION	DESCRIPTION OF WORK	ITEM#	TIME PERFORMED	COMMENTS
Monitoring Well 12	Retrieved Water Sample	MW-12	8:30 AM	
Monitoring Well 14	Retrieved Water Sample	MW-14	8:30 AM	
Monitoring Well 29	Retrieved Water Sample	MW-29	8:30 AM	
Monitoring Well 30	Retrieved Water Sample	MW-30	8:30 AM	
Monitoring Well 38	Retrieved Water Sample	MW-38	8:30 AM	
Monitoring Well 43	Retrieved Water Sample	MW-43	8:30 AM	

PREPARER NAME AND TITLE	PREPARER SIGNATURE	DATE
R. Lemar Young, Project Engineer	a-7	10/05/2023

Depth (ft) Sep 12, 2023 2:24 AM – Oct 6, 2023 12:37 AM

Project: 65-75 Dupont

9/11/2023 10/5/2023 Sampling Date

		> limits			
SAMPLE LOCATION	Compound	Parameter	Result		UNITS
MW-12	Volatile Organics, 8260 List - Low Level				
	Dilution Factor	ug/L	1	1	ng/L
	1,1,1,2-Tetrachloroethane	5	0.200	0.200	ng/L
	1,1,1-Trichloroethane	5	0.200	0.200	ng/L
	1,1,2,2-Tetrachloroethane	5	0.200	0.200	ng/L
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	0.200	0.200	ng/L
	1,1,2-Trichloroethane	1	0.200	0.200	ng/L
	1,1-Dichloroethane	5	0.200	0.200	ng/L
	1,1-Dichloroethylene	5	0.200	0.200	ng/L
	1,1-Dichloropropylene	5	0.200	0.200	ng/L
	1,2,3-Trichlorobenzene	5	0.200	0.200	ng/L
	1,2,3-Trichloropropane	0.04	0.200	0.200	ng/L
	1,2,4,5-Tetramethylbenzene	~	0.200	0.200	ng/L
	1,2,4-Trichlorobenzene	5	0.200	0.200	ng/L
	1,2,4-Trimethylbenzene	5	0.200	0.200	ng/L
	1,2-Dibromo-3-chloropropane	0.04	0.200	0.200	ng/L
	1,2-Dibromoethane	0.0006	0.200	0.200	ng/L
	1,2-Dichlorobenzene	3	0.200	0.200	ng/L
	1,2-Dichloroethane	0.6	0.200	0.200	ng/L
	1,2-Dichloropropane	1	0.200	0.200	ng/L
	1,3,5-Trimethylbenzene	5	0.200	0.200	ng/L
	1,3-Dichlorobenzene	3	0.200	0.200	ng/L
	1,3-Dichloropropane	5	0.200	0.200	ng/L
	1,4-Dichlorobenzene	3	0.200	0.200	ng/L
	2,2-Dichloropropane	5	0.200	0.200	ng/L
	2-Butanone	50	0.200	1.300	ng/L
	2-Chlorotoluene	5	0.200	0.200	ng/L
	2-Hexanone	50	0.200	0.200	ng/L
	4-Chlorotoluene	5	0.200	0.200	ng/L
	4-Methyl-2-pentanone	~	0.200	0.200	ng/L

Acetone	50	1.300	2
Benzene	1	0.200	0.200
Bromobenzene	5	0.200	0.200
Bromochloromethane	5	0.200	0.200
Bromodichloromethane	50	0.200	0.200
Bromoform	50	0.200	0.200
Bromomethane	5	0.200	0.200
Carbon disulfide	~	1.300	0.200
Carbon tetrachloride	5	0.200	0.200
Chlorobenzene	5	0.200	0.200
Chloroethane	5	0.200	0.200
Chloroform	7	0.200	0.200
Chloromethane	5	0.200	0.200
cis-1,2-Dichloroethylene	5	0.200	0.200
cis-1,3-Dichloropropylene	0.4	0.200	0.200
Dibromochloromethane	50	0.200	0.200
Dibromomethane	~	0.200	0.200
Dichlorodifluoromethane	5	0.200	0.200
Ethyl Benzene	5	0.200	0.200
Hexachlorobutadiene	0.5	0.200	0.200
Isopropylbenzene	5	0.200	0.200
Methyl tert-butyl ether (MTBE)	10	0.200	0.200
Methylene chloride	5	1	1
Naphthalene	10	1	1
n-Butylbenzene	5	0.200	0.200
n-Propylbenzene	5	0.200	0.200
o-Xylene	5	0.200	0.200
p- & m- Xylenes	~	0.500	0.500
p-Diethylbenzene	~	0.200	0.200
p-Ethyltoluene	~	0.200	0.200
p-Isopropyltoluene	5	0.200	0.200
sec-Butylbenzene	5	0.200	0.200
Styrene	5	0.200	0.200
tert-Butylbenzene	5	0.200	0.200

ng/L ng/L ng/L ng/L ng/L ng/L ng/L mg/L ug/L ug/L ug/L ug/L ug/L

Tetrachloroethylene	5	0.200	0.200	ug/L
Toluene	5	0.200	0.200	ug/L
trans-1,2-Dichloroethylene	5	0.200	0.200	ug/L
trans-1,3-Dichloropropylene	0.4	0.200	0.200	ug/L
Trichloroethylene	5	0.200	0.200	ug/L
Trichlorofluoromethane	5	0.200	0.200	ug/L
Vinyl Chloride	2	0.200	0.200	ug/L
Xylenes, Total	5	0.600	0.600	ug/L
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous				
Dilution Factor	ug/L	1	1	ug/L
1,4-Dioxane	0.35	0.300	0.320	ug/L
Semi-Volatiles, 8270 - Comprehensive - LL				
Dilution Factor	ug/L	1	25	ug/L
1,1-Biphenyl	~	2.500	2.780	ug/L
1,2,4,5-Tetrachlorobenzene	~	2.500	2.780	ug/L
1,2,4-Trichlorobenzene	5	2.500	2.780	ug/L
1,2-Dichlorobenzene	3	2.500	2.780	ug/L
1,2-Diphenylhydrazine (as Azobenzene)	~	2.500	2.780	ug/L
1,3-Dichlorobenzene	3	2.500	2.780	ug/L
1,4-Dichlorobenzene	3	2.500	2.780	ug/L
2,3,4,6-Tetrachlorophenol	~	1.250	1.390	ug/L
2,4,5-Trichlorophenol	1	1.250	1.390	ug/L
2,4,6-Trichlorophenol	1	1.250	1.390	ug/L
2,4-Dichlorophenol	5	1.250	1.390	ug/L
2,4-Dimethylphenol	50	1.250	1.390	ug/L
2,4-Dinitrophenol	10	1.250	1.390	ug/L
2,4-Dinitrotoluene	5	2.500	2.780	ug/L
2,6-Dinitrotoluene	5	2.500	2.780	ug/L
2-Chloronaphthalene	10	2.500	2.780	ug/L
2-Chlorophenol	1	1.250	1.390	ug/L
2-Methylnaphthalene	~	2.500	2.780	ug/L
2-Methylphenol	1	1.250	1.390	ug/L
2-Nitroaniline	5	2.500	2.780	ug/L
2-Nitrophenol	1	1.250	1.390	ug/L

3- & 4-Methylphenols	1	1.250	1.390
3,3-Dichlorobenzidine	5	2.500	2.780
3-Nitroaniline	5	2.500	2.780
4,6-Dinitro-2-methylphenol	~	1.250	1.390
4-Bromophenyl phenyl ether	~	2.500	2.780
4-Chloro-3-methylphenol	1	1.250	1.390
4-Chloroaniline	5	2.500	2.780
4-Chlorophenyl phenyl ether	~	2.500	2.780
4-Nitroaniline	5	2.500	2.780
4-Nitrophenol	1	1.250	1.390
Acenaphthene	20	0.0500	0.0556
Acenaphthylene	~	0.0500	0.0556
Acetophenone	~	2.500	2.780
Aniline	5	2.500	2.780
Anthracene	50	0.0500	0.0556
Atrazine	~	0.500	0.556
Benzaldehyde	~	2.500	2.780
Benzidine	~	10	11.100
Benzo(a)anthracene	0.002	0.0500	0.0556
Benzo(a)pyrene	0.002	0.0500	0.0556
Benzo(b)fluoranthene	0.002	0.0500	0.0556
Benzo(g,h,i)perylene	~	0.0500	0.0556
Benzo(k)fluoranthene	0.002	0.0500	0.0556
Benzoic acid	~	25	27.800
Benzyl alcohol	~	2.500	2.780
Benzyl butyl phthalate	50	2.500	2.780
Bis(2-chloroethoxy)methane	5	2.500	2.780
Bis(2-chloroethyl)ether	1	1.250	1.390
Bis(2-chloroisopropyl)ether	5	2.500	2.780
Bis(2-ethylhexyl)phthalate	5	1.220	923
Caprolactam	~	2.500	2.780
Carbazole	~	2.500	2.780
Chrysene	0.002	0.0500	0.0556
Dibenzo(a,h)anthracene	~	0.0500	0.0556

ug/L ug/L

Dibenzofuran	~	2.500	2.780	ug/L
Diethyl phthalate	50	2.500	2.780	ug/L
Dimethyl phthalate	50	2.500	2.780	ug/L
Di-n-butyl phthalate	50	2.500	2.780	ug/L
Di-n-octyl phthalate	50	2.500	18.900	ug/L
Fluoranthene	50	0.0500	0.0556	ug/L
Fluorene	50	0.0500	0.0556	ug/L
Hexachlorobenzene	0.04	0.0200	0.0222	ug/L
Hexachlorobutadiene	0.5	0.500	0.556	ug/L
Hexachlorocyclopentadiene	5	2.500	2.780	ug/L
Hexachloroethane	5	0.500	0.556	ug/L
Indeno(1,2,3-cd)pyrene	0.002	0.0500	0.0556	ug/L
Isophorone	50	2.500	2.780	ug/L
Naphthalene	10	0.0500	0.0556	ug/L
Nitrobenzene	0.4	0.250	0.278	ug/L
N-Nitrosodimethylamine	~	0.500	0.556	ug/L
N-nitroso-di-n-propylamine	~	2.500	2.780	ug/L
N-Nitrosodiphenylamine	50	2.500	2.780	ug/L
Pentachlorophenol	1	0.250	0.278	ug/L
Phenanthrene	50	0.0500	0.0556	ug/L
Phenol	1	1.250	1.390	ug/L
Pyrene	50	0.0500	0.0556	ug/L
Pyridine	50	2.500	2.780	ug/L
Metals, Target Analyte, ICP				
Dilution Factor	ug/L	1	1	ug/L
Aluminum	~	1,510	216	ug/L
Barium	1000	195	97.500	ug/L
Calcium	~	50,700	124,000	ug/L
Chromium	50	6.620	5.560	ug/L
Cobalt	~	7.100	4.440	ug/L
Copper	200	22.200	22.200	ug/L
Iron	~	6,220	430	ug/L
Lead	25	15.600	5.560	ug/L
Magnesium	35000	6,910	33,500	ug/L

Manganese		300	1,020	5,540	ug/L
Nickel		100	11.100	11.100	ug/L
Potassium		~	2,730	14,500	ug/L
Silver		50	5.560	5.560	ug/L
Sodium		20000	225,000	66,300	ug/L
Vanadium		~	11.200	11.100	ug/L
Zinc		2000	125	27.800	ug/L
Metals, Target Analyt	e, ICPMS				
Dilution Factor		ug/L	1	1	ug/L
Antimony		3	1.110	1.110	ug/L
Arsenic		25	1.420	2.570	ug/L
Beryllium		3	0.333	0.333	ug/L
Cadmium		5	0.556	0.556	ug/L
Selenium		10	1.110	1.110	ug/L
Thallium		~	1.110	1.110	ug/L
Mercury by 7470/747	1				
Dilution Factor		ug/L	1	1	ug/L
Mercury		0.7	0.200	0.200	ug/L
PFAS, NYSDEC Target	List				
Dilution Factor		ug/L	5	1	ug/L
1H,1H,2H,2H-Perfluor	odecanesulfonic acid (8:2 FTS)	~	0.00463	0.00093	ug/L
1H,1H,2H,2H-Perfluor	ooctanesulfonic acid (6:2 FTS)	~	0.0116	0.00231	ug/L
N-EtFOSAA		~	0.00093	0.00093	ug/L
N-MeFOSAA		~	0.00093	0.00093	ug/L
Perfluoro-1-decanesul	fonic acid (PFDS)	~	0.00093	0.00093	ug/L
Perfluoro-1-heptanesu	ılfonic acid (PFHpS)	~	0.00093	0.00463	ug/L
Perfluoro-1-octanesul	fonamide (FOSA)	~	0.00093	0.00093	ug/L
Perfluorobutanesulfor	nic acid (PFBS)	~	0.00410	0.00229	ug/L
Perfluorodecanoic acid	d (PFDA)	~	0.00093	0.00093	ug/L
Perfluorododecanoic a	acid (PFDoA)	~	0.00093	0.00093	ug/L
Perfluoroheptanoic ac	id (PFHpA)	~	0.00475	0.00093	ug/L
Perfluorohexanesulfo	nic acid (PFHxS)	~	0.00093	0.00093	ug/L
Perfluorohexanoic aci	d (PFHxA)	~	0.0104	0.00126	ug/L
Perfluoro-n-butanoic	acid (PFBA)	~	0.00746	0.0163	ug/L

	Perfluorononanoic acid (PFNA)	~	0.00136	0.00093	ug/L
	Perfluorooctanesulfonic acid (PFOS)	~	0.00259	0.00093	ug/L
	Perfluorooctanoic acid (PFOA)	~	0.00577	0.00093	ug/L
	Perfluoropentanoic acid (PFPeA)	~	0.0113	0.00678	ug/L
	Perfluorotetradecanoic acid (PFTA)	~	0.00093	0.00093	ug/L
	Perfluorotridecanoic acid (PFTrDA)	~	0.00093	0.00093	ug/L
	Perfluoroundecanoic acid (PFUnA)	~	0.00093	0.00093	ug/L
MW-14	Volatile Organics, 8260 List - Low Level				
	Dilution Factor	ug/L	1	1	ug/L
	1,1,1,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,1-Trichloroethane	5	0.200	0.200	ug/L
	1,1,2,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	0.200	0.200	ug/L
	1,1,2-Trichloroethane	1	0.200	0.200	ug/L
	1,1-Dichloroethane	5	0.200	0.200	ug/L
	1,1-Dichloroethylene	5	0.200	0.200	ug/L
	1,1-Dichloropropylene	5	0.200	0.200	ng/L
	1,2,3-Trichlorobenzene	5	0.200	0.200	ng/L
	1,2,3-Trichloropropane	0.04	0.200	0.200	mg/L
	1,2,4,5-Tetramethylbenzene	~	0.200	0.200	ug/L
	1,2,4-Trichlorobenzene	5	0.200	0.200	ng/L
	1,2,4-Trimethylbenzene	5	0.200	0.200	ng/L
	1,2-Dibromo-3-chloropropane	0.04	0.200	0.200	ng/L
	1,2-Dibromoethane	0.0006	0.200	0.200	ng/L
	1,2-Dichlorobenzene	3	0.200	0.200	ng/L
	1,2-Dichloroethane	0.6	0.200	0.200	ng/L
	1,2-Dichloropropane	1	0.200	0.200	ng/L
	1,3,5-Trimethylbenzene	5	0.200	0.200	ng/L
	1,3-Dichlorobenzene	3	0.200	0.200	ng/L
	1,3-Dichloropropane	5	0.200	0.200	ng/L
	1,4-Dichlorobenzene	3	0.200	0.200	ng/L
	2,2-Dichloropropane	5	0.200	0.200	ng/L
	2-Butanone	50	0.200	0.200	ng/L

2-Chlorotoluene	5	0.200	0.200	İ
2-Hexanone	50	0.200	0.200	
4-Chlorotoluene	5	0.200	0.200	
4-Methyl-2-pentanone	~	0.200	0.200	
Acetone	50	1.300	1	
Benzene	1	0.200	0.200	
Bromobenzene	5	0.200	0.200	
Bromochloromethane	5	0.200	0.200	
Bromodichloromethane	50	0.200	0.200	
Bromoform	50	0.200	0.200	
Bromomethane	5	0.200	0.200	
Carbon disulfide	~	0.810	0.200	
Carbon tetrachloride	5	0.200	0.200	
Chlorobenzene	5	0.200	0.200	
Chloroethane	5	0.200	0.200	
Chloroform	7	0.200	0.200	
Chloromethane	5	0.200	0.200	
cis-1,2-Dichloroethylene	5	0.200	0.200	
cis-1,3-Dichloropropylene	0.4	0.200	0.200	
Dibromochloromethane	50	0.200	0.200	
Dibromomethane	~	0.200	0.200	
Dichlorodifluoromethane	5	0.200	0.200	
Ethyl Benzene	5	0.200	0.200	
Hexachlorobutadiene	0.5	0.200	0.200	
Isopropylbenzene	5	0.200	0.200	
Methyl tert-butyl ether (MTBE)	10	0.200	0.200	
Methylene chloride	5	1	1	
Naphthalene	10	1	1	
n-Butylbenzene	5	0.200	0.200	
n-Propylbenzene	5	0.200	0.200	
o-Xylene	5	0.200	0.200	
p- & m- Xylenes	~	0.500	0.500	
p-Diethylbenzene	~	0.200	0.200	
p-Ethyltoluene	~	0.200	0.200	j

ng/L mg/L
p-Isopropyltoluene	5	0.200	0.200	mg/L
sec-Butylbenzene	5	0.200	0.200	mg/L
Styrene	5	0.200	0.200	mg/L
tert-Butylbenzene	5	0.200	0.200	mg/L
Tetrachloroethylene	5	0.200	0.200	mg/L
Toluene	5	0.200	0.200	mg/L
trans-1,2-Dichloroethylene	5	0.200	0.200	mg/L
trans-1,3-Dichloropropylene	0.4	0.200	0.200	mg/L
Trichloroethylene	5	0.200	0.200	mg/L
Trichlorofluoromethane	5	0.200	0.200	mg/L
Vinyl Chloride	2	0.200	0.200	mg/L
Xylenes, Total	5	0.600	0.600	mg/L
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous				
Dilution Factor	ug/L	1	1	ug/L
1,4-Dioxane	0.35	0.300	0.300	ug/L
Semi-Volatiles, 8270 - Comprehensive - LL				
Dilution Factor	ug/L	1	1	ug/L
1,1-Biphenyl	~	2.500	2.780	ug/L
1,2,4,5-Tetrachlorobenzene	~	2.500	2.780	ug/L
1,2,4-Trichlorobenzene	5	2.500	2.780	ug/L
1,2-Dichlorobenzene	3	2.500	2.780	ug/L
1,2-Diphenylhydrazine (as Azobenzene)	~	2.500	2.780	ug/L
1,3-Dichlorobenzene	3	2.500	2.780	ug/L
1,4-Dichlorobenzene	3	2.500	2.780	ug/L
2,3,4,6-Tetrachlorophenol	~	1.250	1.390	ug/L
2,4,5-Trichlorophenol	1	1.250	1.390	ug/L
2,4,6-Trichlorophenol	1	1.250	1.390	ug/L
2,4-Dichlorophenol	5	1.250	1.390	ug/L
2,4-Dimethylphenol	50	1.250	1.390	ug/L
2,4-Dinitrophenol	10	1.250	1.390	ug/L
2,4-Dinitrotoluene	5	2.500	2.780	ug/L
2,6-Dinitrotoluene	5	2.500	2.780	ug/L
2-Chloronaphthalene	10	2.500	2.780	ug/L
2-Chlorophenol	1	1.250	1.390	ug/L

2-Methylnaphthalene	~	2.500	2.780
2-Methylphenol	1	1.250	1.390
2-Nitroaniline	5	2.500	2.780
2-Nitrophenol	1	1.250	1.390
3- & 4-Methylphenols	1	1.250	1.390
3,3-Dichlorobenzidine	5	2.500	2.780
3-Nitroaniline	5	2.500	2.780
4,6-Dinitro-2-methylphenol	~	1.250	1.390
4-Bromophenyl phenyl ether	~	2.500	2.780
4-Chloro-3-methylphenol	1	1.250	1.390
4-Chloroaniline	5	2.500	2.780
4-Chlorophenyl phenyl ether	~	2.500	2.780
4-Nitroaniline	5	2.500	2.780
4-Nitrophenol	1	1.250	1.390
Acenaphthene	20	0.0500	0.0556
Acenaphthylene	~	0.0500	0.0556
Acetophenone	~	2.500	2.780
Aniline	5	2.500	2.780
Anthracene	50	0.0500	0.0556
Atrazine	~	0.500	0.556
Benzaldehyde	~	2.500	2.780
Benzidine	~	10	11.100
Benzo(a)anthracene	0.002	0.0500	0.0556
Benzo(a)pyrene	0.002	0.0500	0.0556
Benzo(b)fluoranthene	0.002	0.0500	0.0556
Benzo(g,h,i)perylene	~	0.0500	0.0556
Benzo(k)fluoranthene	0.002	0.0500	0.0556
Benzoic acid	~	25	27.800
Benzyl alcohol	~	2.500	2.780
Benzyl butyl phthalate	50	2.500	2.780
Bis(2-chloroethoxy)methane	5	2.500	2.780
Bis(2-chloroethyl)ether	1	1.250	1.390
Bis(2-chloroisopropyl)ether	5	2.500	2.780
Bis(2-ethylhexyl)phthalate	5	0.620	13.500

ug/L ug/L

Caprolactam	~	2.500	2.780	ug/L
Carbazole	~	2.500	2.780	ug/L ug/L
Chrysene	0.002	0.0500	0.0556	ug/L
Dibenzo(a,h)anthracene	~	0.0500	0.0556	ug/L
Dibenzofuran		2.500	2.780	ug/L
Diethyl phthalate	50	2.500	2.780	ug/L
Dimethyl phthalate	50	2.500	2.780	ug/L
Di-n-butyl phthalate	50	2.500	2.780	ug/L
Di-n-octyl phthalate	50	2.500	2.780	ug/L
Fluoranthene	50	0.0500	0.0556	ug/L
Fluorene	50	0.0500	0.0556	ug/L
Hexachlorobenzene	0.04	0.0200	0.0222	ug/L
Hexachlorobutadiene	0.5	0.500	0.556	ug/L
Hexachlorocyclopentadiene	5	2.500	2.780	ug/L
Hexachloroethane	5	0.500	0.556	ug/L
Indeno(1,2,3-cd)pyrene	0.002	0.0500	0.0556	ug/L
Isophorone	50	2.500	2.780	ug/L
Naphthalene	10	0.0500	0.0556	ug/L
Nitrobenzene	0.4	0.250	0.278	ug/L
N-Nitrosodimethylamine	~	0.500	0.556	ug/L
N-nitroso-di-n-propylamine	~	2.500	2.780	ug/L
N-Nitrosodiphenylamine	50	2.500	2.780	ug/L
Pentachlorophenol	1	0.250	0.278	ug/L
Phenanthrene	50	0.0500	0.0556	ug/L
Phenol	1	1.250	1.390	ug/L
Pyrene	50	0.0500	0.0556	ug/L
Pyridine	50	2.500	2.780	ug/L
Metals, Target Analyte, ICP				
Dilution Factor	ug/L	1	1	ug/L
Aluminum	~	2,500	2,200	ug/L
Barium	1000	231	69.200	ug/L
Calcium	~	52,500	19,300	ug/L
Chromium	50	8.630	25.500	ug/L
Cobalt	~	9.870	4.440	ug/L

Copper	200	36.900	22.200	ug/L
Iron	~	8,540	5,730	ug/L
Lead	25	28.400	8.330	ug/L
Magnesium	35000	7,340	3,300	ug/L
Manganese	300	1,060	254	ug/L
Nickel	100	11.100	11.500	ug/L
Potassium	~	2,740	1,640	ug/L
Silver	50	5.560	5.560	ug/L
Sodium	20000	225,000	51,200	ug/L
Vanadium	~	16.300	11.100	ug/L
Zinc	2000	192	61.400	ug/L
Metals, Target Analyte, ICPMS				
Dilution Factor	ug/L	1	1	ug/L
Antimony	3	1.110	1.110	ug/L
Arsenic	25	1.570	1.110	ug/L
Beryllium	3	0.361	0.333	ug/L
Cadmium	5	0.578	0.556	ug/L
Selenium	10	1.230	1.110	ug/L
Thallium	~	1.110	1.110	ug/L
Mercury by 7470/7471				
Dilution Factor	ug/L	1	1	ug/L
Mercury	0.7	0.200	0.200	ug/L
PFAS, NYSDEC Target List				
Dilution Factor	ug/L	5	1	ug/L
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	0.00455	0.00093	ug/L
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	0.0114	0.00231	ug/L
N-EtFOSAA	~	0.00091	0.00093	ug/L
N-MeFOSAA	~	0.00091	0.00093	ug/L
Perfluoro-1-decanesulfonic acid (PFDS)	~	0.00091	0.00093	ug/L
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	0.00091	0.00463	ug/L
Perfluoro-1-octanesulfonamide (FOSA)	~	0.00091	0.00093	ug/L
Perfluorobutanesulfonic acid (PFBS)	~	0.00490	0.00209	ug/L
Perfluorodecanoic acid (PFDA)	~	0.00103	0.00302	ug/L
Perfluorododecanoic acid (PFDoA)	~	0.00091	0.00093	ug/L

	Perfluoroheptanoic acid (PFHpA)	~	0.00471	0.00298	ug/L
	Perfluorohexanesulfonic acid (PFHxS)	~	0.00091	0.00093	ug/L
	Perfluorohexanoic acid (PFHxA)	~	0.0112	0.00457	ug/L
	Perfluoro-n-butanoic acid (PFBA)	~	0.00784	0.00265	ug/L
	Perfluorononanoic acid (PFNA)	~	0.00117	0.00314	ug/L
	Perfluorooctanesulfonic acid (PFOS)	~	0.00346	0.0107	ug/L
	Perfluorooctanoic acid (PFOA)	~	0.00629	0.00780	ug/L
	Perfluoropentanoic acid (PFPeA)	~	0.0123	0.00600	ug/L
	Perfluorotetradecanoic acid (PFTA)	~	0.00091	0.00093	ug/L
	Perfluorotridecanoic acid (PFTrDA)	~	0.00091	0.00179	ug/L
	Perfluoroundecanoic acid (PFUnA)	~	0.00091	0.00093	ug/L
MW-29	Volatile Organics, 8260 List - Low Level				
	Dilution Factor	ug/L	1	1	ug/L
	1,1,1,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,1-Trichloroethane	5	0.200	0.200	ug/L
	1,1,2,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	0.200	0.200	ug/L
	1,1,2-Trichloroethane	1	0.200	0.200	ug/L
	1,1-Dichloroethane	5	0.200	0.200	ug/L
	1,1-Dichloroethylene	5	0.200	0.200	ug/L
	1,1-Dichloropropylene	5	0.200	0.200	ug/L
	1,2,3-Trichlorobenzene	5	0.200	0.200	ug/L
	1,2,3-Trichloropropane	0.04	0.200	0.200	ug/L
	1,2,4,5-Tetramethylbenzene	~	0.200	0.200	ug/L
	1,2,4-Trichlorobenzene	5	0.200	0.200	ug/L
	1,2,4-Trimethylbenzene	5	0.200	0.200	ug/L
	1,2-Dibromo-3-chloropropane	0.04	0.200	0.200	ug/L
	1,2-Dibromoethane	0.0006	0.200	0.200	ug/L
	1,2-Dichlorobenzene	3	0.200	0.200	ug/L
	1,2-Dichloroethane	0.6	0.200	0.200	ug/L
	1,2-Dichloropropane	1	0.200	0.200	ug/L
	1,3,5-Trimethylbenzene	5	0.200	0.200	ug/L
	1,3-Dichlorobenzene	3	0.200	0.200	ug/L

1	1,3-Dichloropropane	5	0.200	0.200	ı
1	1,4-Dichlorobenzene	3	0.200	0.200	
2	2,2-Dichloropropane	5	0.200	0.200	
2	2-Butanone	50	0.200	0.200	
2	2-Chlorotoluene	5	0.200	0.200	
2	2-Hexanone	50	0.200	0.200	
4	1-Chlorotoluene	5	0.200	0.200	
4	1-Methyl-2-pentanone	~	0.200	0.200	
P	Acetone	50	1	2.700	
E	Benzene	1	0.200	0.200	
E	Bromobenzene	5	0.200	0.200	
E	Bromochloromethane	5	0.200	0.200	
E	Bromodichloromethane	50	0.200	0.200	
E	Bromoform	50	0.200	0.200	
E	Bromomethane	5	0.200	0.200	
	Carbon disulfide	~	0.200	20	
	Carbon tetrachloride	5	0.200	0.200	
	Chlorobenzene	5	0.200	0.200	
	Chloroethane	5	0.200	0.200	
	Chloroform	7	0.200	0.200	
	Chloromethane	5	0.200	0.200	
C	cis-1,2-Dichloroethylene	5	0.200	0.200	
C	cis-1,3-Dichloropropylene	0.4	0.200	0.200	
	Dibromochloromethane	50	0.200	0.200	
1	Dibromomethane	~	0.200	0.200	
	Dichlorodifluoromethane	5	0.200	0.200	
E	Ethyl Benzene	5	0.200	0.200	
H	Hexachlorobutadiene	0.5	0.200	0.200	
I	sopropylbenzene	5	0.200	0.200	
1	Methyl tert-butyl ether (MTBE)	10	0.380	0.220	
1	Methylene chloride	5	1	1	
	Naphthalene	10	1	1	l
	n-Butylbenzene	5	0.200	0.200	
r	n-Propylbenzene	5	0.200	0.200	l

ug/L ug/L ng/L
	_	_	_	_	_
o-Xylene	5	0.200	0.200	,	ng/L
p- & m- Xylenes	~	0.500	0.500	,	ng/L
p-Diethylbenzene	~	0.200	0.200		ng/L
p-Ethyltoluene	~	0.200	0.200	,	ng/L
p-Isopropyltoluene	5	0.200	0.200	,	ng/L
sec-Butylbenzene	5	0.200	0.200		ng/L
Styrene	5	0.200	0.200	,	ng/L
tert-Butylbenzene	5	0.200	0.200	,	mg/L
Tetrachloroethylene	5	0.200	0.200	,	mg/L
Toluene	5	0.200	0.200	,	mg/L
trans-1,2-Dichloroethylene	5	0.200	0.200		mg/L
trans-1,3-Dichloropropylene	0.4	0.200	0.200		mg/L
Trichloroethylene	5	0.200	0.200		mg/L
Trichlorofluoromethane	5	0.200	0.200		mg/L
Vinyl Chloride	2	0.200	0.200		mg/L
Xylenes, Total	5	0.600	0.600		mg/L
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous					
Dilution Factor	ug/L	1	1		mg/L
1,4-Dioxane	0.35	0.300	0.300		mg/L
Semi-Volatiles, 8270 - Comprehensive - LL					
Dilution Factor	ug/L	1	1		mg/L
1,1-Biphenyl	~	2.500	2.940		mg/L
1,2,4,5-Tetrachlorobenzene	~	2.500	2.940		mg/L
1,2,4-Trichlorobenzene	5	2.500	2.940		mg/L
1,2-Dichlorobenzene	3	2.500	2.940		mg/L
1,2-Diphenylhydrazine (as Azobenzene)	~	2.500	2.940		mg/L
1,3-Dichlorobenzene	3	2.500	2.940		mg/L
1,4-Dichlorobenzene	3	2.500	2.940		mg/L
2,3,4,6-Tetrachlorophenol	~	1.250	1.470		mg/L
2,4,5-Trichlorophenol	1	1.250	1.470		ug/L
2.4.C. Triable rembers of	1	1.250	1.470		ug/L
2,4,6-Trichlorophenol		1.230		T I	- 0,
2,4-Dichlorophenol	5	1.250	1.470		ug/L
					_

2,4-Dinitrotoluene	5	2.500	2.940
2,6-Dinitrotoluene	5	2.500	2.940
2-Chloronaphthalene	10	2.500	2.940
2-Chlorophenol	1	1.250	1.470
2-Methylnaphthalene	~	2.500	2.940
2-Methylphenol	1	1.250	1.470
2-Nitroaniline	5	2.500	2.940
2-Nitrophenol	1	1.250	1.470
3- & 4-Methylphenols	1	1.250	1.470
3,3-Dichlorobenzidine	5	2.500	2.940
3-Nitroaniline	5	2.500	2.940
4,6-Dinitro-2-methylphenol	~	1.250	1.470
4-Bromophenyl phenyl ether	~	2.500	2.940
4-Chloro-3-methylphenol	1	1.250	1.470
4-Chloroaniline	5	2.500	2.940
4-Chlorophenyl phenyl ether	~	2.500	2.940
4-Nitroaniline	5	2.500	2.940
4 Nitrophonal	1	1.250	1.470
4-Nitrophenol	1	1.250	1.4/0
Acenaphthene	20	0.0500	0.0588
Acenaphthene		0.0500	0.0588
Acenaphthene Acenaphthylene	20 ~	0.0500 0.0500	0.0588 0.0588
Acenaphthene Acenaphthylene Acetophenone	20 ~ ~	0.0500 0.0500 2.500	0.0588 0.0588 2.940
Acenaphthene Acenaphthylene Acetophenone Aniline	20 ~ ~ 5	0.0500 0.0500 2.500 2.500	0.0588 0.0588 2.940 2.940
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene	20 ~ ~ 5	0.0500 0.0500 2.500 2.500 0.0500	0.0588 0.0588 2.940 2.940 0.0588
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine	20 ~ ~ 5 50 ~	0.0500 0.0500 2.500 2.500 0.0500 0.500	0.0588 0.0588 2.940 2.940 0.0588 0.588
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde	20 ~ ~ 5 50 ~ ~	0.0500 0.0500 2.500 2.500 0.0500 0.500 2.500	0.0588 0.0588 2.940 2.940 0.0588 0.588 2.940
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde Benzidine	20 ~ ~ 5 50 ~ ~	0.0500 0.0500 2.500 2.500 0.0500 0.500 2.500	0.0588 0.0588 2.940 2.940 0.0588 0.588 2.940 11.800
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene	20 ~ ~ 5 50 ~ ~ ~ 0.002	0.0500 0.0500 2.500 0.0500 0.500 2.500 10 0.0500	0.0588 0.0588 2.940 2.940 0.0588 0.588 2.940 11.800 0.0588
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene	20 ~ ~ 5 50 ~ ~ ~ 0.002 0.002	0.0500 0.0500 2.500 0.0500 0.500 2.500 10 0.0500 0.0500	0.0588 0.0588 2.940 2.940 0.0588 0.588 2.940 11.800 0.0588 0.0588
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene	20 ~ 5 50 ~ ~ 0.002 0.002 0.002	0.0500 0.0500 2.500 0.0500 0.500 2.500 0.0500 0.0500 0.0500 0.0500	0.0588 0.0588 2.940 2.940 0.0588 0.588 2.940 11.800 0.0588 0.0588
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene	20 ~ ~ 5 50 ~ ~ ~ 0.002 0.002 0.002 ~	0.0500 0.0500 2.500 0.0500 0.500 2.500 10 0.0500 0.0500 0.0500 0.0500	0.0588 0.0588 2.940 2.940 0.0588 0.588 2.940 11.800 0.0588 0.0588
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene	20 ~ ~ 5 50 ~ ~ ~ 0.002 0.002 0.002 ~	0.0500 0.0500 2.500 0.0500 0.500 2.500 10 0.0500 0.0500 0.0500 0.0500	0.0588 0.0588 2.940 0.0588 0.588 2.940 11.800 0.0588 0.0588 0.0588

ug/L
ug/L

Bis(2-chloroethoxy)methane	5	2.500	2.940	u:	ıg/L
Bis(2-chloroethyl)ether	1	1.250	1.470	u:	ıg/L
Bis(2-chloroisopropyl)ether	5	2.500	2.940	u:	ıg/L
Bis(2-ethylhexyl)phthalate	5	5.200	6.240	u:	ıg/L
Caprolactam	~	2.500	2.940	u:	ıg/L
Carbazole	~	2.500	2.940	u:	ıg/L
Chrysene	0.002	0.0500	0.0588	u:	ıg/L
Dibenzo(a,h)anthracene	~	0.0500	0.0588		ıg/L
Dibenzofuran	~	2.500	2.940		ıg/L
Diethyl phthalate	50	2.500	2.940		ıg/L
Dimethyl phthalate	50	2.500	2.940		ıg/L
Di-n-butyl phthalate	50	2.500	2.940	u:	ıg/L
Di-n-octyl phthalate	50	2.500	2.940	\mathbf{u}_{i}	ıg/L
Fluoranthene	50	0.0500	0.0588	\mathbf{u}_{i}	ıg/L
Fluorene	50	0.0500	0.0588	\mathbf{u}_{i}	ıg/L
Hexachlorobenzene	0.04	0.0200	0.0235	\mathbf{u}_{i}	ıg/L
Hexachlorobutadiene	0.5	0.500	0.588	u:	ıg/L
Hexachlorocyclopentadiene	5	2.500	2.940	\mathbf{u}_{i}	ıg/L
Hexachloroethane	5	0.500	0.588	\mathbf{u}_{i}	ıg/L
Indeno(1,2,3-cd)pyrene	0.002	0.0500	0.0588	u:	ıg/L
Isophorone	50	2.500	2.940	u:	ıg/L
Naphthalene	10	0.0500	0.0588	\mathbf{u}_{i}	ıg/L
Nitrobenzene	0.4	0.250	0.400	\mathbf{u}_{i}	ıg/L
N-Nitrosodimethylamine	~	0.500	0.600	\mathbf{u}_{i}	ıg/L
N-nitroso-di-n-propylamine	~	2.500	2.940	u;	ıg/L
N-Nitrosodiphenylamine	50	2.500	2.940	u;	ıg/L
Pentachlorophenol	1	0.250	0.294	u:	ıg/L
Phenanthrene	50	0.0500	0.0588	u;	ıg/L
Phenol	1	1.250	1.470	\mathbf{u}_{i}	ıg/L
Pyrene	50	0.0500	0.0588		ıg/L
Pyridine	50	2.500	2.940	u_i	ıg/L
Metals, Target Analyte, ICP					
Dilution Factor	ug/L	10	10	u	ıg/L
Aluminum	~	1,340	2,350	\mathbf{u}_i	ıg/L

Barium	1000	434	1,570	ug/L
Calcium	~	145,000	156,000	ug/L
Chromium	50	5.560	8.570	ug/L
Cobalt	~	7.950	4.440	ug/L
Copper	200	32.700	53.500	ug/L
Iron	~	136,000	519,000	ug/L
Lead	25	94	104	ug/L
Magnesium	35000	53,900	50,100	ug/L
Manganese	300	1,320	2,000	ug/L
Nickel	100	11.100	17.500	ug/L
Potassium	~	6,870	6,650	ug/L
Silver	50	5.560	5.560	ug/L
Sodium	20000	205,000	125,000	ug/L
Vanadium	~	11.100	11.100	ug/L
Zinc	2000	71.100	27.800	ug/L
Metals, Target Analyte, ICPMS				
Dilution Factor	ug/L	1	1	ug/L
Antimony	3	1.110	1.110	ug/L
Arsenic	25	5.270	14.500	ug/L
Beryllium	3	1.300	3.260	ug/L
Cadmium	5	0.556	0.556	ug/L
Selenium	10	1.110	1.110	ug/L
Thallium	~	1.110	1.110	ug/L
Mercury by 7470/7471				
Dilution Factor	ug/L	1	1	ug/L
Mercury	0.7	0.200	0.200	ug/L
PFAS, NYSDEC Target List				
Dilution Factor	ug/L	1	1	ug/L
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	0.00094	0.00089	ug/L
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	0.00236	0.00223	ug/L
N-EtFOSAA	~	0.00094	0.00089	ug/L
N-MeFOSAA	~	0.00094	0.00089	ug/L
Perfluoro-1-decanesulfonic acid (PFDS)	~	0.00094	0.00089	ug/L

		_	_		_	_
	Perfluoro-1-heptanesulfonic acid (PFHpS)	~	0.00094	0.00446		ug/L
	Perfluoro-1-octanesulfonamide (FOSA)	~	0.00094	0.00089		ug/L
	Perfluorobutanesulfonic acid (PFBS)	~	0.00294	0.00089		ug/L
	Perfluorodecanoic acid (PFDA)	~	0.00094	0.00089		ug/L
	Perfluorododecanoic acid (PFDoA)	~	0.00094	0.00089		ug/L
	Perfluoroheptanoic acid (PFHpA)	~	0.00307	0.00620		ug/L
	Perfluorohexanesulfonic acid (PFHxS)	~	0.00246	0.00306		ug/L
	Perfluorohexanoic acid (PFHxA)	~	0.00721	0.0103		ug/L
	Perfluoro-n-butanoic acid (PFBA)	~	0.0101	0.0137		ug/L
	Perfluorononanoic acid (PFNA)	~	0.00094	0.00100		ug/L
	Perfluorooctanesulfonic acid (PFOS)	~	0.0145	0.0325		ug/L
	Perfluorooctanoic acid (PFOA)	~	0.0380	0.0613		ug/L
	Perfluoropentanoic acid (PFPeA)	~	0.00707	0.0104		ug/L
	Perfluorotetradecanoic acid (PFTA)	~	0.00094	0.00089		ug/L
	Perfluorotridecanoic acid (PFTrDA)	~	0.00094	0.00089		ug/L
	Perfluoroundecanoic acid (PFUnA)	~	0.00094	0.00089		ug/L
MW-30	Volatile Organics, 8260 List - Low Level					
	Dilution Factor	ug/L	1	1		ug/L
	1,1,1,2-Tetrachloroethane	5	0.200	0.200		ug/L
	1,1,1-Trichloroethane	5	0.200	0.200		ug/L
	1,1,2,2-Tetrachloroethane	5	0.200	0.200		ug/L
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	0.200	0.200		ug/L
	1,1,2-Trichloroethane	1	0.200	0.200		ug/L
	1,1-Dichloroethane	5	0.200	0.200		ug/L
	1,1-Dichloroethylene	5	0.200	0.200		ug/L
	1,1-Dichloropropylene	5	0.200	0.200		ug/L
	1,2,3-Trichlorobenzene	5	0.200	0.200		ug/L
	1,2,3-Trichloropropane	0.04	0.200	0.200		ug/L
	//					_
	1,2,4,5-Tetramethylbenzene	~	0.200	0.200		ug/L
		~ 5	0.200 0.200	0.200 0.200		_
	1,2,4,5-Tetramethylbenzene					ug/L
	1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	5	0.200	0.200		_

4000			
1,2-Dichlorobenzene	3	0.200	0.200
1,2-Dichloroethane	0.6	0.200	0.200
1,2-Dichloropropane	1	0.200	0.200
1,3,5-Trimethylbenzene	5	0.200	0.200
1,3-Dichlorobenzene	3	0.200	0.200
1,3-Dichloropropane	5	0.200	0.200
1,4-Dichlorobenzene	3	0.200	0.200
2,2-Dichloropropane	5	0.200	0.200
2-Butanone	50	0.200	0.200
2-Chlorotoluene	5	0.200	0.200
2-Hexanone	50	0.200	0.200
4-Chlorotoluene	5	0.200	0.200
4-Methyl-2-pentanone	~	0.200	0.200
Acetone	50	1	1
Benzene	1	0.200	0.200
Bromobenzene	5	0.200	0.200
Bromochloromethane	5	0.200	0.200
Bromodichloromethane	50	2.400	1.600
Bromoform	50	0.200	0.200
Bromomethane	5	0.200	0.200
Carbon disulfide	~	0.200	1.200
Carbon tetrachloride	5	0.200	0.200
Chlorobenzene	5	0.200	0.200
Chloroethane	5	0.200	0.200
Chloroform	7	36	36
Chloromethane	5	0.200	0.200
cis-1,2-Dichloroethylene	5	0.200	0.460
cis-1,3-Dichloropropylene	0.4	0.200	0.200
Dibromochloromethane	50	0.200	0.200
Dibromomethane	~	0.200	0.200
Dichlorodifluoromethane	5	0.200	0.200
Ethyl Benzene	5	0.200	0.200
Hexachlorobutadiene	0.5	0.200	0.200
Isopropylbenzene	5	0.200	0.200

ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ng/L ng/L mg/L ng/L
Methyl tert-butyl ether (MTBE)	10	0.200	0.200	ng/L
Methylene chloride	5	1	1	ng/L
Naphthalene	10	1	1	ng/L
n-Butylbenzene	5	0.200	0.200	ng/L
n-Propylbenzene	5	0.200	0.200	ng/L
o-Xylene	5	0.200	0.200	ng/L
p- & m- Xylenes	~	0.500	0.500	ng/L
p-Diethylbenzene	~	0.200	0.200	ng/L
p-Ethyltoluene	~	0.200	0.200	ng/L
p-Isopropyltoluene	5	0.200	0.200	ng/L
sec-Butylbenzene	5	0.200	0.200	ng/L
Styrene	5	0.200	0.200	ng/L
tert-Butylbenzene	5	0.200	0.200	ng/L
Tetrachloroethylene	5	0.200	0.200	ng/L
Toluene	5	0.200	0.200	ng/L
trans-1,2-Dichloroethylene	5	0.200	0.200	ng/L
trans-1,3-Dichloropropylene	0.4	0.200	0.200	ng/L
Trichloroethylene	5	0.200	0.200	ng/L
Trichlorofluoromethane	5	0.200	0.200	ng/L
Vinyl Chloride	2	0.200	0.200	ng/L
Xylenes, Total	5	0.600	0.600	ng/L
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous				
Dilution Factor	ug/L	1	1	ng/L
1,4-Dioxane	0.35	0.300	0.300	ng/L
Semi-Volatiles, 8270 - Comprehensive - LL				
Dilution Factor	ug/L	1	1	mg/L
1,1-Biphenyl	~	2.500	2.500	mg/L
1,2,4,5-Tetrachlorobenzene	~	2.500	2.500	mg/L
1,2,4-Trichlorobenzene	5	2.500	2.500	mg/L
1,2-Dichlorobenzene	3	2.500	2.500	mg/L
1,2-Diphenylhydrazine (as Azobenzene)	~	2.500	2.500	mg/L
1,3-Dichlorobenzene	3	2.500	2.500	mg/L
1,4-Dichlorobenzene	3	2.500	2.500	mg/L
2,3,4,6-Tetrachlorophenol	~	1.250	1.250	mg/L

2,4,5-Trichlorophenol	1	1.250	1.250
2,4,6-Trichlorophenol	1	1.250	1.250
2,4-Dichlorophenol	5	1.250	1.250
2,4-Dimethylphenol	50	1.250	1.250
2,4-Dinitrophenol	10	1.250	1.250
2,4-Dinitrotoluene	5	2.500	2.500
2,6-Dinitrotoluene	5	2.500	2.500
2-Chloronaphthalene	10	2.500	2.500
2-Chlorophenol	1	1.250	1.250
2-Methylnaphthalene	~	2.500	2.500
2-Methylphenol	1	1.250	1.250
2-Nitroaniline	5	2.500	2.500
2-Nitrophenol	1	1.250	1.250
3- & 4-Methylphenols	1	1.250	1.250
3,3-Dichlorobenzidine	5	2.500	2.500
3-Nitroaniline	5	2.500	2.500
4,6-Dinitro-2-methylphenol	~	1.250	1.250
4-Bromophenyl phenyl ether	~	2.500	2.500
4-Chloro-3-methylphenol	1	1.250	1.250
4-Chloroaniline	5	2.500	2.500
4-Chlorophenyl phenyl ether	~	2.500	2.500
4-Nitroaniline	5	2.500	2.500
4-Nitrophenol	1	1.250	1.250
Acenaphthene	20	0.0500	0.0500
Acenaphthylene	~	0.0500	0.0500
Acetophenone	~	2.500	2.500
Aniline	5	2.500	2.500
Anthracene	50	0.0500	0.0500
Atrazine	~	0.500	0.500
Benzaldehyde	~	2.500	2.500
Benzidine	~	10	10
Benzo(a)anthracene	0.002	0.0500	0.0500
Benzo(a)pyrene	0.002	0.0500	0.0500
Benzo(b)fluoranthene	0.002	0.0500	0.0500

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ug/L
Benzo(g,h,i)perylene	~	0.0500	0.0500
Benzo(k)fluoranthene	0.002	0.0500	0.0500
Benzoic acid	~	25	25
Benzyl alcohol	~	2.500	2.500
Benzyl butyl phthalate	50	2.500	2.500
Bis(2-chloroethoxy)methane	5	2.500	2.500
Bis(2-chloroethyl)ether	1	1.250	1.250
Bis(2-chloroisopropyl)ether	5	2.500	2.500
Bis(2-ethylhexyl)phthalate	5	0.500	1.410
Caprolactam	~	2.500	2.500
Carbazole	~	2.500	2.500
Chrysene	0.002	0.0500	0.0500
Dibenzo(a,h)anthracene	~	0.0500	0.0500
Dibenzofuran	~	2.500	2.500
Diethyl phthalate	50	2.500	2.500
Dimethyl phthalate	50	2.500	2.500
Di-n-butyl phthalate	50	2.500	2.500
Di-n-octyl phthalate	50	2.500	2.500
Fluoranthene	50	0.0500	0.0500
Fluorene	50	0.0500	0.0500
Hexachlorobenzene	0.04	0.0200	0.0200
Hexachlorobutadiene	0.5	0.500	0.500
Hexachlorocyclopentadiene	5	2.500	2.500
Hexachloroethane	5	0.500	0.500
Indeno(1,2,3-cd)pyrene	0.002	0.0500	0.0500
Isophorone	50	2.500	2.500
Naphthalene	10	0.0500	0.0500
Nitrobenzene	0.4	0.250	0.250
N-Nitrosodimethylamine	~	0.500	0.500
N-nitroso-di-n-propylamine	~	2.500	2.500
N-Nitrosodiphenylamine	50	2.500	2.500
Pentachlorophenol	1	0.250	0.250
Phenanthrene	50	0.0500	0.0500
Phenol	1	1.250	1.250

ug/L ug/L

Pyrene	50	0.0500	0.0500	ug/L
Pyridine	50	2.500	2.500	ug/L
Metals, Target Analyte, ICP				
Dilution Factor	ug/L	1	1	ug/L
Aluminum	~	2,830	15,700	ug/L
Barium	1000	101	565	ug/L
Calcium	~	17,800	42,600	ug/L
Chromium	50	67.900	516	ug/L
Cobalt	~	12.300	79	ug/L
Copper	200	22.200	124	ug/L
Iron	~	7,050	35,600	ug/L
Lead	25	18.500	95.300	ug/L
Magnesium	35000	5,870	15,000	ug/L
Manganese	300	1,020	7,740	ug/L
Nickel	100	47.800	402	ug/L
Potassium	~	1,430	3,040	ug/L
Silver	50	5.560	5.560	ug/L
Sodium	20000	15,100	15,400	ug/L
Vanadium	~	11.100	24.300	ug/L
Zinc	2000	62.100	1,260	ug/L
Metals, Target Analyte, ICPMS				
Dilution Factor	ug/L	1	1	ug/L
Antimony	3	1.110	1.110	ug/L
Arsenic	25	1.110	2.450	ug/L
Beryllium	3	0.373	1.580	ug/L
Cadmium	5	0.556	1.500	ug/L
Selenium	10	1.110	2.140	ug/L
Thallium	~	1.110	1.110	ug/L
Mercury by 7470/7471				
Dilution Factor	ug/L	1	1	ug/L
Mercury	0.7	0.200	0.700	ug/L
PFAS, NYSDEC Target List				
Dilution Factor	ug/L	1	10	ug/L

	1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	0.00093	0.00962	ug/L
	1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	0.00231	0.0240	ug/L
	N-EtFOSAA	~	0.00093	0.00962	ug/L
	N-MeFOSAA	~	0.00093	0.00962	ug/L
	Perfluoro-1-decanesulfonic acid (PFDS)	~	0.00093	0.00962	ug/L
	Perfluoro-1-heptanesulfonic acid (PFHpS)	~	0.00093	0.00962	ug/L
	Perfluoro-1-octanesulfonamide (FOSA)	~	0.00093	0.00962	ug/L
	Perfluorobutanesulfonic acid (PFBS)	~	0.00093	0.00962	ug/L
	Perfluorodecanoic acid (PFDA)	~	0.00093	0.00962	ug/L
	Perfluorododecanoic acid (PFDoA)	~	0.00093	0.00962	ug/L
	Perfluoroheptanoic acid (PFHpA)	~	0.00093	0.00962	ug/L
	Perfluorohexanesulfonic acid (PFHxS)	~	0.00093	0.00962	ug/L
	Perfluorohexanoic acid (PFHxA)	~	0.00093	0.00962	ug/L
	Perfluoro-n-butanoic acid (PFBA)	~	0.00093	0.00962	ug/L
	Perfluorononanoic acid (PFNA)	~	0.00093	0.00962	ug/L
	Perfluorooctanesulfonic acid (PFOS)	~	0.00093	0.00962	ug/L
	Perfluorooctanoic acid (PFOA)	~	0.00093	0.00962	ug/L
	Perfluoropentanoic acid (PFPeA)	~	0.00093	0.00962	ug/L
	Perfluorotetradecanoic acid (PFTA)	~	0.00093	0.00962	ug/L
	Perfluorotridecanoic acid (PFTrDA)	~	0.00093	0.00962	ug/L
	Perfluoroundecanoic acid (PFUnA)	~	0.00093	0.00962	ug/L
/-38	Volatile Organics, 8260 List - Low Level				
	Dilution Factor	ug/L	25	1	ug/L
	1,1,1,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,1-Trichloroethane	5	0.570	0.200	ug/L
	1,1,2,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	0.200	0.200	ug/L
	1,1,2-Trichloroethane	1	0.200	0.200	ug/L
	1,1-Dichloroethane	5	0.200	0.200	ug/L
	1,1-Dichloroethylene	5	1.200	0.200	ug/L
	1,1-Dichloropropylene	5	0.200	0.200	ug/L
	1,2,3-Trichlorobenzene	5	0.200	0.200	ug/L

1,2,4,5-Tetramethylbenzene	~	0.200	0.200
1,2,4-Trichlorobenzene	5	0.200	0.200
1,2,4-Trimethylbenzene	5	0.200	0.200
1,2-Dibromo-3-chloropropane	0.04	0.200	0.200
1,2-Dibromoethane	0.0006	0.200	0.200
1,2-Dichlorobenzene	3	0.200	0.200
1,2-Dichloroethane	0.6	0.200	0.200
1,2-Dichloropropane	1	0.200	0.200
1,3,5-Trimethylbenzene	5	0.200	0.200
1,3-Dichlorobenzene	3	0.200	0.200
1,3-Dichloropropane	5	0.200	0.200
1,4-Dichlorobenzene	3	0.200	0.200
2,2-Dichloropropane	5	0.200	0.200
2-Butanone	50	0.200	1.300
2-Chlorotoluene	5	0.200	0.200
2-Hexanone	50	0.200	0.200
4-Chlorotoluene	5	0.200	0.200
4-Methyl-2-pentanone	~	0.200	0.200
Acetone	50	1	2.200
Benzene	1	0.200	0.200
Bromobenzene	5	0.200	0.200
Bromochloromethane	5	0.200	0.200
Bromodichloromethane	50	0.200	0.200
Bromoform	50	0.200	0.200
Bromomethane	5	0.200	0.200
Carbon disulfide	~	0.200	0.200
Carbon tetrachloride	5	0.200	0.200
Chlorobenzene	5	0.200	0.200
Chloroethane	5	0.200	0.200
Chloroform	7	0.720	0.200
Chloromethane	5	0.200	0.200
cis-1,2-Dichloroethylene	5	280	0.200
cis-1,3-Dichloropropylene	0.4	0.200	0.200
Dibromochloromethane	50	0.200	0.200

ug/L ug/L

Dibromomethane	~	0.200	0.200	ug/L
Dichlorodifluoromethane	5	0.200	0.200	ug/L
Ethyl Benzene	5	0.200	0.200	ug/L
Hexachlorobutadiene	0.5	0.200	0.200	ug/L
Isopropylbenzene	5	0.200	0.200	ng/L
Methyl tert-butyl ether (MTBE)	10	0.200	0.200	ng/L
Methylene chloride	5	1	1	ng/L
Naphthalene	10	1	1	ng/L
n-Butylbenzene	5	0.200	0.200	ng/L
n-Propylbenzene	5	0.200	0.200	ng/L
o-Xylene	5	0.200	0.200	ng/L
p- & m- Xylenes	~	0.500	0.500	ng/L
p-Diethylbenzene	~	0.200	0.200	ng/L
p-Ethyltoluene	~	0.200	0.200	ng/L
p-IsopropyItoluene	5	0.200	0.200	ng/L
sec-Butylbenzene	5	0.200	0.200	ng/L
Styrene	5	0.200	0.200	ng/L
tert-Butylbenzene	5	0.200	0.200	ng/L
Tetrachloroethylene	5	1.800	0.200	ng/L
Toluene	5	0.200	0.200	ng/L
trans-1,2-Dichloroethylene	5	2.700	0.200	ng/L
trans-1,3-Dichloropropylene	0.4	0.200	0.200	ng/L
Trichloroethylene	5	530	0.200	ng/L
Trichlorofluoromethane	5	0.200	0.200	ng/L
Vinyl Chloride	2	4.300	0.200	ng/L
Xylenes, Total	5	0.600	0.600	ng/L
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous				
Dilution Factor	ug/L	1	1	ng/L
1,4-Dioxane	0.35	1.730	0.384	ng/L
Semi-Volatiles, 8270 - Comprehensive - LL				
Dilution Factor	ug/L	1	25	ng/L
1,1-Biphenyl	~	2.500	2.500	ng/L
1,2,4,5-Tetrachlorobenzene	~	2.500	2.500	ng/L
1,2,4-Trichlorobenzene	5	2.500	2.500	ng/L

1,2-Dichlorobenzene					
1,3-Dichlorobenzene 3 2.500 2.500 2,3,4,6-Tetrachlorophenol ~ 1.250 1.250 2,4,5-Trichlorophenol 1 1.250 1.250 2,4,6-Trichlorophenol 1 1.250 1.250 2,4-Dichlorophenol 5 1.250 1.250 2,4-Dimethylphenol 50 1.250 1.250 2,4-Dimitrotoluene 5 2.500 2.500 2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 1 1.250 1.250 2,500 2.500 2.500 2.500 2,Methylphenol 1 1.250 1.250 2,Nitrophenol 1 1.250 1.250 3,	1,2-Dichlorobenzene	3	2.500	2.500	
1,4-Dichlorobenzene 3 2.500 2.500 2,3,4,6-Tetrachlorophenol ~ 1.250 1.250 2,4,5-Trichlorophenol 1 1.250 1.250 2,4,6-Trichlorophenol 5 1.250 1.250 2,4-Dinkorophenol 5 1.250 1.250 2,4-Dinitrophenol 10 1.250 1.250 2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene 1 1.250 1.250 2-Methylphenol 1 1.250 1.250 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3,-Nitroaniline 5 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4	1,2-Diphenylhydrazine (as Azobenzene)	~	2.500	2.500	
2,3,4,6-Tetrachlorophenol 1 1,250 1,250 1,250 2,4,5-Trichlorophenol 1 1,250 1,250 1,250 2,4,6-Trichlorophenol 1 1,250 1,250 1,250 2,4-Dinklorophenol 5 1,250 1,250 1,250 2,4-Dinklorophenol 50 1,250 1,250 1,250 2,4-Dinklorophenol 10 1,250 1,250 2,4-Dinklorophenol 10 1,250 1,250 2,500	1,3-Dichlorobenzene	3	2.500	2.500	
2,4,5-Trichlorophenol 1 1.250 1.250 2,4,6-Trichlorophenol 5 1.250 1.250 2,4-Dichlorophenol 5 1.250 1.250 2,4-Dimethylphenol 10 1.250 1.250 2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene 2 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Mitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3,Nitroaniline 5 2.500 2.500 4-Bromophenyl phenyl ether 2 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Nitroaniline 5 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Ni	1,4-Dichlorobenzene	3	2.500	2.500	
2,4,6-Trichlorophenol 1 1.250 1.250 2,4-Dichlorophenol 5 1.250 1.250 2,4-Dimitrophenol 10 1.250 1.250 2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 10 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene 2.500 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3- & 4-Methylphenols 1 1.250 1.250 3-Nitroaniline 5 2.500 2.500 4-Poinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloroaniline 5 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nit	2,3,4,6-Tetrachlorophenol	~	1.250	1.250	
2,4-Dichlorophenol 5 1.250 1.250 2,4-Dimethylphenol 50 1.250 1.250 2,4-Dinitrophenol 10 1.250 1.250 2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3-8 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4-Ghinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloroaniline 5 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitroani	2,4,5-Trichlorophenol	1	1.250	1.250	
2,4-Dimethylphenol 50 1.250 1.250 2,4-Dinitrophenol 10 1.250 1.250 2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2-Chloropaphthalene 10 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Mitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3- & 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Romophenyl phenyl ether ~ 2.500 2.500 4-Chloroa-3-methylphenol 1 1.250 1.250 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500	2,4,6-Trichlorophenol	1	1.250	1.250	
2,4-Dinitrophenol 10 1.250 1.250 2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Mitrophenol 1 1.250 1.250 2-Nitrophenol 1 1.250 1.250 3- Witrophenol 1 1.250 1.250 3- Witrophenol 1 1.250 1.250 3- Nitroaniline 5 2.500 2.500 4- Dinitro-2-methylphenol ~ 1.250 1.250 4- Bromophenyl phenyl ether ~ 2.500 2.500 4- Chloroa-methylphenol 1 1.250 1.250 4- Chlorophenyl phenyl ether ~ 2.500 2.500 4- Chlorophenyl phenyl ether ~ 2.500 2.500 4- Nitroaniline 5 2.500 2.500 4- Nitroaniline 5 2.500 2.500	2,4-Dichlorophenol	5	1.250	1.250	
2,4-Dinitrotoluene 5 2.500 2.500 2,6-Dinitrotoluene 5 2.500 2.500 2-Chloronaphthalene 10 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3-8 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500	2,4-Dimethylphenol	50	1.250	1.250	
2,6-Dinitrotoluene 5 2.500 2.500 2-Chloronaphthalene 10 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3-8 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 <	2,4-Dinitrophenol	10	1.250	1.250	
2-Chloronaphthalene 10 2.500 2.500 2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3- & 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chlorophenyl phenyl ether 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acetophenone ~ 2.500 2.500	2,4-Dinitrotoluene	5	2.500	2.500	
2-Chlorophenol 1 1.250 1.250 2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3- & 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Anline 5 2.500 2.500 Anthracene	2,6-Dinitrotoluene	5	2.500	2.500	
2-Methylnaphthalene ~ 2.500 2.500 2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3-& 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene	2-Chloronaphthalene	10	2.500	2.500	
2-Methylphenol 1 1.250 1.250 2-Nitroaniline 5 2.500 2.500 2-Nitrophenol 1 1.250 1.250 3- & 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol 7 1.250 1.250 4-Bromophenyl phenyl ether 7 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether 7 2.500 2.500 4-Nitroaniline 7 2.500 2.500 4-Nitroaniline 7 2.500 2.500 4-Nitrophenol 1 1.250 1.250 4-Nitrophenol 1 1.250 1.250 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene 7 0.0500 0.0500 Acetophenone 7 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	2-Chlorophenol	1	1.250	1.250	
2-Nitrophenol 1 1.250 1.250 3- & 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acetophenone ~ 0.0500 0.0500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	2-Methylnaphthalene	~	2.500	2.500	
2-Nitrophenol 1 1.250 1.250 3- & 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chlorophenyl phenyl ether 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitrophenol 1 1.250 1.250 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	2-Methylphenol	1	1.250	1.250	
3- & 4-Methylphenols 1 1.250 1.250 3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	2-Nitroaniline	5	2.500	2.500	
3,3-Dichlorobenzidine 5 2.500 2.500 3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	2-Nitrophenol	1	1.250	1.250	
3-Nitroaniline 5 2.500 2.500 4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	3- & 4-Methylphenols	1	1.250	1.250	
4,6-Dinitro-2-methylphenol ~ 1.250 1.250 4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	3,3-Dichlorobenzidine	5	2.500	2.500	
4-Bromophenyl phenyl ether ~ 2.500 2.500 4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	3-Nitroaniline	5	2.500	2.500	
4-Chloro-3-methylphenol 1 1.250 1.250 4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	4,6-Dinitro-2-methylphenol	~	1.250	1.250	
4-Chloroaniline 5 2.500 2.500 4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	4-Bromophenyl phenyl ether	~	2.500	2.500	
4-Chlorophenyl phenyl ether ~ 2.500 2.500 4-Nitroaniline 5 2.500 2.500 4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	4-Chloro-3-methylphenol	1	1.250	1.250	
4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acetophenone ~ 0.0500 2.500 Aniline 5 2.500 2.500 Anthracene 5 0.0500 0.0500	4-Chloroaniline	5	2.500	2.500	
4-Nitrophenol 1 1.250 1.250 Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	4-Chlorophenyl phenyl ether	~	2.500	2.500	
Acenaphthene 20 0.0500 0.0500 Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	4-Nitroaniline	5	2.500	2.500	
Acenaphthylene ~ 0.0500 0.0500 Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	4-Nitrophenol	1	1.250	1.250	
Acetophenone ~ 2.500 2.500 Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	Acenaphthene	20	0.0500	0.0500	
Aniline 5 2.500 2.500 Anthracene 50 0.0500 0.0500	Acenaphthylene	~	0.0500	0.0500	
Anthracene 50 0.0500 0.0500	Acetophenone	~	2.500	2.500	
	Aniline	5	2.500	2.500	
	Anthracene	50	0.0500	0.0500	
Atrazine ~ 0.500 0.500	Atrazine	~	0.500	0.500	

ng/L ng/L ng/L ng/L ng/L ng/L ng/L mg/L ug/L ug/L

ug/L ug/L

Benzaldehyde	~	2.500	2.500
Benzidine	~	10	10
Benzo(a)anthracene	0.002	0.0500	0.0500
Benzo(a)pyrene	0.002	0.0500	0.0500
Benzo(b)fluoranthene	0.002	0.0500	0.0500
Benzo(g,h,i)perylene	~	0.0500	0.0500
Benzo(k)fluoranthene	0.002	0.0500	0.0500
Benzoic acid	~	25	25
Benzyl alcohol	~	2.500	2.500
Benzyl butyl phthalate	50	2.500	2.500
Bis(2-chloroethoxy)methane	5	2.500	2.500
Bis(2-chloroethyl)ether	1	1.250	1.250
Bis(2-chloroisopropyl)ether	5	2.500	2.500
Bis(2-ethylhexyl)phthalate	5	32.100	690
Caprolactam	~	2.500	2.500
Carbazole	~	2.500	2.500
Chrysene	0.002	0.0500	0.0500
Dibenzo(a,h)anthracene	~	0.0500	0.0500
Dibenzofuran	~	2.500	2.500
Diethyl phthalate	50	2.500	2.500
Dimethyl phthalate	50	2.500	2.500
Di-n-butyl phthalate	50	2.500	2.500
Di-n-octyl phthalate	50	2.500	2.500
Fluoranthene	50	0.0500	0.0500
Fluorene	50	0.0500	0.0500
Hexachlorobenzene	0.04	0.0200	0.0200
Hexachlorobutadiene	0.5	0.500	0.500
Hexachlorocyclopentadiene	5	2.500	2.500
Hexachloroethane	5	0.500	0.500
Indeno(1,2,3-cd)pyrene	0.002	0.0500	0.0500
Isophorone	50	2.500	2.500
Naphthalene	10	0.0500	0.0500
Nitrobenzene	0.4	0.250	0.250
N-Nitrosodimethylamine	~	0.500	0.500

ug/L
ug/L

N-nitroso-di-n-propylamine	~	2.500	2.500	ug/L
N-Nitrosodiphenylamine	50	2.500	2.500	ug/L
Pentachlorophenol	1	0.250	0.250	ug/L
Phenanthrene	50	0.0500	0.0500	ug/L
Phenol	1	1.250	1.250	ug/L
Pyrene	50	0.0500	0.0500	ug/L
Pyridine	50	2.500	2.500	ug/L
Metals, Target Analyte, ICP				
Dilution Factor	ug/L	1	1	ug/L
Aluminum	~	838	225	ug/L
Barium	1000	130	97.700	ug/L
Calcium	~	112,000	124,000	ug/L
Chromium	50	7.440	5.560	ug/L
Cobalt	~	4.440	4.440	ug/L
Copper	200	22.200	22.200	ug/L
Iron	~	1,630	461	ug/L
Lead	25	5.560	5.560	ug/L
Magnesium	35000	22,700	33,300	ug/L
Manganese	300	374	5,480	ug/L
Nickel	100	11.100	11.100	ug/L
Potassium	~	3,710	14,400	ug/L
Silver	50	5.560	5.560	ug/L
Sodium	20000	166,000	66,400	ug/L
Vanadium	~	11.100	11.100	ug/L
Zinc	2000	39.200	27.800	ug/L
Metals, Target Analyte, ICPMS				
Dilution Factor	ug/L	1	1	ug/L
Antimony	3	1.110	1.110	ug/L
Arsenic	25	1.110	2.600	ug/L
Beryllium	3	0.333	0.333	ug/L
Cadmium	5	0.556	0.556	ug/L
Selenium	10	7.170	1.110	ug/L
Thallium	~	1.110	1.110	ug/L
Mercury by 7470/7471				

	Dilution Factor	ug/L	1	1	ug/L
	Mercury	0.7	0.200	0.200	ug/L
	PFAS, NYSDEC Target List				
	Dilution Factor	ug/L	5	1	ug/L
	1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	0.00463	0.00093	ug/L
	1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	0.0116	0.00231	ug/L
	N-EtFOSAA	~	0.00093	0.00093	ug/L
	N-MeFOSAA	~	0.00093	0.00093	ug/L
	Perfluoro-1-decanesulfonic acid (PFDS)	~	0.00093	0.00093	ug/L
	Perfluoro-1-heptanesulfonic acid (PFHpS)	~	0.00232	0.00463	ug/L
	Perfluoro-1-octanesulfonamide (FOSA)	~	0.00093	0.00093	ug/L
	Perfluorobutanesulfonic acid (PFBS)	~	0.0127	0.00231	ug/L
	Perfluorodecanoic acid (PFDA)	~	0.00093	0.00093	ug/L
	Perfluorododecanoic acid (PFDoA)	~	0.00093	0.00093	ug/L
	Perfluoroheptanoic acid (PFHpA)	~	0.0129	0.00093	ug/L
	Perfluorohexanesulfonic acid (PFHxS)	~	0.00548	0.00093	ug/L
	Perfluorohexanoic acid (PFHxA)	~	0.0131	0.00139	ug/L
	Perfluoro-n-butanoic acid (PFBA)	~	0.00993	0.0164	ug/L
	Perfluorononanoic acid (PFNA)	~	0.00093	0.00093	ug/L
	Perfluorooctanesulfonic acid (PFOS)	~	0.0136	0.00093	ug/L
	Perfluorooctanoic acid (PFOA)	~	0.118	0.00148	ug/L
	Perfluoropentanoic acid (PFPeA)	~	0.0114	0.00649	ug/L
	Perfluorotetradecanoic acid (PFTA)	~	0.00093	0.00093	ug/L
	Perfluorotridecanoic acid (PFTrDA)	~	0.00093	0.00093	ug/L
	Perfluoroundecanoic acid (PFUnA)	~	0.00093	0.00093	ug/L
MW-43	Volatile Organics, 8260 List - Low Level				
	Dilution Factor	ug/L	1	1	ug/L
	1,1,1,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,1-Trichloroethane	5	0.200	0.200	ug/L
	1,1,2,2-Tetrachloroethane	5	0.200	0.200	ug/L
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	0.200	0.200	ug/L
	1,1,2-Trichloroethane	1	0.200	0.200	ug/L
	1,1-Dichloroethane	5	0.200	0.200	ug/L

1,1-Dichloroethylene	5	0.200	0.200
1,1-Dichloropropylene	5	0.200	0.200
1,2,3-Trichlorobenzene	5	0.200	0.200
1,2,3-Trichloropropane	0.04	0.200	0.200
1,2,4,5-Tetramethylbenzene	~	0.200	0.200
1,2,4-Trichlorobenzene	5	0.200	0.200
1,2,4-Trimethylbenzene	5	0.200	0.200
1,2-Dibromo-3-chloropropane	0.04	0.200	0.200
1,2-Dibromoethane	0.0006	0.200	0.200
1,2-Dichlorobenzene	3	0.200	0.200
1,2-Dichloroethane	0.6	0.200	0.200
1,2-Dichloropropane	1	0.200	0.200
1,3,5-Trimethylbenzene	5	0.200	0.200
1,3-Dichlorobenzene	3	0.200	0.200
1,3-Dichloropropane	5	0.200	0.200
1,4-Dichlorobenzene	3	0.200	0.200
2,2-Dichloropropane	5	0.200	0.200
2-Butanone	50	0.200	0.820
2-Chlorotoluene	5	0.200	0.200
2-Hexanone	50	0.200	0.200
4-Chlorotoluene	5	0.200	0.200
4-Methyl-2-pentanone	~	0.200	0.200
Acetone	50	5.300	2.200
Benzene	1	0.200	0.200
Bromobenzene	5	0.200	0.200
Bromochloromethane	5	0.200	0.200
Bromodichloromethane	50	0.200	0.200
Bromoform	50	0.200	0.200
Bromomethane	5	0.200	0.200
Carbon disulfide	~	0.200	0.200
Carbon tetrachloride	5	0.200	0.200
Chlorobenzene	5	0.200	0.200
Chloroethane	5	0.200	0.200
Chloroform	7	3.600	0.200

ug/L ug/L

Chloromethane	5	0.200	0.200	ug/L
cis-1,2-Dichloroethylene	5	0.210	0.200	ug/L
cis-1,3-Dichloropropylene	0.4	0.200	0.200	ug/L
Dibromochloromethane	50	0.200	0.200	ug/L
Dibromomethane	~	0.200	0.200	ug/L
Dichlorodifluoromethane	5	0.200	0.200	ug/L
Ethyl Benzene	5	0.200	0.200	ug/L
Hexachlorobutadiene	0.5	0.200	0.200	ug/L
Isopropylbenzene	5	0.200	0.200	ug/L
Methyl tert-butyl ether (MTBE)	10	0.200	0.200	ug/L
Methylene chloride	5	1	1	ug/L
Naphthalene	10	1	1	ug/L
n-Butylbenzene	5	0.200	0.200	ug/L
n-Propylbenzene	5	0.200	0.200	ug/L
o-Xylene	5	0.200	0.200	ug/L
p- & m- Xylenes	~	0.500	0.500	ug/L
p-Diethylbenzene	~	0.200	0.200	ug/L
p-Ethyltoluene	~	0.200	0.200	ng/L
p-Isopropyltoluene	5	0.200	0.200	ng/L
sec-Butylbenzene	5	0.200	0.200	ng/L
Styrene	5	0.200	0.200	ng/L
tert-Butylbenzene	5	0.200	0.200	ug/L
Tetrachloroethylene	5	0.200	0.200	ug/L
Toluene	5	0.200	0.200	ng/L
trans-1,2-Dichloroethylene	5	0.200	0.200	ng/L
trans-1,3-Dichloropropylene	0.4	0.200	0.200	ng/L
Trichloroethylene	5	0.330	0.200	ng/L
Trichlorofluoromethane	5	0.200	0.200	ng/L
Vinyl Chloride	2	0.200	0.200	ng/L
Xylenes, Total	5	0.600	0.600	ng/L
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous				<u>-</u>
Dilution Factor	ug/L	1	1	 ng/L
1,4-Dioxane	0.35	0.300	0.336	ng/L
Semi-Volatiles, 8270 - Comprehensive - LL				

Dilu	tion Factor	ug/L	1	25	
1,1-1	Biphenyl	~	2.500	2.940	
1,2,4	4,5-Tetrachlorobenzene	~	2.500	2.940	
1,2,4	4-Trichlorobenzene	5	2.500	2.940	
1,2-1	Dichlorobenzene	3	2.500	2.940	
1,2-1	Diphenylhydrazine (as Azobenzene)	~	2.500	2.940	
1,3-1	Dichlorobenzene	3	2.500	2.940	
1,4-1	Dichlorobenzene	3	2.500	2.940	
2,3,4	4,6-Tetrachlorophenol	~	1.250	1.470	
2,4,5	5-Trichlorophenol	1	1.250	1.470	
2,4,6	6-Trichlorophenol	1	1.250	1.470	
2,4-1	Dichlorophenol	5	1.250	1.470	
2,4-1	Dimethylphenol	50	1.250	1.470	
2,4-1	Dinitrophenol	10	1.250	1.470	
2,4-1	Dinitrotoluene	5	2.500	2.940	
2,6-1	Dinitrotoluene	5	2.500	2.940	
2-Ch	nloronaphthalene	10	2.500	2.940	
2-Ch	nlorophenol	1	1.250	1.470	
2-M	ethylnaphthalene	~	2.500	2.940	
2-M	ethylphenol	1	1.250	1.470	
2-Ni	itroaniline	5	2.500	2.940	
2-Ni	itrophenol	1	1.250	1.470	
3- &	4-Methylphenols	1	1.250	1.470	
3,3-1	Dichlorobenzidine	5	2.500	2.940	
3-Ni	itroaniline	5	2.500	2.940	
4,6-1	Dinitro-2-methylphenol	~	1.250	1.470	
4-Br	omophenyl phenyl ether	~	2.500	2.940	
4-Ch	nloro-3-methylphenol	1	1.250	1.470	
4-Ch	nloroaniline	5	2.500	2.940	
4-Ch	nlorophenyl phenyl ether	~	2.500	2.940	
4-Ni	itroaniline	5	2.500	2.940	
4-Ni	itrophenol	1	1.250	1.470	
Acer	naphthene	20	0.0500	0.0588	
Acer	naphthylene	~	0.0500	0.0588	

ng/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

	-			i
Acetophenone	~		2.500	2.940
Aniline	5		2.500	2.940
Anthracene	50)	0.0500	0.0588
Atrazine	~	•	0.500	0.588
Benzaldehyde	~	,	2.500	2.940
Benzidine	~	,	10	11.800
Benzo(a)anthracene	0.0	02	0.0500	0.0588
Benzo(a)pyrene	0.0	02	0.0500	0.0588
Benzo(b)fluoranthene	0.0	02	0.0500	0.0588
Benzo(g,h,i)perylene	~	,	0.0500	0.0588
Benzo(k)fluoranthene	0.0	02	0.0500	0.0588
Benzoic acid	~		25	29.400
Benzyl alcohol	~		2.500	2.940
Benzyl butyl phthalate	50)	2.500	2.940
Bis(2-chloroethoxy)methane	5		2.500	2.940
Bis(2-chloroethyl)ether	1		1.250	1.470
Bis(2-chloroisopropyl)ether	5		2.500	2.940
Bis(2-ethylhexyl)phthalate	5		1.610	875
Caprolactam	~		2.500	2.940
Carbazole	~	,	2.500	2.940
Chrysene	0.0	02	0.0500	0.0588
Dibenzo(a,h)anthracene	~		0.0500	0.0588
Dibenzofuran	~	,	2.500	2.940
Diethyl phthalate	50)	2.500	2.940
Dimethyl phthalate	50)	2.500	2.940
Di-n-butyl phthalate	50)	2.500	2.940
Di-n-octyl phthalate	50)	2.500	26.600
Fluoranthene	50)	0.0500	0.0588
Fluorene	50)	0.0500	0.0588
Hexachlorobenzene	0.0)4	0.0200	0.0235
Hexachlorobutadiene	0.	5	0.500	0.588
Hexachlorocyclopentadiene	5		2.500	2.940
Hexachloroethane	5		0.500	0.588
Indeno(1,2,3-cd)pyrene	0.0	02	0.0500	0.0588

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ug/L
Isophorone	50	2.500	2.940	ug/L
Naphthalene	10	0.300	0.0588	ug/L
Nitrobenzene	0.4	0.250	0.294	ug/L
N-Nitrosodimethylamine	~	0.500	0.588	ug/L
N-nitroso-di-n-propylamine	~	2.500	2.940	ug/L
N-Nitrosodiphenylamine	50	2.500	2.940	ug/L
Pentachlorophenol	1	0.250	0.294	ug/L
Phenanthrene	50	0.0500	0.0588	ug/L
Phenol	1	1.250	1.470	ug/L
Pyrene	50	0.0500	0.0588	ug/L
Pyridine	50	2.500	2.940	ug/L
Metals, Target Analyte, ICP				
Dilution Factor	ug/L	1	1	ug/L
Aluminum	~	45,500	101	ug/L
Barium	1000	937	97.100	ug/L
Calcium	~	210,000	123,000	ug/L
Chromium	50	170	5.560	ug/L
Cobalt	~	131	4.440	ug/L
Copper	200	386	22.200	ug/L
Iron	~	43,000	278	ug/L
Lead	25	517	5.560	ug/L
Magnesium	35000	23,100	33,000	ug/L
Manganese	300	7,930	5,550	ug/L
Nickel	100	87.700	11.100	ug/L
Potassium	~	18,900	14,700	ug/L
Silver	50	5.560	5.560	ug/L
Sodium	20000	168,000	67,600	ug/L
Vanadium	~	129	11.100	ug/L
Zinc	2000	323	27.800	ug/L
Metals, Target Analyte, ICPMS				
Dilution Factor	ug/L	1	1	 ug/L
Antimony	3	1.270	1.110	ug/L
Arsenic	25	12.700	2.570	ug/L
Beryllium	3	2.330	0.333	ug/L

Cadmium	5	1.690	0.556	ug/L
Selenium	10	3.400	1.870	ug/L
Thallium	~	1.110	1.110	ug/L
Mercury by 7470/7471				
Dilution Factor	ug/L	1	1	ug/L
Mercury	0.7	2.500	0.200	ug/L
PFAS, NYSDEC Target List				
Dilution Factor	ug/L	1	1	ug/L
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	0.00094	0.00093	ug/L
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	0.00236	0.00231	ug/L
N-EtFOSAA	~	0.00094	0.00093	ug/L
N-MeFOSAA	~	0.00094	0.00093	ug/L
Perfluoro-1-decanesulfonic acid (PFDS)	~	0.00094	0.00093	ug/L
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	0.00094	0.00463	ug/L
Perfluoro-1-octanesulfonamide (FOSA)	~	0.00094	0.00093	ug/L
Perfluorobutanesulfonic acid (PFBS)	~	0.00272	0.00249	ug/L
Perfluorodecanoic acid (PFDA)	~	0.00094	0.00093	ug/L
Perfluorododecanoic acid (PFDoA)	~	0.00094	0.00093	ug/L
Perfluoroheptanoic acid (PFHpA)	~	0.0106	0.00093	ug/L
Perfluorohexanesulfonic acid (PFHxS)	~	0.00094	0.00093	ug/L
Perfluorohexanoic acid (PFHxA)	~	0.0133	0.00134	ug/L
Perfluoro-n-butanoic acid (PFBA)	~	0.0160	0.0186	ug/L
Perfluorononanoic acid (PFNA)	~	0.00180	0.00093	ug/L
Perfluorooctanesulfonic acid (PFOS)	~	0.0288	0.00093	ug/L
Perfluorooctanoic acid (PFOA)	~	0.0538	0.00098	ug/L
Perfluoropentanoic acid (PFPeA)	~	0.0120	0.00640	ug/L
Perfluorotetradecanoic acid (PFTA)	~	0.00094	0.00093	ug/L
Perfluorotridecanoic acid (PFTrDA)	~	0.00094	0.00206	ug/L
Perfluoroundecanoic acid (PFUnA)	~	0.00094	0.00093	 ug/L

Technical Report

prepared for:

Cichetti Engineering, PLLC

P.O. Box 195 Germantown NY, 12526

Attention: Matthew Cichetti

Report Date: 10/16/2023

Client Project ID: 75 Dupont Street York Project (SDG) No.: 23J0410

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 10/16/2023 Client Project ID: 75 Dupont Street

York Project (SDG) No.: 23J0410

Cichetti Engineering, PLLC

P.O. Box 195 Germantown NY, 12526 Attention: Matthew Cichetti

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on October 05, 2023 and listed below. The project was identified as your project: 75 Dupont Street.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23J0410-01	MW-12	Ground Water	10/05/2023	10/05/2023
23J0410-02	MW-14	Ground Water	10/05/2023	10/05/2023
23J0410-03	MW-29	Ground Water	10/05/2023	10/05/2023
23J0410-04	MW-30	Ground Water	10/05/2023	10/05/2023
23J0410-05	MW-38	Ground Water	10/05/2023	10/05/2023
23J0410-06	MW-43	Ground Water	10/05/2023	10/05/2023

General Notes for York Project (SDG) No.: 23J0410

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By: Oh I most

Cassie L. Mosher Laboratory Manager **Date:** 10/16/2023

Client Sample ID: MW-12 23J0410-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23J041075 Dupont StreetGround WaterOctober 5, 2023 8:30 am10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-C
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY12	10/12/2023 14:30 2058,NJDEP-CT005	SMA
37-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY12	10/12/2023 14:30 2058,NJDEP-CT005,I	SMA PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY12	10/12/2023 14:30 2058,NJDEP-CT005,I	SMA PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 14:30	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY12	10/12/2023 14:30 2058,NJDEP-CT005,I	SMA PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	SMA 58,NJDEP-C
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120:	
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10		SMA 58,NJDEP-C
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10		SMA 58.NJDEP-C

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 81

Client Sample ID: MW-12 **York Sample ID:** 23J0410-01

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level					Log-in Notes:			Sample Notes:				
Sample Prepa	ared by Method: EPA 5030B											
CAS I	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 0854,NELAC-NY120	SMA 58,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,	SMA PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 0854,NELAC-NY120	SMA 58,NJDEP-CT
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,	SMA PADEP-68-04
78-93-3	2-Butanone	1.3		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 14:30 0854,NELAC-NY120	SMA 058,NJDEP-C
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 0854,NELAC-NY120	SMA 58,NJDEP-CT
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 0854,NELAC-NY120	SMA 58,NJDEP-CT
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
67-64-1	Acetone	2.0	QL-02	ug/L	1.0	2.0	1	EPA 8260C Certifications:	СТДОН-Р	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 14:30 0854,NELAC-NY120	SMA 058,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30	SMA
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,	SMA PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,	SMA PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C		10/12/2023 09:00	10/12/2023 14:30	SMA

Certifications:

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

Client Sample ID: MW-12

York Sample ID: 23J0410-01

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
08-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 0854,NELAC-NY120	SMA 58,NJDEP-CT
5-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
57-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 0854,NELAC-NY120:	SMA 58,NJDEP-CT
4-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РН	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
56-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
24-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
4-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,I	SMA PADEP-68-04
5-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,I	SMA PADEP-68-04
00-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY120	SMA 58,NJDEP-CT
7-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,I	SMA PADEP-68-04
8-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
5-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
1-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:30 2058,NJDEP-CT005,I	SMA PADEP-68-04
04-51-8	n-Butylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,NJDEP-CT
03-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 0854,NELAC-NY120	SMA 58,NJDEP-CT
5-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:30 9854,NELAC-NY120	SMA 58,PADEP-68
79601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	СТДОН РЕ		10/12/2023 14:30 9854,NELAC-NY120:	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 6 of 81

Client Sample ID: MW-12

York Sample ID:

23J0410-01

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

•		T .
٠,	nσ-in	Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 14:30	SMA
522-96-8	* p-Ethyltoluene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 14:30	SMA
9-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
35-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
00-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
3-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
27-18-4	Tetrachloroethylene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
08-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
9-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
5-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:30 854,NELAC-NY1205	SMA 58,NJDEP-C
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
7060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	97.2 %			69-130							
037-26-5	Surrogate: SURR: Toluene-d8	92.3 %			81-117							
60-00-4	Surrogate: SURR: p-Bromofluorobenzene	101 %			79-122							

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

120 RESEARCH DRIVE

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LO	Q	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst

www.YORKLAB.com (203) 325-1371

STRATFORD, CT 06615

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 7 of 81

Client Sample ID: MW-12

York Sample ID: 23J0410-01

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Prepar	red by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 13:15 5,PADEP-68-04440	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 13:15 5,PADEP-68-04440	KH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,PADEP-68-04	10/12/2023 13:15 440	KH
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 13:15 5,PADEP-68-04440	KH
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,PADEP-68-04	10/12/2023 13:15 440	KH
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,PADEP-68-04	10/12/2023 13:15 440	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 13:15 5,PADEP-68-04440	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
51-28-5	2,4-Dinitrophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
91-58-7	2-Chloronaphthalene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
95-57-8	2-Chlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044
91-57-6	2-Methylnaphthalene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 854,NJDEP-CT005,P	KH ADEP-68-044

Client Sample ID: MW-12 **York Sample ID:** 23J0410-01

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepa	ample Prepared by Method: EPA 3510C											
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc		/Time pared	Date/Time Analyzed	Analyst
95-48-7	2-Methylphenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
88-74-4	2-Nitroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
88-75-5	2-Nitrophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI	23 08:34 LAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI	23 08:34 LAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
99-09-2	3-Nitroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI	23 08:34 LAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
106-47-8	4-Chloroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
100-01-6	4-Nitroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
100-02-7	4-Nitrophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:15 0854,NJDEP-CT005,I	KH PADEP-68-044
83-32-9	Acenaphthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:22 0854,NJDEP-CT005,I	KH PADEP-68-044
208-96-8	Acenaphthylene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI		10/12/2023 13:22 0854,NJDEP-CT005,I	KH PADEP-68-044
98-86-2	Acetophenone	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 NELAC-NY10854,NJI	23 08:34 DEP-CT00	10/12/2023 13:15 5,PADEP-68-04440	KH
62-53-3	Aniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/20 NELAC-NY10854,NJI	23 08:34 DEP-CT00	10/12/2023 13:15 5,PADEP-68-04440	KH
120-12-7	Anthracene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/20 CTDOH-PH-0723,NEI	23 08:34 LAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,I	KH PADEP-68-044
1912-24-9	Atrazine	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	10/11/20 NELAC-NY10854,NJI	23 08:34 DEP-CT00	10/12/2023 13:22 5,PADEP-68-04440	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 9 of 81

Client Sample ID: MW-12

<u>York Sample ID:</u> 23J0410-01

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 3510C									D-4-/Ti	D-4-/T:	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-52-7	Benzaldehyde	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 13:15 5,PADEP-68-04440	КН
92-87-5	Benzidine	ND		ug/L	11.1	22.2	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH ADEP-68-044
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH ADEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH ADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH ADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH ADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH ADEP-68-044
65-85-0	Benzoic acid	ND		ug/L	27.8	55.6	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 13:15 5,PADEP-68-04440	KH
100-51-6	Benzyl alcohol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 13:15 5,PADEP-68-04440	KH
85-68-7	Benzyl butyl phthalate	ND	CCVE	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH ADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH ADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH ADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH ADEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	923	В	ug/L	69.4	139	25	EPA 8270D		10/11/2023 08:34	10/12/2023 14:54	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP-CT005,	PADEP-68-04
105-60-2	Caprolactam	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 13:15 5,PADEP-68-04440	KH
86-74-8	Carbazole	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH ADEP-68-044
218-01-9	Chrysene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH ADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH ADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH ADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 81

Client Sample ID: MW-12 **York Sample ID:** 23J0410-01

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Prepare	ed by Method: EPA 3510C											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-66-2	Diethyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH PADEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PF	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH PADEP-68-044
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PF	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH PADEP-68-044
117-84-0	Di-n-octyl phthalate	18.9	CCVE	ug/L	2.78	5.56	1	EPA 8270D		10/11/2023 08:34	10/12/2023 13:15	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1		
206-44-0	Fluoranthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
86-73-7	Fluorene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 13:22 5,PADEP-68-04440	KH
118-74-1	Hexachlorobenzene	ND	CCVE	ug/L	0.0222	0.0222	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
87-68-3	Hexachlorobutadiene	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH PADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.278	0.278	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PF	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,F	KH PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.278	0.278	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PF	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,F	KH PADEP-68-044

Client Sample ID: MW-12

York Sample ID:

23J0410-01

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-95-2	Phenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,P	KH ADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:22 0854,NJDEP-CT005,P	KH ADEP-68-044
110-86-1	Pyridine	ND	ICVE	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:15 0854,NJDEP-CT005,P	KH ADEP-68-044
	Surrogate Recoveries	Result		Accept	tance Range	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	18.3 %	S-08	19	9.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	10.9 %		10	0.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	47.1 %	S-08	5	0.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	42.4 %		3	9.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	62.0 %		3	9.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	48.9 %		3	0.7-106							

Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3535A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
123-91-1	1,4-Dioxane	0.320		ug/L	0.300	1	EPA 8270D SIM	10/10/2023 09:43	10/11/2023 14:39	KH
							Certifications: NJ	DEP-CT005,NELAC-NY10854	1	
	Surrogate Recoveries	Result		Acceptance Range						
17647-74-4	Surrogate: 1,4-Dioxane-d8	55.6 %		30	6.6-118					

PFAS, NYSDEC Target List

Log-in Notes:

Sample Notes:

Sample Prepared	by Method:	SPE Ext-PFAS-	EPA 537.1M

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ D	ilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
375-73-5	* Perfluorobutanesulfonic acid (PFBS)	2.29	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
307-24-4	* Perfluorohexanoic acid (PFHxA)	1.26	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
375-85-9	* Perfluoroheptanoic acid (PFHpA)	ND	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
355-46-4	* Perfluorohexanesulfonic acid (PFHxS)	ND	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
335-67-1	* Perfluorooctanoic acid (PFOA)	ND	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 12 of 81

Client Sample ID: MW-12 **York Sample ID:**

23J0410-01

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

PFAS, NYSDEC Target List

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

Log-in Notes:	Sample Notes
Log-in Notes:	Sample Note

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analys
1763-23-1	* Perfluorooctanesulfonic acid (PFOS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
375-95-1	* Perfluorononanoic acid (PFNA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
335-76-2	* Perfluorodecanoic acid (PFDA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
2058-94-8	* Perfluoroundecanoic acid (PFUnA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
307-55-1	* Perfluorododecanoic acid (PFDoA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
72629-94-8	* Perfluorotridecanoic acid (PFTrDA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
376-06-7	* Perfluorotetradecanoic acid (PFTA)	ND	PF-CC V-L	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
2355-31-9	* N-MeFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
2991-50-6	* N-EtFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
2706-90-3	* Perfluoropentanoic acid (PFPeA)	6.78	PF-CC V-H	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
754-91-6	* Perfluoro-1-octanesulfonamide (FOSA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
375-92-8	* Perfluoro-1-heptanesulfonic acid (PFHpS)	ND		ng/L	4.63	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
335-77-3	* Perfluoro-1-decanesulfonic acid (PFDS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
27619-97-2	* 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND	PF-CC V-L	ng/L	2.31	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
39108-34-4	* 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
375-22-4	* Perfluoro-n-butanoic acid (PFBA)	16.3	PF-CC V-H	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:32	DRP
	Surrogate Recoveries	Result		Acceptance	Range					
	Surrogate: M3PFBS	109 %		25-1.	50					
	Surrogate: M5PFHxA	101 %		25-1.	50					
	Surrogate: M4PFHpA	98.6 %		25-1.	50					
	Surrogate: M3PFHxS	116 %		25-1.	50					

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 13 of 81

Log-in Notes:

Client Sample ID: MW-12

York Sample ID:

23J0410-01

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

PFAS, NYSDEC Target List

Sample Notes:

CAS No.	Parameter	Result	Flag	Units		Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	rrogate: Perfluoro-n- 3C8Joctanoic acid (M8PFOA)	102 %			25-150						
Sui	rrogate: M6PFDA	94.0 %			25-150						
Sui	rrogate: M7PFUdA	67.3 %			25-150						
[1,	rrogate: Perfluoro-n- 2-13C2]dodecanoic acid IPFDoA)	45.5 %			25-150						
Sui	rrogate: M2PFTeDA	19.0 %			10-150						
	rrogate: Perfluoro-n- 3C4]butanoic acid (MPFBA)	102 %			25-150						
	rrogate: Perfluoro-1- 3C8Joctanesulfonic acid (M8PFOS)	85.3 %			25-150						
	rrogate: Perfluoro-n- 3C5]pentanoic acid (M5PFPeA)	99.9 %			25-150						
	rrogate: Perfluoro-1- 3C8Joctanesulfonamide (M8FOSA)	0.638 %	PFSu-L		10-150						
Sui	rrogate: d3-N-MeFOSAA	64.9 %			25-150						
Sui	rrogate: d5-N-EtFOSAA	56.8 %			25-150						
Sui	rrogate: M2-6:2 FTS	124 %			25-200						
Sui	rrogate: M2-8:2 FTS	92.9 %			25-200						
Su	rrogate: M9PFNA	95.7 %			25-150						

Metals, Target Analyte, ICP

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
429-90-5	Aluminum		0.216		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-39-3	Barium		0.0975		mg/L	0.0278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-70-2	Calcium		124	M-BS	mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
									CTDOH-PI	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
7440-47-3	Chromium		ND		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-0
7440-48-4	Cobalt		ND		mg/L	0.00444	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
	Cooun		ND					Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-04
7440 50 0	G		NID.		/1	0.0222	1	ED4 (010D		10/12/2023 08:54	10/13/2023 13:09	GE G
7440-50-8	Copper		ND		mg/L	0.0222	1	EPA 6010D Certifications:	CTDOH-PH	10/12/2023 08:54 I-0723,NELAC-NY10		CEG ADEP-68-04
439-89-6	Iron		0.430		mg/L	0.278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
7439-92-1	Lead		ND		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 14 of 81

Client Sample ID: MW-12

York Sample ID:

23J0410-01

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Metals, Target Analyte, ICP

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3015A

CAS N	o. Parame	ter Result	Flag	Units	Reported t	Dilutio	on Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-95-4	Magnesium	33.5		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7439-96-5	Manganese	5.54		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-02-0	Nickel	ND		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
				_			Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
7440-09-7	Potassium	14.5		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
7440 05 7	1 ottassium	14.5		mg/L	0.0550	1	Certifications:	CTDOH-P	H-0723,NELAC-NY10		
7440-22-4	Silver	ND		/T	0.00556	. 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
/440-22-4	Silver	ND		mg/L	0.00330	1	Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
7440-23-5	Sodium	66.3	M-BS	mg/L	0.556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-62-2	Vanadium	ND		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
7440-66-6	Zinc	ND		mg/L	0.0278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:09	CEG
7-1-10-00-0	Zinc	ND		mg/L	0.0276	1	Certifications:	CTDOH-PH	H-0723,NELAC-NY10		

Metals, Target Analyte, ICPMS

Sample Prepared by Method: EPA 3015A

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony		ND	M-CCV 1	mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:35 854,NJDEP-CT005,PA	cw ADEP-68-044
7440-38-2	Arsenic		0.00257		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PI	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:35 0854,NJDEP-CT005,P	cw ADEP-68-04
7440-41-7	Beryllium		ND		mg/L	0.000333	3 1	EPA 6020B Certifications:	СТДОН-РЕ	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:35 854,NJDEP-CT005,PA	cw ADEP-68-044
7440-43-9	Cadmium		ND	M-CCV	mg/L	0.000556	5 1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:35 854,NJDEP-CT005,P/	cw ADEP-68-044
7782-49-2	Selenium		ND		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:35 854,NJDEP-CT005,P/	cw ADEP-68-044
7440-28-0	Thallium		ND		mg/L	0.00111	1	EPA 6020B Certifications:	СТДОН-РЕ	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:35 854,NJDEP-CT005,PA	cw ADEP-68-044

Mercury by 7470/7471

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-7470A

					Reported to	Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOQ Dilution Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 15 of 81

Client Sample ID: MW-12 **York Sample ID:**

23J0410-01

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Mercury by 7470/7471

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-7470A

CAS No	0.	Parameter	Result	Flag	Units	Reported LOQ	o Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.0002	1	EPA 7470 Certifications:	CTDOH-PF	10/10/2023 08:32 H-0723,NELAC-NY10	10/10/2023 08:32 854,NJDEP-CT005,P	PFA ADEP-68-044

Sample Information

MW-14 **Client Sample ID:**

York Sample ID:

23J0410-02

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23J0410

75 Dupont Street

Ground Water

October 5, 2023 8:30 am

10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-C
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 14:58 2058,NJDEP-CT005	SMA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 14:58 2058,NJDEP-CT005,I	SMA PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 14:58 2058,NJDEP-CT005,I	SMA PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 14:58	SMA

Client Sample ID: MW-14 **York Sample ID:** 23J0410-02

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sam	pic	110	ucs	٠
	_			-

Sample Prepare	d by Method: EPA 5030B											
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 14:58 2058,NJDEP-CT005,I	SMA PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
06-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-CT
07-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-CT
8-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
41-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
42-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 14:58 2058,NJDEP-CT005,I	SMA PADEP-68-04
06-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
94-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 14:58 2058,NJDEP-CT005,I	SMA PADEP-68-04
8-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
5-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
91-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
06-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
08-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
7-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
1-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10		SMA 58,NJDEP-CT

Client Sample ID: MW-14

York Sample ID: 23J0410-02

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Prepare	ed by Method: EPA 5030B	_							_			
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:58 2058,NJDEP-CT005,	SMA PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:58 2058,NJDEP-CT005,	SMA PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:58 2058,NJDEP-CT005,	SMA PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:58 2058,NJDEP-CT005,	SMA PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 I-0723,NELAC-NY10		SMA 58,NJDEP-CT
87-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY1	10/12/2023 14:58 2058,NJDEP-CT005,	SMA PADEP-68-04
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 0854,NELAC-NY120	SMA 58,NJDEP-CT

Client Sample ID: MW-14

York Sample ID: 23J0410-02

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 14:58 2058,NJDEP-CT005,I	SMA PADEP-68-04
104-51-8	n-Butylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120	SMA 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 14:58	SMA
622-96-8	* p-Ethyltoluene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 14:58	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY120:	SMA 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 81

Client Sample ID: MW-14

<u>York Sample ID:</u> 23J0410-02

Date Received

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am

10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY1205	SMA 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	СТDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 14:58 854,NELAC-NY1205	SMA 58,NJDEP-CT
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	98.6 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.1 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	101 %			79-122							

Semi-Volatiles, 8270 - Comprehensive - LL

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 /10854,NJDEP-CT005	10/12/2023 13:49 5,PADEP-68-04440	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 //10854,NJDEP-CT005	10/12/2023 13:49 i,PADEP-68-04440	КН
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 I-0723,NELAC-NY10	10/12/2023 13:49 854,NJDEP-CT005,F	KH PADEP-68-04
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 /10854,PADEP-68-04	10/12/2023 13:49 440	КН
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 /10854,NJDEP-CT005	10/12/2023 13:49 i,PADEP-68-04440	КН
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 710854,PADEP-68-04	10/12/2023 13:49 140	КН
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 //10854,PADEP-68-04	10/12/2023 13:49 140	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 /10854,NJDEP-CT005	10/12/2023 13:49 i,PADEP-68-04440	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 I-0723,NELAC-NY10	10/12/2023 13:49 854,NJDEP-CT005,F	KH PADEP-68-04
38-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 I-0723,NELAC-NY10	10/12/2023 13:49 854,NJDEP-CT005,F	KH PADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 I-0723,NELAC-NY10	10/12/2023 13:49 854,NJDEP-CT005,F	KH PADEP-68-04
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 I-0723,NELAC-NY10	10/12/2023 13:49 854,NJDEP-CT005,F	KH PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 20 of 81

Client Sample ID: MW-14

<u>York Sample ID:</u> 23J0410-02

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 3510C										
CAS No	o. Parameter	Result	Flag Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
51-28-5	2,4-Dinitrophenol	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-044
91-58-7	2-Chloronaphthalene	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
95-57-8	2-Chlorophenol	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
91-57-6	2-Methylnaphthalene	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
95-48-7	2-Methylphenol	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
38-74-4	2-Nitroaniline	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
38-75-5	2-Nitrophenol	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
55794-96-9	3- & 4-Methylphenols	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
91-94-1	3,3-Dichlorobenzidine	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
99-09-2	3-Nitroaniline	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
534-52-1	4,6-Dinitro-2-methylphenol	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
101-55-3	4-Bromophenyl phenyl ether	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
59-50-7	4-Chloro-3-methylphenol	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-044
106-47-8	4-Chloroaniline	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04-
7005-72-3	4-Chlorophenyl phenyl ether	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
100-01-6	4-Nitroaniline	ND	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
100-02-7	4-Nitrophenol	ND	ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	KH PADEP-68-04
100-02-7	4-Introphenol	ND	ug/L	1.39	1.59	1		СТДОН-РН			PA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 21 of 81

Client Sample ID: MW-14

<u>York Sample ID:</u> 23J0410-02

York Project (SDG) No. 23J0410

Sample Prepared by Method: EPA 3510C

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time e Method Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
208-96-8	Acenaphthylene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3 CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
98-86-2	Acetophenone	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/2023 08:3- NELAC-NY10854,NJDEP-CT		KH
62-53-3	Aniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/2023 08:34 NELAC-NY10854,NJDEP-CT		КН
120-12-7	Anthracene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
1912-24-9	Atrazine	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	10/11/2023 08:3 NELAC-NY10854,NJDEP-CT		KH
100-52-7	Benzaldehyde	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/2023 08:3 NELAC-NY10854,NJDEP-CT		KH
92-87-5	Benzidine	ND		ug/L	11.1	22.2	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
65-85-0	Benzoic acid	ND		ug/L	27.8	55.6	1	EPA 8270D Certifications:	10/11/2023 08:3 NELAC-NY10854,NJDEP-CT		KH
100-51-6	Benzyl alcohol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/2023 08:3 NELAC-NY10854,NJDEP-CT		KH
85-68-7	Benzyl butyl phthalate	ND	CCVE	ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	10/11/2023 08:3- CTDOH-PH-0723,NELAC-NY		KH PADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 22 of 81

Client Sample ID: MW-14

York Sample ID: 23J0410-02

York Project (SDG) No. 23J0410

Sample Prepared by Method: EPA 3510C

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	13.5	CCVE,	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-F	10/11/2023 08:34 PH-0723,NELAC-NY1	10/12/2023 13:49 0854 NIDEP-CT005	KH PADEP-68-0
105-60-2	Caprolactam	ND	J	ug/L	2.78	5.56	1	EPA 8270D Certifications:		10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 13:49	KH
86-74-8	Carbazole	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
218-01-9	Chrysene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
132-64-9	Dibenzofuran	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
84-66-2	Diethyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
131-11-3	Dimethyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
84-74-2	Di-n-butyl phthalate	ND	CCVE	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,E	KH PADEP-68-04
117-84-0	Di-n-octyl phthalate	ND	CCVE	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
206-44-0	Fluoranthene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
86-73-7	Fluorene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 13:53 5,PADEP-68-04440	КН
118-74-1	Hexachlorobenzene	ND	CCVE	ug/L	0.0222	0.0222	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,E	KH PADEP-68-04
87-68-3	Hexachlorobutadiene	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,E	KH PADEP-68-04
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
67-72-1	Hexachloroethane	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
78-59-1	Isophorone	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-P	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
91-20-3	Naphthalene	ND		ug/L	0.0556	0.0556	1	EPA 8270D	CTDOU N	10/11/2023 08:34	10/12/2023 13:53	KH

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044

Client Sample ID: MW-14 **York Sample ID:**

23J0410-02

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-95-3	Nitrobenzene	ND		ug/L	0.278	0.278	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.556	0.556	1	EPA 8270D Certifications:	CTDOH-PF	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,E	KH PADEP-68-04
521-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,E	KH PADEP-68-04
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
87-86-5	Pentachlorophenol	ND		ug/L	0.278	0.278	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
35-01-8	Phenanthrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
108-95-2	Phenol	ND		ug/L	1.39	1.39	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,F	KH PADEP-68-04
129-00-0	Pyrene	ND		ug/L	0.0556	0.0556	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:53 0854,NJDEP-CT005,F	KH PADEP-68-04
110-86-1	Pyridine	ND	ICVE	ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH-PF	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,E	KH PADEP-68-04
	Surrogate Recoveries	Result		Acco	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	42.7 %			19.7-63.1							
3127-88-3	Surrogate: SURR: Phenol-d6	24.8 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	111 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	93.8 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	106 %			30.7-106							

Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3535A

CAS N	o. Parameter	Result	Flag	Units	Reported t	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
123-91-1	1,4-Dioxane	ND		ug/L	0.300	1	EPA 8270D SIM Certifications: NJDEP-CT	10/10/2023 09:43 005,NELAC-NY10854	10/11/2023 14:56	КН
	Surrogate Recoveries	Result		Accepta	ance Range					
17647-74-4	Surrogate: 1,4-Dioxane-d8	62.0 %		30	5.6-118					

PFAS, NYSDEC Target List

120 RESEARCH DRIVE

Log-in Notes:

Sample Notes:

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

					Reported to	Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOQ Dilution Reference Method	Prepared	Analyzed	Analyst

www.YORKLAB.com (203) 325-1371

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 24 of 81

Client Sample ID: MW-14

York Sample ID: 23.

23J0410-02

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

PFAS, NYSDEC Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
375-73-5	* Perfluorobutanesulfonic acid (PFBS)	2.09		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
307-24-4	* Perfluorohexanoic acid (PFHxA)	4.57		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
375-85-9	* Perfluoroheptanoic acid (PFHpA)	2.98		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
355-46-4	* Perfluorohexanesulfonic acid (PFHxS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
335-67-1	* Perfluorooctanoic acid (PFOA)	7.80		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
1763-23-1	* Perfluorooctanesulfonic acid (PFOS)	10.7		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
375-95-1	* Perfluorononanoic acid (PFNA)	3.14		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
335-76-2	* Perfluorodecanoic acid (PFDA)	3.02		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
2058-94-8	* Perfluoroundecanoic acid (PFUnA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
307-55-1	* Perfluorododecanoic acid (PFDoA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
72629-94-8	* Perfluorotridecanoic acid (PFTrDA)	1.79		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
376-06-7	* Perfluorotetradecanoic acid (PFTA)	ND	PF-CC V-L	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
2355-31-9	* N-MeFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
2991-50-6	* N-EtFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
2706-90-3	* Perfluoropentanoic acid (PFPeA)	6.00	PF-CC V-H	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
754-91-6	* Perfluoro-1-octanesulfonamide (FOSA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
375-92-8	* Perfluoro-1-heptanesulfonic acid (PFHpS)	ND		ng/L	4.63	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
335-77-3	* Perfluoro-1-decanesulfonic acid (PFDS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
27619-97-2	* 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND	PF-CC V-L	ng/L	2.31	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 25 of 81

Client Sample ID: MW-14

York Sample ID:

23J0410-02

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

PFAS, NYSDEC Target List

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reporte LOQ	l to Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	* 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
375-22-4	* Perfluoro-n-butanoic acid (PFBA)	2.65	PF-CC V-H	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:45	DRP
	Surrogate Recoveries	Result		Acce	ptance Range					
	Surrogate: M3PFBS	85.4 %			25-150					
	Surrogate: M5PFHxA	76.3 %			25-150					
	Surrogate: M4PFHpA	69.2 %			25-150					
	Surrogate: M3PFHxS	110 %			25-150					
	Surrogate: Perfluoro-n- [13C8]octanoic acid (M8PFOA)	95.3 %			25-150					
	Surrogate: M6PFDA	103 %			25-150					
	Surrogate: M7PFUdA	68.3 %			25-150					
	Surrogate: Perfluoro-n- [1,2-13C2]dodecanoic acid (MPFDoA)	37.8 %			25-150					
	Surrogate: M2PFTeDA	14.8 %			10-150					
	Surrogate: Perfluoro-n- [13C4]butanoic acid (MPFBA)	103 %			25-150					
	Surrogate: Perfluoro-1- [13C8]octanesulfonic acid (M8PFOS)	105 %			25-150					
	Surrogate: Perfluoro-n- [13C5]pentanoic acid (M5PFPeA)	96.9 %			25-150					
	Surrogate: Perfluoro-1- [13C8]octanesulfonamide (M8FOSA)	0.750 %	PFSu-L		10-150					
	Surrogate: d3-N-MeFOSAA	65.3 %			25-150					
	Surrogate: d5-N-EtFOSAA	56.2 %			25-150					
	Surrogate: M2-6:2 FTS	195 %			25-200					

Metals, Target Analyte, ICP

Surrogate: M2-8:2 FTS

Surrogate: M9PFNA

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum		2.20		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	ADEP-68-04
7440-39-3	Barium		0.0692		mg/L	0.0278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	ADEP-68-04
7440-70-2	Calcium		19.3	M-BS	mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	ADEP-68-04

25-200

25-150

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

135 %

101 %

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 81

Client Sample ID: MW-14

York Sample ID: 23J

23J0410-02

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Metals, Target Analyte, ICP

Sample Prepared by Method: EPA 3015A

-		•	T T	4
	α	_ın	IN.	otes:
_	ıυz	-111	1.7	uics.

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-47-3	Chromium	0.0255		mg/L	0.0055	6 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,l	PADEP-68-04
7440-48-4	Cobalt	ND		mg/L	0.0044	4 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
7440-50-8	Copper	ND		mg/L	0.0222	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
	11						Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
7439-89-6	Iron	5.73		mg/L	0.278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-04
7439-92-1	Lead	0.00833		mg/L	0.0055	6 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,l	PADEP-68-04
7439-95-4	Magnesium	3.30		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-04
7439-96-5	Manganese	0.254		mg/L	0.0055	6 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-04
7440-02-0	Nickel	0.0115		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-04
7440-09-7	Potassium	1.64		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,l	PADEP-68-04
7440-22-4	Silver	ND		mg/L	0.0055	6 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-C1005,P	ADEP-68-044
7440-23-5	Sodium	51.2	M-BS	mg/L	0.556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-04
7440-62-2	Vanadium	ND		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
7440-66-6	Zinc	0.0614		mg/L	0.0278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:13	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,l	PADEP-68-04

Metals, Target Analyte, ICPMS

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony		ND	M-CCV 1	mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 -0723,NELAC-NY108	10/12/2023 13:39 854,NJDEP-CT005,PA	cw ADEP-68-044
7440-38-2	Arsenic		ND		mg/L	0.00111	1	EPA 6020B Certifications:	СТДОН-РН	10/11/2023 09:05 -0723,NELAC-NY108	10/12/2023 13:39 354,NJDEP-CT005,PA	cw ADEP-68-044
7440-41-7	Beryllium		ND		mg/L	0.000333	1	EPA 6020B Certifications:	СТДОН-РН	10/11/2023 09:05 -0723,NELAC-NY108	10/12/2023 13:39 854,NJDEP-CT005,PA	cw ADEP-68-044
7440-43-9	Cadmium		ND	M-CCV	mg/L	0.000556	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 -0723,NELAC-NY108	10/12/2023 13:39 854,NJDEP-CT005,PA	cw ADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 27 of 81

Client Sample ID: MW-14

York Sample ID:

23J0410-02

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water Collection Date/Time
October 5, 2023 8:30 am

Date Received 10/05/2023

Metals, Target Analyte, ICPMS

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3015A

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7782-49-2	Selenium		ND		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY108	10/12/2023 13:39 354,NJDEP-CT005,PA	cw ADEP-68-044
7440-28-0	Thallium		ND		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY108	10/12/2023 13:39 354,NJDEP-CT005,P	cw ADEP-68-044

Mercury by 7470/7471

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-7470A

CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.0002	1	EPA 7470		10/10/2023 08:32	10/10/2023 08:32	PFA
								Certifications:	CTDOH-PH	-0723,NELAC-NY108	54,NJDEP-CT005,P	ADEP-68-044

Sample Information

Client Sample ID: MW-29

Client Project ID

Matrix

Collection Date/Time

23J0410-03

York Project (SDG) No. 23J0410

75 Dupont Street

Ground Water

October 5, 2023 8:30 am

York Sample ID:

<u>Date Received</u> 10/05/2023

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТDOH-PH	10/12/2023 09:00 -0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 8,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТDOH-PH	10/12/2023 09:00 -0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 8,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТDOH-PH	10/12/2023 09:00 -0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 8,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РН	10/12/2023 09:00 -0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 8,NJDEP-CT
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТDOH-PH	10/12/2023 09:00 -0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 8,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РН	10/12/2023 09:00 -0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 8,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТDOH-PH	10/12/2023 09:00 -0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY1205	SMA 8,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 28 of 81

Client Sample ID: MW-29 **York Sample ID:** 23J0410-03

10/12/2023 09:00 10/12/2023 15:27

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

York Project (SDG) No. 23J0410

95-50-1

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

1,2-Dichlorobenzene

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 15:27 2058,NJDEP-CT005	SMA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 15:27 2058,NJDEP-CT005,F	SMA PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 15:27 2058,NJDEP-CT005,F	SMA PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 15:27	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 15:27 2058,NJDEP-CT005,F	SMA PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 58,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 58,NJDEP-CT
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY1205	SMA 58,NJDEP-CT

0.20

0.50

EPA 8260C Certifications:

ug/L

120 RES	SEARCH DRIVE	STRATFORD, C	T 06615	•	132-	02 89th	AVENUE	RICHMOND HILL, NY 11418
591-78-6	2-Hexanone	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
95-49-8	2-Chlorotoluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
78-93-3	2-Butanone	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
594-20-7	2,2-Dichloropropane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	QL-02 ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
541-73-1	1,3-Dichlorobenzene	ND	QL-02 ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12/2023 15:27 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

ND

Client Sample ID: MW-29

York Sample ID: 23J0410-03

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	ared by Method: EPA 5030B											
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
67-64-1	Acetone	2.7	QL-02	ug/L	1.0	2.0	1	EPA 8260C		10/12/2023 09:00	10/12/2023 15:27	SMA
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:27 2058,NJDEP-CT005,I	SMA PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:27 2058,NJDEP-CT005,I	SMA PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-15-0	Carbon disulfide	20		ug/L	0.20	0.50	1	EPA 8260C		10/12/2023 09:00	10/12/2023 15:27	SMA
		20						Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY1205	SMA 58,NJDEP-CT
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 0854,NELAC-NY120	SMA 58,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:27 2058,NJDEP-CT005,I	SMA PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 30 of 81

Client Sample ID: MW-29

York Sample ID: 23J0410-03

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

15 71 0				Units	LOD/MDL	LOQ	Dilution	- Tererence	Method Prepa	1 Cu 2 XIII u	lyzed	Analyst
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 NELAC-NY10854,NELA		23 15:27 P-CT005,P	SMA ADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
37-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 NELAC-NY10854,NELA			SMA ADEP-68-04
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
634-04-4	Methyl tert-butyl ether (MTBE)	0.22	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELA			SMA 58,NJDEP-C
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	10/12/2023 NELAC-NY10854,NELA			SMA ADEP-68-04
104-51-8	n-Butylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,PADEP-68
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023	09:00 10/12/20	23 15:27	SMA
522-96-8	* p-Ethyltoluene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023	09:00 10/12/20	23 15:27	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
127-18-4	Tetrachloroethylene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELAG			SMA 8,NJDEP-C
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 CTDOH-PH-0723,NELA0			SMA 8,NJDEP-C

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 31 of 81

FAX (203) 357-0166

Client Sample ID: MW-29

York Sample ID:

23J0410-03

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY120:	SMA 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY120	SMA 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY120	SMA 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY120	SMA 58,NJDEP-CT
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY120	SMA 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:27 854,NELAC-NY120	SMA 58,NJDEP-CT
	Surrogate Recoveries	Result		Acco	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	100 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	90.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	101 %			79-122							

Semi-Volatiles, 8270 - Comprehensive - LL

Sample Prepared by Method: EPA 3510C

Log-in	Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT005	10/12/2023 14:24 i,PADEP-68-04440	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT005	10/12/2023 14:24 i,PADEP-68-04440	KH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH ADEP-68-044
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,PADEP-68-044	10/12/2023 14:24 140	KH
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT005	10/12/2023 14:24 i,PADEP-68-04440	KH
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,PADEP-68-044	10/12/2023 14:24 140	KH
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,PADEP-68-044	10/12/2023 14:24 140	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT005	10/12/2023 14:24 i,PADEP-68-04440	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 81

Client Sample ID: MW-29

York Sample ID: 23J0410-03

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepar	ed by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
51-28-5	2,4-Dinitrophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
91-58-7	2-Chloronaphthalene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
95-57-8	2-Chlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
91-57-6	2-Methylnaphthalene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
95-48-7	2-Methylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
88-74-4	2-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
88-75-5	2-Nitrophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
99-09-2	3-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,F	KH PADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 33 of 81

Client Sample ID: MW-29

<u>York Sample ID:</u> 23J0410-03

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

0/03/202

Sample Prepar	red by Method: EPA 3510C										
CAS N	o. Parameter	Result F	ag Uni	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-47-8	4-Chloroaniline	ND	ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
7005-72-3	4-Chlorophenyl phenyl ether	ND	ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
100-01-6	4-Nitroaniline	ND	ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
100-02-7	4-Nitrophenol	ND	ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
83-32-9	Acenaphthene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
208-96-8	Acenaphthylene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
98-86-2	Acetophenone	ND	ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT00	10/12/2023 14:24 5,PADEP-68-04440	KH
62-53-3	Aniline	ND	ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT00	10/12/2023 14:24 5,PADEP-68-04440	KH
120-12-7	Anthracene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
1912-24-9	Atrazine	ND	ug/L	0.588	0.588	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT00	10/12/2023 14:24 5,PADEP-68-04440	KH
100-52-7	Benzaldehyde	ND	ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT00	10/12/2023 14:24 5,PADEP-68-04440	KH
92-87-5	Benzidine	ND	ug/L	11.8	23.5	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH-	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:24 0854,NJDEP-CT005,P	KH PADEP-68-044
65-85-0	Benzoic acid	ND	ug/L	29.4	58.8	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT00	10/12/2023 14:24 5,PADEP-68-04440	КН
100-51-6	Benzyl alcohol	ND	ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 10854,NJDEP-CT00	10/12/2023 14:24 5,PADEP-68-04440	КН

Client Sample ID: MW-29

York Sample ID: 23J0410-03

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sampl	e I	repared	by	Method:	EPA	3510C	

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time e Method Prepared Analyzed Analys
85-68-7	Benzyl butyl phthalate	ND	CCVE	ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
117-81-7	Bis(2-ethylhexyl)phthalate	6.24	CCVE,	ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-
105-60-2	Caprolactam	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH NELAC-NY10854,NJDEP-CT005,PADEP-68-04440
86-74-8	Carbazole	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
218-01-9	Chrysene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
132-64-9	Dibenzofuran	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
84-66-2	Diethyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
131-11-3	Dimethyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
117-84-0	Di-n-octyl phthalate	ND	CCVE	ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
206-44-0	Fluoranthene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
86-73-7	Fluorene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH NELAC-NY10854,NJDEP-CT005,PADEP-68-04440
118-74-1	Hexachlorobenzene	ND	CCVE	ug/L	0.0235	0.0235	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
87-68-3	Hexachlorobutadiene	ND		ug/L	0.588	0.588	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	10/11/2023 08:34 10/12/2023 14:24 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-0

Client Sample ID: MW-29 **York Sample ID:**

23J0410-03

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-72-1	Hexachloroethane	ND		ug/L	0.588	0.588	1	EPA 8270D Certifications:	СТDОН-РІ	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
98-95-3	Nitrobenzene	0.400		ug/L	0.294	0.294	1	EPA 8270D		10/11/2023 08:34	10/12/2023 14:24	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP-CT005,l	PADEP-68-04
62-75-9	N-Nitrosodimethylamine	0.600		ug/L	0.588	0.588	1	EPA 8270D		10/11/2023 08:34	10/12/2023 14:24	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP-CT005,l	PADEP-68-04
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.294	0.294	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
108-95-2	Phenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
110-86-1	Pyridine	ND	ICVE	ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:24 854,NJDEP-CT005,P	KH PADEP-68-044
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	18.8 %	S-08		19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	15.5 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	59.8 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	53.8 %			39.9-105							
	- 3				· · · · · · ·							

Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous

Surrogate: SURR: Terphenyl-d14

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3535A

1718-51-0

CAS I	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
123-91-1	1,4-Dioxane		ND		ug/L	0.300	1	EPA 8270D SIM Certifications: NJDEP-CT	10/10/2023 09:43 0005,NELAC-NY10854	10/11/2023 15:14	KH
120 RE	SEARCH DRIVE		STRATFORD, CT	06615		1 32	2-02 89th	AVENUE	RICHMOND HILI	L, NY 11418	

30.7-106

www.YORKLAB.com

(203) 325-1371

67.2 %

132-02 89th AVENUE

FAX (203) 357-0166

ClientServices@ Page 36 of 81

Client Sample ID: MW-29

York Sample ID:

23J0410-03

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water Collection Date/Time
October 5, 2023 8:30 am

Date Received

Log-in Notes:

Sample Notes:

10/05/2023

Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous

Sample Prepared by Method: EPA 3535A

CAS No. Parameter

Flag Units

Reported to LOQ Dilution

Reference Method

Date/Time Prepared Date/Time Analyzed Analyst

Surrogate Recoveries

Surrogate: 1,4-Dioxane-d8

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

Result 63.4 %

Result

Acceptance Range

36.6-118

PFAS, NYSDEC Target List

17647-74-4

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
375-73-5	* Perfluorobutanesulfonic acid (PFBS)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
307-24-4	* Perfluorohexanoic acid (PFHxA)	10.3		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
375-85-9	* Perfluoroheptanoic acid (PFHpA)	6.20		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
355-46-4	* Perfluorohexanesulfonic acid (PFHxS)	3.06		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
335-67-1	* Perfluorooctanoic acid (PFOA)	61.3		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
	* Perfluorooctanesulfonic acid (PFOS)	32.5		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
375-95-1	* Perfluorononanoic acid (PFNA)	0.996		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
335-76-2	* Perfluorodecanoic acid (PFDA)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
2058-94-8	* Perfluoroundecanoic acid (PFUnA)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
307-55-1	* Perfluorododecanoic acid (PFDoA)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
72629-94-8	* Perfluorotridecanoic acid (PFTrDA)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
376-06-7	* Perfluorotetradecanoic acid (PFTA)	ND	PF-CC V-L	ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
2355-31-9	* N-MeFOSAA	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
2991-50-6	* N-EtFOSAA	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
2706-90-3	* Perfluoropentanoic acid (PFPeA)	10.4	PF-CC V-H	ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
	* Perfluoro-1-octanesulfonamide (FOSA)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 37 of 81

Client Sample ID: MW-29 **York Sample ID:**

23J0410-03

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

Log-in Notes:

Sample Notes:

PFAS, NYSDEC Target List

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
375-92-8	* Perfluoro-1-heptanesulfonic acid (PFHpS)	ND		ng/L	4.46	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
335-77-3	* Perfluoro-1-decanesulfonic acid (PFDS)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
27619-97-2	* 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND	PF-CC V-L	ng/L	2.23	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
39108-34-4	* 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND		ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
375-22-4	* Perfluoro-n-butanoic acid (PFBA)	13.7	PF-CC V-H	ng/L	0.893	1	EPA 537m Certifications:	10/09/2023 14:46	10/11/2023 23:58	DRP
	Surrogate Recoveries	Result		Accepta	nce Range					
	Surrogate: M3PFBS	103 %		25	i-150					
	Surrogate: M5PFHxA	78.2 %		25	i-150					
	Surrogate: M4PFHpA	84.8 %		25	i-150					
	Surrogate: M3PFHxS	107 %		25	i-150					
	Surrogate: Perfluoro-n- [13C8]octanoic acid (M8PFOA)	92.0 %		25	i-150					
	Surrogate: M6PFDA	94.4 %		25	5-150					
	Surrogate: M7PFUdA	62.8 %		25	i-150					
	Surrogate: Perfluoro-n- [1,2-13C2]dodecanoic acid (MPFDoA)	53.3 %		25	5-150					
	Surrogate: M2PFTeDA	43.5 %		10)-150					
	Surrogate: Perfluoro-n- [13C4]butanoic acid (MPFBA)	99.3 %		25	i-150					
	Surrogate: Perfluoro-1- [13C8]octanesulfonic acid (M8PFOS)	81.1 %		25	i-150					
	Surrogate: Perfluoro-n- [13C5]pentanoic acid (M5PFPeA)	99.5 %		25	i-150					
	Surrogate: Perfluoro-1- [13C8]octanesulfonamide (M8FOSA)	50.6 %		10	0-150					
	Surrogate: d3-N-MeFOSAA	66.4 %		25	i-150					

Metals, Target Analyte, ICP

Surrogate: d5-N-EtFOSAA

Surrogate: M2-6:2 FTS

Surrogate: M2-8:2 FTS

Surrogate: M9PFNA

70.0~%

183 %

127 %

93.7 %

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3015A

CAS No.	Parameter	Result	Flag	Units	Reported t	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH D	PRIVE	STRATFORD, C	T 06615		132	2-02 89th AV	/ENUE	RICHMOND HILI	_, NY 11418	

25-150

25-200

25-200

25-150

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices@ Page 38 of 81

Client Sample ID: MW-29

York Sample ID:

23J0410-03

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Log-in Notes:

Sample Notes:

Metals, Target Analyte, ICP
Sample Prepared by Method: EPA 3015A

CAS N	No. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	2.35		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-39-3	Barium	1.57		mg/L	0.0278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-70-2	Calcium	156		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-47-3	Chromium	0.00857		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-48-4	Cobalt	ND		mg/L	0.00444	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
7440-50-8	Copper	0.0535		mg/L	0.0222	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
		0.0323					Certifications:	CTDOH-P	H-0723,NELAC-NY10)854,NJDEP-CT005,I	PADEP-68-04
7439-89-6	Iron	519		mg/L	2.78	10	EPA 6010D		10/12/2023 08:54	10/13/2023 16:05	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,1	PADEP-68-04
7439-92-1	Lead	0.104		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7439-95-4	Magnesium	50.1		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7439-96-5	Manganese	2.00		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-02-0	Nickel	0.0175		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-09-7	Potassium	6.65		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
7440-22-4	Silver	ND		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
7440-23-5	Sodium	125		mg/L	0.556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
		123		6	1.300	-	Certifications:	CTDOH-P	H-0723,NELAC-NY10)854,NJDEP-CT005,I	
7440-62-2	Vanadium	ND		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:24	CEG
02 2		110			0.0111	•	Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
5440 cc c	~ :				0.0270		EDI (010D		10/12/2022 00 54	10/12/2022 12 24	ana.
7440-66-6	Zinc	ND		mg/L	0.0278	1	EPA 6010D Certifications:	CTDOH-PF	10/12/2023 08:54 I-0723,NELAC-NY10	10/13/2023 13:24 854,NJDEP-CT005,P	CEG ADEP-68-044
										,	

Metals, Target Analyte, ICPMS

Sample Prepared by Method: EPA 3015A

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilut	ion Referen	ce Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony		ND	M-CCV	mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PI	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:42 854,NJDEP-CT005,P	cw PADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 39 of 81

Client Sample ID: MW-29 23J0410-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23J041075 Dupont StreetGround WaterOctober 5, 2023 8:30 am10/05/2023

Metals, Target Analyte, ICPMS

Sample Prepared by Method: EPA 3015A

	Notes:	

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilutio	on Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	0.0145		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-P	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:42	cw
7440-41-7	Beryllium	0.00326	M-BS	mg/L	0.00033	3 1	EPA 6020B Certifications:		10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:42	cw
7440-43-9	Cadmium	ND	M-CCV	mg/L	0.00055	5 1	EPA 6020B Certifications:		10/11/2023 09:05 I-0723,NELAC-NY108	10/12/2023 13:42	cw
7782-49-2	Selenium	ND		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY108	10/12/2023 13:42 354,NJDEP-CT005,P	cw ADEP-68-044
7440-28-0	Thallium	ND		mg/L	0.00111	1	EPA 6020B Certifications:	СТДОН-РЕ	10/11/2023 09:05 I-0723,NELAC-NY108	10/12/2023 13:42 354,NJDEP-CT005,PA	cw ADEP-68-044

Mercury by 7470/7471

Sample Prepared by Method: EPA SW846-7470A

	otes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.0002	1	EPA 7470	CTDOH-PE	10/10/2023 08:32 I-0723 NEL AC-NY10	10/10/2023 08:32 854 NIDEP-CT005 P.	PFA PADEP-68-044

Sample Information

Client Sample ID: MW-30 York Sample ID: 23J0410-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23J041075 Dupont StreetGround WaterOctober 5, 2023 8:30 am10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

ample	Prenai	red by	Method:	EPA	5030B

Bumpre 1 repu	ea cy memoai 211130302											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 8,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 8,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 8,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 8,NJDEP-CT

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 40 of 81

Log-in Notes:

Client Sample ID: MW-30

<u>York Sample ID:</u> 23J0410-04

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am

Sample Notes:

Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

	ed by Method: EPA 5030B	<u>u</u>			204	10103.		Sample ivotes.						
CAS No	<u> </u>	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst		
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120:	SMA 58,NJDEP-CT		
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120:	SMA 58,NJDEP-CT		
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120:	SMA 58,NJDEP-CT		
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:55 2058,NJDEP-CT005	SMA		
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:55 2058,NJDEP-CT005,I	SMA PADEP-68-04		
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:55 2058,NJDEP-CT005,I	SMA PADEP-68-04		
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 15:55	SMA		
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:55 2058,NJDEP-CT005,I	SMA PADEP-68-04		
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120	SMA 58,NJDEP-CT		
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120	SMA 58,NJDEP-CT		
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120	SMA 58,NJDEP-CT		
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120	SMA 58,NJDEP-CT		
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120	SMA 58,NJDEP-CT		
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120	SMA 58,NJDEP-CT		
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120:	SMA 58,NJDEP-CT		
541-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120	SMA 58,NJDEP-CT		
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:55 2058,NJDEP-CT005,1	SMA PADEP-68-04		
106-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 0854,NELAC-NY120:	SMA 58,NJDEP-CT		
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 15:55 2058,NJDEP-CT005,1	SMA PADEP-68-04		

Client Sample ID: MW-30 **York Sample ID:**

23J0410-04

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to	100	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
			riag		LOD/MDL	LOQ			Wiethou	-		
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РЕ	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РН	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
08-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РН	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
57-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY12	10/12/2023 15:55 2058,NJDEP-CT005,	SMA PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 /10854,NELAC-NY12	10/12/2023 15:55 2058,NJDEP-CT005,	SMA PADEP-68-04
5-27-4	Bromodichloromethane	1.6		ug/L	0.20	0.50	1	EPA 8260C		10/12/2023 09:00	10/12/2023 15:55	SMA
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY120	058,NJDEP-C
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
4-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
5-15-0	Carbon disulfide	1.2		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55	SMA
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55	SMA
08-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
7-66-3	Chloroform	36		ug/L	0.20	0.50	1	EPA 8260C		10/12/2023 09:00	10/12/2023 15:55	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-C
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 I-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY120	SMA 58,NJDEP-C
56-59-2	cis-1,2-Dichloroethylene	0.46	J	ug/L	0.20	0.50	1	EPA 8260C		10/12/2023 09:00	10/12/2023 15:55	SMA

Client Sample ID: MW-30 **York Sample ID:** 23J0410-04

York Project (SDG) No. 23J0410

Sample Prepared by Method: EPA 5030B

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

•	viatiit	OI	zamics,	0200	List -	LUW	LCVC

CAS No.	Parameter

	cis-1,3-Dichloropropylene) III)									
124-48-1		ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12 CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: NELAC-NY10854,NELAC-NY12058,N.	2/2023 15:55 IDEP-CT005,PA	SMA ADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: NELAC-NY10854,NELAC-NY12058,N.	2/2023 15:55 JDEP-CT005,PA	SMA ADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
87-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: NELAC-NY10854,NELAC-NY12058,N.	2/2023 15:55 JDEP-CT005,PA	SMA DEP-68-04
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: NELAC-NY10854,NELAC-NY12058,N.	2/2023 15:55 JDEP-CT005,PA	SMA DEP-68-04
104-51-8	n-Butylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,PADEP-68-
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,PADEP-68-
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1:	2/2023 15:55	SMA
622-96-8	* p-Ethyltoluene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1:	2/2023 15:55	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/12 CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/2023 09:00 10/1: CTDOH-PH-0723,NELAC-NY10854,NE	2/2023 15:55 ELAC-NY12058	SMA ,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 43 of 81

Client Sample ID: MW-30

York Sample ID:

23J0410-04

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sa

Sa	ım	p.	e	N	0	tes	

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 8,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 8,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 58,NJDEP-CT
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 15:55 854,NELAC-NY1205	SMA 58,NJDEP-CT
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	97.7 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.7 %			81-117							

Semi-Volatiles, 8270 - Comprehensive - LL

Surrogate: SURR:

 $p\hbox{-}Bromofluor obenzene$

Sample Prepared by Method: EPA 3510C

460-00-4

Log-in Notes:

79-122

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Method Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 NELAC-NY10854,NJDEP-CT00	10/11/2023 04:07 5,PADEP-68-04440	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 NELAC-NY10854,NJDEP-CT00	10/11/2023 04:07 5,PADEP-68-04440	KH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 CTDOH-PH-0723,NELAC-NY1	10/11/2023 04:07 0854,NJDEP-CT005,P	KH ADEP-68-044
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 NELAC-NY10854,PADEP-68-0-	10/11/2023 04:07 1440	КН
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 NELAC-NY10854,NJDEP-CT00	10/11/2023 04:07 15,PADEP-68-04440	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

102 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 44 of 81

Client Sample ID: MW-30

<u>York Sample ID:</u> 23J0410-04

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 3510C				Reported to					Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	e Method	Prepared	Analyzed	Analyst
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,PADEP-68-04	10/11/2023 04:07 440	KH
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,PADEP-68-04	10/11/2023 04:07 440	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00	10/11/2023 04:07 5,PADEP-68-04440	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	СТДОН-Р	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	СТДОН-Р	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
51-28-5	2,4-Dinitrophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	СТДОН-Р.	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
95-57-8	2-Chlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
95-48-7	2-Methylphenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
88-75-5	2-Nitrophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 45 of 81

Client Sample ID: MW-30 **York Sample ID:** 23J0410-04

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

10/05/2023

Sample Prepar	ed by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
100-02-7	4-Nitrophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,F	KH PADEP-68-044
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,F	KH PADEP-68-044
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00	10/11/2023 04:07 5,PADEP-68-04440	КН
62-53-3	Aniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00	10/11/2023 04:07 5,PADEP-68-04440	КН
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,F	KH PADEP-68-044
1912-24-9	Atrazine	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00	10/11/2023 01:33 5,PADEP-68-04440	КН
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00	10/11/2023 04:07 5,PADEP-68-04440	КН
92-87-5	Benzidine	ND		ug/L	10.0	20.0	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,F	KH PADEP-68-044
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,F	KH PADEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,F	KH ADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,F	KH PADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,F	KH PADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 46 of 81

Client Sample ID: MW-30

York Sample ID: 23J0410-04

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 3510C	-										
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	СТDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 854,NJDEP-CT005,P	KH ADEP-68-044
65-85-0	Benzoic acid	ND	QL-02	ug/L	25.0	50.0	1	EPA 8270D Certifications:	NELAC-NY	10/10/2023 07:46 710854,NJDEP-CT005	10/11/2023 04:07 i,PADEP-68-04440	КН
100-51-6	Benzyl alcohol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	10/10/2023 07:46 /10854,NJDEP-CT005	10/11/2023 04:07 i,PADEP-68-04440	КН
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	1.41	CAL-E, B	ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,l	KH PADEP-68-04
105-60-2	Caprolactam	ND	QL-02	ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	10/10/2023 07:46 710854,NJDEP-CT005	10/11/2023 04:07 5,PADEP-68-04440	КН
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 854,NJDEP-CT005,P	KH ADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 854,NJDEP-CT005,P	KH ADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 854,NJDEP-CT005,P	KH ADEP-68-044
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 854,NJDEP-CT005,P	KH ADEP-68-044
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	NELAC-NY	10/10/2023 07:46 710854,NJDEP-CT005	10/11/2023 01:33 i,PADEP-68-04440	КН

Client Sample ID: MW-30 **York Sample ID:**

23J0410-04

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample	Prepared	by	Method:	EPA 3510C	

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,I	KH PADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,I	KH PADEP-68-044
91-20-3	Naphthalene	0.0500		ug/L	0.0500	0.0500	1	EPA 8270D		10/10/2023 07:46	10/11/2023 01:33	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP-CT005	PADEP-68-04
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,I	KH PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,I	KH PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
108-95-2	Phenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	СТДОН-РН	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,I	KH PADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 01:33 0854,NJDEP-CT005,I	KH PADEP-68-044
110-86-1	Pyridine	ND	ICVE	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 I-0723,NELAC-NY10	10/11/2023 04:07 0854,NJDEP-CT005,I	KH PADEP-68-044
	Surrogate Recoveries	Result		Acc	ceptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	18.5 %	S-08		19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	10.8 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	50.3 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	43.2 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	76.2 %			39.3-151							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 48 of 81

Client Sample ID: MW-30 **York Sample ID:**

23J0410-04

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23J0410

75 Dupont Street

Ground Water

October 5, 2023 8:30 am

10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

Date/Time

CAS No.

Parameter

Parameter

Surrogate Recoveries

Flag Units Reported to LOD/MDL LOQ

Dilution Reference Method Date/Time Prepared

Analyzed

1718-51-0

Surrogate: SURR: Terphenyl-d14

Result 47.0 %

Result

ND

Result

59.5 %

30.7-106

Analyst

Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous

Surrogate: 1,4-Dioxane-d8

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3535A

Date/Time

10/11/2023 15:31

Date/Time

CAS No.

123-91-1

17647-74-4

Flag Units Reported to LOQ Dilution 0.300

Reported to

Reference Method EPA 8270D SIM

Certifications:

Date/Time Analyzed Prepared

10/10/2023 09:43

Date/Time

NJDEP-CT005,NELAC-NY10854

Analyst

KΗ

1,4-Dioxane

Acceptance Range 36.6-118

ug/L

PFAS, NYSDEC Target List

Log-in Notes:

Sample Notes:

CAS No	. Parameter
375-73-5	* Perfluorobutanesulfonic acid (PFB
307-24-4	* Perfluorohexanoic acid (PFHxA)

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

CAS No	. Parameter	Result	Flag	Units	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
375-73-5	* Perfluorobutanesulfonic acid (PFBS)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
307-24-4	* Perfluorohexanoic acid (PFHxA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
375-85-9	* Perfluoroheptanoic acid (PFHpA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
355-46-4	* Perfluorohexanesulfonic acid (PFHxS)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
335-67-1	* Perfluorooctanoic acid (PFOA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
1763-23-1	* Perfluorooctanesulfonic acid (PFOS)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
375-95-1	* Perfluorononanoic acid (PFNA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
335-76-2	* Perfluorodecanoic acid (PFDA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
2058-94-8	* Perfluoroundecanoic acid (PFUnA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
307-55-1	* Perfluorododecanoic acid (PFDoA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
72629-94-8	* Perfluorotridecanoic acid (PFTrDA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP

ClientServices@

Client Sample ID: MW-30

York Sample ID:

23J0410-04

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

PFAS, NYSDEC Target List

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

La	og-in	N	otes:
	<i>,</i> 2–111	⊥ 1	uics.

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
376-06-7	* Perfluorotetradecanoic acid (PFTA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
2355-31-9	* N-MeFOSAA	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
2991-50-6	* N-EtFOSAA	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
2706-90-3	* Perfluoropentanoic acid (PFPeA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
754-91-6	* Perfluoro-1-octanesulfonamide (FOSA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
375-92-8	* Perfluoro-1-heptanesulfonic acid (PFHpS)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
335-77-3	* Perfluoro-1-decanesulfonic acid (PFDS)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
27619-97-2	* 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND		ng/L	24.0	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
39108-34-4	* 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP
375-22-4	* Perfluoro-n-butanoic acid (PFBA)	ND		ng/L	9.62	10	EPA 537m Certifications:	10/09/2023 14:46	10/16/2023 12:47	DRP

Surrogate Recoveries	Result	Acceptance Range
Surrogate: M3PFBS	92.5 %	25-150
Surrogate: M5PFHxA	98.9 %	25-150
Surrogate: M4PFHpA	83.7 %	25-150
Surrogate: M3PFHxS	109 %	25-150
Surrogate: Perfluoro-n- [13C8]octanoic acid (M8PFOA)	81.2 %	25-150
Surrogate: M6PFDA	105 %	25-150
Surrogate: M7PFUdA	75.0 %	25-150
Surrogate: Perfluoro-n- [1,2-13C2]dodecanoic acid (MPFDoA)	81.7 %	25-150
Surrogate: M2PFTeDA	84.4 %	10-150
Surrogate: Perfluoro-n- [13C4]butanoic acid (MPFBA)	106 %	25-150
Surrogate: Perfluoro-1- [13C8]octanesulfonic acid (M8PFOS)	80.0 %	25-150
Surrogate: Perfluoro-n- [13C5]pentanoic acid (M5PFPeA)	103 %	25-150

132-02 89th AVENUE

RICHMOND HILL, NY 11418

STRATFORD, CT 06615

Client Sample ID: MW-30

York Sample ID:

23J0410-04

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Analyst

Date/Time Analyzed

PFAS, NYSDEC Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

CAS No.	Parameter	Result	Flag	Units		Reported to	Dilution	Reference Method	Date/Time Prepared
0	e: Perfluoro-1- ctanesulfonamide (M8FOSA)	35.3 %			10-150				
Surrogai	e: d3-N-MeFOSAA	78.2 %			25-150				
Surrogai	e: d5-N-EtFOSAA	70.2 %			25-150				
Surrogai	e: M2-6:2 FTS	101 %			25-200				
Surrogai	e: M2-8:2 FTS	101 %			25-200				
Surrogai	e: M9PFNA	68.7 %			25-150				

Metals, Target Analyte, ICP

Sample Prepared by Method: EPA 3015A

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
429-90-5	Aluminum		15.7		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-39-3	Barium		0.565		mg/L	0.0278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-70-2	Calcium		42.6		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-47-3	Chromium		0.516		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-48-4	Cobalt		0.0790		mg/L	0.00444	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-50-8	Copper		0.124		mg/L	0.0222	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
439-89-6	Iron		35.6		mg/L	0.278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
439-92-1	Lead		0.0953		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
439-95-4	Magnesium		15.0		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
439-96-5	Manganese		7.74		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-02-0	Nickel		0.402		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-09-7	Potassium		3.04		mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
7440-22-4	Silver		ND		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	PADEP-68-04
440-23-5	Sodium		15.4		mg/L	0.556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
			10		-			Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-62-2	Vanadium		0.0243		mg/L	0.0111	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:27	CEG
			····		-			Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 51 of 81

Client Sample ID: MW-30

York Sample ID:

23J0410-04

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water Collection Date/Time
October 5, 2023 8:30 am

Date Received 10/05/2023

Metals, Target Analyte, ICP

Log-in Notes:

Reported to LOQ

0.0278

Dilution

Sample Notes:

Sample Prepared by Method: EPA 3015A	

CAS N	No.	Parameter	Result	Flag Units
7440-66-6	Zinc		1.26	mg/L

Swiiipie i totest

Reference Method

 Date/Time Prepared
 Date/Time Analyzed
 Analyst

 10/12/2023 08:54
 10/13/2023 13:27
 CEG

EPA 6010D 10/12/2023 08:54 10/13/2023 13:27 CEG
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-04

Metals, Target Analyte, ICPMS

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3015A

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony		ND	M-CCV 1	mg/L	0.00111	1	EPA 6020B Certifications:	СТДОН-РЕ	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:49 854,NJDEP-CT005,P.	cw ADEP-68-044
7440-38-2	Arsenic		0.00245		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-P	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	cw PADEP-68-04
7440-41-7	Beryllium		0.00158	M-BS	mg/L	0.00033	3 1	EPA 6020B Certifications:	CTDOH-P	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	cw PADEP-68-04
7440-43-9	Cadmium		0.00150	M-CCV 1	mg/L	0.00055	6 1	EPA 6020B Certifications:	CTDOH-P	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	cw PADEP-68-04
7782-49-2	Selenium		0.00214	M-BS, M-CCV 1	mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-P	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:49 0854,NJDEP-CT005,I	cw PADEP-68-04
7440-28-0	Thallium		ND		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PF	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:49 854,NJDEP-CT005,P.	cw ADEP-68-044

Mercury by 7470/7471

Sample Prepared by Method: EPA SW846-7470A

	Not	

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported LOQ		Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		0.0007		mg/L	0.0002	2	1	EPA 7470		10/10/2023 08:32	10/10/2023 08:32	PFA
									Certifications:	CTDOH-P	H-0723.NELAC-NY10)854.NJDEP-CT005.I	PADEP-68-04

Sample Information

<u>Client Sample ID:</u> <u>MW-38</u> <u>York Sample ID:</u> 23J0410-05

York Project (SDG) No.	Client Project ID	<u>Matrix</u>	Collection Date/Time	Date Received
23J0410	75 Dupont Street	Ground Water	October 5, 2023 8:30 am	10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE

Sample Prepared by Method: EPA 5030B

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 52 of 81

Client Sample ID: MW-38

York Sample ID: 2

23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample	Prepared	by	Method:	EPA	5030B
--------	----------	----	---------	-----	-------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Prep	Time pared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 NELAC-NY10854,NEL		10/12/2023 16:23 2058,NJDEP-CT005	SMA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 NELAC-NY10854,NEL		10/12/2023 16:23 2058,NJDEP-CT005,F	SMA PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 NELAC-NY10854,NEL		10/12/2023 16:23 2058,NJDEP-CT005,F	SMA PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202	3 09:00	10/12/2023 16:23	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 NELAC-NY10854,NEL		10/12/2023 16:23 2058,NJDEP-CT005,F	SMA PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	10/12/202 CTDOH-PH-0723,NEL		10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT

Client Sample ID: MW-38 **York Sample ID:** 23J0410-05

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

	Organics, 8260 List - Low Level ed by Method: EPA 5030B				Log-in	Notes:		San	iple Note	<u>s:</u>		
CAS No	·	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,	SMA PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,	SMA PADEP-68-04
78-93-3	2-Butanone	1.3		ug/L	0.20	0.50	1	EPA 8260C		10/12/2023 09:00	10/12/2023 16:23	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	058,NJDEP-C
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
67-64-1	Acetone	2.2	OL-02	ug/L	1.0	2.0	1	EPA 8260C		10/12/2023 09:00	10/12/2023 16:23	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,	SMA PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,	SMA PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 0854,NELAC-NY120	SMA 58,NJDEP-CT

Carbon tetrachloride

56-23-5

ug/L

0.20

ND

0.50

EPA 8260C

Certifications:

10/12/2023 09:00 10/12/2023 16:23

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

Client Sample ID: MW-38

York Sample ID: 23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23	SMA
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,I	SMA PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,I	SMA PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
87-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,I	SMA PADEP-68-04
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY120	SMA 58,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:23 2058,NJDEP-CT005,I	SMA PADEP-68-04
104-51-8	n-Butylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 9854,NELAC-NY120	SMA 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 9854,NELAC-NY120:	SMA 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 9854,NELAC-NY120:	SMA 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH BI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 55 of 81

Client Sample ID: MW-38

York Sample ID:

23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

VUIALIIC	OIE	zamics,	0200	List -	LUW	LCV

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 16:23	SMA
622-96-8	* p-Ethyltoluene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 16:23	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:23 854,NELAC-NY1205	SMA 58,NJDEP-CT
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	100 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.3 %			81-117							
460-00-4	Surrogate: SURR:	101 %			79-122							

Semi-Volatiles, 8270 - Comprehensive - LL

p-Bromofluorobenzene

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

120 RESEARCH DRIVE

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst

www.YORKLAB.com (203) 325-1371

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 56 of 81

Client Sample ID: MW-38

<u>York Sample ID:</u> 23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Frepare	ed by Method: EPA 3510C									Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT005	10/11/2023 04:46 ;PADEP-68-04440	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT005	10/11/2023 04:46 i,PADEP-68-04440	KH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH ADEP-68-04
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,PADEP-68-04	10/11/2023 04:46 440	КН
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT005	10/11/2023 04:46 i,PADEP-68-04440	КН
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,PADEP-68-04	10/11/2023 04:46 140	КН
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,PADEP-68-04	10/11/2023 04:46 140	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT005	10/11/2023 04:46 i,PADEP-68-04440	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-044
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-044
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-044
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-044
51-28-5	2,4-Dinitrophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH ADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH ADEP-68-04
95-57-8	2-Chlorophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH ADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04-

Client Sample ID: MW-38

York Sample ID: 23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-48-7	2-Methylphenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH PADEP-68-04
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
38-75-5	2-Nitrophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
55794-96-9	3- & 4-Methylphenols	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
01-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
00-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
100-02-7	4-Nitrophenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 854,NJDEP-CT005,F	KH PADEP-68-04
33-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 854,NJDEP-CT005,F	KH PADEP-68-04
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-04
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00:	10/11/2023 04:46 5,PADEP-68-04440	КН
52-53-3	Aniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00:	10/11/2023 04:46 5,PADEP-68-04440	КН
20-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 854,NJDEP-CT005,F	KH PADEP-68-04
912-24-9	Atrazine	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00:	10/11/2023 02:05 5,PADEP-68-04440	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 58 of 81

Client Sample ID: MW-38 **York Sample ID:**

23J0410-05

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Analyst KH

KH

oenn-	voiauics,	04/0-	Comp	of effetisive	<u>- பப</u>

Sample Prepa	ared by Method: EPA 3510C									
CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: NELAC-	10/10/2023 07:46 NY10854,NJDEP-CT00	10/11/2023 04:46 5,PADEP-68-04440
92-87-5	Benzidine	ND		ug/L	10.0	20.0	1	EPA 8270D Certifications: CTDOH-	10/10/2023 07:46 PH-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,P
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications: CTDOH-	10/10/2023 07:46 PH-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,P
50.22.9	D (-)	ND		na/I	0.0500	0.0500	1	EDA 9270D	10/10/2022 07:46	10/11/2022 02:05

92-87-3	Benzidine	ND		ug/L	10.0	20.0	1	Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 02:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 02:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 02:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 02:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 02:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
65-85-0	Benzoic acid	ND	QL-02	ug/L	25.0	50.0	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH NELAC-NY10854,NJDEP-CT005,PADEP-68-04440
100-51-6	Benzyl alcohol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH NELAC-NY10854,NJDEP-CT005,PADEP-68-04440
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	690	В	ug/L	12.5	12.5	25	EPA 8270D	10/10/2023 07:46
								Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-04
105-60-2	Caprolactam	ND	QL-02	ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH NELAC-NY10854,NJDEP-CT005,PADEP-68-04440
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 04:46 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 02:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	10/10/2023 07:46 10/11/2023 02:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D	10/10/2023 07:46
								Cartifications	CEROLI DII 0722 NEL 4 C MIZIOREA NIDER CEROLE DA DER CO 044

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044

Client Sample ID: MW-38

York Sample ID: 23J0410-05

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH PADEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,E	KH PADEP-68-044
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,E	KH PADEP-68-044
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH PADEP-68-044
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	NELAC-N	10/10/2023 07:46 Y10854,NJDEP-CT00	10/11/2023 02:05 5,PADEP-68-04440	КН
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH PADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH PADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 60 of 81

Client Sample ID: MW-38 **York Sample ID:**

23J0410-05

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS N	lo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-95-2	Phenol	ND		ug/L	1.25	1.25	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH ADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 02:05 0854,NJDEP-CT005,F	KH ADEP-68-044
110-86-1	Pyridine	ND	ICVE	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/10/2023 07:46 H-0723,NELAC-NY10	10/11/2023 04:46 0854,NJDEP-CT005,F	KH ADEP-68-044
	Surrogate Recoveries	Result		Accep	otance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	22.8 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	13.1 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	65.0 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	60.6 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	85.2 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	72.8 %			30.7-106							

Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3535A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
123-91-1	1,4-Dioxane	0.384		ug/L	0.300	1	EPA 8270D SIM	10/10/2023 09:43	10/11/2023 15:48	KH
							Certifications: NJDEP-	CT005,NELAC-NY1085	4	
	Surrogate Recoveries	Result		Accepta	ance Range					
17647-74-4	Surrogate: 1,4-Dioxane-d8	57.2 %		36	5.6-118					

PFAS, NYSDEC Target List

Log-in Notes:

Sample Notes:

Sample Prepared	by Method:	SPE Ext-PFAS-	EPA 537.1M

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
375-73-5	* Perfluorobutanesulfonic acid (PFBS)	2.31		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
307-24-4	* Perfluorohexanoic acid (PFHxA)	1.39		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
375-85-9	* Perfluoroheptanoic acid (PFHpA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
355-46-4	* Perfluorohexanesulfonic acid (PFHxS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
335-67-1	* Perfluorooctanoic acid (PFOA)	1.48		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 61 of 81

Client Sample ID: MW-38

York Sample ID:

23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water Collection Date/Time
October 5, 2023 8:30 am

Date Received 10/05/2023

PFAS, NYSDEC Target List

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

Log-in Notes:	Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1763-23-1	* Perfluorooctanesulfonic acid (PFOS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
375-95-1	* Perfluorononanoic acid (PFNA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
335-76-2	* Perfluorodecanoic acid (PFDA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
2058-94-8	* Perfluoroundecanoic acid (PFUnA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
307-55-1	* Perfluorododecanoic acid (PFDoA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
72629-94-8	* Perfluorotridecanoic acid (PFTrDA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
376-06-7	* Perfluorotetradecanoic acid (PFTA)	ND	PF-CC V-L	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
2355-31-9	* N-MeFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
2991-50-6	* N-EtFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
2706-90-3	* Perfluoropentanoic acid (PFPeA)	6.49	PF-CC V-H	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
754-91-6	* Perfluoro-1-octanesulfonamide (FOSA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
375-92-8	* Perfluoro-1-heptanesulfonic acid (PFHpS)	ND		ng/L	4.63	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
335-77-3	* Perfluoro-1-decanesulfonic acid (PFDS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
27619-97-2	* 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND	PF-CC V-L	ng/L	2.31	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
39108-34-4	* 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
375-22-4	* Perfluoro-n-butanoic acid (PFBA)	16.4	PF-CC V-H	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:24	DRP
	Surrogate Recoveries	Result		Acceptance R	lange					
	Surrogate: M3PFBS	112 %		25-150						
	Surrogate: M5PFHxA	101 %		25-150						
	Surrogate: M4PFHpA	95.3 %		25-150						
	Surrogate: M3PFHxS	111 %		25-150						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 62 of 81

Client Sample ID: MW-38

York Sample ID:

23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

PFAS, NYSDEC Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

CAS No.	Parameter	Result	Flag	Units		Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
-	ate: Perfluoro-n- octanoic acid (M8PFOA)	103 %			25-150						
Surroga	ate: M6PFDA	96.6 %			25-150						
Surrogo	ate: M7PFUdA	71.4 %			25-150						
U	ate: Perfluoro-n- C2]dodecanoic acid OoA)	49.6 %			25-150						
Surroga	ate: M2PFTeDA	26.1 %			10-150						
_	ate: Perfluoro-n- butanoic acid (MPFBA)	101 %			25-150						
0	ate: Perfluoro-1- octanesulfonic acid (M8PFOS)	88.1 %			25-150						
_	ate: Perfluoro-n- pentanoic acid (M5PFPeA)	102 %			25-150						
_	ate: Perfluoro-1- octanesulfonamide (M8FOSA)	1.20 %	PFSu-L	,	10-150						
Surroge	ate: d3-N-MeFOSAA	65.0 %			25-150						
Surroge	ate: d5-N-EtFOSAA	59.0 %			25-150						
Surroge	ate: M2-6:2 FTS	123 %			25-200						
Surroge	ate: M2-8:2 FTS	109 %			25-200						
Surroge	ate: M9PFNA	101 %			25-150						

Metals, Target Analyte, ICP

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

CAS N	No. Para	neter Result	Flag Units	Reported to LOQ Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	0.225	mg/L	0.0556 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
					Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-39-3	Barium	0.0977	mg/L	0.0278 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
					Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
440-70-2	Calcium	124	mg/L	0.0556 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
					Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
7440-47-3	Chromium	ND	mg/L	0.00556 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
					Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	ADEP-68-04
7440-48-4	Cobalt	ND	mg/L	0.00444 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
	Cooun	1.12	Ş		Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	ADEP-68-04
7440-50-8		ND	/1	0.0222 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
/440-30-8	Copper	ND	mg/L	0.0222 1	Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
439-89-6	Iron	0.461	mg/L	0.278 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
					Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,	PADEP-68-0
7439-92-1	Lead	ND	mg/L	0.00556 1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:30	CEG
						CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	ADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 63 of 81

Client Sample ID: MW-38

York Sample ID:

23J0410-05

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Metals, Target Analyte, ICP

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3015A

CAS N	No. Param	eter Result	Flag Units	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
7439-95-4	Magnesium	33.3	mg/L	0.0556	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
						Certifications:	CTDOH-PH-0723,NELAC-NY	10854,NJDEP-CT005,	PADEP-68-04
7439-96-5	Manganese	5.48	mg/L	0.00556	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
						Certifications:	CTDOH-PH-0723,NELAC-NY	10854,NJDEP-CT005,	PADEP-68-04
7440-02-0	Nickel	ND	mg/L	0.0111	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
						Certifications: C	TTDOH-PH-0723,NELAC-NY1	0854,NJDEP-CT005,F	ADEP-68-044
7440-09-7	Potassium	14.4	mg/L	0.0556	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
						Certifications:	CTDOH-PH-0723,NELAC-NY	10854,NJDEP-CT005,	PADEP-68-04
7440-22-4	Silver	ND	mg/L	0.00556	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
			· ·			Certifications: C	TDOH-PH-0723,NELAC-NY1	0854,NJDEP-CT005,F	PADEP-68-044
7440-23-5	Sodium	66.4	mg/L	0.556	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
		00.4	9	0.000	•		CTDOH-PH-0723,NELAC-NY	10854,NJDEP-CT005,	
7440-62-2	Vanadium	ND	mg/L	0.0111	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
	, and and	1.2	9			Certifications:	TDOH-PH-0723,NELAC-NY1	0854,NJDEP-CT005,F	PADEP-68-044
7440-66-6	Zinc	ND	a/I	0.0278	1	EPA 6010D	10/12/2023 08:54	10/13/2023 13:30	CEG
/ 11 U-00-0	Zinc	ND	mg/L	0.0278	1		TDOH-PH-0723,NELAC-NY1		

Metals, Target Analyte, ICPMS

Sample Prepared by Method: EPA 3015A

Sample Notes:

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony		ND	M-CCV 1	mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:52 854,NJDEP-CT005,P	cw ADEP-68-044
7440-38-2	Arsenic		0.00260		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PI	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 13:52 0854,NJDEP-CT005,F	cw PADEP-68-04
7440-41-7	Beryllium		ND		mg/L	0.000333	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:52 854,NJDEP-CT005,P	cw ADEP-68-044
7440-43-9	Cadmium		ND	M-CCV	mg/L	0.000556	1	EPA 6020B Certifications:	СТДОН-РН	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:52 854,NJDEP-CT005,Pa	cw ADEP-68-044
7782-49-2	Selenium		ND		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PH	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:52 854,NJDEP-CT005,P	cw ADEP-68-044
7440-28-0	Thallium		ND		mg/L	0.00111	1	EPA 6020B Certifications:	СТДОН-РЕ	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 13:52 854,NJDEP-CT005,P	cw ADEP-68-044

Mercury by 7470/7471

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-7470A

					Reported to	Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units		ethod Prepared	Analyzed	Analyst
						*		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 64 of 81

Client Sample ID: MW-38

York Sample ID:

23J0410-05

York Project (SDG) No. 23J0410

Mercury by 7470/7471

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-7470A

CAS No		Parameter	Result	Flag	Units	ported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.0002	1	EPA 7470 Certifications:	СТДОН-РН	10/10/2023 08:32 -0723,NELAC-NY108	10/10/2023 08:32 854,NJDEP-CT005,PA	PFA ADEP-68-044

Sample Information

Client Sample ID: MW-43

York Sample ID:

23J0410-06

York Project (SDG) No. 23J0410

Client Project ID

Matrix Crown d Wat Collection Date/Time

Date Received

75 Dupont Street

Ground Water

October 5, 2023 8:30 am

10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-C
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 16:51 2058,NJDEP-CT005	SMA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 16:51 2058,NJDEP-CT005,F	SMA PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 16:51 2058,NJDEP-CT005,F	SMA PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 16:51	SMA

Client Sample ID: MW-43 **York Sample ID:**

23J0410-06

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

sample Prepare	d by Method: EPA 5030B				Pane-ta-14					Date/Time	Date/Time	
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
06-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
42-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-04
06-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
94-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-04
8-93-3	2-Butanone	0.82		ug/L	0.20	0.50	1	EPA 8260C		10/12/2023 09:00	10/12/2023 16:51	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY	10854,NELAC-NY120)58,NJDEP-C
5-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
91-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
06-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PF	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
08-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
7-64-1	Acetone	2.2	QL-02	ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY1	10/12/2023 16:51 10854,NELAC-NY120	SMA 058,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00		SMA

Client Sample ID: MW-43

York Sample ID:

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

23J0410-06

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

					Reported to					Date/Time	Date/Time	
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
08-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-0
4-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-0-
5-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
5-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
4-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
5-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
6-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РН	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
08-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РН	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
5-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
7-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
4-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
56-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
24-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
4-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-0
5-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY12		SMA PADEP-68-0-
00-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY120	SMA 58,NJDEP-C
7-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	10/12/2023 09:00 Y10854,NELAC-NY12	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-0-
8-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 16:51	SMA 58,NJDEP-C

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 67 of 81

Client Sample ID: MW-43

York Sample ID: 23J0410-06

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	10/12/2023 09:00 Y10854,NELAC-NY1	10/12/2023 16:51 2058,NJDEP-CT005,	SMA PADEP-68-04
104-51-8	n-Butylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 16:51	SMA
622-96-8	* p-Ethyltoluene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:		10/12/2023 09:00	10/12/2023 16:51	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 0854,NELAC-NY120	SMA 58,NJDEP-CT

Client Sample ID: MW-43

York Sample ID: 23J0410-06

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PI	10/12/2023 09:00 H-0723,NELAC-NY10	10/12/2023 16:51 854,NELAC-NY1205	SMA 8,NJDEP-CT
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.3 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.0 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	102 %			79-122							

Semi-Volatiles, 8270 - Comprehensive - LL

Sample Prepared by Method: EPA 3510C

og-in Notes: Sa	ample Notes:
-----------------	--------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2-52-4	1,1-Biphenyl	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 14:57 ,PADEP-68-04440	КН
5-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 14:57 ,PADEP-68-04440	КН
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,F	KH ADEP-68-04
5-50-1	1,2-Dichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,PADEP-68-044	10/12/2023 14:57 140	КН
22-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 14:57 ,PADEP-68-04440	КН
11-73-1	1,3-Dichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,PADEP-68-044	10/12/2023 14:57 140	КН
06-46-7	1,4-Dichlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,PADEP-68-044	10/12/2023 14:57 140	КН
3-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT005	10/12/2023 14:57 ,PADEP-68-04440	КН
5-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,F	KH ADEP-68-04
3-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,F	KH ADEP-68-04
20-83-2	2,4-Dichlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,F	KH ADEP-68-04
)5-67-9	2,4-Dimethylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,F	KH ADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 69 of 81

Client Sample ID: MW-43 **York Sample ID:** 23J0410-06

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C	

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
51-28-5	2,4-Dinitrophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
91-58-7	2-Chloronaphthalene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
95-57-8	2-Chlorophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
91-57-6	2-Methylnaphthalene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
95-48-7	2-Methylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
88-74-4	2-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
88-75-5	2-Nitrophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
99-09-2	3-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
106-47-8	4-Chloroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
100-01-6	4-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044
100-02-7	4-Nitrophenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	СТДОН-РН	10/11/2023 08:34 -0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH ADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 70 of 81

Client Sample ID: MW-43

York Sample ID: 23J0410-06

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepa	ared by Method: EPA 3510C											
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH PADEP-68-044
208-96-8	Acenaphthylene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH PADEP-68-044
98-86-2	Acetophenone	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 14:57 5,PADEP-68-04440	КН
62-53-3	Aniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 14:57 5,PADEP-68-04440	KH
120-12-7	Anthracene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,F	KH PADEP-68-044
1912-24-9	Atrazine	ND		ug/L	0.588	0.588	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 22:35 5,PADEP-68-04440	KH
100-52-7	Benzaldehyde	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 14:57 5,PADEP-68-04440	КН
92-87-5	Benzidine	ND		ug/L	11.8	23.5	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH PADEP-68-044
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,E	KH PADEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,F	KH PADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,E	KH PADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,F	KH PADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,F	KH PADEP-68-044
65-85-0	Benzoic acid	ND		ug/L	29.4	58.8	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 14:57 5,PADEP-68-04440	KH
100-51-6	Benzyl alcohol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 14:57 5,PADEP-68-04440	КН
85-68-7	Benzyl butyl phthalate	ND	CCVE	ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10		KH PADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH PADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH PADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,F	KH PADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 71 of 81

Client Sample ID: MW-43

York Sample ID: 23J0410-06

York Project (SDG) No. 23J0410 Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	875	В	ug/L	14.7	14.7	25	EPA 8270D		10/11/2023 08:34	10/12/2023 23:54	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP-CT005,l	PADEP-68-04
105-60-2	Caprolactam	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 14:57 5,PADEP-68-04440	KH
86-74-8	Carbazole	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,P	KH PADEP-68-044
218-01-9	Chrysene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 854,NJDEP-CT005,P	KH PADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 854,NJDEP-CT005,P	KH PADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,P	KH PADEP-68-044
84-66-2	Diethyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,P	KH PADEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 9854,NJDEP-CT005,P	KH PADEP-68-044
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,P	KH PADEP-68-044
117-84-0	Di-n-octyl phthalate	26.6	CCVE	ug/L	2.94	5.88	1	EPA 8270D		10/11/2023 08:34	10/12/2023 14:57	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP-CT005,l	PADEP-68-04
206-44-0	Fluoranthene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 9854,NJDEP-CT005,P	KH PADEP-68-044
86-73-7	Fluorene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	NELAC-NY	10/11/2023 08:34 Y10854,NJDEP-CT00	10/12/2023 22:35 5,PADEP-68-04440	КН
118-74-1	Hexachlorobenzene	ND	CCVE	ug/L	0.0235	0.0235	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,P	KH PADEP-68-044
87-68-3	Hexachlorobutadiene	ND		ug/L	0.588	0.588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 9854,NJDEP-CT005,P	KH PADEP-68-044
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,P	KH PADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.588	0.588	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 854,NJDEP-CT005,P	KH PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 854,NJDEP-CT005,P	KH PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 854,NJDEP-CT005,P	KH PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PH	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 854,NJDEP-CT005,P	KH PADEP-68-044

Client Sample ID: MW-43 **York Sample ID:**

23J0410-06

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

Semi-Volatiles, 8270 - Comprehensive - LL

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-95-3	Nitrobenzene	ND		ug/L	0.294	0.294	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,P	KH ADEP-68-04
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.588	0.588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,P	KH PADEP-68-04
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,P	KH PADEP-68-04
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,P	KH PADEP-68-04
87-86-5	Pentachlorophenol	ND		ug/L	0.294	0.294	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,P	KH PADEP-68-04
85-01-8	Phenanthrene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,P	KH ADEP-68-04
108-95-2	Phenol	ND		ug/L	1.47	1.47	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,P	KH PADEP-68-04
129-00-0	Pyrene	ND		ug/L	0.0588	0.0588	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 22:35 0854,NJDEP-CT005,P	KH PADEP-68-04
110-86-1	Pyridine	ND	ICVE	ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH-PI	10/11/2023 08:34 H-0723,NELAC-NY10	10/12/2023 14:57 0854,NJDEP-CT005,P	KH PADEP-68-04
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	19.5 %	S-08		19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	12.6 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	52.4 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	47.1 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	68.0 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	61.7 %			30.7-106							

Semi-Volatiles, 1,4-Dioxane 8270 SIM-Aqueous

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3535A

CAS No	o. Parameter	Result	Flag	Units	Reported t LOQ	o Dilution	Reference Meth	Date/Time ood Prepared	Date/Time Analyzed	Analyst
123-91-1	1,4-Dioxane	0.336		ug/L	0.300	1	EPA 8270D SIM	10/10/2023 09:43	10/11/2023 17:15	KH
							Certifications: NJDI	EP-CT005,NELAC-NY1085	4	
	Surrogate Recoveries	Result		Accepta	nce Range					
17647-74-4	Surrogate: 1,4-Dioxane-d8	63.7 %		36	.6-118					

PFAS, NYSDEC Target List

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 73 of 81

Client Sample ID: MW-43 **York Sample ID:**

23J0410-06

York Project (SDG) No. 23J0410

Client Project ID 75 Dupont Street

Matrix Ground Water

Collection Date/Time October 5, 2023 8:30 am Date Received 10/05/2023

nple Prepared by Method: SPE Ext-PFAS-EPA 537.1M

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
375-73-5	* Perfluorobutanesulfonic acid (PFBS)	2.49		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
307-24-4	* Perfluorohexanoic acid (PFHxA)	1.34		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
375-85-9	* Perfluoroheptanoic acid (PFHpA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
355-46-4	* Perfluorohexanesulfonic acid (PFHxS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
335-67-1	* Perfluorooctanoic acid (PFOA)	0.980		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
1763-23-1	* Perfluorooctanesulfonic acid (PFOS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
375-95-1	* Perfluorononanoic acid (PFNA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
335-76-2	* Perfluorodecanoic acid (PFDA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
2058-94-8	* Perfluoroundecanoic acid (PFUnA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
307-55-1	* Perfluorododecanoic acid (PFDoA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
72629-94-8	* Perfluorotridecanoic acid (PFTrDA)	2.06		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
376-06-7	* Perfluorotetradecanoic acid (PFTA)	ND	PF-CC V-L	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
2355-31-9	* N-MeFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
2991-50-6	* N-EtFOSAA	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
2706-90-3	* Perfluoropentanoic acid (PFPeA)	6.40	PF-CC V-H	ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
754-91-6	* Perfluoro-1-octanesulfonamide (FOSA)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
375-92-8	* Perfluoro-1-heptanesulfonic acid (PFHpS)	ND		ng/L	4.63	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
335-77-3	* Perfluoro-1-decanesulfonic acid (PFDS)	ND		ng/L	0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
27619-97-2	* 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND	PF-CC V-L	ng/L	2.31	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP

Client Sample ID: MW-43

York Sample ID:

23J0410-06

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

PFAS, NYSDEC Target List

Sample Prepared by Method: SPE Ext-PFAS-EPA 537.1M

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units		Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
39108-34-4	* 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND		ng/L		0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
375-22-4	* Perfluoro-n-butanoic acid (PFBA)	18.6	PF-CC V-H	ng/L		0.926	1	EPA 537m Certifications:	10/09/2023 14:46	10/12/2023 00:37	DRP
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
	Surrogate: M3PFBS	100 %			25-150						
	Surrogate: M5PFHxA	92.8 %			25-150						
	Surrogate: M4PFHpA	93.9 %			25-150						
	Surrogate: M3PFHxS	108 %			25-150						
	Surrogate: Perfluoro-n- [13C8]octanoic acid (M8PFOA)	92.9 %			25-150						
	Surrogate: M6PFDA	83.2 %			25-150						
	Surrogate: M7PFUdA	52.5 %			25-150						
	Surrogate: Perfluoro-n- [1,2-13C2]dodecanoic acid (MPFDoA)	27.3 %			25-150						
	Surrogate: M2PFTeDA	10.9 %			10-150						
	Surrogate: Perfluoro-n- [13C4]butanoic acid (MPFBA)	92.0 %			25-150						
	Surrogate: Perfluoro-1- [13C8]octanesulfonic acid (M8PFOS)	91.9 %			25-150						
	Surrogate: Perfluoro-n- [13C5]pentanoic acid (M5PFPeA)	93.0 %			25-150						
	Surrogate: Perfluoro-1- [13C8]octanesulfonamide (M8FOSA)	0.0218 %	PFSu-L		10-150						
	Surrogate: d3-N-MeFOSAA	62.9 %			25-150						
	Surrogate: d5-N-EtFOSAA	48.8 %			25-150						
	Surrogate: M2-6:2 FTS	129 %			25-200						
	Surrogate: M2-8:2 FTS	92.3 %			25-200						
	Surrogate: M9PFNA	92.3 %			25-150						

Metals, Target Analyte, ICP

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum		0.101	mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:33	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,F	PADEP-68-04
7440-39-3	Barium		0.0971	mg/L	0.0278	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:33	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,F	PADEP-68-04
7440-70-2	Calcium		123	mg/L	0.0556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:33	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,F	PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 75 of 81

Client Sample ID: MW-43

York Sample ID:

23J0410-06

York Project (SDG) No. 23J0410

Client Project ID
75 Dupont Street

Matrix Ground Water <u>Collection Date/Time</u> October 5, 2023 8:30 am Date Received 10/05/2023

Metals, Target Analyte, ICP

Sample Prepared by Method: EPA 3015A

Sample Notes:

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-47-3	Chromium		ND		mg/L	0.00556	1	EPA 6010D Certifications:	CTDOH-PI	10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33 854,NJDEP-CT005,P	CEG PADEP-68-044
7440-48-4	Cobalt		ND		mg/L	0.00444	1	EPA 6010D Certifications:	CTDOH-PI	10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33 854,NJDEP-CT005,P	CEG PADEP-68-044
7440-50-8	Copper		ND		mg/L	0.0222	1	EPA 6010D Certifications:	CTDOH-PI	10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33 854,NJDEP-CT005,P	CEG PADEP-68-044
7439-89-6	Iron		ND		mg/L	0.278	1	EPA 6010D Certifications:	CTDOH-PI	10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33 854,NJDEP-CT005,P	CEG PADEP-68-044
7439-92-1	Lead		ND		mg/L	0.00556	1	EPA 6010D Certifications:	CTDOH-PI	10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33 854,NJDEP-CT005,P	CEG PADEP-68-044
7439-95-4	Magnesium		33.0		mg/L	0.0556	1	EPA 6010D Certifications:	CTDOH P	10/12/2023 08:54 PH-0723,NELAC-NY10	10/13/2023 13:33	CEG
7439-96-5	Manganese		5.55		mg/L	0.00556	1	EPA 6010D		10/12/2023 08:54	10/13/2023 13:33	CEG
7440-02-0	Nickel		ND		mg/L	0.0111	1	Certifications: EPA 6010D Certifications:		PH-0723,NELAC-NY10 10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33	CEG
7440-09-7	Potassium		14.7		mg/L	0.0556	1	EPA 6010D Certifications:	CTDOH-P	10/12/2023 08:54 PH-0723,NELAC-NY10	10/13/2023 13:33	CEG
7440-22-4	Silver		ND		mg/L	0.00556	1	EPA 6010D Certifications:		10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33	CEG
7440-23-5	Sodium		67.6		mg/L	0.556	1	EPA 6010D Certifications:	CTDOH B	10/12/2023 08:54 PH-0723,NELAC-NY10	10/13/2023 13:33	CEG
7440-62-2	Vanadium		ND		mg/L	0.0111	1	EPA 6010D Certifications:		10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33	CEG
7440-66-6	Zinc		ND		mg/L	0.0278	1	EPA 6010D Certifications:	CTDOH-PI	10/12/2023 08:54 H-0723,NELAC-NY10	10/13/2023 13:33 854,NJDEP-CT005,P	CEG PADEP-68-044

Metals, Target Analyte, ICPMS

Sample Prepared by Method: EPA 3015A

Log-in Notes:	Sample Notes:
---------------	---------------

CAS N	Vo.	Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony		ND	M-CCV 1	mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-PI	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 14:03 854,NJDEP-CT005,P	cw ADEP-68-044
7440-38-2	Arsenic		0.00257		mg/L	0.00111	1	EPA 6020B Certifications:	CTDOH-P	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 14:03 0854,NJDEP-CT005,F	cw PADEP-68-04
7440-41-7	Beryllium		ND	M-CCV 1	mg/L	0.00033	3 1	EPA 6020B Certifications:	CTDOH-PI	10/11/2023 09:05 H-0723,NELAC-NY10	10/12/2023 14:03 854,NJDEP-CT005,P	cw ADEP-68-044
7440-43-9	Cadmium		ND	M-CCV 1	mg/L	0.00055	5 1	EPA 6020B Certifications:	CTDOH-PF	10/11/2023 09:05 I-0723,NELAC-NY10	10/12/2023 14:03 854,NJDEP-CT005,P	cw ADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 76 of 81

Client Sample ID: MW-43 York Sample ID:

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23J041075 Dupont StreetGround WaterOctober 5, 2023 8:30 am10/05/2023

Metals, Target Analyte, ICPMS

Sample Prepared by Method: EPA 3015A

	Notes:

Sample Notes:

23J0410-06

CAS No.		Parameter	Result	Flag	Units	Reported to LOQ	Reported to LOQ Dilution Reference M			Date/Time Prepared	Date/Time Analyzed	Analyst
7782-49-2	Selenium		0.00187	M-CCV	mg/L	0.00111	1	EPA 6020B		10/11/2023 09:05	10/12/2023 14:03	cw
				1				Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP-CT005,F	ADEP-68-04
7440-28-0	Thallium		ND		mg/L	0.00111	1	EPA 6020B	СТРОН РИ	10/11/2023 09:05	10/12/2023 14:03	cw

Mercury by 7470/7471 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA SW846-7470A

CAS N	0.	Parameter	Result	Flag	Units	Reported LOQ	Dilutio	n Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.0002	1	EPA 7470	CTDOH PH	10/10/2023 08:32	10/10/2023 08:32	PFA

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@ Page 77 of 81

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
23J0410-01	MW-12	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J0410-02	MW-14	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J0410-03	MW-29	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J0410-04	MW-30	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J0410-05	MW-38	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J0410-06	MW-43	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

S-08	The recovery of this surrogate was outside of QC limits.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
PFSu-L	The isotopically labeled surrogate recovered below lab control limits due to a matrix effect. Isotope Dilution was applied.
PF-CCV-L	The CCV recovery was slightly below acceptable limits for the qualified compound. However, sample results are not biased low because results are corrected for isotope recovery.
PF-CCV-H	The CCV recovery was slightly above acceptable limits for the qualified compound. However, sample results are not biased high because results are corrected for isotope recovery.
M-CCV1	The recovery for this element in the Continuing Calibration Verification (CCV) exceeded 110% of the expected value. Positive detections may be biased high.
M-BS	The recovery for this element in the batch blank spike recovered slightly outside of control limits
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
ICVE	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
CAL-E	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is
	based upon current NELAC/TNI Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably
	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA
MDL	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and
MDL Reported to	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
MDL Reported to	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only. Not reported

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 79 of 81

High Bias

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

120 Research Drive 132-02 89th Ave Stratford, CT 06615 Queens, NY 11418 York Analytical Laboratories, Inc.

clientservices@yorklab.com

Field Chain-of-Custody Record

This document serves as your written authorization for YORK to proceed with the analyses requested below. NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. Your signature binds you to YORK's Standard Terms & Conditions

23,20410 YORK Project No.

o

Page

Compared to the following Container Descriptior **Turn-Around Time** YORK Reg. Comp. (2) 40ml Trip Blanks Regulation(s): (please fill in) (6)500ml Amber UP (2) PFAS Trip Blanks Temp. Received at Lab (6)250 ml p w/HNO3 Special Instruction Standard (5-7 Day) (12)1L Ambers UP (18)40ml w/HCL RUSH - Three Day RUSH - Four Day RUSH - Next Day RUSH - Two Day Field Filtered Lab to Filter (6) PFAS Kit 2010 Date/Time NJDEP SRP HazSite ZnAc Standard Excel EDD EQuIS (Standard) NYSDEC EQUIS NYSDEC Special Groundwater Parameters YOUR Project Number **YOUR Project Name** Report / EDD Type (circle selections) NaOH 75 Dupont Street Preservation: (check all that apply) 75 Dupont Street Other: eived by / Company Analysis Requested CT RCP DQA/DUE H2SO4 NJDEP Reduced Deliverables YOUR PO#: NJDKQP CT RCP E N H N O H Other: NY ASP A Package NY ASP B Package Summary Report Ascorbic Acid MeOH Company: Cichetti Engineering Invoice To: 덛 Date/Time Sampled Samples From 8:30AM Pennsylvania Connecticut New Jersey **New York** 10/05/23 Other 3. Samples Relinquished by / Company Address: Contact: Phone.: E-mail: DW - drinking water GW - groundwater Sample Matrix **Matrix Codes** WW - wastewater Other S - soil / solid E-mail: Matt@cichettiengineering.com Company: Cichetti Engineering 10-0 ĕ Report To: Germantown, NY 12526 Phone: 845-598-5018 Contact: Matt Cichetti Samples will not be logged in and the turn-around-time clock will not Address: P.O. Box 195 Date/Time d/05 Please print clearly and legibly. All information must be complete. ame above and sign below) www.yorklab.com 10/5/2023 Sample Identification egin until any questions by YORK are resolved. -mail: permits@cichettiengineering.com YOUR Information ompany: Cichetti Engineering Samples Collected by: Germantown, NY 12526 Sontact: R. Lemar Young Cichetti Engineering R. Lemar Young, ddress: P.O. Box 195 Samples Received by / Cor none.: 803-624-8118 MW-12 MW-14 MW-29 MW-30 MW-38 MW-43 Comments:

19:50 Date/Time

Samples Received ignate by

Date/Time

. Samples Received by / Company

Date/Time

Samples Relinquished by / Company