SIVE, PAGET & RIESEL P.C.

Michael Bogin

Direct Dial: (646) 378-7210 mbogin@sprlaw.com

August 29, 2017

VIA ELECTRONIC MAIL

(alali.tamuno@dec.ny.gov)
Alali Tamuno
Office of General Counsel
100 Hillside Avenue, Suite 1W
White Plains, NY 10603

Re: Site Investigation Report for I.D.A. Cleaners

Dear Ms. Tamuno:

Please see attached a Site Investigation Report in connection with subsurface investigation performed at I.D.A. Cleaners, 579 Kings Highway, Brooklyn, NY (the "Site"). As you will see, the report concludes that the Site is not the source of tetrachloroethene at the gas station at 587 Kings Highway. However, the report recommends that I.D.A. install a passive sub-slab depressurization system in the basement slab beneath the building, to guard against any potential vapor intrusion into the building.

Please call us with any questions. Thank you for your assistance in this matter.

1

MC Environmental, LLC

Environmental Services and Consulting 26 Railroad Avenue, No.182, Babylon, New York 11702-2216 631-321-4500 Fax 631-321-0190

August 29, 2017

Salvatore Foresta IDA Cleaners 579 Kings Highway Brooklyn, New York

RE: Site Investigation Report

Dear Mr. Foresta,

MC Environmental, LLC (MCE) prepared the attached report on the soil and groundwater conditions beneath the site known as IDA Cleaners. The New York State Department of Environmental Conservation (NYSDEC) identified the site in a letter dated October 24, 2016 as a suspected source of tetrachloroethene in groundwater and soil vapor samples that were collected during a petroleum spill investigation at a nearby site 587 Kings Highway. Tetrachloroethene is a common cleaning solvent used in dry cleaning, but it is also commonly used in automobile maintenance shops for solvent-based parts cleaning. Based on our investigation, we have determined that there are slightly elevated concentrations of soil vapor PCE and other VOCs, but not at levels requiring active remediation. We recommend passive soil vapor mitigation such as installing a sub-slab depressurization system (SSDS) in the basement slab beneath the building.

In response to the Department's concerns, we prepared a workplan for drilling monitoring wells, soil vapor sampling probes and collecting soil, groundwater and soil vapor samples for laboratory analysis. The field work was completed during June and July 2017, and all laboratory results have been received and reviewed. We also surveyed the locations and elevations of the monitoring wells and prepared a site plan showing well and soil vapor sampling locations.

Based on the investigation results in the report which follows this letter, MCE does not believe that 579 Kings Highway is a likely source of PCE found in groundwater beneath in nearby wells drilled for the 587 Kings Highway spill investigations. Briefly, we base this opinion on the lack of high PCE concentrations above unrestricted use standards in the soil at the Site, the relatively low concentrations in groundwater at the site, and the distribution of PCE which was highest in groundwater samples collected near the street. It is likely that the gas station at 587 Kings Highway is actually the source of the PCE at the site, as historically gas stations have used PCE and TCE for degreasing. However, due to the elevated concentration of PCE and gasoline-related hydrocarbons in a soil vapor sampling point, we recommend that you install a SSDS at the site to minimize any concerns or potential impact to human health.

Sincerely,

Mull Juntanher

Michael J McEachern, CPG

Attachment

Site Investigation Report 579 Kings Highway Brooklyn, New York

1.0 Introduction

MC Environmental, LLC (MCE) was retained by IDA Cleaners of Brooklyn, New York to investigate the possible presence of soil and groundwater contamination beneath the property as alleged by the New York State Department of Environmental Conservation (NYSDEC) in a letter dated October 24, 2016. A petroleum spill investigation at 587 Kings Highway discovered tetrachloroethene, also called perchloroethylene (PCE) or "Perc" in soil vapor and groundwater samples and NYSDEC tentatively attributed this to a release of dry cleaning solvent at IDA Cleaners.

2.0 Previous Investigations

MCE reviewed references on groundwater quality, soil vapor testing and regional groundwater flow provided by the NYSDEC and published data available online. The references provided baseline information on groundwater conditions in the vicinity of 579 Kings Highway and means of evaluating the likelihood of a PCE source beneath IDA Cleaners. These references are discussed below.

• June 2004 Zytel, PC <u>Phase II Limited Subsurface Investigation Report/Corrective</u> Action Plan

This investigation was done for an owner or buyer in response to the spill #990118. The report refers to an earlier Phase I environmental site assessment (ESA) that was done for pre-purchase environmental due diligence and the removal of abandoned gasoline tanks and a waste oil tank in 1999 resulted in the spill report. The tanks reportedly date to 1972 but there is no mention of possible earlier tanks. One monitoring well installed by Zytel (M-1) contained gasoline-related compounds and PCE at 204 ppb, the highest concentration reported for groundwater data provided by NYSDEC. This well was within the property line of 587 Kings Hwy. and is apparently different from another well (MW-1) shown on 2014 maps by Envirotrac.

September 2008 Advanced Site Restoration, LLC <u>Quarterly Status Report 587 Kings Highway</u>, Brooklyn, New York NYSDEC SPILL # 99-01118
 This report by Advanced Site Restoration, LLC (ASR) was prepared for Ocean Parkway Development, LLC and covered routine groundwater and vapor extraction system monitoring. The following are direct citations form the report.

"The depth to groundwater was detected at a range of 18.59 ft to 19.20 ft from well casing. The current groundwater elevation data indicated that the groundwater flow direction is in a southeasterly direction. The location of all groundwater monitoring wells is shown on the Monitoring Well Location Map, Appendix-A Figure -2."

"The July, 2008 groundwater monitoring event indicated detection of LNAPL in one of the on-site monitoring wells. The level of dissolved total BTEX in MW-12 was decreased 48% since last quarter. There was no MTBE detected in any of the monitoring wells. Groundwater gradient was not provided, but is historically southwest. Information on well casing elevations provided by the prior consultant was inconsistent. Additionally, mw-10, mw-11, mw-12, and mw-13 were never surveyed."

The above casts doubt on the Department's assumption that 579 Kings Hwy. is upgradient of the monitoring well containing the 8.6 ppb of PCE. The ASR report does not mention any PCE being detected in the monitoring wells.

May 28, 2009 Advanced Site Restoration, <u>LLC Quarterly Status Report –2009 587 Kings Highway Brooklyn</u>, <u>New York NYSDEC Spill Number 99-01118</u> prepared for Continental Funding, Inc. as an update of the previous report by ASR commenting on the most recent monitoring results and remediation progress. The groundwater laboratory results still show fairly high concentration of benzene (>200 ppb) and total benzene, toluene, ethylbenzene and xylene (BTEX) (>5000ppb). No PCE was listed in the report tables or laboratory reports attached.

A groundwater flow map Figure 4 (see copy attached) shows groundwater flowing radially toward well MW-1 which is contrary to the regional USGS maps showing flow nearly due south. This was verified by Zytel (2004) and ASR (2008) and Figure 4 is almost certainly spurious. Figure 4 would seem to show that well MW-1 is a pumping well, since the water level is so much lower than the other wells. Insofar as MW-1 is known to be a non-pumping monitoring well, a "hole" in the aquifer as depicted would violate the laws of physics. A more rational explanation would be to attribute the MW-1 anomaly to a surveying error, a water level measuring error or both. It would appear that ASR's 2008 recommendation of re-surveying all wells was not followed.

May 12, 2016 Envirotrac – Copies of laboratory data and site maps showing groundwater and soil vapor concentrations of BTEX and PCE. This information is apparently part of a larger report that was not provided. The mapping show that BTEX in groundwater migrated offsite southwest along Kings Hwy, and across the street (MW-9). The highest PCE groundwater concentration was in well MW-13 (8.6ppb) located on the sidewalk roughly between #583 and #585 Kings Hwy. The highest soil vapor PCE concentrations were at SV-1 (700 µg/m³) and SV-3 (230 µg/m³). SV-1 is the farthest west of SV-1, SV-2 and SV-3 and no result was reported for SV-2. This distribution is meaningless because the soil vapor extraction system at #587 Kings Hwy. was operating and soil vapor VOC concentrations would tend to be diluted toward the east. The vapor extraction effluent is still capturing gasoline-related compounds and PCE and these compounds must therefore be present in the system radius of influence. This is further supported by the vapor sampling results of SS-2/BA-2 and SS-3/BA-3 which are beneath the footprint of #587 Kings Hwy. The 2016 results also recorded high concentrations of tert-butyl alcohol and ethanol in soil vapor and extracted vapor effluent from beneath the building and these are well known gasoline additives.

United States Geological Survey
Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy,
and Lloyd Aquifers of Long Island, New York, April–May 2013 By Michael D.
Como, Michael L. Noll, Jason S. Finkelstein, Jack Monti, Jr., and Ronald
Busciolano 2015

3.0 Site Investigation

On March 2, 2017, Michael J McEachern of MCE inspected the basement of 579 Kings Highway to observe conditions for drilling access and potential sources of soil and groundwater contamination. There were no dry cleaning operations, equipment or solvent storage in the basement and all dry cleaning is done on the first floor at street level based on information from the owner, Mr. Sal Foresta. Basement access is through a narrow wood staircase from the store or a steep concrete staircase to the sidewalk and it would be impossible to install dry cleaning equipment or to store solvent drums in the basement given the access limitations.

MCE selected three locations to drill monitoring wells and collect soil samples and two soil vapor sampling locations that would give a representative assessment of soil and groundwater conditions beneath the site. Drilling was delayed until June 29, 2017 while MCE, IDA's counsel and NYSDEC discussed the nature and scope of the investigation.

The firm E Phase 2, LLC of Huntington, New York was hired for drilling services using a portable GeoprobeTM drill rig made for limited access. Three wells MW-1, MW-2 and MW-3 were drilled in the basement as shown on Figure 1 and groundwater was observed at approximately 10.5 feet below the basement floor. The soil beneath the basement was composed of fill and fine to medium silty sand and well logs are included in Appendix A.

No solvent or other odors or staining were noted in the soil samples inspected while drilling each well and the samples were screened with a photoionization detector (PID) and readings are given on each boring log. Since no soil samples had PID reading above 2 ppm, a single soil sample was collected for laboratory analysis from 11 feet or just below the water table in each well boring.

Each monitoring well boring was completed with a 1-inch diameter PVC plastic casing and was 15 feet deep with 5 feet of well screen packed in commercial filter sand. Monitoring well construction details are given on each well log in Appendix A.

The Geoprobe[™] drill rig was also used to drill two soil vapor sampling probes through the basement floor at locations shown on Figure 1. Photographs of the drilling operations are included in Appendix B. The monitoring wells were surveyed and leveled on July 12, 2017 by JR Holzmacher, Consulting Engineers.

Water Level Measurements

Water levels were measured in each monitoring well before sampling began on July 12, 2017. All measurements were from the top of the PVC well casing.

	Depth to Water	Measuring Point elevation	Water Elevation
MW-1	10.65'	17.52'	6.87'
MW-2	10.58'	17.47'	6.89'
MW-3	10.69'	17.56'	6.87'

4.0 Laboratory Results

Phoenix Environmental Laboratories, Inc. analyzed the soil, groundwater and soil vapor samples from the site investigation. Results are summarized in the tables below and the complete analytical data packages with QA/QC logs are included in Appendix C.

Soil

All soil samples were collected from the monitoring well borings at 11 feet below the basement floor which is the approximate depth of the water table.

	100	αιτο (με	9 Kg PP0)	
Sample	PCE	TCE	cis 1,2 DCE	Other VOCs
MW-1	ND	ND	ND	ND
MW-1	11	ND	ND	ND
MW-3	19	ND	ND	ND

Results (ug/kg = pph)

Groundwater

On July 12, each monitoring well was pumped with a peristaltic pump using disposable tubing until approximately 3 gallons were removed and the flow rate was reduced for sampling with minimal sample agitation.

Results ($\mu g/L = ppb$)											
Sample	PCE	TCE	cis 1,2 DCE	Other VOCs							
MW-1	14	ND	ND	ND							
MW-2	100	1.1	6.2	ND							
MW-3	200	2.1	19	ND							

Soil Vapor

Soil vapor samples SV-1 and SV-2 contained a wide variety of VOCs including chlorinated solvents such as PCE and TCE plus petroleum-related hydrocarbons most commonly associated with gasoline and fuel additives such as methyl tert-butyl ether (MTBE) and ethanol. The highest PCE concentration (SV-2) is also associated with the highest concentrations of fuel-derived VOCs.

Results (ppbv)									
Sample	PCE	TCE	cis 1,2 DCE	Other VOCs					
SV-1	288	63.6	741	Ketones, petroleum hydrocarbons, alcohol fuel additives and non-dry cleaning solvents collectively totaling >570 ppbv					
SV-2	22.6	4.90	15.3	Ketones, ethanol, gasoline-related VOCs including benzene and toluene collectively totaling > 480 ppbv					

Note: the above concentrations are based on a 2 liter Suma Canister sample collected over a two hour period.

5.0 Conclusions and Recommendations

The site investigation at 579 Kings Highway / IDA Cleaners did not identify a source of dry cleaning solvent in soil or groundwater that would indicate a significant spill or leak of tetrachloroethene (PCE) in the basement or other parts of the property or would indicate that it may have been the source of the PCE at 587 Kings Highway, based on the following:

- No dry cleaning operations or cleaning solvent storage / handling were done in the basement of IDA Cleaners. All work involving such solvents is done on the ground floor (street level) approximately 7 feet above the basement. The access to the basement would have prevented past dry cleaning operations below the first floor.
- The highest PCE concentration measured in groundwater from monitoring well MW-2 was .2 parts per million, which is orders of magnitude lower than the unrestricted use Soil Cleanup Objective in 6 NYCRR Part 375. Releases of PCE to soil and groundwater at dry cleaning facilities typically result in significantly greater concentrations of PCE in the soil.

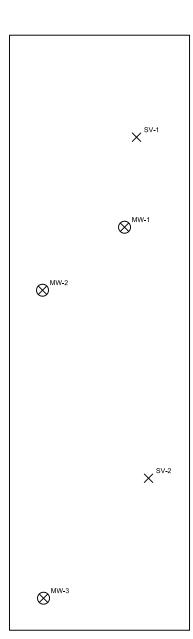
- The highest concentration of PCE in groundwater at the site was 200 ppb in well MW-2 which is farthest from the first-floor location of the IDA dry cleaning equipment and solvent storage. This well is closest to the street and the New York City combined sewer. Based on the above, MCE concluded that the source of the PCE in the monitoring wells is unknown.
- The highest PCE result in groundwater was at 587 Kings Highway (Zytel, 2004) where 204 ppb of PCE were found in well MW-1 which was considerably northeast of 579 Kings Highway and the PCE was found in conjunction with higher concentration of gasoline-related VOCs.
- The small size of the basement of 579 Kings Highway would make it easy to detect the effects of a PCE release to shallow groundwater using the three monitoring wells drilled in the basement. PID screening of soil samples from the monitoring well borings did not reveal concentration of ionize-able VOCs (such as PCE) that would indicate a nearby release.
- Groundwater elevation in the three monitoring wells were virtually identical with a maximum 0.02' difference between the highest (MW-2 and lowest (MW-1 and MW-3). Previous investigation by Zytel (2004) and USGS mapping (2013) indicate that groundwater flows south or south-southeast in the project area.
- Soil vapor monitoring revealed a variety of volatile organic compounds, including PCE and related compounds but the greatest number of compounds detected were related to fuels, particularly gasoline, such as petroleum hydrocarbons, alcohols and ketones. The source of all of the detected compounds cannot be determined based on the available data but there is New York State Spill Site No. 99-01118 at 587 Kings Highway, approximately 175 feet east of 579 Kings Highway.

Recommendations

- Based on data collected for this site investigation MCE does not recommend further testing or investigation of groundwater conditions at 579 Kings Highway. The source(s) of PCE and other volatile organic contaminants detected in the three monitoring wells drilled on June 29, 2017 cannot be determined but groundwater quality has been affected by an offsite source or sources not related to IDA Cleaners.
- The concentrations of PCE and other chlorinated VOCs are not high enough to warrant active remediation because the groundwater does not pose a threat to drinking water which is supplied by New York City water mains. Treating groundwater for PCE and related VOCs would not be practical because the local groundwater has been degraded by other contamination sources, such as Spill Site No. 99-01118. MCE does not recommend active remediation at 579 Kings Highway.

• MCE recommends the installation of a passive sub-slab soil depressurization system to mitigate the slightly elevated VOC concentrations in soil vapor at the site. Such systems have become a common requirement of the New York City Department of Environmental Protected (NYCDEP) for new construction even when a vapor issue is not readily apparent. This would also allay concerns that may arise during a potential sale of the property

Figures


Figure 1 Site Plan

Appendices

A Well Logs

B Photographs

C Laboratory Data Packages

PREPARED BY

J.R. HOLZMACHER P.E., LLC

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HWY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

Monitoring Well & Soil Vapor Location Plan

579 Kings Highway Brooklyn, New York

	DWN:	SCALE:	DATE:	PROJECT NO.:
	KO	1/8" = 1'-0"	2017-07-17	McEnv1701
ı	CHKD:	APPD:	REV.:	NOTES:
ı	AJS		-	-
	FIGURE NO.:			

Appendix A 579 Kings Highway Well Logs and Construction Diagrams

26 Railroad Avenue, No.182 Babylon, New York 11702

GEOLOGIC LOG

Well/Boring No.	MW-1	BORE HOLE DATA	
Location:	579 Kings Hwy., Brooklyn, NY	Hole Diameter (inches):	2" Auger / Rod I.D.: 1.5"
M.P. Elevation:	17.52 ft.	Total Depth:	<u>16'</u>
Project:	IDA Cleaners	SAMPLER	
Date:	6/29/2017	Type:	Macrocore Method: Direct Push
Page	<u>1</u> of <u>1</u>	Pounds:	
Logged By:	M.J. McEachern	Fall (inches):	
Company:	MC Environmental, LLC	REMARKS:	All measurements taken from concrete cellar floor
Drilling Started:	29-Jun Ended: 29-	Jun	el. 17.80 ft based on an assumed street level elevation
Driller:	E Phase 2, LLC Steve & Charlie		of 25.0 ft. (Google Earth)
Type of Rig:	Geoprobe (limited access)		

O d = = (DID (O) (A		(Core Sample	DI (OII	Strata Change	Depth	SAMPLE
Odor/PID/OVA	No.	Recovery%	Depth (ft.)	Blows/6"	General Description	(feet)	DESCRIPTION
						0.1	Concrete floor
Zero	1	80	0.1' - 2'		Fill	2'	Sand, brown with fill (concrete, brick frag.)
0.2	1		2'-4'		Sand	4'	Sand, brown, silty
0.1	2	100	4'-8'		Sand	8'	Sand, medium, brown, loose, dry
1.9	3	90	8'-12'		Sand	12'	Sand, medcoarse, brown , wet at 11'
1.1	4	90	12'-16'		Sand	16'	Sand, medcoarse, lt. brown , loose, wet
	1		ı		1		1

Remarks: Installed a 1" diameter PVC monitoring well with screen between 10' - 15'. Backfilled screen and casing with bagged commercial filter sand to approximately 6" below the concrete basement floor. Installed a cast-iron flush mounted well box.

26 Railroad Avenue, No.182 Babylon, New York 11702

GEOLOGIC LOG

Well/Boring No.	MW-2 BORE HO			
Location:	579 Kings Hwy., Brooklyn, NY	Hole Diameter (inches):	<u>2"</u>	Auger / Rod I.D.: 1.5"
M.P. Elevation:	17.47 ft.	Total Depth:	<u>16'</u>	
Project:	IDA Cleaners	SAMPLER		
Date:	6/29/2017	Type:	Macrocore	Method: Direct Push
Page	<u>1</u> of <u>1</u>	Pounds:		
Logged By:	M.J. McEachern	Fall (inches):		
Company:	MC Environmental, LLC	REMARKS:	All measuremen	ts taken from concrete cellar floor
Drilling Started:	29-Jun Ended: 29	9-Jun	el. 17.80 ft based	d on an assumed street level elevation
Driller:	E Phase 2, LLC Steve & Charlie		of 25.0 ft. (Goog	le Earth)
Type of Rig:	Geoprobe (limited access)			

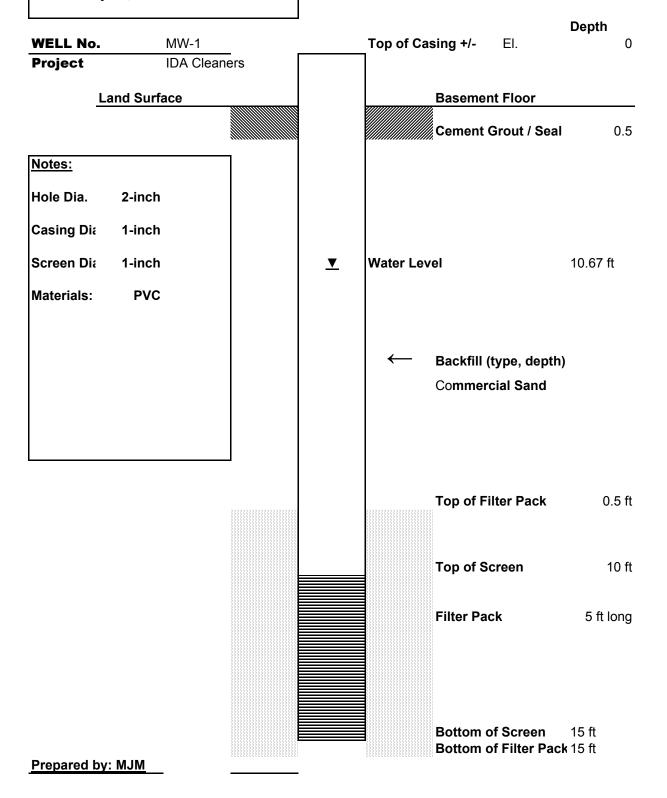
Odor/PID/OVA	No.	Recovery%	Depth (ft.)	Blows/6"	Strata Change General Description	Depth (feet)	SAMPLE DESCRIPTION
Zero	1	70	0'-4'		Fill and Sand	4'	Sand, fine-med. Brn silty, moist (brick frag at 4')
Zero	2	90	4'-8'		Sand	8'	Sand, med-coarse, lt. brn dry, loose
0.1	3	90	8'-12'		Sand	12'	Sand, medium, brown, moist, wet at 11'
0.1	4	80	12'-16'		Sand	16'	Sand, medium, brown, wet

Remarks: Installed a 1" diameter PVC monitoring well with screen between 10' - 15'. Backfilled screen and casing with bagged commercial filter sand to approximately 6" below the concrete basement floor. Installed a cast-iron flush mounted well box.

26 Railroad Avenue, No.182 Babylon, New York 11702

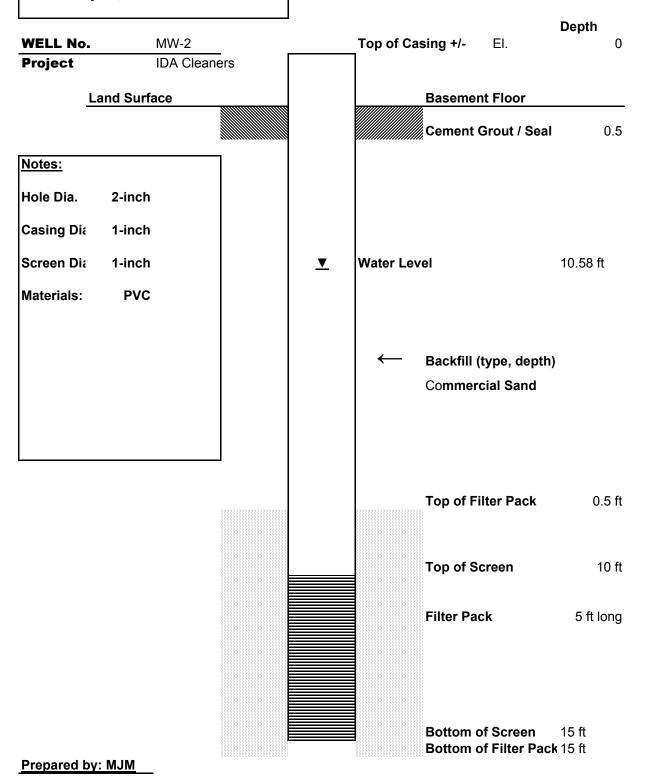
Remarks:

GEOLOGIC LOG

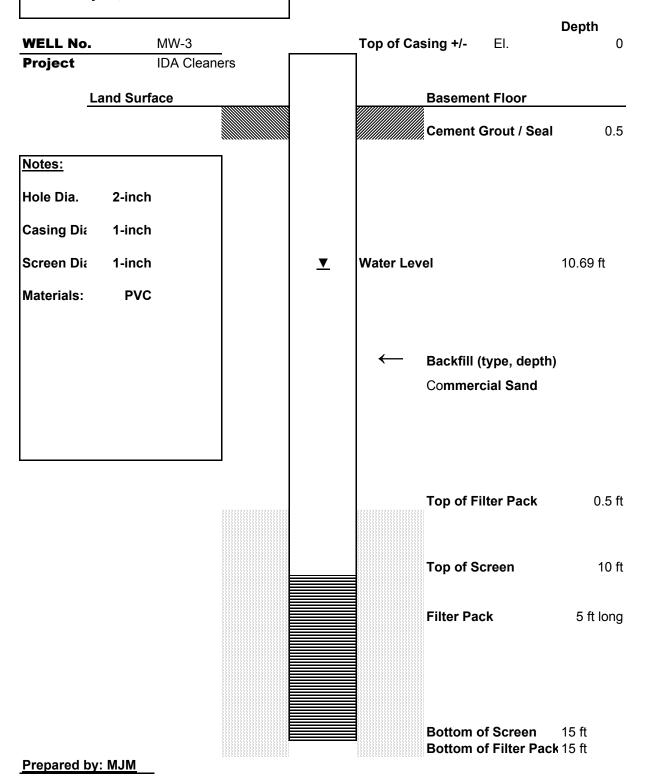

Well/Boring No.	ing No. MW-3		BORE HOLE DATA		
Location:	579 Kings Hwy., Brooklyn, NY	Hole Diameter (inches):	<u>2"</u>	Auger / Rod I.D.: 1.5"	
M.P. Elevation:	17.56 ft.		Total Depth:	<u>16'</u>	
Project:	IDA Cleaners	SAMPLER			
Date:	6/29/2017		Туре:	Macrocore	Method: Direct Push
Page	<u>1</u> of <u>1</u>		Pounds:		
Logged By:	M.J. McEachern		Fall (inches):		
Company:	MC Environmental, LLC		REMARKS:	All measuremen	nts taken from concrete cellar floor
Drilling Started:	29-Jun Ended:	29-Jun		el. 17.80 ft base	d on an assumed street level elevation
Driller:	E Phase 2, LLC Steve & Char	ie		of 25.0 ft. (Goog	gle Earth)
Type of Rig:	Geoprobe (limited access)				

0.4(DID (0) (A	NI-	(Core Sample	DI /0!!	Strata Change	Depth	SAMPLE
Odor/PID/OVA	No.	Recovery%	Depth (ft.)	Blows/6"	General Description	(feet)	DESCRIPTION
1.1	1	60	0'-4'		Sand	4'	Sand, fine, brown, dry
0.9	2	80	4'-8'		Sand	8'	Sand, fine-med, brown, dry, loose
1.6	3	90	8'-12'		Sand	12'	Sand, med-coarse, brown, wet at 11'
0.2	4	80	12'-16'		Sand	16'	Sand, med-coarse, brown, wet
		L	ll			l	<u> </u>

Installed a 1" diameter PVC monitoring well with screen between 10' - 15'. Backfilled screen and casing with bagged commercial filter sand to approximately 6" below the concrete basement floor. Installed a cast-iron flush mounted well box.


26 Railroad Avenue, No.182 Babylon, New York 11702

MONITORING WELL DIAGRAM


26 Railroad Avenue, No.182 Babylon, New York 11702

MONITORING WELL DIAGRAM

26 Railroad Avenue, No.182 Babylon, New York 11702

MONITORING WELL DIAGRAM

Appendix B 479 Kings Highway Photographs

Drilling SV-1 Near Boilers

Drilling Well MW-1 (north)

Drilling MW-1 Looking South

MW-1 Finished

Finished Well MW-2 along West Wall

Monitoring Point SV-1

Monitoring Point SV-2

Well MW-1 Completion in Flush-mount Box

Appendix C 579 Kings Highway Laboratory Data Packages

Thursday, July 06, 2017

Attn: Mr Michael J McEachern, CPG MC Environmental, LLC 26 Railroad Avenue, No. 182 Babylon, NY 11702

Project ID: FORESTA /IDA CLEANERS

Sample ID#s: BY51281 - BY51283

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

July 06, 2017

SDG I.D.: GBY51281

BY51281 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

BY51282 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

BY51283 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2017

FOR: Attn: Mr Michael J McEachern, CPG

> MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

Sample Information **Custody Information** Date Time

Collected by: 06/29/17 Matrix: SOIL

MCENV Received by: Location Code: LB 06/30/17 17:45

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBY51281

Phoenix ID: BY51281

FORESTA /IDA CLEANERS Project ID:

Client ID: MW-1 11 FT

RL/ Parameter Result **PQL** Units Dilution Date/Time Βy Reference Percent Solid 87 % 06/30/17 D SW846-%Solid Volatiles ND 5.8 07/04/17 JLI SW8260C 1,1,1,2-Tetrachloroethane ug/Kg 1 1.1.1-Trichloroethane ND 5.8 ug/Kg 07/04/17 JLI SW8260C ND 07/04/17 JLI SW8260C 1,1,2,2-Tetrachloroethane 5.8 ug/Kg 1 SW8260C 1,1,2-Trichloroethane ND 5.8 ug/Kg 1 07/04/17 JH ND 07/04/17 SW8260C 1,1-Dichloroethane 58 ug/Kg 1 JI I SW8260C ND 5.8 ug/Kg 1 07/04/17 JLI 1,1-Dichloroethene ND 07/04/17 SW8260C 1,1-Dichloropropene 5.8 ug/Kg 1 1,2,3-Trichlorobenzene ND 5.8 ug/Kg 1 07/04/17 JLI SW8260C SW8260C 1,2,3-Trichloropropane ND 5.8 ug/Kg 1 07/04/17 JLI SW8260C 1,2,4-Trichlorobenzene ND 5.8 1 07/04/17 JLI ug/Kg ND 5.8 1 07/04/17 JLI SW8260C 1,2,4-Trimethylbenzene ug/Kg ND 5.8 ug/Kg 1 07/04/17 JLI SW8260C 1,2-Dibromo-3-chloropropane ND 5.8 1 07/04/17 SW8260C 1,2-Dibromoethane ug/Kg ND 5.8 ug/Kg 1 07/04/17 SW8260C 1,2-Dichlorobenzene SW8260C ND 5.8 07/04/17 JLI ug/Kg 1 1,2-Dichloroethane ND SW8260C 5.8 1 07/04/17 JLI 1,2-Dichloropropane ug/Kg ND 5.8 1 07/04/17 JH SW8260C ug/Kg 1,3,5-Trimethylbenzene ND 5.8 ug/Kg 1 07/04/17 JLI SW8260C 1,3-Dichlorobenzene ND 5.8 ug/Kg 1 07/04/17 SW8260C 1,3-Dichloropropane SW8260C ND 5.8 ug/Kg 1 07/04/17 JLI 1,4-Dichlorobenzene ND 5.8 1 07/04/17 JLI SW8260C 2,2-Dichloropropane ug/Kg ND 5.8 1 07/04/17 JLI SW8260C ug/Kg 2-Chlorotoluene ND 29 1 07/04/17 SW8260C ug/Kg JH 2-Hexanone ND 5.8 ug/Kg 1 07/04/17 JLI SW8260C 2-Isopropyltoluene SW8260C 4-Chlorotoluene ND 5.8 ug/Kg 1 07/04/17 JLI

Client ID: MW-1 11 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	29	ug/Kg	1	07/04/17	JLI	SW8260C
Acetone	ND	29	ug/Kg	1	07/04/17	JLI	SW8260C
Acrylonitrile	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Benzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Bromobenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Bromochloromethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Bromodichloromethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Bromoform	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Bromomethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Carbon Disulfide	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Carbon tetrachloride	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Chlorobenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Chloroethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Chloroform	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Chloromethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Dibromochloromethane	ND	5.0	ug/Kg	1	07/04/17	JLI	SW8260C
Dibromomethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Dichlorodifluoromethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Ethylbenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Hexachlorobutadiene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Isopropylbenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
m&p-Xylene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Methyl Ethyl Ketone	ND	29	ug/Kg	1	07/04/17	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Methylene chloride	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Naphthalene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
n-Butylbenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
n-Propylbenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
o-Xylene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
p-Isopropyltoluene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
sec-Butylbenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Styrene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
tert-Butylbenzene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Tetrachloroethene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C 1
Toluene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Total Xylenes	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Trichloroethene	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Trichlorofluoromethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
Vinyl chloride	ND	5.8	ug/Kg	1	07/04/17	JLI	SW8260C
QA/QC Surrogates			5 5				
% 1,2-dichlorobenzene-d4	98		%	1	07/04/17	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	07/04/17	JLI	70 - 130 %

Phoenix I.D.: BY51281

Project ID: FORESTA /IDA CLEANERS Phoenix I.D.: BY51281

Client ID: MW-1 11 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	100		%	1	07/04/17	JLI	70 - 130 %
% Toluene-d8	95		%	1	07/04/17	JLI	70 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2017

Reviewed and Released by: Bobbi Aloisa, Vice President

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2017

FOR: Attn: Mr Michael J McEachern, CPG

MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: 06/29/17

Location Code: MCENV Received by: LB 06/30/17 17:45

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBY51281

Phoenix ID: BY51282

Project ID: FORESTA /IDA CLEANERS

Client ID: MW-2 11 FT

RL/ Parameter Result **PQL** Units Dilution Date/Time Βy Reference Percent Solid 90 % 06/30/17 D SW846-%Solid Volatiles ND 5.6 07/04/17 JLI SW8260C 1,1,1,2-Tetrachloroethane ug/Kg 1 1.1.1-Trichloroethane ND 5.6 ug/Kg 07/04/17 JLI SW8260C ND 07/04/17 JLI SW8260C 1,1,2,2-Tetrachloroethane 5.6 ug/Kg 1 SW8260C 1,1,2-Trichloroethane ND 5.6 ug/Kg 1 07/04/17 JH ND 07/04/17 SW8260C 1,1-Dichloroethane 5.6 ug/Kg 1 JI I SW8260C ND 5.6 ug/Kg 1 07/04/17 JLI 1,1-Dichloroethene ND 07/04/17 SW8260C 1,1-Dichloropropene 5.6 ug/Kg 1 1,2,3-Trichlorobenzene ND 5.6 ug/Kg 1 07/04/17 JLI SW8260C SW8260C 1,2,3-Trichloropropane ND 5.6 ug/Kg 1 07/04/17 JLI SW8260C 1,2,4-Trichlorobenzene ND 5.6 1 07/04/17 JLI ug/Kg ND 5.6 1 07/04/17 JLI SW8260C 1,2,4-Trimethylbenzene ug/Kg ND 5.6 ug/Kg 1 07/04/17 JLI SW8260C 1,2-Dibromo-3-chloropropane ND 5.6 1 07/04/17 SW8260C 1,2-Dibromoethane ug/Kg ND 5.6 ug/Kg 1 07/04/17 SW8260C 1,2-Dichlorobenzene SW8260C ND 5.6 07/04/17 JLI ug/Kg 1 1,2-Dichloroethane ND SW8260C 5.6 1 07/04/17 JLI 1,2-Dichloropropane ug/Kg ND 5.6 1 07/04/17 JH SW8260C ug/Kg 1,3,5-Trimethylbenzene ND 5.6 ug/Kg 1 07/04/17 JLI SW8260C 1,3-Dichlorobenzene ND 5.6 ug/Kg 1 07/04/17 SW8260C 1,3-Dichloropropane SW8260C ND 5.6 ug/Kg 1 07/04/17 JLI 1,4-Dichlorobenzene ND 5.6 1 07/04/17 JLI SW8260C 2,2-Dichloropropane ug/Kg ND 5.6 1 07/04/17 JLI SW8260C ug/Kg 2-Chlorotoluene ND 28 1 07/04/17 SW8260C ug/Kg JH 2-Hexanone ND 5.6 ug/Kg 1 07/04/17 JLI SW8260C 2-Isopropyltoluene SW8260C 4-Chlorotoluene ND 5.6 ug/Kg 1 07/04/17 JLI

Client ID: MW-2 11 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	28	ug/Kg	1	07/04/17	JLI	SW8260C
Acetone	ND	28	ug/Kg	1	07/04/17	JLI	SW8260C
Acrylonitrile	ND	11	ug/Kg	1	07/04/17	JLI	SW8260C
Benzene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Bromobenzene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Bromochloromethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Bromodichloromethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Bromoform	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Bromomethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Carbon Disulfide	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Carbon tetrachloride	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Chlorobenzene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Chloroethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Chloroform	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Chloromethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Dibromochloromethane	ND	5.0	ug/Kg	1	07/04/17	JLI	SW8260C
Dibromomethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Dichlorodifluoromethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Ethylbenzene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Hexachlorobutadiene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Isopropylbenzene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
m&p-Xylene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Methyl Ethyl Ketone	ND	28	ug/Kg	1	07/04/17	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	07/04/17	JLI	SW8260C
Methylene chloride	ND	11	ug/Kg	1	07/04/17	JLI	SW8260C
Naphthalene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
n-Butylbenzene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
n-Propylbenzene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
o-Xylene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
p-Isopropyltoluene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
	ND	5.6	ug/Kg ug/Kg	1	07/04/17	JLI	SW8260C
sec-Butylbenzene	ND	5.6	ug/Kg ug/Kg	1	07/04/17	JLI	SW8260C
Styrene tart Butulbanzana	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
tert-Butylbenzene Tetrachloroethene	11	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
	ND	5.6 11	ug/Kg ug/Kg	1	07/04/17	JLI	SW8260C
Tetrahydrofuran (THF)					07/04/17		
Toluene	ND	5.6	ug/Kg	1		JLI	SW8260C
Total Xylenes	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	11	ug/Kg	1	07/04/17	JLI	SW8260C
Trichloroethene	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Trichlorofluoromethane	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.6	ug/Kg	1	07/04/17	JLI 	SW8260C
Vinyl chloride	ND	5.6	ug/Kg	1	07/04/17	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	07/04/17	JLI 	70 - 130 %
% Bromofluorobenzene	97		%	1	07/04/17	JLI	70 - 130 %

Phoenix I.D.: BY51282

Project ID: FORESTA /IDA CLEANERS Phoenix I.D.: BY51282

Client ID: MW-2 11 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	101		%	1	07/04/17	JLI	70 - 130 %
% Toluene-d8	97		%	1	07/04/17	JLI	70 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2017

Reviewed and Released by: Bobbi Aloisa, Vice President

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2017

FOR: Attn: Mr Michael J McEachern, CPG

MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: 06/29/17

Location Code: MCENV Received by: LB 06/30/17 17:45

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBY51281

Phoenix ID: BY51283

Project ID: FORESTA /IDA CLEANERS

Client ID: MW-3 11 FT

RL/ Parameter Result **PQL** Units Dilution Date/Time Βy Reference Percent Solid 86 % 06/30/17 D SW846-%Solid Volatiles ND 5.9 07/04/17 JLI SW8260C 1,1,1,2-Tetrachloroethane ug/Kg 1 1.1.1-Trichloroethane ND 5.9 ug/Kg 07/04/17 JLI SW8260C ND 07/04/17 JLI SW8260C 1,1,2,2-Tetrachloroethane 5.9 ug/Kg 1 SW8260C 1,1,2-Trichloroethane ND 5.9 ug/Kg 1 07/04/17 JH ND 07/04/17 SW8260C 1,1-Dichloroethane 59 ug/Kg 1 JI I SW8260C ND 5.9 ug/Kg 1 07/04/17 JLI 1,1-Dichloroethene ND 07/04/17 SW8260C 1,1-Dichloropropene 5.9 ug/Kg 1 1,2,3-Trichlorobenzene ND 5.9 ug/Kg 1 07/04/17 JLI SW8260C SW8260C 1,2,3-Trichloropropane ND 5.9 ug/Kg 1 07/04/17 JLI SW8260C 1,2,4-Trichlorobenzene ND 5.9 1 07/04/17 JLI ug/Kg ND 5.9 1 07/04/17 JLI SW8260C 1,2,4-Trimethylbenzene ug/Kg ND 5.9 ug/Kg 1 07/04/17 JLI SW8260C 1,2-Dibromo-3-chloropropane ND 5.9 1 07/04/17 SW8260C 1,2-Dibromoethane ug/Kg ND 5.9 ug/Kg 1 07/04/17 SW8260C 1,2-Dichlorobenzene SW8260C ND 5.9 07/04/17 JLI ug/Kg 1 1,2-Dichloroethane ND SW8260C 5.9 1 07/04/17 JLI 1,2-Dichloropropane ug/Kg ND 5.9 1 07/04/17 JH SW8260C ug/Kg 1,3,5-Trimethylbenzene ND 5.9 ug/Kg 1 07/04/17 JLI SW8260C 1,3-Dichlorobenzene ND 5.9 ug/Kg 1 07/04/17 SW8260C 1,3-Dichloropropane SW8260C ND 5.9 ug/Kg 1 07/04/17 JLI 1,4-Dichlorobenzene ND 5.9 1 07/04/17 JLI SW8260C 2,2-Dichloropropane ug/Kg ND 5.9 1 07/04/17 JLI SW8260C ug/Kg 2-Chlorotoluene ND 29 1 07/04/17 SW8260C ug/Kg JH 2-Hexanone ND 5.9 ug/Kg 1 07/04/17 JLI SW8260C 2-Isopropyltoluene SW8260C 4-Chlorotoluene ND 5.9 ug/Kg 1 07/04/17 JLI

Client ID: MW-3 11 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	29	ug/Kg	1	07/04/17	JLI	SW8260C
Acetone	ND	29	ug/Kg	1	07/04/17	JLI	SW8260C
Acrylonitrile	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Benzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Bromobenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Bromochloromethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Bromodichloromethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Bromoform	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Bromomethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Carbon Disulfide	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Carbon tetrachloride	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Chlorobenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Chloroethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Chloroform	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Chloromethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Dibromochloromethane	ND	5.0	ug/Kg	1	07/04/17	JLI	SW8260C
Dibromomethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Dichlorodifluoromethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Ethylbenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Hexachlorobutadiene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Isopropylbenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
m&p-Xylene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Methyl Ethyl Ketone	ND	29	ug/Kg	1	07/04/17	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Methylene chloride	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Naphthalene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
n-Butylbenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
n-Propylbenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
o-Xylene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
p-Isopropyltoluene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
sec-Butylbenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Styrene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
tert-Butylbenzene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Tetrachloroethene	19	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Toluene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Total Xylenes	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	1	07/04/17	JLI	SW8260C
Trichloroethene	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Trichlorofluoromethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
Vinyl chloride	ND	5.9	ug/Kg	1	07/04/17	JLI	SW8260C
	ND	0.0	ug/itg	1	01/0 1 /11	JLI	31102000
QA/QC Surrogates	98		%	1	07/04/17	JLI	70 - 130 %
% 1,2-dichlorobenzene-d4 % Bromofluorobenzene	96 97		% %	1	07/04/17	JLI	70 - 130 % 70 - 130 %
// DIGITIONIUOTODENZENE	91		70	1	07/04/17	JLI	10 - 130 /0

Phoenix I.D.: BY51283

Project ID: FORESTA /IDA CLEANERS Phoenix I.D.: BY51283

Client ID: MW-3 11 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	99		%	1	07/04/17	JLI	70 - 130 %
% Toluene-d8	96		%	1	07/04/17	JLI	70 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2017

Reviewed and Released by: Bobbi Aloisa, Vice President

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

ON/OC Data

July 06, 2017		QA/QC Data					SDG I.D.: GBY51281						
Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits			
QA/QC Batch 392483 (ug/kg), QC Sample No: BY51235 (BY51281, BY51282, BY51283)													
Volatiles - Soil			·		·								
1,1,1,2-Tetrachloroethane	ND	5.0	105	104	1.0				70 - 130	30			
1,1,1-Trichloroethane	ND	5.0	109	109	0.0				70 - 130	30			
1,1,2,2-Tetrachloroethane	ND	3.0	92	98	6.3				70 - 130	30			
1,1,2-Trichloroethane	ND	5.0	100	103	3.0				70 - 130	30			
1,1-Dichloroethane	ND	5.0	103	104	1.0				70 - 130	30			
1,1-Dichloroethene	ND	5.0	108	110	1.8				70 - 130	30			
1,1-Dichloropropene	ND	5.0	104	102	1.9				70 - 130	30			
1,2,3-Trichlorobenzene	ND	5.0	96	98	2.1				70 - 130	30			
1,2,3-Trichloropropane	ND	5.0	86	90	4.5				70 - 130	30			
1,2,4-Trichlorobenzene	ND	5.0	90	90	0.0				70 - 130	30			
1,2,4-Trimethylbenzene	ND	1.0	92	91	1.1				70 - 130	30			
1,2-Dibromo-3-chloropropane	ND	5.0	103	116	11.9				70 - 130	30			
1,2-Dibromoethane	ND	5.0	97	101	4.0				70 - 130	30			
1,2-Dichlorobenzene	ND	5.0	93	93	0.0				70 - 130	30			
1,2-Dichloroethane	ND	5.0	102	103	1.0				70 - 130	30			
1,2-Dichloropropane	ND	5.0	99	100	1.0				70 - 130	30			
1,3,5-Trimethylbenzene	ND	1.0	95	94	1.1				70 - 130	30			
1,3-Dichlorobenzene	ND	5.0	93	92	1.1				70 - 130	30			
1,3-Dichloropropane	ND	5.0	93	94	1.1				70 - 130	30			
1,4-Dichlorobenzene	ND	5.0	92	90	2.2				70 - 130	30			
2,2-Dichloropropane	ND	5.0	103	104	1.0				70 - 130	30			
2-Chlorotoluene	ND	5.0	93	94	1.1				70 - 130	30			
2-Hexanone	ND	25	88	98	10.8				70 - 130	30			
2-Isopropyltoluene	ND	5.0	99	98	1.0				70 - 130	30			
4-Chlorotoluene	ND	5.0	91	90	1.1				70 - 130	30			
4-Methyl-2-pentanone	ND	25	99	110	10.5				70 - 130	30			
Acetone	ND	10	79	87	9.6				70 - 130	30			
Acrylonitrile	ND	5.0	102	114	11.1				70 - 130	30			
Benzene	ND	1.0	100	100	0.0				70 - 130	30			
Bromobenzene	ND	5.0	96	96	0.0				70 - 130	30			
Bromochloromethane	ND	5.0	103	105	1.9				70 - 130	30			
Bromodichloromethane	ND	5.0	107	109	1.9				70 - 130	30			
Bromoform	ND	5.0	113	116	2.6				70 - 130	30			
Bromomethane	ND	5.0	123	124	0.8				70 - 130	30			
Carbon Disulfide	ND	5.0	108	109	0.9				70 - 130	30			
Carbon tetrachloride	ND	5.0	118	120	1.7				70 - 130	30			
Chlorobenzene	ND	5.0	96	96	0.0				70 - 130	30			
Chloroethane	ND	5.0	122	123	0.8				70 - 130	30			
Chloroform	ND	5.0	105	106	0.9				70 - 130	30			
Chloromethane	ND	5.0	120	123	2.5				70 - 130	30			
cis-1,2-Dichloroethene	ND	5.0	100	107	6.8				70 - 130	30			

QA/QC Data

% % Blk **LCSD** LCS MS MSD **RPD** LCS MS Rec Blank RL % **RPD** % % **RPD** Limits Limits % Parameter cis-1,3-Dichloropropene ND 5.0 103 104 1.0 70 - 130 30 Dibromochloromethane ND 3.0 109 113 3.6 70 - 130 30 ND 70 - 130 Dibromomethane 5.0 102 105 2.9 30 Dichlorodifluoromethane ND 5.0 132 135 70 - 130 30 2.2 Ethylbenzene ND 1.0 97 96 1.0 70 - 130 30 Hexachlorobutadiene ND 5.0 98 97 1.0 70 - 130 30 Isopropylbenzene ND 1.0 97 96 1.0 70 - 130 30 ND 2.0 96 95 70 - 130 m&p-Xylene 1.0 30 Methyl ethyl ketone ND 89 100 70 - 130 30 5.0 11.6 Methyl t-butyl ether (MTBE) ND 1.0 119 128 7.3 70 - 130 30 Methylene chloride ND 5.0 96 98 2.1 70 - 130 30 Naphthalene ND 5.0 103 109 70 - 130 5.7 30 n-Butylbenzene ND 1.0 91 89 2.2 70 - 130 30 ND n-Propylbenzene 1.0 95 93 2.1 70 - 130 30 o-Xylene ND 2.0 100 99 1.0 70 - 130 30 p-Isopropyltoluene ND 1.0 96 94 2.1 70 - 130 30 ND 99 98 sec-Butylbenzene 1.0 1.0 70 - 130 30 ND 5.0 97 96 1.0 Styrene 70 - 130 30 ND 97 tert-Butylbenzene 1.0 98 1.0 70 - 130 30 Tetrachloroethene ND 5.0 108 107 0.9 70 - 130 30 Tetrahydrofuran (THF) ND 5.0 94 107 12.9 70 - 130 30 Toluene ND 1.0 104 103 1.0 70 - 130 30 trans-1,2-Dichloroethene ND 5.0 103 105 1.9 70 - 130 30 trans-1,3-Dichloropropene ND 5.0 98 99 1.0 70 - 130 30 trans-1,4-dichloro-2-butene ND 5.0 94 102 8.2 70 - 130 30 Trichloroethene ND 105 5.0 106 0.9 70 - 130 30 Trichlorofluoromethane ND 5.0 119 118 8.0 70 - 130 30 Trichlorotrifluoroethane ND 5.0 118 0.9 117 70 - 130 30 ND 5.0 Vinyl chloride 124 124 0.0 70 - 130 30 % 1,2-dichlorobenzene-d4 98 % 102 102 0.0 70 - 130 30 97 % Bromofluorobenzene % 101 101 0.0 70 - 130 30 % Dibromofluoromethane 102 % 103 107 3.8 70 - 130 30 % Toluene-d8 95 % 102 101 1.0 70 - 130 30 Comment:

The MS/MSD are not reported for this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director

SDG I.D.: GBY51281

July 06, 2017

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

Thursday, July 06, 2017

Criteria: NY: GW, TAGS

Sample Criteria Exceedances Report GBY51281 - MCENV

State: NY

RL Analysis
SampNo Acode Phoenix Analyte Criteria Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

July 06, 2017 SDG I.D.: GBY51281

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

VOA Narration

CHEM14 07/03/17-2: BY51281, BY51282, BY51283

The following Initial Calibration compounds did not meet RSD% criteria: Acetone 22% (20%) The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

July 06, 2017

SDG I.D.: GBY51281

The samples in this delivery group were received at 3.2° C. (Note acceptance criteria is above freezing up to 6° C)

	to X											
Cooler: Yes No	pptions:		\$ \$ 1400 1482 50 1480	\$ \$190 80 10 10 10 10 10 10 10 10 10 10 10 10 10						Data Format Data Format Phoenix Std Report Fig. P.D.F GIS/Key		Data Package NJ Reduced Deliv. * NY Enhanced (ASP B) * Other
Coolant:	Conact Co	ArverA Project P.O. This	21 3 140 3 140 3 1 140	\$ 100 100 100 100 100 100 100 100 100 10		* c	~~	>		NY TAGM 4046 GW TAGM 4046 SOIL NY375 Unrestricted Use Soil	Soil Restricted/Residential Commercial	X
CORD	er, CT 06040 5-0823	TDA CLEAN FOCHERN								Nor-Res. Criteria Nor-Res. Criteria Impact to GW Soil Cleanup Criteria	GW Criteria	State where samples were collected:
CHAIN OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	FORESTRIA MIKE MEE								Turnaround: 1 Day* 2 Days* 3 Days* 5 Days*	• SURCHARGE APPLIES	State where s
<u> </u>	liddle Turnpike, P.O. Box : info@phoenixlabs.com Client Services (8	Project: Report to: Invoice to:	Analysis Request	9	××	× ×	X 3	×		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 566	reved
	587 East Mic Email:	1, UC	Date: 6/29/17 Date: Water Water W=Wipe	Date Time	57/	29	124			Date:	NO LABELS	ablevel Voa rech
	es, Inc.	0 N MS N TO BE GO AVE.	mayon - Identification Left De Surface Water Wy SW=Surface Solid SP=Solid	Sample	66	# S 6	GW	3		, iqu	A .	rep leve
	PHOENIX Environmental Laboratories, Inc	MC ENVILLED BABYCON,	Sampler's Signature (MM K A Code: Date: 6/29/// Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid	tomer Sa tentificati	MW-2 11 Ft	Mw-3 11+	Mw-2	1 1		Accepted	ents or Reg	d Client
	PHO Environmer	Customer: Address:	Sampler's Signature Matrix Code: DW=Drinking Water RW=Raw Water SE: OIL=Oil B=Bulk L=	PHOENIX USE ONLY SAMPLE #	73819	58616	51386	0000	4//	Relinduished by	Comments, Special Requirem NOTE! SOLL MARKINGS	X 21 or graye

GBY 51281

Monica Pellerin

From:

Monica Pellerin

Sent: To: Friday, June 30, 2017 6:15 PM

Cc:

'mike@mc-environmental.net'

Shannon Wilhelm

Subject:

Foresta/IDA Cleaners

Good evening.

We received you samples today with regards to the above referenced project. Unfortunately, for sample MW-1, MW-2 and MW-3 which are listed as Ground Water samples the VOA vials that were used are soil VOAs with methanol and/or H20. To analyze the ground water VOCs the preservative should have been HCL. Therefore, we will not be able to analyze those 3 samples.

If you have any questions, please feel free to contact me.

Sincerely,

>

_

Monica Pellerin Client Service Representative Phoenix Environmental Labs 587 Middle Turnpike East Manchester, CT 860-645-1102

Fax: 860-645-0823

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBY58837 Phoenix ID: BY58837

Analysis Report

July 17, 2017

FOR: Attn: Mr Michael J McEachern, CPG

> MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: 07/12/17 Matrix: 9:45 Received by: Location Code: **MCENV** SW 07/13/17 16:20

Laboratory Data

Rush Request: 48 Hour Analyzed by: see "By" below

FORESTA IDA CLEANER5S

Client ID: MW-1

P.O.#:

Project ID:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	07/14/17	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,3-Trichloropropane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dibromoethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	07/14/17	МН	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
2-Hexanone	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C 1
4-Chlorotoluene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	07/14/17	МН	SW8260C

Ver 1 Page 1 of 9 Client ID: MW-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	07/14/17	МН	SW8260C
Acrylonitrile	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
senzene	ND	0.70	ug/L	1	07/14/17	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
romochloromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
romodichloromethane	ND	0.50	ug/L	1	07/14/17	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
romomethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
arbon Disulfide	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
arbon tetrachloride	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
hlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
hloroethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
hloroform	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
hloromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
is-1,2-Dichloroethene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
is-1,3-Dichloropropene	ND	0.40	ug/L	1	07/14/17	МН	SW8260C
ibromochloromethane	ND	0.50	ug/L	1	07/14/17	МН	SW8260C
ibromomethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
ichlorodifluoromethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
thylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
exachlorobutadiene	ND	0.40	ug/L	1	07/14/17	МН	SW8260C
opropylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
&p-Xylene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
ethyl ethyl ketone	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
ethyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
ethylene chloride	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
aphthalene	ND	1.0	ug/L	' 1	07/14/17	MH	SW8260C
-Butylbenzene	ND	1.0	ug/L	' 1	07/14/17	MH	SW8260C
-Propylbenzene	ND	1.0	ug/L	' 1	07/14/17	MH	SW8260C
-Fropylberizerie -Xylene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
-Aylerie -Isopropyltoluene	ND	1.0	ug/L ug/L	1	07/14/17	MH	SW8260C
	ND	1.0			07/14/17	МН	SW8260C
ec-Butylbenzene			ug/L	1			
tyrene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
ert-Butylbenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
etrachloroethene	14 ND	1.0	ug/L	1	07/14/17	MH	SW8260C
etrahydrofuran (THF)	ND	2.5	ug/L	1	07/14/17	MH	SW8260C
oluene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
otal Xylenes	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
ans-1,2-Dichloroethene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
ans-1,3-Dichloropropene	ND	0.40	ug/L	1	07/14/17	MH	SW8260C
ans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
richloroethene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
richlorofluoromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
richlorotrifluoroethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
inyl chloride	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
QA/QC Surrogates							
1,2-dichlorobenzene-d4	99		%	1	07/14/17	MH	70 - 130 %
Bromofluorobenzene	100		%	1	07/14/17	MH	70 - 130 %
Dibromofluoromethane	97		%	1	07/14/17	MH	70 - 130 %

Phoenix I.D.: BY58837

Ver 1 Page 2 of 9

Project ID: FORESTA IDA CLEANER5S

Client ID: MW-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	102		%	1	07/14/17	МН	70 - 130 %

Phoenix I.D.: BY58837

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

BY58837 - The pH in the preserved volatile vial was greater than 2. A negative bias may have occurred.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 17, 2017

Official Report Release To Follow

Ver 1 Page 3 of 9

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 17, 2017

FOR: Attn: Mr Michael J McEachern, CPG

MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:07/12/1710:05Location Code:MCENVReceived by:SW07/13/1716:20

Rush Request: 48 Hour Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBY58837

Phoenix ID: BY58838

Project ID: FORESTA IDA CLEANER5S

Client ID: MW-2

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	07/14/17	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,3-Trichloropropane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dibromoethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	07/14/17	МН	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
2-Hexanone	ND	5.0	ug/L	1	07/14/17	МН	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
4-Chlorotoluene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	07/14/17	МН	SW8260C

Ver 1 Page 4 of 9

Client ID: MW-2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	07/14/17	МН	SW8260C
Acrylonitrile	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
Benzene	ND	0.70	ug/L	1	07/14/17	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	07/14/17	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	07/14/17	МН	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
cis-1,2-Dichloroethene	6.2	1.0	ug/L	1	07/14/17	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	07/14/17	МН	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	07/14/17	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	07/14/17	МН	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	07/14/17	МН	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Methylene chloride	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Naphthalene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
o-Xylene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Styrene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Tetrachloroethene	100	5.0	ug/L	5	07/14/17	MH	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	07/14/17	MH	SW8260C 1
	ND	1.0	ug/L ug/L	1	07/14/17	MH	SW8260C
Toluene Total Yulones	ND	1.0	ug/L ug/L	1	07/14/17	MH	SW8260C
Total Xylenes	ND	1.0		1	07/14/17	МН	SW8260C SW8260C
trans-1,2-Dichloroethene	ND	0.40	ug/L	1	07/14/17	MH	SW8260C
trans-1,3-Dichloropropene	ND	5.0	ug/L	1	07/14/17		SW8260C
trans-1,4-dichloro-2-butene			ug/L	1		MH	
Trichloroethene	1.1 ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
QA/QC Surrogates	00		0/	4	07/44/47	N 41 7	70 400 0/
% 1,2-dichlorobenzene-d4	99		%	1	07/14/17	MH	70 - 130 %
% Bromofluorobenzene	100		%	1	07/14/17	MH	70 - 130 %
% Dibromofluoromethane	100		%	1	07/14/17	MH	70 - 130 %

Phoenix I.D.: BY58838

Ver 1 Page 5 of 9

Project ID: FORESTA IDA CLEANER5S Phoenix I.D.: BY58838

Client ID: MW-2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101		%	1	07/14/17	МН	70 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 17, 2017

Official Report Release To Follow

Ver 1 Page 6 of 9

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 17, 2017

FOR: Attn: Mr Michael J McEachern, CPG

MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:07/12/1710:25Location Code:MCENVReceived by:SW07/13/1716:20

Rush Request: 48 Hour Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBY58837

Phoenix ID: BY58839

Project ID: FORESTA IDA CLEANER5S

Client ID: MW-3

I

Parameter	Result PQL		Units	Units Dilution			Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	07/14/17	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2,3-Trichloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2-Dibromoethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	07/14/17	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
2-Hexanone	ND	5.0	ug/L	1	07/14/17	МН	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
4-Chlorotoluene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	07/14/17	МН	SW8260C

Ver 1 Page 7 of 9

Client ID: MW-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	07/14/17	МН	SW8260C
Acrylonitrile	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
Benzene	ND	0.70	ug/L	1	07/14/17	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	07/14/17	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
cis-1,2-Dichloroethene	19	1.0	ug/L	1	07/14/17	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	07/14/17	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	07/14/17	MH	SW8260C
Dibromomethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	07/14/17	МН	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	07/14/17	МН	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Methylene chloride	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Naphthalene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
o-Xylene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Styrene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
Tetrachloroethene	200	10	ug/L	10	07/14/17	МН	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	07/14/17	МН	SW8260C 1
Toluene	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Total Xylenes	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	07/14/17	МН	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	07/14/17	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	07/14/17	MH	SW8260C
Trichloroethene	2.1	1.0	ug/L	1	07/14/17	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	07/14/17	MH	SW8260C
QA/QC Surrogates	ND	1.0	ug/ L	•	<i>0111∃111</i>	1411 1	0.102000
% 1,2-dichlorobenzene-d4	99		%	1	07/14/17	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 % Bromofluorobenzene	100		%	1	07/14/17	MH	70 - 130 % 70 - 130 %
% Dibromofluoromethane	100		%	1	07/14/17	MH	70 - 130 % 70 - 130 %
70 DIDIOIIIUIIUUIUIIUIIUIIUIIUIIU	100		/0	ı	01/14/11	IVII I	70 - 130 /0

Phoenix I.D.: BY58839

Ver 1 Page 8 of 9

Project ID: FORESTA IDA CLEANER5S Phoenix I.D.: BY58839

Client ID: MW-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101		%	1	07/14/17	МН	70 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 17, 2017

Official Report Release To Follow

Ver 1 Page 9 of 9

Monday, July 17, 2017 Criteria: None

State: NY

Sample Criteria Exceedances Report

GBY58837 - MCENV

RLAnalysis SampNo Acode Phoenix Analyte Criteria Result RLCriteria Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***

			Á		φ			1 / 1/1													*
Cooler: Ves No	TempβC Pg of	ns:	5/6-242-498/ MIKER MC-11/1/01/16/14	. P.O:	This section MUST be completed with	Bottle Quantities.	THOO! POSTS	Thoose in the control of the control	TOO BISING TO SALE TO							Dat	L Phoenix Std Report L Excel Red PDF		ential Ny EZ EDD (ASP)		Uata Package ☐ NJ Reduced Deliv. * ☐ NY Enhanced (ASP B) ☐ Other
Coolant	Ι.	ı	Email: Miki	Pr			Ca.	Tole Hour Su	1 50 1 11 0 10 10 10 10 10 10 10 10 10 10 1		3	3				ΝŽ	☐ TAGM 4046 GW ☐ TAGM 4046 SOIL ☐ NY375 Unrestricted	Use Soil NY375 Residential	Soil Restricted/Residential	Industrial	eq:
	CORD	er, CT 06040	45-0823 •	IDA USANGA	5ACHERN											3	Res. Criteria Non-Res. Criteria	Cleanup Criteria]		State where samples were collected:
	NY/NJ CHAIN OF CUSTODY RECORD	37	Info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	FORSSM/	M.J. Mc		000									Turnaround:	2 Days*	5 Days	· SURCHARGE APPLIES		State where s
1	4J CHAIN OF	Middle Turnpike, P.C	Email: info@phoenixlabs.com Client Services (8)		Report to:	ı		Action.	2005))	J					Time:	(13/17 9/3)		TURNAROUND	PER TELEPHONE	
	//\N	587 East	Ema	744,6	10. 192 1702	J	on 7/2/17	N=Waste Water W=Wipe	Date Time Sampled	$\vdash $	10:05	sc:01 "				Date	7/		7 TURN,	ser len	
			es, Inc.	CON MEN	PORO AVE.	7	- Identificatio	V=Surface Water WN S=Soil SD=Soild	Sample [×	7				AGV:			0-1		
			Environmental Laboratories,	MC ENVIRON	26 KAURO BABYUDN		Client Sample - Mformation	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Identification	MW-1	MW-2	M& -3				Accepted	In the		Comments, Special requirements of regulations: タピチンピーク かくこう こく	のととなってするのの	ָּרְטִיּיִ
			Environme	Customer:	Address:		Sampler's Signature	Matrix Code: DW=Drinking Water RW=Raw Water SE OIL=Oil B=Bulk L	PHOENIX USE	S8837	S885X	58851			11	Relipquished by	To the	2	Comments, Special K	10 OK	Dis WSSION

Friday, July 07, 2017

Attn: Mr Michael J McEachern, CPG MC Environmental, LLC 26 Railroad Avenue, No. 182 Babylon, NY 11702

Project ID: FORESTA /IDA CLEANERS

Sample ID#s: BY51279 - BY51280

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 07, 2017

FOR: Attn: Mr Michael J McEachern, CPG

MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

Sample Information Custody Information Date <u>Time</u> AIR Collected by: 06/29/17 11:50 Matrix: MM Received by: Location Code: **MCENV** LB 06/30/17 17:45

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Canister Id: 463 Laboratory Data SDG ID: GBY51279
Phoenix ID: BY51279

Project ID: FORESTA /IDA CLEANERS

Client ID: SV-2

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	07/01/17	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	07/01/17	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	07/01/17	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	07/01/17	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	07/01/17	KCA	1	
1,1-Dichloroethene	ND	0.252	ND	1.00	07/01/17	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	07/01/17	KCA	1	
1,2,4-Trimethylbenzene	14.2	0.204	69.8	1.00	07/01/17	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	07/01/17	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	07/01/17	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	07/01/17	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	07/01/17	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	07/01/17	KCA	1	
1,3,5-Trimethylbenzene	4.61	0.204	22.6	1.00	07/01/17	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	07/01/17	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	07/01/17	KCA	1	
1,4-Dichlorobenzene	0.187	0.166	1.12	1.00	07/01/17	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	07/01/17	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	07/01/17	KCA	1	1
4-Ethyltoluene	3.69	0.204	18.1	1.00	07/01/17	KCA	1	1
4-Isopropyltoluene	0.808	0.182	4.43	1.00	07/01/17	KCA	1	1
4-Methyl-2-pentanone(MIBK)	3.99	0.244	16.3	1.00	07/01/17	KCA	1	
Acetone	211	4.21	501	10.0	07/05/17	KCA	10	
Acrylonitrile	ND	0.461	ND	1.00	07/01/17	KCA	1	
Benzene	9.67	0.313	30.9	1.00	07/01/17	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	07/01/17	KCA	1	

Client ID: SV-2

Client ID. SV-2								
Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	07/01/17	KCA	1	
Bromoform	ND	0.097	ND	1.00	07/01/17	KCA	1	
Bromomethane	ND	0.258	ND	1.00	07/01/17	KCA	1	
Carbon Disulfide	0.335	0.321	1.04	1.00	07/01/17	KCA	1	
Carbon Tetrachloride	0.070	0.040	0.44	0.25	07/01/17	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	07/01/17	KCA	1	
Chloroethane	ND	0.379	ND	1.00	07/01/17	KCA	1	
Chloroform	8.74	0.205	42.6	1.00	07/01/17	KCA	1	
Chloromethane	ND	0.485	ND	1.00	07/01/17	KCA	1	
Cis-1,2-Dichloroethene	15.3	0.252	60.6	1.00	07/01/17	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	07/01/17	KCA	1	
Cyclohexane	28.7	0.291	98.7	1.00	07/01/17	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	07/01/17	KCA	1	
Dichlorodifluoromethane	0.539	0.202	2.66	1.00	07/01/17	KCA	1	
Ethanol	236	E 0.531	444	1.00	07/01/17	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	07/01/17	KCA	1	1
Ethylbenzene	10.7	0.230	46.4	1.00	07/01/17	KCA	1	
Heptane	25.1	0.244	103	1.00	07/01/17	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	07/01/17	KCA	1	
Hexane	38.1	0.284	134	1.00	07/01/17	KCA	1	
Isopropylalcohol	5.20	0.407	12.8	1.00	07/01/17	KCA	1	
Isopropylbenzene	1.64	0.204	8.06	1.00	07/01/17	KCA	1	
m,p-Xylene	32.7	0.230	142	1.00	07/01/17	KCA	1	
Methyl Ethyl Ketone	81.1	3.39	239	10.0	07/05/17	KCA	10	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	07/01/17	KCA	1	
Methylene Chloride	1.25	S 0.288	4.34	1.00	07/01/17	KCA	1	
n-Butylbenzene	1.45	0.182	7.95	1.00	07/01/17	KCA	1	1
o-Xylene	13.4	0.230	58.1	1.00	07/01/17	KCA	1	
Propylene	4.01	0.581	6.90	1.00	07/01/17	KCA	1	1
sec-Butylbenzene	0.758	0.182	4.16	1.00	07/01/17	KCA	1	1
Styrene	ND	0.235	ND	1.00	07/01/17	KCA	1	
Tetrachloroethene	22.6	0.037	153	0.25	07/01/17	KCA	1	
Tetrahydrofuran	23.9	0.339	70.4	1.00	07/01/17	KCA	1	1
Toluene	58.1	2.66	219	10.0	07/05/17	KCA	10	
Trans-1,2-Dichloroethene	0.414	0.252	1.64	1.00	07/01/17	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	07/01/17	KCA	1	
Trichloroethene	4.90	0.047	26.3	0.25	07/01/17	KCA	1	
Trichlorofluoromethane	0.244	0.178	1.37	1.00	07/01/17	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	07/01/17	KCA	1	
Vinyl Chloride	ND	0.098	ND	0.25	07/01/17	KCA	1	
QA/QC Surrogates								
% Bromofluorobenzene	96	%	96	%	07/01/17	KCA	1	

Phoenix I.D.: BY51279

Project ID: FORESTA /IDA CLEANERS Phoenix I.D.: BY51279

Client ID: SV-2

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 07, 2017

Reviewed and Released by: Bobbi Aloisa, Vice President

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 07, 2017

FOR: Attn: Mr Michael J McEachern, CPG

> MC Environmental, LLC 26 Railroad Avenue, No. 182

Babylon, NY 11702

Sample Information Custody Information Date <u>Time</u> AIR Collected by: 06/29/17 11:45 Matrix: MM Received by: Location Code: **MCENV** LB 06/30/17 17:45

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBY51279 Canister Id: 21345 Phoenix ID: BY51280

FORESTA /IDA CLEANERS Project ID:

Client ID:

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	07/01/17	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	07/01/17	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	07/01/17	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	07/01/17	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	07/01/17	KCA	1	
1,1-Dichloroethene	2.96	0.252	11.7	1.00	07/01/17	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	07/01/17	KCA	1	
1,2,4-Trimethylbenzene	14.1	0.204	69.3	1.00	07/01/17	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	07/01/17	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	07/01/17	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	07/01/17	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	07/01/17	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	07/01/17	KCA	1	
1,3,5-Trimethylbenzene	4.68	0.204	23.0	1.00	07/01/17	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	07/01/17	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	07/01/17	KCA	1	
1,4-Dichlorobenzene	0.171	0.166	1.03	1.00	07/01/17	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	07/01/17	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	07/01/17	KCA	1	1
4-Ethyltoluene	3.85	0.204	18.9	1.00	07/01/17	KCA	1	1
4-Isopropyltoluene	0.917	0.182	5.03	1.00	07/01/17	KCA	1	1
4-Methyl-2-pentanone(MIBK)	3.86	0.244	15.8	1.00	07/01/17	KCA	1	
Acetone	199	4.21	472	10.0	07/05/17	KCA	10	
Acrylonitrile	ND	0.461	ND	1.00	07/01/17	KCA	1	
Benzene	10.4	0.313	33.2	1.00	07/01/17	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	07/01/17	KCA	1	

Client ID: SV-1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	07/01/17	KCA	1	
Bromoform	ND	0.097	ND	1.00	07/01/17	KCA	1	
Bromomethane	ND	0.258	ND	1.00	07/01/17	KCA	1	
Carbon Disulfide	0.426	0.321	1.33	1.00	07/01/17	KCA	1	
Carbon Tetrachloride	0.180	0.040	1.13	0.25	07/01/17	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	07/01/17	KCA	1	
Chloroethane	ND	0.379	ND	1.00	07/01/17	KCA	1	
Chloroform	15.0	0.205	73.2	1.00	07/01/17	KCA	1	
Chloromethane	ND	0.485	ND	1.00	07/01/17	KCA	1	
Cis-1,2-Dichloroethene	741	7.57	2940	30.0	07/05/17	KCA	30	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	07/01/17	KCA	1	
Cyclohexane	29.8	0.291	103	1.00	07/01/17	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	07/01/17	KCA	1	
Dichlorodifluoromethane	0.553	0.202	2.73	1.00	07/01/17	KCA	1	
Ethanol	272	5.31	512	10.0	07/05/17	KCA	10	1
Ethyl acetate	1.04	0.278	3.75	1.00	07/01/17	KCA	1	1
Ethylbenzene	10.3	0.230	44.7	1.00	07/01/17	KCA	1	
Heptane	23.8	0.244	97.5	1.00	07/01/17	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	07/01/17	KCA	1	
Hexane	37.8	0.284	133	1.00	07/01/17	KCA	1	
Isopropylalcohol	4.23	0.407	10.4	1.00	07/01/17	KCA	1	
Isopropylbenzene	1.76	0.204	8.65	1.00	07/01/17	KCA	1	
m,p-Xylene	32.1	0.230	139	1.00	07/01/17	KCA	1	
Methyl Ethyl Ketone	77.7	3.39	229	10.0	07/05/17	KCA	10	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	07/01/17	KCA	1	
Methylene Chloride	1.31	S 0.288	4.55	1.00	07/01/17	KCA	1	
n-Butylbenzene	1.58	0.182	8.67	1.00	07/01/17	KCA	1	1
o-Xylene	13.3	0.230	57.7	1.00	07/01/17	KCA	1	
Propylene	3.96	0.581	6.81	1.00	07/01/17	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	07/01/17	KCA	1	1
Styrene	ND	0.235	ND	1.00	07/01/17	KCA	1	
Tetrachloroethene	288	0.369	1950	2.50	07/05/17	KCA	10	
Tetrahydrofuran	23.5	0.339	69.3	1.00	07/01/17	KCA	1	1
Toluene	51.6	2.66	194	10.0	07/05/17	KCA	10	
Trans-1,2-Dichloroethene	4.74	0.252	18.8	1.00	07/01/17	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	07/01/17	KCA	1	
Trichloroethene	63.6	0.466	342	2.50	07/05/17	KCA	10	
Trichlorofluoromethane	0.278	0.178	1.56	1.00	07/01/17	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	07/01/17	KCA	1	
Vinyl Chloride	4.54	0.098	11.6	0.25	07/01/17	KCA	1	
QA/QC Surrogates								
% Bromofluorobenzene	95	%	95	%	07/01/17	KCA	1	

Phoenix I.D.: BY51280

Project ID: FORESTA /IDA CLEANERS Phoenix I.D.: BY51280

Client ID: SV-1

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Dilution

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 07, 2017

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GBY51279

QA/QC Report

July 07, 2017

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 392450 (ppbv),	OC Sami	nle No: F	3751353	(BY5127	9 BY51280)							
Volatiles	QC Janı	JIC INO. L	7131333	(D13127	7, D131200)							
· · · · · · · · · · · · · · · · · · ·	ND	0 146	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND	0.146 0.183	ND ND	1.00 1.00	100 104	ND ND	ND ND	ND ND	ND ND	NC NC	70 - 130	25 25
1,1,2,2-Tetrachloroethane	ND	0.163	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.140	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25 25
1,1-Dichloroethane	ND	0.103	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.252	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	83	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	99	23.5	24.4	4.79	4.97	3.7	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	97	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.166	ND	1.00	93	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.247	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	0.216	ND	1.00	94	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	97	5.36	5.85	1.09	1.19	8.8	70 - 130	25
1,3-Butadiene	ND	0.452	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.166	ND	1.00	94	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.166	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.278	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.244	ND	1.00	92	6.67	6.80	1.63	1.66	1.8	70 - 130	25
4-Ethyltoluene	ND	0.204	ND	1.00	98	6.34	6.48	1.29	1.32	2.3	70 - 130	25
4-Isopropyltoluene	ND	0.182	ND	1.00	100	1.32	1.33	0.240	0.242	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	86	ND	ND	ND	ND	NC	70 - 130	25
Acrylonitrile	ND	0.461	ND	1.00	91	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.313	ND	1.00	70	2.82	3.14	0.883	0.982	NC	70 - 130	25
Benzyl chloride	ND	0.193	ND	1.00	86	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.149	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.097	ND	1.00	91	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.257	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.321	ND	1.00	103	1.47	1.46	0.471	0.468	NC	70 - 130	25
Carbon Tetrachloride	ND	0.040	ND	0.25	106	4.92	4.35	0.782	0.692	12.2	70 - 130	25
Chlorobenzene	ND	0.217	ND	1.00	92	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.379	ND	1.00	94	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.205	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25
Chloromethane	ND	0.484	ND	1.00	96	ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.256	ND	1.01	95	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	97	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.291	ND	1.00	89	1.79	1.91	0.521	0.554	NC	70 - 130	25
Dibromochloromethane	ND	0.117	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.202	ND	1.00	109	2.74	2.81	0.554	0.569	NC	70 - 130	25
Ethanol	ND	0.531	ND	1.00	95	41.6	41.4	22.1	22.0	0.5	70 - 130	25
Ethyl acetate	ND	0.278	ND	1.00	112	ND	ND	ND	ND	NC	70 - 130	25

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethylbenzene	ND	0.230	ND	1.00	93	12.6	13.7	2.90	3.16	8.6	70 - 130	25
Heptane	ND	0.244	ND	1.00	89	7.25	6.80	1.77	1.66	6.4	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00	83	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.284	ND	1.00	89	3.84 S	4.19 S	1.09 S	1.19 S	NC	70 - 130	25
Isopropylalcohol	ND	0.407	ND	1.00	87	13.5	13.3	5.49	5.43	1.1	70 - 130	25
Isopropylbenzene	ND	0.204	ND	1.00	95	1.18	1.16	0.240	0.236	NC	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00	96	56.0	57.7	12.9	13.3	3.1	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.277	ND	1.00	92	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.288	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.182	ND	1.00	102	1.91	1.77	0.349	0.322	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00	96	18.0	18.5	4.14	4.26	2.9	70 - 130	25
Propylene	ND	0.581	ND	1.00	93	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.182	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.235	ND	1.00	95	3.72	4.22	0.873	0.991	NC	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	98	0.98	1.00	0.145	0.147	NC	70 - 130	25
Tetrahydrofuran	ND	0.339	ND	1.00	91	ND	ND	ND	ND	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	95	ND	ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.047	ND	0.25	94	ND	ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	0.178	ND	1.00	112	2.31	2.06	0.412	0.367	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.131	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.098	ND	0.25	99	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	103	%	103	%	100	100	104	100	104	NC	70 - 130	25
QA/QC Batch 392589 (ppbv), Q	C Sam	ple No: E	3Y51722	(BY51279	(10X) , BY5	1280 (1	0X, 30X	<))				
<u>Volatiles</u>												
Acetone	ND	0.421	ND	1.00	101	189	185	79.8	77.9	2.4	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.256	ND	1.01	94	ND	ND	ND	ND	NC	70 - 130	25
Ethanol	ND	0.531	ND	1.00	93	23.5	24.7	12.5	13.1	4.7	70 - 130	25
Methyl Ethyl Ketone	ND	0.339	ND	1.00	96	6.07	6.25	2.06	2.12	NC	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	99	6.85	6.32	1.01	0.932	NC	70 - 130	25
Toluene	ND	0.266	ND	1.00	95	7.04	7.31	1.87	1.94	NC	70 - 130	25
Trichloroethene	ND	0.047	ND	0.25	101	ND	ND	ND	ND	NC	70 - 130	25

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBY51279

July 07, 2017

Friday, July 07, 2017

Sample Criteria Exceedances Report
GBY51279 - MCENV

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

July 07, 2017 SDG I.D.: GBY51279

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

	CHAIN OF CU	CHAIN OF CUSTODY RECORD	RD	P.O. #		Page	o of	_
nvironmental Laboratories, Inc.	A1K A.	AIK ANALYSES 800-827-5426		Data Deli	Data Delivery:			
587 East Middle Tumpike P.O. Box 370, Manchester, CT 06040 Telephone: 860.645.1102 - Fax: 860.645.0823	email: greg	email: greg@phoenixlabs.com		Email: L	Kemail: Mika @ mc-enviconmentel. net	C-ENVICO	nmen	hl. net
Report to: MIKE NICEACHERN Customer: (1) ANC ENVIRON MENTAL, CCC	AM G		Project Name:		1704 (15 AUGOS)	9		`
Address: 26 RALPOAD AVE. No. 192				MCP	NJ Deliverables			
BABYCON (NY 11702 MIKS	McBACHERN	7	State wher	State where samples collected:	ted: 184		()) 2118	
Phoenix ID # Client Sample ID Canister ID #	Outgoing Incoming Canister Canister Pressure Pressure Size (1) (" He) ("He)	ing Flow Controller Regulator Regulator (m/min)	Sampling Start Time	Sampling Sample Fnd Time Grant Date	Canister Canister Pressure at Pressure at	A 100bnl\Insidm.	ogno (G) Compo	SI-O.
	CTION FOR L				b	MATRE	L	ANALYSES
51279 SV-2	6.0 -30 -7	325643	1036D	60/0 0511	-30 45	7		7
51280 - SV-1 21345	6.6-30-	p 5040 43	2460	1145 6/29	-30 425	7		
A		\ <u></u>		•				
Col 2NV								
a by		Date:		Data Format:	Fourie		CISKov	
The state of the s	1	6530	3,11		Other			
SFECIAL INSTRUCTIONS, OC REQUIREMENTS, RECULATORY INFORMATION:	Reque	Requested Criteria					,	
			I t	ttest that all media ceived in good work ck of this docupent:	released by Phoenix Enry Ing condition and aggee to	ironmental Laborat o the tepms and cor	tories, Inc. ha nditions as li	ve been ted on the
	Quote	Quote Number:	Zi.	\ \\	Mar	the	$\frac{1}{2}$	41/6
	Quote	Number:	l l l		I attest that all media received in good work back of this docupent.	I attest that all media released by Phoenix Emp received in good working condition and aggle back of this docupent: Signature:	ttest that all media released by Phoenix Environmental Labora exived in good worthing condition and aggle to the tegms and cock of this docuptent: When the condition and aggle to the tegms and construction and aggle to the tegms and construction and aggle to the tegms and the tegms and the tegms and the tegms are the tegms and the tegms are the tegms and the tegms are the tegms are the tegms and the tegms are the tegm	12 00 2 / 1 11