INTERIM SITE MANAGEMENT PLAN – INDOOR AIR MONITORING REPORT FORMER EAST 11th STREET WORKS SITE – OU-1 MANHATTAN, NEW YORK SITE ID NO. 231110

CONSOLIDATED EDISON CO. OF NEW YORK, INC. 31-01 20th Avenue Long Island City, NY 11105

Prepared by:

Arcadis of New York, Inc. 295 Woodcliff Drive, Suite 301 Fairport, New York 14450

February 2020

Consolidated Edison Company of New York, Inc

INTERIM SITE MANAGEMENT PLAN – INDOOR AIR MONITORING REPORT

Former East 11th Street Works OU-1 Site No. 231110 Manhattan, New York

February 2020

Dafan Carlet

Dylan Corbett Environmental Scientist

Allina Redogony's

Albina Redzepagic Environmental Engineer

Bruce W. ahrens

Bruce W. Ahrens Associate Vice President

INDOOR AIR MONITORING REPORT

Former East 11th Street Works, Manhattan, NY

Prepared for:

Consolidated Edison Company of New York, Inc.

Prepared by: Arcadis of New York, Inc. 295 Woodcliff Drive Third Floor Suite 301 Fairport New York 14450 Tel 585 385 0090 Fax 585 385 4198

Our Ref.: 30005328

Date: February 2020

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acr	onyms and Abbreviations	ii
Exe	ecutive Summary	iii
	Indoor Air Monitoring	
2	Results and conclusions	3
3	Work Plan Deviations	.5

TABLES

Table 1. Sample Collection Dates	I
Table 2. Indoor Air Analytical Results – East Side OU-1	

FIGURES

Figure 1. Site Plan with Air Monitoring Locations

APPENDICES

- A NYSDOH Indoor Air Quality Questionnaires and Building Inventory Forms
- B Photographic Logs Building Inventories
- C Sample Collection Logs
- D Data Usability Summary Reports (DUSRs)
- E Photographic Logs Indoor Air Monitoring Locations

ACRONYMS AND ABBREVIATIONS

Arcadis	Arcadis of New York, Inc.
Con Edison	Consolidated Edison Company of New York, Inc.
DUSR	Data Usability Summary Report
HASP	Health and Safety Plan
ISMP	Interim Site Management Plan for Indoor Air Monitoring
MGP	Manufactured Gas Plant
NYSDOH	New York State Department of Health
ppbRAE	portable organic vapor monitor
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound

EXECUTIVE SUMMARY

This report presents a summary of the results from the October 28 through November 1, 2019 indoor air monitoring conducted by Arcadis of New York, Inc. (Arcadis) at Operable Unit #1 within the site, which includes the Jacob Riis Housing Development on behalf of Consolidated Edison Company of New York, Inc. (Con Edison). Indoor air monitoring was conducted in accordance with the procedures and protocols presented in the *Interim Site Management Plan for Indoor Air Monitoring* (Arcadis 2009) (ISMP). The ISMP is a component of a monitoring plan in place to ensure that potential exposure to MGP related contaminants by the public and the environment is monitored and controlled until a final remedy for the Former East 11th Street Works Site (the site) is implemented.

A summary of the activities performed associated with the indoor air monitoring is included below. Tabulated laboratory results from the indoor air monitoring, a figure showing the sampling locations, photographic logs, sampling forms, and a compact disk (CD) containing copies of the Data Usability Summary Reports (DUSRs) are included as attachments. Deviations from the scope of work presented in the ISMP are also presented.

1 INDOOR AIR MONITORING

Prior to initiating field work, the site Health and Safety Plan (HASP) was reviewed and updated to ensure that task specific monitoring activities were consistent with Con Edison's Corporate Health and Safety Procedure A32.00 (Rules We Live By) and the most current guidance documents. A copy of the HASP was maintained on site during all work activities; all site personnel were required to review the HASP and sign an acknowledgement form stating that they understood the contents of the HASP and agreed to abide by its requirements. Tailgate meetings were conducted each morning to discuss the day's activities, critical work procedures, and safety requirements.

The dates that the annual indoor air sampling events were conducted are presented in Table 1.

Table 1. Sample Collection Dates

Location	Sample Collection Dates
Jacob Riis Housing Development 170 Avenue D, 178 Avenue D, 1115 FDR Drive 1141 FDR Drive, 1223 FDR Drive	October 28 through November 1, 2019

Pre-monitoring walk through visual inspections and chemical inventories were conducted concurrent with indoor air monitoring activities at each of the sampling locations. The objectives of the walk-through inspections and chemical inventories were to visually identify conditions that may affect or interfere with the indoor air monitoring, document the physical condition of the indoor air monitoring areas, and to confirm the sampling locations. Conditions identified during the visual inspections were generally consistent with conditions identified by Arcadis during visual inspections conducted in 2010, 2011, and 2013. Evidence of flooding (e.g., water marks on the exterior foundation walls) was evident on several buildings located closest to the FDR, potentially as a result of Hurricane Sandy, which severely impacted the lower east side of Manhattan in October 2012. Additionally, sewage water was observed in a storage room on the south east side in the building located at 1223 FDR Drive.

During the walk-through inspections, floor construction details for each building were documented and New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaires and Building Inventory Forms were completed (**Appendix A**). Photographs of the areas where samples were collected to document general background conditions and the chemical products present that potentially contain volatile chemicals during the walkthrough inspections are provided in **Appendix B**.

The locations selected for indoor monitoring are presented on **Figure 1** and are consistent with those shown in the ISMP. The selected locations for each building are the same as the locations sampled during the 2007, 2010, 2011, and 2013 indoor air monitoring events.

As identified in the photographic logs, small quantities of containers containing paints, solvents, cleaning supplies, and/or maintenance-related chemical products were present in each of the buildings during the walk-through inspections. These conditions are also similar to the conditions identified during the walk-through inspections associated with the previous sampling events. Removal of these potential interferences

arcadis.com G:\Projects\Consolidated Edison\East 11th Street\Indoor Air Report 01.2020\014202024573 Con Edison E 11 St_2019 Air Report.docx prior to collection of indoor air samples was not feasible. A portable organic vapor monitor (ppbRAE) was used to measure volatile organic compounds (VOCs) liberated from these contemporary chemicals. The measured concentrations of VOCs in each area monitored in each building were 0 parts per billion.

Photographic logs documenting the conditions/stored products at these locations are included as **Appendix E**.

Air samples for laboratory testing were collected using batch-certified clean, 6-liter SUMMA canisters equipped with laboratory pre-set flow regulators for 8-hour sample collection. Indoor air samples were collected from within the ground levels of each building within the breathing zone (approximately 3 to 4 feet above the floor). The date, times (start and end times), sample identification, and other required information were recorded on sample collection logs as described in the ISMP. The sample collection logs are included as **Appendix C**. Outdoor, ambient air monitoring was conducted from upwind locations each day indoor air samples were collected. Ambient air sampling locations are also presented on **Figure 1**.

Air samples were sent to TestAmerica Laboratories located in Knoxville, Tennessee via overnight courier for analysis of the project compound list analytes by United States Environmental Protection Agency (USEPA) Method TO-15. The project compound list included standard TO-15 VOCs, along with additional analyses for n-alkanes, branched alkanes, and other "indicator" compounds (the branched alkanes and other "indicator" compounds were reported as tentatively identified compounds). The laboratory provided ASP Category B-equivalent data packages for quality review. Laboratory data packages and associated quality control information were reviewed by qualified Arcadis personnel to verify they met the project-specific criteria for data quality. DUSRs were prepared that present the results from the data review for each sample data group; DUSRs are included as **Appendix D**. The DUSRs indicate that the laboratory results for each site met the data quality objectives and the data were considered usable.

The laboratory results for the East 11th Street OU-1 site are summarized in **Table 2**. Consistent with ISMP requirements, for comparison purposes, the indoor air results are compared to the NYSDOH's *FINAL Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006 with 2017 amendment)*, Upper Fence (F) Criterion for indoor air background data for fuel oil heated homes and the USEPA's 2001 *Building Assessment Survey and Evaluation (BASE) Study* guidance values for the 90th percentile background air levels to provide typical concentrations of VOCs in indoor air. These studies have been conducted, both nationally and in the State of New York, to provide information on indoor and outdoor air background levels in a variety of settings (e.g., residential or commercial buildings). Per NYSDOH guidance, the Upper F values from the NYSDOH Fuel Oil Study data may be used as initial benchmarks when evaluating residential indoor air, and the 90th percentile values from the EPA BASE data for indoor air in office and commercial buildings.

2 **RESULTS AND CONCLUSIONS**

Eighteen (18) indoor air samples (labeled based on building address), 4 ambient samples (AA-102919, AA-103019, AA103119, and AA-110119), and 2 duplicate samples for quality control purposes (DUP-103119 and DUP-110119) were collected for laboratory analysis. The sample collection logs are included on a CD as **Appendix C**; photographs documenting the sample locations and equipment set-up are included on a CD as **Appendix E**. The laboratory results are presented in **Table 2**.

The ISMP included the collection of five air samples from elevator shafts within the site buildings (one sample from an elevator shaft within each building sampled); however, based upon inspection with Con Edison prior to the 2010 monitoring event, the elevator shafts were unable to be accessed safely for visual inspection and sample collection without terminating elevator operation. Terminating elevator operation was not feasible; therefore, consistent with the previous monitoring events, elevator shaft samples were not be collected.

As indicated in **Table 2**, a total of 40 VOC analytes included in the TO-15 analyses (including analytes qualified as estimated because their value was less than the minimum calibration level but greater than the estimated detection limit) were detected in the 18 indoor air samples collected throughout the site. This is consistent with previous indoor air sampling results. A summary of the detected analytes include:

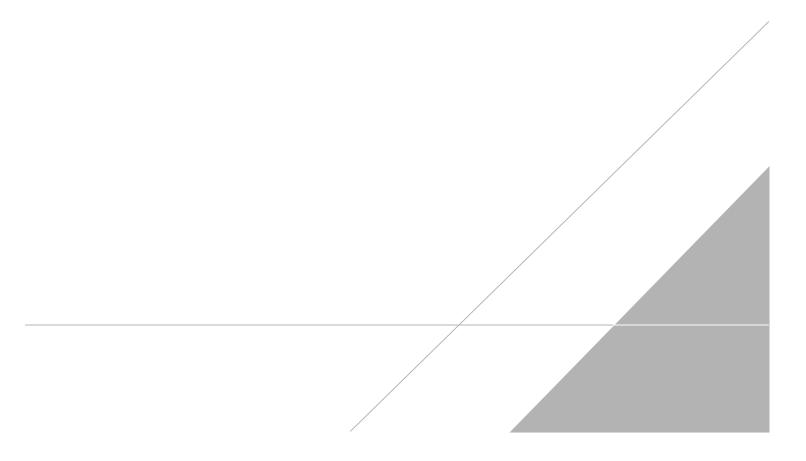
- Of the 40 TO-15 VOCs detected in indoor air, 30 were also detected in ambient (i.e., outdoor) air. The 10 analytes detected in indoor air that were not detected in outdoor ambient air included 8 chlorinated compounds (various compounds in multiple sample locations), bromomethane (5 sample locations), and naphthalene (6 sample locations).
- When compared to the concentrations detected in the ambient air samples, 25 of the 40 TO-15 VOCs were detected in indoor samples at concentrations similar to or greater than the outdoor concentrations. The TO-15 VOCs detected at higher concentrations indoors included 19 chlorinated compounds.
- Ten (10) of the TO-15 VOC analytes detected in indoor air samples were above the NYSDOH Upper F criterion: 1,2,4-trimethylbenzene (1 location), 1,3,5-trimethylbenzene (1 location),1,4-dichlorobenzene (7 locations), 2-butanone (1 location), 2-methyl-2-pentanone (1 location), chloromethane (1 location), chloroform (15 locations), methylene chloride (3 locations), naphthalene (1 location), tetrachloroethene (1 location). Four of those analytes were also present above the USEPA indoor air background level (1,2,4-trimethylbenzene (1 sample) chloroform [5 samples], methylene chloride (2 locations), and naphthalene (1 location).
- Commonly identified "fuel oil or petroleum products indicators" (e.g., n-butane, n-pentane, n-heptane, isooctane, isopentane and 2-methylpentane) that were included in the n-alkanes and branched alkanes analyte lists were identified in all outdoor ambient air samples and indoor air samples. Each of these "indicator" analytes was detected in multiple indoor air samples at concentrations higher than detected in the ambient air samples.
- Indene and thiopene were not detected in any of the samples collected; these compounds are commonly used as "Manufactured Gas Plant (MGP) indicators".
- Chloroform was detected in each of the indoor and outdoor samples collected for analysis, and was
 present at concentrations above both the NYSDOH Upper F and USEPA BASE 90th percentile values

arcadis.com G:\Projects\Consolidated Edison\East 11th Street\Indoor Air Report 01.2020\014202024573 Con Edison E 11 St_2019 Air Report.docx in all but two of the indoor air samples. Chloroform is a man-made by-product used in industrial processes and as a solvent for lacquers, floor polishes, resins, and adhesives, and; therefore, not related to MGP operations.

 Other TO-15 VOC compounds that were reported in indoor air above both the NYSDOH Upper F and USEPA BASE 90th percentile values at multiple locations (i.e., two or more locations) included 1,4dichlorobenzene, 4-methyl-2-pentanone, and methylene chloride. 1,4-dichlorobenzene is commonly used as in insecticides, fungicides, and pesticides, while 4-methyl-2-pentanone and methylene chloride are widely used as solvents for gums, resins, paints, varnishes, and lacquers.

Where analyzed, helium, used as a tracer gas, was not detected in any of the indoor air or ambient air samples. This indicates that no leaks, short-circuiting, or cross-contamination in the sampling equipment/procedures were present.

Based on the types of analytes detected, as well as the solvents, cleaning supplies, petroleum, oils, and maintenance-related chemical products stored within the ground-level areas/basements, and coupled with the absence of MGP indicator compounds, the data suggests that MGP-related impacts do not exist in the building areas monitored within the site.


3 WORK PLAN DEVIATIONS

The following deviations from the scope of work presented in the ISMP occurred during the field activities:

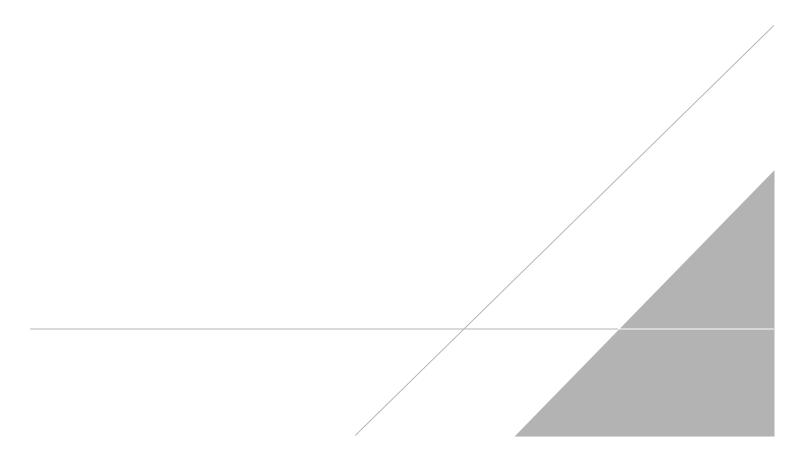
- Consistent with previous ISMP sampling events, due to the limitations of site access, the pre-monitoring
 walk through inspections and chemical inventories at each building were conducted concurrent with
 indoor air monitoring activities.
- Consistent with the previous ISMP sampling events, the elevator shafts were unable to be accessed for walk-through inspections and monitoring due to the inability to safely access the shafts without terminating elevator operation. Terminating elevator operation was not feasible; therefore the samples could not be collected.
- Haven Plaza North Co-Op Apartments and Saint Emeric's (including the Escuela Hispania Montessori Head Start School and the Church of Saint Emeric's) were not inspected and sampled at this time due to lack of access.
- The laboratory did not analyze for helium at 10 of the 22 sampling locations. The SUMMA canisters had already been purged by the laboratory when the analytical results were provided to Arcadis; therefore, the laboratory could not go back and re-analyze for helium.

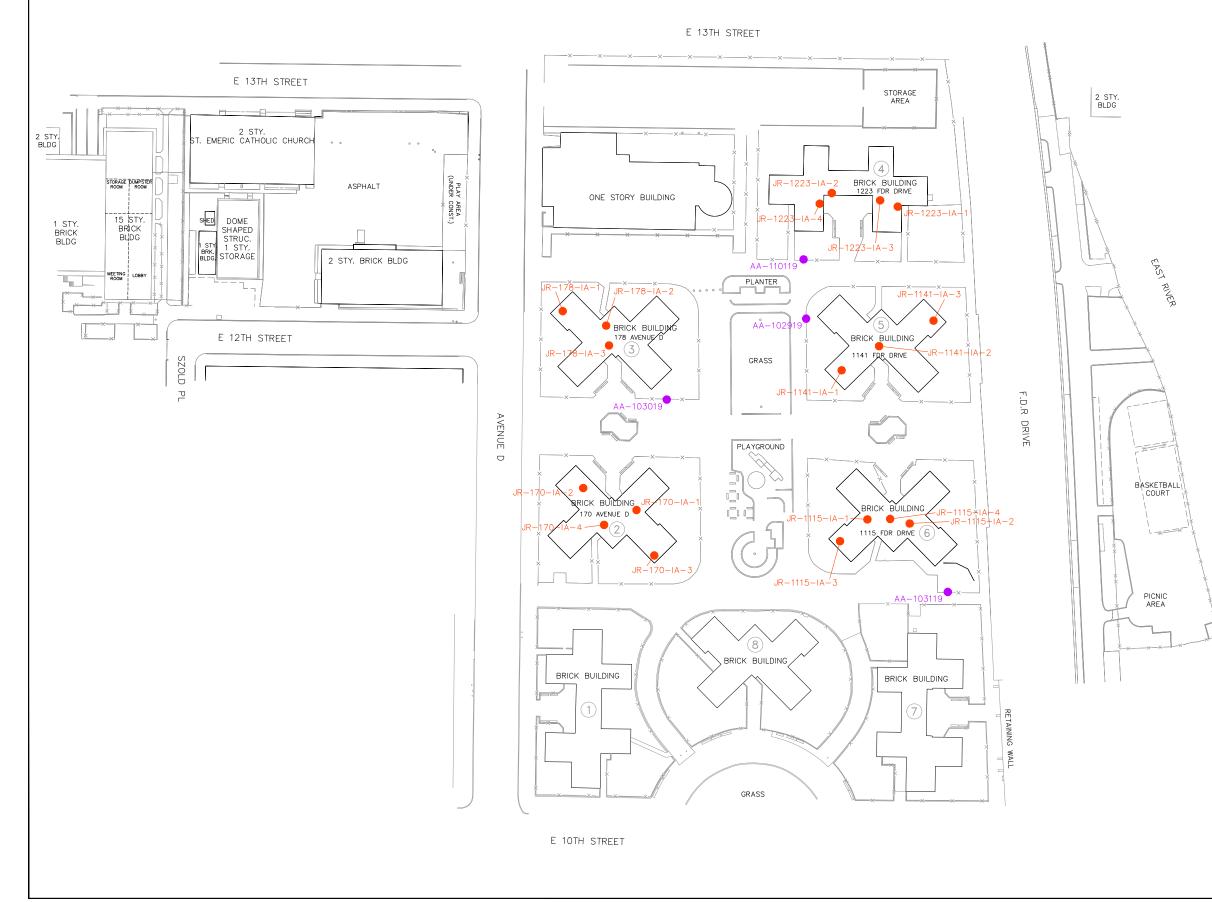
No additional deviations from the scope of work presented in the ISMP were noted.

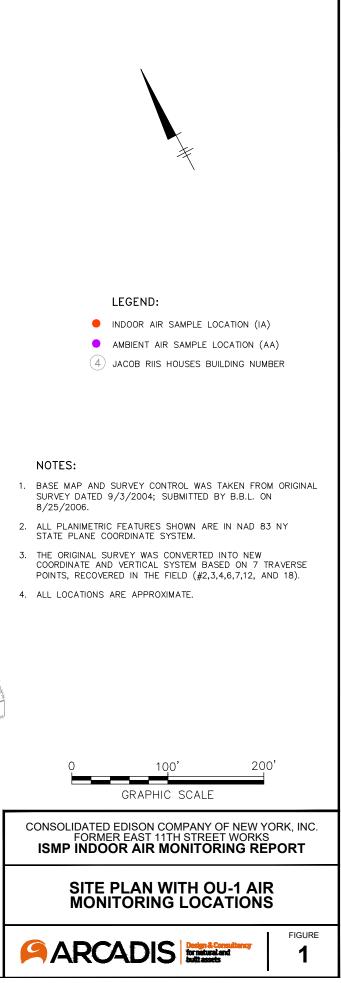
TABLES

Table 2 Indoor Air Analytical Results - East 11th Street OU-1

Location ID:	NYSDOH Fuel Oil Heat - Indoor Air	USEPA BASE Guidance Values		AA-102919	AA-103019	AA-103119	AA-110119	JR-1115-IA-1	JR-1115-IA-2	JR-1115-IA-3	JR-1115-IA-4	JR-1141-IA-1	JR-1141-IA-2	JR-1141-IA-3	JR-1223-IA-1	JR-1223-IA-2	JR-1223-IA-3	JR-1223-IA-4	JR-170-IA-1	JR-170-IA-2	JR-170-IA-3	JR-170-IA-4	JR-178-IA-1	JR-178-IA-2	JR-178-IA-3
Date Collected:	Upper Fence	90th Percentile	Units	10/29/19	10/30/19	10/31/19	11/01/19	10/31/19	10/31/19	10/31/19	10/31/19	10/29/19	10/29/19	10/29/19	11/01/19	11/01/19	11/01/19	11/01/19	10/31/19	10/31/19	10/30/19	10/30/19	10/30/19	10/30/19	10/30/19
Volatile Organic Compounds																									
1,1,1-Trichloroethane	2.5	20.6	ug/m3	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U [0.44 U]	0.44 U [0.44 U]	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,1,2,2-Tetrachloroethane	0.38		ug/m3	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U [0.55 U]	0.55 U [0.55 U]	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U
1,1,2-Trichloroethane	0.38	1.5	ug/m3	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U [0.44 U]	0.44 U [0.44 U]	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,1,2-Trichlorotrifluoroethane	2.5		ug/m3	0.56 J	0.56 J	0.54 J	0.53 J	0.51 J	0.57 J	0.53 J	0.56 J	0.53 J	0.55 J	0.56 J	0.52 J	0.55 J	0.54 J	0.53 J [0.56 J]	0.55 J [0.53 J]	0.55 J	0.56 J	0.51 J	0.54 J	0.54 J	0.53 J
1,1-Dichloroethane	0.38	0.7	ug/m3	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U [0.32 U]	0.034 J [0.039 J]	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,1-Dichloroethene	0.4	1.4	ug/m3	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U [0.16 U]	0.16 U [0.16 U]	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,2,4-Trichlorobenzene	0.47	6.8	ug/m3	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U [0.59 U]	0.59 U [0.59 U]	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U
1,2,4-Trimethylbenzene	9.8	9.5	ug/m3	0.47	0.11 J	0.43	0.15 J	0.43	0.45	0.37 J	0.33 J	0.40	0.37 J	0.34 J	0.42	0.23 J	0.47	0.39 U [0.12 J]	0.49 [1.0]	0.42	0.44	0.57	24	0.80	0.58
1,2-Dibromoethane	0.38	1.5	ug/m3	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U [0.61 U]	0.61 U [0.61 U]	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.42		ug/m3	0.12 J	0.12 J	0.12 J	0.12 J	0.12 J	0.12 J	0.12 J	0.13 J	0.12 J	0.12 J	0.13 J	0.12 J	0.12 J	0.12 J	0.13 J [0.12 J]	0.10 J [0.13 J]	0.13 J	0.12 J	0.11 J	0.11 J	0.11 J	0.11 J
1,2-Dichlorobenzene	0.48	1.2	ug/m3	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U [0.48 U]	0.48 U [0.48 U]	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
1,2-Dichloroethane	0.37	0.9	ug/m3	0.090 J	0.053 J	0.053 J	0.048 J	0.12 J	0.055 J	0.16 J	0.057 J	0.10 J	0.089 J	0.10 J	0.12 J	0.069 J	0.071 J	0.060 J [0.060 J]	0.18 J [0.17 J]	0.22 J	0.13 J	0.11 J	0.071 J	0.13 J	0.065 J
1,2-Dichloropropane	0.39	1.6	ug/m3	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U [0.37 U]	0.37 U [0.37 U]	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,3,5-Trimethylbenzene	3.9	3.7	ug/m3	0.25 J 0.35 U	0.39 U 0.35 U	0.21 J 0.35 U	0.39 U	0.12 J 0.35 U	0.14 J	0.14 J	0.39 U 0.35 U	0.13 J 0.35 U	0.13 J	0.12 J 0.35 U	0.13 J	0.39 U	0.14 J 0.35 U	0.39 U [0.39 U] 0.35 U [0.35 U]	0.14 J [0.22 J]	0.14 J	0.31 J 0.35 U	0.33 J 0.35 U	6.3	0.37 J	0.34 J
1,3-Butadiene 1,3-Dichlorobenzene	0.46	2.4	ug/m3 ug/m3	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U [0.35 U] 0.48 U [0.48 U]	0.35 U [0.35 U] 0.48 U [0.48 U]	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U	0.35 U 0.48 U
1,4-Dichlorobenzene	1.2	5.5	ug/m3	0.48 U	0.48 U	0.48 0	0.48 U	0.48 0 4.0	0.48 0	1.5	0.48 U	4.9	4.7	0.48 U 3.2	0.48 U	0.48 U	0.48 U	0.48 U [0.48 U]	1.4 [0.29 J]	0.48 0	0.48 U	0.48 0	0.48 U	1.8	0.48 U
1.4-Dioxane			ug/m3	0.22 J	2.6	0.13 J	0.72 U	0.72 U	0.12 J	0.22 J	0.72 U	0.72 U	0.72 U	0.72 U	0.30 J	0.19 J	0.72 U	0.20 J [0.72 U]	0.18 J [0.72 U]	0.13 J	0.72 U	0.72 U	0.13 J	0.72 U	0.72 U
2-Butanone	16		ug/m3	0.93	0.84 J	6.8	0.34 J	2.4	1.8	1.4	1.5	1.4	1.6	1.4	0.87 J	0.75 J	1.4	0.84 J [1.1]	2.5 [2.5]	1.4	1.3	1.5	23	2.4	0.95
2-Hexanone			ug/m3	0.089 J	0.091 J	1.1	0.82 U	0.37 J	0.38 J	0.18 J	0.12 J	0.14 J	0.20 J	0.16 J	0.088 J	0.098 J	0.24 J	0.073 J [0.15 J]	0.43 J [0.12 J]	0.19 J	0.14 J	0.19 J	0.47 J	0.35 J	0.077 J
4-Ethyltoluene			ug/m3	0.28 J	0.79 U	0.79 U	0.79 U	0.57 J	0.79 U	0.54 J	0.79 U	0.28 J	0.37 J	0.34 J	0.23 J	0.19 J	0.18 J	0.79 U [0.79 U]	0.79 U [0.56 J]	0.79 U	0.20 J	0.37 J	6.5	0.39 J	0.37 J
4-Methyl-2-Pentanone	1.9		ug/m3	3.0 J	0.32 J	0.82 U	0.24 J	0.53 J	0.84	0.32 J	0.97	0.23 J	0.33 J	0.45 J	0.37 J	1.1	0.30 J	0.25 J [0.82 U]	1.7 [0.45 J]	0.95	0.55 J	0.47 J	2.1 J	0.47 J	0.41 J
Acetone	115		ug/m3	7.5 J	7.6 J	15 J	3.9 J	30 J	22 J	21 J	13 J	14 J	18 J	15 J	11 J	8.3 J	12 J	7.4 J [13 J]	21 J [38 J]	16 J	13	13 J	18	23 J	9.6 J
Benzene	13	9.4	ug/m3	0.69	0.83	0.49	0.41	1.2	0.85	0.76	0.56	0.71	0.77	0.78	0.50	0.43	1.8	0.50 [0.37]	0.63 J [2.9 J]	0.51	1.4	0.95	0.73	3.4	0.58
Benzyl chloride			ug/m3	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U [0.83 U]	0.83 U [0.83 U]	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U
Bromodichloromethane			ug/m3	0.54 U	0.54 U	0.54 U	0.54 U	0.24 J	0.44 J	0.24 J	0.17 J	4.4	3.6	5.8	2.1	0.54 U	1.2	0.54 U [0.54 U]	0.59 [0.45 J]	0.54 U	1.5	1.0	0.37 J	12	0.15 J
Bromoform			ug/m3	0.83 U	0.83 U	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ	0.83 U	0.83 U	0.83 U	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ [0.83 UJ]	0.83 UJ [0.83 UJ]	0.83 UJ	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U
Bromomethane	0.48	1.7	ug/m3	0.31 U	0.31 U	0.31 U	0.31 U	0.088 J	0.31 U	0.31 U	0.088 J	0.31 U	0.087 J	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U [0.31 U]	0.34 [0.20 J]	0.086 J	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
Carbon Disulfide		4.2	ug/m3	0.21 J	0.17 J	1.1	0.035 J	0.14 J	0.45 J	0.87	0.74	1.7	0.59 J	0.27 J	0.22 J	0.098 J	0.11 J	0.041 J [0.62 U]	0.28 J [0.16 J]	0.39 J	0.14 J	0.23 J	0.42 J	0.99	0.12 J
Carbon Tetrachloride	1.3	1.3	ug/m3	0.49	0.50	0.50	0.46	0.50	0.51	0.51	0.47	0.52	0.53	0.56	0.48	0.46	0.51	0.44 [0.50]	0.76 [0.66]	0.50	0.58	0.43	0.52	0.58	0.48
Chlorobenzene	0.41	0.9	ug/m3	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U [0.37 U]	0.37 U [0.37 U]	0.37 U	0.37 U	0.37 U	0.37 U	0.084 J	0.37 U
Chloroethane Chloroform	0.39	1.1 1.1	ug/m3 ug/m3	0.21 U 0.19 J	0.21 U	0.21 U 0.22 J	0.21 U 0.26 J	0.21 U 4.4	0.21 U 2.8	0.076 J 2.9	0.14 J 1.2	0.084 J 26	0.21 U 22	0.092 J 34	0.21 U 13	0.21 U 0.57	0.21 U 6.8	0.21 U [0.21 U] 0.38 J [0.42]	0.21 U [1.0] 3.7 [2.9]	0.21 U 0.57	0.21 U 8.6	0.21 U 6.2	0.21 U 2.2	0.12 J 49	0.21 U 1.3
Chloromethane	4.2	3.7	ug/m3	1.1	0.25 J 1.4 J	1.4	0.26 J	4.4 2.3 J	1.7 J	2.9 1.8 J	2.5	20 1.6 J	1.5	1.8	1.6 J	0.57 1.5 J	0.0 1.6 J	0.38 J [0.42]	2.0 J [2.6 J]	2.0	8.0 1.2	1.1	1.4	1.5	1.3 1.4 J
cis-1,2-Dichloroethene	0.41	1.9	ug/m3	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.25	0.16 U [0.16 U]	0.16 U [0.16 U]	0.16 U	0.16 U	0.16 U	0.041 J	0.39	0.16 U
cis-1,3-Dichloropropene	0.38	2.3	ug/m3	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.16 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U [0.36 U]	0.36 U [0.36 U]	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Cyclohexane	6.3		ug/m3	0.40 J	0.33 J	0.26 J	0.17 J	0.26 J	0.26 J	0.24 J	0.23 J	0.40 J	0.37 J	0.36 J	0.62 J	0.13 J	0.20 J	0.30 J [0.14 J]	0.27 J [1.2]	0.22 J	0.77	0.38 J	0.39 J	0.53 J	0.31 J
Dibromochloromethane			ug/m3	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.48 J	0.37 J	0.60 J	0.28 J	0.68 U	0.17 J	0.68 U [0.68 U]	0.076 J [0.68 U]	0.68 U	0.15 J	0.12 J	0.68 U	1.5	0.68 U
Dichlorodifluoromethane	10	16.5	ug/m3	2.6	1.4	1.5	1.2	1.3	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.3	1.4	1.5 [1.3]	1.3 [1.4]	1.3	2.7	2.5	2.6	2.7	2.6
Ethylbenzene	6.4	5.7	ug/m3	0.51	0.23 J	0.22 J	0.14 J	0.32 J	0.29 J	0.27 J	0.23 J	0.38	0.40	0.41	0.35	0.17 J	0.70	0.15 J [0.11 J]	0.41 [0.70]	0.36	0.85	0.65	3.0	1.3	0.51
Hexachlorobutadiene	0.49	6.8	ug/m3	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U [0.85 U]	0.85 U [0.85 U]	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U
Isopropanol			ug/m3	3.0	3.0	2.3	1.6 J	20	3.5	11	3.8	7.6	6.1	7.0	5.7	5.4	3.6	12 [14]	5.7 [3.0]	4.8	11	6.1	8.7	9.5	4.1
Methyl tert-butyl Ether	14	11.5	ug/m3	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U [0.58 U]	0.58 U [0.58 U]	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U
Methylene Chloride	16	10	ug/m3	5.1 UB	1.9 UB	1.9 UB	2.0 UB	3.2 UB	5.4	3.5 UB	1.8 UB	3.5 UB	8.2	3.3 UB	3.3 UB	1.8 UB	2.2 UB	11 J [2.0 UBJ]	2.6 UBJ [18 J]	2.2 UB	25	5.0 UB	3.4 UB	3.3 UB	2.6 UB
m-Xylene & p-Xylene	11	22.2	ug/m3	2.0	0.60	0.75	0.42	1.0	0.92	0.89	0.79	1.2	1.3	1.2	1.4	0.55	0.57	0.44 [0.32 J]	1.5 J [3.8 J]	1.4	2.3	1.7	11	1.7	1.7
o-Xylene	7.1	7.9	ug/m3	0.65	0.19 J	0.31 J	0.17 J	0.37	0.36	0.34 J	0.29 J	0.47	0.46	0.43	0.65	0.24 J	0.31 J	0.15 J [0.13 J]	0.64 [1.2]	0.61	0.78	0.59	4.5	0.67	0.55
Naphthalene		5.1	ug/m3	1.0 U	1.0 U	1.0 U	1.0 U	0.89 J	1.0 U	0.46 J	1.0 U	1.0 U	1.0 U	1.0 U	0.48 J	1.0 U	0.44 J	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	8.1	0.81 J	1.0 U
Propylene			ug/m3	2.0 J	1.8 J	1.7 U	1.7 U	5.5 J	4.9 J	3.3 J	2.3 J	3.7 J	4.4 J	1.7 U	2.1 J	2.1 J	3.9 J	1.8 J [1.7 U]	2.1 J [7.5 J]	2.3 J	2.0 J	1.9 J	2.7 J	5.1 J	2.5 J
Styrene	1.4	1.9	ug/m3	0.44	0.34 U	0.34 U	0.34 U	0.67	0.22 J	0.31 J	0.25 J	0.53	0.53	0.44	0.16 J	0.34 U	0.34 U	0.34 U [0.34 U]	0.32 J [0.17 J]	0.30 J	0.32 J	0.46	0.70	0.92	0.48
Tetrachloroethene	2.5	15.9	ug/m3	1.6	0.88	0.63	0.50 J	0.66	0.58	0.90	0.62	1.6	1.5	1.5	0.55	2.0	2.4	0.48 J [0.63]	0.66 [0.59]	0.57	0.92	0.88	2.2	2.9	2.0
Tetrahydrofuran	0.78 57	43	ug/m3	1.2 U 3.4	1.2 U	1.2 U 1.6	1.2 U 0.86	1.2 U 2.8	1.2 U 3.7	1.2 U 2.4	1.2 U	1.2 U	1.2 U	1.2 U 3.0	1.2 U 16	1.2 U 1.6	1.2 U	1.2 U [1.2 U]	1.2 U [1.2 U]	1.2 U 1.8	1.2 U	1.2 U 3.3	1.2 U 3.6	1.2 U 4.3	1.2 U 3.0
Toluene trans-1,2-Dichloroethene	57	43	ug/m3 ug/m3	3.4 0.32 U	2.3 0.32 U	1.6 0.32 U	0.86 0.32 U	2.8 0.32 U	3.7 0.32 U	0.32 U	1.9 0.32 U	2.9 0.099 J	3.0 0.32 U	0.32 U	16 0.32 U	1.6 0.065 J	1.2 0.064 J	2.0 [0.72] 0.028 J [0.32 U]	2.3 J [11 J] 0.063 J [0.045 J]	1.8 0.32 U	6.0 0.072 J	3.3 0.088 J	3.6 0.32 U	4.3 0.11 J	3.0 0.32 U
trans-1,2-Dichloropropene	0.4	1.3	ug/m3	0.32 U 0.36 U	0.32 U 0.36 U	0.32 U	0.32 U 0.36 U	0.32 U 0.36 U	0.32 U 0.36 U	0.32 U 0.36 U	0.32 U 0.36 U	0.36 U	0.32 U	0.32 U	0.32 U 0.36 U	0.36 U	0.064 J 0.36 U	0.36 U [0.36 U]	0.36 U [0.36 U]	0.32 U 0.36 U	0.072 J 0.36 U	0.36 U	0.32 U 0.36 U	0.36 U	0.32 U
Trichloroethene	0.46	4.2	ug/m3 ug/m3	0.36 U	0.36 U	0.36 U 0.19 U	0.36 U 0.19 U	0.36 U 0.19 U	0.36 U	0.36 U 0.19 U	0.36 U 0.19 U	0.36 U 0.064 J	0.36 U	0.36 U 0.072 J	0.36 U 0.19 U	0.36 U	0.36 U	0.19 U [0.19 U]	0.36 U [0.36 U]	0.36 U 0.19 U	0.36 U 0.10 J	0.36 U 0.061 J	0.36 U 0.097 J	0.36 U	0.36 U 0.091 J
Trichlorofluoromethane	12	4.2	ug/m3	1.3	1.3	1.3	1.3	1.2	1.4	1.4	1.3	1.4	1.4	1.4	1.2	1.3	1.3	1.5 [1.3]	1.3 [1.6]	1.3	2.0	1.2	1.2	1.3	1.3
Vinyl Chloride	0.37	1.9	ug/m3	0.095 J	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.069 J	0.10 U [0.10 U]	0.10 U [0.10 U]	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	0.37	1.3	ug/IIIJ	0.035 5	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0	0.100	0.10 0	0.10 0	0.003 J	0.100[0.100]	0.100[0.100]	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0

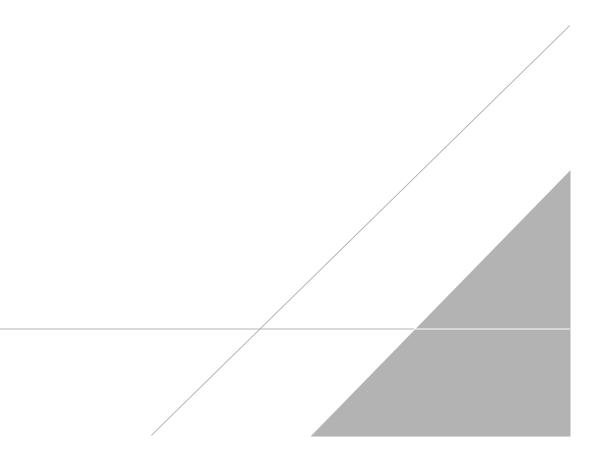

Table 2 Indoor Air Analytical Results - East 11th Street OU-1


	Location ID:	NYSDOH Fuel Oil	USEPA BASE		AA-102919	AA-103019	AA-103119	AA-110119	JR-1115-IA-1	JR-1115-IA-2	JR-1115-IA-3	JR-1115-IA-4	JR-1141-IA-1	JR-1141-IA-2	JR-1141-IA-3	JR-1223-IA-1	JR-1223-IA-2	JR-1223-IA-3	JR-1223-IA-4	JR-170-IA-1	JR-170-IA-2	JR-170-IA-3	JR-170-IA-4	JR-178-IA-1	JR-178-IA-2	JR-178-IA-3
		Heat - Indoor Air Upper Fence	Guidance Values 90th Percentile											-												
	Date Collected:	opport office		Units	10/29/19	10/30/19	10/31/19	11/01/19	10/31/19	10/31/19	10/31/19	10/31/19	10/29/19	10/29/19	10/29/19	11/01/19	11/01/19	11/01/19	11/01/19	10/31/19	10/31/19	10/30/19	10/30/19	10/30/19	10/30/19	10/30/19
n-Alkanes									-				1						P	P	r	1	-		-	
n-Butane				ug/m3	6.5	5.6	4.2	5.5	46 E	22	24	7.7	17	36	15	26	12	18	20 [3.8]	8.3 [29]	6.0	25	6.7	14	24	7.9
Pentane				ug/m3	1.8	1.4	1.1 J	1.3	2.9	1.5	2.2	1.6	2.5	2.9	2.2	47	0.76 J	0.97 J	5.6 [0.64 J]	4.6 [14]	1.3	7.6	2.2	26	2.7	1.5
n-Decane		15	17.5	ug/m3	0.83 J	2.3 U	1.1 J	0.24 J	1.9 J	40	1.6 J	2.7	1.4 J	1.1 J	1.3 J	1.2 J	1.2 J	1.4 J	2.3 U [0.39 J]	3.0 [1.1 J]	1.6 J	1.5 J	2.1 J	44	4.3	2.0 J
n-Dodecane		9.2		ug/m3	0.46 J	2.8 U	0.96 J	2.8 U	2.0 J	20	1.5 J	2.0 J	1.7 J	1.5 J	1.7 J	11	0.60 J	1.6 J	2.8 U [2.8 U]	2.5 J [2.8 U]	3.5	2.8 U	1.7 J	6.1	2.3 J	1.9 J
n-Heptane		18		ug/m3	0.45 J	0.36 J	0.34 J	0.21 J	0.62 J	0.60 J	0.46 J	0.35 J	0.46 J	0.57 J	0.46 J	0.44 J	0.29 J	0.34 J	0.37 J [0.23 J]	0.73 J [1.2]	0.38 J	0.96	0.56 J	6.6	0.66 J	0.51 J
n-Hexane		14	10.2	ug/m3	1.3	0.68 J	0.55 J	0.51 J	0.64 J	0.75	0.71	0.55 J	0.95	1.6	0.98	0.76	0.36 J	0.47 J	2.0 [0.38 J]	0.58 J [4.2 J]	0.50 J	5.2	1.4	2.0	1.1	0.82
n-Octane		5.2		ug/m3	0.23 J	0.15 J	0.19 J	0.12 J	0.55 J	1.6	0.31 J	0.27 J	0.21 J	0.30 J	0.24 J	0.29 J	0.19 J	0.22 J	0.14 J [0.13 J]	0.57 J [0.68 J]	0.21 J	0.46 J	0.33 J	6.8	0.44 J	0.40 J
Nonane		7.9	7.8	ug/m3	0.32 J	0.13 J	0.20 J	0.12 J	0.73 J	24	0.51 J	1.2	0.22 J	0.26 J	0.22 J	0.28 J	0.21 J	0.27 J	1.0 U [0.13 J]	0.39 J [0.40 J]	0.23 J	0.49 J	0.41 J	8.9	0.71 J	0.56 J
n-Undecane		12	22.6	ug/m3	0.37 J	2.6 U	0.53 J	2.6 U	0.79 J	17	0.56 J	1.2 J	0.41 J	0.41 J	0.41 J	0.68 J	2.6 U	0.44 J	2.6 U [2.6 U]	0.64 J [0.46 J]	0.86 J	2.6 U	0.59 J	25	1.5 J	0.81 J
Branched Alkanes	(Reported as TI	ICs)																								
2,3-Dimethylpentane		5.2		ug/m3	0.19 J	0.14 J	0.11 J	0.33 U	0.11 J	0.11 J	0.12 J	0.33 U	0.18 J	0.17 J	0.16 J	0.12 J	0.33 U	0.33 U	0.17 J [0.33 U]	0.11 J [0.47]	0.33 U	0.37 J	0.18 J	0.18 J	0.19 J	0.15 J
Isopentane				ug/m3	3.3	2.7	2.1	2.6	4.7	2.3	3.3	3.0	5.2	6.0	8.3	7.1	1.6	1.8	8.5 J [0.98]	4.2 J [20 J]	2.0	13	3.9	4.4	3.0	2.4
2-methylpentane				ug/m3	0.96	0.59	0.49	0.47	0.49	0.45	0.49	0.55	0.87	0.90	0.79	0.38	0.29	0.32	1.2 J [0.27 J]	0.49 J [3.1 J]	0.45	2.7	0.93	0.74	0.87	0.73
Other (Reported a	s TICs)																									
Indane				ug/m3	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	2.8	0.39 U [0.39 U]	0.39 U [0.39 U]	0.39 U	0.55	0.86	1.5	6.0	0.39 U				
Indene				ug/m3	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U [0.76 U]	0.76 U [0.76 U]	0.76 U									
Isoctane				ug/m3	0.68 J	0.44 J	0.44 J	0.19 J	0.38 J	0.38 J	0.36 J	0.36 J	0.52 J	0.55 J	0.52 J	0.22 J	0.16 J	0.16 J	0.37 J [0.15 J]	0.38 J [1.2]	0.34 J	1.1	0.56 J	0.63 J	0.60 J	0.52 J
Thiopene				uq/m3	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U [0.28 U]	0.28 U [0.28 U]	0.28 U	0.28 U	0.28 U	0.28 U	0.055 J	0.28 U				
1,2,3-Trimethylbenze	ne			uq/m3	0.39 U	0.39 U	0.24 J	0.39 U	0.34 J	0.20 J	0.26 J	0.39 U	0.26 J	0.20 J	0.24 J	0.25 J	0.39 U	0.24 J	0.39 U [0.39 U]	0.74 [0.33 J]	0.39 U	0.39 U	0.22 J	5.3	0.68	0.18 J
Isopropylbenzene		0.82		ug/m3	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.16 J	0.79 U [0.79 U]	0.79 U [0.13 J]	0.79 U	0.13 J	0.12 J	0.67 J	0.53 J	0.79 U				
Miscellaneous				, v						•					•			•								
Helium				%v/v	NA	NA	0.17 U	0.18 U	0.16 U	0.16 U	0.16 U	0.15 U	NA	NA	NA	0.16 U	0.18 U	0.19 U	0.13 U [0.16 U]	0.17 U [0.14 U]	0.16 U	NA	NA	NA	NA	NA


Notes:

Lab Qualifier	Definition
D	Sample required dilution prior to analysis.
J	Indicates an estimated value. The value is less than the minimum calibration level but greater than the estimated detection limit (EDL)
U	Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
[]	Identifies duplicate sample collected for quality control purposes.
bold font	Indicates analyte exceeded its NYSDOH Upper Fence Criterion.
shaded	indicates analyte exceeded the USEPA's BASE Guidance Value (90th Percentile).

FIGURES



APPENDIX A

NYSDOH Indoor Air Quality Questionnaires and Building Inventory Forms

INDOOR AIR QUAI	ORK STATE DEPARTMENT OF HEALTH JTY QUESTIONNAIRE AND BUILDING IN FER FOR ENVIRONMENTAL HEALTH	VENTORY
This form must be completed	for each residence involved in indoor air testing.	[Bldg# 1141]
Preparer's Name Albing	Redrepagic Date/Time Prep	ared <u>10/29/2019</u> 9:30am
Preparer's Affiliation	cadis Phone No. 21	2-365-4651
Purpose of Investigation	Indoor Air Sampling	
1. OCCUPANT:	1 0	
Interviewed: Y /N		
Last Name:	First Name:	
Address:		
County:		
Home Phone:	Office Phone:	
Number of Occupants/persons	at this location Age of Occupants	
2. OWNER OR LANDLOR	D: (Check if same as occupant)	
Interviewed: 🕢 N Mar	name Manager	
Last Name: Colly nore	First Name: Shawn	
Address: 474 Ea	st 10th Str.	
County: Manhaltan	1 X 4	
Home Phone:	Office Phone: 212-228.24	De
3. BUILDING CHARACTE	RISTICS	
Type of Building: (Circle app	propriate response)	
Residential School Industrial Church		

a

 $\mathbb{N}^{\mathbb{N}}$

.

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised	Ranch Split	Level Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? 117 units

If the property is commercial, type?

Business Type(s) N/A

Does it include residences (i.e., multi-use)? Y / N If yes, how many? N/A

Other characteristics:

Number of floors <u>13</u>	Building age 40 yers (1949)
Is the building insulated? (V)/ N	How air tight? Tight Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors Hore, No verbical air flow in disign, Possible air flow through gaps in piping, compactor Room trash our chute, or elevelor shaft.

Airflow near source Fan in the tank room, On during testing, Gaps between the door & Frame.

Outdoor air infiltration Through Pan air Exchange & doors opening & closing.

Infiltration into air ducts identified on the ground floor,

5. BASEMENT AND CONS	TRUCTION C	HARACTERIS	FICS (Circle all	that apply)				
a. Above grade construction	wood frame	concrete	stone	brick				
b. Basement type:	full	crawlspace	slab	other				
c. Basement floor:	concrete)	dirt	stone	other				
d. Basement floor:	uncovered	covered	5					
e. Concrete floor:	unsea	ledsealed	sealed with	Epoxy Floor	Contry			
f. Foundation walls:	poured block	stone	other					
g. Foundation walls:	unsealed	sealed sealed	with Pain					
h. The basement is:	wet	damp	dry	moldy				
i. The basement is:	finished	unfinished	partially finish	ned				
j. Sump present?	Ý N							
k. Water in sump?	Y /N/ not ap							
Basement/Lowest level depth below grade: <u>20</u> (feet) Tink room Sump Room it self b t below grade. Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)								
Identify potential soil vapor	entry points and	d approximate s	ize (e.g., cracks	, utility ports, drains)				
Identify potential soil vapor				, utility ports, drains)				
	d AIR CONDI	FIONING (Circl	e all that apply)					
6. HEATING, VENTING an Type of heating system(s) us Hot air circulation	d AIR CONDI	FIONING (Circl ing: (circle all th Hot w Radiant floor	e all that apply)					
6. HEATING, VENTING an Type of heating system(s) us Hot air circulation Space Heaters	d AIR CONDI ed in this buildi Heat pump n radiation Wood stove	FIONING (Circl ing: (circle all th Hot w Radiant floor	e all that apply) at apply – note ater baseboard	primary)				
6. HEATING, VENTING an Type of heating system(s) us Hot air circulation Space Heaters Electric baseboard The primary type of fuel use Natural Gas Electric Wood Coal	d AIR CONDI ed in this buildi Heat pump n radiation Wood stove d is: Fuel Oil Propane	FIONING (Circling: (circle all the Hot w Radiant floor Outdo Kerose Solar	e all that apply) at apply – note ater baseboard or wood boiler	primary)				
6. HEATING, VENTING an Type of heating system(s) us Hot air circulation Space Heaters Electric baseboard The primary type of fuel use Natural Gas Electric	d AIR CONDI ed in this buildi Heat pump n radiation Wood stove d is: Fuel Oil Propane	FIONING (Circl ing: (circle all th Hot w Radiant floor Outdo Kerose	e all that apply) at apply – note ater baseboard or wood boiler	primary)				

.

YN

Are there air distribution ducts present?

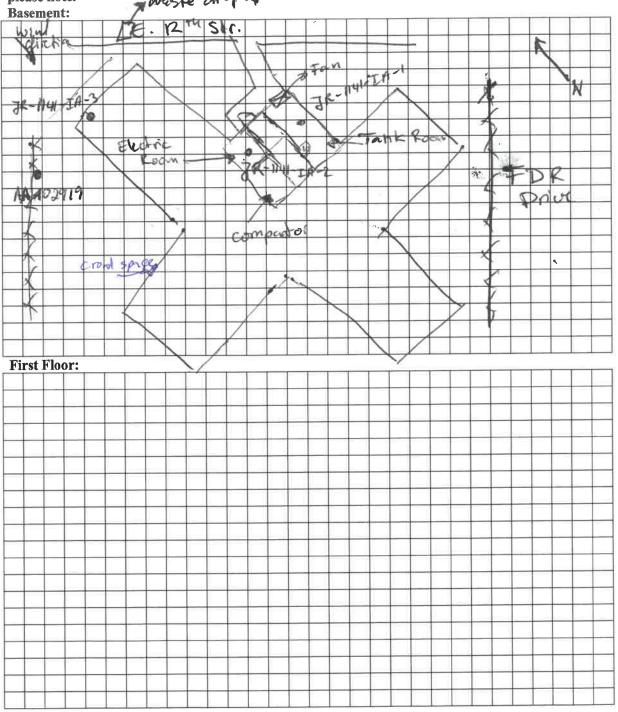
....

•

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Building	has no supplied air duck	bok duct work only							
fan.	physis in the tank roo	m from a weall							
7. OCCUPANCY Work area & Storage									
Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never									
Level	General Use of Each Floor (e.g., familyroom,	bedroom, laundry, workshop, storage)							
Basement	Electrice room, Jank Room,	Compactor Room 1/3, 2/3 Residential							
1st Floor -B	Residential								
2nd Floor									
3rd Floor									
4th Floor									
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR QU	ALITY							
a. Is there an a	attached garage?	Y/N							
b. Does the ga	rage have a separate heating unit?	Y/N/							
-	m-powered machines or vehicles e garage (e.g., lawnmower, atv, car)	Y / N / NA Please specify							
d. Has the buil	ding ever had a fire?	Y / 10 When?							
e. Is a kerosen	e or unvented gas space heater present?	Y / NWhere?							
f. Is there a wo	orkshop or hobby/craft area? Y / 🔊	Where & Type?							
g. Is there smo	king in the building?	Y / N How frequently?							
h. Have cleani	ng products been used recently?	W/N When & Type?							
i. Have cosmet	ic products been used recently?	Y / N When & Type?							

Page	5	
j. Has painting/staining been done in the last 6 months?	Y / Where	& When?
k. Is there new carpet, drapes or other textiles?	<u> </u>	& When?
l. Have air fresheners been used recently?	N N	When & Type? Disrdesise-
m. Is there a kitchen exhaust fan?	Y 🔊	If yes, where vented?
n. Is there a bathroom exhaust fan?	Y /🕲	If yes, where vented?
o. Is there a clothes dryer?	Y / 🕅	If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	0	When & Type?
Are there odors in the building?		
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic boiler mechanic, pesticide application, cosmetologist	or auto body sho	p, painting, fuel oil delivery,
If yes, what types of solvents are used? If yes, are their clothes washed at work?	hold cl	Quiners
If yes, are their clothes washed at work?	Y/N	
Do any of the building occupants regularly use or work response)	at a dry-cleanin	g service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) U Yes, work at a dry-cleaning service	No	
Is there a radon mitigation system for the building/struct Is the system active or passive? Active/Passive	cture? Y /NDat	e of Installation: <u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
9. WATER AND SEWAGE		
Water Supply: Public Water Drilled Well Drilled Well Sewage Disposal: Public Sewer Septic Tank	riven Well Leach Fiel	Dug Well Other: d Dry Well Other:
10. RELOCATION INFORMATION (for oil spill reside	ential emergenc	y)
a. Provide reasons why relocation is recommended:	NA	-
b. Residents choose to: remain in home relocate to	friends/family	relocate to hotel/motel
c. Responsibility for costs associated with reimbursement	nt explained?	Y / N
d. Relocation package provided and explained to reside	nts?	Y / N


.

11. FLOOR PLANS

 ${\cal A}^{(2)}$

.

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

12. OUTDOOR PLOT

8

e

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

1

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location Product Description	(units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo** <u>Y/N</u>
No chemico	ls				
No chemico Su photo	- log				

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

178 Avenue D

This form must be completed for each residence involved in indoor air testing.

			_Date/Time Prepared					
Preparer's Affiliation	ARCADIS	- >	Phone No. (631) 391	-5223				
Purpose of Investigati	on Indoe	r Air Samplin	9	\int				
1. OCCUPANT								
Interviewed: Y / N								
Last Name:		First Name:						
Address:								
County:								
Home Phone:		_ Office Phone:						
Number of Occupants	persons at this	location Age o	f Occupants					
2. OWNER OR LAN	DLORD: (Che	ck if same as occupant _)					
Interviewed: Y / N								
Last Name: Colly	nore	First Name:	Thawn					
Address: 454	East	10th Street	hawn					
County: Manhatte								
Home Phone:		_Office Phone: _2/2	-228-2406					
3. BUILDING CHARACTERISTICS								
Type of Building: (C	ircle appropriate	e response)						
Residential Industrial	School Church	Commercial/Multi-u Other:	se					

If the property is residential, type? (Circle appropriate response)

4

•

Ranch2-Family3-FamilyRaisedRanch SplitLevel ColonialCape CodContemporaryMobile HomeDuplexApartment HouseTownhouses/CondosModularLog HomeOther:
If multiple units, how many? 104
If the property is commercial, type?
Business Type(s)
Does it include residences (i.e., multi-use)? Y / N If yes, how many?
Other characteristics:
Number of floors 3 Building age $\sim 70 \text{ yrs}$
Is the building insulated? ()/ N How air tight? Tight / Average / Not Tight
4. AIRFLOW
Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:
Airflow between floors None. Only from doors & windows. Compactor has gir supply There are I fans a openings in the conservat.
Airflow near source Fan in tank from. Openings in the storage woon for airing.
Outdoor air infiltration For 20 openings in busement. Open dir bols in walle
Infiltration into air ducts MA- No air duct In Mu building absenced.

Ĭ

*

5. BASEMENT AND CONS	TRUCTION C	HARACTERIS	FICS (Circle all	that apply)
a. Above grade construction	: wood frame	concrete	stone	brick
b. Basement type:		crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsea	iled sealed	sealed with	
f. Foundation walls:	poured block	stone	other	
g. Foundation walls:	unsealed	sealed sealed	with <u>pant</u>	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ned
j. Sump present?	(¥)/N	[Sump in	1 tank roum	7
k. Water in sump?	Y / N / not ap	oplicable Cou	ild not access	s tank room
Basement/Lowest level depth	below grade:	20 (feet)		
Identify potential soil vapor Earthen floor in cran	entry points an	d approximates monete floors	ize (e.g., cracks Seem to he.	, utility ports, drains)
Drains				
6. HEATING, VENTING and	d AIR CONDI	FIONING (Circl	e all that apply)	
Type of heating system(s) use	ed in this buildi	ng: (circle all th	at apply – note	primary)
Hot air circulation Space Heaters Electric baseboard	Heat pump radiation Wood stove	Radiant floor	ater baseboard or wood boiler	Other
The primary type of fuel used				
Natural Gas Electric Wood Coal	Fuel Oil Propane	Kerose Solar	ene	
Domestic hot water tank fuel	ed by:	feam		_
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other Steam Piped In
Air conditioning:	Central Air	Window units	Open Window	s None

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y (N

No Due	it work present ' Small vent.	s and fars creq.	fe
<u></u>			
7. OCCUPAN	CY	Warkers	
Is basement/lo	west level occupied? Full-time Occ	asionally Seldom Al	most Never
Level	General Use of Each Floor (e.g., familyroo	m, bedroom, laundry, works	10p, storage)
Basement	Meter room compactor roos		
1st Floor - 3	Residences		
2nd Floor	Residence s		
3rd Floor	Residences		
4th Floor	Residences		
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR (
a. Is there an a	ttached garage?	Y /(Ñ)	
b. Does the gai	age have a separate heating unit?	Y/N/NA)	
c. Are petroleu stored in the	m-powered machines or vehicles garage (e.g., lawnmower, atv, car)	Y / N /NA Please specify	
l. Has the buil	ding ever had a fire?	Y /NWhen?	
. Is a kerosene	e or unvented gas space heater present?	Y (NWhere?	
. Is there a wo	rkshop or hobby/craft area? Y) Where & Type?	
. Is there smol	king in the building?	Y N How frequently?	euple Still Do
. Have cleanin	g products been used recently?		ally
. Have cosmeti	c products been used recently?	Y/ When & Type? Po	2

035911807 Appendix A.doc

۲

•

j. Has painting/staining been done in the last 6 months? Y / \widehat{W} Where &	2 When?								
k. Is there new carpet, drapes or other textiles? Y /N Where &	z When?								
I. Have air fresheners been used recently? $(X / N - V)$	When & Type?								
m. Is there a kitchen exhaust fan? Y $\widehat{\mathbb{N}}$	If yes, where vented?								
n. Is there a bathroom exhaust fan? Y / 🕅 🛛	If yes, where vented?								
o. Is there a clothes dryer? Y	If yes, is it vented outside? Y / N								
p. Has there been a pesticide application? Y/\widehat{W}	When & Type?								
Are there odors in the building? If yes, please describe:	possible urine								
Do any of the building occupants use solvents at work? ($\hat{\mathbb{O}}/\mathbb{N}$ (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, boiler mechanic, pesticide application, cosmetologist									
If yes, what types of solvents are used? Household Cleener	2								
If yes, what types of solvents are used? Household Cleaner If yes, are their clothes washed at work? Y/N									
Do any of the building occupants regularly use or work at a dry-cleaning s response)									
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service									
Is there a radon mitigation system for the building/structure? Y / N Date of Is the system active or passive? Active/Passive	of Installation:								
9. WATER AND SEWAGE									
Water Supply: Public Water Drilled Well Driven Well Sewage Disposal: Public Sewer Septic Tank Leach Field	Dug Well Other: Dry Well Other:								
10. RELOCATION INFORMATION (for oil spill residential emergency)									
a. Provide reasons why relocation is recommended:									
b. Residents choose to: remain in home relocate to friends/family	relocate to hotel/motel								
c. Responsibility for costs associated with reimbursement explained?	Y / N								
d. Relocation package provided and explained to residents?	Y/N								
035911807 Appendix A.doc									

178 Ave. D.

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

035911807 Appendix A.doc

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Т		1	-	1	Τ,	1 4	pin	T	10,0	T	as	lua	LI Y	mg.	stat	em	ent	и п	eip	100	ale	ine	site	on	au	pbo	;ra	pnic	<u>2 D</u>
1	-	1 1					1 1				-	-	-	-	-	-													
+	2	el	-	pn	V	101	15	1	g	-																			
				1					V										1	1									
															1			-	1	1	-	-							-
Τ									-	1	1	-	+	+	1	+	+	1	+	-		-					-	-	-
+			_	-	-	+	-	-	-	-	+	+	+	+	-	-	-	-	-	-		-	-					_	-
+	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		L									
+	-		_		-	-																							
	_										1																		
																											-		
T						1	-				1	1	+	-	1	-	-	-	-			-							-
t		-	-	-	-	-	-	-	-	-	-	-	-	+	-	+		-			_						_	_	
┝	-	-	-	-	-		_		-	_	-	<u> </u>	-	-	-	-	-							_					_
+	_	_								_											<u>, </u>						_		
																						1				-	-		_
T									-	-	-	1		-	-	-	-								-		-	-	_
t	+	-	-								-		-								_		-		-	-	_		_
┢	+		_				_			_		-	-	-	-		-												
1	_	_																											
			_																										
												1		1										-		-	-	-	_
t	+				-		-			-	-	-		-		-		-	-	-		- 1	-		-	-	\rightarrow		_
+	+		-					-				-		-		-	-	-	-	_	-		_		_		_		_
+	-			-	_	-	_	_		_																			_
				_																									
																													_
	T																			-		-	-	-	-	-	-	-	_
1								-			-	-	-	-	-	-					-		-	\rightarrow	-+	\rightarrow	-		_
-	+	-	-	-			-		-		_	-	_	-	-								-			-	_	_	_
-	+	-	_	-	_	-	_)	_						_		_		_							
	-	_	_																	_									
										_		_																	
																						-		-	-	-	-	-	_
	1								-	-							-	-+	-	-+	-	-	-	-+	-	-	\rightarrow	-	_
\vdash	+	-	-	-	-		-	-+				-				-	-		-	-	-	-+	-	-	\rightarrow	-	\rightarrow		_
-	+		-		-	-	-	-	-	_	_	_	_	_			_												
	-	_	_		_																								
																													_
																	-	-	-		-		+		-		-	-	-
	+	-	-	-	-		-	-	-								-	-+	-+	-	+	+	+	-	-+		+	-	
-	+		-	-	-	-+	-	-	+	-	-	-	-					-	-	-	_	_	_	_	_	_	-+	_	
-	+	-	-	-	-		_	_	_	_											_			_					_

035911807 Appendix A.doc

13. PRODUCT INVENTORY FORM

,

.

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	(units)	Condition*	Ingredients	Field Instrument Reading (units)	Photo** <u>Y/N</u>
	NO CHEM	CALS	IDENT!	FIED		
						_

* Describe the condition of the product containers as **Unopened (UO)**, Used (U), or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

170 Avenue ()

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Pylan	Corbett	_ Date/Time Prepared <u>10 (30/19</u>					
Preparer's Affiliation	Arcad	is	Phone No. <u>631-391-5203</u>					
Purpose of Investigation	on Fndo	or Air Sampl	ling					
1. OCCUPANT	:		0					
Interviewed: Y (N)								
Last Name:		First Name:						
Address:								
County:								
Home Phone:		Office Phone:						
Number of Occupants/	persons at this	s location Age	of Occupants					
2. OWNER OR LAN	DLORD: (Ch	eck if same as occupant)					
Interviewed: Y / N								
Last Name:	gnore	First Name:	Shawn					
Address: 459	. Lag+	10th Street						
County: Marhat	tan							
Home Phone:		Office Phone: 212	- 228-2400					
3. BUILDING CHARACTERISTICS								
Type of Building: (Cir	rcle appropria	te response)						
Residential Industrial	School Church	Commercial/Multi-u Other:	ISC					

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised	Ranch Split	Level Colonial
Cape Cod	Contemporar	y Mobile Home
Duplex	Apartment House	
Modular	Log Home	Other:
If multiple u	units, how many?	[104 RA
If the prope	rty is commercial, type?	,
Business Tyj	pe(s)/OA	e
Does it inclu	de residences (i.e., multi-	use)? Y N If yes, how many? <u>10 4</u>
Other chara	cteristics:	
Number of f	loors 13	Building age 42
Is the buildin	ng insulated? Y) N	How air tight? Tight / Average / Not Tight
4. AIRFLO	W	
Use air curr	ent tubes or tracer smo	ke to evaluate airflow patterns and qualitatively describe:
Airflow betw	a 10 - 01	open gops in piping or stairwell

Airflow near source cabinet room and TANK room vents in

Outdoor air infiltration Fan in tank room for venting

Infiltration into air ducts

Ducts in ground floor NO Air

5. BASEMENT AND CON	NSTRUCTION C	HARACTERIS	FICS (Circle all	that apply)
a. Above grade construction	on: wood frame	concréte	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsea	aled sealed	sealed with	
f. Foundation walls:	poured block	stone	other	
g. Foundation walls:	unsealed	sealed sealed	l with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finisl	ned
j. Sump present?	50/ N	Tunk 100	m	
k. Water in sump?	🕅 / N / not a	pplicable		
6. HEATING, VENTING				
Type of heating system(s) Hot air circulation		ing: (circle all th Hot w Radiant floor		
The primary type of fuel u	ised is:			
Natural Gas Electric Wood Coa	Fuel Oil Propane al	Keros Solar	ene	
Domestic hot water tank f	ueled by: 5+	eam		
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other <u>Steum</u> filld
Air conditioning:	Central Air	Window units) Open Window	vs None

•

4

Are there air distribution ducts present?

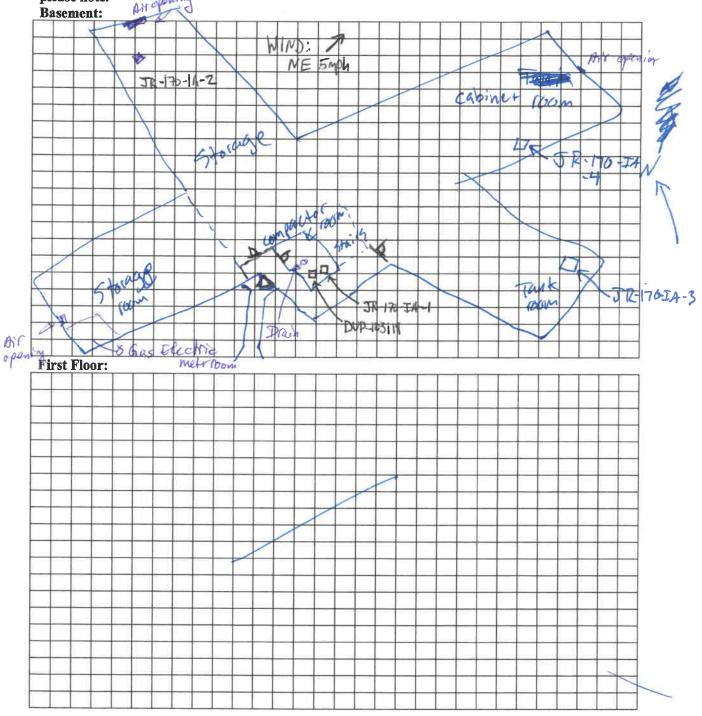
.

.

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

YN

pian diagram.	N/A - no supplied a	ir to building except for	
	small ventilation ve	ents in well (besenrent)	
7. OCCUPANCY		maintenance start	
Is basement/lowest l	level occupied? Full-time Occ	casionally Seldom Almost Never	
Level Gen	eral Use of Each Floor (e.g., familyroo	om, bedroom, laundry, workshop, storage)	
Basement	ompactor room, Tan	Kroom, Storage, Tank Kom	
1 st Floor	residences		
2nd Floor	1 chidences		
3rd Floor	1ebidences		
4th Floor	10 Sidenley		
8. FACTORS THAT	Г MAY INFLUENCE INDOOR AIR	QUALITY	
a. Is there an attach	ed garage?	YN	
b. Does the garage h	nave a separate heating unit?	Y/N/NA	
	wered machines or vehicles ge (e.g., lawnmower, atv, car)	Y / N / NA Please specify	
d. Has the building	ever had a fire?	Y (NWhen?	
e. Is a kerosene or u	nvented gas space heater present?	Y /N Where?	
f. Is there a worksho	op or hobby/craft area? Y /	N Where & Type?	
g. Is there smoking	in the building?	Y (N How frequently? Can half	
h. Have cleaning pro	oducts been used recently?	Y/N When & Type?	
i. Have cosmetic pro	oducts been used recently?	YN When & Type? Ast on genu	nd


Page 5		
j. Has painting/staining been done in the last 6 months?	N Where & V	When?
k. Is there new carpet, drapes or other textiles?	Y / NWhere & V	When?
I. Have air fresheners been used recently?	Y/N WI	hen & Type?
m. Is there a kitchen exhaust fan?		yes, where vented?
n. Is there a bathroom exhaust fan?		yes, where vented?
o. Is there a clothes dryer?	Y/N If	yes, is it vented outside? Y / N hen & Type?
p. Has there been a pesticide application?	Y/W W	hen & Type?
Are there odors in the building?		
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist		
If yes, what types of solvents are used?	1 Golvents	!
If yes, are their clothes washed at work?	W/N	
Do any of the building occupants regularly use or work at response)	a dry-cleaning se	ervice? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No	
Is there a radon mitigation system for the building/structu Is the system active or passive? Active/Passive	re? Y / N Date of	Installation:
9. WATER AND SEWAGE		
Water Supply: Sewage Disposal: Public Water Drilled Well Driv	en Well Leach Field	Dug Well Other: Dry Well Other:
10. RELOCATION INFORMATION (for oil spill resident	tial emergency)	
a. Provide reasons why relocation is recommended:	NA	
b. Residents choose to: remain in home relocate to fr	iends/family	relocate to hotel/motel
c. Responsibility for costs associated with reimbursement	explained?	YN
d. Relocation package provided and explained to residents	:?	Y /N

*

270 Ave. 0

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

12. OUTDOOR PLOT

÷

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

																												1
									1	1		1	1	1	1	1	1	\top	1		+	-	1		-		-	1
																												1
																												1
																					1					1		İ
									1	1	0	0		1	-	14	te	11	n	e		4	10	EL	4	190	-	t
										De		9		0	1	1		-	1					1			-	t
																												t
																			1									t
																												t
						1															-							T
																			1	1								t
										1	1	1				1												t
										1			\square		-	1	-					-						t
											1	1	1	1	1	1	1		1								-	r
											1		1	1	-	1				1								r
					1	1	1	1	1		1		1	1			-	-		1	-			-	-	-	-	-
				1	1	1		-		\vdash	1	+	1	1	-	-				-	-	-		-	-	-	-	Ì
		1	\square	1	1	1	1	1	1	1	1	1	t	-	-					-		=	-	+	-	-	-	
			1	1		1	+			1	1	-	1	-			-		-			-		\rightarrow	-	-	+	1
		-	1	1	1	1	1	1		-	1	+				-	-	-	-		-	-	-	-		-	-	-
		-	-	1	1	+	1	1-	-	-	+	1-	-	-					-			-	-	-	+	-		-
			1	+	1	1	+	1			-				-	-			-		-	-	-	-+	-	-	-+	1
		-		1	1	1	+	-	-	-		-	-	-					-		-	-	-	-+	-+		-+	-
_		-	-	-	1	+	-			-		-	-								-	-	-	-	-	-	-	
		-	-	1	-	+	+	 		-	-	+	-				-	-	-		-	-	\rightarrow	-	-	-	-	
			-	-		+	+		-	-	-	-		-	-	-	-	-			-	-	+	+	-+	-	-	_
			-	-	-	-	+		-	-	-	-				_	_					-	-	+	+	-+	\rightarrow	
_	-		-	-	-	-	+	-	-	-						_				_			-	-	-	-	\rightarrow	-
			-	-		-	+							-			-	_			-	-	-	-	-	-	\rightarrow	_
	-				-	-	-			-		-	-				_	_	_		\rightarrow	-	\rightarrow	-	-	-	+	-
	-		-	-	-	-	+			-			_		_		_					_	-+	-	-	-	_	-
-		-	-		-	-	+	-	-			-		-		_	_	_	_		-	\rightarrow	-	-	-	-	_	_
_					-	-	-				_					_	_	_			\rightarrow	-	_	-	_	_	_	
	_		-	1	-		-		-	_					_	_	_				-+	_		_	_		_	_
-	-		-		-				_								-			_	\rightarrow	$ \rightarrow $	_		_		_	
-	_		_		-		-								_		_		_	\rightarrow		$ \rightarrow $	_		_			
_																_	_											

13. PRODUCT INVENTORY FORM

4

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo** <u>Y/N</u>
4	NAAR					
3	None					

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

Bldg. 1115

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Albina Redrepagic Date/Time Prepared 10/31/2019
Preparer's Affiliation Arcadis U.S. Inc. Phone No. 212-365-4651
Purpose of Investigation Indoor Air Sampling
1. OCCUPANT:
Interviewed: Y /N
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
Number of Occupants/persons at this location Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: X/N
Last Name: Harrison First Name: dorance Lawrence
Address: 152 Scott Str.
County: # Wilkes Barre, PA 18702
Home Phone: Office Phone: 570-328-5786
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)

Residential Industrial

4

.

School Church

Commercial/Multi-use
Other: _____

If the property is residential, type? (C	fircle appropriate response)
Ranch2-FamilyRaisedRanch SplitCape CodContemporaryDuplexApartment HouseModularLog Home	Townhouses/Condos
If multiple units, how many? $\underline{13 \times 9}$	5 =104
If the property is commercial, type?	
Business Type(s)	s
Does it include residences (i.e., multi-us	e)? Y / N If yes, how many?
Other characteristics:	
	Building age 70 yer
Is the building insulated? \widetilde{Y} N	How air tight? Tight Average/ Not Tight
4. AIRFLOW	
Use air current tubes or tracer smoke	to evaluate airflow patterns and qualitatively describe:
Airflow between floors	
Airflow near source	
Outdoor air infiltration	
Infiltration into air ducts	

•

•

5. BASEMENT AND CONST	FRUCTION C	HARACTERIST	ICS (Circle al	l that apply)
a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full &	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	eovered	covered with	Concret
e. Concrete floor:	unsea	led sealed	sealed with _	
f. Foundation walls:	poured block	> stone	other	
g. Foundation walls:	unsealed	sealed sealed	with	
h. The basement is:	wet (damp	dry	moldy
i. The basement is:	finished	unfinished	partially finis	hed
j. Sump present?	Ø∕N			
k. Water in sump?	Y N / not ap	plicable		
Basement/Lowest level depth	below grade:	(feet)		
Identify potential soil vapor e	ntry points and	d approximate si	ze (e.g., cracks	s, utility ports, drains)
6. HEATING, VENTING and	AIR CONDIT	FIONING (Circle	e all that apply)	
Type of heating system(s) use	d in this buildi	ng: (circle all tha	at apply – note	primary)
Hot air circulation Space Heaters Stream Electric baseboard	Heat pump radiation Wood stove	Radiant floor	ter baseboard or wood boiler	Other
The primary type of fuel used				
Natural Gas	Fuel Oil	Kerose	ne	
Electric Vood Coal	Propane	Solar		
Domestic hot water tank fuele	ed by:	ean		
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Window	vs None

•

L

		Page 4

.

+

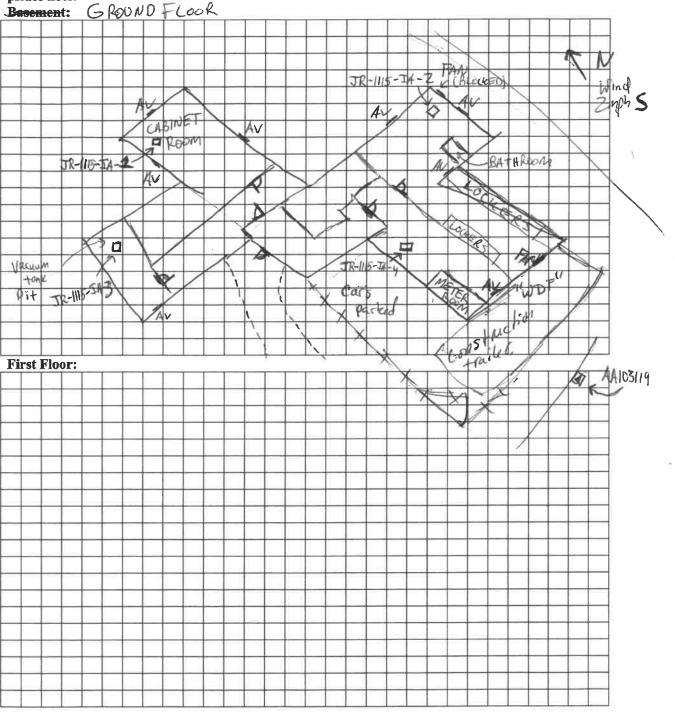
Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY	
Is basement/lowest level occupied? Full-time Occas	sionally Seldom Almost Never
Level General Use of Each Floor (e.g., familyroon	n, bedroom, laundry, workshop, storage)
Basement Starage	
1st Floor - 13 Residential	
2nd Floor	
3rd Floor	
4th Floor	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR Q	UALITY
a. Is there an attached garage?	Y/N
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y / N /NA Please specify
d. Has the building ever had a fire?	Y / N When?
e. Is a kerosene or unvented gas space heater present?	Y /N Where?
f. Is there a workshop or hobby/craft area? (y) N	Where & Type?
g. Is there smoking in the building?	Y N How frequently? dutside door
h. Have cleaning products been used recently?	Y/N When & Type?
i. Have cosmetic products been used recently?	Y N When & Type?

× "6"	0		
j. Has painting/staining been done in the last 6 months?	Y N Where	& When?	
k. Is there new carpet, drapes or other textiles?	Y /N Where	& When?	
l. Have air fresheners been used recently?	(y) N	When & Type?	
m. Is there a kitchen exhaust fan?	YN	If yes, where vented?	
n. Is there a bathroom exhaust fan?	Y 🔊	If yes, where vented?	
o. Is there a clothes dryer?	YN	If yes, is it vented outside? Y / N	
p. Has there been a pesticide application?	Y/N	When & Type?	
Are there odors in the building? If yes, please describe: <u>Cleaning Liquids</u>	wet ai	c/compretir-garbage	2
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic of boiler mechanic, pesticide application, cosmetologist		••	
If yes, what types of solvents are used? Cleaning	Sapplie	5	
If yes, what types of solvents are used? <u>Cleaning</u> If yes, are their clothes washed at work?	Y/N		
Do any of the building occupants regularly use or work a response)			
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Unly Yes, work at a dry-cleaning service	No		
Is there a radon mitigation system for the building/struct Is the system active or passive? Active/Passive	ure? Y N Date	of Installation:	
9. WATER AND SEWAGE			
Water Supply: Sewage Disposal: Public Water Drilled Well Drive Public Sewer Septic Tank	ven Well Leach Field	Dug Well Other: Dry Well Other:	
10. RELOCATION INFORMATION (for oil spill residen	tial emergency)	
a. Provide reasons why relocation is recommended:			
b. Residents choose to: remain in home relocate to f	riends/family	relocate to hotel/motel	
c. Responsibility for costs associated with reimbursement	explained?	Y / N	
d. Relocation package provided and explained to resident	s?	Y / N	

. .


.

11. FLOOR PLANS

÷

4

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

12. OUTDOOR PLOT

£

a.

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

		T	<u> </u>	T	1	Y	1	1	1		1	T	1	T	eme	T		T	T	T		DICC			P 03		PARA	
+	-	+-	+-	+	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-							L
-	-	-	-			-		<u> </u>				<u> </u>				<u> </u>	<u> </u>											L
_	-	L	1		-				-								_											
																									_			
											1		1	1														F
1	1	1	1	1	\square		-	-			1	1	\vdash	\vdash	+	1	1								-			-
+	+	t -	+	+	\vdash	-	+	\vdash		-	-	-	\vdash	+	+	1		-		-		_	_	-				-
-	+-	-	+	-	-	-	-		-		-	-	-	-	+	-	-	-	-	-		-	-	-	_	-	-	-
-	+	+	+	-	-	-	+	+	-	-	-	-	-	-	-	-		<u> </u>	-					_	_			_
-	+		-	-			-						_	_	_	_								_				
-	-	1																						_		_		
_																												
																												_
														1														
1	-						-			_					1		-			-	-			-	-	-		-
+	+	1	+	-	-	-	-	-					-	-	-	-	-					-		-	-	-	-	-
+	+	-	-	+	-			-				-	-	-		<u> </u>						_		_	_	-	_	_
+	-		-	-	-		<u> </u>	-	_		-			_	-		-		_		_	_	_		-		-	_
_	-						-								_									_				
		L																										
			1																									
														1														
														1											-			_
1	1	1					-			-						-			-	-	-	-	-	-	-	-	-	_
+	+	<u> </u>	-	-			-			-	-	-		-	-			-		-	-	-	-	-	-	-	-	_
+	-	-	-	-		_		-		-		-		-	-	-	-	-	-	-	-+	-	-	-	-	-	-	_
-	-	-	-	-	_		-	_		_	5		-							_	_	_	_	_	_	_	_	_
-		<u> </u>	-																		_			_	_	_		
-	-																											
_																												
																							T	T		T		
	1																				-	\neg	-	-	+	+		
																			-		-+	+	+	+	+	+	+	-
-			-	-				-		-	-		-	-	_	-	-	-	-	-	-	\rightarrow	+	-	-	+	-	-
-	-		-	-	_				-	_	-		_		_	_	-	-	-	-	+	-	-	\rightarrow	\rightarrow	-	-	_
-		-	-							_							_	_	-	_	-	_	-	_		-	_	_
_						_							_												_			

13. PRODUCT INVENTORY FORM

ø

Make & Model of field instrument used: _

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo* <u>Y/N</u>

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name 🧾	Albina Red	repagic	Date/Time Prepared $\frac{11/1/19}{10:45an}$ Phone No. $2/2 - 365 - 4651$
Preparer's Affiliation	n Arcadis	U.S., Inc	Phone No. 212-365-4651
Purpose of Investiga	tion In	dios Air S	Sampling
1. OCCUPAN			
Interviewed: Y / N	2		
Last Name:		First Name:	
Address:			
County:			
Home Phone:		Office Phone:	
Number of Occupant	ts/persons at this	location Ag	ge of Occupants
2. OWNER OR LA	NDLORD: (Ch	eck if same as occupa	nt)
Interviewed: 🔗 / N			
Last Name: Har	rison	First Name:	Lawrence
Address:/	52 54	ooth Street	
County: Coilkin	s Barre, P	A 18702	
Home Phone:		Office Phone:	70-328-5786
3. BUILDING CHA	RACTERISTI	ICS	
Type of Building: (Circle appropria	te response)	
Residential Industrial	School Church	Commercial/Mul Other:	ti-use

If the property is residential, type? (Circle appropr	ate response)
Ranch2-Family3-FamilyRaisedRanch SplitLevel ColonCape CodContemporaryMobile HomDuplexApartment HouseTownhouses.ModularLog HomeOthe	ial e
If multiple units, how many?	
If the property is commercial, type?	
Business Type(s)	
Does it include residences (i.e., multi-use)? Y / N If yes	
Other characteristics:	, now many?
Number of floors <u>6</u> Building age	VO UR OS
Is the building insulate to a large	7.
4. AIRFLOW	Fight / Average / Not Tight
Use air current tubes or tracer and	
Use air current tubes or tracer smoke to evaluate airf Airflow between floors	low patterns and qualitatively describe:
Airflow near source Air shafts, openings in the wal	1, Jans, doors & windows
Outdoor air infiltration Open Window; Fins, Open air st	afts in the wells.
Infiltration into air ducts	

035911807 Appendix A.doc

5. BASEMENT AND CONS	STRUCTION CHARACTERI	STICS (Circle all	that apply)
a. Above grade construction	: wood frame concrete	stone	brick
b. Basement type:	full crawlspace	slab	other
c. Basement floor:	concrete dirt	stone	other
d. Basement floor:	uncovered covered	covered with	
e. Concrete floor:	unsealed sealed	sealed with	
f. Foundation walls:	poured block stor	e other	
g. Foundation walls:	unsealed seal	ed with	
h. The basement is:	wet damp	dry	moldy
i. The basement is:	finished unfinished	partially finis	hed
j. Sump present?	y /N		
k. Water in sump?	Y/N/not applicable		
Basement/Lowest level dept	h below grade:(feet)		
20% 2 Aloor 's	entry points and approximate coverd w/ dift. per intrusion point/	H of Hu d	s, utility ports, drains)
6. HEATING, VENTING an	d AIR CONDITIONING (Cir	cle all that apply)	
Type of heating system(s) us	ed in this building: (circle all	that apply – note	primary)
	m radiation Radiant floo	water baseboard r loor wood boiler	Other
The primary type of fuel use	ed is:		
Natural Gas Electric Wood Coal	Fuel Oil Kero Propane Sola	osene r	
Domestic hot water tank fue	led by: <u>Skam</u>	ē	
Boiler/furnace located in:	Basement Outdoors	Main Floor	Other Separte Buildy
Air conditioning:			

YN

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

No air return/supply ductwork.								
A. OCCUPANCY (as basement/lowest level occupied? Full-time Occasionally Seldom Almost Never Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage) Basement Compactors from, Tank room, Electric from, Storage Basement Residuital Basement Compactors from, Tank room, Electric from, Storage Basement Residuital Basement Plessing Basement Storage Store Storage Basement Y/N Store Store Basement Storage Store Y/N Basement Y/N Basement Y/N								
Is basement/lowest level occupied? Full-time Occasi	onally Seldom Almost Never							
Level General Use of Each Floor (e.g., familyroom,	bedroom, laundry, workshop, storage)							
Basement Compados room, Tank room, Ele	chic room, Storage							
A 0 0 1 1								
2nd Floor								
3rd Floor								
4th Floor								
8. FACTORS THAT MAY INFLUENCE INDOOR AIR QU	JALITY							
a. Is there an attached garage?	Y/N							
b. Does the garage have a separate heating unit?	Y/N/NA							
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)								
d. Has the building ever had a fire?	Y / N When?							
e. Is a kerosene or unvented gas space heater present?	Y / NWhere?							
f. Is there a workshop or hobby/craft area? Y / 🕅	Where & Type?							
g. Is there smoking in the building?	Y /N How frequently?							
h. Have cleaning products been used recently?	Y /N When & Type?							
i. Have cosmetic products been used recently?	Y (N) When & Type?							


Page 5
j. Has painting/staining been done in the last 6 months? Y / 🕅 Where & When?
k. Is there new carpet, drapes or other textiles? Y / N Where & When?
I. Have air fresheners been used recently? (\dot{Y}/N) When & Type? In compactor room
m. Is there a kitchen exhaust fan? Y /N If yes, where vented?
n. Is there a bathroom exhaust fan? Y/N If yes, where vented?
o. Is there a clothes dryer? Y/N If yes, is it vented outside? Y/N
p. Has there been a pesticide application? (Y/N) When & Type? The past Gmonts
p. Has there been a pesticide application? Are there odors in the building? If yes, please describe: <u>Serves</u> , Roclart, garbage, Musty, All are strong
Do any of the building occupants use solvents at work? $\widehat{\mathbb{V}}/\mathbb{N}$ (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist
If yes, what types of solvents are used?
If yes, are their clothes washed at work? Y/N
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure? Y / NDate of Installation:
9. WATER AND SEWAGE
Water Supply: Public Water Drilled Well Driven Well Dug Well Other: Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residential emergency)
a. Provide reasons why relocation is recommended:
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement explained? Y / N

d. Relocation package provided and explained to residents?	Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

035911807 Appendix A.doc

Curspark

12. OUTDOOR PLOT

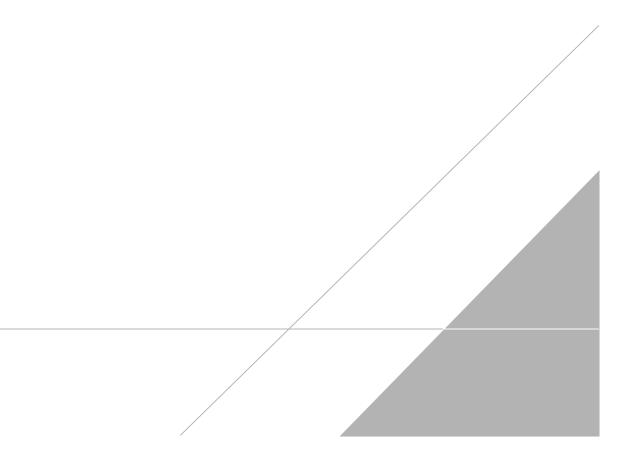
Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

_	T	1	1	1	T	pplicable			T	a	La ca i	1	T S	siai		сшı		T	IUCA	ate	LIE	I	UI	au	opo,	51 4		1
		-	+	+	-	-	-	+	-	-	+	0	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-		-	-
_	-	-	-	-	-		50	20	-	29		6	-		-	-	_						<u> </u>		<u> </u>			
	-			_		_				1C	1	~					_	_										
				_	_																							
																	1											Ì
												1		1		1									1			1
	1	+	+	-	+	-	+				+	+	1	+	+	+	-	-			-				-			1
	-	+	+	-	-	-	-		-	-	+	+	+	+	-	-	-	-	-	-	-	-		-	-		-	
	-	-	-	-	-	+	-	-	-		-	-		<u> </u>	-	-	-	<u> </u>										
	-	_	_	-																				·				
							_																					
																												1
	1						1							1			1		0	5 0							5	1
			1	1		1		-			-	-	-		1	-									-		-	ļ
_	+	1	1-	-	-	-		-				-	-	-	-								-		-		-	1
_	-	-	-	-	-	-	-	-	-		-	-	-	-	-							_						
_	-	+		-	-	-			-	<u> </u>	-	-		_	-	-								_				
	_												_				_								1.			
		_																										
																												l
			1	1					1			1		f -								- 1		-		-1	-	Í
_	-	1	-	1-		1		-	t	-	-	1							-	-	-			-		-	-	ł
_	-	-	-	-	<u> </u>	-	-	-		-	-	-		-		-	-		_	_	-		_			-+	_	ł
-	-	+	+				<u> </u>	_		_	<u> </u>	-							_	_		_	_	_	_	_	_	ļ
_	-	-			<u> </u>	-	<u> </u>		<u> </u>						_		_			_						_		ļ
		-																	_									l
																												ĺ
	6	1	1	1																								ĺ
											-										-			-		-		Ì
_		-		-				-		-	-	-	-	-	-				-	-	-	-+	-	-			-	ĺ
-	-	-	-	-	-		-			_	-		_					-	_	_	-		-		_		_	ŀ
_	-	-	-	-								-							_	_	_	_	_			_	_	ŀ
	-		_	-	-	-			-						_													ļ
_	-																											ĺ
																												ĺ
																												ĺ
															-					-	+	+	-	-	-	+	+	i
					-	-	-			_		-			-	-		-	\rightarrow	-	+	\rightarrow		-	-	-	+	Ì
	-	-	-	-					-								_	-	-	-		\rightarrow	-	_	-	-	-	ļ
_	-	-				-	-											_	-	_	_	_	_		_	_	_	
_			-		_																							ļ
					5 - IV	1	0.11														-	-	-		+	\rightarrow	-	ĺ

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ____


List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo** <u>Y/N</u>

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX B

Photographic Logs – Building Inventories

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 1

Description: Rat poison in south east storage room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019

Photograph: 2

Description: Sewage water in south east storage room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 3

Description: JR-1223-IA-1 in south east storage room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 4

Description: Sewage leak on floor in storage room.

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 5

Description: Sewage leak in south east storage room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 6

Description: Rock salt in south east storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 7

Description: Electric room in southern end of basement near compactor room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 8

Description: Electric room. No cracks in walls.

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 9

Description: Electric room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019

Photograph: 10

Description: Cleaning supplies in compactor room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

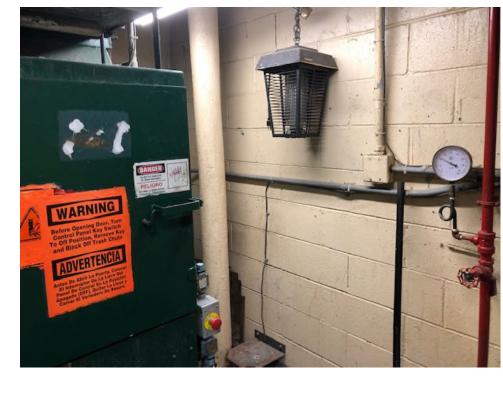
Photograph: 11

Description: Cleaning supplies in compactor room

Location: Building 1223

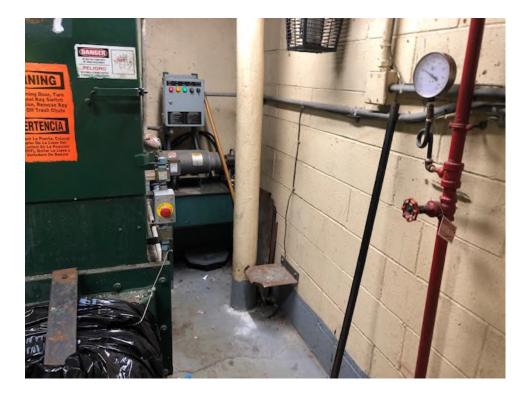
Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019


Photograph: 12

Description: Bug Lamp in compactor room

Location: Building 1223


Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 13

Description: Compactor room with bug lamp

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 14

Description: Air supply for compactor room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 15

Description: Floow sealant in compactor room

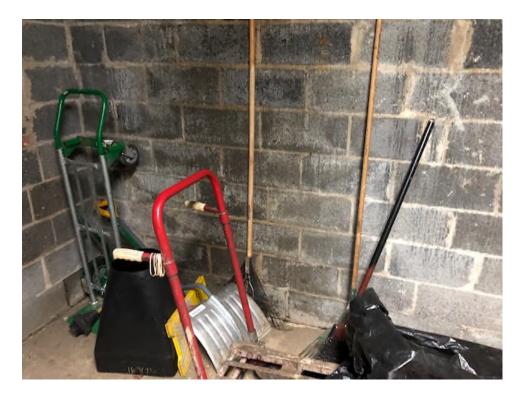
Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 16

Description: Hazardous material receptacle in compactor room


Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

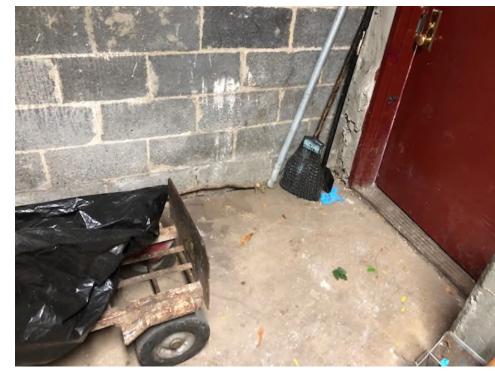
Photograph: 17

Description: General storage in hallway outside compactor room

Location: Building 1223

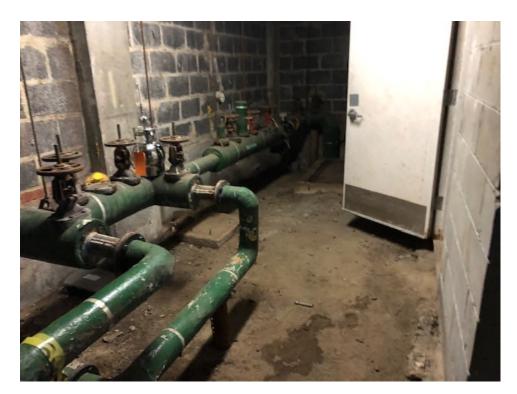
Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019


Photograph: 18

Description: General storage in hallway outside compactor room

Location: Building 1223


Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 19

Description: JR-1223-IA-3 in east end of basement

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 20

Description: JR-1223-IA-3 in east end of basement

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 21

Description: Rat poison east storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 22

Description: Rat trap in east storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 23

Description: Hallway outside compactor room

Location: Building 1223

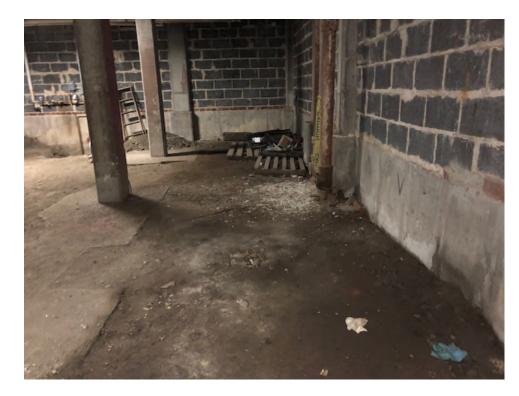
Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 24

Description: Sump

Location: Building 1223


Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 25

Description: North end storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

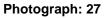
Date: 11/1/2019

Photograph: 26

Description: Storage in north end of basement

Location: Building 1223

Photograph taken by: Albina Redzepagic


Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Description: Pluming in northern basement storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

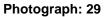
Date: 11/1/2019

Photograph: 28

Description: Dirt floor in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic


Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Description: Air vent in northern storage area

Location: Building 1223

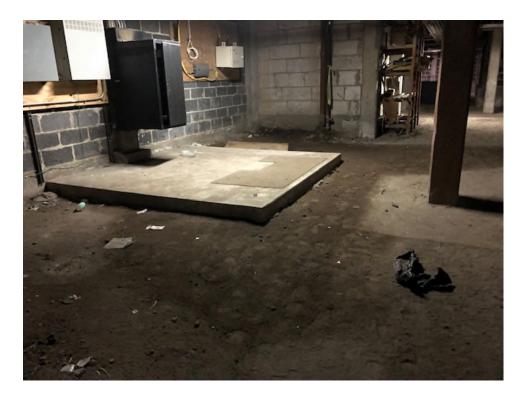
Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 30

Description: Air vent in northern storage area

Location: Building 1223


Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

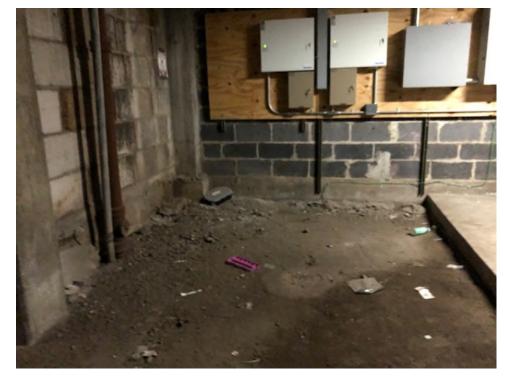
Photograph: 31

Description: Dirt floor in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019


Photograph: 32

Description: Dirt floor in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 33

Description: Rat poison in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 34

Description: Rat poison

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 35

Description: Air vent in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 36

Description: Air vent in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 37

Description: Air vent in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 38

Description: Air vent in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 39

Description: Rat poison in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 40

Description: Rat poison in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 41

Description: Air vent in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 42

Description: Air vent in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 43

Description: JR-1223-IA-2 in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 44

Description: JR-1223-IA-2 in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 45

Description: Storage in northern end of basement

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 46

Description: Rat poison in northern storage area

Location: Building 1223


Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 47

Description: Dirt floor and plumbing in tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 48

Description: JR-1223-IA-4 and DUP-110119 outside tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 49

Description: Air vent in tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019

Photograph: 50

Description: Dirt floor in tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 51

Description: Dirt floor and trash in tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 52

Description: Air vent in tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 53

Description: Entrance to tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019

Photograph: 54

Description: Tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

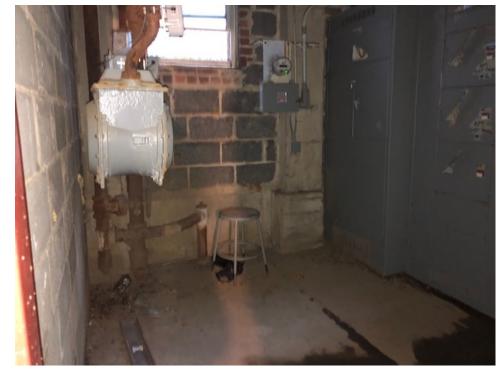
Photograph: 55

Description: Air vent outside tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019


Photograph: 56

Description: Meter room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 57

Description: Meter room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019


Photograph: 58

Description: Loose wires and trash in meter room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 59

Description: Tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic

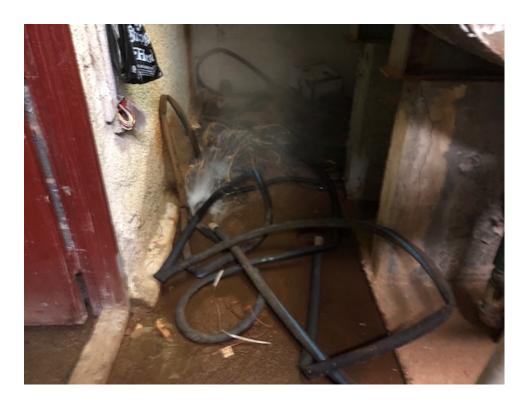
Rob Arnold

Date: 11/1/2019

Photograph: 60

Description: Tank room

Location: Building 1223


Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

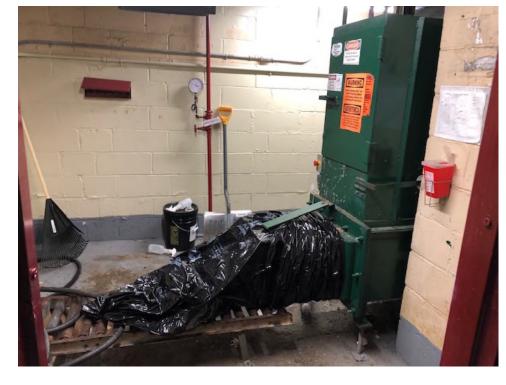
Photograph: 61

Description: Water and steam leaking in tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019


Photograph: 62

Description: Compactor room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 63

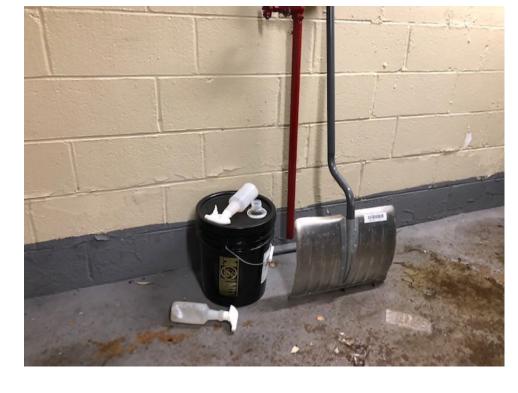
Description: Biohazard receptacle

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019


Photograph: 64

Description: Cleaning supplies in compactor room

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 65

Description: Hydraulic oil in compactor room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 1

Description: Crawl space vault on northwest wing on building – JR-1141-IA-3

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 2

Description: Groundwater sampling at MW-122A

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 3

Description: Groundwater sampling at MW-122A

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 4

Description: Looking east at building 1141

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 5

Description: South side of building 1141

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

1 -1 mil **•**

Photograph: 6

Description: South end of building 1141

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 7

Description: AA-102919 along north west fence to building 1141

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 8

Description: AA-102919

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Description: AA-102919 looking north along the west fence to building 1141

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 10

Description:

Crawl space in north west wing of building 1141 (location of JR-1141-IA-3) and looking south at AA-102919

Location: Building 1141

Photograph taken by: Albina Redzepagic

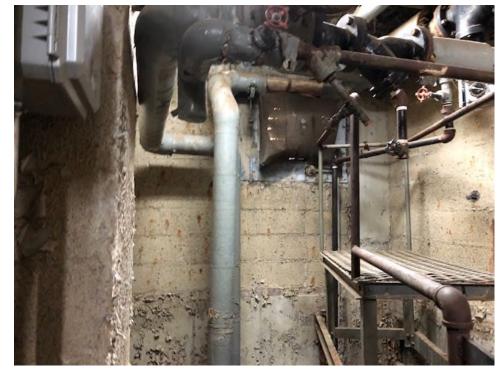
Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 11

Description: JR-1141-IA-1 in tank room above sump

Location: Building 1141

Photograph taken by: Albina Redzepagic


Date: 10/29/2019

Photograph: 12

Description: Air vent in tank room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 13

Description: Air duct in tank room

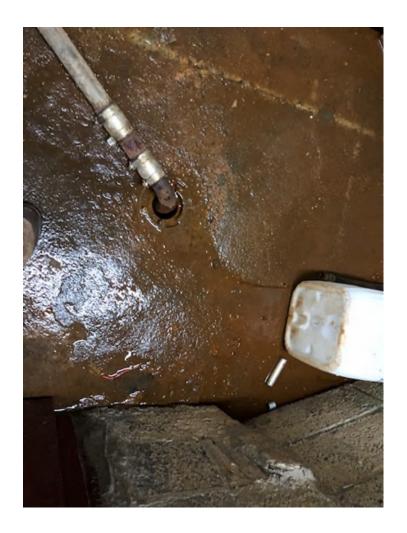
Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 14

Description: Plumb in tank room


Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 15

Description: Pluming in tank room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 16

Description: Cleaning supplies in storage area

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 17

Description: Mid-day check on JR-1141-IA-1

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 18


Description: Sump in tank room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 19

Description: Air vent in tank room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 20

Description: Hallway outside tank room and meter room

Location: Building 1141

Photograph taken by: Albina Redzepagic

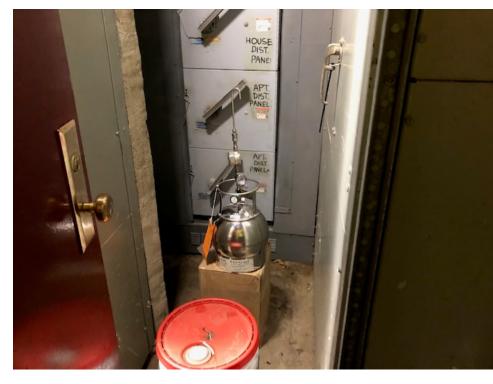
Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 21

Description: Hallway outside meter room in tank room

Location: Building 1141

Photograph taken by: Albina Redzepagic


Date: 10/29/2019

Photograph: 22

Description: JR-1141-IA-2 in meter room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 23

Description: Meter room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 24

Description: Meter room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 25

Description: Ventilation in meter room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 26

Description: Entrance to ground level basement in building 1141

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edison Company East 11th Street Indoor Air Sampling/30005328 New York, NY

Photograph: 27

Description: JR-1141-IA-3 in crawl space

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 28

Description: Crawl space in north west wing of building

Location: Building 1141

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 1

Description: Plaster room break area.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 3

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

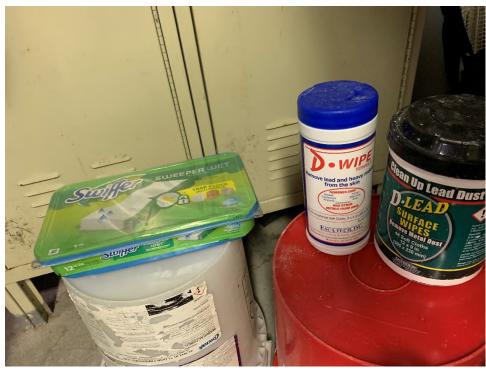
Description: Plaster room.

Photograph: 4

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY



Photograph: 5

Description: Plaster room break area.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 6

Description: Plaster room break area.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 7

Description: Plaster room break are – content unknown.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

S.F.F.	ADJUSTABLE NOZLE Fine Mist Heavy Spray Heavy Spray Hea
	1:32 1 oz. 1:64 1/14 oz. 2 oz. 1:40 1/2 oz. 1:128 1/4 oz. Fill in Contents Below
	MACE SECONDARY LABEL BELOW
9	

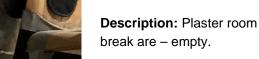
Photograph: 8

Description: Plaster room break are – content unknown.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY



Photograph: 9

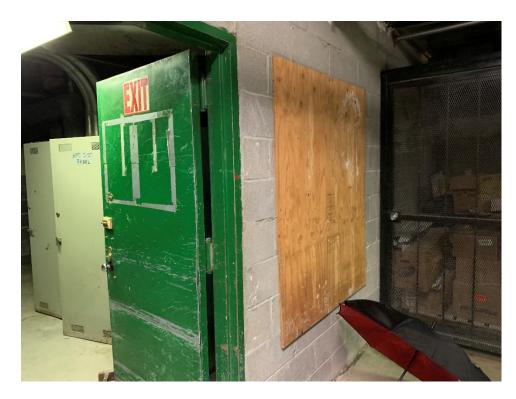
Description: Plaster room break are – air freshener spray can.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Location: Building 1115

Photograph taken by: Albina Redzepagic


Date: 10/31/2019

Photograph: 10

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 11

Description: Plaster room entrance door.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 12

Description: Plaster room break are – empty buckets.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 13

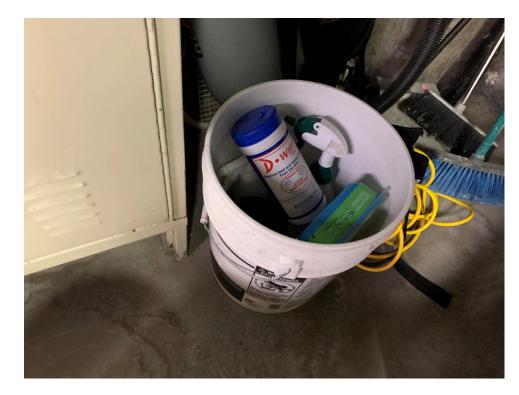
Description: Plaster room break are.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 14

Description: Plaster room break are.


Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 15

Description: Plaster room break are.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 16

Description: Plaster room break are – fan.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 17

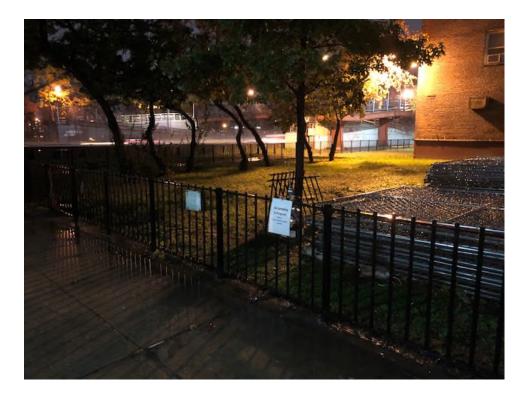
Description: Plaster room eye wash station .

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 18

Description: Plaster room air ven.


Location: Building 1115

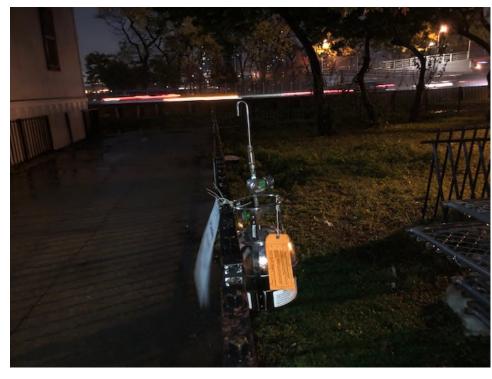
Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 19

Description: Ambient air sample setup.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 20

Description: Ambient air sample setup.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 21

Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Description: Tank room.

Photograph: 22

Location: Building 1115

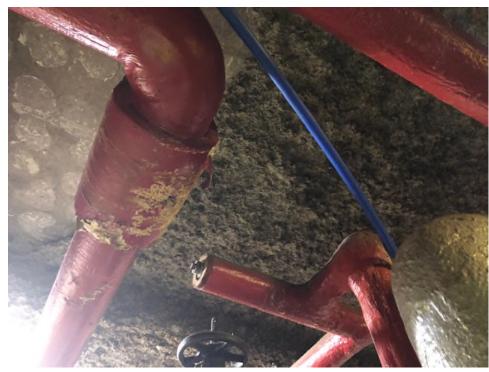
Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 23

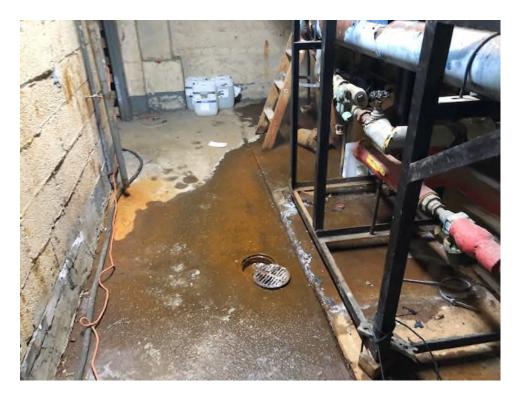
Description: Tank room sump.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 24

Description: Tank room ceiling.


Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 25

Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 26

Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

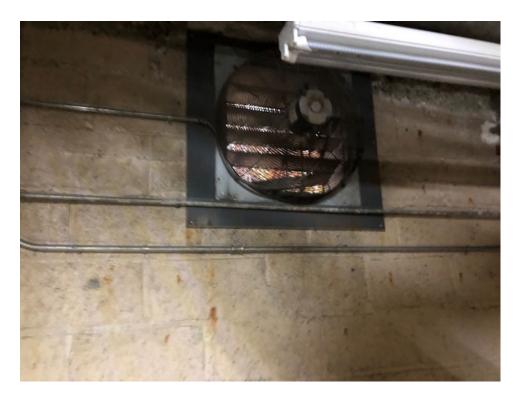
Photograph: 27

Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 28


Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY



Photograph: 29

Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Description: Tank room.

Location: Building 1115

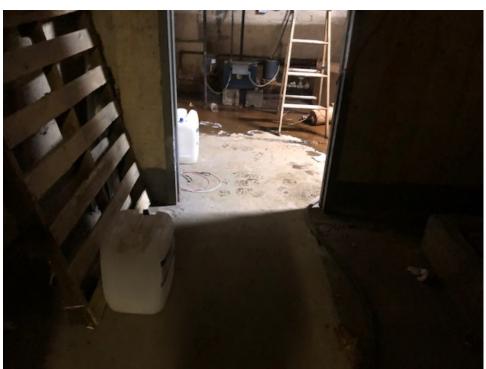
Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 31

Description: Tank room.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 32

Description: Tank room hallway.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 33

Description: Tank room hallway.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 34

Description: Tank room hallway.

Location: Building 1115

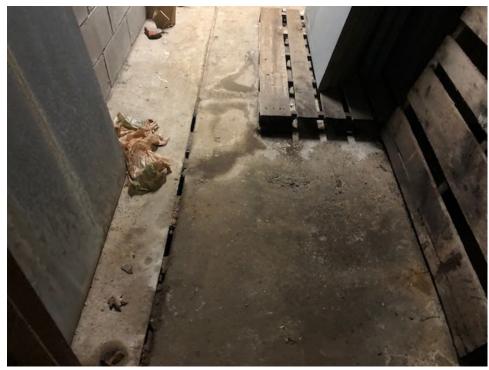
Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 35

Description: Tank room hallway.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 36

Description: Tank room hallway.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY


Photograph: 37

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 39

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 40

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 41

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 42

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 43

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 44

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Real Man Join Compound

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 45

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 46

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 47

Description: Storage room before plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 48

Description: Electric room east building.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 49

Description: Electric room east building.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Photograph: 50

Description: Electric room east building.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 51

Description: East storage room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 52

Description: East storage room - drain.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 53

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 54

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 55

Description: Plaster room air vent.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 56

Description: Plaster room air fan.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 57

Description: Plaster room – equipment cleaning area.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 58

Description: Plaster room – equipment cleaning area drain.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 59

Description: Plaster room – equipment cleaning area - shaft.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 60

Description: Plaster room – equipment cleaning area – cracked floor.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 61

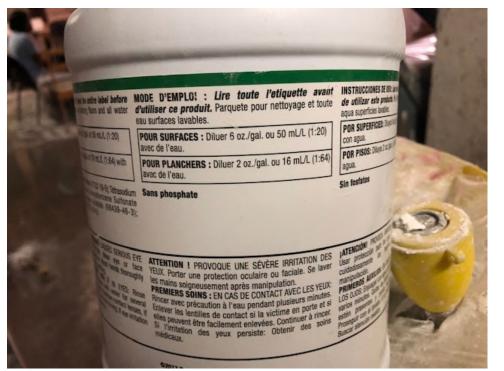
Description: Plaster room – equipment cleaning area.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

<text><text><text><text><text><text><text><text>

Photograph: 62


Description: Plaster room – equipment cleaning area.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 63

Description: Plaster room – equipment cleaning area.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 64

Description: Plaster room – equipment cleaning area.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 65

Description: Restroom inside plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Photograph: 66

Description: Restroom inside plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 67

Description: Restroom inside plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 68

Description: Restroom inside plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 69

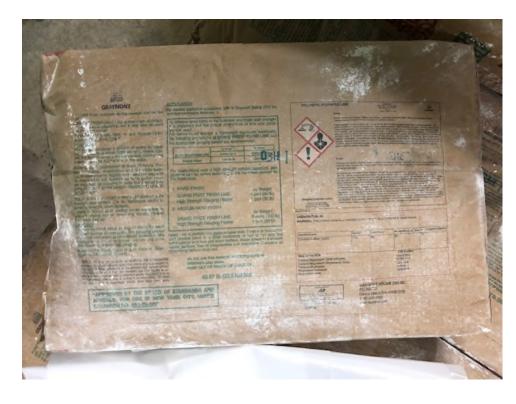
Description: Restroom inside plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 70

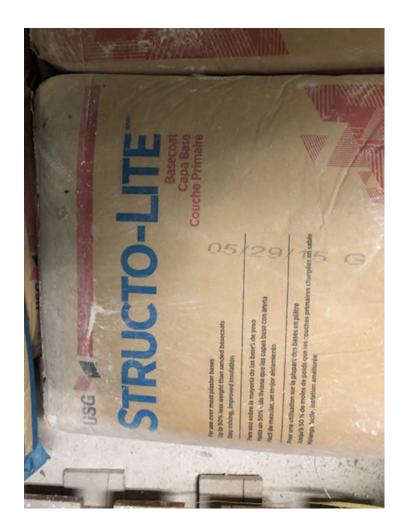
Description: Plaster room.


Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 71


Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 72

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 73

Description: Plaster room.

Location: Building 1115

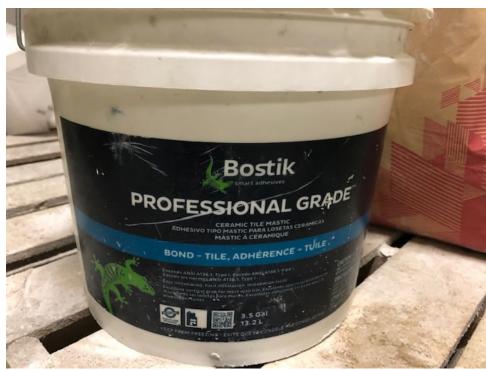
Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 74

Description: Plaster room.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 75

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 76

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 77

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 78

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 79

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 80

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 81

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 82

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Photograph: 83

Description: Plaster room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 84

Description: Plaster room – mold on the ceiling.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 85

Description: Plaster room – rain water dripping.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 86

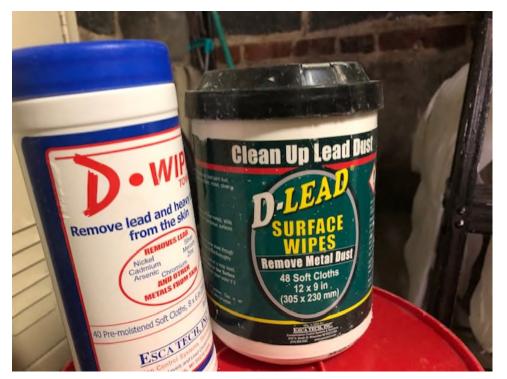
Description: Plaster room – rain water dripping.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

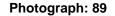
Photograph: 87

Description: Plaster room – brake area.


Location: Building 1115

Photograph taken by: Albina Redzepagic

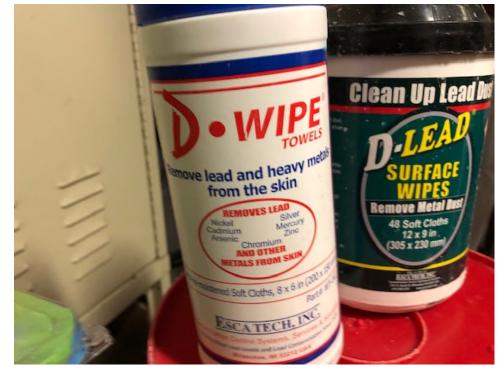
Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY



Photograph: 88

Description: Plaster room – brake area.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Description: Plaster room – brake area.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 90

Description: Plaster room – brake area.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Description: Cabinet storage room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 92

Description: Cabinet storage room.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 93

Description: Cabinet storage room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

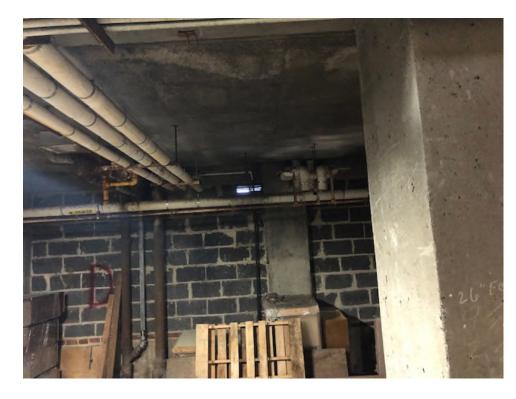
Photograph: 94

Description: Cabinet storage room.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 95


Description: Cabinet storage room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 96

Description: Cabinet storage room – air vent.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 97

Description: Cabinet storage room.

Location: Building 1115

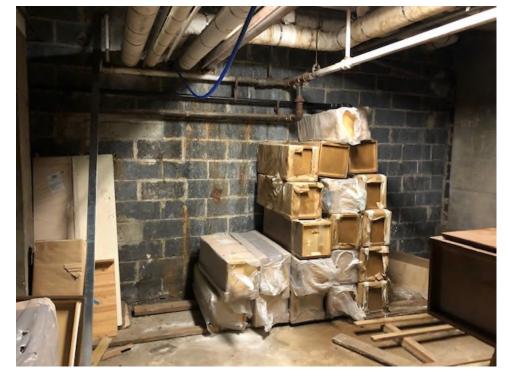
Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 98

Description: Cabinet storage room.

Location: Building 1115


Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 99

Description: Cabinet storage room – water damage on the wall.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 100

Description: Cabinet storage room mildew.

Location: Building 1115

Photograph taken by: Albina Redzepagic Date: 10/31/2019

Photograph: 101

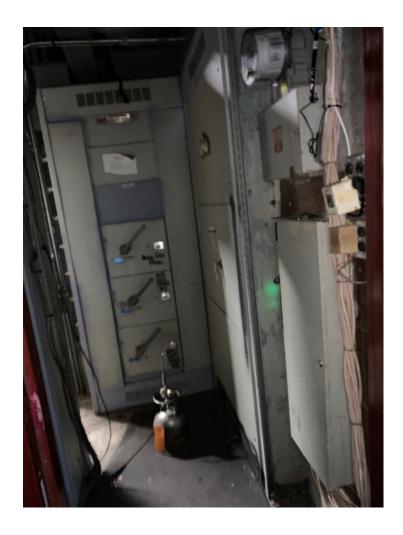
Description: Cabinet storage room mildew.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 102

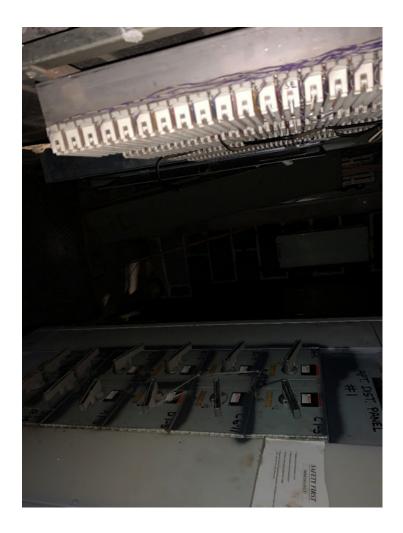

Description: Cabinet storage room mildew.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 1

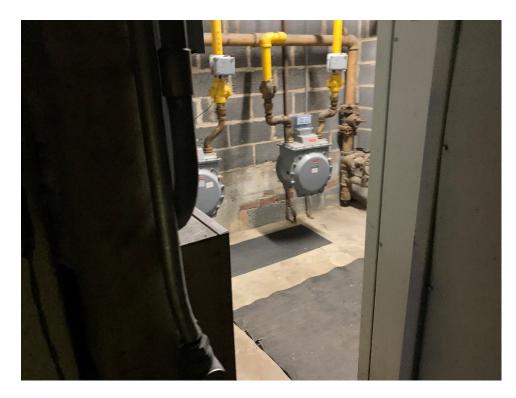

Description: JR-178-IA-3 in meter room

Location: Building 178

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 2


Description: Meter room

Location: Building 178

Photograph taken by: Rob Arnold

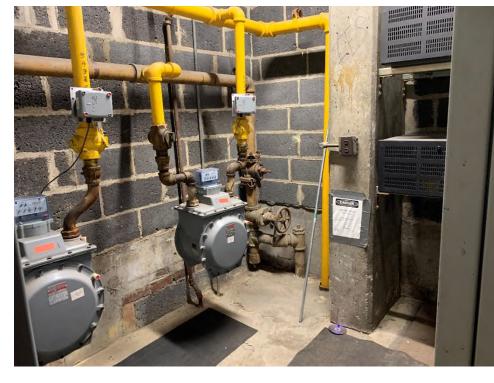
Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 3

Description: Meter room

Location: Building 178

Photograph taken by: Rob Arnold


Date: 10/30/2019

Photograph: 4

Description: Meter room

Location: Building 178

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 5

Description: Meter room

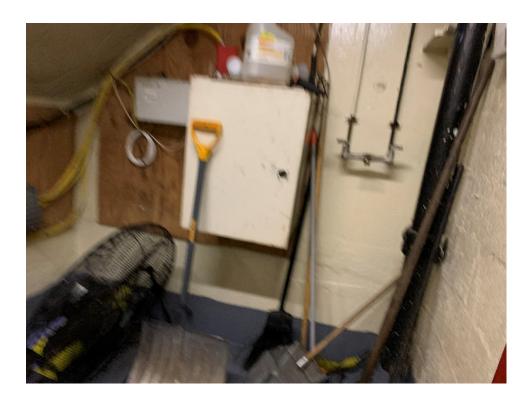
Location: Building 178

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 6

Description: Meter room


Location: Building 178

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 7

Description: Compactor room

Location: Building 178

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 8

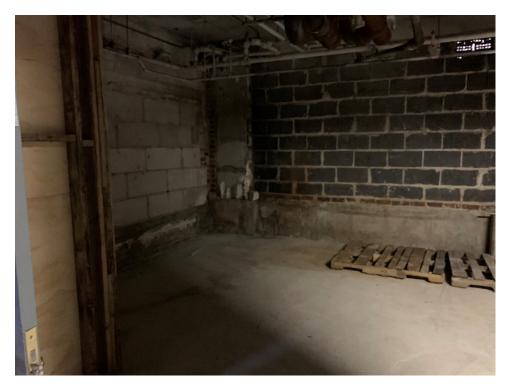
Description: Cleaning supplies in compactor room

Location: Building 178

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 9


Description: Compactor room

Location: Building 178

Photograph taken by: Rob Arnold

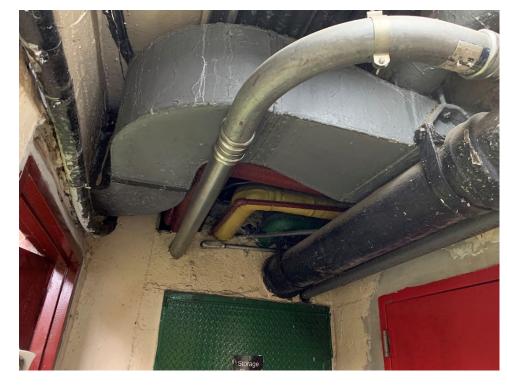
Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 1

Description: North west storage area

Location: Building 170

Photograph taken by: Rob Arnold


Date: 10/30/2019

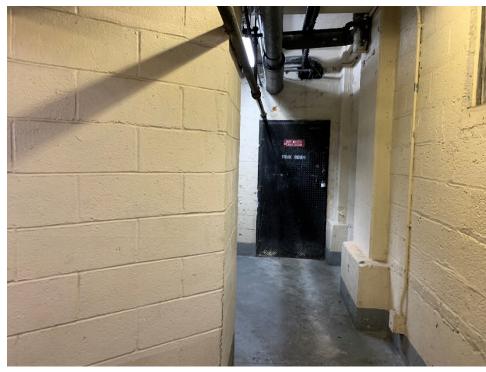
Photograph: 2

Description: Air duct to compactor room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY


Photograph: 3

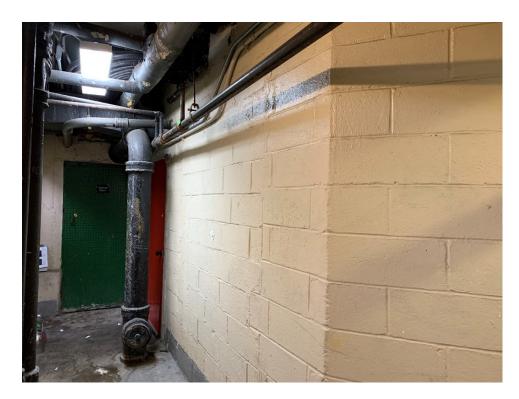
Description: Basement hallway with ventilation

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 4


Description: Basement hallway to storage area

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 5

Description: Basement hallway to compactor room and storage area

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 6

Description: Floor grate in basement hallway

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 7

Description: Some staining on floor from cleaning supplies

Location: Building 170

Photograph taken by: Rob Arnold


Date: 10/30/2019

Photograph: 8

Description: Plumbing in hallway

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 9

Description: Window in storage area outside tank room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 10

Description: Window in storage area outside tank room

Location: Building 170

Photograph taken by: Rob Arnold

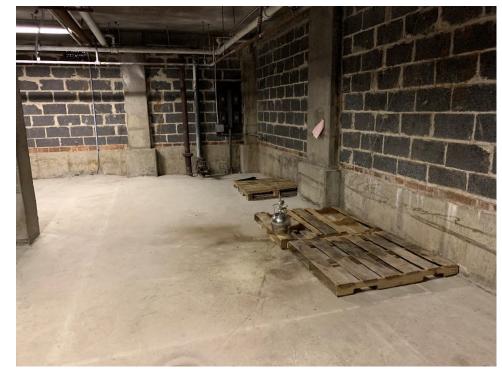
Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 11

Description: Storage area in norther wing of basement

Location: Building 170

Photograph taken by: Rob Arnold


Date: 10/30/2019

Photograph: 12

Description: JR-170-IA-2 in north storage area

Location: Building 170

Photograph taken by: Rob Arnold

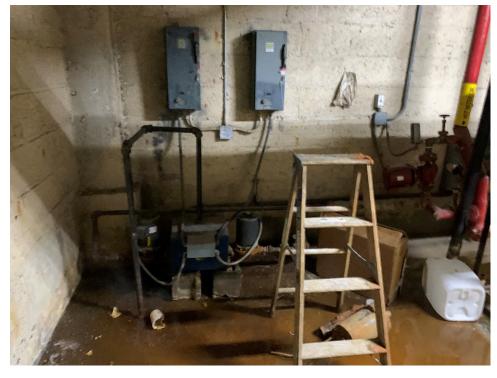
Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 13

Description: JR-170-IA-2 in northern storage area

Location: Building 170

Photograph taken by: Rob Arnold


Date: 10/30/2019

Photograph: 14

Description: Tank room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 15

Description: Tank room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 16

Description: Meter room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 17

Description: Tank room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 18

Description:

Looking south east at playground with building 178 behind photographer

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 19

Description: JR-170-IA-3 in cabinet room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 20

Description: JR-170-IA-3 in cabinet room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 21

Description: Cabinet room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 22

Description: Cabinet room


Location: Building 170

Photograph taken by: Rob Arnold

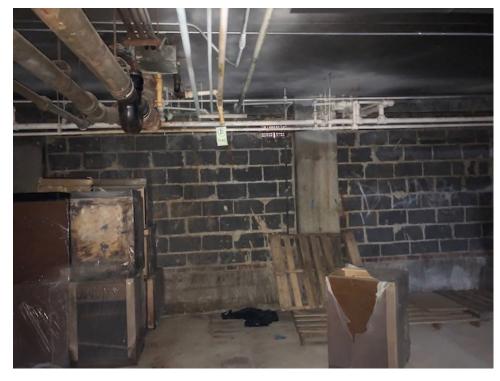
Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 23

Description: Storage room

Location: Building 170

Photograph taken by: Rob Arnold


Date: 10/30/2019

Photograph: 24

Description: Storage room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 25

Description: Sealed cracks in wall of storage room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 26

Description: Sealed cracks in wall of storage room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 27

Description: Air vent in storage room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 28

Description: Air vent in storage room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 29

Description: Sealed cracks in wall of storage room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 30

Description: Concrete patch in storage room


Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 31

Description: Air vent in storage room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 32

Description: New concrete floor in storage room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 33

Description: Meter room

Location: Building 170

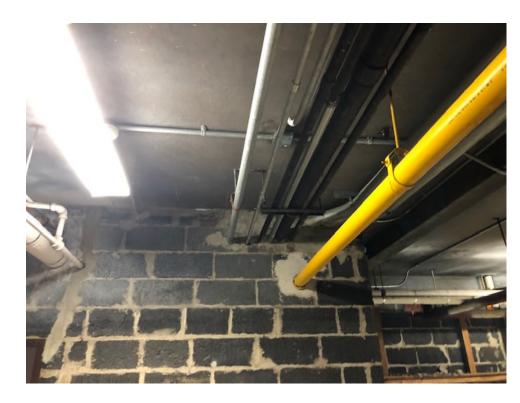
Photograph taken by: Rob Arnold

Date: 10/30/2019

Description:

Photograph: 34

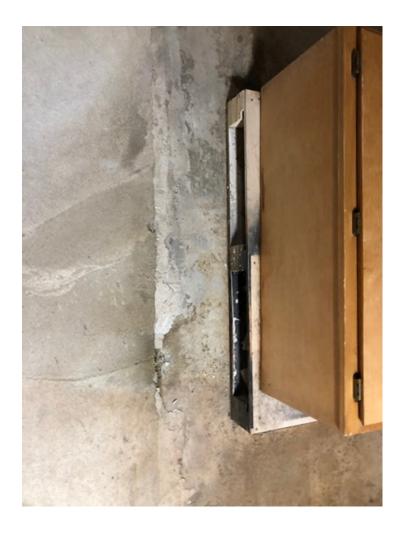
Cracks in wall for plumbing outside meter room


Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 35

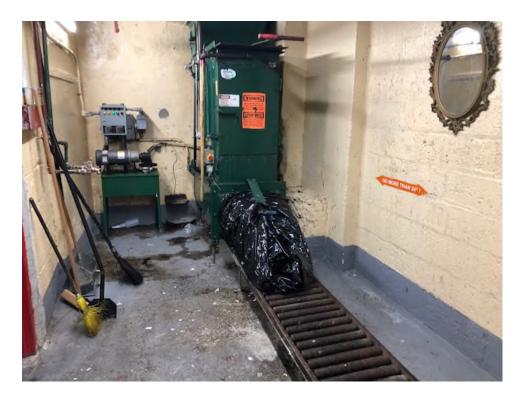

Description: Outside meter room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 36


Description: Cracks in the floor outside meter room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 37

Description: Compactor room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 38

Description: Biohazard receptacle in compactor room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 39

Description: First aid kit in compactor room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 40

Description: Meter room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 41

Description: Floor drain in meter room

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 42

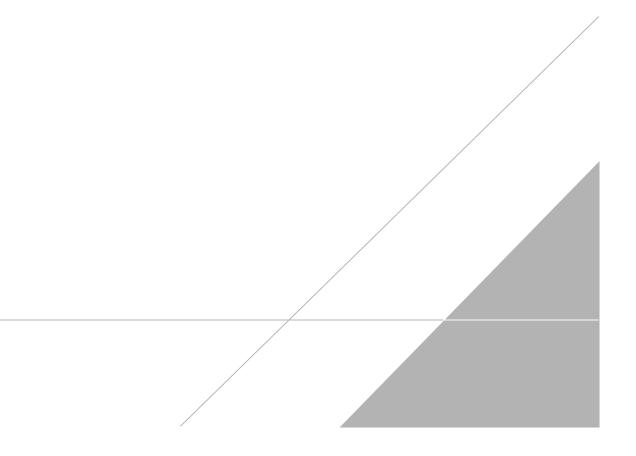
Description: Unknown empty cleaning spay bottle in compactor room

Location: Building 170

Photograph taken by: Rob Arnold

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 43


Description: Staining and rain trap in compactor room

Location: Building 170

Photograph taken by: Rob Arnold

APPENDIX C

Sample Collection Logs

Appendix B -Ambient Air Sampling and Analysis

Infrastructure, environment, buildings Collection		Indoor/Ambient Air Sample Collection Log			
		Sample ID:	AA102919		
Client:	Consolidated Ed	1.m	Outdoor/Indoor:	ontdoor	
Project:	E. 11 th Str. / Yac		Sample Intake Height:	3 ft	
Location:	NW corner (1141 B	ldg.)	Miscellaneous Equipment:		
Project #:	30005329		Time On/Off:	0830 / 1632	
Samplers:	DC/RA		Subcontractor:		

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0836	-30	54° F			· · · · · · · · · · · · · · · · · · ·	5
1510	-10	60° F				0
1555	8	60°F				0
1632	-5	60°F				8

SUMMA Canister Information:

			200	-
Size	(circle	one):	1 L	61
	(0	••••		

Canister ID: 09610

Flow Controller ID: 09714

General Observations/Notes:

Placed at NW of 141 Cornar Bidg, locked to terce w/ Warning Sign + Safet CONR

Please record current weather information including wind speed and direction, ambient temperature, barometric pressure, and relative humidity via suitable information source (e.g., weatherunderground.com).

035911807 appendix b.doc

Appendix B -Ambient Air Sampling and Analysis

ARCADIS		Indoor/Ambient Air Sample Collection Log			
		-	Sample ID:	JR-1141-IA-1	
Client:	Consoliclated Ea	lison	Outdoor/Indoor:	INLOO	
Project:	E.11 th St Yau	ob Ris	Sample Intake Height:	Act 5H	
Location:	TANK Opm	-1141	Miscellaneous Equipment:		
Project #:	3000 5328		Time On/Off:	8:586/ 164/	
Samplers:	DC/RA	-	Subcontractor:		

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0856	-38					0
11 57	-20					0
16:41	-2					0

SUMMA Canister Information:

Size (circle one): 1 L 6 Canister ID: 8100 10863 Flow Controller ID:

General Observations/Notes:

19 5 above OU 1 lA . 1 Tan Sump room

Appendix B -				
Ambient Air Sampling				
and Analysis				

ARCADIS		Indoor/Ambient Air Sample Collection Log		
			Sample ID:	JR-1141-AI-2
Client:	Consolidated 2	Edison	Outdoor/Indoor:	Indoor
Project:	E. 11th Stre		Sample Intake Height:	~3Ft
Location:	How were - 114	gin	Miscellaneous Equipment:	**
Project #:	3000 5328		Time On/Off:	7:58 / 16:41
Samplers:	DC/RA		Subcontractor:	- NA-

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
8 58	-30					0
12:00	-21					0
16:41	-6					0

SUMMA Canister Information:

Size (circle one): 1 L 6 L Canister ID: \ \ \ CoO 9 7 éL)

Flow Controller ID: <u>14</u>

General Observations/Notes:

In Ba propart tall	-1141	12	electrical	500 M

ARCADIS		Indoor/Ambient Air Sample Collection Log			
innastructore,	environment, ponoings		Sample ID:	8	
Client:	Consolidated	Edison	Outdoor/Indoor:	JR-1141-IA-3	
Project:	E. 11th Stree	ł	Sample Intake Height:	-2 Ft	
Location:	crawl Space		Miscellaneous Equipment:		
Project #:	3000 5328		Time On/Off:	9:04/ 1644	
Samplers:	DC/R	. A	Subcontractor:	- WA-	

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
9.04	-30					0
12:07	- 23					0
16:44	~ 4					0

SUMMA Canister Information:

Size (circle one): 1L

Canister ID: 09620

Flow Controller ID: 0973

General Observations/Notes:

Space 4 ra al

Appendix B -Ambient Air Sampling and Analysis

(0/30/19

ARCADIS		Indoor/Ambient Air Sample Collection Log			
			Sample ID:	AA103019	
Client:	Consolidated	Editor	Outdoor/Indoor:	Outdoor	
Project:	E 11 St. / Jacob	Riis	Sample Intake Height:	~3Ft	
Location:	SE Ferre Bl 30005328	dy. 178	Miscellaneous Equipment:		
Project #:	30005328	9	Time On/Off:	0724 1503	
Samplers:	DC/RA		Subcontractor:		

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F) or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0724	-30	1550				6
1030	- 22					0
1140	~18	r 62°				0
1300	-13					2
1503	~ 6	~ 620				ð

SUMMA Canister Information:

Size (circle one): 1 L (L) Canister ID: \(2033) Flow Controller ID: <u>11536</u>

General Observations/Notes:

building 78 enle Comu along Spm a+ Ove icht hea (4) 6.10

Appendix B -Ambient Air Sampling and Analysis

10/30/19

ARCADIS			Indoor/Ambient Air Sample Collection Log			
,,	enni onneni yononigo		Sample ID:	JR-178-JA. 2		
Client:	ConEd		Outdoor/Indoor:	Indoor		
Project:	Ell St / Jac	ole Rits	Sample Intake Height:	~2ft		
Location:	Comactor Room (B)	1dg. 17-8)	Miscellaneous Equipment:			
Project #:	30005328	0	Time On/Off:	0741/3:35		
Samplers:	DC/RA		Subcontractor:			

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
741	-30					
1450	-10					
1535	- 8					

SUMMA Canister Information:

Size (circle one): 1 L 6 L Canister ID: 10484

Flow Controller ID:

7307

General Observations/Notes:

N ADW

Appendix B -Ambient Air Sampling and Analysis

10/30/19

ARCADIS		Indoor/Ambient Air Sample Collection Log				
imastructure, e	environinent, bundings		Sample ID:	JR-178-54-2		
Client:	Con Ed	*	Outdoor/Indoor:	Indoor		
Project:	Ell St / Jacob	Ris	Sample Intake Height:	~2.5+		
Location:	Crowl Space (Bl	19.178)	Miscellaneous Equipment:	1		
Project #:	30005328	0	Time On/Off:	7:48 1551		
Samplers:	DC / RA		Subcontractor:			

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
740	-30					
1301	- 19					
1430	~11					
1551	~					

SUMMA Canister Information:

Size (circle one): 1 L & L Canister ID: 10237 11898 Flow Controller ID:

General Observations/Notes:

0460 Nh ache 5GA

Appendix B -Ambient Air Sampling and Analysis

10/30/19

ARCADIS		Indoor/Ambient Air Sample Collection Log			
imosuociare, e	ninionnient, bailaings		Sample ID:	JR-17	8-IA-3
Client:	Con Ed		Outdoor/Indoor:	Indoor	/
Project:	EllSt Juco	6 Riis	Sample Intake Height:	284	
Location:	Meter Room (31dg, 178)	Miscellaneous Equipment:		
Project #:	30005328	0	Time On/Off:	0736	1521
Samplers:	DC/RA		Subcontractor:	-	

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0736	-30					
1430	-11					
521	- 5					

SUMMA Canister Information:

Size (circle one)	: 1L	64
Canister ID:	090	687
Flow Controller	ID:	1151

General Observations/Notes:

[00 M CLA OUM Λ

ARCADIS			Indoor/Ambient Air Sample Collection Log		
mnosuociore, i	environment, pairaings		Sample ID:	JR- 170 - IA-1	
Client:	Con Ed		Outdoor/Indoor:	Indoor	
Project:	Ell St / J	acob Riis	Sample Intake Height:	3PL	
Location:	FTO Comp	actor Room	Miscellaneous Equipment:		
Project #:	3000 5328		Time On/Off:	840 - 1637	
Samplers:	DC/RA	f	Subcontractor:	X7A-	

Instrument Readings:

(inches of HG)	(F or C)	Humidity (%)	Air Speed (ft/min)	Differential (inches of H20)	(ppm or ppb)
-29					0
- 18					0
-6					0
	- 18	19 \ \ 8	19 \ \ 8	19 \ \ 8	19 \ \ 8

SUMMA Canister Information:	Dup 103/19
Size (circle one): 1 L 6L	
Canister ID: 10515	Consister: 29508 ConstallerID: 3862
Flow Controller ID: // 5 83	

General Observations/Notes:

FT Lucional.
Scale of

.

Appendix B -Ambient Air Sampling and Analysis

	CADIS environment, buildings		Indoor/Ambient Air Sample Collection Log				
mnastructore, e	environment, pulluings		Sample ID:	JA-TR- JAC			
Client:	ConEd		Outdoor/indoor:	Indoor			
Project:	ETTSH/Jac	ob Riis	Sample Intake Height:	3.ff			
Location:	Conjuntor Room	(Bldy. 170)	Miscellaneous Equipment:				
Project #:	30005328		Time On/Off:	08:40 - 1637			
Samplers:	AR RA		Subcontractor:				

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or (ppb)
0840	-29					0
1148	-70					0
1637						0

SUMMA Canister Information:

Size (circle one): 1 L 6L

Canister ID: 09508

Flow Controller ID: 8862

General Observations/Notes:

TA 5 R 1211 -CA 2001 NGG avn 001

Appendix B -Ambient Air Sampling and Analysis 120

ARCADIS			Indoor/Ambient Air Sample Collection Log				
nnostractore,	chini oli mene, pullulings		Sample ID:	JR-170-1A-2			
Client:	ConEd		Outdoor/Indoor:	Idoor			
Project:	Ell St/Ja	cob Riis	Sample Intake Height:	3 PK			
Location:	170/West 3	toraye	Miscellaneous Equipment:				
Project #:	30005328	r	Time On/Off:	0804 -1614			
Samplers:	DC/RA	1	Subcontractor:				

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or (ppb)
0804	-29					0
1147	-20					0
						0
1614	~ 5		5 C			0

SUMMA Canister Information:

Size (circle one): 1 L (6 L)

Canister ID: 1/041

Flow Controller ID: 11468

General Observations/Notes:

Rammater rimma leaks milden (Piling (DM × 0 Storage room chin Ka 9 tova ceros 10

Appendix B -Ambient Air Sampling and Analysis

				10/30/19
	CADIS environment, buildings		Indoor/Ambient A Collection	CONTRACTOR IN TRACTOR AND A STREET AND A ST
innastructure, e	environnerit, ponoings		Sample ID:	JR-170-JA-3
Client:	ConEd		Outdoor/Indoor:	Indoor
Project:		6 Riis	Sample Intake Height:	8 F.t
Location:	Jank Room (Blo	9.170)	Miscellaneous Equipment:	
Project #:	30005328	J	Time On/Off:	9:26/1559
Samplers:	DC/RA		Subcontractor:	

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0826	-20					0
1559	-6					3
Constant of						

SUMMA Canister Information:

Size (circle one): 1 L (L) Canister ID: 11265 7652 Flow Controller ID:

General Observations/Notes:

5 COM

Appendix B -Ambient Air Sampling and Analysis

10/30/19

ARCADIS			Indoor/Ambient Air Sample Collection Log				
initastructure, environment, buildings			Sample ID:	02-1	170-IA-4		
Client:	Con Ed		Outdoor/Indoor:	Indice	r		
Project:	Ell St / Jac	b Riis	Sample Intake Height:	2 P4	2007-a		
Location:	20005378 Sto	inge (Bldg. 170)	Miscellaneous Equipment:		1		
Project #:	3000 5328		Time On/Off:	824	1559		
Samplers:	DC/RA		Subcontractor:				

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
824	30					0
1554	FG					0

SUMMA Canister Information:

Size (circle one): 1 L

Flow Controller ID:

09658

General Observations/Notes:

Chbinent (00m rak a

Appendix B -Ambient Air Sampling and Analysis

	CADIS environment, buildings		Indoor/Ambient Air Sample Collection Log				
innostructure,	environment, bonungs		Sample ID:	AA 103119			
Client:	Con Ed.		Outdoor/Indoor:	Outdoor			
Project:	E. II M Str. J		Sample Intake Height:	4 ft			
Location:	1115 - Fenc	e SE JBU	Miscellaneous Equipment:				
Project #:	3000 5329	8	Time On/Off:	0818 - 1615			
Samplers:	AR/RA		Subcontractor:	NA			

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
818	=30					0
1144	-20					0
						0
615	- 6		0			0

SUMMA Canister Information:

Size (circle one): 1 L

Canister ID: 168(

Flow Controller ID: 09906

General Observations/Notes:

on SE Buildin the Ten Э

Infrastructure, environment, buildings			Indoor/Ambient Air Sample Collection Log				
			Sample ID:	JR-1115-IA-1			
Client: Con Ed		Outdoor/Indoor:	Indoor				
Project:		todo Rija	Sample Intake Height:	3.41			
Location:	1115		Miscellaneous Equipment:				
Project #:	Project #: 300 5328		Time On/Off:	0817-1631			
Samplers:	AR / RA		Subcontractor:	NON			

Instrument Readings:

Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
- 29					0
-20					0
					0
-5					0
	Pressure (inches of HG) - 29 - 23	Pressure (inches of HG) (F or C) - 29 - 20	Pressure (inches of HG) Temperature (F or C) Humidity (%) - 29 -	Pressure (inches of HG) Temperature (F or C) Humidity (%) Air Speed (ft/min) - 29 -	Pressure (inches of HG) Temperature (F or C) Humidity (%) Air Speed (ft/min) Differential (inches of H20) - 29 - - - -

SUMMA Canister Information:

Size (circle one): 1 L

Canister ID: 11559

Flow Controller ID: 11 582

General Observations/Notes:

Across Room to cabind 10 mi rom 10 Key Carow in room Moural R Cabiner oom

Appendix B -Ambient Air Sampling and Analysis

ARCADIS			Indoor/Ambient Air Sample Collection Log				
innusi actore,	environment, panaings		Sample ID:	JR-1115-IA-2			
Client:	ConEd		Outdoor/Indoor:	Indos			
Project:	E. Il Str. 7	acch Reix	Sample Intake Height:	44			
Location:	1115 Plaster	Room	Miscellaneous Equipment:				
Project #:	3000 5328		Time On/Off:	0804 -1614			
Samplers:	ARIRE		Subcontractor:	NOA			

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0804	-29					0
1142	-18					6
						5
1614	-3		1. C.			0
1						

SUMMA Canister Information:

				\frown
Size	(circle	one):	1 L	<u>6</u>

Canister ID: 11 0 2 9

Flow Controller ID: 11990

General Observations/Notes:

ast 01 oan OH an employees Bathroom cleaning diamicals, etc. lockers Break room for

	CADIS environment, buildings		Indoor/Ambient Air Sample Collection Log					
milositettale, entitorinient, bandings		Sample ID:	7R-1115-IA-3					
Client: Con Ed		Outdoor/Indoor:	Indoor					
Project:	E. Il de Str. Ja	A Rick Sample Intake Height:	54					
Location:	1115 - Tank							
Project #:	3000 5328	Time On/Off:	0743 - 1630					
Samplers:	AR /RA	Subcontractor:	NM					

Instrument Readings:

Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
-30					Opph
- 18					Office
					0
-2					0
	Pressure (inches of HG) 	Pressure (inches of HG) Temperature (F or C) ~ 3 0 ~	Pressure (inches of HG) Temperature (F or C) Humidity (%) ~ 3 0 ~ ~ 18	Pressure (inches of HG) Temperature (F or C) Humidity (%) Air Speed (ft/min) ~ 30 ~ 18	Pressure (inches of HG)Temperature (F or C)Humidity (%)Air Speed (ft/min)Differential (inches of H20)~ 18

SUMMA Canister Information:

				\sim
Size (ci	ircle on	ie): 1	L	6

Canister ID: 10562

Flow Controller ID: 09654

General Observations/Notes:

Ham the roo m - Tank Room in

Appendix B -Ambient Air Sampling and Analysis

RARCADIS		Inde	Indoor/Ambient Air Sample Collection Log					
			Sample ID: JR-1115-IA-4	,				
Client:	Con Ed	Outdoo	pr/indoor: Indoor					
Project:	E. Ht Str. Je	ob Ries Sample	e Intake Height:					
Location:		Channel 100 million and	aneous Equipment:					
Project #:	3000 5328	Time O	n/Off: 0750 - 1613					
Samplers:	AR / RA	Subcor	ntractor: NA					

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0750	-30					0
11 46	- 19					0
1613	- 4		18			0

SUMMA Canister Information:

					\sim
Size	(circle	one)	: 1	L	(6 IŽ
		,		_	~~~

Canister ID: 0402

Flow Controller ID: 11497

General Observations/Notes:

PANEL Storage big APT DIST. Room

Appendix B -Ambient Air Sampling and Analysis

11/1/19 Indoor/Ambient Air Sample ARCADIS **Collection Log** Infrastructure, environment, buildings Sample ID: 10/19 Outdoor/Indoor: **Client:** SAF 11th St. **Project:** Sample Intake Height: 01 **Miscellaneous Equipment:** 1223 Location: Project #: Time On/Off: 503 00532 Subcontractor: Samplers:

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
1748	-30					0
1035	-24					0
1503	- 4					0

١

SUMMA Canister Information:

Size (circle one): 1 L 109672 Canister ID:

Flow Controller ID: ______ 10049

General Observations/Notes:

SW corne Bldg 1223

Appendix B -**Ambient Air Sampling** and Analysis

	CADIS environment, buildings	Indoor/Ambient A Collection	-
, mostociare,	entri onnene, oundings	Sample ID:	JR-1223-FA-4
Client:	Con Ed	Outdoor/Indoor:	Indecc
Project:	E. 11th St.	Sample Intake Height:	.341
Location:	Blok 1223	Miscellaneous Equipment:	<u> </u>
Project #:	3000 532.8	Time On/Off:	0720/1532
Samplers:	AR/RA	Subcontractor:	1-10-1

Instrument Readings:

	Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
	0720	-30					17
	1036	- 22					6
JUP)	1036	-21					b
	1532	- 5					Ď
42)	1573	-4					D

(î

SUMMA Canister Information:

Size (circle one): 1 L 6 L

09978 Canister ID:

Flow Controller ID: 10301

DUP-110/19 (an: 11676 on/off :0720/1532 controller: 11549 152: -30/-4

General Observations/Notes:

-110/19

Appendix B -Ambient Air Sampling and Analysis

				11/1/19
AR	CADIS environment, buildings		Indoor/Ambient A Collection	-
innustracture, e	annioninent, buildings		Sample ID:	JR-1223-JA-3
Client:	CANEd		Outdoor/Indoor:	Indocr
Project:	E. Ilth St. S	Jocob Ries	Sample Intake Height:	3Ft
Location:	Bldg 1223,		Miscellaneous Equipment:	
Project #:	30005328		Time On/Off:	0726 /141:58
Samplers:	NR/RA		Subcontractor:	~

Instrument Readings:

	Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
0726	1038	-20					8
10 20	14:58	-6					0
4							

SUMMA Canister Information:

Size (circle one): 1 L Canister ID: 10685

Flow Controller ID: 10140

General Observations/Notes:

NO CORVER 27 Dase met from canister. Moors 211 Rat poison & travos U Di De, mous ove the baser

Appendix B -**Ambient Air Sampling** and Analysis

11/1/19

	CADIS environment, buildings		Indoor/Ambient Air Sample Collection Log	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ann chaicht, sononigs		Sample ID:	JR-1223-IA-2
Client:	Con Ed		Outdoor/Indoor:	Indoor
Project:	E. 11th Sty. Jaco	do Rais	Sample Intake Height:	34+
Location:	1223 / NW Sto.	uge	Miscellaneous Equipment:	<u> </u>
Project #:	3000 5328		Time On/Off:	7:23 /14:55
Samplers:	AR / RA		Subcontractor:	

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
7:23	-30					0
10:37	-20					0
4 55	- 6					

SUMMA Canister Information:

Size (circle one): 1 L 6 L Canister ID: 09872

Flow Controller ID: 11515

General Observations/Notes:

Air vents 2 sides. Storac 100 m . Dict 1005 NW m Rodont paison was set around the 10000

Appendix B -Ambient Air Sampling and Analysis

11/1/19

	CADIS environment, buildings		Indoor/Ambient Air Sample Collection Log		ample
innastructure,	environment, bonuings		Sample ID:	IR-	1223-IA-1
Client:	contral		Outdoor/Indoor:	J	Indoor
Project:	E. 11 MSt. Yau	op Puic	Sample Intake Height:		5°A
Location:	1223	0013	Miscellaneous Equipment:	-	
Project #:	30005328		Time On/Off:	1:30	(14:59
Samplers:	AR/RA		Subcontractor:	a_	

Instrument Readings:

Time	Canister Pressure (inches of HG)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Pressure Differential (inches of H20)	PID (ppm or ppb)
2:20	~ 28					6
10:40	- 18					0
4 59	- 4					
			· ·			

SUMMA Canister Information:

Size ((circle	one):	: 11	. 6L

Canister ID: 3400 1285

Flow Controller ID: 11938

General Observations/Notes:

NOm. 20 2.25 Hoode SFOR222 General Si af 60-00 non to the space huna the door a an mon Jace W bau Posticide se all 011 n

INSTRUMENT CALIBRATION REPORT

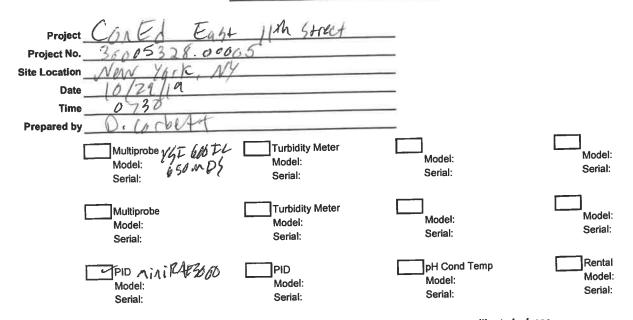
Pine Environmental Services LLC

798 Cromwell Park Dr. Suite R & S Glen Burnie, MD 21061

Pine Environmental Services, Inc.

Instrun	nent ID 4511					
Desc	ription ppbRAE					
Cali	ibrated 10/23/2019 1	:01:28PM				
Manufa	acturer Rae Systems			State Certified		
Model N	umber PGM-7240			Status	Pass	
Serial Numb	er/Lot 250-101118			Temp °C	23	
Ň	lumber					
L	ocation Maryland			Humidity %	45	
Depa	rtment					
		Calibra	tion Specification	15		
	Group # 1			Range Acc % 3	.0000	
Gro	oup Name Isobutylene	e	ŀ	Reading Acc % 3	.0000	
St	ated Accy Pct of Read	ling Range		Plus/Minus 0	.00	
<u>Nom In Val / In Va</u>	al <u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As L	ft As Dev%	Pass/Fail
10.00 / 10.00	PPM	10.00	РРМ	9.86 1	0.00 0.00%	Pass
Test Instruments	Used During the Cali	bration			(As Of Cal Ent	ry Date)
Test Insti unients	Used During the Can	or attom		Serial Number		ext Cal Date /
Test Standard ID	Description	Manufacturer	Model Number	Lot Number	Last Cal Date/ E	
A COLORIDA CAL					Opened Date	
MD ISO 10PPM	MD ISO 10PPM	Pine	31716	IBI-248-10-7	9/	/10/2022
IBI-248-10-7	IBI-248-10-7	Environmental				
		Services, Inc.				

Notes about this calibration


Calibration Result Calibration Successful Who Calibrated Andrea Henderson

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION FORM

Check appropriate box for equipment calibrated. If two similar items are calibrated, please note two checks under calibration successful

Value	Calibration Successful
0.0	~
100	-
	0.0

ph (si Units)	Value	Calibration Successful
4.00	40	1
7.00	7.0	V
10.00		
		15 2

Conductivity (umhos)	Value	Calibration Successful
84 umhos		
1413 uhmos	1.413	~
Other		

Turbidity (NTU)	Value	Calibration Successful
1.0 NTU		
10 NTU		
40 NTU		
Other		

Parameter D.O.	Calibration Successful
100% Saturated Air	
Barometer Adjustment	
Elevation Adjustment	

ORP (Mv)	Calibration Successful
Hydroquinone (240) (Black) Zobel Solution (237) (yellow)	
Temperature Based Chart Calibration	
* Adjusted	

* No adjustment on some meters just a probe check, others are adjustable

\\NY1FP1\Data\TECHNICL\Procedure Library Documents\Field Documents\Instrument calibration formInstrument calibration formSheet1

INSTRUMENT CALIBRATION FORM

Project		St 11th St.		
Project No.	30005328.00	105		
Site Location	New York, M	en Vods		
Date	10/30/19	on the second se		
Time	0700			
Prepared by	Dylam Grbet	+		
Γ	Multiprobe Model: Serial:	Turbidity Meter Model: Serial:	Model: Serial:	Model: Serial:
E	Multiprobe Model: Serial: 	Turbidity Meter Model: Serial:	Model: Serial:	Model: Serial:
Γ	PID Model: MoRAE Serial# (51)	PID Model: Serial:	pH Cond Temp Model: Serial:	Rental Model: Serial:

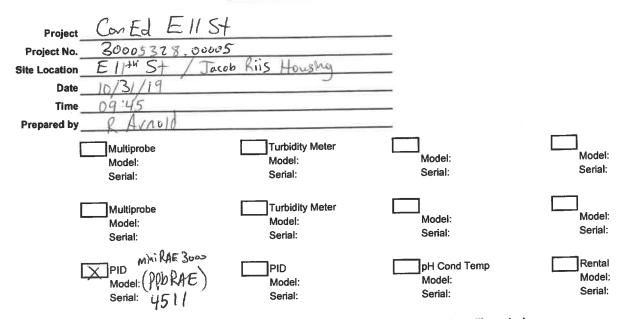
Check appropriate box for equipment calibrated. If two similar items are calibrated, please note two checks under calibration successful

Parameter PID (ppmv)	Value	Calibration Successful
Zero	0	
Span	100	-

Value	Calibration	
		Successful
	Value	

Conductivity (umhos)	Value	Calibration Successful
84 umhos		
1413 uhmos		
Other		

Turbidity (NTU)	Value	Calibration Successful
1.0 NTU		
10 NTU		
40 NTU		
Other		


Parameter D.O.	Calibration Successful
100% Saturated Air	
Barometer Adjustment	
Elevation Adjustment	

* ORP (Mv)	Calibration Successful
Hydroquinone (240) (Black)	
Zobel Solution (237) (yellow)	
Temperature Based Chart Calibration	
* Adjusted	

* No adjustment on some meters just a probe check, others are adjustable

\\NY1FP1\Data\TECHNICL\Procedure Library Documents\Field Documents\Instrument calibration formInstrument calibration formSheet1

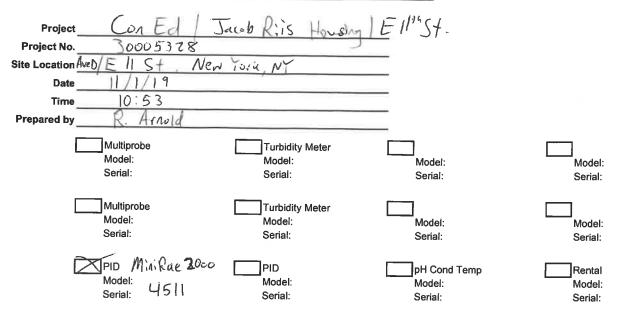
INSTRUMENT CALIBRATION FORM

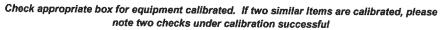
Check appropriate box for equipment calibrated. If two similar items are calibrated, please note two checks under calibration successful

Parameter PID (ppmv)	Value	Calibration Successful
Zero	ð	V
Span		
ph (si Units)	Value	Calibration

1	ph (si Units)	Value	Calibration Successful
	4.00		
	7.00		
	10.00		

Conductivity (umhos)	Value	Calibration Successful
84 umhos		
1413 uhmos		
Other		


Turbidity (NTU)	Value	Calibration Successful
1.0 NTU		
10 NTU		
40 NTU		
Other		


Calibration Successful

* ORP (Mv)	Calibration Successful
Hydroquinone (240) (Black) Zobel Solution (237) (yellow)	
Temperature Based Chart Calibration	
* Adjusted	

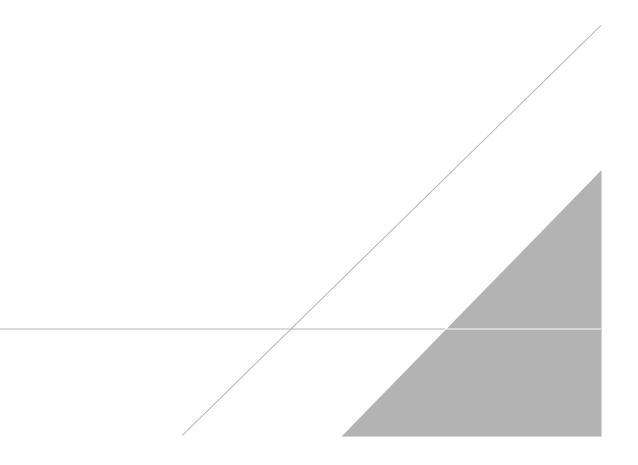
* No adjustment on some meters just a probe check, others are adjustable

INSTRUMENT CALIBRATION FORM

Parameter PID (ppmv)	Value	Calibration Successful
Zero	-	
Span		
Cpan	L	
ph (si Units)	Value	Calibration Successful
4.00		
7.00		
10.00		
Conductivity (umhos)	Value	Calibration Successful
84 umhos		
1413 uhmos		
Other		
Furbidity (NTU)	Value	Calibration
		Successful
1.0 NTU		
10 NTU		
40 NTU		
Other		

Т

Parameter D.O.	Calibration Successful
100% Saturated Air	
Barometer Adjustment	
Elevation Adjustment	


* ORP (Mv)	Calibration Successful
Hydroquinone (240) (Black)	
Zobel Solution (237) (yellow)	
Temperature Based Chart Calibration	
* Adjusted	

* No adjustment on some meters just a probe check, others are adjustable

\\NY1FP1\Data\TECHNICL\Procedure Library Documents\Field Documents\Instrument calibration formInstrument calibration formSheet1

APPENDIX D

Data Usability Summary Reports (DUSRs)

Consolidated Edison Company of New York, Inc. – East 11th Street Site

DATA USABILITY SUMMARY REPORT

New York City, New York

Volatile Organic Compound (VOC) TO-15 Analysis

SDG #140-17191-1

Analyses Performed By: Eurofins-TestAmerica Knoxville Knoxville, Tennessee

Report #34800R Review Level: Tier III Project: 30005328.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 140-17191-1 for samples collected in association with the with the Con Edison East 11th Street site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample				Anal	ysis		
SDG	Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	РСВ	EPH	ME T	MISC
	AA 102919- 20191029	140-17191-1	Air	10/29/2019		х					
	JR-1141-IA-1- 20191029	140-17191-2	Air	10/29/2019		х					
	JR-1141-IA-3- 20191029	140-17191-3	Air	10/29/2019		х					
	JR-1141-IA-2- 20191029	140-17191-4	Air	10/29/2019		х					
	AA 103019- 20191030	140-17191-5	Air	10/30/2019		х					
140-17191-1	JR-178-IA-1- 20191030	140-17191-6	Air	10/30/2019		x					
	JR-178-IA-2- 20191030	140-17191-7	Air	10/30/2019		x					
	JR-178-IA-3- 20191030	140-17191-8	Air	10/30/2019		x					
	JR-170-IA-3- 20191030	140-17191-9	Air	10/30/2019		x					
	JR-170-IA-4- 20191030	140-17191-10	Air	10/30/2019		x					

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

			Reported		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1. San	nple receipt condition		Х		Х	
2. Req	uested analyses and sample results		Х		Х	
3. Mas	ster tracking list		Х		Х	
4. Met	hods of analysis		Х		Х	
5. Rep	porting limits		Х		Х	
6. San	nple collection date		Х		Х	
7. Lab	oratory sample received date		Х		Х	
8. San	nple preservation verification (as applicable)		Х		Х	
9. San	nple preparation/extraction/analysis dates		Х		Х	
10. Fully	y executed Chain-of-Custody (COC) form		Х		Х	
	rative summary of Quality Assurance or sample plems provided		х		Х	
12. Data	a Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31- Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15), NYSDEC Modifications to R9 TO-15 QA/QC Criteria October 2009.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

arcadis.com g:\project_data\project chemistry\data validation reports\2019\34501-35000\34800\34800r_for sdg 140-17191-1.docx

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15	Air	30 days from collection to analysis	Ambient Temperature	< -1" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
AA 102919-20191029 JR-1141-IA-1-20191029 JR-1141-IA-3-20191029 AA 103019-20191030 JR-178-IA-1-20191030 JR-178-IA-2-20191030 JR-178-IA-3-20191030 JR-170-IA-4-20191030	Methylene Chloride	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration
Note:	1	1	

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
JR-1141-IA-1-20191029	ICAL %RSD	Acetone	32.8%
JR-1141-IA-3-20191029 JR-1141-IA-2-20191029 AA 103019-20191030	CCV %D	Acetone	30.1%
	CCV %D	n-Butane	32.4%
AA 102919-20191029 JR-178-IA-1-20191030 JR-178-IA-2-20191030		2,3-Dimethylpentane	30.7%
IR-178-IA-2-20191030 IR-178-IA-3-20191030 IR-170-IA-3-20191030 IR-170-IA-4-20191030	CCV %D	4-Methyl-2-pentanone (MIBK)	30.5%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.00	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF >0.05 01 RRF >0.01	Detect	NO ACTION
	%RSD > 30% or a correlation coefficient <0.99	Non-detect	UJ
Initial Calibration	%RSD > 30% of a correlation coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
	%RSD >90%	Detect	J
		Non-detect	No Action
	%D >30% (increase in sensitivity)	Detect	J
Continuing Colibration	9/ D > 200/ (decrease in consitivity)	Non-detect	UJ
Continuing Calibration	%D >30% (decrease in sensitivity)	Detect	J
		Non-detect	R
	%D >90% (increase/decrease in sensitivity)	Detect	J

Note:

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit a percent recovery within the established acceptance limits of 70% to 130%.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130% (60% to 140% for poor responding compounds).

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
AA 102919-20191029		
JR-178-IA-1-20191030		
JR-178-IA-2-20191030	2.2 Dimethylpontone	>لاا
JR-178-IA-3-20191030	2,3-Dimethylpentane	>UL
JR-170-IA-3-20191030		
JR-170-IA-4-20191030		

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (III.) 1200(Non-detect	No Action
> the upper control limit (UL) 130%	Detect	J
the laws control limit (11) 700(but don)	Non-detect	UJ
< the lower control limit (LL) 70% but > 10%	Detect	J
- 109/	Non-detect	R
< 10%	Detect	J

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

A field duplicate analysis was not performed on a sample location within this SDG.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Note : The "Cl" qualifier was removed and replaced with a "J" qualifier to indicate that the detected compound results for the associated samples mentioned above are estimated (potential high bias).

- The laboratory qualified the detected Acetone results for sample locations AA 102919-20191029, JR-1141-IA-1-20191029, JR-1141-IA-2-20191029, AA 103019-20191030, JR-178-IA-2-20191030, JR-178-IA-3-20191030 and JR-170-IA-4-20191030 with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.
- The laboratory qualified the detected Chloromethane results for sample locations JR-1141-IA-1-20191029, JR-1141-IA-3-20191029, AA 103019-20191030, JR-178-IA-3-20191030 and JR-170-IA-4-

20191030 with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.

- The laboratory qualified the detected Propene results for sample locations AA 102919-20191029, JR-1141-IA-1-20191029, JR-1141-IA-2-20191029, AA 103019-20191030, JR-178-IA-1-20191030, JR-178-IA-2-20191030, JR-178-IA-3-20191030, JR-170-IA-3-20191030 and JR-170-IA-4-20191030 with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.
- The laboratory qualified the detected 1,2,3-Trimethylbenzene result for sample location JR-178-IA-2-20191030 with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15	Re	eported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC/	MS)			
Tier II Validation					
Holding times		X		Х	
Canister return pressure (<-1"Hg)		X		X	
Reporting limits (units)		Х		Х	
Blanks	I				1
A. Method blanks		Х	Х		
B. Equipment blanks					Х
C. Trip blanks					х
Laboratory Control Sample (LCS)		X	Х		
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)	Х				Х
Matrix Spike Duplicate(MSD)	Х				Х
MS/MSD Precision (RPD)	Х				Х
Field/Lab Duplicate (RPD)	X				Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		X		Х	
Moisture Content		X		Х	
Tier III Validation	I				1
System performance and column resolution		Х		Х	
Initial calibration %RSDs		X	Х		
Continuing calibration RRFs		X		Х	
Continuing calibration %Ds		X	Х		
Instrument tune and performance check		X		Х	
Ion abundance criteria for each instrument used		X		Х	
Internal standard		X		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		X		Х	
B. Quantitation Reports		X		X	

arcadis.com

VOCs: TO-15	Re	ported	Perfori Accep	Not	
		Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/N	IS)			
C. RT of sample compounds within the established RT windows		x		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

- %R Percent recovery
- RPD Relative percent difference
- %D Percent difference

Sample							Complianc	y ¹		
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	DRO/ GRO	Diss Gases	MET	MISC	Noncompliance
	10/29/2019	USEPA	AA 102919-	Air	No					VOC: Compound Identification, LCS %Rec,
	10/23/2013	TO-15	20191029		INO					CCAL %D, Associated Blanks
	10/29/2019	USEPA	JR-1141-IA-1-	Air	No					VOC: Compound Identification, ICAL %RSD,
	10/20/2013	TO-15	20191029	7.11						CCAL %D, Associated Blanks
	10/29/2019	USEPA	JR-1141-IA-3-	Air	No					VOC: Compound Identification, ICAL %RSD,
	10/20/2010	TO-15	20191029	,						CCAL %D, Associated Blanks
	10/29/2019	USEPA	JR-1141-IA-2-	Air	No					VOC: Compound Identification, ICAL %RSD,
		TO-15	20191029	,						CCAL %D
	10/30/2019	USEPA	AA 103019-	Air	No					VOC: Compound Identification, ICAL %RSD,
140-17191-1		TO-15	20191030							CCAL %D, Associated Blanks
	10/30/2019	USEPA	JR-178-IA-1-	Air	No					VOC: Compound Identification, LCS %Rec,
		TO-15	20191030							CCAL %D, Associated Blanks
	10/30/2019	USEPA	JR-178-IA-2-	Air	No					VOC: Compound Identification, LCS %Rec,
		TO-15	20191030							CCAL %D, Associated Blanks
	10/30/2019	USEPA	JR-178-IA-3-	Air	No					VOC: Compound Identification, LCS %Rec,
	10/00/2010	TO-15	20191030	7.11						CCAL %D, Associated Blanks
	10/30/2019	USEPA	JR-170-IA-3-	Air	No					VOC: Compound Identification, LCS %Rec,
		TO-15	20191030	/ \11						CCAL %D
	10/30/2019	USEPA	JR-170-IA-4-	Air	No					VOC: Compound Identification, LCS %Rec,
	10/00/2019	TO-15	20191030	7.11	INU					CCAL %D, Associated Blanks

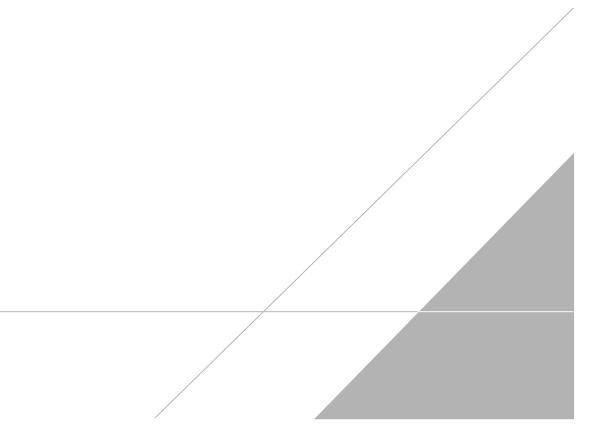
SAMPLE COMPLIANCE REPORT

Note:

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:


Joych & Home

DATE: January 28, 2020

PEER REVIEW: Dennis Capria

DATE: January 29, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Date Collected: 10/29/19 16:32 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) **Dil Fac** Result Qualifier MDL Unit Prepared Analyzed RL D Analyte 11/07/19 04:19 0.080 0.037 ppb v/v 1 1,1,1-Trichloroethane ND 11/07/19 04:19 1 0.014 ppb v/v 1,1,2,2-Tetrachloroethane ND 0.080 11/07/19 04:19 1 0.0080 ppb v/v 0.080 1,1,2-Trichloro-1,2,2-trifluoroetha 0.073 J ne 11/07/19 04:19 1 0.080 0.0070 ppb v/v 1,1,2-Trichloroethane ND 1 ND 0.080 0.0070 ppb v/v 11/07/19 04:19 1,1-Dichloroethane 1 0.0080 ppb v/v 11/07/19 04:19 ND 0.040 1,1-Dichloroethene 11/07/19 04:19 1 ND 0.080 0.036 ppb v/v 1,2,3-Trimethylbenzene 11/07/19 04:19 1 ND 0.080 0.064 ppb v/v 1,2,4-Trichlorobenzene 0.020 ppb v/v 11/07/19 04:19 1 0.080 0.095 1,2,4-Trimethylbenzene 11/07/19 04:19 1 0.080 0.0070 ppb v/v ND 1,2-Dibromoethane (EDB) 11/07/19 04:19 1 0.080 0.012 ppb v/v 1.2-Dichloro-1.1.2.2-tetrafluoroeth 0.017 J ane 11/07/19 04:19 1 1,2-Dichlorobenzene ND 0.080 0.031 ppb v/v 11/07/19 04:19 1 0.080 0.010 ppb v/v 0.022 J 1,2-Dichloroethane 0.010 ppb v/v 11/07/19 04:19 1 0.080 ND 1.2-Dichloropropane 11/07/19 04:19 1 0.051 J 0.080 0.022 ppb v/v 1,3,5-Trimethylbenzene 11/07/19 04:19 1 0.16 0.019 ppb v/v ND 1.3-Butadiene 11/07/19 04:19 1 0.016 ppb v/v 1,3-Dichlorobenzene 0.080 ND 1 0.016 ppb v/v 11/07/19 04:19 0.080 0.021 J 1.4-Dichlorobenzene 0.030 11/07/19 04:19 1 ppb v/v 0.20 0.061 J 1.4-Dioxane 11/07/19 04:19 1 0.0080 ppb v/v 0.20 0.15 J 2,2,4-Trimethylpentane 0.026 11/07/19 04:19 1 0.046 J**** 0.080 ppb v/v 2,3-Dimethylpentane 1 11/07/19 04:19 0.32 0.073 ppb v/v 2-Butanone (MEK) 0.32 11/07/19 04:19 1 0.022 J 0.20 0.016 ppb v/v 2-Hexanone 0.20 0.063 ppb v/v 11/07/19 04:19 1 2-Methylbutane 1.1 0.014 ppb v/v 11/07/19 04:19 1 0.080 0.27 2-Methylpentane 11/07/19 04:19 1 0.16 0.021 ppb v/v 0.056 J 4-Ethyltoluene 11/07/19 04:19 1 0.74 0.20 0.054 ppb v/v 4-Methyl-2-pentanone (MIBK) 11/07/19 04:19 1 3.1 -Ch 2.0 0.57 ppb v/v Acetone 1 11/07/19 04:19 0.22 0.080 0.0080 ppb v/v Benzene 11/07/19 04:19 1 0.16 0.038 ppb v/v Benzyl chloride ND 11/07/19 04:19 1 0.080 0.018 ppb v/v ND Bromodichloromethane 1 0.080 0.0090 ppb v/v 11/07/19 04:19 ND Bromoform 0.080 0.022 ppb v/v 11/07/19 04:19 1 ND Bromomethane 11/07/19 04:19 1 0.20 0.011 ppb v/v 0.068 J Carbon disulfide 1 0.032 0.0070 ppb v/v 11/07/19 04:19 0.078 Carbon tetrachloride 0.0060 11/07/19 04:19 1 0.080 ppb v/v ND Chlorobenzene 11/07/19 04:19 1 0.080 0.029 ppb v/v ND Chloroethane 1 0.0070 ppb v/v 11/07/19 04:19 0.080 0.039 J Chloroform 11/07/19 04:19 1 0.066 ppb v/v 0.20 0.55 Chloromethane 1 11/07/19 04:19 0.040 0.010 ppb v/v ND cis-1,2-Dichloroethene 11/07/19 04:19 1 0.080 0.016 ppb v/v ND cis-1,3-Dichloropropene 11/07/19 04:19 1 0.023 ppb v/v 0.12 J 0.20 Cyclohexane 11/07/19 04:19 1 ND 0.080 0.0070 ppb v/v Dibromochloromethane 11/07/19 04:19 1 0.080 0.014 ppb v/v 0.53 Dichlorodifluoromethane 11/07/19 04:19 1 0.080 0.013 ppb v/v 0.12 Ethylbenzene 0.20 0.014 ppb v/v 11/07/19 04:19 1 0.11 J Heptane 0.080 0.032 ppb v/v 11/07/19 04:19 1 ND Hexachlorobutadiene

Job ID: 140-17191-1

Matrix: Air

Lab Sample ID: 140-17191-1

Eurofins TestAmerica, Knoxville

12/13/2019

Lab Sample ID: 140-17191-1

Matrix: Air

Client Sample ID: AA 102919 Date Collected: 10/29/19 16:32 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Orga	Result	Qualifier	RL	MDL	Unit	D	Prepared	-	Dil Fa
nalyte	0.38		0.20	0.013	ppb v/v			11/07/19 04:19	
exane	ND		0.080	0.035	ppb v/v			11/07/19 04:19	
dane	ND		0.16		ppb v/v			11/07/19 04:19	
dene	1.2		0.80		ppb v/v			11/07/19 04:19	
opropyl alcohol	ND		0.16		ppb v/v			11/07/19 04:19	
opropylbenzene	ND		0.16		ppb v/v			11/07/19 04:19	
ethyl tert-butyl ether		-B-UB	0.40		ppb v/v			11/07/19 04:19	
lethylene Chloride		ъ VD	0.080		ppb v/v			11/07/19 04:19	
-Xylene & p-Xylene	0.46 ND		0.20		ppb v/v			11/07/19 04:19	
aphthalene			0.16		ppb v/v			11/07/19 04:19	
-Butane	2.7		0.40		ppb v/v			11/07/19 04:19	
-Decane	0.14		0.40		ppb v/v			11/07/19 04:19	
-Dodecane	0.066		0.40		ppb v/v			11/07/19 04:19	
-Octane	0.049		0.10		ppb v/v			11/07/19 04:19	
onane	0.060				ppb v/v			11/07/19 04:19	
-Undecane	0.057		0.40		ppb v/v ppb v/v			11/07/19 04:19	
-Xylene	0.15		0.080		ppb v/v ppb v/v			11/07/19 04:19	
entane	0.60	(0.40		• •			11/07/19 04:19	
ropene		-er 7	1.0		ppb v/v			11/07/19 04:19	
styrene	0.10	1	0.080		ppb v/v			11/07/19 04:19	
etrachloroethene	0.23		0.080		ppb v/v			11/07/19 04:19	
etrahydrofuran	ND)	0.40		ppb v/v			11/07/19 04:19	
hiophene	NE)	0.080		ppb v/v			11/07/19 04:19	
foluene	0.91	ł	0.12		ppb v/v			11/07/19 04:19	
rans-1,2-Dichloroethene	NE)	0.080		ppb v/v			11/07/19 04:19	
rans-1,3-Dichloropropene	NE)	0.080		ppb v/v				
Trichloroethene	0.013	5 J	0.036) ppb v/v			11/07/19 04:19	
Trichlorofluoromethane	0.22	2	0.080		ppb v/v			11/07/19 04:19	
Vinyl chloride	0.037	7 J	0.040	0.026	3 ppb v/v			11/07/19 04:19	
-	Resul	t Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil
,1,1-Trichloroethane	N		0.44	0.20	ug/m3			11/07/19 04:19	
1,1,2,2-Tetrachloroethane	N		0.55	0.096	∂ug/m3			11/07/19 04:19	
		6 J	0.61	0.061	1 ug/m3			11/07/19 04:19	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0								
ne 1,1,2-Trichloroethane	N	C	0.44	0.038	3 ug/m3			11/07/19 04:19	
1,1-Dichloroethane	N	C	0.32	0.028	3 ug/m3			11/07/19 04:19	
1.1-Dichloroethene	N	C	0.16	0.032	2 ug/m3			11/07/19 04:19	
1,2,3-Trimethylbenzene	N	D	0.39	0.1	8 ug/m3			11/07/19 04:19	
1,2,4-Trichlorobenzene	N		0.59	0.4	7 ug/m3			11/07/19 04:19	
1,2,4-Trimethylbenzene	0.4		0.39	0.09	8 ug/m3			11/07/19 04:19	
1,2,4-1 rimethyldenzene 1,2-Dibromoethane (EDB)	N		0.61	0.05	4 ug/m3			11/07/19 04:19	
		2 J	0.56	0.08	4 ug/m3			11/07/19 04:19	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.1	2 0							
ane 1,2-Dichlorobenzene	N	D	0.48	0.1	9 ug/m3			11/07/19 04:19	
1,2-Dichloroethane		0 J	0.32	0.04	0 ug/m3			11/07/19 04:19	
1,2-Dichloropropane	N		0.37	0.04	6 ug/m3			11/07/19 04:19	
1,3,5-Trimethylbenzene		- 5 J	0.39	0.1	1 ug/m3			11/07/19 04:19	
	N		0.35	0.04	2 ug/m3			11/07/19 04:19	
1,3-Butadiene 1,3-Dichlorobenzene		D	0.48	0.09	6 ug/m3			11/07/19 04:19	
									ł

Eurofins TestAmerica, Knoxville

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Matrix: Air

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Lab Sample ID: 140-17191-1

Client Sample ID: AA 102919

Date Collected: 10/29/19 16:32 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

MDL Unit Analyzed Dil Fac D Prepared **Result Qualifier** RL Analyte 11/07/19 04:19 1 0.72 0.11 ug/m3 0.22 J 1,4-Dioxane 0.93 0.037 ug/m3 11/07/19 04:19 1 0.68 J 2,2,4-Trimethylpentane 0.11 ug/m3 11/07/19 04:19 1 0.33 2,3-Dimethylpentane 0.19 J**** 11/07/19 04:19 1 0.94 0.22 ug/m3 0.93 2-Butanone (MEK) 11/07/19 04:19 1 0.82 0.066 ug/m3 0.089 J 2-Hexanone 11/07/19 04:19 1 0.59 0.19 ug/m3 3.3 2-Methylbutane 0.049 ug/m3 11/07/19 04:19 1 0.28 0.96 2-Methylpentane 0.10 ug/m3 11/07/19 04:19 1 0 7 9 4-Ethyltoluene 0.28 .1 11/07/19 04:19 0.22 ug/m3 0.82 4-Methyl-2-pentanone (MIBK) 3.0 1.3 ug/m3 11/07/19 04:19 4.8 7.5 °C1 °° Acetone 0.026 ug/m3 11/07/19 04:19 0.26 0.69 Benzene 11/07/19 04:19 0.20 ug/m3 ND 0.83 Benzyl chloride 11/07/19 04:19 ND 0.54 0.12 ug/m3 Bromodichloromethane 11/07/19 04:19 0.83 0.093 ug/m3 Bromoform ND 0.31 0.085 ug/m3 11/07/19 04:19 Bromomethane ND 0.62 0.034 ug/m3 11/07/19 04:19 Carbon disulfide 0.21 J 0.044 ug/m3 11/07/19 04:19 0.49 0.20 Carbon tetrachloride 0.37 0.028 ug/m3 11/07/19 04:19 ND Chlorobenzene 0.21 0.077 ug/m3 11/07/19 04:19 ND Chloroethane 11/07/19 04:19 0.034 ug/m3 0.19 J 0.39 Chloroform 0.14 ug/m3 11/07/19 04:19 0.41 Chloromethane 1.1 11/07/19 04:19 0.040 ug/m3 0.16 ND cis-1,2-Dichloroethene 11/07/19 04:19 0.073 ug/m3 ND 0.36 cis-1.3-Dichloropropene 0.079 ug/m3 11/07/19 04:19 0.40 J 0.69 Cyclohexane 11/07/19 04:19 0.060 ug/m3 Dibromochloromethane ND 0.68 11/07/19 04:19 0.069 ug/m3 2.6 0.40 Dichlorodifluoromethane 0.056 ug/m3 11/07/19 04:19 0.51 0.35 Ethylbenzene 11/07/19 04:19 0.45 J 0.82 0.057 ug/m3 Heptane 11/07/19 04:19 ND 0.85 0.34 ug/m3 Hexachlorobutadiene 11/07/19 04:19 0.70 0.046 ug/m3 1.3 Hexane 11/07/19 04:19 0.39 0.17 ug/m3 ND Indane 0.76 0.19 ug/m3 11/07/19 04:19 ND Indene 0.54 ug/m3 11/07/19 04:19 2.0 Isopropyl alcohol 3.0 11/07/19 04:19 0.084 ug/m3 ND 0.79 Isopropylbenzene 0.19 ug/m3 11/07/19 04:19 ND 0.58 Methyl tert-butyl ether 5.1 -B- UB 11/07/19 04:19 0.56 ug/m3 1.4 Methylene Chloride 11/07/19 04:19 0.13 ug/m3 2.0 0.35 m-Xylene & p-Xylene 0.40 ug/m3 11/07/19 04:19 ND 1.0 Naphthalene 0.20 ug/m3 11/07/19 04:19 0.38 n-Butane 6.5 0.22 ug/m3 11/07/19 04:19 2.3 0.83 J n-Decane 0.45 ug/m3 11/07/19 04:19 2.8 0.46 J n-Dodecane 0.075 ug/m3 11/07/19 04:19 0.75 0.23 J n-Octane 0.094 ug/m3 11/07/19 04:19 0.32 J 1.0 Nonane 11/07/19 04:19 2.6 0.31 ug/m3 0.37 J n-Undecane 11/07/19 04:19 0.065 ug/m3

11/07/19 04:19

11/07/19 04:19

11/07/19 04:19

12/13/2019

0.35

1.2

1.7

0.34

0.23 ug/m3

0.10 ug/m3

1.7 ug/m3

0.65

1.8

0.44

2.0 er

o-Xylene

Pentane

Propene

Styrene

Date Collected: 10/29/19 16:32 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	1.6		0.54	0.047	ug/m3			11/07/19 04:19	1
Tetrahydrofuran	ND		1.2	0.45	ug/m3			11/07/19 04:19	1
Thiophene	ND		0.28	0.038	ug/m3			11/07/19 04:19	1
Toluene	3.4		0.45	0.29	ug/m3			11/07/19 04:19	1
trans-1.2-Dichloroethene	ND		0.32	0.028	ug/m3			11/07/19 04:19	1
trans-1,3-Dichloropropene	ND		0.36	0.041	ug/m3			11/07/19 04:19	1
Trichloroethene	0.072	J	0.19	0.032	ug/m3			11/07/19 04:19	1
Trichlorofluoromethane	1.3	•	0.45	0.062	ug/m3			11/07/19 04:19	1
Vinyl chloride	0.095	J	0.10	0.066	ug/m3			11/07/19 04:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		60 - 140					11/07/19 04:19	1

Client Sample ID: JR-1141-IA-1

Acetone

Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Orga Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1.1.1-Trichloroethane	ND		0.080	0.037	ppb v/v		11/04/19 21:19	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v		11/04/19 21:19	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.069	J	0.080	0.0080	ppb v/v		11/04/19 21:19	1
ne							44/04/40 04:40	1
1,1,2-Trichloroethane	ND		0.080		ppb v/v		11/04/19 21:19	4
1,1-Dichloroethane	ND		0.080		ppb v/v		11/04/19 21:19	1
1,1-Dichloroethene	ND		0.040		ppb v/v		11/04/19 21:19	1
1,2,3-Trimethylbenzene	0.052	J	0.080	0.036	ppb v/v		11/04/19 21:19	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v		11/04/19 21:19	1
1,2,4-Trimethylbenzene	0.081		0.080	0.020	ppb v/v		11/04/19 21:19	1
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v		11/04/19 21:19	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080	0.012	ppb v/v		11/04/19 21:19	1
ane								4
1,2-Dichlorobenzene	ND		0.080		ppb v/v		11/04/19 21:19	1
1,2-Dichloroethane	0.025	J	0.080		ppb v/v		11/04/19 21:19	1
1,2-Dichloropropane	ND		0.080	0.010	ppb v/v		11/04/19 21:19	1
1,3,5-Trimethylbenzene	0.027	J	0.080	0.022	ppb v/v		11/04/19 21:19	1
1,3-Butadiene	ND		0.16	0.019	ppb v/v		11/04/19 21:19	1
1.3-Dichlorobenzene	ND		0.080	0.016	ppb v/v		11/04/19 21:19	1
1,4-Dichlorobenzene	0.81		0.080	0.016	ppb v/v		11/04/19 21:19	1
1,4-Dioxane	ND		0.20	0.030	ppb v/v		11/04/19 21:19	1
2,2,4-Trimethylpentane	0.11	J	0.20	0.0080	ppb v/v		11/04/19 21:19	1
2,3-Dimethylpentane	0.045	J	0.080	0.026	ppb v/v		11/04/19 21:19	1
2-Butanone (MEK)	0.48		0.32	0.073	ppb v/v		11/04/19 21:19	1
2-Hexanone	0.035		0.20	0.016	ppb v/v		11/04/19 21:19	1
2-Methylbutane	1.8		0.20		ppb v/v		11/04/19 21:19	1
•	0.25		0.080		ppb v/v		11/04/19 21:19	1
2-Methylpentane	0.25		0.16		ppb v/v		11/04/19 21:19	1
4-Ethyltoluene	0.058		0.10		ppb v/v		11/04/19 21:19	1
4-Methyl-2-pentanone (MIBK)	0.057	J	0.20		ppb v/v		11/04/19 21-19	1

11/04/19 21:19

2.0

0.57 ppb v/v

5.9 °Ct~)

Job ID: 140-17191-1

Lab Sample ID: 140-17191-2

Matrix: Air

1

Client Sample Results

Matrix: Air

Lab Sample ID: 140-17191-2

Client Sample ID: JR-1141-IA-1

Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL		D Prepared	Analyzed	Dil F
Benzene	0.22	0.080		ppb v/v		11/04/19 21:19	
enzyl chloride	ND	0.16		ppb v/v		11/04/19 21:19	
romodichloromethane	0.66	0.080		ppb v/v		11/04/19 21:19	
romoform	ND	0.080		ppb v/v		11/04/19 21:19	
romomethane	ND	0.080	0.022	ppb v/v		11/04/19 21:19	
arbon disulfide	0.56	0.20	0.011	ppb v/v		11/04/19 21:19	
arbon tetrachloride	0.082	0.032	0.0070	ppb v/v		11/04/19 21:19	
Chlorobenzene	ND	0.080	0.0060	ppb v/v		11/04/19 21:19	
hloroethane	0.032 J	0.080	0.029	ppb v/v		11/04/19 21:19	
Chloroform	5.4	0.080	0.0070	ppb v/v		11/04/19 21:19	
hloromethane	0.79 C+ \	0.20	0.066	ppb v/v		11/04/19 21:19	
is-1,2-Dichloroethene	ND	0.040	0.010	ppb v/v		11/04/19 21:19	
is-1,3-Dichloropropene	ND	0.080	0.016	ppb v/v		11/04/19 21:19	
clohexane	0.12 J	0.20	0.023	ppb v/v		11/04/19 21:19	
ibromochloromethane	0.056 J	0.080	0.0070	ppb v/v		11/04/19 21:19	
lichlorodifluoromethane	0.28	0.080	0.014	ppb v/v		11/04/19 21:19	
thylbenzene	0.088	0.080	0.013	ppb v/v		11/04/19 21:19	
leptane	0.11 J	0.20	0.014	ppb v/v		11/04/19 21:19	
lexachlorobutadiene	ND	0.080	0.032	ppb v/v		11/04/19 21:19	
lexane	0.27	0.20	0.013	ppb v/v		11/04/19 21:19	
idane	ND	0.080	0.035	ppb v/v		11/04/19 21:19	
ndene	ND	0.16	0.039	ppb v/v		11/04/19 21:19	
opropyl alcohol	3.1	0.80	0.22	ppb v/v		11/04/19 21:19	
sopropylbenzene	ND	0.16	0.017	ppb v/v		11/04/19 21:19	
lethyl tert-butyl ether	ND	0.16		ppb v/v		11/04/19 21:19	
lethylene Chloride	1.0 - 日、 しび	0.40		ppb v/v		11/04/19 21:19	
•	0.28	0.080		ppb v/v		11/04/19 21:19	
n-Xylene & p-Xylene	ND	0.20		ppb v/v		11/04/19 21:19	
aphthalene	7.2	0.16		ppb v/v		11/04/19 21:19	
-Butane	0.24 J	0.40		ppb v/v		11/04/19 21:19	
-Decane	0.24 J	0.40		ppb v/v		11/04/19 21:19	
-Dodecane	0.24 J	0.40		ppb v/v		11/04/19 21:19	
-Octane		0.10		ppb v/v		11/04/19 21:19	
lonane	0.042 J	0.20		ppb v/v		11/04/19 21:19	
-Undecane	0.064 J	0.40		ppb v/v ppb v/v		11/04/19 21:19	
-Xylene	0.11			ppb v/v ppb v/v		11/04/19 21:19	
entane	0.86	0.40		••		11/04/19 21:19	
ropene	2.1 ~6+~)	1.0		ppb v/v		11/04/19 21:19	
tyrene	0.13	0.080		ppb v/v		11/04/19 21:19	
etrachloroethene	0.24	0.080		ppb v/v		11/04/19 21:19	
etrahydrofuran	ND	0.40		ppb v/v			
hiophene	ND	0.080		ppb v/v		11/04/19 21:19	
oluene	0.78	0.12		ppb v/v		11/04/19 21:19	
rans-1,2-Dichloroethene	0.025 J	0.080		ppb v/v		11/04/19 21:19	
rans-1,3-Dichloropropene	ND	0.080		ppb v/v		11/04/19 21:19	
richloroethene	0.012 J	0.036		ppb v/v		11/04/19 21:19	
Frichlorofluoromethane	0.25	0.080		ppb v/v		11/04/19 21:19	
/inyl chloride	ND	0.040	0.026	ppb v/v		11/04/19 21:19	

Client Sample ID: JR-1141-IA-1

Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44	0.20	ug/m3			11/04/19 21:19	1
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	ug/m3			11/04/19 21:19	1
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.53	J	0.61	0.061	ug/m3			11/04/19 21:19	1
1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			11/04/19 21:19	1
1,1-Dichloroethane	ND		0.32	0.028	ug/m3			11/04/19 21:19	1
1,1-Dichloroethene	ND		0.16	0.032	ug/m3			11/04/19 21:19	1
1,2,3-Trimethylbenzene	0.26	J	0.39	0.18	ug/m3			11/04/19 21:19	1
1,2,4-Trichlorobenzene	ND		0.59	0.47	ug/m3			11/04/19 21:19	1
1,2,4-Trimethylbenzene	0.40		0.39	0.098	ug/m3			11/04/19 21:19	1
1,2-Dibromoethane (EDB)	ND		0.61	0.054	ug/m3			11/04/19 21:19	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth ane	0.12	J	0.56	0.084	ug/m3			11/04/19 21:19	1
1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/04/19 21:19	1
1,2-Dichloroethane	0.10	J	0.32	0.040	ug/m3			11/04/19 21:19	1
1,2-Dichloropropane	ND		0.37	0.046	ug/m3			11/04/19 21:19	1
1,3,5-Trimethylbenzene	0.13	J	0.39	0.11	ug/m3			11/04/19 21:19	1
1,3-Butadiene	ND		0.35	0.042	ug/m3			11/04/19 21:19	1
1,3-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/04/19 21:19	1
1,4-Dichlorobenzene	4.9		0.48	0.096	ug/m3			11/04/19 21:19	1
1,4-Dioxane	ND		0.72	0.11	ug/m3			11/04/19 21:19	1
2,2,4-Trimethylpentane	0.52	J	0.93	0.037	ug/m3			11/04/19 21:19	1
2,3-Dimethylpentane	0.18	J	0.33	0.11	ug/m3			11/04/19 21:19	1
2-Butanone (MEK)	1.4		0.94		ug/m3			11/04/19 21:19	1
2-Hexanone	0.14	J	0.82	0.066	ug/m3			11/04/19 21:19	1
2-Methylbutane	5.2		0.59		ug/m3			11/04/19 21:19	1
2-Methylpentane	0.87		0.28	0.049	ug/m3			11/04/19 21:19	1
4-Ethyltoluene	0.28	J	0.79		ug/m3			11/04/19 21:19	1
4-Methyl-2-pentanone (MIBK)	0.23	J	0.82	0.22	ug/m3			11/04/19 21:19	1
Acetone	14	- 6 + \	4.8	1.3	ug/m3			11/04/19 21:19	1
Benzene	0.71	and.	0.26		ug/m3			11/04/19 21:19	1
Benzyl chloride	ND		0.83		ug/m3			11/04/19 21:19	1
Bromodichloromethane	4.4		0.54		ug/m3			11/04/19 21:19	1
Bromoform	ND		0.83		ug/m3			11/04/19 21:19	1
Bromomethane	ND		0.31		ug/m3			11/04/19 21:19	1
Carbon disulfide	1.7		0.62		ug/m3			11/04/19 21:19	1
Carbon tetrachloride	0.52		0.20		ug/m3			11/04/19 21:19	1
Chlorobenzene	ND		0.37	0.028	ug/m3			11/04/19 21:19	1
Chloroethane	0.084	J	0.21		ug/m3			11/04/19 21:19	1
Chloroform	26	ŧ	0.39		ug/m3			11/04/19 21:19	1
Chloromethane		-et)	0.41		ug/m3			11/04/19 21:19	1
cis-1,2-Dichloroethene	ND		0.16		ug/m3			11/04/19 21:19	1
cis-1,3-Dichloropropene	ND		0.36		ug/m3			11/04/19 21:19	1
Cyclohexane	0.40	J	0.69		ug/m3			11/04/19 21:19	1
Dibromochloromethane	0.48	J	0.68		ug/m3			11/04/19 21:19	1
Dichlorodifluoromethane	1.4		0.40		ug/m3			11/04/19 21:19	1
Ethylbenzene	0.38		0.35		ug/m3			11/04/19 21:19	1
Heptane	0.46		0.82		ug/m3			11/04/19 21:19	1
Hexachlorobutadiene	ND		0.85		ug/m3			11/04/19 21:19	1
Hexane	0.95		0.70	0.046	ug/m3			11/04/19 21:19	1

Lab Sample ID: 140-17191-2 Matrix: Air

Eurofins TestAmerica, Knoxville

Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile C Analyte	Result Qualif		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	ND	0.39	0.17	ug/m3			11/04/19 21:19	1
Indene	ND	0.76	0.19	ug/m3			11/04/19 21:19	1
Isopropyl alcohol	7.6	2.0	0.54	ug/m3			11/04/19 21:19	1
Isopropylbenzene	ND	0.79	0.084	ug/m3			11/04/19 21:19	1
Methyl tert-butyl ether	ND	0.58	0.19	ug/m3			11/04/19 21:19	1
Methylene Chloride	3.5 -B - ()	B 1.4	0.56	ug/m3			11/04/19 21:19	1
m-Xylene & p-Xylene	1.2	0.35	0.13	ug/m3			11/04/19 21:19	1
Naphthalene	ND 💡	1.0	0.40	ug/m3			11/04/19 21:19	1
n-Butane	17	0.38	0.20	ug/m3			11/04/19 21:19	1
n-Decane	1.4 J	2.3	0.22	ug/m3			11/04/19 21:19	1
n-Dodecane	1.7 J	2.8	0.45	ug/m3			11/04/19 21:19	1
n-Octane	0.21 J	0.75	0.075	ug/m3			11/04/19 21:19	1
Nonane	0.22 J	1.0	0.094	ug/m3			11/04/19 21:19	1
n-Undecane	0.41 J	2.6	0.31	ug/m3			11/04/19 21:19	1
o-Xylene	0.47	0.35	0.065	ug/m3			11/04/19 21:19	1
Pentane	2.5	1.2	0.23	ug/m3			11/04/19 21:19	1
Propene	3.7 - Gt - \	1.7	1.7	ug/m3			11/04/19 21:19	1
Styrene	0.53	, 0.34	0.10	ug/m3			11/04/19 21:19	1
Tetrachloroethene	1.6	0.54	0.047	ug/m3			11/04/19 21:19	1
Tetrahydrofuran	ND	1.2	0.45	ug/m3			11/04/19 21:19	1
Thiophene	ND	0.28	0.038	ug/m3			11/04/19 21:19	1
Toluene	2.9	0.45	0.29	ug/m3			11/04/19 21:19	1
trans-1,2-Dichloroethene	0.099 J	0.32	0.028	ug/m3			11/04/19 21:19	1
trans-1,3-Dichloropropene	ND	0.36	0.041	ug/m3			11/04/19 21:19	1
Trichloroethene	0.064 J	0.19	0.032	ug/m3			11/04/19 21:19	1
Trichlorofluoromethane	1.4	0.45	0.062	ug/m3			11/04/19 21:19	1
Vinyl chloride	ND	0.10	0.066	ug/m3			11/04/19 21:19	1

4-Bromofluorobenzene (Surr)

60 - 140

11/04/19 21:19 1

Matrix: Air

Lab Sample ID: 140-17191-3

Client Sample ID: JR-1141-IA-3 Date Collected: 10/29/19 16:44

Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

99

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1.1.1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/04/19 22:17	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/04/19 22:17	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.073	J	0.080	0.0080	ppb v/v			11/04/19 22:17	1
ne	ND		0.080	0.0070	ppb v/v			11/04/19 22:17	1
1,1,2-Trichloroethane					••			11/04/19 22:17	1
1,1-Dichloroethane	ND		0.080		ppb v/v				4
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/04/19 22:17	1
1,2,3-Trimethylbenzene	0.049	J	0.080	0.036	ppb v/v			11/04/19 22:17	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/04/19 22:17	1
1,2,4-Trimethylbenzene	0.070	J	0.080	0.020	ppb v/v			11/04/19 22:17	1
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v			11/04/19 22:17	1

Lab Sample ID: 140-17191-2

Matrix: Air

Client Sample ID: JR-1141-IA-3

Date Collected: 10/29/19 16:44 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-3

Matrix: Air

lethod: TO 15 LL - Volatile Orga nalyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil F
2-Dichloro-1,1,2,2-tetrafluoroeth	0.018 J	0.080		ppb v/v		11/04/19 22:17	
ne	0.010 0						
2-Dichlorobenzene	ND	0.080	0.031	ppb v/v		11/04/19 22:17	
2-Dichloroethane	0.025 J	0.080	0.010	ppb v/v		11/04/19 22:17	
2-Dichloropropane	ND	0.080	0.010	ppb v/v		11/04/19 22:17	
3,5-Trimethylbenzene	0.024 J	0.080	0.022	ppb v/v		11/04/19 22:17	
,3-Butadiene	ND	0.16	0.019	ppb v/v		11/04/19 22:17	
.3-Dichlorobenzene	ND	0.080	0.016	ppb v/v		11/04/19 22:17	
4-Dichlorobenzene	0.53	0.080	0.016	ppb v/v		11/04/19 22:17	
,4-Dioxane	ND	0.20	0.030	ppb v/v		11/04/19 22:17	
,2,4-Trimethylpentane	0.11 J	0.20	0.0080	ppb v/v		11/04/19 22:17	
,3-Dimethylpentane	0.040 J	0.080	0.026	ppb v/v		11/04/19 22:17	
-Butanone (MEK)	0.48	0.32	0.073	ppb v/v		11/04/19 22:17	
-Hexanone	0.039 J	0.20	0.016	ppb v/v		11/04/19 22:17	
Methylbutane	2.8	0.20	0.063	ppb v/v		11/04/19 22:17	
-Methylpentane	0.22	0.080	0.014	ppb v/v		11/04/19 22:17	
Ethyltoluene	0.069 J	0.16	0.021	ppb v/v		11/04/19 22:17	
Methyl-2-pentanone (MIBK)	0.11 J	0.20	0.054	ppb v/v		11/04/19 22:17	
cetone	6.1	2.0	0.57	ppb v/v		11/04/19 22:17	
enzene	0.24	0.080	0.0080	ppb v/v		11/04/19 22:17	
enzyl chloride	ND	0.16	0.038	ppb v/v		11/04/19 22:17	
romodichloromethane	0.87	0.080	0.018	ppb v/v		11/04/19 22:17	
omoform	ND	0.080	0.0090	ppb v/v		11/04/19 22:17	
omomethane	ND	0.080	0.022	ppb v/v		11/04/19 22:17	
arbon disulfide	0.086 J	0.20		ppb v/v		11/04/19 22:17	
arbon tetrachloride	0.088	0.032		ppb v/v		11/04/19 22:17	
norobenzene	ND	0.080		ppb v/v		11/04/19 22:17	
	0.035 J	0.080		ppb v/v		11/04/19 22:17	
hloroethane	7.0	0.080		ppb v/v		11/04/19 22:17	
hloroform	0.86 -Ct -)	0.20		ppb v/v		11/04/19 22:17	
hloromethane	ND	0.040		ppb v/v		11/04/19 22:17	
s-1,2-Dichloroethene	ND	0.040		ppb v/v		11/04/19 22:17	
s-1,3-Dichloropropene	0.10 J	0.20		ppb v/v		11/04/19 22:17	
yclohexane	0.070 J	0.080		ppb v/v		11/04/19 22:17	
ibromochloromethane	0.28	0.080		ppb v/v		11/04/19 22:17	
ichlorodifluoromethane		0.080		ppb v/v		11/04/19 22:17	
thylbenzene	0.095	0.000		ppb v/v		11/04/19 22:17	
eptane	0.11 J	0.080		ppb v/v		11/04/19 22:17	
exachlorobutadiene	ND	0.000		ppb v/v		11/04/19 22:17	
exane	0.28	0.080		ppb v/v		11/04/19 22:17	
dane	ND	0.000		ppb v/v ppb v/v		11/04/19 22:17	
dene	ND	0.10		ppb v/v ppb v/v		11/04/19 22:17	
opropyl alcohol	2.9	0.80		ppb v/v ppb v/v		11/04/19 22:17	
opropylbenzene	ND	0.16		ppb v/v ppb v/v		11/04/19 22:17	
ethyl tert-butyl ether	ND					11/04/19 22:17	
lethylene Chloride	0.94 - B - ∪ S	0.40		ppb v/v		11/04/19 22:17	
n-Xylene & p-Xylene	0.28	0.080		ppb v/v		11/04/19 22:17	
laphthalene	ND	0.20		ppb v/v		11/04/19 22:17	
a-Butane	6.5 J 0.23 J	0.16 0.40		ppb v/v ppb v/v		11/04/19 22:17	

Eurofins TestAmerica, Knoxville

Client Sample Results

Date Collected: 10/29/19 16:44 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
0.24	J	0.40	0.064	ppb v/v			11/04/19 22:17	
0.052	J	0.16	0.016	ppb v/v			11/04/19 22:17	
0.043	J	0.20	0.018	ppb v/v			11/04/19 22:17	
0.065	J	0.40	0.048	ppb v/v			11/04/19 22:17	
		0.080	0.015	ppb v/v			11/04/19 22:17	
		0.40	0.079	ppb v/v			11/04/19 22:17	
		1.0	1.0	ppb v/v			11/04/19 22:17	
							11/04/19 22:17	
				••			11/04/19 22:17	
				• •			11/04/19 22:17	
				••				
				.,				
				••				
				• •				
	J			• •				
0.24				• •				
ND		0.040	0.026	ppb v/v			11/04/19 22:17	
Result	Qualifier	RL			D	Prepared	Analyzed	Dil Fa
ND		0.44					11/04/19 22:17	
ND		0.55	0.096	ug/m3			11/04/19 22:17	
0.56	J	0.61	0.061	ug/m3			11/04/19 22:17	
ND		0.44	0.038	ug/m3			11/04/19 22:17	
				•			11/04/19 22:17	
				-			11/04/19 22:17	
				-				
	5			-				
				-				
	J			-				
				-				
0.13	J	0.56	0.084	ug/m3			11/04/19 22.17	
ND		0.48	0.19	ua/m3			11/04/19 22:17	
				-			11/04/19 22:17	
	J			•				
				-				
				•				
				-				
				-				
ND		0.72						
0.52	J	0.93	0.037	ug/m3			11/04/19 22:17	
0.16	J	0.33	0.11	ug/m3			11/04/19 22:17	
1.4		0.94	0.22	ug/m3			11/04/19 22:17	
0.16	J	0.82	0.066	ug/m3			11/04/19 22:17	
		0.59	0.19	ug/m3			11/04/19 22:17	
		0.28					11/04/19 22:17	
				_			11/04/19 22:17	
				-			11/04/19 22:17	
0.40	5	0.01						
15		4.8	1 🤉	ug/m3			11/04/19 22:17	
	Result 0.24 0.052 0.043 0.065 0.10 0.76 ND 0.10 0.23 ND 0.010 0.23 ND 0.10 0.23 ND 0.79 ND 0.013 0.24 ND ND 0.56 ND 0.10 ND 0.24 ND 0.56 ND 0.13 0.14 0.10 ND 0.10 ND 0.113 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND<	Result Qualifier 0.24 J 0.052 J 0.043 J 0.065 J 0.10 0.76 ND 0.10 0.76 ND 0.10 0.23 ND ND 0.79 ND ND 0.013 0.24 ND ND 0.24 ND 0.56 ND ND 0.56 J ND 0.24 ND 0.56 ND 0.24 ND 0.24 ND 0.34 ND 0.24 ND 0.34 ND 0.313 ND 0.13 ND 0.10	Result Qualifier RL 0.24 J 0.40 0.052 J 0.16 0.043 J 0.20 0.065 J 0.40 0.10 0.080 0.76 0.40 ND 1.0 0.10 0.080 0.23 0.080 ND 0.40 ND 0.40 ND 0.080 0.79 0.12 ND 0.080 ND 0.080 ND 0.080 ND 0.080 ND 0.080 ND 0.080 ND 0.040 Result Qualifier RL ND 0.44 0.80 ND 0.44 ND ND 0.44 ND ND 0.44 ND ND 0.44 ND ND 0.43 0.39 ND 0.41 </td <td>Result Qualifier RL MDL 0.24 J 0.40 0.064 0.052 J 0.16 0.016 0.043 J 0.20 0.018 0.065 J 0.40 0.048 0.10 0.080 0.015 0.76 0.40 0.079 ND 1.0 1.0 0.10 0.080 0.024 0.23 0.080 0.0070 ND 0.40 0.15 ND 0.080 0.0070 ND 0.080 0.0070 ND 0.080 0.0090 0.013 J 0.036 0.0060 0.24 0.080 0.011 ND 0.44 0.20 Result Qualifier RL MDL ND 0.44 0.038 ND 0.44 0.032 ND 0.44 0.032 ND 0.44 0.034</td> <td>Result Qualifier RL MDL Unit 0.24 J 0.40 0.064 ppb v/v 0.052 J 0.16 0.016 ppb v/v 0.043 J 0.20 0.018 ppb v/v 0.065 J 0.40 0.048 ppb v/v 0.10 0.080 0.015 ppb v/v 0.76 0.40 0.079 ppb v/v 0.10 0.080 0.024 ppb v/v 0.10 0.080 0.024 ppb v/v 0.23 0.080 0.0011 ppb v/v 0.23 0.080 0.0011 ppb v/v ND 0.080 0.0011 ppb v/v ND 0.080 0.0011 ppb v/v ND 0.080 0.011 ppb v/v ND 0.080 0.011 ppb v/v ND 0.040 0.026 ppb v/v ND 0.044 0.038 ug/m3 ND 0.61</td> <td>Result Qualifier RL MDL Unit D 0.24 J 0.40 0.064 pb v/v 0.064 pb v/v 0.043 J 0.20 0.018 pb v/v 0.065 J 0.40 0.048 pb v/v 0.065 J 0.40 0.048 pb v/v 0.079 pb v/v 0.10 0.080 0.015 pb v/v 0.010 0.080 0.024 pb v/v 0.10 0.080 0.021 pb v/v 0.023 0.080 0.0070 pb v/v 0.10 0.080 0.011 pb v/v 0.011 pb v/v 0.011 pb v/v 0.023 0.080 0.011 pb v/v 0.011 0.011 pb v/v 0.</td> <td>Result Qualifier RL MDL Unit D Prepared 0.24 J 0.40 0.064 ppb v/v 0.065 pb v/v 0.066 pb v/v 0.065 J 0.016 pb v/v 0.018 pb v/v 0.066 J 0.008 0.015 pb v/v 0.066 0.076 0.040 0.079 pb v/v 0.060 0.011 0.080 0.024 pb v/v 0.023 0.080 0.0070 pb v/v 0.033 0.080 0.011 pb v/v 0.032 pb v/v 0.031 10 0.080 0.011 pb v/v 0.031 0.036 0.0060 pb v/v 0.031 10 0.080 0.011 pb v/v 0.031 10 0.040 0.026 pb v/v 0.031 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10</td> <td>0.24 J 0.40 0.064 pb v/v 11/04/19 22:17 0.052 J 0.16 0.018 pb v/v 11/04/19 22:17 0.063 J 0.20 0.018 pb v/v 11/04/19 22:17 0.065 J 0.40 0.048 pb v/v 11/04/19 22:17 0.10 0.060 0.015 pb v/v 11/04/19 22:17 0.10 0.080 0.024 pb v/v 11/04/19 22:17 0.10 0.080 0.024 pb v/v 11/04/19 22:17 0.10 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.40 0.15 pb v/v 11/04/19 22:17 ND 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.080 0.011 pb v/v 11/04/19 22:17 ND 0.080 0.0126 pb v/v 11/04/</td>	Result Qualifier RL MDL 0.24 J 0.40 0.064 0.052 J 0.16 0.016 0.043 J 0.20 0.018 0.065 J 0.40 0.048 0.10 0.080 0.015 0.76 0.40 0.079 ND 1.0 1.0 0.10 0.080 0.024 0.23 0.080 0.0070 ND 0.40 0.15 ND 0.080 0.0070 ND 0.080 0.0070 ND 0.080 0.0090 0.013 J 0.036 0.0060 0.24 0.080 0.011 ND 0.44 0.20 Result Qualifier RL MDL ND 0.44 0.038 ND 0.44 0.032 ND 0.44 0.032 ND 0.44 0.034	Result Qualifier RL MDL Unit 0.24 J 0.40 0.064 ppb v/v 0.052 J 0.16 0.016 ppb v/v 0.043 J 0.20 0.018 ppb v/v 0.065 J 0.40 0.048 ppb v/v 0.10 0.080 0.015 ppb v/v 0.76 0.40 0.079 ppb v/v 0.10 0.080 0.024 ppb v/v 0.10 0.080 0.024 ppb v/v 0.23 0.080 0.0011 ppb v/v 0.23 0.080 0.0011 ppb v/v ND 0.080 0.0011 ppb v/v ND 0.080 0.0011 ppb v/v ND 0.080 0.011 ppb v/v ND 0.080 0.011 ppb v/v ND 0.040 0.026 ppb v/v ND 0.044 0.038 ug/m3 ND 0.61	Result Qualifier RL MDL Unit D 0.24 J 0.40 0.064 pb v/v 0.064 pb v/v 0.043 J 0.20 0.018 pb v/v 0.065 J 0.40 0.048 pb v/v 0.065 J 0.40 0.048 pb v/v 0.079 pb v/v 0.10 0.080 0.015 pb v/v 0.010 0.080 0.024 pb v/v 0.10 0.080 0.021 pb v/v 0.023 0.080 0.0070 pb v/v 0.10 0.080 0.011 pb v/v 0.011 pb v/v 0.011 pb v/v 0.023 0.080 0.011 pb v/v 0.011 0.011 pb v/v 0.	Result Qualifier RL MDL Unit D Prepared 0.24 J 0.40 0.064 ppb v/v 0.065 pb v/v 0.066 pb v/v 0.065 J 0.016 pb v/v 0.018 pb v/v 0.066 J 0.008 0.015 pb v/v 0.066 0.076 0.040 0.079 pb v/v 0.060 0.011 0.080 0.024 pb v/v 0.023 0.080 0.0070 pb v/v 0.033 0.080 0.011 pb v/v 0.032 pb v/v 0.031 10 0.080 0.011 pb v/v 0.031 0.036 0.0060 pb v/v 0.031 10 0.080 0.011 pb v/v 0.031 10 0.040 0.026 pb v/v 0.031 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	0.24 J 0.40 0.064 pb v/v 11/04/19 22:17 0.052 J 0.16 0.018 pb v/v 11/04/19 22:17 0.063 J 0.20 0.018 pb v/v 11/04/19 22:17 0.065 J 0.40 0.048 pb v/v 11/04/19 22:17 0.10 0.060 0.015 pb v/v 11/04/19 22:17 0.10 0.080 0.024 pb v/v 11/04/19 22:17 0.10 0.080 0.024 pb v/v 11/04/19 22:17 0.10 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.40 0.15 pb v/v 11/04/19 22:17 ND 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.080 0.0070 pb v/v 11/04/19 22:17 ND 0.080 0.011 pb v/v 11/04/19 22:17 ND 0.080 0.0126 pb v/v 11/04/

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17191-3 Matrix: Air Client Sample ID: JR-1141-IA-3 Date Collected: 10/29/19 16:44 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-3

Matrix: Air

Method: TO 15 LL - Volatil Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fac
Benzyl chloride	ND		0.83		ug/m3	·····	11/04/19 22:17	1
Bromodichloromethane	5.8		0.54		ug/m3		11/04/19 22:17	1
Bromoform	ND		0.83		ug/m3		11/04/19 22:17	1
Bromomethane	ND		0.31	0.085	ug/m3		11/04/19 22:17	1
Carbon disulfide	0.27	J	0.62	0.034	ug/m3		11/04/19 22:17	1
Carbon tetrachloride	0.56		0.20	0.044	ug/m3		11/04/19 22:17	1
Chlorobenzene	ND		0.37	0.028	ug/m3		11/04/19 22:17	1
Chloroethane	0.092	J	0.21		ug/m3		11/04/19 22:17	1
Chloroform	34		0.39	0.034	ug/m3		11/04/19 22:17	1
Chloromethane	1.8 -	e \	0.41	0.14	ug/m3		11/04/19 22:17	1
cis-1,2-Dichloroethene	ND	6111 ⁶	0.16	0.040	ug/m3		11/04/19 22:17	1
cis-1,3-Dichloropropene	ND		0.36		ug/m3		11/04/19 22:17	1
Cyclohexane	0.36	J	0.69		ug/m3		11/04/19 22:17	1
Dibromochloromethane	0.60		0.68		ug/m3		11/04/19 22:17	1
Dichlorodifluoromethane	1.4	-	0.40		ug/m3		11/04/19 22:17	1
Ethylbenzene	0.41		0.35		ug/m3		11/04/19 22:17	1
Heptane	0.46	J	0.82		ug/m3		11/04/19 22:17	1
Hexachlorobutadiene	ND	-	0.85		ug/m3		11/04/19 22:17	1
Hexane	0.98		0.70		ug/m3		11/04/19 22:17	1
Indane	ND		0.39		ug/m3		11/04/19 22:17	1
Indene	ND		0.76		ug/m3		11/04/19 22:17	1
Isopropyl alcohol	7.0		2.0		ug/m3		11/04/19 22:17	1
Isopropylbenzene	ND		0.79		ug/m3		11/04/19 22:17	1
Methyl tert-butyl ether	ND		0.58		ug/m3		11/04/19 22:17	1
Methylene Chloride		BUB	1.4		ug/m3		11/04/19 22:17	1
m-Xylene & p-Xylene	1.2		0.35		ug/m3		11/04/19 22:17	1
Naphthalene	ND		1.0		ug/m3		11/04/19 22:17	1
n-Butane	15 .	١	0.38		ug/m3		11/04/19 22:17	1
n-Decane	1.3		2.3		ug/m3		11/04/19 22:17	1
n-Dodecane	1.7		2.8		ug/m3		11/04/19 22:17	1
n-Octane	0.24		0.75		ug/m3		11/04/19 22:17	1
Nonane	0.22		1.0		ug/m3		11/04/19 22:17	1
n-Undecane	0.41		2.6		ug/m3		11/04/19 22:17	1
o-Xylene	0.43	-	0.35		ug/m3		11/04/19 22:17	1
Pentane	2.2		1.2		ug/m3		11/04/19 22:17	1
Propene	ND		1.7		ug/m3		11/04/19 22:17	1
Styrene	0.44		0.34		ug/m3		11/04/19 22:17	1
Tetrachloroethene	1.5		0.54		ug/m3		11/04/19 22:17	1
Tetrahydrofuran	ND		1.2		ug/m3		11/04/19 22:17	1
Thiophene	ND		0.28		ug/m3		11/04/19 22:17	1
Toluene	3.0		0.45		ug/m3		11/04/19 22:17	1
trans-1,2-Dichloroethene	ND		0.32		ug/m3		11/04/19 22:17	1
trans-1,3-Dichloropropene	ND		0.36		ug/m3		11/04/19 22:17	1
Trichloroethene	0.072	.1	0.19		ug/m3		11/04/19 22:17	1
Trichlorofluoromethane	1.4	-	0.45		ug/m3		11/04/19 22:17	1
Vinyl chloride	ND		0.10		ug/m3		11/04/19 22:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140				11/04/19 22:17	1

Eurofins TestAmerica, Knoxville

Client Sample ID: JR-1141-IA-2

Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-4 Matrix: Air

Method: TO 15 LL - Volatile O Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v		11/04/19 23:15	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v		11/04/19 23:15	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.071	J	0.080	0.0080	ppb v/v		11/04/19 23:15	1
ne								
1,1,2-Trichloroethane	ND		0.080		ppb v/v		11/04/19 23:15	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v		11/04/19 23:15	1
1,1-Dichloroethene	ND		0.040		ppb v/v		11/04/19 23:15	1
1,2,3-Trimethylbenzene	0.041	J	0.080		ppb v/v		11/04/19 23:15	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v		11/04/19 23:15	
1,2,4-Trimethylbenzene	0.076	J	0.080		ppb v/v		11/04/19 23:15	1
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v		11/04/19 23:15	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080	0.012	ppb v/v		11/04/19 23:15	1
ane			0.000	0.004			11/04/19 23:15	
1,2-Dichlorobenzene	ND		0.080		ppb v/v		11/04/19 23:15	1
1,2-Dichloroethane	0.022	J	0.080		ppb v/v		11/04/19 23:15	1
1,2-Dichloropropane	ND		0.080		ppb v/v			
1,3,5-Trimethylbenzene	0.027	J	0.080		ppb v/v		11/04/19 23:15 11/04/19 23:15	1
1,3-Butadiene	ND		0.16		ppb v/v			1
1,3-Dichlorobenzene	ND		0.080		ppb v/v		11/04/19 23:15	
1,4-Dichlorobenzene	0.79		0.080		ppb v/v		11/04/19 23:15	•
1,4-Dioxane	ND		0.20		ppb v/v		11/04/19 23:15	•
2,2,4-Trimethylpentane	0.12		0.20		ppb v/v		11/04/19 23:15	-
2,3-Dimethylpentane	0.041	J	0.080		ppb v/v		11/04/19 23:15	-
2-Butanone (MEK)	0.55		0.32		ppb v/v		11/04/19 23:15	-
2-Hexanone	0.049	J	0.20		ppb v/v		11/04/19 23:15	
2-Methylbutane	2.0		0.20	0.063	ppb v/v		11/04/19 23:15	
2-Methylpentane	0.25		0.080		ppb v/v		11/04/19 23:15	
4-Ethyltoluene	0.075	J	0.16		ppb v/v		11/04/19 23:15	
4-Methyl-2-pentanone (MIBK)	0.082	J	0.20	0.054	ppb v/v		11/04/19 23:15	
Acetone	7.5	-er_)	2.0		ppb v/v		11/04/19 23:15	
Benzene	0.24		0.080	0.0080	ppb v/v		11/04/19 23:15	
Benzyl chloride	ND		0.16		ppb v/v		11/04/19 23:15	
Bromodichloromethane	0.54		0.080	0.018	ppb v/v		11/04/19 23:15	
Bromoform	ND		0.080	0.0090	ppb v/v		11/04/19 23:15	
Bromomethane	0.022	J	0.080	0.022	ppb v/v		11/04/19 23:15	
Carbon disulfide	0.19	J	0.20	0.011	ppb v/v		11/04/19 23:15	
Carbon tetrachloride	0.084		0.032	0.0070	ppb v/v		11/04/19 23:15	
Chlorobenzene	ND		0.080	0.0060	ppb v/v		11/04/19 23:15	
Chloroethane	ND		0.080	0.029	ppb v/v		11/04/19 23:15	
Chloroform	4.4		0.080	0.0070	ppb v/v		11/04/19 23:15	
Chloromethane	0.71		0.20	0.066	ppb v/v		11/04/19 23:15	
cis-1,2-Dichloroethene	ND		0.040	0.010	ppb v/v		11/04/19 23:15	
cis-1,3-Dichloropropene	ND		0.080	0.016	ppb v/v		11/04/19 23:15	
Cyclohexane	0.11	J	0.20	0.023	ppb v/v		11/04/19 23:15	
Dibromochloromethane	0.043		0.080	0.0070	ppb v/v		11/04/19 23:15	
Dichlorodifluoromethane	0.26		0.080	0.014	ppb v/v		11/04/19 23:15	
Ethylbenzene	0.093		0.080	0.013	ppb v/v		11/04/19 23:15	
Heptane	0.14		0.20	0.014	ppb v/v		11/04/19 23:15	
Hexachlorobutadiene	ND		0.080	0.032	ppb v/v		11/04/19 23:15	

Eurofins TestAmerica, Knoxville

Matrix: Air

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Lab Sample ID: 140-17191-4

Client Sample ID: JR-1141-IA-2

Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Indane

Indene

ne

ane

1.2-Dichloropropane

1.3-Dichlorobenzene

1,4-Dichlorobenzene

1.3-Butadiene

1,3,5-Trimethylbenzene

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued) Dil Fac Prepared Analyzed MDL Unit **Result Qualifier** RL Analyte 11/04/19 23:15 0.013 ppb v/v 0.20 0.46 Hexane 11/04/19 23:15 ND 0.080 0.035 ppb v/v 11/04/19 23:15 0.16 0.039 ppb v/v ND 11/04/19 23:15 0.22 ppb v/v 2.5 0.80 Isopropyl alcohol 11/04/19 23:15 0.017 ppb v/v ND 0.16 Isopropylbenzene 11/04/19 23:15 0.16 0.052 ppb v/v ND Methyl tert-butyl ether 11/04/19 23:15 0.40 0.16 ppb v/v 2.4 -B----Methylene Chloride 11/04/19 23:15 0.080 0.029 ppb v/v m-Xylene & p-Xylene 0.30 11/04/19 23:15 0.076 ppb v/v ND 0.20 Naphthalene 11/04/19 23:15 0.083 ppb v/v 15 0.16 n-Butane 11/04/19 23:15 0.038 ppb v/v 0.19 J 0.40 n-Decane 11/04/19 23:15 0.064 ppb v/v 0.40 0.21 J n-Dodecane 11/04/19 23:15 0.16 0.016 ppb v/v 0.065 J n-Octane 0.018 ppb v/v 11/04/19 23:15 0.20 0.049 J Nonane 11/04/19 23:15 0.048 ppb v/v 0.40 0.064 J n-Undecane 11/04/19 23:15 0.015 ppb v/v 0.080 0.11 o-Xvlene 11/04/19 23:15 0.079 ppb v/v 0.40 0.98 Pentane 11/04/19 23:15 1.0 ppb v/v 2.5 -6+-1.0 Propene 11/04/19 23:15 0.024 ppb v/v 0.080 Styrene 0.12 11/04/19 23:15 0.0070 ppb v/v 0.080 0.22 Tetrachloroethene 11/04/19 23:15 0.40 0.15 ppb v/v ND Tetrahydrofuran 11/04/19 23:15 0.080 0.011 ppb v/v ND Thiophene 11/04/19 23:15 0.078 ppb v/v 0.12 0.81 Toluene 11/04/19 23:15 0.080 0.0070 ppb v/v ND trans-1,2-Dichloroethene 0.080 0.0090 ppb v/v 11/04/19 23:15 ND trans-1,3-Dichloropropene 11/04/19 23:15 0.0060 ppb v/v 0.036 0.013 J Trichloroethene 11/04/19 23:15 0.011 ppb v/v 0.080 0.25 Trichlorofluoromethane 11/04/19 23:15 0.040 0.026 ppb v/v Vinyl chloride ND Analvzed **Dil Fac** RL MDL Unit D Prepared **Result Qualifier** Analyte 11/04/19 23:15 ND 0 44 0.20 ug/m3 1,1,1-Trichloroethane 0.096 ug/m3 11/04/19 23:15 0.55 ND 1,1,2,2-Tetrachloroethane 11/04/19 23:15 0.61 0.061 ug/m3 0.55 J 1,1,2-Trichloro-1,2,2-trifluoroetha 11/04/19 23:15 0.038 ug/m3 ND 0.44 1,1,2-Trichloroethane 11/04/19 23:15 ND 0.32 0.028 ug/m3 1,1-Dichloroethane 11/04/19 23:15 ND 0.16 0.032 ug/m3 1,1-Dichloroethene 0.18 ug/m3 11/04/19 23:15 0.39 0.20 J 1,2,3-Trimethylbenzene 11/04/19 23:15 0.59 0.47 ug/m3 ND 1,2,4-Trichlorobenzene 0.39 0.098 ug/m3 11/04/19 23:15 0.37 J 1.2.4-Trimethylbenzene 11/04/19 23:15 0.054 ug/m3 0.61 ND 1,2-Dibromoethane (EDB) 11/04/19 23:15 0.56 0.084 ug/m3 0.12 J 1,2-Dichloro-1,1,2,2-tetrafluoroeth 11/04/19 23:15 0.19 ug/m3 0.48 ND 1,2-Dichlorobenzene 11/04/19 23:15 0.32 0.040 ug/m3 0.089 J 1,2-Dichloroethane

Eurofins TestAmerica, Knoxville

11/04/19 23:15

11/04/19 23:15

11/04/19 23:15

11/04/19 23:15

11/04/19 23:15

0.37

0.39

0.35

0.48

0.48

ND

ND

ND

4.7

0.13 J

0.046 ug/m3

0.11 ug/m3

0.042 ug/m3

0.096 ug/m3

0.096 ug/m3

Client Sample ID: JR-1141-IA-2 Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

/lethod: TO 15 LL - Volatile Or Analyte	Result Qual		MDL		D	Prepared	Analyzed	Dil
4-Dioxane	ND	0.72	0.11	ug/m3			11/04/19 23:15	
2,4-Trimethylpentane	0.55 J	0.93	0.037	ug/m3			11/04/19 23:15	
3-Dimethylpentane	0.17 J	0.33	0.11	ug/m3			11/04/19 23:15	
-Butanone (MEK)	1.6	0.94	0.22	ug/m3			11/04/19 23:15	
-Hexanone	0.20 J	0.82	0.066	ug/m3			11/04/19 23:15	
-Methylbutane	6.0	0.59	0.19	ug/m3			11/04/19 23:15	
-Methylpentane	0.90	0.28	0.049	ug/m3			11/04/19 23:15	
-Ethyltoluene	0.37 J	0.79	0.10	ug/m3			11/04/19 23:15	
-Methyl-2-pentanone (MIBK)	0.33 J	0.82	0.22	ug/m3			11/04/19 23:15	
cetone	18 - C t-	4.8	1.3	ug/m3			11/04/19 23:15	
enzene	0.77	0.26	0.026	ug/m3			11/04/19 23:15	
enzyl chloride	ND	0.83	0.20	ug/m3			11/04/19 23:15	
romodichloromethane	3.6	0.54	0.12	ug/m3			11/04/19 23:15	
romotorm	ND	0.83		ug/m3			11/04/19 23:15	
	0.087 J	0.31		ug/m3			11/04/19 23:15	
Bromomethane	0.59 J	0.62		ug/m3			11/04/19 23:15	
arbon disulfide	0.53	0.20		ug/m3			11/04/19 23:15	
arbon tetrachloride	0.55 ND	0.37		ug/m3			11/04/19 23:15	
	ND	0.21		ug/m3			11/04/19 23:15	
chloroethane	22	0.39		ug/m3			11/04/19 23:15	
chloroform	1.5	0.41		ug/m3			11/04/19 23:15	
hloromethane	1.5 ND	0.41		ug/m3			11/04/19 23:15	
is-1,2-Dichloroethene	ND	0.36		ug/m3			11/04/19 23:15	
is-1,3-Dichloropropene		0.69		ug/m3			11/04/19 23:15	
Cyclohexane	0.37 J	0.68		ug/m3			11/04/19 23:15	
Dibromochloromethane	0.37 J	0.88		ug/m3			11/04/19 23:15	
Dichlorodifluoromethane	1.3	0.40		ug/m3			11/04/19 23:15	
thylbenzene	0.40			ug/m3 ug/m3			11/04/19 23:15	
leptane	0.57 J	0.82		ug/m3 ug/m3			11/04/19 23:15	
lexachlorobutadiene	ND	0.85		ug/m3 ug/m3			11/04/19 23:15	
łexane	1.6	0.70		•			11/04/19 23:15	
ndane	ND	0.39		ug/m3			11/04/19 23:15	
ndene	ND	0.76		ug/m3			11/04/19 23:15	
sopropyl alcohol	6.1	2.0		ug/m3			11/04/19 23:15	
sopropylbenzene	ND	0.79		ug/m3			11/04/19 23:15	
Nethyl tert-butyl ether	ND	0.58		ug/m3			11/04/19 23:15	
Aethylene Chloride	8.2 B	1.4		ug/m3				
n-Xylene & p-Xylene	1.3	0.35		ug/m3			11/04/19 23:15	
Naphthalene	ND	1.0		ug/m3			11/04/19 23:15	
n-Butane	36 🕽	0.38		ug/m3			11/04/19 23:15	
n-Decane	1.1 J	2.3		ug/m3			11/04/19 23:15	
-Dodecane	1.5 J	2.8		ug/m3			11/04/19 23:15	
n-Octane	0.30 J	0.75		ug/m3			11/04/19 23:15	
Nonane	0.26 J	1.0		ug/m3			11/04/19 23:15	
n-Undecane	0.41 J	2.6		ug/m3			11/04/19 23:15	
o-Xylene	0.46	0.35		ug/m3			11/04/19 23:15	
Pentane	2.9	1.2		ug/m3			11/04/19 23:15	
Propene	4.4 °C+-	1.7	1.7	′ug/m3			11/04/19 23:15	
Styrene	0.53	0.34	0.10	ug/m3			11/04/19 23:15	

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17191-4 Matrix: Air

12/13/2019

Client Sample Results

Client: ARCADIS U.S. Inc Project/Site: CON EDISON - EAST 11TH STREET

Client Sample ID: JR-1141-IA-2

Date Collected: 10/29/19 16:41 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-4 Matrix: Air

Method: TO 15 LL - Volatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	1.5		0.54	0.047	ug/m3			11/04/19 23:15	1
Tetrahydrofuran	ND		1.2	0.45	ug/m3			11/04/19 23:15	1
Thiophene	ND		0.28	0.038	ug/m3			11/04/19 23:15	1
Toluene	3.0		0.45	0.29	ug/m3			11/04/19 23:15	1
trans-1.2-Dichloroethene	ND		0.32	0.028	ug/m3			11/04/19 23:15	1
trans-1.3-Dichloropropene	ND		0.36	0.041	ug/m3			11/04/19 23:15	1
Trichloroethene	0.069	J	0.19	0.032	ug/m3			11/04/19 23:15	1
Trichlorofluoromethane	1.4		0.45	0.062	ug/m3			11/04/19 23:15	1
Vinyl chloride	ND		0.10	0.066	ug/m3			11/04/19 23:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140					11/04/19 23:15	1

Client Sample ID: AA 103019

Date Collected: 10/30/19 15:03 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/05/19 00:12	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/05/19 00:12	. 1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.073	J	0.080	0.0080	ppb v/v			11/05/19 00:12	1
ne									
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 00:12	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 00:12	1
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/05/19 00:12	1
1,2,3-Trimethylbenzene	ND		0.080	0.036	ppb v/v			11/05/19 00:12	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/05/19 00:12	1
1,2,4-Trimethylbenzene	0.022	J	0.080	0.020	ppb v/v			11/05/19 00:12	1
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v			11/05/19 00:12	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080	0.012	ppb v/v			11/05/19 00:12	1
ane									
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v			11/05/19 00:12	1
1,2-Dichloroethane	0.013	J	0.080	0.010	ppb v/v			11/05/19 00:12	1
1,2-Dichloropropane	ND		0.080	0.010	ppb v/v			11/05/19 00:12	1
1,3,5-Trimethylbenzene	ND		0.080	0.022	ppb v/v			11/05/19 00:12	1
1,3-Butadiene	ND		0.16	0.019	ppb v/v			11/05/19 00:12	1
1,3-Dichlorobenzene	ND		0.080	0.016	ppb v/v			11/05/19 00:12	1
1,4-Dichlorobenzene	ND		0.080	0.016	ppb v/v			11/05/19 00:12	1
1,4-Dioxane	0.73		0.20	0.030	ppb v/v			11/05/19 00:12	1
2,2,4-Trimethylpentane	0.095	J	0.20	0.0080	ppb v/v			11/05/19 00:12	1
2,3-Dimethylpentane	0.033		0.080	0.026	ppb v/v			11/05/19 00:12	1
2-Butanone (MEK)	0.29		0.32	0.073	ppb v/v			11/05/19 00:12	1
2-Hexanone	0.022		0.20		ppb v/v			11/05/19 00:12	1
2-Methylbutane	0.90		0.20	0.063	ppb v/v			11/05/19 00:12	1
2-Methylpentane	0.17		0.080		ppb v/v			11/05/19 00:12	1
4-Ethyltoluene	ND		0,16		ppb v/v			11/05/19 00:12	1
4-Enyloidene 4-Methyl-2-pentanone (MIBK)	0.078	.1	0.20		ppb v/v			11/05/19 00:12	1
Acetone		-er- \	2.0		ppb v/v			11/05/19 00:12	1

Eurofins TestAmerica, Knoxville

12/13/2019

Lab Sample ID: 140-17191-5

Matrix: Air

Client: ARCADIS U.S. Inc Project/Site: CON EDISON - EAST 11TH STREET

Matrix: Air

Lab Sample ID: 140-17191-5

Client Sample ID: AA 103019

Date Collected: 10/30/19 15:03 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Analyte Benzene	0.26 Result Qualifier	RL 0.080	MDL	ppb v/v	D Prepared	Analyzed	Dil Fa
						11/05/19 00:12	
Benzyl chloride	ND	0.16		ppb v/v		11/05/19 00:12	
Bromodichloromethane	ND	0.080		ppb v/v		11/05/19 00:12	
Bromoform	ND	0.080		ppb v/v		11/05/19 00:12	
Bromomethane	ND	0.080		ppb v/v		11/05/19 00:12	
Carbon disulfide	0.056 J	0.20		ppb v/v		11/05/19 00:12	
Carbon tetrachloride	0.079	0.032		ppb v/v		11/05/19 00:12	
Chlorobenzene	ND	0.080		ppb v/v		11/05/19 00:12	
Chloroethane	ND	0.080		ppb v/v		11/05/19 00:12	
Chloroform	0.052 J	0.080		ppb v/v		11/05/19 00:12	
Chloromethane	0.69 -6 -	0.20		ppb v/v		11/05/19 00:12	
cis-1,2-Dichloroethene	ND	0.040	0.010	ppb v/v		11/05/19 00:12	
cis-1,3-Dichloropropene	ND	0.080	0.016	ppb v/v		11/05/19 00:12	
Cyclohexane	0.095 J	0.20	0.023	ppb v/v		11/05/19 00:12	
Dibromochloromethane	ND	0.080	0.0070	ppb v/v		11/05/19 00:12	
Dichlorodifluoromethane	0.28	0.080	0.014	ppb v/v		11/05/19 00:12	
Ethylbenzene	0.053 J	0.080	0.013	ppb v/v		11/05/19 00:12	
Heptane	0.088 J	0.20	0.014	ppb v/v		11/05/19 00:12	
Hexachlorobutadiene	ND	0.080	0.032	ppb v/v		11/05/19 00:12	
łexane	0.19 J	0.20	0.013	ppb v/v		11/05/19 00:12	
ndane	ND	0.080	0.035	ppb v/v		11/05/19 00:12	
ndene	ND	0.16	0.039	ppb v/v		11/05/19 00:12	
sopropyl alcohol	1.2	0.80	0.22	ppb v/v		11/05/19 00:12	
sopropylbenzene	ND	0.16	0.017	ppb v/v		11/05/19 00:12	
Methyl tert-butyl ether	ND	0.16	0.052	ppb v/v		11/05/19 00:12	
Methylene Chloride	0.55- 	0.40	0.16	ppb v/v		11/05/19 00:12	
n-Xylene & p-Xylene	0.14	0.080	0.029	ppb v/v		11/05/19 00:12	
Naphthalene	ND	0.20	0.076	ppb v/v		11/05/19 00:12	
n-Butane	2.3	0.16		ppb v/v		11/05/19 00:12	
n-Decane	ND	0.40		ppb v/v		11/05/19 00:12	
n-Dodecane	ND	0.40		ppb v/v		11/05/19 00:12	
n-Octane	0.033 J	0.16		ppb v/v		11/05/19 00:12	
Nonane	0.025 J	0.20		ppb v/v		11/05/19 00:12	
a-Undecane	ND	0.40		ppb v/v		11/05/19 00:12	1
o-Xylene	0.043 J	0.080		ppb v/v		11/05/19 00:12	1
Pentane	0.46	0.40		ppb v/v		11/05/19 00:12	1
Propene	1.1 -e+ J	1.0		ppb v/v		11/05/19 00:12	-
Styrene	ND	0.080		ppb v/v		11/05/19 00:12	1
etrachloroethene	0.13	0.080	0.0070			11/05/19 00:12	1
etrahydrofuran	ND	0.000		ppb v/v ppb v/v			
-	ND			• •		11/05/19 00:12	1
hiophene		0.080		ppb v/v ppb v/v		11/05/19 00:12	1
Coluene	0.61	0.12		• •		11/05/19 00:12	1
rans-1,2-Dichloroethene	ND	0.080	0.0070			11/05/19 00:12	1
rans-1,3-Dichloropropene	ND	0.080	0.0090			11/05/19 00:12	1
[richloroethene	0.012 J	0.036	0.0060	••		11/05/19 00:12	1
Frichlorofluoromethane	0.24	0.080		ppb v/v		11/05/19 00:12	1
/inyl chloride	ND	0.040	0.026	ppb v/v		11/05/19 00:12	1

12/13/2019

Client Sample ID: AA 103019

Date Collected: 10/30/19 15:03 Date Received: 11/01/19 09:20

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44	0.20	ug/m3			11/05/19 00:12	1
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	ug/m3			11/05/19 00:12	1
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.56	J	0.61	0.061	ug/m3			11/05/19 00:12	1
1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			11/05/19 00:12	1
1,1-Dichloroethane	ND		0.32	0.028	ug/m3			11/05/19 00:12	1
1,1-Dichloroethene	ND		0.16	0.032	ug/m3			11/05/19 00:12	1
1,2,3-Trimethylbenzene	ND		0.39	0.18	ug/m3			11/05/19 00:12	1
1,2,4-Trichlorobenzene	ND		0.59	0.47	ug/m3			11/05/19 00:12	1
1,2,4-Trimethylbenzene	0.11	J	0.39	0.098	ug/m3			11/05/19 00:12	1
1,2-Dibromoethane (EDB)	ND		0.61	0.054	ug/m3			11/05/19 00:12	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.12	J	0.56	0.084	ug/m3			11/05/19 00:12	1
ane 1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/05/19 00:12	1
1,2-Dichloroethane	0.053	J	0.32	0.040	ug/m3			11/05/19 00:12	1
1,2-Dichloropropane	ND		0.37	0.046	ug/m3			11/05/19 00:12	1
1,3,5-Trimethylbenzene	ND		0.39	0.11	ug/m3			11/05/19 00:12	1
1,3-Butadiene	ND		0.35	0.042	ug/m3			11/05/19 00:12	1
1,3-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/05/19 00:12	1
1,4-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/05/19 00:12	1
1,4-Dioxane	2.6		0.72	0.11	ug/m3			11/05/19 00:12	1
2,2,4-Trimethylpentane	0.44	J	0.93	0.037	ug/m3			11/05/19 00:12	1
2,3-Dimethylpentane	0.14	J	0.33	0.11	ug/m3			11/05/19 00:12	1
2-Butanone (MEK)	0.84	J	0.94	0.22	ug/m3			11/05/19 00:12	1
2-Hexanone	0.091	J	0.82	0.066	ug/m3			11/05/19 00:12	1
2-Methylbutane	2.7		0.59	0.19	ug/m3			11/05/19 00:12	1
2-Methylpentane	0.59		0.28	0.049	ug/m3			11/05/19 00:12	1
4-Ethyltoluene	ND		0.79	0.10	ug/m3			11/05/19 00:12	1
4-Methyl-2-pentanone (MIBK)	0.32	J	0.82	0.22	ug/m3			11/05/19 00:12	1
Acetone	7.6	e-)	4.8	1.3	ug/m3			11/05/19 00:12	1
Benzene	0.83	-	0.26	0.026	ug/m3			11/05/19 00:12	1
Benzyl chloride	ND		0.83	0.20	ug/m3			11/05/19 00:12	1
Bromodichloromethane	ND		0.54		ug/m3			11/05/19 00:12	1
Bromoform	ND		0.83		ug/m3			11/05/19 00:12	1
Bromomethane	ND		0.31		ug/m3			11/05/19 00:12	1
Carbon disulfide	0.17	J	0.62		ug/m3			11/05/19 00:12	1
Carbon tetrachloride	0.50		0.20		ug/m3			11/05/19 00:12	1
Chlorobenzene	ND		0.37	0.028	ug/m3			11/05/19 00:12	1
Chloroethane	ND		0.21		ug/m3			11/05/19 00:12	1
Chloroform	0.25	J	0.39		ug/m3			11/05/19 00:12	1
Chloromethane	1.4	er)	0.41		ug/m3			11/05/19 00:12	1
cis-1,2-Dichloroethene	ND		0.16		ug/m3			11/05/19 00:12	1
cis-1,3-Dichloropropene	ND		0.36		ug/m3			11/05/19 00:12	1
Cyclohexane	0.33		0.69		ug/m3			11/05/19 00:12	1
Dibromochloromethane	ND		0.68		ug/m3			11/05/19 00:12	1
Dichlorodifluoromethane	1.4		0.40		ug/m3			11/05/19 00:12	1
Ethylbenzene	0.23		0.35		ug/m3			11/05/19 00:12	1
Heptane	0.36		0.82		ug/m3			11/05/19 00:12	1
Hexachlorobutadiene	ND		0.85		ug/m3			11/05/19 00:12	1
Hexane	0.68	J	0.70	0.046	ug/m3			11/05/19 00:12	1

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17191-5 Matrix: Air

12/13/2019

Client Sample ID: AA 103019

Date Collected: 10/30/19 15:03 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatil Analyte		Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
Indane	ND		0.39	0.17	ug/m3			11/05/19 00:12	1
Indene	ND		0.76	0.19	ug/m3			11/05/19 00:12	1
Isopropyl alcohol	3.0		2.0	0.54	ug/m3			11/05/19 00:12	1
Isopropylbenzene	ND		0.79	0.084	ug/m3			11/05/19 00:12	1
Methyl tert-butyl ether	ND		0.58	0.19	ug/m3			11/05/19 00:12	1
Methylene Chloride	1.9 -	B-UB	1.4	0.56	ug/m3			11/05/19 00:12	1
m-Xylene & p-Xylene	0.60		0.35	0.13	ug/m3			11/05/19 00:12	1
Naphthalene	ND		1.0	0.40	ug/m3			11/05/19 00:12	1
n-Butane	5.6		0.38	0.20	ug/m3			11/05/19 00:12	1
n-Decane	ND	ad ⁰	2.3	0.22	ug/m3			11/05/19 00:12	1
n-Dodecane	ND		2.8	0.45	ug/m3			11/05/19 00:12	1
n-Octane	0.15	J	0.75	0.075	ug/m3			11/05/19 00:12	1
Nonane	0.13	J	1.0	0.094	ug/m3			11/05/19 00:12	1
n-Undecane	ND		2.6	0.31	ug/m3			11/05/19 00:12	1
o-Xylene	0.19	J	0.35	0.065	ug/m3			11/05/19 00:12	1
Pentane	1.4		1.2	0.23	ug/m3			11/05/19 00:12	1
Propene	1.8	GH- \	1.7	1.7	ug/m3			11/05/19 00:12	1
Styrene	ND	read	0.34	0.10	ug/m3			11/05/19 00:12	1
Tetrachloroethene	0.88		0.54	0.047	ug/m3			11/05/19 00:12	1
Tetrahydrofuran	ND		1.2	0.45	ug/m3			11/05/19 00:12	1
Thiophene	ND		0.28	0.038	ug/m3			11/05/19 00:12	1
Toluene	2.3		0.45	0.29	ug/m3			11/05/19 00:12	1
trans-1,2-Dichloroethene	ND		0.32	0.028	ug/m3			11/05/19 00:12	1
trans-1,3-Dichloropropene	ND		0.36	0.041	ug/m3			11/05/19 00:12	1
Trichloroethene	0.065	J	0.19	0.032	ug/m3			11/05/19 00:12	1
Trichlorofluoromethane	1.3		0.45		ug/m3			11/05/19 00:12	1
Vinyl chloride	ND		0.10	0.066	ug/m3			11/05/19 00:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene (Surr)

Client Sample ID: JR-178-IA-1

Date Collected: 10/30/19 15:35 Date Received: 11/01/19 09:20

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/07/19 00:29	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/07/19 00:29	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.071	J	0.080	0.0080	ppb v/v			11/07/19 00:29	1
ne									
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/07/19 00:29	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/07/19 00:29	1
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/07/19 00:29	1
1,2,3-Trimethylbenzene	1.1		0.080	0.036	ppb v/v			11/07/19 00:29	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/07/19 00:29	1
1,2,4-Trimethylbenzene	4.8		0.080	0.020	ppb v/v			11/07/19 00:29	1
1.2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v			11/07/19 00:29	1

60 - 140

12/13/2019

Lab Sample ID: 140-17191-5 Matrix: Air

Lab Sample ID: 140-17191-6

11/05/19 00:12

Matrix: Air

1

Date Collected: 10/30/19 15:35 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-6 Matrix: Air

Method: TO 15 LL - Volatile Org Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,2-Dichloro-1,1,2,2-tetrafluoroeth	0.016	J	0.080	0.012	ppb v/v			11/07/19 00:29	
ine			0.080	0.031	ppb v/v			11/07/19 00:29	
,2-Dichlorobenzene	ND		0.080		ppb v/v ppb v/v			11/07/19 00:29	
,2-Dichloroethane	0.018	J	0.080		ppb v/v ppb v/v			11/07/19 00:29	
,2-Dichloropropane	ND		0.080		ppb v/v ppb v/v			11/07/19 00:29	
,3,5-Trimethylbenzene	1.3				ppb v/v ppb v/v			11/07/19 00:29	
,3-Butadiene	ND		0.16		ppb v/v ppb v/v			11/07/19 00:29	
,3-Dichlorobenzene	ND		0.080		ppb v/v ppb v/v			11/07/19 00:29	
i,4-Dichlorobenzene	0.064		0.080					11/07/19 00:29	
I,4-Dioxane	0.035		0.20		ppb v/v			11/07/19 00:29	
2,2,4-Trimethylpentane	0.13		0.20		ppb v/v			11/07/19 00:29	
2,3-Dimethylpentane	0.044	J#	0.080		ppb v/v				
2-Butanone (MEK)	7.8		0.32		ppb v/v			11/07/19 00:29	
2-Hexanone	0.11	J	0.20		ppb v/v			11/07/19 00:29	
2-Methylbutane	1.5		0.20		ppb v/v			11/07/19 00:29	
2-Methylpentane	0.21		0.080		ppb v/v			11/07/19 00:29	
I-Ethyltoluene	1.3		0.16		ppb v/v			11/07/19 00:29	
I-Methyl-2-pentanone (MIBK)	0.50	1	0.20		ppb v/v			11/07/19 00:29	
Acetone	7.4		2.0		ppb v/v			11/07/19 00:29	
Benzene	0.23		0.080	0.0080	ppb v/v			11/07/19 00:29	
Benzyl chloride	ND		0.16	0.038	ppb v/v			11/07/19 00:29	
Bromodichloromethane	0.055	J	0.080	0.018	ppb v/v			11/07/19 00:29	
Bromoform	ND		0.080	0.0090	ppb v/v			11/07/19 00:29	
Bromomethane	ND		0.080	0.022	ppb v/v			11/07/19 00:29	
Carbon disulfide	0.13	J	0.20	0.011	ppb v/v			11/07/19 00:29	
Carbon tetrachloride	0.082		0.032	0.0070	ppb v/v			11/07/19 00:29	
Chlorobenzene	ND		0.080	0.0060	ppb v/v			11/07/19 00:29	
Chloroethane	ND		0.080	0.029	ppb v/v			11/07/19 00:29	
Chloroform	0.45		0.080	0.0070	ppb v/v			11/07/19 00:29	
Chloromethane	0.66		0.20	0.066	ppb v/v			11/07/19 00:29	
cis-1,2-Dichloroethene	0.010	.1	0.040	0.010	ppb v/v			11/07/19 00:29	
	ND	•	0.080		ppb v/v			11/07/19 00:29	
sis-1,3-Dichloropropene	0.11		0.20		ppb v/v			11/07/19 00:29	
Cyclohexane	ND	5	0.080		ppb v/v			11/07/19 00:29	
Dibromochloromethane	0.52		0.080		ppb v/v			11/07/19 00:29	
Dichlorodifluoromethane			0.080		ppb v/v			11/07/19 00:29	
Ethylbenzene	0.68		0.20		ppb v/v			11/07/19 00:29	
Heptane	1.6		0.080		ppb v/v			11/07/19 00:29	
Hexachlorobutadiene	ND		0.080		ppb v/v ppb v/v			11/07/19 00:29	
Hexane	0.56							11/07/19 00:29	
ndane	0.30		0.080		ppb v/v			11/07/19 00:29	
ndene	ND		0.16		ppb v/v			11/07/19 00:29	
sopropyl alcohol	3.5		0.80		ppb v/v			11/07/19 00:29	
sopropylbenzene	0.14	J	0.16		ppb v/v				
Methyl tert-butyl ether	ND		0.16		ppb v/v			11/07/19 00:29	
Methylene Chloride		- в - U (3	0.40		ppb v/v			11/07/19 00:29	
m-Xylene & p-Xylene	2.6		0.080		ppb v/v			11/07/19 00:29	
Naphthalene	1.5		0.20		ppb v/v			11/07/19 00:29	
n-Butane	5.9		0.16		ppb v/v			11/07/19 00:29	
n-Decane	7.6		0.40	0.038	ppb v/v			11/07/19 00:29	

Date Collected: 10/30/19 15:35 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-6

Matrix: Air

Method: TO 15 LL - Volatile Org Analyte	anic Com Result	pounds il Qualifier	n Ambient Air RL	MDL	Unit	tion (G D	Prepared	Analyzed	Dil Fac
n-Dodecane	0.88		0.40	0.064	ppb v/v			11/07/19 00:29	1
n-Octane	1.4		0.16	0.016	ppb v/v			11/07/19 00:29	1
Nonane	1.7		0.20	0.018	ppb v/v			11/07/19 00:29	1
n-Undecane	3.9		0.40	0.048	ppb v/v			11/07/19 00:29	1
o-Xylene	1.0		0.080	0.015	ppb v/v			11/07/19 00:29	1
Pentane	8.8		0.40	0.079	ppb v/v			11/07/19 00:29	1
Propene	1.5	- G + \	1.0	1.0	ppb v/v			11/07/19 00:29	1
Styrene	0.16	~	0.080	0.024	ppb v/v			11/07/19 00:29	1
Tetrachloroethene	0.32		0.080	0.0070	ppb v/v			11/07/19 00:29	1
Tetrahydrofuran	ND		0.40	0.15	ppb v/v			11/07/19 00:29	1
Thiophene	ND		0.080	0.011	ppb v/v			11/07/19 00:29	1
Toluene	0.95		0.12		ppb v/v			11/07/19 00:29	1
trans-1,2-Dichloroethene	ND		0.080		ppb v/v			11/07/19 00:29	1
trans-1,3-Dichloropropene	ND		0.080		ppb v/v			11/07/19 00:29	1
Trichloroethene	0.018	.1	0.036		ppb v/v			11/07/19 00:29	1
Trichlorofluoromethane	0.22	0	0.080		ppb v/v			11/07/19 00:29	1
Vinyl chloride	ND		0.040		ppb v/v			11/07/19 00:29	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44		ug/m3		•	11/07/19 00:29	1
1,1,2,2-Tetrachloroethane	ND		0.55		ug/m3			11/07/19 00:29	1
1,1,2,2-Trichloro-1,2,2-trifluoroetha	0.54	J	0.61		ug/m3			11/07/19 00:29	1
ne	0.04	U	••••						
1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			11/07/19 00:29	1
1,1-Dichloroethane	ND		0.32	0.028	ug/m3			11/07/19 00:29	1
1,1-Dichloroethene	ND		0.16	0.032	ug/m3			11/07/19 00:29	1
1,2,3-Trimethylbenzene	5.3		0.39	0.18	ug/m3			11/07/19 00:29	1
1,2,4-Trichlorobenzene	ND		0.59	0.47	ug/m3			11/07/19 00:29	1
1,2,4-Trimethylbenzene	24		0.39	0.098	ug/m3			11/07/19 00:29	1
1,2-Dibromoethane (EDB)	ND		0.61	0.054	ug/m3			11/07/19 00:29	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.11	J	0.56	0.084	ug/m3			11/07/19 00:29	1
ane									
1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/07/19 00:29	1
1,2-Dichloroethane	0.071	J	0.32	0.040	ug/m3			11/07/19 00:29	1
1,2-Dichloropropane	ND		0.37	0.046	ug/m3			11/07/19 00:29	1
1,3,5-Trimethylbenzene	6.3		0.39	0.11	ug/m3			11/07/19 00:29	1
1,3-Butadiene	ND		0.35	0.042	ug/m3			11/07/19 00:29	1
1,3-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/07/19 00:29	1
1,4-Dichlorobenzene	0.39	J	0.48	0.096	ug/m3			11/07/19 00:29	1
1,4-Dioxane	0.13	J	0.72	0.11	ug/m3			11/07/19 00:29	1
2,2,4-Trimethylpentane	0.63		0.93	0.037	ug/m3			11/07/19 00:29	1
2,3-Dimethylpentane		J salessa	0.33		ug/m3			11/07/19 00:29	1
2-Butanone (MEK)	23		0.94		ug/m3			11/07/19 00:29	1
2-Hexanone	0.47	J	0.82	0.066	ug/m3			11/07/19 00:29	1
2-Methylbutane	4.4		0.59		ug/m3			11/07/19 00:29	1
2-Methylpentane	0.74		0.28	0.049	ug/m3			11/07/19 00:29	1
4-Ethyltoluene	6.5		0.79		ug/m3			11/07/19 00:29	1
4-Methyl-2-pentanone (MIBK)	2.1	4	0.82		ug/m3			11/07/19 00:29	1
Acetone	18	÷	4.8		ug/m3			11/07/19 00:29	1
nootono	10				ug/m3			11/07/19 00:29	1

Date Collected: 10/30/19 15:35 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

/lethod: TO 15 LL - Volatile	Result Qualifie	r RL	MDL		D Prepared	Analyzed	Dil Fa
enzyl chloride	ND	0.83	0.20	ug/m3		11/07/19 00:29	
romodichloromethane	0.37 J	0.54		ug/m3		11/07/19 00:29	
romoform	ND	0.83		ug/m3		11/07/19 00:29	
romomethane	ND	0.31		ug/m3		11/07/19 00:29	
arbon disulfide	0.42 J	0.62	0.034	ug/m3		11/07/19 00:29	
arbon tetrachloride	0.52	0.20		ug/m3		11/07/19 00:29	
hlorobenzene	ND	0.37	0.028	ug/m3		11/07/19 00:29	
hloroethane	ND	0.21	0.077	ug/m3		11/07/19 00:29	
hloroform	2.2	0.39	0.034	ug/m3		11/07/19 00:29	
hloromethane	1.4	0.41	0.14	ug/m3		11/07/19 00:29	
is-1,2-Dichloroethene	0.041 J	0.16	0.040	ug/m3		11/07/19 00:29	
s-1,3-Dichloropropene	ND	0.36	0.073	ug/m3		11/07/19 00:29	
yclohexane	0.39 J	0.69	0.079	ug/m3		11/07/19 00:29	
ibromochloromethane	ND	0.68	0.060	ug/m3		11/07/19 00:29	
ichlorodifluoromethane	2.6	0.40	0.069	ug/m3		11/07/19 00:29	
thylbenzene	3.0	0.35	0.056	ug/m3		11/07/19 00:29	
eptane	6.6	0.82	0.057	ug/m3		11/07/19 00:29	
lexachlorobutadiene	ND	0.85	0.34	ug/m3		11/07/19 00:29	
lexane	2.0	0.70	0.046	ug/m3		11/07/19 00:29	
ndane	1.5	0.39	0.17	ug/m3		11/07/19 00:29	
ndene	ND	0.76	0.19	ug/m3		11/07/19 00:29	
	8.7	2.0	0.54	ug/m3		11/07/19 00:29	
sopropyl alcohol	0.67 J	0.79		ug/m3		11/07/19 00:29	
sopropylbenzene tethyl tert-butyl ether	ND	0.58	0.19	ug/m3		11/07/19 00:29	
•	3.4 B- UI		0.56	ug/m3		11/07/19 00:29	
lethylene Chloride	3.4 D •••	0.35		ug/m3		11/07/19 00:29	
n-Xylene & p-Xylene	8.1	1.0		ug/m3		11/07/19 00:29	
laphthalene	14	0.38		ug/m3		11/07/19 00:29	
-Butane	44	2.3		ug/m3		11/07/19 00:29	
a-Decane	6.1	2.8		ug/m3		11/07/19 00:29	
i-Dodecane	6.8	0.75		ug/m3		11/07/19 00:29	
i-Octane		1.0		ug/m3		11/07/19 00:29	
lonane	8.9	2.6		ug/m3		11/07/19 00:29	
n-Undecane	25	0.35		ug/m3		11/07/19 00:29	
o-Xylene	4.5	1.2		ug/m3		11/07/19 00:29	
Pentane	26	1.2		ug/m3		11/07/19 00:29	
Propene	2.7 Ch	0.34		ug/m3		11/07/19 00:29	
Styrene	0.70	0.34		ug/m3		11/07/19 00:29	
Fetrachloroethene	2.2	0.54		ug/m3 i ug/m3		11/07/19 00:29	
Fetrahydrofuran	ND			ug/m3		11/07/19 00:29	
Thiophene	ND	0.28		ug/m3		11/07/19 00:29	
oluene	3.6	0.45		ug/m3 ug/m3		11/07/19 00:29	
rans-1,2-Dichloroethene	ND	0.32		ug/m3		11/07/19 00:29	
rans-1,3-Dichloropropene	ND	0.36		-		11/07/19 00:29	
Trichloroethene	0.097 J	0.19		2 ug/m3		11/07/19 00:29	
Trichlorofluoromethane	1.2	0.45		2 ug/m3		11/07/19 00:29	
Vinyl chloride	ND	0.10	0.066	3 ug/m3		11/07/18 00.28	
	0/ D 0	or Limite			Prepared	Analyzed	Dil
Surrogate 4-Bromofluorobenzene (Surr)	<u>%Recovery</u> Qualifi 101	er Limits 60 - 140				11/07/19 00:29	

Job ID: 140-17191-1

Lab Sample ID: 140-17191-6 Matrix: Air

Client Sample ID: JR-178-IA-2 Date Collected: 10/30/19 15:51

Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-7

Matrix: Air

Method: TO 15 LL - Volatile Org Analyte	Result (RL	MDL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.080		ppb v/v		11/07/19 01:14	
1,1,2,2-Tetrachloroethane	ND		0.080		ppb v/v		11/07/19 01:14	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.070 .	J	0.080	0.0080	ppb v/v		11/07/19 01:14	
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v		11/07/19 01:14	
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v		11/07/19 01:14	
1,1-Dichloroethene	ND	د	0.040	0.0080	ppb v/v		11/07/19 01:14	
1,2,3-Trimethylbenzene	0.14 🛶	GH \	0.080	0.036	ppb v/v		11/07/19 01:14	
1,2,4-Trichlorobenzene	ND	~	0.080	0.064	ppb v/v		11/07/19 01:14	
1,2,4-Trimethylbenzene	0.16		0.080	0.020	ppb v/v		11/07/19 01:14	1
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v		11/07/19 01:14	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.016 J	J	0.080	0.012	ppb v/v		11/07/19 01:14	1
ane								
1,2-Dichlorobenzene	ND		0.080		ppb v/v		11/07/19 01:14	1
1,2-Dichloroethane	0.033 J	J	0.080		ppb v/v		11/07/19 01:14	1
I,2-Dichloropropane	ND		0.080		ppb v/v		11/07/19 01:14	1
1,3,5-Trimethylbenzene	0.076 J	J	0.080	0.022	ppb v/v		11/07/19 01:14	1
,3-Butadiene	ND		0.16	0.019	ppb v/v		11/07/19 01:14	1
,3-Dichlorobenzene	ND		0.080	0.016	ppb v/v		11/07/19 01:14	1
,4-Dichlorobenzene	0.29		0.080	0.016	ppb v/v		11/07/19 01:14	1
,4-Dioxane	ND		0.20	0.030	ppb v/v		11/07/19 01:14	1
,2,4-Trimethylpentane	0.13 J	I	0.20	0.0080	ppb v/v		11/07/19 01:14	1
,3-Dimethylpentane	0.046 J	to the served in	0.080	0.026	ppb v/v		11/07/19 01:14	1
-Butanone (MEK)	0.81		0.32	0.073	ppb v/v		11/07/19 01:14	1
-Hexanone	0.086 J	I	0.20	0.016	ppb v/v		11/07/19 01:14	1
-Methylbutane	1.0		0.20	0.063	ppb v/v		11/07/19 01:14	1
-Methylpentane	0.25		0.080	0.014	ppb v/v		11/07/19 01:14	1
-Ethyltoluene	0.079 J		0.16	0.021	ppb v/v		11/07/19 01:14	1
-Methyl-2-pentanone (MIBK)	0.11 J		0.20	0.054	ppb v/v		11/07/19 01:14	1
Acetone	9.7 -6	¥⊷_ \	2.0		ppb v/v		11/07/19 01:14	1
Benzene	1.1	"hout"	0.080	0.0080	ppb v/v		11/07/19 01:14	1
Benzyl chloride	ND		0.16	0.038	ppb v/v		11/07/19 01:14	1
Bromodichloromethane	1.8		0.080	0.018	ppb v/v		11/07/19 01:14	1
romoform	ND		0.080	0.0090			11/07/19 01:14	1
romomethane	ND		0.080		ppb v/v		11/07/19 01:14	1
arbon disulfide	0.32		0.20		ppb v/v		11/07/19 01:14	1
arbon tetrachloride	0.092		0.032	0.0070	• •		11/07/19 01:14	1
hlorobenzene	0.018 J		0.080	0.0060			11/07/19 01:14	. 1
hloroethane	0.045 J		0.080		ppb v/v		11/07/19 01:14	. 1
hloroform	10		0.080	0.0070			11/07/19 01:14	1
hloromethane	0.73		0.20		ppb v/v		11/07/19 01:14	1
is-1,2-Dichloroethene	0.098		0.040		ppb v/v		11/07/19 01:14	1
is-1,3-Dichloropropene	ND		0.080		ppb v/v		11/07/19 01:14	. 1
yclohexane	0.15 J		0.20		ppb v/v		11/07/19 01:14	1
ibromochloromethane	0.18		0.080	0.0070			11/07/19 01:14	1
ichlorodifluoromethane	0.55		0.080		ppb v/v		11/07/19 01:14	1
thylbenzene	0.29		0.080	0.013			11/07/19 01:14	1
leptane	0.25 0.16 J		0.000		ppb v/v ppb v/v		11/07/19 01:14	י 1
lexachlorobutadiene	ND		0.080	0.032			11/07/19 01:14	1

Eurofins TestAmerica, Knoxville

12/13/2019

Date Collected: 10/30/19 15:51 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L Lab Sample ID: 140-17191-7 Matrix: Air

Method: TO 15 LL - Volatile Orga Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzeo	Dil Fac
Hexane	0.31		0.20	0.013	ppb v/v			11/07/19 01:14	1
Indane	1.3		0.080	0.035	ppb v/v			11/07/19 01:14	1
Indene	ND		0.16	0.039	ppb v/v			11/07/19 01:14	1
Isopropyl alcohol	3.9		0.80	0.22	ppb v/v			11/07/19 01:14	1
sopropylbenzene	0.11	J	0.16	0.017	ppb v/v			11/07/19 01:14	1
Methyl tert-butyl ether	ND		0.16	0.052	ppb v/v			11/07/19 01:14	1
Methylene Chloride	0.94	Bruß	0.40	0.16	ppb v/v			11/07/19 01:14	1
m-Xylene & p-Xylene	0.40		0.080	0.029	ppb v/v			11/07/19 01:14	1
Naphthalene	0.15	J	0.20	0.076	ppb v/v			11/07/19 01:14	1
n-Butane	10		0.16	0.083	ppb v/v			11/07/19 01:14	1
n-Decane	0.74		0.40	0.038	ppb v/v			11/07/19 01:14	1
	0.33	.1	0.40	0.064	ppb v/v			11/07/19 01:14	1
n-Dodecane	0.095		0.16		ppb v/v			11/07/19 01:14	1
n-Octane	0.033		0.20		ppb v/v			11/07/19 01:14	1
Nonane	0.14		0.40		ppb v/v			11/07/19 01:14	1
n-Undecane	0.23	5	0.080		ppb v/v ppb v/v			11/07/19 01:14	1
o-Xylene			0.000		ppb v/v ppb v/v			11/07/19 01:14	1
Pentane	0.91		1.0		ppb v/v ppb v/v			11/07/19 01:14	1
Propene		e+)			••			11/07/19 01:14	1
Styrene	0.22		0.080		ppb v/v			11/07/19 01:14	1
Tetrachloroethene	0.42		0.080		ppb v/v			11/07/19 01:14	1
Tetrahydrofuran	ND		0.40		ppb v/v				1
Thiophene	0.016	J	0.080		ppb v/v			11/07/19 01:14	1
Toluene	1.1		0.12		ppb v/v			11/07/19 01:14	
trans-1,2-Dichloroethene	0.027	J	0.080		ppb v/v			11/07/19 01:14	1
trans-1,3-Dichloropropene	ND		0.080		ppb v/v			11/07/19 01:14	1
Trichloroethene	0.024	J	0.036		ppb v/v			11/07/19 01:14	1
Trichlorofluoromethane	0.23		0.080	0.011	ppb v/v			11/07/19 01:14	1
Vinyl chloride	ND		0.040	0.026	ppb v/v			11/07/19 01:14	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44	0.20	ug/m3		·	11/07/19 01:14	1
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	ug/m3			11/07/19 01:14	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.54		0.61	0.061	ug/m3			11/07/19 01:14	1
ne	0101	•			•				
1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			11/07/19 01:14	1
1,1-Dichloroethane	ND		0.32	0.028	ug/m3			11/07/19 01:14	1
1,1-Dichloroethene	ND		0.16	0.032	ug/m3			11/07/19 01:14	1
1,2,3-Trimethylbenzene	0.68	-6+. ∖	0.39	0.18	ug/m3			11/07/19 01:14	1
1,2,4-Trichlorobenzene	ND		0.59	0.47	ug/m3			11/07/19 01:14	1
1,2,4-Trimethylbenzene	0.80		0.39		ug/m3			11/07/19 01:14	1
1,2-Dibromoethane (EDB)	ND		0.61		ug/m3			11/07/19 01:14	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.11		0.56		ug/m3			11/07/19 01:14	1
ane	ND		0.48	0 19	ug/m3			11/07/19 01:14	1
1,2-Dichlorobenzene	0.13		0.40		ug/m3			11/07/19 01:14	1
1,2-Dichloroethane			0.32		ug/m3			11/07/19 01:14	1
1,2-Dichloropropane	ND				ug/m3			11/07/19 01:14	1
1,3,5-Trimethylbenzene	0.37		0.39		-			11/07/19 01:14	1
1,3-Butadiene	ND		0.35		ug/m3			11/07/19 01:14	1
1,3-Dichlorobenzene	ND 1.8		0.48 0.48		ug/m3 ug/m3			11/07/19 01:14	1

Job ID: 140-17191-1

Matrix: Air

Lab Sample ID: 140-17191-7

Client Sample ID: JR-178-IA-2

Date Collected: 10/30/19 15:51 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Analyte	e Organic Com	pounds i					
1,4-Dioxane		Qualifier			Unit	D Prepared Analyzed	Dil Fac
2,2,4-Trimethylpentane			0.72		ug/m3	11/07/19 01:14	
••	0.60		0.93		ug/m3	11/07/19 01:14	
2,3-Dimethylpentane		J *****	0.33		ug/m3	11/07/19 01:14	
2-Butanone (MEK) 2-Hexanone	2.4		0.94		ug/m3	11/07/19 01:14	
	0.35	J	0.82		ug/m3	11/07/19 01:14	
2-Methylbutane	3.0		0.59		ug/m3	11/07/19 01:14	
2-Methylpentane	0.87		0.28		ug/m3	11/07/19 01:14	1
4-Ethyltoluene	0.39		0.79		ug/m3	11/07/19 01:14	1
4-Methyl-2-pentanone (MIBK)	0.47	Ę	0.82		ug/m3	11/07/19 01:14	1
Acetone		~ 6 +)	4.8		ug/m3	11/07/19 01:14	1
Benzene	3.4		0.26		ug/m3	11/07/19 01:14	1
Benzyl chloride	ND		0.83		ug/m3	11/07/19 01:14	1
Bromodichloromethane	12		0.54		ug/m3	11/07/19 01:14	1
Bromoform	ND		0.83	0.093	ug/m3	11/07/19 01:14	1
Bromomethane	ND		0.31	0.085	ug/m3	11/07/19 01:14	1
Carbon disulfide	0.99		0.62	0.034	ug/m3	11/07/19 01:14	1
Carbon tetrachloride	0.58		0.20	0.044	ug/m3	11/07/19 01:14	1
Chlorobenzene	0.084	J	0.37	0.028	ug/m3	11/07/19 01:14	1
Chloroethane	0.12	J	0.21	0.077	ug/m3	11/07/19 01:14	1
Chloroform	49		0.39	0.034	ug/m3	11/07/19 01:14	1
Chloromethane	1.5		0.41	0.14	ug/m3	11/07/19 01:14	1
cis-1,2-Dichloroethene	0.39		0.16		ug/m3	11/07/19 01:14	1
cis-1,3-Dichloropropene	ND		0.36		ug/m3	11/07/19 01:14	1
Cyclohexane	0.53	J	0.69	0.079	ug/m3	11/07/19 01:14	1
Dibromochloromethane	1.5		0.68		ug/m3	11/07/19 01:14	1
Dichlorodifluoromethane	2.7		0.40		ug/m3	11/07/19 01:14	1
Ethylbenzene	1.3		0.35		ug/m3	11/07/19 01:14	1
Heptane	0.66	J	0.82	0.057		11/07/19 01:14	1
Hexachlorobutadiene	ND		0.85		ug/m3	11/07/19 01:14	1
Hexane	1.1		0.70	0.046		11/07/19 01:14	1
Indane	6.0		0.39		ug/m3	11/07/19 01:14	1
Indene	ND		0.76		ug/m3	11/07/19 01:14	1
Isopropyl alcohol	9.5		2.0		ug/m3	11/07/19 01:14	, 1
lsopropylbenzene	0.53	J	0.79	0.084	-	11/07/19 01:14	1
Methyl tert-butyl ether	ND	-	0.58		ug/m3	11/07/19 01:14	1
Methylene Chloride		BUB	1.4		ug/m3	11/07/19 01:14	1
m-Xylene & p-Xylene	1.7		0.35		ug/m3	11/07/19 01:14	1
Naphthalene	0.81	.1	1.0		ug/m3		1
n-Butane	24	•	0.38		ug/m3	11/07/19 01:14 11/07/19 01:14	1
n-Decane	4.3		2.3		ug/m3		1
n-Dodecane	2.3	1	2.8		ug/m3	11/07/19 01:14	1
n-Octane	0.44		0.75	0.45		11/07/19 01:14	1
Nonane	0.71		1.0	0.075		11/07/19 01:14	1
n-Undecane	1.5		2.6	0.094		11/07/19 01:14	1
o-Xylene	0.67				-	11/07/19 01:14	1
Pentane	2.7		0.35	0.065		11/07/19 01:14	1
Propene		e r S	1.2	0.23		11/07/19 01:14	1
Styrene		السي ال	1.7		ug/m3	11/07/19 01:14	1
otyrene	0.92		0.34	0.10	ug/m3	11/07/19 01:14	1

12/13/2019

Client Sample Results

Client: ARCADIS U.S. Inc Project/Site: CON EDISON - EAST 11TH STREET

Client Sample ID: JR-178-IA-2

Date Collected: 10/30/19 15:51 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Matrix: Air

Lab Sample ID: 140-17191-7

Matrix: Air

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued) Analyzed **Dil Fac** MDL Unit D Prepared Result Qualifier RL Analyte 0.047 ug/m3 11/07/19 01:14 1 0.54 2.9 Tetrachloroethene 11/07/19 01:14 1 0.45 ug/m3 ND 1.2 Tetrahydrofuran 11/07/19 01:14 0.28 0.038 ug/m3 1 Thiophene 0.055 J 11/07/19 01:14 1 0.45 0.29 ug/m3 4.3 Toluene 0.028 ug/m3 11/07/19 01:14 1 0.32 0.11 J trans-1,2-Dichloroethene 0.041 ug/m3 11/07/19 01:14 1 0.36 ND trans-1,3-Dichloropropene 1 11/07/19 01:14 0.032 ug/m3 0.13 J 0.19 Trichloroethene 1 11/07/19 01:14 0.45 0.062 ug/m3 1.3 Trichlorofluoromethane 1 0.066 ug/m3 11/07/19 01:14 ND 0.10 Vinyl chloride Analyzed Dil Fac Limits Prepared %Recovery Qualifier Surrogate 60 - 140 11/07/19 01:14 1 100 4-Bromofluorobenzene (Surr) Lab Sample ID: 140-17191-8

Client Sample ID: JR-178-IA-3 Date Collected: 10/30/19 15:21 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/07/19 02:00	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/07/19 02:00	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.070	J	0.080	0.0080	ppb v/v			11/07/19 02:00	1
ne 1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/07/19 02:00	1
1.1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/07/19 02:00	1
1.1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/07/19 02:00	1
1,2,3-Trimethylbenzene	0.037	J	0.080	0.036	ppb v/v			11/07/19 02:00	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/07/19 02:00	1
1,2,4-Trimethylbenzene	0.12		0.080	0.020	ppb v/v			11/07/19 02:00	1
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v			11/07/19 02:00	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.016	J	0.080	0.012	ppb v/v			11/07/19 02:00	1
ane	ND		0.080	0.031	ppb v/v			11/07/19 02:00	1
1,2-Dichlorobenzene			0.080		ppb v/v			11/07/19 02:00	1
1,2-Dichloroethane	0.016 ND	3	0.080		ppb v/v ppb v/v			11/07/19 02:00	1
1,2-Dichloropropane	0.068		0.080		ppb v/v			11/07/19 02:00	1
1,3,5-Trimethylbenzene	0.068 ND		0.000		ppb v/v			11/07/19 02:00	1
1,3-Butadiene	ND		0.080		ppb v/v ppb v/v			11/07/19 02:00	1
1,3-Dichlorobenzene	0.032		0.080		ppb v/v			11/07/19 02:00	1
1,4-Dichlorobenzene	0.032 ND	J	0.000		ppb v/v			11/07/19 02:00	1
1,4-Dioxane	0.11		0.20		ppb v/v			11/07/19 02:00	1
2,2,4-Trimethylpentane		J J ^{a‱} ∞	0.080		ppb v/v			11/07/19 02:00	1
2,3-Dimethylpentane	0.037		0.000		ppb v/v			11/07/19 02:00	1
2-Butanone (MEK)	0.32		0.32		ppb v/v			11/07/19 02:00	1
2-Hexanone			0.20		ppb v/v			11/07/19 02:00	1
2-Methylbutane	0.82		0.20		ppb v/v ppb v/v			11/07/19 02:00	1
2-Methylpentane	0.21		0.080		ppb v/v ppb v/v			11/07/19 02:00	1
4-Ethyltoluene	0.075		0.10		ppb v/v ppb v/v			11/07/19 02:00	1
4-Methyl-2-pentanone (MIBK)	0.10	Ę	2.0		ppb v/v ppb v/v			11/07/19 02:00	1
Acetone	4.0	-6t)	∠.0	0.57	hhn w			1 1/01/10 02:00	

Matrix: Air

Lab Sample ID: 140-17191-8

Client Sample ID: JR-178-IA-3

Date Collected: 10/30/19 15:21 Date Received: 11/01/19 09:20

Date Received: 11/01/19 09:20
Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL		Prepared	Analyzed	Dil F
Benzene	0.18	0.080		ppb v/v		11/07/19 02:00	
Benzyl chloride	ND	0.16		ppb v/v		11/07/19 02:00	
Bromodichloromethane	0.022 J	0.080		ppb v/v		11/07/19 02:00	
Bromoform	ND	0.080		ppb v/v		11/07/19 02:00	
Bromomethane	ND	0.080		ppb v/v		11/07/19 02:00	
Carbon disulfide	0.039 J	0.20		ppb v/v		11/07/19 02:00	
Carbon tetrachloride	0.076	0.032		ppb v/v		11/07/19 02:00	
Chlorobenzene	ND	0.080	0.0060	ppb v/v		11/07/19 02:00	
Chloroethane	ND	0.080		ppb v/v		11/07/19 02:00	
Chloroform	0.27	0.080		ppb v/v		11/07/19 02:00	
Chloromethane	0.69 -64-	0.20	0.066	ppb v/v		11/07/19 02:00	
cis-1,2-Dichloroethene	ND	0.040	0.010	ppb v/v		11/07/19 02:00	
cis-1,3-Dichloropropene	ND	0.080	0.016	ppb v/v		11/07/19 02:00	
Cyclohexane	0.089 J	0.20	0.023	ppb v/v		11/07/19 02:00	
Dibromochloromethane	ND	0.080	0.0070	ppb v/v		11/07/19 02:00	
Dichlorodifluoromethane	0.53	0.080	0.014	ppb v/v		11/07/19 02:00	
Ethylbenzene	0.12	0.080	0.013	ppb v/v		11/07/19 02:00	
Heptane	0.12 J	0.20	0.014	ppb v/v		11/07/19 02:00	
Hexachlorobutadiene	ND	0.080	0.032	ppb v/v		11/07/19 02:00	
lexane	0.23	0.20	0.013	ppb v/v		11/07/19 02:00	
ndane	ND	0.080	0.035	ppb v/v		11/07/19 02:00	
ndene	ND	0.16	0.039	ppb v/v		11/07/19 02:00	
sopropyl alcohol	1.7	0.80	0.22	ppb v/v		11/07/19 02:00	
sopropylbenzene	ND	0.16	0.017	ppb v/v		11/07/19 02:00	
Methyl tert-butyl ether	ND	0.16	0.052	ppb v/v		11/07/19 02:00	
Methylene Chloride	0.74 -B- UB	0.40		ppb v/v		11/07/19 02:00	
n-Xylene & p-Xylene	0.38	0.080	0.029	ppb v/v		11/07/19 02:00	
Naphthalene	ND	0.20	0.076	ppb v/v		11/07/19 02:00	
n-Butane	3.3	0.16		ppb v/v		11/07/19 02:00	
n-Decane	0.35 J	0.40		ppb v/v		11/07/19 02:00	
n-Dodecane	0.27 J	0.40		ppb v/v		11/07/19 02:00	
1-Octane	0.086 J	0.16		ppb v/v		11/07/19 02:00	
Nonane	0.11 J	0.20		ppb v/v		11/07/19 02:00	
1-Undecane	0.13 J	0.40		ppb v/v		11/07/19 02:00	
p-Xylene	0.13	0.080		ppb v/v		11/07/19 02:00	
Pentane	0.51	0.40		ppb v/v		11/07/19 02:00	
Propene		1.0		ppb v/v		11/07/19 02:00	
Styrene	1.5 -CL) 0.11	0.080		ppb v/v ppb v/v		11/07/19 02:00	
letrachloroethene	0.30	0.080		ppb v/v		11/07/19 02:00	
	ND	0.080					
Fetrahydrofuran	ND	0.40		ppb v/v		11/07/19 02:00	
Thiophene				ppb v/v		11/07/19 02:00	
Foluene	0.80	0.12		ppb v/v		11/07/19 02:00	
rans-1,2-Dichloroethene	ND	0.080	0.0070			11/07/19 02:00	
rans-1,3-Dichloropropene	ND	0.080	0.0090			11/07/19 02:00	
Trichloroethene	0.017 J	0.036	0.0060			11/07/19 02:00	
frichlorofluoromethane	0.22 ND	0.080 0.040		ppb v/v ppb v/v		11/07/19 02:00 11/07/19 02:00	

Client Sample ID: JR-178-IA-3

Date Collected: 10/30/19 15:21 Date Received: 11/01/19 09:20

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44	0.20	ug/m3			11/07/19 02:00	1
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	ug/m3			11/07/19 02:00	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.53	J	0.61	0.061	ug/m3			11/07/19 02:00	1
ne 1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			11/07/19 02:00	1
1,1-Dichloroethane	ND		0.32	0.028	ug/m3			11/07/19 02:00	1
1,1-Dichloroethene	ND		0.16	0.032	ug/m3			11/07/19 02:00	1
1,2,3-Trimethylbenzene	0.18	J	0.39	0.18	ug/m3			11/07/19 02:00	1
1,2,4-Trichlorobenzene	ND		0.59	0.47	ug/m3			11/07/19 02:00	1
1,2,4-Trimethylbenzene	0.58		0.39	0.098	ug/m3			11/07/19 02:00	1
1,2-Dibromoethane (EDB)	ND		0.61	0.054	ug/m3			11/07/19 02:00	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.11	J	0.56	0.084	ug/m3			11/07/19 02:00	1
ane 1.2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/07/19 02:00	1
1,2-Dichloroethane	0.065	J	0.32	0.040	ug/m3			11/07/19 02:00	1
1,2-Dichloropropane	ND	-	0.37	0.046	ug/m3			11/07/19 02:00	1
1,3,5-Trimethylbenzene	0.34	J	0.39	0.11	ug/m3			11/07/19 02:00	1
1,3-Butadiene	ND	-	0.35	0.042	ug/m3			11/07/19 02:00	1
1.3-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/07/19 02:00	1
1,4-Dichlorobenzene	0.19	J	0.48	0.096	ug/m3			11/07/19 02:00	1
1,4-Dioxane	ND		0.72	0.11	ug/m3			11/07/19 02:00	1
2,2,4-Trimethylpentane	0.52	J	0.93	0.037	ug/m3			11/07/19 02:00	1
2,3-Dimethylpentane		J atarases,	0.33	0.11	ug/m3			11/07/19 02:00	1
2-Butanone (MEK)	0.95		0.94	0.22	ug/m3			11/07/19 02:00	1
2-Hexanone	0.077		0.82	0.066	ug/m3			11/07/19 02:00	1
2-Methylbutane	2.4		0.59	0.19	ug/m3			11/07/19 02:00	1
2-Methylpentane	0.73		0.28	0.049	ug/m3			11/07/19 02:00	1
4-Ethyltoluene	0.37	J	0.79	0.10	ug/m3			11/07/19 02:00	1
4-Methyl-2-pentanone (MIBK)	0.41	J	0.82	0.22	ug/m3			11/07/19 02:00	1
Acetone	9.6	~G+~ \	4.8	1.3	ug/m3			11/07/19 02:00	1
Benzene	0.58	also all	0.26	0.026	ug/m3			11/07/19 02:00	1
Benzyl chloride	ND		0.83	0.20	ug/m3			11/07/19 02:00	1
Bromodichloromethane	0.15	J	0.54	0.12	ug/m3			11/07/19 02:00	1
Bromoform	ND		0.83	0.093	ug/m3			11/07/19 02:00	1
Bromomethane	ND		0.31	0.085	ug/m3			11/07/19 02:00	1
Carbon disulfide	0.12	J	0.62	0.034	ug/m3			11/07/19 02:00	1
Carbon tetrachloride	0.48		0.20	0.044	ug/m3			11/07/19 02:00	1
Chlorobenzene	ND		0.37	0.028	ug/m3			11/07/19 02:00	1
Chloroethane	ND		0.21	0.077	ug/m3			11/07/19 02:00	1
Chloroform	1.3		0.39	0.034	ug/m3			11/07/19 02:00	1
Chloromethane	1.4	-G \	0.41	0.14	ug/m3			11/07/19 02:00	1
cis-1,2-Dichloroethene	ND	the state of the s	0.16	0.040	ug/m3			11/07/19 02:00	1
cis-1,3-Dichloropropene	ND		0.36	0.073	ug/m3			11/07/19 02:00	1
Cyclohexane	0.31	J	0.69	0.079	ug/m3			11/07/19 02:00	1
Dibromochloromethane	ND		0.68	0.060	ug/m3			11/07/19 02:00	1
Dichlorodifluoromethane	2.6		0.40	0.069	ug/m3			11/07/19 02:00	1
Ethylbenzene	0.51		0.35	0.056	ug/m3			11/07/19 02:00	1
Heptane	0.51		0.82	0.057	ug/m3			11/07/19 02:00	1
Hexachlorobutadiene	ND		0.85	0.34	ug/m3			11/07/19 02:00	1
Hexane	0.82		0.70	0.046	ug/m3			11/07/19 02:00	1

Lab Sample ID: 140-17191-8

Matrix: Air

Eurofins TestAmerica, Knoxville

12/13/2019

Matrix: Air

Client Sample ID: JR-178-IA-3

Date Collected: 10/30/19 15:21 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	ND	·····	0.39	0.17	ug/m3			11/07/19 02:00	1
Indene	ND		0.76	0.19	ug/m3			11/07/19 02:00	1
Isopropyl alcohol	4.1		2.0	0.54	ug/m3			11/07/19 02:00	1
Isopropylbenzene	ND		0.79	0.084	ug/m3			11/07/19 02:00	1
Methyl tert-butyl ether	ND		0.58	0.19	ug/m3			11/07/19 02:00	1
Methylene Chloride	2.6	-B-VB	1.4	0.56	ug/m3			11/07/19 02:00	1
m-Xylene & p-Xylene	1.7	-	0.35	0.13	ug/m3			11/07/19 02:00	1
Naphthalene	ND		1.0	0.40	ug/m3			11/07/19 02:00	1
n-Butane	7.9		0.38	0.20	ug/m3			11/07/19 02:00	1
n-Decane	2.0	J	2.3	0.22	ug/m3			11/07/19 02:00	1
n-Dodecane	1.9	J	2.8	0.45	ug/m3			11/07/19 02:00	1
n-Octane	0.40	J	0.75	0.075	ug/m3			11/07/19 02:00	1
Nonane	0.56	J	1.0	0.094	ug/m3			11/07/19 02:00	1
n-Undecane	0.81	J	2.6	0.31	ug/m3			11/07/19 02:00	1
o-Xylene	0.55		0.35	0.065	ug/m3			11/07/19 02:00	1
Pentane	1.5		1.2	0.23	ug/m3			11/07/19 02:00	1
Propene	2.5	-e+	1.7	1.7	ug/m3			11/07/19 02:00	1
Styrene	0.48		0.34	0.10	ug/m3			11/07/19 02:00	1
Tetrachloroethene	2.0		0.54	0.047	ug/m3			11/07/19 02:00	1
Tetrahydrofuran	ND		1.2	0.45	ug/m3			11/07/19 02:00	1
Thiophene	ND		0.28	0.038	ug/m3			11/07/19 02:00	1
Toluene	3.0		0.45	0.29	ug/m3			11/07/19 02:00	1
trans-1,2-Dichloroethene	ND		0.32	0.028	ug/m3			11/07/19 02:00	1
trans-1,3-Dichloropropene	ND		0.36	0.041	ug/m3			11/07/19 02:00	1
Trichloroethene	0.091	J	0.19	0.032	ug/m3			11/07/19 02:00	1
Trichlorofluoromethane	1.3		0.45	0.062	ug/m3			11/07/19 02:00	1
Vinyl chloride	ND		0.10	0.066	ug/m3			11/07/19 02:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140			-		11/07/19 02:00	1

Client Sample ID: JR-170-IA-3

Lab Sample ID: 140-17191-9 Matrix: Air

Date Collected: 10/30/19 15:59 Date Received: 11/01/19 09:20

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/07/19 02:46	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/07/19 02:46	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.073	J	0.080	0.0080	ppb v/v			11/07/19 02:46	1
ne									
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/07/19 02:46	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/07/19 02:46	1
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/07/19 02:46	1
1,2,3-Trimethylbenzene	ND		0.080	0.036	ppb v/v			11/07/19 02:46	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/07/19 02:46	1
1,2,4-Trimethylbenzene	0.090		0.080	0.020	ppb v/v			11/07/19 02:46	1
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v			11/07/19 02:46	1

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17191-8

11/07/19 02:00

Client Sample ID: JR-170-IA-3

Date Collected: 10/30/19 15:59 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-9

Matrix: Air

Analyte	Result Qualifier	RL	MDL		Prepared Analyzed	Dil F
I,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017 J	0.080	0.012	ppb v/v	11/07/19 02:46	
ine		0.000	0.004		11/07/40 00:46	
,2-Dichlorobenzene	ND	0.080		ppb v/v	11/07/19 02:46	
,2-Dichloroethane	0.032 J	0.080		ppb v/v	11/07/19 02:46	
,2-Dichloropropane	ND	0.080		ppb v/v	11/07/19 02:46	
,3,5-Trimethylbenzene	0.062 J	0.080		ppb v/v	11/07/19 02:46	
,3-Butadiene	ND	0.16	0.019	••	11/07/19 02:46	
,3-Dichlorobenzene	ND	0.080	0.016		11/07/19 02:46	
,4-Dichlorobenzene	ND	0.080	0.016		11/07/19 02:46	
,4-Dioxane	ND	0.20	0.030	• •	11/07/19 02:46	
2,2,4-Trimethylpentane	0.23	0.20	0.0080	• •	11/07/19 02:46	
,3-Dimethylpentane	0.090 🖟 🔪	0.080		ppb v/v	11/07/19 02:46	
-Butanone (MEK)	0.45	0.32	0.073	ppb v/v	11/07/19 02:46	
-Hexanone	0.035 J	0.20	0.016	ppb v/v	11/07/19 02:46	
-Methylbutane	4.5	0.20	0.063	ppb v/v	11/07/19 02:46	
-Methylpentane	0.77	0.080	0.014	ppb v/v	11/07/19 02:46	
-Ethyltoluene	0.041 J	0.16	0.021	ppb v/v	11/07/19 02:46	
-Methyl-2-pentanone (MIBK)	0.13 J	0.20	0.054	ppb v/v	11/07/19 02:46	
cetone	5.4	2.0	0.57	ppb v/v	11/07/19 02:46	
enzene	0.44	0.080	0.0080	ppb v/v	11/07/19 02:46	
enzyl chloride	ND	0.16	0.038	ppb v/v	11/07/19 02:46	
romodichloromethane	0.22	0.080	0.018	ppb v/v	11/07/19 02:46	
romoform	ND	0.080	0.0090	ppb v/v	11/07/19 02:46	
romomethane	ND	0.080	0.022		11/07/19 02:46	
arbon disulfide	0.044 J	0.20	0.011		11/07/19 02:46	
arbon tetrachloride	0.092	0.032	0.0070		11/07/19 02:46	
hlorobenzene	ND	0.080	0.0060		11/07/19 02:46	
hloroethane	ND	0.080	0.029	••	11/07/19 02:46	
hloroform	1,8	0.080	0.0070	• •	11/07/19 02:46	
hloromethane	0.56	0.20	0.066		11/07/19 02:46	
is-1,2-Dichloroethene	ND	0.040	0.010		11/07/19 02:46	
s-1,3-Dichloropropene	ND	0.080	0.016		11/07/19 02:46	
• •	0.22	0.20	0.023		11/07/19 02:46	
yclohexane	0.018 J	0.080	0.0070	• •	11/07/19 02:46	
ibromochloromethane	0.56	0.080	0.014	••	11/07/19 02:46	
lichlorodifluoromethane		0.080	0.014		11/07/19 02:46	
thylbenzene	0.20				11/07/19 02:46	
eptane	0.23	0.20		ppb v/v		
exachlorobutadiene	ND	0.080	0.032		11/07/19 02:46	
exane	1.5	0.20	0.013		11/07/19 02:46	
Idane	0.11	0.080	0.035		11/07/19 02:46	
dene	ND	0.16	0.039		11/07/19 02:46	
opropyl alcohol	4.6	0.80		ppb v/v	11/07/19 02:46	
opropylbenzene	0.026 J	0.16	0.017		11/07/19 02:46	
ethyl tert-butyl ether	ND	0.16	0.052		11/07/19 02:46	
lethylene Chloride	7.2 Bosenius	0.40		ppb v/v	11/07/19 02:46	
n-Xylene & p-Xylene	0.54	0.080	0.029		11/07/19 02:46	
laphthalene	ND	0.20	0.076		11/07/19 02:46	
-Butane	11	0.16	0.083	ppb v/v	11/07/19 02:46	
n-Decane	0.25 J	0.40	0.038	ppb v/v	11/07/19 02:46	

Client Sample ID: JR-170-IA-3

Date Collected: 10/30/19 15:59 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Org Analyte		Qualifier	Ambient Ai RL		oncentra Unit	tion (G D	C/MS) (Co Prepared	ntinued) Analyzed	Dil Fac
n-Dodecane	ND		0.40		ppb v/v	— – –	riepaieu	11/07/19 02:46	1
n-Octane	0.098		0.40		ppb v/v ppb v/v			11/07/19 02:46	1
Nonane	0.094		0.20		ppb v/v			11/07/19 02:46	1
n-Undecane	0.004 ND	5	0.40		ppb v/v			11/07/19 02:46	1
o-Xylene	0.18		0.080		ppb v/v			11/07/19 02:46	1
Pentane	2.6		0.40		ppb v/v ppb v/v			11/07/19 02:46	י 1
Propene		et~ \	1.0		ppb v/v ppb v/v			11/07/19 02:46	1
Styrene	0.074	45435	0.080		ppb v/v ppb v/v			11/07/19 02:46	1
Tetrachloroethene	0.14	5	0.080		ppb v/v ppb v/v			11/07/19 02:46	
Tetrahydrofuran	0.14 ND		0.000		ppb v/v ppb v/v				1
Thiophene	ND		0.080		ppb v/v ppb v/v			11/07/19 02:46	1
Toluene	1.6		0.080					11/07/19 02:46	1
trans-1,2-Dichloroethene	0.018		0.12		ppb v/v ppb v/v			11/07/19 02:46	1
trans-1,3-Dichloropropene	0.018 ND	J						11/07/19 02:46	1
			0.080		ppb v/v			11/07/19 02:46	1
Trichloroethene Trichloroeflug an and hene	0.020	J	0.036		ppb v/v			11/07/19 02:46	1
Trichlorofluoromethane	0.36		0.080		ppb v/v			11/07/19 02:46	1
Vinyl chloride	ND		0.040	0.026	ppb v/v			11/07/19 02:46	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44		ug/m3			11/07/19 02:46	1
1,1,2,2-Tetrachloroethane	ND		0.55		ug/m3			11/07/19 02:46	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.56	J	0.61	0.061	ug/m3			11/07/19 02:46	1
ne 1,1,2-Trichloroethane	ND		0.44	0 038	ug/m3			11/07/19 02:46	1
1,1-Dichloroethane	ND		0.44		ug/m3			11/07/19 02:46	
1,1-Dichloroethene	ND		0.32	0.028	-				1
1,2,3-Trimethylbenzene	ND		0.39		ug/m3			11/07/19 02:46	1
1,2,4-Trichlorobenzene	ND		0.59		ug/m3			11/07/19 02:46	1
1,2,4-Trimethylbenzene	0.44		0.39	0.098	-			11/07/19 02:46	1
1,2-Dibromoethane (EDB)	0.44 ND		0.59	0.054	-			11/07/19 02:46	1
					-			11/07/19 02:46	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth ane	0.12	J	0.56	0.084	ug/m3			11/07/19 02:46	1
1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/07/19 02:46	1
1,2-Dichloroethane	0.13	J	0.32	0.040	-			11/07/19 02:46	1
1,2-Dichloropropane	ND	•	0.37	0.046	-			11/07/19 02:46	1
1,3,5-Trimethylbenzene	0.31	J	0.39		ug/m3			11/07/19 02:46	1
1,3-Butadiene	ND	•	0.35	0.042	-			11/07/19 02:46	1
1,3-Dichlorobenzene	ND		0.48	0.096	0			11/07/19 02:46	1
1,4-Dichlorobenzene	ND		0.48	0.096				11/07/19 02:46	1
1,4-Dioxane	ND		0.72		ug/m3			11/07/19 02:46	1
2,2,4-Trimethylpentane	1.1		0.93	0.037					
2,3-Dimethylpentane	0.37	in the second	0.33		ug/m3			11/07/19 02:46	1
2-Butanone (MEK)	1.3	~	0.33		ug/m3			11/07/19 02:46 11/07/19 02:46	1
2-Butanone (MEK)	0.14		0.94	0.22					1
2-Methylbutane	13	0	0.62					11/07/19 02:46	1
					ug/m3			11/07/19 02:46	1
2-Methylpentane	2.7		0.28	0.049	-			11/07/19 02:46	1
4-Ethyltoluene	0.20		0.79		ug/m3			11/07/19 02:46	1
4-Methyl-2-pentanone (MIBK)	0.55	J	0.82		ug/m3			11/07/19 02:46	1
Acetone	13		4.8		ug/m3			11/07/19 02:46	1
Benzene	1.4		0.26	0.026	ug/m3			11/07/19 02:46	1

Eurofins TestAmerica, Knoxville

фĴ

Lab Sample ID: 140-17191-9 Matrix: Air

Job ID: 140-17191-1

Client Sample ID: JR-170-IA-3 Date Collected: 10/30/19 15:59 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volati Analyte		Qualifier	n Ambient Air RL		oncentrati Unit	on (GC/MS) (Co D Prepared	ntinued) Analyzed	Dil Fac
Benzyl chloride	ND	Quanner	0.83		ug/m3		11/07/19 02:46	1
Bromodichloromethane	1.5		0.54		ug/m3		11/07/19 02:46	1
Bromoform	ND		0.83		ug/m3		11/07/19 02:46	1
Bromomethane	ND		0.31		ug/m3		11/07/19 02:46	1
Carbon disulfide	0.14	.1	0.62		ug/m3		11/07/19 02:46	1
Carbon tetrachloride	0.58	J	0.20		ug/m3		11/07/19 02:46	1
Chlorobenzene	ND		0.37		ug/m3		11/07/19 02:46	1
Chloroethane	ND		0.21		ug/m3		11/07/19 02:46	1
Chloroform	8.6		0.39		ug/m3		11/07/19 02:46	1
Chloromethane	1.2		0.41		ug/m3		11/07/19 02:46	1
cis-1,2-Dichloroethene	ND		0.16		ug/m3		11/07/19 02:46	1
cis-1,3-Dichloropropene	ND		0.36		ug/m3		11/07/19 02:46	1
Cyclohexane	0.77		0.69		ug/m3		11/07/19 02:46	1
Dibromochloromethane	0.15	J	0.68		ug/m3		11/07/19 02:46	1
Dichlorodifluoromethane	2.7	-	0.40		ug/m3		11/07/19 02:46	1
Ethylbenzene	0.85		0.35		ug/m3		11/07/19 02:46	1
Heptane	0.96		0.82		ug/m3		11/07/19 02:46	1
Hexachlorobutadiene	ND		0.85		ug/m3		11/07/19 02:46	1
Hexane	5.2		0.70		ug/m3		11/07/19 02:46	1
Indane	0.55		0.39		ug/m3		11/07/19 02:46	1
Indene	ND		0.76		ug/m3		11/07/19 02:46	1
Isopropyl alcohol	11		2.0		ug/m3		11/07/19 02:46	1
Isopropylbenzene	0.13	J	0.79		ug/m3		11/07/19 02:46	1
Methyl tert-butyl ether	ND		0.58		ug/m3		11/07/19 02:46	1
Methylene Chloride	25	Britting	1.4		ug/m3		11/07/19 02:46	1
m-Xylene & p-Xylene	2.3		0.35		ug/m3		11/07/19 02:46	1
Naphthalene	ND		1.0		ug/m3		11/07/19 02:46	1
n-Butane	25		0.38		ug/m3		11/07/19 02:46	1
n-Decane	1.5	J	2.3		ug/m3		11/07/19 02:46	1
n-Dodecane	ND		2.8		ug/m3		11/07/19 02:46	1
n-Octane	0.46	J	0.75		ug/m3		11/07/19 02:46	1
Nonane	0.49	J	1.0		ug/m3		11/07/19 02:46	1
n-Undecane	ND		2.6	0.31	ug/m3		11/07/19 02:46	1
o-Xylene	0.78		0.35	0.065	ug/m3		11/07/19 02:46	1
Pentane	7.6		1.2	0.23	ug/m3		11/07/19 02:46	1
Propene	2.0	-e+- \	1.7	1.7	ug/m3		11/07/19 02:46	1
Styrene	0.32	NGAN ^{CE}	0.34		ug/m3		11/07/19 02:46	1
Tetrachloroethene	0.92		0.54	0.047	ug/m3		11/07/19 02:46	1
Tetrahydrofuran	ND		1.2	0.45	ug/m3		11/07/19 02:46	1
Thiophene	ND		0.28		ug/m3		11/07/19 02:46	1
Toluene	6.0		0.45		ug/m3		11/07/19 02:46	1
trans-1,2-Dichloroethene	0.072	J	0.32	0.028	ug/m3		11/07/19 02:46	1
trans-1,3-Dichloropropene	ND		0.36	0.041			11/07/19 02:46	1
Trichloroethene	0.10	J	0.19	0.032	ug/m3		11/07/19 02:46	1
Trichlorofluoromethane	2.0		0.45	0.062	ug/m3		11/07/19 02:46	1
Vinyl chloride	ND		0.10	0.066	ug/m3		11/07/19 02:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140				11/07/19 02:46	1

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17191-9

Matrix: Air

Client Sample Results

Client: ARCADIS U.S. Inc Project/Site: CON EDISON - EAST 11TH STREET

Client Sample ID: JR-170-IA-4

Date Collected: 10/30/19 11:59 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17191-10

Matrix: Air

Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		0.080		ppb v/v		11/07/19 03:32	
1,1,2,2-Tetrachloroethane	ND		0.080		ppb v/v		11/07/19 03:32	
I,1,2-Trichloro-1,2,2-trifluoroetha	0.067	J	0.080	0.0080	ppb v/v		11/07/19 03:32	
10 1 4 9 Tricklereethere	ND		0.090	0 0070	nnhulu		11/07/19 03:32	
1,1,2-Trichloroethane	ND		0.080		ppb v/v			
I,1-Dichloroethane	ND		0.080		ppb v/v		11/07/19 03:32	
,1-Dichloroethene	ND		0.040		ppb v/v		11/07/19 03:32	
,2,3-Trimethylbenzene	0.046	J	0.080		ppb v/v		11/07/19 03:32	
,2,4-Trichlorobenzene	ND		0.080		ppb v/v		11/07/19 03:32	
,2,4-Trimethylbenzene	0.12		0.080		ppb v/v		11/07/19 03:32	
,2-Dibromoethane (EDB)	ND		0.080		ppb v/v		11/07/19 03:32	
,2-Dichloro-1,1,2,2-tetrafluoroeth	0.016	J	0.080	0.012	ppb v/v		11/07/19 03:32	
ne ,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v		11/07/19 03:32	
	0.027	1	0.080		ppb v/v		11/07/19 03:32	
,2-Dichloroethane ,2-Dichloropropane	0.027 ND		0.080		ppb v/v ppb v/v		11/07/19 03:32	
,3,5-Trimethylbenzene	0.067	I	0.080		ppb v/v ppb v/v		11/07/19 03:32	
.3-Butadiene	0.007 ND	5	0.16		ppb v/v ppb v/v		11/07/19 03:32	
	ND		0.080		ppb v/v		11/07/19 03:32	
,3-Dichlorobenzene			0.080		ppb v/v		11/07/19 03:32	
,4-Dichlorobenzene	0.092 ND		0.000				11/07/19 03:32	
4-Dioxane					ppb v/v ppb v/v		11/07/19 03:32	
2,4-Trimethylpentane	0.12		0.20				11/07/19 03:32	
3-Dimethylpentane	0.044	J	0.080		ppb v/v			
Butanone (MEK)	0.51		0.32		ppb v/v		11/07/19 03:32	
Hexanone	0.046	J	0.20		ppb v/v		11/07/19 03:32	
Methylbutane	1.3		0.20		ppb v/v		11/07/19 03:32	
Methylpentane	0.26		0.080		ppb v/v		11/07/19 03:32	
Ethyltoluene	0.076		0.16		ppb v/v		11/07/19 03:32	
Methyl-2-pentanone (MIBK)	0.11	E.	0.20		ppb v/v		11/07/19 03:32	
cetone		er)	2.0		ppb v/v		11/07/19 03:32	
enzene	0.30		0.080		ppb v/v		11/07/19 03:32	
enzyl chloride	ND		0.16		ppb v/v		11/07/19 03:32	
romodichloromethane	0.16		0.080		ppb v/v		11/07/19 03:32	
romoform	ND		0.080	0.0090			11/07/19 03:32	
omomethane	ND		0.080		ppb v/v		11/07/19 03:32	
arbon disulfide	0.073	J	0.20		ppb v/v		11/07/19 03:32	
arbon tetrachloride	0.068		0.032		ppb v/v		11/07/19 03:32	
lorobenzene	ND		0.080	0.0060			11/07/19 03:32	
hloroethane	ND		0.080		ppb v/v		11/07/19 03:32	
hloroform	1.3	ň.	0.080	0.0070	ppb v/v		11/07/19 03:32	
loromethane	0.55	6	0.20	0.066	ppb v/v		11/07/19 03:32	
s-1,2-Dichloroethene	ND	produ-	0.040	0.010	ppb v/v		11/07/19 03:32	
s-1,3-Dichloropropene	ND		0.080	0.016	ppb v/v		11/07/19 03:32	
/clohexane	0.11	J	0.20	0.023	ppb v/v		11/07/19 03:32	
bromochloromethane	0.015	J	0.080	0.0070	ppb v/v		11/07/19 03:32	
chlorodifluoromethane	0.50		0.080	0.014	ppb v/v		11/07/19 03:32	
thylbenzene	0.15		0.080	0.013	ppb v/v		11/07/19 03:32	
eptane	0.14	J	0.20	0.014	ppb v/v		11/07/19 03:32	
lexachlorobutadiene	ND		0.080	0.032	ppb v/v		11/07/19 03:32	

Eurofins TestAmerica, Knoxville

12/13/2019

Client Sample Results

Client: ARCADIS U.S. Inc Project/Site: CON EDISON - EAST 11TH STREET

Matrix: Air

Lab Sample ID: 140-17191-10

Client Sample ID: JR-170-IA-4

Date Collected: 10/30/19 11:59 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Analyte		Qualifier		MDL		D Prepared	-	Dil Fac
Hexane	0.40		0.20		ppb v/v		11/07/19 03:32	1
Indane	0.18		0.080		ppb v/v		11/07/19 03:32	1
Indene	ND		0.16		ppb v/v		11/07/19 03:32	1
Isopropyl alcohol	2.5		0.80	0.22	ppb v/v		11/07/19 03:32	1
Isopropylbenzene	0.023	J	0.16	0.017	ppb v/v		11/07/19 03:32	1
Methyl tert-butyl ether	ND		0.16	0.052	ppb v/v		11/07/19 03:32	1
Methylene Chloride	1.5	-B-UB	0.40	0.16	ppb v/v		11/07/19 03:32	1
m-Xylene & p-Xylene	0.40		0.080	0.029	ppb v/v		11/07/19 03:32	1
Naphthalene	ND		0.20	0.076	ppb v/v		11/07/19 03:32	1
n-Butane	2.8		0.16	0.083	ppb v/v		11/07/19 03:32	1
n-Decane	0.36	J	0.40	0.038	ppb v/v		11/07/19 03:32	1
n-Dodecane	0.24	J	0.40	0.064	ppb v/v		11/07/19 03:32	1
n-Octane	0.070	J	0.16	0.016	ppb v/v		11/07/19 03:32	1
Nonane	0.079	J	0.20	0.018	ppb v/v		11/07/19 03:32	1
n-Undecane	0.092	J	0.40	0.048	ppb v/v		11/07/19 03:32	1
o-Xylene	0.14		0.080	0.015	ppb v/v		11/07/19 03:32	1
Pentane	0.76		0.40		ppb v/v		11/07/19 03:32	1
Propene		-e+- \	1.0		ppb v/v		11/07/19 03:32	1
Styrene	0.11	and	0.080		ppb v/v		11/07/19 03:32	1
Tetrachloroethene	0.13		0.080	0.0070			11/07/19 03:32	1
Tetrahydrofuran	ND		0.40		ppb v/v		11/07/19 03:32	1
Thiophene	ND		0.080		ppb v/v		11/07/19 03:32	1
Toluene	0.87		0.12		ppb v/v		11/07/19 03:32	1
	0.022		0.080	0.0070	••		11/07/19 03:32	1
trans-1,2-Dichloroethene	0.022 ND	5	0.080	0.0090	••		11/07/19 03:32	1
trans-1,3-Dichloropropene	0.011		0.036	0.0090	••		11/07/19 03:32	1
Trichloroethene		J	0.030		ppb v/v ppb v/v		11/07/19 03:32	1
Trichlorofluoromethane	0.21 ND		0.080				11/07/19 03:32	1
Vinyl chloride	ND				ppb v/v		11/07/19 03.32	
Analyte		Qualifier	RL	MDL		D Prepared		Dil Fac
1,1,1-Trichloroethane	ND		0.44		ug/m3		11/07/19 03:32	1
1,1,2,2-Tetrachloroethane	ND		0.55		ug/m3		11/07/19 03:32	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.51	J	0.61	0.061	ug/m3		11/07/19 03:32	1
ne			0.44	0.000			44/07/40 00:00	
1,1,2-Trichloroethane	ND		0.44		ug/m3		11/07/19 03:32	1
1,1-Dichloroethane	ND		0.32	0.028	-		11/07/19 03:32	1
1,1-Dichloroethene	ND		0.16	0.032	•		11/07/19 03:32	1
1,2,3-Trimethylbenzene	0.22	J	0.39		ug/m3		11/07/19 03:32	1
1,2,4-Trichlorobenzene	ND		0.59		ug/m3		11/07/19 03:32	1
1,2,4-Trimethylbenzene	0.57		0.39		ug/m3		11/07/19 03:32	· 1
1,2-Dibromoethane (EDB)	ND		0.61	0.054	ug/m3		11/07/19 03:32	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.11	J	0.56	0.084	ug/m3		11/07/19 03:32	1
ane								
1,2-Dichlorobenzene	ND		0.48		ug/m3		11/07/19 03:32	1
1,2-Dichloroethane	0.11	J	0.32	0.040			11/07/19 03:32	1
1,2-Dichloropropane	ND		0.37	0.046	-		11/07/19 03:32	1
1,3,5-Trimethylbenzene	0.33	J	0.39		ug/m3		11/07/19 03:32	1
1,3-Butadiene	ND		0.35	0.042	ug/m3		11/07/19 03:32	1
	ND		0.48	0 006	ug/m3		11/07/19 03:32	1
1,3-Dichlorobenzene	ND		0.40	0.096			11/01/13 03.32	•

Eurofins TestAmerica, Knoxville

12/13/2019

Client Sample ID: JR-170-IA-4

Date Collected: 10/30/19 11:59 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile						
Analyte 1,4-Dioxane	Result Qualifier			Unit	D Prepared Analyzed	Dil Fac
				ug/m3	11/07/19 03:32	1
2,2,4-Trimethylpentane	0.56 J	0.93		ug/m3	11/07/19 03:32	1
2,3-Dimethylpentane	0.18 J****	0.33		ug/m3	11/07/19 03:32	1
2-Butanone (MEK)	1.5	0.94		ug/m3	11/07/19 03:32	1
2-Hexanone	0.19 J	0.82		ug/m3	11/07/19 03:32	1
2-Methylbutane	3.9	0.59		ug/m3	11/07/19 03:32	1
2-Methylpentane	0.93	0.28		ug/m3	11/07/19 03:32	1
4-Ethyltoluene	0.37 J	0.79		ug/m3	11/07/19 03:32	1
4-Methyl-2-pentanone (MIBK)	0.47 J	0.82		ug/m3	11/07/19 03:32	1
Acetone	13 -@f*	4.8		ug/m3	11/07/19 03:32	1
Benzene	0.95	0.26	0.026	ug/m3	11/07/19 03:32	1
Benzyl chloride	ND	0.83	0.20	ug/m3	11/07/19 03:32	1
Bromodichloromethane	1.0	0.54	0.12	ug/m3	11/07/19 03:32	1
Bromoform	ND	0.83	0.093	ug/m3	11/07/19 03:32	1
Bromomethane	ND	0.31	0.085	ug/m3	11/07/19 03:32	1
Carbon disulfide	0.23 J	0.62	0.034	ug/m3	11/07/19 03:32	1
Carbon tetrachloride	0.43	0.20	0.044	ug/m3	11/07/19 03:32	1
Chlorobenzene	ND	0.37	0.028	ug/m3	11/07/19 03:32	1
Chloroethane	ND	0.21		ug/m3	11/07/19 03:32	1
Chloroform	6.2	0.39		ug/m3	11/07/19 03:32	1
Chloromethane	1.1- -G+	0.41		ug/m3	11/07/19 03:32	1
cis-1,2-Dichloroethene	ND	0.16		ug/m3	11/07/19 03:32	1
cis-1,3-Dichloropropene	ND	0.36		ug/m3	11/07/19 03:32	1
Cyclohexane	0.38 J	0.69		ug/m3	11/07/19 03:32	1
Dibromochloromethane	0.12 J	0.68		ug/m3	11/07/19 03:32	1
Dichlorodifluoromethane	2.5	0.40		ug/m3	11/07/19 03:32	1
Ethylbenzene	0.65	0.35		ug/m3	11/07/19 03:32	1
Heptane	0.56 J	0.82		ug/m3	11/07/19 03:32	1
Hexachlorobutadiene	ND	0.85			11/07/19 03:32	1
Hexane	1.4	0.70		ug/m3		
Indane	0.86	0.70		ug/m3	11/07/19 03:32	1
Indene	ND	0.39		•	11/07/19 03:32	1
		2.0		ug/m3	11/07/19 03:32	1
Isopropyl alcohol	6.1			ug/m3	11/07/19 03:32	1
Isopropylbenzene Methyl tert-butyl ether	0.12 J	0.79		ug/m3	11/07/19 03:32	1
	ND	0.58		ug/m3	11/07/19 03:32	1
Methylene Chloride	5.0-B-UB	1.4		ug/m3	11/07/19 03:32	1
m-Xylene & p-Xylene	1.7	0.35		ug/m3	11/07/19 03:32	1
Naphthalene	ND	1.0		ug/m3	11/07/19 03:32	1
n-Butane	6.7	0.38		ug/m3	11/07/19 03:32	1
n-Decane	2.1 J	2.3		ug/m3	11/07/19 03:32	1
n-Dodecane	1.7 J	2.8		ug/m3	11/07/19 03:32	1
n-Octane	0.33 J	0.75	0.075		11/07/19 03:32	1
Nonane	0.41 J	1.0	0.094		11/07/19 03:32	1
n-Undecane	0.59 J	2.6		ug/m3	11/07/19 03:32	1
o-Xylene	0.59	0.35	0.065	ug/m3	11/07/19 03:32	1
Pentane	2.2	1.2	0.23	ug/m3	11/07/19 03:32	1
Propene	1.9 er 🔪	1.7	1.7	ug/m3	11/07/19 03:32	1
Styrene	0.46	0.34	0.10	ug/m3	11/07/19 03:32	1

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17191-10 Matrix: Air

Client Sample Results

0.36

0.19

0.45

0.10

Limits

60 - 140

Client: ARCADIS U.S. Inc Project/Site: CON EDISON - EAST 11TH STREET

ND

0.061 J

1.2

ND

%Recovery Qualifier

98

Job ID: 140-17191-1

Client Sample ID: JR-170-IA-4 Date Collected: 10/30/19 11:59 Date Received: 11/01/19 09:20 Sample Container: Summa Canister 6L

Analyte

Tetrachloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

4-Bromofluorobenzene (Surr)

Tetrahydrofuran

Trichloroethene

Vinyl chloride

Surrogate

Thiophene

Toluene

Lab Sample ID: 140-17191-10 Matrix: Air

11/07/19 03:32

11/07/19 03:32

11/07/19 03:32

11/07/19 03:32

Analyzed

11/07/19 03:32

Prepared

1

1

1

1

1

Dil Fac

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued) **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac D 0.047 ug/m3 0.54 11/07/19 03:32 1 0.88 ND 1.2 0.45 ug/m3 11/07/19 03:32 1 ND 0.28 0.038 ug/m3 11/07/19 03:32 1 0.29 ug/m3 11/07/19 03:32 3.3 0.45 1 0.088 J 0.32 0.028 ug/m3 11/07/19 03:32 1

0.041 ug/m3

0.032 ug/m3

0.062 ug/m3

0.066 ug/m3

Eurofins	TestAmerica,	Knoxville
	12/13	/2019

Eurofins TestAmerica, New York City Ser 47-32 32nd Place					Canis	ster S	amples	Canister Samples Chain of Custody Record	Custo	dy F	teco	P	4	-17191	Chain	140-17191 Chain of Custody	
Suite 1141				TestAme	rica Laborat	ories, Inc. a:	ssumes no liabili	TestAmerica Laboratories, Inc. assumes no liability with respect to the collection and shipment of these sam,	the collection	l and ship	ment of t	nese san	نړ				FSt/rug
Long Island City, NY 11101-2425 phone 347.507.0579 fax														merica	Laborate	TestAmerica Laboratories. Inc. d/b/a Eurofins TestAmerica	TestAmerica
Client Contact Information		Client Pro	Client Project Manager: Bru	ger: Bruc	ce W. Ahrens	SU	Samples Col	Samples Collected Bv: Rob Amold / Albina Redzepadi	Amold / A	bina Re	dzenani					COC No:	
Company Name: Arcadis U.S., Inc		Phone: (5	Phone: (585) 662 4034	34												o	COCS
Address: 295 Woodcliff Drive		Email: bn	Email: bruce.ahrens@arcad	©arcadi	lis.com							. (1	E			#	
City/State/Zip: Fairport/ NY/ 14450												notic					T
Phone: (585) 662 4034		Site Cont	Site Contact: Albina Redzer	Redzepe	pagic				(197			205					
FAX: (585) 385 4198		Tel/Fax 2	Tel/Fax 212-365-4651	×					1971			selo		19			
Project Name: Con Edison - East 11th Street			Analysis	: Tumaro	Analysis Tumaround Time				M0-			uu		<u></u>			
Site/Location: E. 11th Street - Jacob Rils		Standard (Specific):	Specific):	10 T	TOT				1/P			i Vii:	iiA 1	,		Job / SDG No.:	
P O # 30005328		Rush (Specifiy);	icifiy):						nsb			oeds	nei				d'i items)
Sample Identification	Sample Start Date	Time Start	Sample End Date	Time Stop	Canister Vacuum in Fleld, "Hg (Start)	Canister Vacuum in Field, "Hg (Stop)	Flow Controller ID	Canister D	EPA 3C TO- 16 715 (Stan	EPA 26C	8461-0 MT8A 81/81 AG3	Semple Type	lmAinIA toobni Asi2-du2	Soil Gas Soil Vapor Extra	ssð liftbrs.	Other (Please sp Samole Samole Specific Notes	Notes:
AR 102919	ଜାହ୍ୟାମ	0630	4/Laon	16 32	92 1	ې ب	297714	09610	×	 	H						
1 1 - 14(- IA - 1		0251		16 41	-90	ĩ	10863	08 100	×								
a ik-NH-TA-3	-	2407		1644	-30	- 4	09713	09 620	X								
5 4 -11t - TA-2	-7	0858	->	الأطا	-30	i 6	447	10097	×								
G AA W SO R	দাহবে	Pisdrogan Infadra	nfaln	1503	- 30	-6	11536	10033	X								
8 JC - 179 - IA - 1	-	at l	-	1735	-30	3	tost	10484	*								
78- 13- 24-2		anto		1551	-30	4	11298	45201	×				<u></u>				
オペーロ3 - エトー3		330	_	1221	- 30	Ś	11511	48160	¥								
XK - 170 - IA - 3		0226		1539	-20	ę	7652	NILLS	×								
7R- 170-IA-4	-17	0824	-7	1159	-30	ۍ ۱	09658	10306	×								
			Interior	Ter	Ambient	amperature (Fahrenheit)	()		Rece	2	00	io C		'C 0	*	LEXELF AUP.	New P.
		Stop			MININ				七大年	F	28	24	5	202			a i xun
		Start	Interior	ፚ	essure (in Ambient	ressure (inches of Hg Ambient				1.	-	7	00	345	:		
Special Instructions/QC Requirements & Comments:		Stop							×	d In It	Ð	۲	eal	¥	1	6171	
Samples Shipped by: A The Mint			Date / Time:	e: 10/311	19 1.	15:30	Samples Received by:	aived by: A							┢		
Samples Relinquished by the Mail perfer C	ý		Date / Tun		2. A.		Received by:	1 xx	K						Τ		
r /3			Date / Time	e: 10/3i,	1 63/	15:30	Received by:		44		6		0000	0		Deatres 10 26	Les hea
Lab Use Only: 'Shipper Name/			Opened by:				Condition:									and the former	
/201														Form	No. CA	Form No. CA-C-WI-003, Rev. 2.17, dated 10/22/2019	ad 10/22/2019

019

Consolidated Edison Company of New York, Inc. – East 11th Street Site

DATA USABILITY SUMMARY REPORT

New York City, New York

Volatile Organic Compound (VOC) TO-15 Analysis

SDG #140-17206-1

Analyses Performed By: Eurofins-TestAmerica Knoxville Knoxville, Tennessee

Report #34801R Review Level: Tier III Project: 30005328.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 140-17206-1 for samples collected in association with the with the Con Edison East 11th Street site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample				Anal	ysis		
SDG	Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC	svoc	РСВ	EPH	ME T	MISC
	JR - 170 - IA - 1-20191031	140-17206-1	Air	10/31/2019		x					
	JR - 170 - IA - 2-20191031	140-17206-2	Air	10/31/2019		x					
	JR - 1115 - IA - 1-20191031	140-17206-3	Air	10/31/2019		х					
	JR - 1115 - IA - 2-20191031	140-17206-4	Air	10/31/2019		x					
140-17206-1	JR - 1115 - IA - 3-20191031	140-17206-5	Air	10/31/2019		x					
	JR - 1115 - IA - 4-20191031	140-17206-6	Air	10/31/2019		x					
	AA - 103119- 20191031	140-17206-7	Air	10/31/2019		х					
	DUP - 103119- 20191031	140-17206-8	Air	10/31/2019	JR - 170 - IA - 1-20191031	x					

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1. San	nple receipt condition		Х		Х	
2. Req	uested analyses and sample results		Х		Х	
3. Mas	ster tracking list		Х		Х	
4. Met	hods of analysis		Х		Х	
5. Rep	porting limits		Х		Х	
6. San	nple collection date		Х		Х	
7. Lab	oratory sample received date		Х		Х	
8. San	nple preservation verification (as applicable)		Х		Х	
9. San	nple preparation/extraction/analysis dates		Х		Х	
10. Fully	y executed Chain-of-Custody (COC) form		Х		Х	
	rative summary of Quality Assurance or sample plems provided		х		Х	
12. Data	a Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 and American Society for Testing and Materials (ASTM) Method D-1946. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31-Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15), NYSDEC Modifications to R9 TO-15 QA/QC Criteria October 2009.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15 and ASTM D-1946	Air	30 days from collection to analysis	Ambient Temperature	< -1" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
JR - 170 - IA - 1-20191031 JR - 170 - IA - 2-20191031 JR - 1115 - IA - 1-20191031 JR - 1115 - IA - 3-20191031 JR - 1115 - IA - 4-20191031 AA - 103119-20191031	Methylene Chloride	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration
Note:	1	I	1

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations within this SDG	ICAL %RSD	Acetone	32.8%
	CCV %D	Bromoform	-31.4%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing Calibration	RRF <0.01 ¹	Non-detect	R
	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	
	RRF >0.05 of RRF >0.01	Detect	No Action
		Non-detect	UJ
Initial Calibration	%RSD > 30% or a correlation coefficient <0.99	Detect	J
		Non-detect	R
	%RSD >90%	Detect	J

arcadis.com

g:\project_data\project chemistry\data validation reports\2019\34501-35000\34801\34801r_for sdg 140-17206-1.docx

Initial/Continuing	Criteria	Sample Result	Qualification
		Non-detect	No Action
	%D >30% (increase in sensitivity)	Detect	J
Continuing Colibration	0/D - 200/ (decrease in constituity)	Non-detect	UJ
Continuing Calibration	%D >30% (decrease in sensitivity)	Detect	J
		Non-detect	R
	%D >90% (increase/decrease in sensitivity)	Detect	J

Note:

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit a percent recovery within the established acceptance limits of 70% to 130%.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130% (60% to 140% for poor responding compounds).

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery		
All sample locations within this SDG	Bromoform	<ll but="">10%</ll>		

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification	
the upper control limit (III.) 4200/	Non-detect	No Action	
> the upper control limit (UL) 130%	Detect	J	

arcadis.com

g:\project_data\project chemistry\data validation reports\2019\34501-35000\34801\34801r_for sdg 140-17206-1.docx

Control Limit	Sample Result	Qualification
the lower control limit $(1\rangle - 700/ b_1/b_1 = 400/ b_1/b_2 $	Non-detect	UJ
< the lower control limit (LL) 70% but > 10%	Detect	J
400/	Non-detect	R
< 10%	Detect	J

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Results for duplicate samples are summarized in the following table (ug/m3).

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	0.55 J	0.53 J	AC
	1,1-DICHLOROETHANE	0.034 J	0.039 J	AC
	1,2,3-TRIMETHYLBENZENE	0.74	0.33 J	AC
	1,2,4-TRIMETHYLBENZENE	0.49	1	AC
	1,2-DICHLOROETHANE	0.18 J	0.17 J	AC
	1,2-DICHLOROTETRAFLUOROETHANE	0.1 J	0.13 J	AC
	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	0.14 J	0.22 J	AC
	1,4-DICHLOROBENZENE	1.4	0.29 J	AC
	1,4-DIOXANE (P-DIOXANE)	0.18 J	0.72 U	AC
JR-170-IA-1-20191031/	2,2,4-TRIMETHYLPENTANE	0.38 J	1.2	AC
DUP - 103119-20191031	2,3-DIMETHYL PENTANE	0.11 J	0.47	AC
	2-HEXANONE	0.43 J	0.12 J	AC
	2-METHYL BUTANE	4.2	20	130.5 %
	2-METHYL-PENTANE	0.49	3.1	NC
	4-ETHYLTOLUENE	0.79 U	0.56 J	AC
	ACETONE	21	38	NC
	BENZENE	0.63	2.9	NC
	BROMODICHLOROMETHANE	0.59	0.45 J	AC
	BROMOMETHANE	0.34	0.2 J	AC

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	CARBON DISULFIDE	0.28 J	0.16 J	AC
	CARBON TETRACHLORIDE	0.76	0.66	AC
	CHLOROETHANE	0.21 U	1	AC
	CHLOROFORM	3.7	2.9	24.2 %
	CHLOROMETHANE	2	2.6	26.0 %
	CYCLOHEXANE	0.27 J	1.2	AC
	DIBROMOCHLOROMETHANE	0.076 J	0.68 U	AC
	DICHLORODIFLUOROMETHANE	1.3	1.4	AC
	ETHYLBENZENE	0.41	0.7	AC
	ISOPROPANOL	5.7	3	AC
	ISOPROPYLBENZENE	0.79 U	0.13 J	AC
	M,P-XYLENES	1.5	3.8	NC
	METHYL ETHYL KETONE (2-BUTANONE)	2.5	2.5	AC
	METHYL ISOBUTYL KETONE (4-METHYL-2- PENTANONE)	1.7	0.45 J	AC
	METHYLENE CHLORIDE	2.6 U	18	NC
	N-HEPTANE	0.73 J	1.2	AC
	N-HEXANE	0.58 J	4.2	NC
	O-XYLENE (1,2-DIMETHYLBENZENE)	0.64	1.2	AC
	PROPYLENE	2.1	7.5	AC
	STYRENE	0.32 J	0.17 J	AC
	TETRACHLOROETHYLENE(PCE)	0.66	0.59	AC
	TOLUENE	2.3	11	NC
	TRANS-1,2-DICHLOROETHENE	0.063 J	0.045 J	AC
	TRICHLOROETHYLENE (TCE)	0.036 J	0.19 U	AC
	TRICHLOROFLUOROMETHANE	1.3	1.6	AC
	n-BUTANE	8.3	29	111%
	PENTANE	4.6	14	NC
	n-OCTANE	0.57 J	0.68 J	AC
	NONANE	0.39 J	0.40 J	AC
	n-DECANE	3.0	1.1 J	AC

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	n-UNDECANE	0.64 J	0.46 J	AC
	n-DODECANE	2.5 J	2.8 U	AC

Notes:

AC = Acceptable NC = Not Compliant

The compounds 2-Methylbutane, 2-Methylpentane, Acetone, Benzene, m-Xylene & p-Xylene, Methylene Chloride, Hexane, n-Butane, Pentane and Toluene associated with sample locations JR - 170 - IA - 1-20191031 and DUP - 103119-20191031 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Note: The laboratory qualified the detected Acetone results for all sample locations within this SDG with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.

Note: The "CI" qualifier was removed and replaced with a "J" qualifier to indicate that the detected compound results for the associated samples mentioned above are estimated (potential high bias).

- The laboratory qualified the detected Chloromethane results for sample locations JR 170 IA 1-20191031, JR 1115 IA 1-20191031, JR 1115 IA 2-20191031, JR 1115 IA 3-20191031 and DUP 103119-20191031 with a "CI" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.
- The laboratory qualified the detected Propene results for sample locations JR 170 IA 1-20191031, JR 170 IA 2-20191031, JR 1115 IA 1-20191031, JR 1115 IA 2-20191031, JR 1115 IA 3-20191031, JR 1115 IA 4-20191031 and DUP 103119-20191031 with a "CI" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.
- The laboratory qualified the detected 1,2,3-Trimethylbenzene result for sample location JR 170 IA 1-20191031 with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.

The laboratory noted: Method TO 15 LL: Sample JR - 1115 - IA - 1 (140-17206-3) had n-Butane above the calibration range of the instrument. The analyte was requested after the report was issued. The sample was no longer available for reanalysis. The data has been flagged with an "E". The n-Butane was qualified as estimated "EJ".

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 and ASTM D-1946	Re	ported	Performance Acceptable		Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC/	MS)				
Tier II Validation						
Holding times		Х		X		
Canister return pressure (<-1"Hg)		X		X		
Reporting limits (units)		Х		Х		
Blanks	I				1	
A. Method blanks		Х	Х			
B. Equipment blanks					Х	
C. Trip blanks					Х	
Laboratory Control Sample (LCS)		Х	Х			
Laboratory Control Sample Duplicate(LCSD)					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS)	X				Х	
Matrix Spike Duplicate(MSD)	X				Х	
MS/MSD Precision (RPD)	X				Х	
Field/Lab Duplicate (RPD)		X	Х			
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		X		Х		
Moisture Content		X		Х		
Tier III Validation	I	I			1	
System performance and column resolution		Х		Х		
Initial calibration %RSDs		X	Х			
Continuing calibration RRFs		X		Х		
Continuing calibration %Ds		X	Х			
Instrument tune and performance check		X		Х		
Ion abundance criteria for each instrument used		X		Х		
Internal standard		X		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		X		Х		
B. Quantitation Reports		X		X		

arcadis.com

Re	ported			Not				
No	Yes	No	Yes	Required				
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)								
	x		х					
	Х		Х					
	Х		Х					
	No	XY (GC/MS) X X X	Reported Accel No Yes No X (GC/MS) X X X X X	No Yes No Yes XY (GC/MS) X X XX X X				

Notes:

%RSD Relative standard deviation

- %R Percent recovery
- RPD Relative percent difference
- %D Percent difference

Sample					Compliancy ¹					
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	DRO/ GRO	Diss Gases	MET	MISC	Noncompliance
	10/31/2019	USEPA TO-15	JR - 170 - IA - 1- 20191031	Air	No					VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D, Associated Blanks, Field Duplicate RPD
	10/31/2019	USEPA TO-15	JR - 170 - IA - 2- 20191031	Air	No					VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D, Associated Blanks
	10/31/2019	USEPA TO-15	JR - 1115 - IA - 1- 20191031	Air	No					VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D, Associated Blanks
140-17206-1	10/31/2019	USEPA TO-15	JR - 1115 - IA - 2- 20191031	Air	No					VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D
	10/31/2019	USEPA TO-15	JR - 1115 - IA - 3- 20191031	Air	No					VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D, Associated Blanks
	10/31/2019	USEPA TO-15	JR - 1115 - IA - 4- 20191031	Air	No					VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D, Associated Blanks
	10/31/2019	USEPA TO-15	AA - 103119- 20191031	Air	No	o			VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D, Associated Blanks	
	10/31/2019	USEPA TO-15	DUP - 103119- 20191031	Air	No					VOC: Compound Identification, LCS %Rec, ICAL %RSD, CCAL %D, Field Duplicate RPD

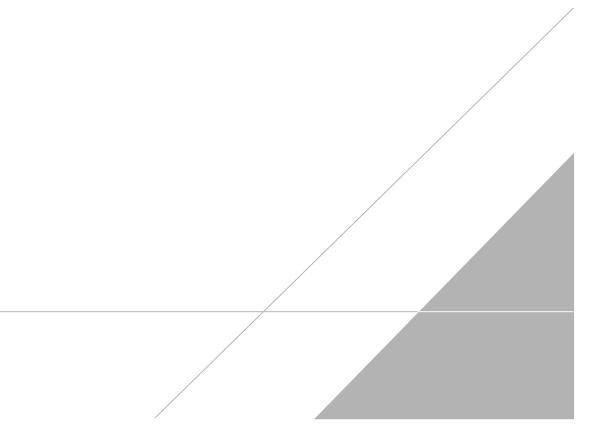
SAMPLE COMPLIANCE REPORT

Note:

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:


Joych & Home

DATE: January 28, 2020

PEER REVIEW: Dennis Capria

DATE: January 29, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Client Sample ID: JR - 170 - IA - 1 Date Collected: 10/31/19 16:37 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-1 Matrix: Air

Method: TO 15 LL - Volatile Or Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	0.080	0.037	ppb v/v			11/05/19 21:56	
1,1,2,2-Tetrachloroethane	ND	0.080		ppb v/v			11/05/19 21:56	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.072 J	0.080		ppb v/v			11/05/19 21:56	
ne				.,			1.000000 21.000	
1,1,2-Trichloroethane	ND	0.080	0.0070	ppb v/v			11/05/19 21:56	
1,1-Dichloroethane	0.0084 J	0.080	0.0070	ppb v/v			11/05/19 21:56	
1,1-Dichloroethene	ND	0.040		ppb v/v			11/05/19 21:56	
1,2,3-Trimethylbenzene 1,2,4-Trichlorobenzene	0.15 GH)	0.080		ppb v/v			11/05/19 21:56	
	ND	0.080		ppb v/v			11/05/19 21:56	
1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB)	0.10	0.080		ppb v/v			11/05/19 21:56	
	ND	0.080		ppb v/v			11/05/19 21:56	
1,2-Dichloro-1,1,2,2-tetrafluoroeth ane	0.015 J	0.080	0.012	ppb v/v			11/05/19 21:56	
1,2-Dichlorobenzene	ND	0.080	0.021	mah ulu				
1,2-Dichloroethane	0.043 J	0.080		ppb v/v			11/05/19 21:56	
1,2-Dichloropropane	ND	0.080		ppb v/v			11/05/19 21:56	
1,3,5-Trimethylbenzene	0.029 J	0.080		ppb v/v			11/05/19 21:56	
1,3-Butadiene	ND	0.080		ppb v/v			11/05/19 21:56	
1,3-Dichlorobenzene	ND	0.10		ppb v/v			11/05/19 21:56	1
1,4-Dichlorobenzene	0.24	0.080		ppb v/v			11/05/19 21:56	1
1.4-Dioxane	0.050 J	0.080		ppb v/v			11/05/19 21:56	1
2,2,4-Trimethylpentane	0.082 J	0.20		ppb v/v			11/05/19 21:56	1
2,3-Dimethylpentane	0.028 J	0.20	0.0080				11/05/19 21:56	1
2-Butanone (MEK)	0.85		0.026				11/05/19 21:56	1
2-Hexanone	0.00 J	0.32 0.20	0.073				11/05/19 21:56	1
2-Methylbutane	1.4	0.20	0.016				11/05/19 21:56	1
2-Methylpentane	0.14	0.20	0.063				11/05/19 21:56	1
4-Ethyltoluene	ND	0.080	0.014				11/05/19 21:56	1
4-Methyl-2-pentanone (MIBK)	0.41	0.10	0.021				11/05/19 21:56	1
Acetone	8.7 C +	2.0	0.054				11/05/19 21:56	1
Benzene	0.20	2.0 0.080		ppb v/v			11/05/19 21:56	1
Benzyl chloride	ND	0.080	0.0080				11/05/19 21:56	1
Bromodichloromethane	0.089		0.038	•			11/05/19 21:56	1
Bromoform	ND 43 1)	0.080 0.080	0.018				11/05/19 21:56	1
Bromomethane	0.088		0.0090				11/05/19 21:56	1
Carbon disulfide	0.091 J	0.080	0.022 p				11/05/19 21:56	1
Carbon tetrachloride	0.12	0.20	0.011 p				11/05/19 21:56	1
Chlorobenzene	ND	0.032	0.0070 p				11/05/19 21:56	1
Chloroethane	ND	0.080	0.0060 p				11/05/19 21:56	1
Chloroform	0.76	0.080	0.029 p				11/05/19 21:56	1
Chloromethane	0.96 - C H	0.080	0.0070 p				11/05/19 21:56	1
is-1,2-Dichloroethene	0.96 ~G+~) ND	0.20	0.066 p				11/05/19 21:56	1
is-1,3-Dichloropropene	ND	0.040	0.010 p				11/05/19 21:56	1
Cyclohexane	0.078 J	0.080	0.016 p				11/05/19 21:56	1
Dibromochloromethane	0.078 J 0.0090 J	0.20	0.023 p				11/05/19 21:56	1
Dichlorodifluoromethane	0.25	0.080	0.0070 p				11/05/19 21:56	1
thylbenzene	0.25	0.080	0.014 p				11/05/19 21:56	1
leptane	0.094 0.18 J	0.080	0.013 p				11/05/19 21:56	1
lexachlorobutadiene	ND	0.20	0.014 p 0.032 p	νν αq			11/05/19 21:56	1

Client Sample ID: JR - 170 - IA - 1 Date Collected: 10/31/19 16:37 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-1 Matrix: Air

Analyte Hexane	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fa
Indane		0.20		ppb v/v			11/05/19 21:56	
Indene	ND	0.080		ppb v/v			11/05/19 21:56	
	ND	0.16		ppb v/v			11/05/19 21:56	
Isopropyl alcohol Isopropylbenzene	2.3	0.80		ppb v/v			11/05/19 21:56	
Methyl tert-butyl ether	ND	0.16		ppb v/v			11/05/19 21:56	
	ND	0.16		ppb v/v			11/05/19 21:56	
Methylene Chloride	0.75-B-UB	0.40		ppb v/v			11/05/19 21:56	
m-Xylene & p-Xylene Naphthalene	0.34	0.080		ppb v/v			11/05/19 21:56	
•	ND	0.20		ppb v/v			11/05/19 21:56	
n-Butane	3.5	0.16		ppb v/v			11/05/19 21:56	
n-Decane	0.51	0.40		ppb v/v			11/05/19 21:56	
n-Dodecane	0.36 J	0.40	0.064	ppb v/v			11/05/19 21:56	1
n-Octane	0.12 J	0.16	0.016	ppb v/v			11/05/19 21:56	1
Nonane	0.075 J	0.20	0.018	ppb v/v			11/05/19 21:56	1
1-Undecane	0.10 J	0.40		ppb v/v			11/05/19 21:56	1
o-Xylene	0.15	0.080	0.015	ppb v/v			11/05/19 21:56	1
Pentane	1.6	0.40	0.079	ppb v/v			11/05/19 21:56	1
Propene	1.2 -6 +)	1.0	1.0	ppb v/v			11/05/19 21:56	1
Styrene	0.075 J	0.080	0.024	ppb v/v			11/05/19 21:56	1
etrachloroethene	0.097	0.080	0.0070				11/05/19 21:56	1
etrahydrofuran	ND	0.40		ppb v/v			11/05/19 21:56	, 1
hiophene	ND	0.080		ppb v/v			11/05/19 21:56	1
oluene	0.62	0.12		ppb v/v			11/05/19 21:56	1
rans-1,2-Dichloroethene	0.016 J	0.080	0.0070				11/05/19 21:56	1
ans-1,3-Dichloropropene	ND	0.080	0.0090				11/05/19 21:56	י 1
richloroethene	0.0067 J	0.036	0.0060				11/05/19 21:56	1
richlorofluoromethane	0.23	0.080		ppb v/v			11/05/19 21:56	1
inyl chloride	ND	0.040		ppb v/v			11/05/19 21:56	1
nalyte	Result Qualifier	RL	MDL			D		
1,1-Trichloroethane	ND	0.44		ug/m3	_ D	Prepared	Analyzed	Dil Fac
1,2,2-Tetrachloroethane	ND	0.55	0.20				11/05/19 21:56	1
1,2-Trichloro-1,2,2-trifluoroetha	0.55 J	0.61					11/05/19 21:56	1
e	0.00 0	0.01	0.061	ug/m3			11/05/19 21:56	1
1,2-Trichloroethane	ND	0.44	0.038	ua/m3			11/05/19 21:56	4
1-Dichloroethane	0.034 J	0.32	0.028					1
1-Dichloroethene	ND	0.16	0.032				11/05/19 21:56	1
2,3-Trimethylbenzene	0.74 - C+ - \	0.39	0.18				11/05/19 21:56	1
2,4-Trichlorobenzene	ND	0.59	0.47				11/05/19 21:56	1
2,4-Trimethylbenzene	0.49	0.39	0.098				11/05/19 21:56	1
2-Dibromoethane (EDB)	ND	0.61					11/05/19 21:56	1
2-Dichloro-1,1,2,2-tetrafluoroeth	0.10 J	0.56	0.054 i 0.084 i				11/05/19 21:56	1
1e	0.10 3	0.56	0.064 1	Jg/m3			11/05/19 21:56	1
2-Dichlorobenzene	ND	0.48	0.1 9 เ	ıa/m3			11/05/10 01/50	
2-Dichloroethane	0.18 J	0.32	0.040 i	-			11/05/19 21:56	1
2-Dichloropropane	ND	0.37	0.040 t				11/05/19 21:56	1
3,5-Trimethylbenzene	0.14 J	0.39	0.046 t 0.11 t				11/05/19 21:56	1
3-Butadiene	ND	0.35					11/05/19 21:56	1
3-Dichlorobenzene	ND		0.042 ι	-			11/05/19 21:56	1
Dichiolobelizerie	INI J	0.48	0.096 ι	10/m2			11/05/19 21:56	1

Matrix: Air

Lab Sample ID: 140-17206-1

Client Sample ID: JR - 170 - IA - 1 Date Collected: 10/31/19 16:37 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile O Analyte I,4-Dioxane	Result (Qualifier RL	MDI	. Unit	D	Prepared	Analyzed	Dil Fa
2,2,4-Trimethylpentane	0.18 J			l ug/m3			11/05/19 21:56	
2,3-Dimethylpentane	0.38 J			7 ug/m3			11/05/19 21:56	
	0.11 J			ug/m3			11/05/19 21:56	
2-Butanone (MEK) 2-Hexanone	2.5	. 0.94		2 ug/m3			11/05/19 21:56	
-Methylbutane	0.43 J			3 ug/m3			11/05/19 21:56	
•	4.2	v		ug/m3			11/05/19 21:56	
P-Methylpentane	0.49	•		ug/m3			11/05/19 21:56	
-Methyl-2-pentanone (MIBK)	ND	0.79		ug/m3			11/05/19 21:56	
Acetone	1.7	0.82		ug/m3			11/05/19 21:56	
Benzene	21 -C	esaft.		ug/m3			11/05/19 21:56	
enzyl chloride	0.63	0.26		ug/m3			11/05/19 21:56	
Bromodichloromethane	ND	0.83		ug/m3			11/05/19 21:56	
	0.59	0.54		ug/m3			11/05/19 21:56	
romoform		U) 0.83		ug/m3			11/05/19 21:56	1
romomethane	0.34	0.31		ug/m3			11/05/19 21:56	1
arbon disulfide	0.28 J	0.62	0.034	ug/m3			11/05/19 21:56	1
arbon tetrachloride	0.76	0.20	0.044	ug/m3			11/05/19 21:56	1
hlorobenzene	ND	0.37	0.028	ug/m3			11/05/19 21:56	1
hloroethane	ND	0.21	0.077	ug/m3			11/05/19 21:56	1
hloroform	3.7	0.39	0.034	ug/m3			11/05/19 21:56	1
hloromethane	2.0 -6	• 0.41	0.14	ug/m3			11/05/19 21:56	1
s-1,2-Dichloroethene	ND	0.16	0.040	ug/m3			11/05/19 21:56	1
s-1,3-Dichloropropene	ND	0.36	0.073	ug/m3			11/05/19 21:56	1
yclohexane	0.27 J	0.69	0.079	ug/m3			11/05/19 21:56	1
ibromochloromethane	0.076 J	0.68	0.060	ug/m3			11/05/19 21:56	1
ichlorodifluoromethane	1.3	0.40	0.069	ug/m3			11/05/19 21:56	1
hylbenzene	0.41	0.35	0.056	ug/m3			11/05/19 21:56	1
eptane	0.73 J	0.82		ug/m3			11/05/19 21:56	1
exachlorobutadiene	ND	0.85		ug/m3			11/05/19 21:56	1
exane	0.58 J	0.70	0.046				11/05/19 21:56	1
dane	ND	0.39		ug/m3			11/05/19 21:56	1
dene	ND	0.76		ug/m3			11/05/19 21:56	1
opropyl alcohol	5.7	2.0		ug/m3			11/05/19 21:56	1
propylbenzene	ND	0.79	0.084	-			11/05/19 21:56	1
ethyl tert-butyl ether	ND	0.58		ug/m3			11/05/19 21:56	1
ethylene Chloride	2.6 - B -	UB 1.4		ug/m3			11/05/19 21:56	1
Xylene & p-Xylene	1.5	0.35		ug/m3			11/05/19 21:56	1
phthalene	ND	1.0		ug/m3				1
Butane	8.3	0.38		ug/m3			11/05/19 21:56	1
Decane	3.0	2.3	0.22				11/05/19 21:56	1
Dodecane	2.5 J	2.8	0.45				11/05/19 21:56	1
Dctane	0.57 J	0.75	0.075				11/05/19 21:56	1
nane	0.39 J	1.0	0.094				11/05/19 21:56	1
Jndecane	0.64 J	2.6	0.31				11/05/19 21:56	1
(ylene	0.64	0.35	0.065				11/05/19 21:56	1
ntane	4.6	. 1.2					11/05/19 21:56	1
opene	2.1 er		0.23				11/05/19 21:56	1
vrene	0.32 J	0.34		ug/m3 ug/m3			11/05/19 21:56	1

12/13/2019

Client Sample ID: JR - 170 - IA - 1 Date Collected: 10/31/19 16:37 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 61

Lab Sample ID: 140-17206-1 Matrix: Air

Method: TO 15 LL - Volatile Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.66		0.54	0.047	ug/m3			11/05/19 21:56	1
Tetrahydrofuran	ND		1.2	0.45	ug/m3			11/05/19 21:56	1
Thiophene	ND		0.28	0.038	ug/m3			11/05/19 21:56	1
Toluene	2.3	And and a second se	0.45	0.29	ug/m3			11/05/19 21:56	1
trans-1,2-Dichloroethene	0.063	Ĵ	0.32		ug/m3			11/05/19 21:56	1
rans-1,3-Dichloropropene	ND		0.36	0.041	ug/m3			11/05/19 21:56	1
Trichloroethene	0.036	J	0.19	0.032	ug/m3			11/05/19 21:56	י 1
Trichlorofluoromethane	1.3		0.45	0.062	ug/m3			11/05/19 21:56	י 1
Vinyl chloride	ND		0.10	0.066	•			11/05/19 21:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140	11/05/19 21:56	1
Method: D1946 - Fixed Ga	ses (Helium)				

interior de lo to trixed									
Analyte	Result	Qualifier	RL	MDL	Unit	п	Prepared	A maluma d	
Helium					-		Frepareu	Analyzed	Dil Fac
	ND		0.17	0.17	% v/v			11/07/19 11:59	1.67
kons s					<i>/• • • • • • • • • • </i>			11/07/19 11:09	1.07

Client Sample ID: JR - 170 - IA - 2

Date Collected: 10/31/19 16:14

Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-2 Matrix: Air

1

1

1

1

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 0.080 0.037 ppb v/v 11/05/19 22:53 1,1,2,2-Tetrachloroethane ND 0.080 0.014 ppb v/v 11/05/19 22:53 1,1,2-Trichloro-1,2,2-trifluoroetha 0.072 J 0.080 0.0080 ppb v/v 11/05/19 22:53 ne 1.1.2-Trichloroethane ND 0.080 0.0070 ppb v/v 11/05/19 22:53 1,1-Dichloroethane ND 0.080 0.0070 ppb v/v 11/05/19 22:53 1 1,1-Dichloroethene ND 0.040 0.0080 ppb v/v 11/05/19 22:53 1 1,2,3-Trimethylbenzene ND 0.080 0.036 ppb v/v 11/05/19 22:53 1 1,2,4-Trichlorobenzene ND 0.080 0.064 ppb v/v 11/05/19 22:53 1 1,2,4-Trimethylbenzene 0.086 0.080 0.020 ppb v/v 11/05/19 22:53 1 1,2-Dibromoethane (EDB) ND 0.080 0.0070 ppb v/v 11/05/19 22:53 1 1,2-Dichloro-1,1,2,2-tetrafluoroeth 0.018 J 0.080 0.012 ppb v/v 11/05/19 22:53 1 ane 1,2-Dichlorobenzene ND 0.080 0.031 ppb v/v 11/05/19 22:53 1 1,2-Dichloroethane 0.054 J 0.080 0.010 ppb v/v 11/05/19 22:53 1 1,2-Dichloropropane ND 0.080 0.010 ppb v/v 11/05/19 22:53 1 1,3,5-Trimethylbenzene 0.028 J 0.080 0.022 ppb v/v 11/05/19 22:53 1 1,3-Butadiene ND 0.16 0.019 ppb v/v 11/05/19 22:53 1 1,3-Dichlorobenzene ND 0.080 0.016 ppb v/v 11/05/19 22:53 1 1,4-Dichlorobenzene 0.084 0.080 0.016 ppb v/v 11/05/19 22:53 1 1,4-Dioxane 0.037 J 0.20 0.030 ppb v/v 11/05/19 22:53 1 2,2,4-Trimethylpentane 0.073 J 0.20 0.0080 ppb v/v 11/05/19 22:53 1 2,3-Dimethylpentane ND 0.080 0.026 ppb v/v 11/05/19 22:53 1 2-Butanone (MEK) 0.48 0.32 0.073 ppb v/v 11/05/19 22:53 1 2-Hexanone 0.047 J 0.20 0.016 ppb v/v 11/05/19 22:53 1 2-Methylbutane 0.68 0.20 0.063 ppb v/v 11/05/19 22:53 1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Matrix: Air

Lab Sample ID: 140-17206-2

Client Sample ID: JR - 170 - IA - 2 Date Collected: 10/31/19 16:14 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 2-Methylpentane 0.13 0.080 0.014 ppb v/v 11/05/19 22:53 1 4-Ethyltoluene ND 0.16 0.021 ppb v/v 11/05/19 22:53 1 4-Methyl-2-pentanone (MIBK) 0.23 0.20 0.054 ppb v/v 11/05/19 22:53 1 Acetone 6.6 -Ct- \ 2.0 0.57 ppb v/v 11/05/19 22:53 1 Benzene 0.16 0.080 0.0080 ppb v/v 11/05/19 22:53 1 Benzyl chloride ND 0.16 0.038 ppb v/v 11/05/19 22:53 1 Bromodichloromethane ND 0.080 0.018 ppb v/v 11/05/19 22:53 1 Bromoform ND US. 0.080 0.0090 ppb v/v 11/05/19 22:53 1 Bromomethane 0.022 J 0.080 0.022 ppb v/v 11/05/19 22:53 1 Carbon disulfide 0.13 .1 0.20 0.011 ppb v/v 11/05/19 22:53 1 Carbon tetrachloride 0.079 0.0070 ppb v/v 0.032 11/05/19 22:53 1 Chlorobenzene ND 0.080 0.0060 ppb v/v 11/05/19 22:53 1 Chloroethane ND 0.080 0.029 ppb v/v 11/05/19 22:53 1 Chloroform 0.12 0.0070 ppb v/v 0.080 11/05/19 22:53 1 Chloromethane 0.95 0.20 0.066 ppb v/v 11/05/19 22:53 1 cis-1,2-Dichloroethene ND 0.040 0.010 ppb v/v 11/05/19 22:53 1 cis-1,3-Dichloropropene ND 0.080 0.016 ppb v/v 11/05/19 22:53 1 Cyclohexane 0.065 J 0.20 0.023 ppb v/v 11/05/19 22:53 1 Dibromochloromethane ND 0.080 0.0070 ppb v/v 11/05/19 22:53 1 Dichlorodifluoromethane 0.27 0.080 0.014 ppb v/v 11/05/19 22:53 1 Ethylbenzene 0.083 0.080 0.013 ppb v/v 11/05/19 22:53 1 Heptane 0.092 J 0.20 0.014 ppb v/v 11/05/19 22:53 1 Hexachlorobutadiene ND 0.080 0.032 ppb v/v 11/05/19 22:53 1 Hexane 0.14 0.013 ppb v/v .1 0.20 11/05/19 22:53 1 Indane ND 0.080 0.035 ppb v/v 11/05/19 22:53 1 Indene ND 0.16 0.039 ppb v/v 11/05/19 22:53 1 Isopropyl alcohol 1.9 0.80 0.22 ppb v/v 11/05/19 22:53 1 Isopropylbenzene ND 0.16 0.017 ppb v/v 11/05/19 22:53 1 Methyl tert-butyl ether ND 0.16 0.052 ppb v/v 11/05/19 22:53 1 Methylene Chloride 0.62 -B-US 0.40 0.16 ppb v/v 11/05/19 22:53 1 m-Xylene & p-Xylene 0.32 0.080 0.029 ppb v/v 11/05/19 22:53 1 Naphthalene ND 0.20 0.076 ppb v/v 11/05/19 22:53 1 n-Butane 2.5 0.16 0.083 ppb v/v 11/05/19 22:53 1 n-Decane 0.27 J 0.40 0.038 ppb v/v 11/05/19 22:53 1 n-Dodecane 0.51 0.40 0.064 ppb v/v 11/05/19 22:53 1 n-Octane 0.044 J 0.16 0.016 ppb v/v 11/05/19 22:53 1 Nonane 0.043 J 0.20 0.018 ppb v/v 11/05/19 22:53 1 n-Undecane 0.13 J 0.40 0.048 ppb v/v 11/05/19 22:53 1 o-Xylene 0.14 0.080 0.015 ppb v/v 11/05/19 22:53 1 Pentane 0.46 0.40 0.079 ppb v/v 11/05/19 22:53 1 Propene 1.3 et \ 1.0 1.0 ppb v/v 11/05/19 22:53 1 Styrene 0.069 J 0.080 0.024 ppb v/v 11/05/19 22:53 1 Tetrachloroethene 0.084 0.080 0.0070 ppb v/v 11/05/19 22:53 1 Tetrahydrofuran ND 0.40 0.15 ppb v/v 11/05/19 22:53 1 Thiophene ND 0.080 0.011 ppb v/v 11/05/19 22:53 1 Toluene 0.47 0.12 0.078 ppb v/v 11/05/19 22:53 1 trans-1,2-Dichloroethene ND 0.080 0.0070 ppb v/v 11/05/19 22:53 1 trans-1,3-Dichloropropene ND 0.080 0.0090 ppb v/v 11/05/19 22:53 1

Client Sample ID: JR - 170 - IA - 2

Date Collected: 10/31/19 16:14 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-2 Matrix: Air

Trichloroethene	Result ND		0.036		Unit	D	Prepared	Analyzed	Dil F
Trichlorofluoromethane	0.22				ppb v/v			11/05/19 22:53	
Vinyl chloride	ND		0.080		ppb v/v			11/05/19 22:53	
Analyte			0.040		ppb v/v			11/05/19 22:53	
1,1,1-Trichloroethane		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
1,1,2,2-Tetrachloroethane	ND ND		0.44		ug/m3			11/05/19 22:53	
1,1,2-Trichloro-1,2,2-trifluoroetha			0.55		ug/m3			11/05/19 22:53	
ne	0.55	5	0.61	0.061	ug/m3			11/05/19 22:53	
1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			44/05/40 00 70	
1,1-Dichloroethane	ND		0.32		ug/m3			11/05/19 22:53	
1,1-Dichloroethene	ND		0.16		ug/m3			11/05/19 22:53	
1,2,3-Trimethylbenzene	ND		0.39		ug/m3			11/05/19 22:53	
,2,4-Trichlorobenzene	ND		0.59		ug/m3			11/05/19 22:53	
,2,4-Trimethylbenzene	0.42		0.39		ug/m3			11/05/19 22:53	
,2-Dibromoethane (EDB)	ND		0.61		ug/m3			11/05/19 22:53	
,2-Dichloro-1,1,2,2-tetrafluoroeth	0.13	J	0.56	0.084				11/05/19 22:53	
ne 2 Diablarahannan								11/05/19 22:53	
,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/05/19 22:53	
,2-Dichloroethane	0.22	J	0.32	0.040	ug/m3			11/05/19 22:53	
,2-Dichloropropane	ND		0.37	0.046	ug/m3			11/05/19 22:53	
,3,5-Trimethylbenzene	0.14	J	0.39	0.11	ug/m3			11/05/19 22:53	
3-Butadiene	ND		0.35	0.042	ug/m3			11/05/19 22:53	
3-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/05/19 22:53	
4-Dichlorobenzene	0.51		0.48	0.096	ug/m3			11/05/19 22:53	
,4-Dioxane	0.13		0.72	0.11	ug/m3			11/05/19 22:53	
2,4-Trimethylpentane	0.34	ļ	0.93	0.037	ug/m3			11/05/19 22:53	
3-Dimethylpentane	ND		0.33	0.11	ug/m3			11/05/19 22:53	
Butanone (MEK)	1.4		0.94	0.22	ug/m3			11/05/19 22:53	
Hexanone	0.19	J	0.82	0.066 u	ug/m3			11/05/19 22:53	
Methylbutane	2.0		0.59	0.19 ı	ug/m3			11/05/19 22:53	
Methylpentane Ethyltoluono	0.45		0.28	0.049 u	ug/m3			11/05/19 22:53	
Ethyltoluene	ND		0.79	0.10 ı	ug/m3			11/05/19 22:53	
Methyl-2-pentanone (MIBK)	0.95	÷	0.82	0.22 ı	ug/m3			11/05/19 22:53	
cetone	16 €	₩~ \	4.8	1.3 L	ıg/m3			11/05/19 22:53	
	0.51		0.26	0.026 L	ıg/m3			11/05/19 22:53	
nzyl chloride	ND		0.83	0.20 u	ıg/m3			11/05/19 22:53	
omodichloromethane omoform	ND	ź	0.54	0.12 u	ıg/m3			11/05/19 22:53	
omomethane	ND		0.83	0.093 u				11/05/19 22:53	
	0.086 J		0.31	0.085 u	ıg/m3			11/05/19 22:53	
rbon disulfide	0.39 J		0.62	0.034 u	g/m3			11/05/19 22:53	
rbon tetrachloride lorobenzene	0.50		0.20	0.044 u	g/m3			11/05/19 22:53	
loroethane	ND		0.37	0.028 u				11/05/19 22:53	
	ND		0.21	0.077 u				11/05/19 22:53	
loromotheme	0.57		0.39	0.034 u	-			11/05/19 22:53	
loromethane	2.0		0.41	0.14 u	g/m3			1/05/19 22:53	
1,2-Dichloroethene	ND		0.16	0.040 ug				1/05/19 22:53	1
1,3-Dichloropropene	ND		0.36	0.073 ug	g/m3			1/05/19 22:53	1
clohexane	0.22 J		0.69	0.079 ug	g/m3			1/05/19 22:53	1
romochloromethane	ND		0.68	0.060 ug	⊐/m3			1/05/19 22:53	1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Matrix: Air

Lab Sample ID: 140-17206-2

Client Sample ID: JR - 170 - IA - 2

Date Collected: 10/31/19 16:14 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Dickfordiffuoromethane 1.3 0.40 0.666 ug/m3 11/05/19 22:53 Heptane 0.36 0.35 0.057 ug/m3 11/05/19 22:53 Heptane 0.38 J 0.82 0.057 ug/m3 11/05/19 22:53 Hexachlorobutadiene ND 0.85 0.34 ug/m3 11/05/19 22:53 Indane ND 0.39 0.17 ug/m3 11/05/19 22:53 Indane ND 0.39 0.17 ug/m3 11/05/19 22:53 Sopropyl alcohol 4.8 2.0 0.54 ug/m3 11/05/19 22:53 Sopropyl alcohol 4.8 2.0 0.54 ug/m3 11/05/19 22:53 Sopropylenzene ND 0.76 0.19 ug/m3 11/05/19 22:53 Methylerb-tyly ehrer ND 0.58 0.13 ug/m3 11/05/19 22:53 Methylerb-tyl ehrer ND 0.084 ug/m3 11/05/19 22:53 10/05/19 22:53 Methylerb-tyl ehr 1.4 0.55 0.38 0.20	Method: TO 15 LL - Volati Analyte	Result	Qualifier	RL	MD	L Unit	D		Analyzed	Di
Eftyllenzene 0.36 0.35 0.056 ug/m3 1105/19 22:53 Hexane 0.38 J 0.82 0.057 ug/m3 1105/19 22:53 Hexane 0.50 J 0.70 0.46 ug/m3 1105/19 22:53 Indane ND 0.39 0.77 0.946 ug/m3 1105/19 22:53 Indane ND 0.76 0.19 ug/m3 1105/19 22:53 Indene ND 0.76 0.19 ug/m3 1105/19 22:53 Isopropylachene ND 0.76 0.19 ug/m3 1105/19 22:53 Isopropylachene ND 0.78 0.13 ug/m3 1105/19 22:53 Methylenc Liburide 2.2 = 5U/S 1.4 0.56 ug/m3 1105/19 22:53 Howahthalene ND 1.0 0.40 ug/m3 1105/19 22:53 Howahthalene 0.5 2.8 0.45 ug/m3 1105/19 22:53 Howahthalene 0.5 2.8 0.45 ug/m3 1105/19 2		1.3		0.40	0.06	9 ug/m3				
Heptane 0.38 J 0.82 0.057 upm3 1105/19.22.53 Hexanhorobutadiene ND 0.85 0.34 upm3 1106/19.22.53 Indane ND 0.39 0.17 upm3 1106/19.22.53 Indane ND 0.39 0.17 upm3 1106/19.22.53 Isopropylanchol 4.8 2.0 0.54 upm3 1105/19.22.53 Isopropylanchol 4.8 2.0 0.54 upm3 1105/19.22.53 Stopropylanchol 4.8 2.0 0.54 upm3 1105/19.22.53 Methylane Chioride 2.2 -B- U/J 1.4 0.35 0.13 upm3 1105/19.22.53 Naphthalene ND 1.0 0.40 upm3 1105/19.22.53 100/5/19.22.53 Naphthalene ND 1.0 0.40 upm3 1105/19.22.53 Naphthalene 0.21 J 0.75 0.075 upm3 1105/19.22.53 ND 1.0 0.40 upm3	•	0.36		0.35						
Hexane ND 0.85 0.34 ug/m3 11/05/19 22:53 Indane ND 0.70 0.046 ug/m3 11/05/19 22:53 Indane ND 0.76 0.19 ug/m3 11/05/19 22:53 indene ND 0.76 0.19 ug/m3 11/05/19 22:53 isopropylachene ND 0.79 0.084 ug/m3 11/05/19 22:53 isopropylachene ND 0.79 0.084 ug/m3 11/05/19 22:53 isopropylachene ND 0.79 0.084 ug/m3 11/05/19 22:53 m-Xylene & p-Xylene 1.4 0.35 0.13 ug/m3 11/05/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 11/05/19 22:53 n-Decane 1.6 J 2.3 0.22 ug/m3 11/05/19 22:53 i-Decane 0.61 0.35 0.055 ug/m3 11/05/19 22:53 i-Decane 0.21 J 0.75 0.075 ug/m3 11/05/19 22:53	Heptane	0.38	J	0.82						
Hexane 0.50 J 0.70 0.046 ug/m3 1105/19 22:53 Indene ND 0.39 0.17 ug/m3 1105/19 22:53 Isopropyl alcohol 4.8 2.0 0.54 ug/m3 1105/19 22:53 MethyleneZhene ND 0.79 0.084 ug/m3 1105/19 22:53 Methylene Chloride 2.2 +B- (JZ) 1.4 0.55 ug/m3 1105/19 22:53 m-Xylene & pXylene 1.4 0.55 ug/m3 1105/19 22:53 m-Xylene & pXylene 1.4 0.35 0.13 ug/m3 1105/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 1105/19 22:53 n-Decane 1.6 J 2.3 0.22 ug/m3 1105/19 22:53 n-Decane 0.61 0.38 0.20 ug/m3 1105/19 22:53 n-Decane 0.21 J 0.75 0.75 ug/m3 1105/19 22:53 n-Decane 0.23 J 1.0 0.094 ug/m3		ND		0.85	0.3	4 ug/m3				
Indame ND 0.39 0.17 ug/m3 1105/19 22:53 Isopropyl alcohol 4.8 2.0 0.54 ug/m3 11/05/19 22:53 Isopropyl alcohol 4.8 2.0 0.54 ug/m3 11/05/19 22:53 Isopropyl alcohol 4.8 2.0 0.54 ug/m3 11/05/19 22:53 Methyl erb-buly eher ND 0.76 0.19 ug/m3 11/05/19 22:53 m-Xylene & p-Xylene 1.4 0.55 ug/m3 11/05/19 22:53 m-Sylene & p-Xylene 1.4 0.55 ug/m3 11/05/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 11/05/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 11/05/19 22:53 n-Decane 1.6 J 2.3 0.22 ug/m3 11/05/19 22:53 Nonane 0.21 J 0.75 0.075 ug/m3 11/05/19 22:53 No 1.3 1.0 0.094 ug/m3 11/05/19 22:53 No	Hexane	0.50	J	0.70		-				
Indene ND 0.76 0.19 ug/m3 1105/19 22:53 isopropylenzene ND 0.79 0.084 ug/m3 1105/19 22:53 Methylerchorde 2.2 +B- U/B 1.4 0.55 0.19 ug/m3 1105/19 22:53 Methylerchorde 2.2 +B- U/B 1.4 0.55 0.13 ug/m3 1105/19 22:53 Methylerchorde 1.4 0.55 0.13 ug/m3 1105/19 22:53 Methylerchorde 1.4 0.55 0.13 ug/m3 1105/19 22:53 Methylerchorde 1.6 2.3 0.22 ug/m3 1105/19 22:53 -Decane 1.6 J 2.3 0.22 ug/m3 1105/19 22:53 Nonane 0.23 J 1.0 0.04 ug/m3 1105/19 22:53 Notane 0.23 J 1.0 0.04 ug/m3 1105/19 22:53 Notane 0.23 J 1.0 0.04 ug/m3 1105/19 22:53 Notanae 0.61 0.35		ND		0.39	0.1	7 ug/m3				
Isopropylatiochol 4.8 2.0 0.54 ug/m3 1105/19 22:53 Methylter-butyl ether ND 0.79 0.084 ug/m3 1105/19 22:53 Methylter-Chloride 2.2 -B-U/S 1.4 0.56 0.19 ug/m3 1105/19 22:53 Methyltere Chloride 2.2 -B-U/S 1.4 0.56 ug/m3 1105/19 22:53 Naphthalene ND 1.0 0.40 ug/m3 1105/19 22:53 Naphthalene ND 1.0 0.40 ug/m3 1105/19 22:53 N-Decane 1.6 J 2.3 0.22 ug/m3 1105/19 22:53 N-Decane 0.21 J 0.75 0.075 ug/m3 1105/19 22:53 N-Decane 0.21 J 0.75 0.075 ug/m3 1105/19 22:53 N-Otane 0.23 J 1.0 0.04 ug/m3 1105/19 22:53 N-Otane 0.23 J 1.0 0.094 ug/m3 1105/19 22:53 N-Undecane 0.86 J 2.6 0.31 ug/m3 1105/19 22:53 N-Vylene	Indene	ND		0.76		-				
Isopropybenzene ND 0.79 0.084 ugm3 11/05/19 22:53 Methylene Chloride 2.2 -B- U/S 1.4 0.56 0.19 ugm3 11/05/19 22:53 Methylene Chloride 2.2 -B- U/S 1.4 0.35 0.13 ugm3 11/05/19 22:53 Methylene Chloride 0.2 - 2.4B- U/S 1.4 0.35 0.13 ugm3 11/05/19 22:53 ND 1.0 0.40 ugm3 11/05/19 22:53 11/05/19 22:53 ND 0.0 0.38 0.20 ug/m3 11/05/19 22:53 ND 0.75 0.75 0.75 ug/m3 11/05/19 22:53 ND 0.21 J 0.75 0.075 ug/m3 11/05/19 22:53 Vonane 0.23 J 1.0 0.094 ug/m3 11/05/19 22:53 Vonane 0.23 J 1.2 0.23 ug/m3 11/05/19 22:53 Videcane 0.61 0.33 J 0.34 0.10 ug/m3	lsopropyl alcohol	4.8		2.0		-				
Methylent-butylether ND 0.58 0.19 ug/m3 11/05/19 22:53 Methylene Chloride 2.2 - B- V/B 1.4 0.56 ug/m3 11/05/19 22:53 Marylene & p.Xylene 1.4 0.35 0.13 ug/m3 11/05/19 22:53 Naphthalene ND 1.0 0.40 ug/m3 11/05/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 11/05/19 22:53 n-Docane 1.6 J 2.3 0.22 ug/m3 11/05/19 22:53 n-Octane 0.21 J 0.75 0.075 ug/m3 11/05/19 22:53 n-Octane 0.23 J 1.0 0.94 ug/m3 11/05/19 22:53 n-Undecane 0.86 J 2.6 0.31 ug/m3 11/05/19 22:53 n-Undecane 0.61 0.35 0.065 ug/m3 11/05/19 22:53 tentare 1.3 1.2		ND		0.79		-				
Methylene Chloride 2.2 - B {J}_{3}^{2} 1.4 0.56 ug/m3 11.05/19 22:53 m-Xylene & p-Xylene 1.4 0.35 0.13 ug/m3 11.05/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 11.05/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 11.05/19 22:53 n-Decane 1.6 J 2.3 0.22 ug/m3 11.05/19 22:53 n-Octane 0.21 J 0.75 0.075 ug/m3 11.05/19 22:53 n-Octane 0.21 J 0.75 0.075 ug/m3 11.05/19 22:53 n-Octane 0.23 J 0.0 0.094 ug/m3 11.05/19 22:53 n-Ottane 0.23 J 0.75 0.075 ug/m3 11.05/19 22:53 n-Ottane 0.61 0.35 0.065 ug/m3 11.05/19 22:53 tropepene 2.3 ef-	Methyl tert-butyl ether	ND		0.58						
m.xylene 1.4 0.35 0.13 ug/m3 1105/19 22:53 Vaphthalene 6.0 0.38 0.20 ug/m3 11105/19 22:53 n-Decane 1.6 J 2.3 0.22 ug/m3 11105/19 22:53 n-Decane 3.5 2.8 0.45 ug/m3 11105/19 22:53 n-Octane 0.21 J 0.75 0.075 ug/m3 11105/19 22:53 tonane 0.21 J 0.75 0.075 ug/m3 11105/19 22:53 tonane 0.23 J 1.0 0.094 ug/m3 11105/19 22:53 tonane 0.23 J 1.0 0.094 ug/m3 11105/19 22:53 tonane 0.23 J 1.0 0.094 ug/m3 11105/19 22:53 tonane 0.23 J 0.34 0.10 ug/m3 11105/19 22:53 tonane 0.36 0.41 0.47		2.2	-B-UB	1.4		-				
ND 1.0 0.40 ug/m3 11/05/19 22:53 n-Butane 6.0 0.38 0.20 ug/m3 11/05/19 22:53 n-Bocane 1.6 J 2.3 0.22 ug/m3 11/05/19 22:53 n-Dodecane 3.5 2.8 0.45 ug/m3 11/05/19 22:53 n-Octane 0.21 J 0.75 0.075 ug/m3 11/05/19 22:53 Nonane 0.23 J 1.0 0.094 ug/m3 11/05/19 22:53 Nonane 0.23 J 1.0 0.094 ug/m3 11/05/19 22:53 Nopene 0.61 0.35 0.065 ug/m3 11/05/19 22:53 ropene 2.3 etr. 1.7 1.7 ug/m3 11/05/19 22:53 tityrene 0.30 J 0.34 0.04 ug/m3 11/05/19 22:53 oterna ND 0.28 0.038 ug/m3 11/05	n-Xylene & p-Xylene		-	0.35						
h-Butane 6.0 0.38 0.20 ug/m3 1106/19 22:53 h-Decane 1.6 J 2.3 0.22 ug/m3 1106/19 22:53 h-Dodecane 3.5 2.8 0.45 ug/m3 1106/19 22:53 h-Octane 0.21 J 0.75 ug/m3 1106/19 22:53 h-Octane 0.23 J 1.0 0.094 ug/m3 1106/19 22:53 h-Undecane 0.86 J 2.6 0.31 ug/m3 1106/19 22:53 h-Undecane 0.61 0.35 0.065 ug/m3 1106/19 22:53 p-xylene 0.61 0.34 0.10 ug/m3 1106/19 22:53 propene 2.3 -CT- 1.7 1.7 ug/m3 1106/19 22:53 igtrachloroethene 0.57 0.54 0.047 ug/m3 1106/19 22:53 ietrachloroethene 0.57 0.54 0.047 ug/m3 1106/19 22:53 oluene 1.8 0.45 0.29 ug/m3 1106/19 22:53 oluene 1.8 0.45 0.29 ug/m3 1106/19 22:53 oluene 1.8 0.45 0.29 ug/m3 1106/19 22:53 richl	Vaphthalene	ND								
1-0-Cane 1.6 J 2.3 0.22 ug/m3 11/05/19 22:53 1-Dodecane 3.5 2.8 0.45 ug/m3 11/05/19 22:53 Nonane 0.21 J 0.75 0.075 ug/m3 11/05/19 22:53 Nonane 0.23 J 1.0 0.994 ug/m3 11/05/19 22:53 Nonane 0.66 J 2.6 0.31 ug/m3 11/05/19 22:53 Nonane 0.61 0.35 0.065 ug/m3 11/05/19 22:53 Propene 2.3 C+ 1.7 1.7 ug/m3 11/05/19 22:53 Propene 2.3 C+ 1.7 1.7 ug/m3 11/05/19 22:53 Verene 0.30 J 0.34 0.10 ug/m3 11/05/19 22:53 Verene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 Verene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 olane ND 0.28 <	1-Butane	6.0				-				
Index 3.5 2.8 0.45 ug/m3 1106/19 22:53 I-Octane 0.21 J 0.75 0.075 ug/m3 11105/19 22:53 Ionane 0.23 J 1.0 0.094 ug/m3 11/05/19 22:53 Ionane 0.23 J 1.0 0.094 ug/m3 11/05/19 22:53 -Vundecane 0.61 0.35 0.065 ug/m3 11/05/19 22:53 -Xylene 0.61 0.35 0.065 ug/m3 11/05/19 22:53 ropene 2.3 etra. 1.7 1.7 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrachloroethene ND 1.2 0.45 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.028 ug/m3 11/05/1	a-Decane	1.6	J	2.3		-				
-Octane 0.21 J 0.75 0.075 ug/m3 1106/19/22:53 Jonane 0.23 J 1.0 0.094 ug/m3 11/05/19/22:53 J-Undecane 0.86 J 2.6 0.31 ug/m3 11/05/19/22:53 Verthere 0.61 0.35 0.065 ug/m3 11/05/19/22:53 Verthere 0.30 J 0.34 0.010 ug/m3 11/05/19/22:53 typene 0.57 0.54 0.047 ug/m3 11/05/19/22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19/22:53 ans-1,3-Dichtoroptropene ND 0.32 0.028 ug/m3 11/05/19/22:53 urichtorofluoromethane 1.3	n-Dodecane	3.5				0				
Jonane 0.23 J 1.0 0.094 ug/m3 11/05/19 22:53 -Undecane 0.86 J 2.6 0.31 ug/m3 11/05/19 22:53 -Xylene 0.61 0.35 0.065 ug/m3 11/05/19 22:53 entane 1.3 1.2 0.23 ug/m3 11/05/19 22:53 ropene 2.3 etr. 1.7 1.7 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrahydrofuran ND 1.2 0.45 ug/m3 11/05/19 22:53 etrahydrofuran ND 0.28 0.038 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ichloroethene ND 0.36 0.041 ug/m3 11/05/19	I-Octane	0.21	J							
-Undecane 0.86 J 2.6 0.31 ug/m3 11/05/19 22:53 -Xylene 0.61 0.35 0.065 ug/m3 11/05/19 22:53 entane 1.3 1.2 0.23 ug/m3 11/05/19 22:53 ropene 2.3 etr 1.7 1.7 ug/m3 11/05/19 22:53 tyrene 0.30 J 0.34 0.10 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrahydrofuran ND 1.2 0.45 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 oluene ND 0.36 0.041 ug/m3 11/05/19 22:5	lonane	0.23	J			-				
-Xylene 0.61 0.35 0.065 ug/m3 1105/19 22:53 entane 1.3 1.2 0.23 ug/m3 11/05/19 22:53 ropene 2.3 CF- 1.7 1.7 ug/m3 11/05/19 22:53 tyrene 0.30 J 0.34 0.10 ug/m3 11/05/19 22:53 tyrene 0.30 J 0.34 0.10 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 biophene ND 1.2 0.45 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ans-1,2-Dichloroethene ND 0.32 0.028 ug/m3 11/05/19 22:53 ichloroethene ND 0.19 0.32 ug/m3 11/05/19 22:53 ichlorofluoromethane ND 0.19 0.032 ug/m3 11/05/19 22:53 nyl chloride ND 0.10 0.066 ug/m3 11/0	-Undecane	0.86	J			-				
tentane 1.3 1.2 0.03 ug/m3 11/05/19 22:53 tropene 2.3 etr. 1.7 1.7 1.7 ug/m3 11/05/19 22:53 tyrene 0.30 J 0.34 0.10 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ans-1,2-Dichloroethene ND 0.36 0.041 ug/m3 11/05/19 22:53 ans-1,3-Dichloropropene ND 0.19 0.032 ug/m3 11/05/19 22:53 richlorofluoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22:53 richlorofluorobenzene (Surr) 99 60 - 140 11/05/19 22:53 11/05/19 22:53 ethod: D1946 - Fixed Gases (Helium) <	-Xylene	0.61				•				
ropene 2.3 etc. 1.7	entane					-				
tyrene 0.30 J 0.34 0.10 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrachloroethene ND 1.2 0.45 ug/m3 11/05/19 22:53 oluene ND 0.28 0.038 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ans-1,2-Dichloroethene ND 0.32 0.028 ug/m3 11/05/19 22:53 ans-1,3-Dichloropropene ND 0.32 0.028 ug/m3 11/05/19 22:53 richloroethene ND 0.19 0.032 ug/m3 11/05/19 22:53 nyl chloride ND 0.19 0.032 ug/m3 11/05/19 22:53 nyl chloride ND 0.10 0.062 ug/m3 11/05/19 22:53 ethod: D1946 - Fixed Gases (Helium) ug/m3 11/05/19 22:53 Di/ <td>ropene</td> <td></td> <td>er \</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	ropene		er \			-				
etrachloroethene 0.57 0.54 0.047 ug/m3 11/05/19 22:53 etrahydrofuran ND 1.2 0.45 ug/m3 11/05/19 22:53 hiophene ND 0.28 0.038 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ans-1,2-Dichloroethene ND 0.32 0.028 ug/m3 11/05/19 22:53 ans-1,3-Dichloroppene ND 0.32 0.028 ug/m3 11/05/19 22:53 ichloroethene ND 0.36 0.041 ug/m3 11/05/19 22:53 ichloropthene ND 0.36 0.041 ug/m3 11/05/19 22:53 ichloroethene ND 0.19 0.032 ug/m3 11/05/19 22:53 nyl chloride ND 0.10 0.066 ug/m3 11/05/19 22:53 urrogate %Recovery Qualifier Limits Prepared Analyzed Dil / ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16	tyrene		63 ₁₀₀							
etrahydrofuran ND 1.2 0.45 ug/m3 11/05/19 22:53 hiophene ND 0.28 0.038 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ans-1,2-Dichloroethene ND 0.32 0.028 ug/m3 11/05/19 22:53 ans-1,3-Dichloropropene ND 0.36 0.041 ug/m3 11/05/19 22:53 ichloroethene ND 0.36 0.041 ug/m3 11/05/19 22:53 ichloroethene ND 0.19 0.032 ug/m3 11/05/19 22:53 ichlorofluoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22:53 urrogate %Recovery Qualifier Limits Prepared Analyzed billum ND 0.16 0.16 % v/v Prepared Analyzed Dil urrogate %Recovery Qualifier RL MDL Unit D Prepared Analyzed Dil <td< td=""><td>etrachloroethene</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	etrachloroethene		-							
hiophene ND 0.28 0.038 ug/m3 11/05/19 22:53 oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ans-1,2-Dichloroethene ND 0.32 0.028 ug/m3 11/05/19 22:53 ans-1,3-Dichloropropene ND 0.36 0.041 ug/m3 11/05/19 22:53 ichloroethene ND 0.36 0.041 ug/m3 11/05/19 22:53 ichloroethene ND 0.19 0.032 ug/m3 11/05/19 22:53 richlorofluoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22:53 nyl chloride ND 0.10 0.066 ug/m3 11/05/19 22:53 urrogate %Recovery Qualifier Limits Prepared Analyzed Dil //// ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 %/v/v Prepared Analyzed Dil // ulium ND 0.16 0.16 %/v/v I1/07/19 12:15 Dil // e Collect	etrahydrofuran									
oluene 1.8 0.45 0.29 ug/m3 11/05/19 22:53 ans-1,2-Dichloroethene ND 0.32 0.028 ug/m3 11/05/19 22:53 ans-1,3-Dichloropropene ND 0.36 0.041 ug/m3 11/05/19 22:53 ans-1,3-Dichloropropene ND 0.36 0.041 ug/m3 11/05/19 22:53 richloroethene ND 0.19 0.032 ug/m3 11/05/19 22:53 richlorofluoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22:53 urrogate ND 0.10 0.066 ug/m3 11/05/19 22:53 urrogate %Recovery Qualifier Limits Prepared Analyzed Dil R ethod: D1946 - Fixed Gases (Helium) Result Qualifier RL MDL Unit D Prepared Analyzed Dil R elium ND 0.16 0.16 % v/v 11/07/19 12:15 1	hiophene	ND				•				
ans-1,2-Dichloroethene ND 0.32 0.028 ug/m3 11/05/19 22.53 ans-1,3-Dichloropropene ND 0.36 0.041 ug/m3 11/05/19 22.53 richloroethene ND 0.19 0.032 ug/m3 11/05/19 22.53 richloroethene ND 0.19 0.032 ug/m3 11/05/19 22.53 richlorofluoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22.53 nyl chloride ND 0.10 0.066 ug/m3 11/05/19 22.53 urrogate %Recovery Qualifier Limits Prepared Analyzed Dil ethod: D1946 - Fixed Gases (Helium) nalyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 W/V 11/07/19 12:15 1 ent Sample ID: JR - 1115 - IA - 1 e Collected: 10/31/19 16:31 Katrix: A Lab Sample ID: 140-17206 e Received: 11/02/19 10:15 Matrix: A <td>oluene</td> <td>1.8</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	oluene	1.8				-				
ans-1,3-Dichloropropene ND 0.36 0.041 ug/m3 11/05/19 22:53 richloroptoethene ND 0.19 0.032 ug/m3 11/05/19 22:53 richloroptuoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22:53 nyl chloride ND 0.10 0.066 ug/m3 11/05/19 22:53 <i>inrogate</i> %Recovery Qualifier Limits Prepared Analyzed Dil ////11/05/19 22:53 ethod: D1946 - Fixed Gases (Helium) 99 60 - 140 Prepared Analyzed Dil /////10/19 22:53 ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 V/v Prepared Analyzed Dil ////////////////////////////////////	ans-1,2-Dichloroethene									
ND 0.19 0.032 ug/m3 11/05/19 22:53 richlorofluoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22:53 nyl chloride ND 0.10 0.066 ug/m3 11/05/19 22:53 urrogate %Recovery Qualifier Limits Prepared Analyzed Dil // Bromofluorobenzene (Surr) 99 60 - 140 11/05/19 22:53 Dil // ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 MDL Unit D Prepared Analyzed Dil // ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 % v/v D Prepared Analyzed Dil // ulium ND 0.16 0.16 % v/v 11/07/19 12:15 1 ent Sample ID: JR - 1115 - IA - 1 E Lab Sample ID: 140-17206 Matrix: // e Received: 11/02/19 10:15 Matrix: // Matrix: //	ans-1,3-Dichloropropene	ND				-				
richlorofluoromethane 1.3 0.45 0.062 ug/m3 11/05/19 22:53 nyl chloride ND 0.10 0.066 ug/m3 11/05/19 22:53 urrogate %Recovery Qualifier Limits Prepared Analyzed Dil Bromofluorobenzene (Surr) 99 60 - 140 Prepared Analyzed Dil ethod: D1946 - Fixed Gases (Helium) 60 - 140 Prepared Analyzed Dil nalyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 V/V D Prepared Analyzed Dil ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 V/V D Prepared Analyzed Dil ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 W/V D Prepared Analyzed Dil ethod: ND 0.16 0.16 W/V D 11/07/19 12:15 T ethod:	ichloroethene	ND				-				
ND 0.10 0.066 ug/m3 11/05/19 22:53 urrogate %Recovery Qualifier Limits Prepared Analyzed Dil / Bromofluorobenzene (Surr) 99 60 - 140 11/05/19 22:53 Dil / 11/05/19 22:53 Dil / ethod: D1946 - Fixed Gases (Helium) Result Qualifier RL MDL Unit D Prepared Analyzed Dil / ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 V/V D Prepared Analyzed Dil / ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 V/V D Prepared Analyzed Dil / ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 V/V D Prepared Analyzed Dil / ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 V/V 11/07/19 12:15 1 ent Sample ID: JR - 1115 - IA - 1 Katrix: / Lab Sample ID: 140-17206 Matrix: / e Received: 11/02/19 10:15 Matrix: /	richlorofluoromethane									
Marcola With the second dynamic Mail 11/05/19 22:53 Bromofluorobenzene (Surr) Weecovery 99 Qualifier 00 - 140 Limits 60 - 140 Prepared Analyzed 11/05/19 22:53 Dil I 01/05/19 22:53 ethod: D1946 - Fixed Gases (Helium) halyte Result ND Qualifier RL 0.16 MDL 0.16 Unit D Prepared Analyzed 11/07/19 12:15 Dil I 01/07/19 12:15 ent Sample ID: JR - 1115 - IA - 1 te Collected: 10/31/19 16:31 te Received: 11/02/19 10:15 Lab Sample ID: 140-17206 Matrix: /	nyl chloride					-				
Bromofluorobenzene (Surr) Prepared Analyzed Dil / 99 60 - 140 11/05/19 22:53 11/05/19 22:53 ethod: D1946 - Fixed Gases (Helium) Result Qualifier RL MDL Unit D Prepared Analyzed Dil / ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 0.16 D Prepared Analyzed Dil / ethod: D1946 - Fixed Gases (Helium) ND 0.16 0.16 0.16 D Prepared Analyzed Dil / ethod: Sample ID: JR - 1115 - IA - 1 ND 0.16 0.16 % v/v Lab Sample ID: 140-17206 te Collected: 10/31/19 16:31 Matrix: / Matrix: /				0.10	0.000	ug/ma			11/05/19 22:53	
Bromofluorobenzene (Surr) 99 60 - 140 11/05/19 22:53 ethod: D1946 - Fixed Gases (Helium) Result Qualifier RL MDL Unit D Prepared Analyzed Dil F alium ND 0.16 0.16 % v/v D Analyzed Dil F ent Sample ID: JR - 1115 - IA - 1 Lab Sample ID: 140-17206 Matrix: / te Collected: 10/31/19 16:31 Matrix: /	-	%Recovery	Qualifier	Limits				Prepared	Analyzed	וווח
ethod: D1946 - Fixed Gases (Helium) Nalyte MDL Unit D Prepared Analyzed Dil F ND 0.16 Unit D Prepared Analyzed Dil F elium 0.16 0.16 V/V Prepared Analyzed Dil F ent Sample ID: JR - 1115 - IA - 1 Lab Sample ID: 140-17206 Matrix: / Gelieted: 10/31/19 16:31 Matrix: / Matrix: /	Bromofluorobenzene (Surr)	99		60 - 140				•		
ent Sample ID: JR - 1115 - IA - 1 e Collected: 10/31/19 16:31 e Received: 11/02/19 10:15 e Received: 11/02/19 10:15		•								
ent Sample ID: JR - 1115 - IA - 1 te Collected: 10/31/19 16:31 te Received: 11/02/19 10:15 Matrix: /	-		Qualifier				D	Prepared	Analyzed	Dil F
te Collected: 10/31/19 16:31 te Received: 11/02/19 10:15 Matrix: /		ND		0.16	0.16	% v/v			11/07/19 12:15	1
e Received: 11/02/19 10:15 Matrix: /							Lá	ab Sample	e ID: 140-17	206
e Received. 11/02/19/10:15								•		

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)										
Analyte	Result Qualifier	RL		Jnit D	Prepared	Analyzed	Dil Fac			
1,1,1-Trichloroethane	ND	0.080	0.037 p	pb v/v	•	11/05/19 23:50	1			
1,1,2,2-Tetrachloroethane	ND	0.080	0.014 p	pb v/v		11/05/19 23:50	1			

Dil Fac

Client Sample ID: JR - 1115 - IA - 1

Sample Container: Summa Canister 6L

Date Collected: 10/31/19 16:31 Date Received: 11/02/19 10:15

Hexachlorobutadiene

Hexane

Indane

Lab Sample ID: 140-17206-3 Matrix: Air

Analyte 1,1,2-Trichloro-1,2,2-trifluoroetha	0.067	Qualifier	RL 0.080		Unit	D	Prepared	Analyzed
ne	0.007	J	0.080	0.0080	ppb v/v			11/05/19 23:50
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 23:50
1,1-Dichloroethane	ND		0.080		ppb v/v			11/05/19 23:50
1,1-Dichloroethene	ND		0.040		ppb v/v			11/05/19 23:50
1,2,3-Trimethylbenzene	0.069	J	0.080		ppb v/v			11/05/19 23:50
1,2,4-Trichlorobenzene	ND		0.080		ppb v/v			11/05/19 23:50
1,2,4-Trimethylbenzene	0.087		0.080		ppb v/v			11/05/19 23:50
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v			11/05/19 23:50
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080		ppb v/v			11/05/19 23:50
ane				–	FF			11/00/10 20:00
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v			11/05/19 23:50
1,2-Dichloroethane	0.029	J	0.080	0.010	ppb v/v			11/05/19 23:50
1,2-Dichloropropane	ND		0.080	0.010	ppb v/v			11/05/19 23:50
1,3,5-Trimethylbenzene	0.024	J	0.080	0.022	ppb v/v			11/05/19 23:50
1,3-Butadiene	ND		0.16	0.019	ppb v/v			11/05/19 23:50
1,3-Dichlorobenzene	ND		0.080	0.016	ppb v/v			11/05/19 23:50
I,4-Dichlorobenzene	0.67		0.080	0.016	ppb v/v			11/05/19 23:50
I,4-Dioxane	ND		0.20	0.030	ppb v/v			11/05/19 23:50
2,2,4-Trimethylpentane	0.081	J	0.20	0.0080	ppb v/v			11/05/19 23:50
2,3-Dimethylpentane	0.027	J	0.080	0.026	ppb v/v			11/05/19 23:50
l-Butanone (MEK)	0.80		0.32	0.073	ppb v/v			11/05/19 23:50
-Hexanone	0.090	J	0.20	0.016	ppb v/v			11/05/19 23:50
P-Methylbutane	1.6		0.20	0.063	ppb v/v			11/05/19 23:50
-Methylpentane	0.14		0.080	0.014	ppb v/v			11/05/19 23:50
-Ethyltoluene	0.12	J	0.16	0.021	ppb v/v			11/05/19 23:50
-Methyl-2-pentanone (MIBK)	0.13	J	0.20	0.054	ppb v/v			11/05/19 23:50
cetone	13 -	er∖	2.0	0.57	ppb v/v			11/05/19 23:50
Benzene	0.38	-	0.080	0.0080	ppb v/v			11/05/19 23:50
Benzyl chloride	ND		0.16	0.038	ppb v/v			11/05/19 23:50
romodichloromethane	0.035	J	0.080	0.018	ppb v/v			11/05/19 23:50
romoform	ND	us	0.080	0.0090	ppb v/v			11/05/19 23:50
romomethane	0.023	J	0.080	0.022	ppb v/v			11/05/19 23:50
arbon disulfide	0.045	J	0.20	0.011				11/05/19 23:50
arbon tetrachloride	0.080		0.032	0.0070	ppb v/v			11/05/19 23:50
hlorobenzene	ND		0.080	0.0060	ppb v/v			11/05/19 23:50
hloroethane	ND		0.080	0.029	ppb v/v			11/05/19 23:50
hloroform	0.90		0.080	0.0070				11/05/19 23:50
hloromethane	1.1 🗝	er- (0.20	0.066				11/05/19 23:50
s-1,2-Dichloroethene	ND	Gauge .	0.040	0.010				11/05/19 23:50
s-1,3-Dichloropropene	ND		0.080	0.016				11/05/19 23:50
yclohexane	0.075	J	0.20	0.023				11/05/19 23:50
ibromochloromethane	ND		0.080	0.0070	-			11/05/19 23:50
ichlorodifluoromethane	0.26		0.080	0.014				11/05/19 23:50
thylbenzene	0.074 、	J	0.080	0.013				11/05/19 23:50
eptane	0.15 、	J	0.20	0.014	•			11/05/19 23:50
exachlorobutadiene	ND		0.090	0.000				1 100/10 20:00

Eurofins TestAmerica, Knoxville

11/05/19 23:50

11/05/19 23:50

11/05/19 23:50

0.080

0.20

0.080

0.032 ppb v/v

0.013 ppb v/v

0.035 ppb v/v

ND

ND

0.18 J

Matrix: Air

Lab Sample ID: 140-17206-3

Client Sample ID: JR - 1115 - IA - 1 Date Collected: 10/31/19 16:31 Date Received: 11/02/19 10:15

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Or Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fa
Indene	ND		0.16	0.039	ppb v/v			11/05/19 23:50	
Isopropyl alcohol	8.0		0.80	0.22	ppb v/v			11/05/19 23:50	
lsopropylbenzene	ND		0.16	0.017	ppb v/v			11/05/19 23:50	
Methyi tert-butyl ether	ND		0.16	0.052	ppb v/v			11/05/19 23:50	
Methylene Chloride	0.93	-B-UB	0.40	0.16	ppb v/v			11/05/19 23:50	
m-Xylene & p-Xylene	0.24		0.080	0.029	ppb v/v			11/05/19 23:50	-
Naphthalene	0.17	J	0.20		ppb v/v			11/05/19 23:50	1
n-Butane	19	ε	0.16		ppb v/v			11/05/19 23:50	1
n-Decane	0.33	J	0.40		ppb v/v			11/05/19 23:50	1
n-Dodecane	0.29	J	0.40		ppb v/v			11/05/19 23:50	
n-Octane	0.12	J	0.16		ppb v/v				1
Nonane	0.14	J	0.20		ppb v/v			11/05/19 23:50	1
1-Undecane	0.12	J	0.40		ppb v/v			11/05/19 23:50	1
o-Xylene	0.086	-	0.080		ppb v/v ppb v/v			11/05/19 23:50	1
Pentane	1.0		0.40		ppb v/v ppb v/v			11/05/19 23:50	1
Propene		-6t \	1.0		ppb v/v ppb v/v			11/05/19 23:50	1
btyrene	0.16	<i>"</i>	0.080		ppb v/v ppb v/v			11/05/19 23:50	1
etrachloroethene	0.097		0.080		ppb v/v ppb v/v			11/05/19 23:50	1
etrahydrofuran	ND		0.000					11/05/19 23:50	1
hiophene	ND		0.080		ppb v/v			11/05/19 23:50	1
oluene	0.75				ppb v/v			11/05/19 23:50	1
ans-1,2-Dichloroethene	ND		0.12		ppb v/v			11/05/19 23:50	1
ans-1,3-Dichloropropene	ND		0.080	0.0070				11/05/19 23:50	1
richloroethene	ND		0.080	0.0090				11/05/19 23:50	1
richlorofluoromethane			0.036	0.0060				11/05/19 23:50	1
inyl chloride	0.22 ND		0.080		ppb v/v			11/05/19 23:50	1
-			0.040	0.026	ppb v/v			11/05/19 23:50	1
nalyte 1,1-Trichloroethane		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
	ND		0.44		ug/m3			11/05/19 23:50	1
1,2,2-Tetrachloroethane	ND		0.55	0.096				11/05/19 23:50	1
1,2-Trichloro-1,2,2-trifluoroetha	0.51	J	0.61	0.061	ug/m3			11/05/19 23:50	1
e 1,2-Trichloroethane	ND								
1-Dichloroethane	ND		0.44	0.038				11/05/19 23:50	1
1-Dichloroethene	ND		0.32	0.028				11/05/19 23:50	1
	ND		0.16	0.032				11/05/19 23:50	1
2,3-Trimethylbenzene	0.34	J	0.39	0.18				11/05/19 23:50	1
2,4-Trichlorobenzene	ND		0.59	0.47 i				11/05/19 23:50	1
2,4-Trimethylbenzene	0.43		0.39	0.098 u				11/05/19 23:50	1
2-Dibromoethane (EDB)	ND		0.61	0.054 u	ug/m3			11/05/19 23:50	1
2-Dichloro-1,1,2,2-tetrafluoroeth	0.12 、	J	0.56	0.084 u	ug/m3			11/05/19 23:50	1
e 2-Dichlorobenzene									•
	ND		0.48	0.19 L	-			11/05/19 23:50	1
2-Dichloroethane	0.12	I	0.32	0.040 L	ıg/m3			11/05/19 23:50	1
2-Dichloropropane	ND		0.37	0.046 ι	•			11/05/19 23:50	1
3,5-Trimethylbenzene	0.12 J	ļ	0.39	0.11 L				11/05/19 23:50	1
B-Butadiene	ND		0.35	0.042 u	ıg/m3			11/05/19 23:50	1
Dichlorobenzene	ND		0.48	0.096 u	ıg/m3			11/05/19 23:50	1
l-Dichlorobenzene	4.0		0.48	0.096 u				11/05/19 23:50	1
D'	L I D				-				
-Dioxane 2,4-Trimethylpentane	ND		0.72	0.11 u	ıg/m3			11/05/19 23:50	1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Job ID: 140-17206-1

Client Sample ID: JR - 1115 - IA - 1

Date Collected: 10/31/19 16:31 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-3 Matrix: Air

Analyte 2,3-Dimethylpentane	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fa
• •	0.11 J	0.33		ug/m3			11/05/19 23:50	
2-Butanone (MEK) 2-Hexanone	2.4	0.94		ug/m3			11/05/19 23:50	
2-Methylbutane	0.37 J	0.82		ug/m3			11/05/19 23:50	
•	4.7	0.59		ug/m3			11/05/19 23:50	
2-Methylpentane	0.49	0.28		ug/m3			11/05/19 23:50	
4-Ethyltoluene	0.57 J	0.79		ug/m3			11/05/19 23:50	
4-Methyl-2-pentanone (MIBK)	0.53 J	0.82		ug/m3			11/05/19 23:50	
Acetone	30 - C t	4.8		ug/m3			11/05/19 23:50	
Benzene Poprul oblogida	1.2	0.26		ug/m3			11/05/19 23:50	
Benzyl chloride	ND	0.83		ug/m3			11/05/19 23:50	1
Bromodichloromethane Bromoform	0.24 J	0.54		ug/m3			11/05/19 23:50	1
	ND US	0.83		ug/m3			11/05/19 23:50	1
Bromomethane	0.088 J	0.31		ug/m3			11/05/19 23:50	1
Carbon disulfide	0.14 J	0.62		ug/m3			11/05/19 23:50	1
Carbon tetrachloride	0.50	0.20	0.044	-			11/05/19 23:50	1
Chlorobenzene	ND	0.37	0.028	-			11/05/19 23:50	1
Chloroethane	ND	0.21	0.077	-			11/05/19 23:50	1
Chloroform	4.4	0.39	0.034	ug/m3			11/05/19 23:50	1
Chloromethane	2.3 -Ct-	0.41	0.14	ug/m3			11/05/19 23:50	1
is-1,2-Dichloroethene	ND	0.16	0.040	ug/m3			11/05/19 23:50	1
is-1,3-Dichloropropene	ND	0.36	0.073	ug/m3			11/05/19 23:50	1
Cyclohexane	0.26 J	0.69	0.079	ug/m3			11/05/19 23:50	1
Dibromochloromethane	ND	0.68	0.060	ug/m3			11/05/19 23:50	1
Dichlorodifluoromethane	1.3	0.40	0.069	ug/m3			11/05/19 23:50	1
thylbenzene	0.32 J	0.35	0.056	ug/m3			11/05/19 23:50	1
leptane	0.62 J	0.82	0.057	ug/m3			11/05/19 23:50	1
lexachlorobutadiene	ND	0.85	0.34	ug/m3			11/05/19 23:50	1
lexane	0.64 J	0.70	0.046	ug/m3			11/05/19 23:50	1
ndane	ND	0.39	0.17	ug/m3			11/05/19 23:50	1
idene	ND	0.76	0.19	ug/m3			11/05/19 23:50	1
sopropyl alcohol	20	2.0	0.54	ug/m3			11/05/19 23:50	1
opropylbenzene	ND	0.79	0.084	ug/m3			11/05/19 23:50	1
lethyl tert-butyl ether	ND	0.58	0.19	ug/m3			11/05/19 23:50	1
lethylene Chloride	3.2 -B- U 🔀	1.4	0.56	ug/m3			11/05/19 23:50	1
a-Xylene & p-Xylene	1.0	0.35	0.13	ug/m3			11/05/19 23:50	1
aphthalene	0.89 J	1.0	0.40	ug/m3			11/05/19 23:50	1
Butane	46 E	0.38	0.20	ug/m3			11/05/19 23:50	1
-Decane	1.9 J	2.3	0.22 i	ug/m3			11/05/19 23:50	1
Dodecane	2.0 J	2.8	0.45 u				11/05/19 23:50	1
Octane	0.55 J	0.75	0.075 u				11/05/19 23:50	1
onane	0.73 J	1.0	0.094 u				11/05/19 23:50	1
Undecane	0.79 J	2.6	0.31 u				11/05/19 23:50	1
Xylene	0.37	0.35	0.065 ι	-			11/05/19 23:50	1
entane	2.9	1.2	0.23 L				11/05/19 23:50	1
opene	5.5 •Ct* \	1.7	1.7 ι				11/05/19 23:50	1
yrene	0.67	0.34	0.10 u				11/05/19 23:50	1
etrachloroethene	0.66	0.54	0.047 L	-			11/05/19 23:50	
trahydrofuran	ND	1.2	0.45 u				11/05/19 23:50	1 1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Client Sample ID: JR - 1115 - IA - 1

Date Collected: 10/31/19 16:31 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-3 Matrix: Air

Method: TO 15 LL - Volatil Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thiophene	ND		0.28	0.038	ug/m3			11/05/19 23:50	1
Toluene	2.8		0.45		ug/m3			11/05/19 23:50	1
trans-1,2-Dichloroethene	ND		0.32		ug/m3			11/05/19 23:50	1
trans-1,3-Dichloropropene	ND		0.36		ug/m3			11/05/19 23:50	1
Trichloroethene	ND		0.19		ug/m3			11/05/19 23:50	1
Trichlorofluoromethane	1.2		0.45		ug/m3			11/05/19 23:50	1
Vinyl chloride	ND		0.10		ug/m3			11/05/19 23:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzod	
4-Bromofluorobenzene (Surr)	100		60 - 140			-	Tiepareu	Analyzed 11/05/19 23:50	Dil Fac
Method: D1946 - Fixed Gas	es (Helium)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Helium	ND		0.16	0.16	% v/v			11/07/19 12:32	1.61

Client Sample ID: JR - 1115 - IA - 2 Date Collected: 10/31/19 16:14 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-4

Matrix: Air

Method: TO 15 LL - Volatile Org Analyte	Result	Qualifier	RL		Unit D	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v	 11/06/19 00:48	1
1,1,2,2-Tetrachloroethane	ND		0.080		ppb v/v	11/06/19 00:48	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.074	J	0.080		ppb v/v	11/06/19 00:48	1
ne						1 1/00/10 00.40	1
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v	11/06/19 00:48	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v	11/06/19 00:48	1
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v	11/06/19 00:48	1
1,2,3-Trimethylbenzene	0.040	J	0.080		ppb v/v	11/06/19 00:48	1
1,2,4-Trichlorobenzene	ND		0.080		ppb v/v	11/06/19 00:48	1
1,2,4-Trimethylbenzene	0.092		0.080		ppb v/v	11/06/19 00:48	1
I,2-Dibromoethane (EDB)	ND		0.080		ppb v/v	11/06/19 00:48	1
I,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080		ppb v/v	11/06/19 00:48	1
ine					FF	11/00/19 00.40	I
,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v	11/06/19 00:48	1
,2-Dichloroethane	0.014	J	0.080	0.010	ppb v/v	11/06/19 00:48	1
,2-Dichloropropane	ND		0.080		ppb v/v	11/06/19 00:48	1
,3,5-Trimethylbenzene	0.029	J	0.080		ppb v/v	11/06/19 00:48	1
,3-Butadiene	ND		0.16		ppb v/v	11/06/19 00:48	1
,3-Dichlorobenzene	ND		0.080		ppb v/v	11/06/19 00:48	1
,4-Dichlorobenzene	0.061	J	0.080		ppb v/v	11/06/19 00:48	1
,4-Dioxane	0.034	J	0.20		ppb v/v	11/06/19 00:48	I A
,2,4-Trimethylpentane	0.081	J	0.20	0.0080			1
,3-Dimethylpentane	0.028		0.080	0.026		11/06/19 00:48	1
-Butanone (MEK)	0.62	-	0.32	0.073		11/06/19 00:48	1
-Hexanone	0.092	.1	0.20			11/06/19 00:48	1
-Methylbutane	0.79	0	0.20	0.016		11/06/19 00:48	1
-Methylpentane	0.13		0.20	0.063		11/06/19 00:48	1
Ethyltoluene	0.13 ND		0.080	0.014 0.021	ppb v/v ppb v/v	11/06/19 00:48	1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Job ID: 140-17206-1

Matrix: Air

Lab Sample ID: 140-17206-4

Client Sample ID: JR - 1115 - IA - 2 Date Collected: 10/31/19 16:14 Date Received: 11/02/19 10:15

Date Received: 11/02/19 10:14 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Or Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	0.20	0.20	0.054	ppb v/v			11/06/19 00:48	1
Acetone	9.4 -G-	2.0	0.57	ppb v/v			11/06/19 00:48	1
Benzene	0.27	0.080	0.0080	ppb v/v			11/06/19 00:48	1
Benzyl chloride	ND	0.16	0.038	ppb v/v			11/06/19 00:48	1
Bromodichloromethane	0.065 J	0.080	0.018	ppb v/v			11/06/19 00:48	1
Bromoform	ND U	0.080	0.0090	ppb v/v			11/06/19 00:48	1
Bromomethane	ND	0.080	0.022	ppb v/v			11/06/19 00:48	1
Carbon disulfide	0.15 J	0.20	0.011	ppb v/v			11/06/19 00:48	1
Carbon tetrachloride	0.081	0.032	0.0070	ppb v/v			11/06/19 00:48	1
Chlorobenzene	ND	0.080	0.0060	ppb v/v			11/06/19 00:48	1
Chloroethane	ND	0.080	0.029	ppb v/v			11/06/19 00:48	1
Chloroform	0.58	0.080		ppb v/v			11/06/19 00:48	1
Chloromethane	0.82 - Ci \	0.20		ppb v/v			11/06/19 00:48	1
cis-1,2-Dichloroethene	ND	0.040		ppb v/v			11/06/19 00:48	1
cis-1,3-Dichloropropene	ND	0.080		ppb v/v			11/06/19 00:48	1
Cyclohexane	0.076 J	0.20		ppb v/v			11/06/19 00:48	1
Dibromochloromethane	ND	0.080		ppb v/v			11/06/19 00:48	1
Dichlorodifluoromethane	0.26	0.080		ppb v/v			11/06/19 00:48	1
Ethylbenzene	0.066 J	0.080		ppb v/v			11/06/19 00:48	1
Heptane	0.15 J	0.20		ppb v/v			11/06/19 00:48	1
Hexachlorobutadiene	ND	0.080		ppb v/v			11/06/19 00:48	1
Hexane	0.21	0.20		ppb v/v			11/06/19 00:48	1
Indane	ND	0.080		ppb v/v			11/06/19 00:48	1
Indene	ND	0.16		ppb v/v			11/06/19 00:48	1
Isopropyl alcohol	1.4	0.80		ppb v/v			11/06/19 00:48	י 1
Isopropylbenzene	ND	0.16		ppb v/v			11/06/19 00:48	1
Methyl tert-butyl ether	ND	0.16		ppb v/v			11/06/19 00:48	1
Methylene Chloride	1.5	0.40		ppb v/v			11/06/19 00:48	1
m-Xylene & p-Xylene	0.21	0.080		ppb v/v			11/06/19 00:48	1
Naphthalene	ND	0.20		ppb v/v			11/06/19 00:48	1
n-Butane	9.1	0.16		ppb v/v			11/06/19 00:48	1
n-Decane	6.8	0.40		ppb v/v			11/06/19 00:48	1
n-Dodecane	2.9	0.40		ppb v/v			11/06/19 00:48	1
n-Octane	0.34	0.16		ppb v/v			11/06/19 00:48	1
Nonane	4.6	0.20		ppb v/v			11/06/19 00:48	1
n-Undecane	2.7	0.40		ppb v/v			11/06/19 00:48	1
o-Xylene	0.082	0.080		ppb v/v				•
Pentane	0.50	0.40		ppb v/v ppb v/v			11/06/19 00:48	1
Propene	2.8 - et -	1.0		ppb v/v ppb v/v			11/06/19 00:48	1
Styrene	0.051 J	0.080		ppb v/v			11/06/19 00:48	1
- Tetrachloroethene	0.085	0.080	0.0070				11/06/19 00:48 11/06/19 00:48	1
Tetrahydrofuran	ND	0.40		ppb v/v ppb v/v				1
Thiophene	ND	0.080	0.011				11/06/19 00:48	1
Foluene	0.97	0.000	0.078				11/06/19 00:48	1
rans-1,2-Dichloroethene	ND	0.080	0.0070				11/06/19 00:48	1
rans-1,3-Dichloropropene	ND	0.080	0.0090				11/06/19 00:48	1
Frichloroethene	ND	0.036	0.0090	••			11/06/19 00:48	1
Frichlorofluoromethane	0.24	0.080	0.0000				11/06/19 00:48 11/06/19 00:48	1

Client Sample ID: JR - 1115 - IA - 2

Date Collected: 10/31/19 16:14 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-4

Matrix: Air

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Vinyl chloride	ND		0.040	0.026	ppb v/v			11/06/19 00:48	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.44	0.20	ug/m3			11/06/19 00:48	
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	ug/m3			11/06/19 00:48	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.57	J	0.61	0.061	ug/m3			11/06/19 00:48	
ne 1.1.2 Triphloroothone	110								
1,1,2-Trichloroethane	ND		0.44		ug/m3			11/06/19 00:48	
1,1-Dichloroethane	ND		0.32		ug/m3			11/06/19 00:48	
1,1-Dichloroethene	ND		0.16		ug/m3			11/06/19 00:48	
1,2,3-Trimethylbenzene	0.20	J	0.39		ug/m3			11/06/19 00:48	
1,2,4-Trichlorobenzene	ND		0.59		ug/m3			11/06/19 00:48	
1,2,4-Trimethylbenzene	0.45		0.39		ug/m3			11/06/19 00:48	
1,2-Dibromoethane (EDB)	ND		0.61	0.054				11/06/19 00:48	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.12	J	0.56	0.084	ug/m3			11/06/19 00:48	4
ane 1.2-Dichlorobenzene	ND		0.48	0.10	ug/m3			11/06/40 00 40	
1.2-Dichloroethane	0.055	r	0.48		-			11/06/19 00:48	
1,2-Dichloropropane	0.055 ND	5	0.32	0.040 0.046	-			11/06/19 00:48	1
1,3,5-Trimethylbenzene	0.14		0.37					11/06/19 00:48	1
1.3-Butadiene	0.14 ND	J	0.39		ug/m3			11/06/19 00:48	1
1,3-Dichlorobenzene	ND			0.042	-			11/06/19 00:48	1
1,4-Dichlorobenzene	0.37		0.48	0.096	-			11/06/19 00:48	1
1,4-Dioxane		-	0.48	0.096	-			11/06/19 00:48	1
2,2,4-Trimethylpentane	0.12 0.38		0.72 0.93		ug/m3			11/06/19 00:48	1
2,3-Dimethylpentane	0.38		0.93	0.037	ug/m3			11/06/19 00:48	1
2-Butanone (MEK)	1.8	5	0.33		-			11/06/19 00:48	1
2-Hexanone	0.38		0.94	0.22	ug/m3			11/06/19 00:48	1
2-Methylbutane	2.3	5	0.62		_			11/06/19 00:48	1
2-Methylpentane	0.45		0.39		ug/m3			11/06/19 00:48	1
I-Ethyltoluene	0.45 ND		0.28	0.049	0			11/06/19 00:48	1
- Methyl-2-pentanone (MIBK)	0.84		0.79		ug/m3 ug/m3			11/06/19 00:48	1
Acetone		er \	4.8		ug/m3 ug/m3			11/06/19 00:48	1
Benzene	0.85		0.26	0.026	•			11/06/19 00:48	1
Benzyl chloride	ND		0.20	0.020				11/06/19 00:48	1
Bromodichloromethane	0.44		0.54	0.20				11/06/19 00:48	1
Bromoform	ND	u \	0.83	0.093				11/06/19 00:48	1
Bromomethane	ND		0.31	0.085	U U			11/06/19 00:48	1
Carbon disulfide	0.45		0.62	0.034				11/06/19 00:48	1
Carbon tetrachloride	0.43	J	0.02	0.034				11/06/19 00:48	1
Chlorobenzene	ND		0.20	0.044	•			11/06/19 00:48	1
Chloroethane	ND		0.37	0.028				11/06/19 00:48	1
Chloroform	2.8		0.39					11/06/19 00:48	1
Chloromethane		e+~ \	0.39	0.034	-			11/06/19 00:48	1
is-1,2-Dichloroethene	ND		0.41	0.14	-			11/06/19 00:48	1
is-1,3-Dichloropropene	ND		0.16	0.040				11/06/19 00:48	1
Cyclohexane		1	0.36	0.073				11/06/19 00:48	1
libromochloromethane	0.26 ND	J	0.69	0.079				11/06/19 00:48	1
lichlorodifluoromethane				0.060				11/06/19 00:48	1
thylbenzene	1.3 0.29		0.40 0.35	0.069 i 0.056 i	-			11/06/19 00:48	1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Job ID: 140-17206-1

Matrix: Air

Lab Sample ID: 140-17206-4

Client Sample ID: JR - 1115 - IA - 2 Date Collected: 10/31/19 16:14 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volat Analyte	Result Qu	alifier RL	MD	L Unit		D Prepared		
Heptane	0.60 J	0.82		7 ug/m3			Analyzed 11/06/19 00:4	Dil
Hexachlorobutadiene	ND	0.85		4 ug/m3			11/06/19 00:4	-
Hexane	0.75	0.70		6 ug/m3			11/06/19 00:4	
Indane	ND	0.39		7 ug/m3			11/06/19 00:4	
Indene	ND	0.76		Jug/m3				-
Isopropyl alcohol	3.5	2.0		ug/m3			11/06/19 00:4	-
lsopropylbenzene	ND	0.79		ug/m3			11/06/19 00:4	
Methyl tert-butyl ether	ND	0.58		ug/m3			11/06/19 00:4	
Methylene Chloride	5.4 B			ug/m3			11/06/19 00:4	-
m-Xylene & p-Xylene	0.92	0.35		ug/m3			11/06/19 00:4	
Naphthalene	ND	1.0		ug/m3			11/06/19 00:4	
n-Butane	22	0.38		ug/m3			11/06/19 00:4	-
n-Decane	40	2.3		ug/m3 ug/m3			11/06/19 00:4	
n-Dodecane	20	2.8		ug/m3 ug/m3			11/06/19 00:48	
n-Octane	1.6	0.75		ug/m3 ug/m3			11/06/19 00:48	
Nonane	24	1.0		ug/m3 ug/m3			11/06/19 00:48	
n-Undecane	17	2.6		ug/m3 ug/m3			11/06/19 00:48	
o-Xylene	0.36	0.35		ug/m3 ug/m3			11/06/19 00:48	
Pentane	1.5	1.2					11/06/19 00:48	
Propene	4.9 ~C +~	*		ug/m3			11/06/19 00:48	1
Styrene	0.22 J	0.34		ug/m3			11/06/19 00:48	i
Tetrachloroethene	0.58	0.54		ug/m3			11/06/19 00:48	
Tetrahydrofuran	ND	1.2		ug/m3			11/06/19 00:48	
Thiophene	ND			ug/m3			11/06/19 00:48	
Toluene	3.7	0.28		ug/m3			11/06/19 00:48	
trans-1,2-Dichloroethene	ND	0.45		ug/m3			11/06/19 00:48	
rans-1,3-Dichloropropene	ND	0.32		ug/m3			11/06/19 00:48	
Frichloroethene	ND	0.36	0.041				11/06/19 00:48	
Trichlorofluoromethane		0.19	0.032				11/06/19 00:48	
/inyl chloride	1.4	0.45	0.062				11/06/19 00:48	
	ND	0.10	0.066	ug/m3			11/06/19 00:48	
Surrogate	%Recovery Qual	ifier Limits				0		
-Bromofluorobenzene (Surr)	99	60 - 140				Prepared	Analyzed 11/06/19 00:48	Dil F
/lethod: D1946 - Fixed Gas	es (Helium)						11/00/19 00:48	
Analyte	Result Quali	fier RL		11	_	_		
lelium	ND	0.16	MDL		D	Prepared	Analyzed	Dil Fa
		U. 16	0.16	% V/V			11/07/19 12:49	1.5
ient Sample ID: JR - 1	115 - IA - 3				L	ab Sample	e ID: 140-17	206-
te Collected: 10/31/19 16:3								
te Received: 11/02/19 10:1							wat	rix: A
mple Container: Summa (Canister 6L							
1ethod: TO 15 LL - Volatile	Organic Compound	ds in Ambient Air	Low C-			0/8403		
	Result Qualif	lier RL	, LOW Co MDL ו	ncentrati Init	ion (G D	iC/MS) Prepared	A	.
1,1-Trichloroethane	ND	0.080	0.037			riepareo	Analyzed	Dil Fa

Job ID: 140-17206-1

Client Sample ID: JR - 1115 - IA - 3 Date Collected: 10/31/19 16:30 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-5 Matrix: Air

,1-Dichloroethane	Result		0.080	MDL		 Prepared	Analyzed	Dil Fa
I,1-Dichloroethene	ND				ppb v/v		11/06/19 01:46	
I,2,3-Trimethylbenzene	0.053	1	0.040		ppb v/v		11/06/19 01:46	
1,2,4-Trichlorobenzene	0.053 ND	J	0.080		ppb v/v		11/06/19 01:46	
,2,4-Trimethylbenzene	0.076		0.080		ppb v/v		11/06/19 01:46	
,2-Dibromoethane (EDB)	0.076 ND	J	0.080		ppb v/v		11/06/19 01:46	
,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	i.	0.080		ppb v/v		11/06/19 01:46	
,2-Dichlorobenzene	ND	J	0.080 0.080		ppb v/v		11/06/19 01:46	
,2-Dichloroethane	0.039		0.080		ppb v/v		11/06/19 01:46	
,2-Dichloropropane	ND	5	0.080		ppb v/v		11/06/19 01:46	
,3,5-Trimethylbenzene	0.028		0.080		ppb v/v		11/06/19 01:46	
,3-Butadiene	0.028 . ND	J			ppb v/v		11/06/19 01:46	
,3-Dichlorobenzene	ND		0.16		ppb v/v		11/06/19 01:46	
,4-Dichlorobenzene			0.080		ppb v/v		11/06/19 01:46	
,4-Dioxane	0.24		0.080		ppb v/v		11/06/19 01:46	
,2,4-Trimethylpentane	0.061		0.20		ppb v/v		11/06/19 01:46	
,2,4-minethylpentane	0.078		0.20		ppb v/v		11/06/19 01:46	
-Butanone (MEK)	0.028	J	0.080		ppb v/v		11/06/19 01:46	
-Hexanone	0.49		0.32		ppb v/v		11/06/19 01:46	
	0.044	J	0.20		ppb v/v		11/06/19 01:46	
Methylbutane Methylcurater	1.1		0.20	0.063	ppb v/v		11/06/19 01:46	
Methylpentane	0.14		0.080		ppb v/v		11/06/19 01:46	
Ethyltoluene	0.11 J		0.16		ppb v/v		11/06/19 01:46	
Methyl-2-pentanone (MIBK)	0.078 J	2	0.20		ppb v/v		11/06/19 01:46	
cetone	8.7 -	SH-)	2.0	0.57	ppb v/v		11/06/19 01:46	
enzene	0.24		0.080	0.0080	ppb v/v		11/06/19 01:46	
enzyl chloride	ND		0.16		ppb v/v		11/06/19 01:46	
romodichloromethane	0.036 J	1	0.080	0.018	ppb v/v		11/06/19 01:46	
omoform		1)	0.080	0.0090	ppb v/v		11/06/19 01:46	
omomethane	ND		0.080	0.022	ppb v/v		11/06/19 01:46	1
arbon disulfide	0.28		0.20	0.011	ppb v/v		11/06/19 01:46	1
irbon tetrachloride	0.082		0.032	0.0070	ppb v/v		11/06/19 01:46	1
nlorobenzene	ND		0.080	0.0060	ppb v/v		11/06/19 01:46	1
nloroethane	0.029 J		0.080	0.029	ppb v/v		11/06/19 01:46	1
nloroform	0.60	_	0.080	0.0070	ppb v/v		11/06/19 01:46	1
loromethane	0.88 G	/	0.20	0.066	ppb v/v		11/06/19 01:46	1
-1,2-Dichloroethene	ND	- Sector	0.040	0.010	ppb v/v		11/06/19 01:46	1
-1,3-Dichloropropene	ND		0.080	0.016			11/06/19 01:46	1
clohexane	0.069 J		0.20	0.023			11/06/19 01:46	1
promochloromethane	ND		0.080	0.0070			11/06/19 01:46	1
chlorodifluoromethane	0.28		0.080	0.014 p			11/06/19 01:46	1
nylbenzene	0.062 J		0.080	0.013 p	-		11/06/19 01:46	1
ptane	0.11 J		0.20	0.014	•		11/06/19 01:46	1
xachlorobutadiene	ND		0.080	0.032 p	-		11/06/19 01:46	י 1
xane	0.20		0.20	0.013 p			11/06/19 01:46	
lane	ND		0.080	0.035 p				1
ene	ND		0.16	0.039 p			11/06/19 01:46 11/06/19 01:46	1
propyl alcohol	4.6		0.80	0.22 p				1
propylbenzene	ND		0.00	0.22 p 0.017 p			11/06/19 01:46 11/06/19 01:46	1

Matrix: Air

Lab Sample ID: 140-17206-5

Client Sample ID: JR - 1115 - IA - 3

Date Collected: 10/31/19 16:30 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Analyte Methyl tert-butyl ether	ND	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil I
Methylene Chloride		-B- UB	0.16		ppb v/v			11/06/19 01:46	
m-Xylene & p-Xylene			0.40		ppb v/v			11/06/19 01:46	
Naphthalene	0.20		0.080		ppb v/v			11/06/19 01:46	
n-Butane	0.088	-	0.20		ppb v/v			11/06/19 01:46	
1-Decane	9.9		0.16		ppb v/v			11/06/19 01:46	
1-Decane	0.27		0.40		ppb v/v			11/06/19 01:46	
1-Octane	0.21		0.40		ppb v/v			11/06/19 01:46	
Nonane	0.066		0.16		ppb v/v			11/06/19 01:46	
n-Undecane	0.097		0.20		ppb v/v			11/06/19 01:46	
-Xylene	0.088		0.40		ppb v/v			11/06/19 01:46	
entane	0.078		0.080		ppb v/v			11/06/19 01:46	
	0.74	é	0.40		ppb v/v			11/06/19 01:46	
ropene		-6t-)	1.0		ppb v/v			11/06/19 01:46	
tyrene	0.072	J	0.080		ppb v/v			11/06/19 01:46	
etrachloroethene etrahydrofuran	0.13		0.080		ppb v/v			11/06/19 01:46	
hiophene	ND		0.40		ppb v/v			11/06/19 01:46	
,	ND		0.080		ppb v/v			11/06/19 01:46	
oluene	0.64		0.12		ppb v/v			11/06/19 01:46	
ans-1,2-Dichloroethene	ND		0.080		ppb v/v			11/06/19 01:46	
ans-1,3-Dichloropropene	ND		0.080	0.0090				11/06/19 01:46	
ichloroethene	ND		0.036	0.0060	••			11/06/19 01:46	
richlorofluoromethane	0.24		0.080		ppb v/v			11/06/19 01:46	
inyl chloride	ND		0.040	0.026	ppb v/v			11/06/19 01:46	
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1-Trichloroethane	ND		0.44		ug/m3			11/06/19 01:46	
1,2,2-Tetrachloroethane	ND		0.55	0.096				11/06/19 01:46	
1,2-Trichloro-1,2,2-trifluoroetha	0.53	J	0.61	0.061	ug/m3			11/06/19 01:46	
e 1,2-Trichloroethane	ND		0.44	0.000					
1-Dichloroethane	ND		0.44	0.038				11/06/19 01:46	
1-Dichloroethene	ND		0.32	0.028	-			11/06/19 01:46	
2,3-Trimethylbenzene			0.16	0.032	-			11/06/19 01:46	
2,4-Trichlorobenzene	0.26 ND	J	0.39		ug/m3			11/06/19 01:46	
2,4-Trimethylbenzene			0.59		ug/m3			11/06/19 01:46	
2-Dibromoethane (EDB)	0.37	J	0.39	0.098	-			11/06/19 01:46	
	ND		0.61	0.054	-			11/06/19 01:46	
2-Dichloro-1,1,2,2-tetrafluoroeth	0.12	J	0.56	0.084	ug/m3			11/06/19 01:46	
2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/06/10 01:40	
2-Dichloroethane	0.16	J	0.32	0.040				11/06/19 01:46 11/06/19 01:46	
2-Dichloropropane	ND	-	0.37	0.046					
3,5-Trimethylbenzene	0.14	J	0.39	0.11				11/06/19 01:46 11/06/19 01:46	
-Butadiene	ND	-	0.35	0.042					
-Dichlorobenzene	ND		0.48	0.096				11/06/19 01:46	
-Dichlorobenzene	1.5		0.48	0.096				11/06/19 01:46	
l-Dioxane	0.22	.1	0.40	0.090	-			11/06/19 01:46	
2,4-Trimethylpentane	0.22		0.93	0.037 i				11/06/19 01:46	
B-Dimethylpentane	0.30		0.33	0.037 i 0.11 i				11/06/19 01:46 11/06/19 01:46	
"Dimetrivipentane					44/1160			11/06/19/01/26	
Butanone (MEK)	1.4	•	0.94	0.22 i				11/06/19 01:46	

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Job ID: 140-17206-1

Client Sample ID: JR - 1115 - IA - 3 Date Collected: 10/31/19 16:30 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-5 Matrix: Air

2-Methylbutane	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fa
2-Methylpentane	3.3	0.59		ug/m3			11/06/19 01:46	
4-Ethyltoluene	0.49	0.28		ug/m3			11/06/19 01:46	
4-Methyl-2-pentanone (MIBK)	0.54 J	0.79		ug/m3			11/06/19 01:46	
Acetone	0.32 J	0.82		ug/m3			11/06/19 01:46	
Benzene	21 G+)	4.8		ug/m3			11/06/19 01:46	
Benzyl chloride	0.76	0.26		ug/m3			11/06/19 01:46	
Bromodichloromethane	ND	0.83		ug/m3			11/06/19 01:46	1
Bromoform	0.24 J	0.54		ug/m3			11/06/19 01:46	1
Bromomethane	ND U)	0.83	0.093				11/06/19 01:46	1
Carbon disulfide	ND	0.31	0.085				11/06/19 01:46	1
Carbon tetrachloride	0.87	0.62	0.034				11/06/19 01:46	1
Chlorobenzene	0.51	0.20	0.044				11/06/19 01:46	1
Chloroethane	ND	0.37	0.028				11/06/19 01:46	1
Chloroform	0.076 J	0.21	0.077				11/06/19 01:46	1
Chloromethane	2.9	0.39	0.034	-			11/06/19 01:46	1
sis-1,2-Dichloroethene	1.8 CH	0.41		ug/m3			11/06/19 01:46	1
sis-1,3-Dichloropropene	ND	0.16	0.040	-			11/06/19 01:46	1
Cyclohexane	ND	0.36	0.073	-			11/06/19 01:46	1
Dibromochloromethane	0.24 J	0.69	0.079				11/06/19 01:46	1
Dichlorodifluoromethane	ND	0.68	0.060 u				11/06/19 01:46	1
thylbenzene	1.4	0.40	0.069 i	-			11/06/19 01:46	1
leptane	0.27 J	0.35	0.056 u				11/06/19 01:46	1
lexachlorobutadiene	0.46 J	0.82	0.057 i				11/06/19 01:46	1
lexane	ND	0.85	0.34 L	ug/m3			11/06/19 01:46	1
adane	0.71	0.70	0.046 i	Jg/m3			11/06/19 01:46	1
idene	ND	0.39	0.17 u	ıg/m3			11/06/19 01:46	1
	ND	0.76	0.19 u	ıg/m3			11/06/19 01:46	1
opropyl alcohol opropylbenzene	11	2.0	0.54 u	ıg/m3			11/06/19 01:46	1
ethyl tert-butyl ether	ND	0.79	0.084 u				11/06/19 01:46	1
ethylene Chloride	ND	0.58	0.19 u	ıg/m3			11/06/19 01:46	1
-Xylene & p-Xylene	3.5 -B- UIS	1.4	0.56 u	g/m3			11/06/19 01:46	1
aphthalene	0.89	0.35	0.13 u	g/m3			11/06/19 01:46	1
Butane	0.46 J	1.0	0.40 u	g/m3			11/06/19 01:46	1
Decane	24	0.38	0.20 ug	g/m3			11/06/19 01:46	1
Dodecane	1.6 J	2.3	0.22 ug	g/m3			11/06/19 01:46	1
	1.5 J	2.8	0.45 ug	g/m3			11/06/19 01:46	1
Octane	0.31 J	0.75	0.075 ug	g/m3			11/06/19 01:46	1
onane	0.51 J	1.0	0.094 ug	g/m3			11/06/19 01:46	1
Undecane Xylene	0.56 J	2.6	0.31 ug	g/m3			11/06/19 01:46	1
•	0.34 J	0.35	0.065 ug	g/m3			11/06/19 01:46	1
ntane	2.2	1.2	0.23 ug	g/m3			11/06/19 01:46	1
opene	3.3 -cr	1.7	1.7 ug				1/06/19 01:46	1
/rene	0.31 J	0.34	0.10 ug				1/06/19 01:46	1
trachloroethene	0.90	0.54	0.047 ug				1/06/19 01:46	1
rahydrofuran	ND	1.2	0.45 ug				1/06/19 01:46	1
ophene	ND	0.28	0.038 ug	/m3			1/06/19 01:46	1
	2.4	0.45	0.29 ug				1/06/19 01:46	
ns-1,2-Dichloroethene	ND	0.32	0.028 ug				1/06/19 01:46	1 1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Client Sample ID: JR - 1115 - IA - 3

Date Collected: 10/31/19 16:30

Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-5 Matrix: Air

Method: TO 15 LL - Volatil Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		0.36	0.041	ug/m3			11/06/19 01:46	
Trichloroethene	ND		0.19		ug/m3			11/06/19 01:46	1
Trichlorofluoromethane	1.4		0.45		ug/m3			11/06/19 01:46	
Vinyl chloride	ND		0.10		ug/m3			11/06/19 01:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140			-	Ticpurcu	11/06/19 01:46	1
Method: D1946 - Fixed Gas	es (Helium)								
Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Helium	ND		0.16	0.16	% v/v	— —	····puiou	11/07/19 13:05	1.55

Client Sample ID: JR - 1115 - IA - 4 Date Collected: 10/31/19 16:13 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-6

Matrix: Air

Method: TO 15 LL - Volatile Org Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v		•	11/06/19 02:43	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/06/19 02:43	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.073	J	0.080		ppb v/v			11/06/19 02:43	י 1
ne								11/00/10 02.40	
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/06/19 02:43	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/06/19 02:43	1
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/06/19 02:43	1
1,2,3-Trimethylbenzene	ND		0.080		ppb v/v			11/06/19 02:43	1
1,2,4-Trichlorobenzene	ND		0.080		ppb v/v			11/06/19 02:43	1
1,2,4-Trimethylbenzene	0.067	J	0.080		ppb v/v			11/06/19 02:43	1
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v			11/06/19 02:43	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.018	J	0.080		ppb v/v			11/06/19 02:43	י 1
ane					FF			11/00/19 02.43	1
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v			11/06/19 02:43	1
1,2-Dichloroethane	0.014	J	0.080	0.010	ppb v/v			11/06/19 02:43	1
,2-Dichloropropane	ND		0.080		ppb v/v			11/06/19 02:43	1
I,3,5-Trimethylbenzene	ND		0.080	0.022	ppb v/v			11/06/19 02:43	1
I,3-Butadiene	ND		0.16		ppb v/v			11/06/19 02:43	1
,3-Dichlorobenzene	ND		0.080		ppb v/v			11/06/19 02:43	1
,4-Dichlorobenzene	0.048	J	0.080		ppb v/v			11/06/19 02:43	1
,4-Dioxane	ND		0.20		ppb v/v			11/06/19 02:43	1
2,2,4-Trimethylpentane	0.076	J	0.20	0.0080				11/06/19 02:43	1
,3-Dimethylpentane	ND		0.080		ppb v/v			11/06/19 02:43	1
-Butanone (MEK)	0.50		0.32		ppb v/v ppb v/v				1
-Hexanone	0.029	J	0.20		ppb v/v			11/06/19 02:43	1
-Methylbutane	1.0	-	0.20		ppb v/v ppb v/v			11/06/19 02:43	1
-Methylpentane	0.16		0.080	0.014				11/06/19 02:43	1
-Ethyltoluene	ND		0.080	0.014				11/06/19 02:43	1
-Methyl-2-pentanone (MIBK)	0.24		0.10					11/06/19 02:43	1
cetone	5.7	A (2.0	0.054				11/06/19 02:43	1
enzene	0.17		2.0 0.080	0.57	ppb v/v			11/06/19 02:43	1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Matrix: Air

Lab Sample ID: 140-17206-6

Client Sample ID: JR - 1115 - IA - 4 Date Collected: 10/31/19 16:13

Date Received: 11/02/19 10:15 Sample Container

Method: TO 15 LL - Volatile Analyte	Organic Com	pounds in <i>J</i> Qualifier	Ambient Ai	r, Low C	oncentra	tion (G	C/MS) (Co	ntinued)	
Benzyl chloride		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fac
	ND		0.16	0.038	ppb v/v			11/06/19 02:43	1
Bromodichloromethane	0.026	J	0.080	0.018	ppb v/v			11/06/19 02:43	1
Bromoform	ND	L٧	0.080		ppb v/v			11/06/19 02:43	4
Bromomethane	0.023	J	0.080		ppb v/v			11/06/19 02:43	1
Carbon disulfide	0.24		0.20	0.011					1
Carbon tetrachloride	0.075		0.032		ppb v/v ppb v/v			11/06/19 02:43	1
Chlorobenzene	ND		0.082					11/06/19 02:43	1
Chloroethane	0.051				ppb v/v			11/06/19 02:43	1
Chloroform		J	0.080		ppb v/v			11/06/19 02:43	1
	0.24		0.080	0.0070	ppb v/v			11/06/19 02:43	1
Chloromethane	1.2		0.20	0.066	ppb v/v			11/06/19 02:43	1
cis-1,2-Dichloroethene	ND		0.040		ppb v/v			11/06/19 02:43	1
cis-1,3-Dichloropropene	ND		0.080		ppb v/v				1
Cyclohexane	0.067	I.	0.20					11/06/19 02:43	1

,1,1-Trichloroethane	ND	0.44	0.20 1			Puicu	Analyzed 11/06/19 02:43	Dil Fa
Analyte	Result Qualifie	er RL	MDL (D Pre	epared		
/inyl chloride	ND	0.040	0.026				11/06/19 02:43	
Trichlorofluoromethane	0.23	0.080	0.011				11/06/19 02:43	
richloroethene	ND	0.036	0.0060				11/06/19 02:43	
ans-1,3-Dichloropropene	ND	0.080	0.0090				11/06/19 02:43	
ans-1,2-Dichloroethene	ND	0.080	0.0070				11/06/19 02:43 11/06/19 02:43	
oluene	0.52	0.12	0.078				11/06/19 02:43	
hiophene	ND	0.080	0.011				11/06/19 02:43	
etrahydrofuran	ND	0.40		ppb v/v ppb v/v			11/06/19 02:43	
etrachloroethene	0.092	0.080	0.0070				11/06/19 02:43	
tyrene	0.059 J	0.080	0.024	• •			11/06/19 02:43	
ropene	1.3 - G +- \	1.0		ppb v/v ppb v/v			11/06/19 02:43	
entane	0.54	0.40		ppb v/v ppb v/v			11/06/19 02:43	
-Xylene	0.068 J	0.080		ppb v/v ppb v/v			11/06/19 02:43	
-Undecane	0.18 J	0.40		ppb v/v ppb v/v			11/06/19 02:43	
lonane	0.23	0.20		ppb v/v ppb v/v			11/06/19 02:43	
-Octane	0.057 J	0.40		ppb v/v ppb v/v			11/06/19 02:43	
-Dodecane	0.40 0.29 J	0.40		ppb v/v			11/06/19 02:43	
-Decane	0.46	0.16		ppb v/v			11/06/19 02:43	
Butane	3.2	0.20 0.16		ppb v/v			11/06/19 02:43	
aphthalene	0.18 ND	0.080		ppb v/v			11/06/19 02:43	
n-Xylene & p-Xylene	0.18			ppb v/v			11/06/19 02:43	
lethylene Chloride	0.51 - B ~ ()	0.16		ppb v/v			11/06/19 02:43	3
lethyl tert-butyl ether	ND	0.16		ppb v/v			11/06/19 02:43	}
opropylbenzene	1.5 ND	0.80		ppb v/v			11/06/19 02:43	3
sopropyl alcohol		0.16		ppb v/v			11/06/19 02:43	3
ndene	ND ND	0.080		ppb v/v			11/06/19 02:43	3
ndane	0.16 J	0.20		ppb v/v			11/06/19 02:43	3
lexane	ND	0.080		ppb v/v			11/06/19 02:43	3
Heptane Hexachlorobutadiene	0.085 J	0.20		ppb v/v			11/06/19 02:43	3
Ethylbenzene Heptane	0.054 J	0.080	0.013	ppb v/v			11/06/19 02:43	3
Dichlorodifluoromethane	0.29	0.080	0.014	ppb v/v			11/06/19 02:43	3
Dibromochloromethane	ND	0.080	0.0070	ppb v/v			11/06/19 02:4:	
Cyclohexane	0.067 J	0.20	0.023	ppb v/v			11/06/19 02:4:	
cis-1,3-Dichloropropene	ND	0.080	0.016	ppb v/v			11/06/19 02:43	3
cis-1,2-Dichloroethene	ND	0.040	0.010	ppb v/v			11/06/19 02:4	3
Chloromethane	1.2	0.20	0.066	ppb v/v			11/06/19 02:4	
Chloroform	0.24	0.080		ppb v/v			11/06/19 02:4	
Chloroethane	0.051 J	0.080		ppb v/v			11/06/19 02:4	
Chlorobenzene	ND	0.080) ppb v/v			11/06/19 02:4	-
	0.075	0.032	0.0070) ppb v/v			11/06/19 02:4	3

Client Sample ID: JR - 1115 - IA - 4

Date Collected: 10/31/19 16:13

Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Org Analyte	Result	Quaimer	RL	MDL	. Unit	ation (C D	SC/MS) (Co Prepared	ntinued) Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	ug/m3			11/06/19 02:43	1
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.56	J	0.61	0.061	ug/m3			11/06/19 02:43	1
1,1,2-Trichloroethane	ND		0.44	0 038	ug/m3				
1,1-Dichloroethane	ND		0.32		ug/m3 ug/m3			11/06/19 02:43	1
1,1-Dichloroethene	ND		0.32					11/08/19 02:43	1
1,2,3-Trimethylbenzene	ND		0.10		ug/m3			11/06/19 02:43	1
1,2,4-Trichlorobenzene	ND		0.39		ug/m3			11/06/19 02:43	1
1,2,4-Trimethylbenzene	0.33				ug/m3			11/06/19 02:43	1
1,2-Dibromoethane (EDB)	0.33 ND	5	0.39		ug/m3			11/06/19 02:43	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.13		0.61		ug/m3			11/06/19 02:43	1
ane	0.15	5	0.56	0.084	ug/m3			11/06/19 02:43	1
1,2-Dichlorobenzene	ND		0.48	0.10	ug/m3				
1,2-Dichloroethane	0.057	Л	0.32		ug/m3 ug/m3			11/06/19 02:43	1
1,2-Dichloropropane	ND	•	0.37		ug/m3			11/06/19 02:43	1
1,3,5-Trimethylbenzene	ND		0.39					11/06/19 02:43	1
1,3-Butadiene	ND		0.35		ug/m3			11/06/19 02:43	1
1,3-Dichlorobenzene	ND				ug/m3			11/06/19 02:43	1
1,4-Dichlorobenzene	0.29		0.48		ug/m3			11/06/19 02:43	1
1,4-Dioxane	0.29 ND	J	0.48	0.096	-			11/06/19 02:43	1
2,2,4-Trimethylpentane			0.72		ug/m3			11/06/19 02:43	1
2,3-Dimethylpentane	0.36	J	0.93	0.037				11/06/19 02:43	1
2-Butanone (MEK)	ND		0.33		ug/m3			11/06/19 02:43	1
2-Hexanone	1.5		0.94		ug/m3			11/06/19 02:43	1
	0.12	J	0.82	0.066				11/06/19 02:43	1
2-Methylbutane	3.0		0.59		ug/m3			11/06/19 02:43	1
2-Methylpentane	0.55		0.28	0.049	ug/m3			11/06/19 02:43	1
4-Ethyltoluene	ND		0.79	0.10	ug/m3			11/06/19 02:43	1
4-Methyl-2-pentanone (MIBK)	0.97		0.82	0.22	ug/m3			11/06/19 02:43	1
Acetone	13 -	GI \	4.8	1.3	ug/m3			11/06/19 02:43	1
Benzene	0.56	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.26	0.026	ug/m3			11/06/19 02:43	1
Benzyl chloride	ND		0.83	0.20	ug/m3			11/06/19 02:43	1
Bromodichloromethane	0.17 、	J	0.54	0.12 (ug/m3			11/06/19 02:43	1
Bromoform	ND	(1)	0.83	0.093 u	-			11/06/19 02:43	
Bromomethane	0.088 、	1 1	0.31	0.085 ı	-			11/06/19 02:43	1
Carbon disulfide	0.74		0.62	0.034 t				11/06/19 02:43	1
Carbon tetrachloride	0.47		0.20	0.044 u	-			11/06/19 02:43	1
Chlorobenzene	ND		0.37	0.028 i					1
Chloroethane	0.14 J	l	0.21	0.077 u	0			11/06/19 02:43	1
Chloroform	1.2		0.39	0.034 u				11/06/19 02:43	1
Chloromethane	2.5		0.41	0.14 u				11/06/19 02:43	1
cis-1,2-Dichloroethene	ND		0.16	0.040 u				11/06/19 02:43	1
cis-1,3-Dichloropropene	ND		0.36		-			11/06/19 02:43	1
Cyclohexane	0.23 J		0.69	0.073 u				11/06/19 02:43	1
Dibromochloromethane	0.25 J ND			0.079 u				1/06/19 02:43	1
Dichlorodifluoromethane	1.4		0.68	0.060 u				1/06/19 02:43	1
Ethylbenzene	0.23 J		0.40	0.069 u				1/06/19 02:43	1
Heptane			0.35	0.056 u				1/06/19 02:43	1
Hexachlorobutadiene	0.35 J ND		0.82	0.057 u				1/06/19 02:43	1
Hexane			0.85	0.34 u			1	1/06/19 02:43	1
	0.55 J		0.70	0.046 u	g/m3		1	1/06/19 02:43	1

Eurofins TestAmerica, Knoxville

Job ID: 140-17206-1

Lab Sample ID: 140-17206-6 Matrix: Air

Matrix: Air

Lab Sample ID: 140-17206-6

Client Sample ID: JR - 1115 - IA - 4

Date Collected: 10/31/19 16:13 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

	D11 E
Analyzed 11/06/19 02:43	Dil F
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43 11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
11/06/19 02:43	
Analyzed	Dil Fac
11/06/19 02:43	Dirta
	·
Analyzed	Dil Fac
11/07/19 13:23	1.53
9	Analyzed

Method: TO 15 LL - Volatile Org Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v		•	11/06/19 03:40	1
1,1,2,2-Tetrachloroethane	ND		0.080		ppb v/v			11/06/19 03:40	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.070	J	0.080		ppb v/v			11/06/19 03:40	1
ne								11/00/13 03.40	1
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/06/19 03:40	4
1,1-Dichloroethane	ND		0.080		ppb v/v				1
1,1-Dichloroethene	ND				••			11/06/19 03:40	1
	ND		0.040	0.0080	ppb v/v			11/06/19 03:40	1
1,2,3-Trimethylbenzene	0.050	J	0.080	0.036	ppb v/v			11/06/19 03:40	. 1

Client Sample ID: AA - 103119

Date Collected: 10/31/19 16:15 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-7

Matrix: Air

Method: TO 15 LL - Volatile O Analyte		pounds Qualifier	in Ambient Air RL		oncentration Unit D		Dil Fac
1,2,4-Trichlorobenzene	ND		0.080		ppb v/v	11/06/19 03:40	1
1,2,4-Trimethylbenzene	0.087		0.080		ppb v/v	11/06/19 03:40	1
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v	11/06/19 03:40	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080		ppb v/v	11/06/19 03:40	1
ane							
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v	11/06/19 03:40	1
1,2-Dichloroethane	0.013	J	0.080	0.010	ppb v/v	11/06/19 03:40	1
1,2-Dichloropropane	ND		0.080	0.010	ppb v/v	11/06/19 03:40	1
1,3,5-Trimethylbenzene	0.042	J	0.080	0.022	ppb v/v	11/06/19 03:40	1
1,3-Butadiene	ND		0.16	0.019	ppb v/v	11/06/19 03:40	1
1,3-Dichlorobenzene	ND		0.080	0.016	ppb v/v	11/06/19 03:40	1
1,4-Dichlorobenzene	0.028	J	0.080	0.016	ppb v/v	11/06/19 03:40	1
1,4-Dioxane	0.037	J	0.20	0.030	ppb v/v	11/06/19 03:40	1
2,2,4-Trimethylpentane	0.094	J	0.20	0.0080	ppb v/v	11/06/19 03:40	1
2,3-Dimethylpentane	0.026	J	0.080	0.026	ppb v/v	11/06/19 03:40	1
2-Butanone (MEK)	2.3		0.32	0.073	ppb v/v	11/06/19 03:40	1
2-Hexanone	0.28		0.20	0.016	ppb v/v	11/06/19 03:40	1
2-Methylbutane	0.71		0.20	0.063	ppb v/v	11/06/19 03:40	1
2-Methylpentane	0.14		0.080	0.014	ppb v/v	11/06/19 03:40	1
4-Ethyltoluene	ND		0.16	0.021	ppb v/v	11/06/19 03:40	1
4-Methyl-2-pentanone (MIBK)	ND	s	0.20	0.054	ppb v/v	11/06/19 03:40	1
Acetone	6.3	-G+ \	2.0	0.57	ppb v/v	11/06/19 03:40	1
Benzene	0.15	, 4000 P	0.080	0.0080	ppb v/v	11/06/19 03:40	1
Benzyl chloride	ND		0.16	0.038	ppb v/v	11/06/19 03:40	1
Bromodichloromethane	ND		0.080	0.018	ppb v/v	11/06/19 03:40	1
Bromoform	ND	U)	0.080	0.0090	ppb v/v	11/06/19 03:40	1
Bromomethane	ND		0.080	0.022	ppb v/v	11/06/19 03:40	1
Carbon disulfide	0.36		0.20	0.011	ppb v/v	11/06/19 03:40	1
Carbon tetrachloride	0.079		0.032	0.0070	ppb v/v	11/06/19 03:40	1
Chlorobenzene	ND		0.080	0.0060	ppb v/v	11/06/19 03:40	1
Chloroethane	ND		0.080	0.029	ppb v/v	11/06/19 03:40	1
Chloroform	0.045	J	0.080	0.0070	ppb v/v	11/06/19 03:40	1
Chloromethane	0.69		0.20	0.066	ppb v/v	11/06/19 03:40	1
cis-1,2-Dichloroethene	ND		0.040	0.010	ppb v/v	11/06/19 03:40	1
cis-1,3-Dichloropropene	ND		0.080	0.016	ppb v/v	11/06/19 03:40	1
Cyclohexane	0.075	J	0.20	0.023	ppb v/v	11/06/19 03:40	1
Dibromochloromethane	ND		0.080	0.0070	ppb v/v	11/06/19 03:40	1
Dichlorodifluoromethane	0.30		0.080	0.014	ppb v/v	11/06/19 03:40	1
Ethylbenzene	0.050	J	0.080	0.013	ppb v/v	11/06/19 03:40	1
Heptane	0.084	J	0.20	0.014	ppb v/v	11/06/19 03:40	1
Hexachlorobutadiene	ND		0.080	0.032	ppb v/v	11/06/19 03:40	1
Hexane	0.16	J	0.20	0.013	ppb v/v	11/06/19 03:40	1
Indane	ND		0.080	0.035	ppb v/v	11/06/19 03:40	1
Indene	ND		0.16	0.039	ppb v/v	11/06/19 03:40	1
Isopropyl alcohol	0.94		0.80	0.22	ppb v/v	11/06/19 03:40	1
lsopropylbenzene	ND		0.16	0.017	ppb v/v	11/06/19 03:40	1
Methyl tert-butyl ether	ND		0.16	0.052	ppb v/v	11/06/19 03:40	1
Methylene Chloride	0.54	B- UB	0.40		ppb v/v	11/06/19 03:40	1
m-Xylene & p-Xylene	0.17	-	0.080		ppb v/v	11/06/19 03:40	1

Job ID: 140-17206-1

Matrix: Air

Lab Sample ID: 140-17206-7

Client Sample ID: AA - 103119

Date Collected: 10/31/19 16:15 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Or Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	
Naphthalene	ND		0.20		ppb v/v		Tiepaleu	11/06/19 03:40	Dil Fa
n-Butane	1.8		0.16		3 ppb v/v				
n-Decane	0.19	J	0.40		ppb v/v			11/06/19 03:40	
n-Dodecane	0.14	J	0.40		ppb v/v			11/06/19 03:40	
n-Octane	0.042	J	0.16		ppb v/v			11/06/19 03:40	
Nonane	0.038	J	0.20		ppb v/v			11/06/19 03:40	
n-Undecane	0.083		0.40		ppb v/v			11/06/19 03:40	
o-Xylene	0.070	J	0.080		ppb v/v			11/06/19 03:40	
Pentane	0.38		0.40		ppb v/v ppb v/v			11/06/19 03:40	
Propene	ND	•	1.0		ppb v/v ppb v/v			11/06/19 03:40	
Styrene	ND		0.080					11/06/19 03:40	
Tetrachloroethene	0.093		0.080		ppb v/v			11/06/19 03:40	
Tetrahydrofuran	ND				ppb v/v			11/06/19 03:40	
Thiophene	ND		0.40		ppb v/v			11/06/19 03:40	-
Toluene	0.43		0.080		ppb v/v			11/06/19 03:40	1
trans-1,2-Dichloroethene	0.43 ND		0.12		ppb v/v			11/06/19 03:40	1
trans-1,3-Dichloropropene			0.080		ppb v/v			11/06/19 03:40	1
Trichloroethene	ND		0.080		ppb v/v			11/06/19 03:40	1
Trichlorofluoromethane	ND		0.036		ppb v/v			11/06/19 03:40	1
Vinyl chloride	0.23		0.080		ppb v/v			11/06/19 03:40	1
-	ND		0.040	0.026	ppb v/v			11/06/19 03:40	1
Analyte 1,1,1-Trichloroethane		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.44	0.20	ug/m3			11/06/19 03:40	1
	ND		0.55	0.096	ug/m3			11/06/19 03:40	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.54	J	0.61	0.061	ug/m3			11/06/19 03:40	1
1,1,2-Trichloroethane	ND		0.44						
I,1-Dichloroethane	ND		0.44	0.038	-			11/06/19 03:40	1
1,1-Dichloroethene	ND		0.32	0.028				11/06/19 03:40	1
,2,3-Trimethylbenzene			0.16	0.032	-			11/06/19 03:40	1
,2,4-Trichlorobenzene	0.24	J	0.39		ug/m3			11/06/19 03:40	1
,2,4-Trimethylbenzene	ND		0.59		ug/m3			11/06/19 03:40	1
,2-Dibromoethane (EDB)	0.43		0.39	0.098				11/06/19 03:40	1
	ND		0.61	0.054	ug/m3			11/06/19 03:40	1
,2-Dichloro-1,1,2,2-tetrafluoroeth	0.12 .	J	0.56	0.084	ug/m3			11/06/19 03:40	1
,2-Dichlorobenzene	ND		0.40						-
,2-Dichloroethane	0.053		0.48	0.19				11/06/19 03:40	1
,2-Dichloropropane			0.32	0.040	-			11/06/19 03:40	1
,3,5-Trimethylbenzene	ND		0.37	0.046				11/06/19 03:40	1
,3-Butadiene	0.21 J		0.39	0.11 (11/06/19 03:40	1
3-Dichlorobenzene	ND		0.35	0.042 ı				11/06/19 03:40	1
	ND		0.48	0.096 ı	ıg/m3			11/06/19 03:40	1
4-Dichlorobenzene	0.17 J		0.48	0.096 u	ıg/m3			11/06/19 03:40	1
4-Dioxane	0.13 J		0.72	0.11 ι	ıg/m3			11/06/19 03:40	1
2,4-Trimethylpentane	0.44 J		0.93	0.037 L	ıg/m3			11/06/19 03:40	, 1
3-Dimethylpentane	0.11 J		0.33	0.11 u	ıg/m3			11/06/19 03:40	1
Butanone (MEK)	6.8		0.94	0.22 u				11/06/19 03:40	1
Hexanone	1.1		0.82	0.066 u				11/06/19 03:40	1
Methylbutane	2.1		0.59	0.19 u				11/06/19 03:40 11/06/19 03:40	
Methylpentane	0.49		0.28	0.049 u					1
Ethyltoluene	ND		-		g/m3			11/06/19 03:40	1

Job ID: 140-17206-1

Client Sample ID: AA - 103119 Date Collected: 10/31/19 16:15

Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile (Analyte	Result Qualifier	RL	MDL	Unit	D Prepared Analyzed	
4-Methyl-2-pentanone (MIBK)	ND	0.82		ug/m3	<u> </u>	Dil Fa
Acetone	15 et-	4.8		ug/m3	11/06/19 03:40	
Benzene	0.49	0.26		ug/m3	11/06/19 03:40	
Benzyl chloride	ND	0.83		ug/m3		
Bromodichloromethane	ND	0.54		ug/m3	11/06/19 03:40	
Bromoform	ND US	0.83		ug/m3	11/06/19 03:40	1
Bromomethane	ND	0.31		ug/m3	11/06/19 03:40	1
Carbon disulfide	1.1	0.62	0.034		11/06/19 03:40	1
Carbon tetrachloride	0.50	0.20	0.044		11/06/19 03:40	1
Chlorobenzene	ND	0.37	0.028		11/06/19 03:40	1
Chloroethane	ND	0.21	0.020		11/06/19 03:40	1
Chloroform	0.22 J	0.39	0.034	+	11/06/19 03:40	1
Chloromethane	1.4	0.33		ug/m3	11/06/19 03:40	1
is-1,2-Dichloroethene	ND	0.41			11/06/19 03:40	1
is-1,3-Dichloropropene	ND	0.16	0.040		11/06/19 03:40	1
Syclohexane	0.26 J	0.38	0.073		11/06/19 03:40	1
) ibromochloromethane	ND		0.079	-	11/06/19 03:40	1
ichlorodifluoromethane	1.5	0.68	0.060	-	11/06/19 03:40	1
thylbenzene		0.40	0.069	-	11/06/19 03:40	1
leptane	0.22 J	0.35	0.056		11/06/19 03:40	1
exachlorobutadiene	0.34 J	0.82	0.057	-	11/06/19 03:40	1
exane	ND	0.85	0.34		11/06/19 03:40	1
idane	0.55 J	0.70	0.046 (ug/m3	11/06/19 03:40	1
dene	ND	0.39	0.17 ı	•	11/06/19 03:40	1
	ND	0.76	0.19 i	ug/m3	11/06/19 03:40	1
opropyl alcohol	2.3	2.0	0.54 u	ug/m3	11/06/19 03:40	1
opropylbenzene	ND	0.79	0.084 i	ug/m3	11/06/19 03:40	1
ethyl tert-butyl ether	ND	0.58	0.19 i	ug/m3	11/06/19 03:40	1
ethylene Chloride	1.9 - B - U 🕽	1.4	0.56 L	ıg/m3	11/06/19 03:40	1
-Xylene & p-Xylene	0.75	0.35	0.13 u	ıg/m3	11/06/19 03:40	1
aphthalene	ND	1.0	0.40 u	ıg/m3	11/06/19 03:40	1
Butane	4.2	0.38	0.20 u	ıg/m3	11/06/19 03:40	1
Decane	1.1 J	2.3	0.22 u	-	11/06/19 03:40	1
Dodecane	0.96 J	2.8	0.45 u		11/06/19 03:40	
Octane	0.19 J	0.75	0.075 u		11/06/19 03:40	1
onane	0.20 J	1.0	0.094 u			1
Undecane	0.53 J	2.6	0.31 u	-	11/06/19 03:40	1
Xylene	0.31 J	0.35	0.065 u		11/06/19 03:40 11/05/10 00 10	1
ntane	1.1 J	1.2	0.23 u		11/06/19 03:40	1
opene	ND	1.7	1.7 ug		11/06/19 03:40	1
rene	ND	0.34	0.10 ug		11/06/19 03:40	1
trachloroethene	0.63	0.54	0.10 uç 0.047 uç		11/06/19 03:40	1
irahydrofuran	ND	1.2			11/06/19 03:40	1
ophene	ND	0.28	0.45 ug	-	11/06/19 03:40	1
luene	1.6	0.28	0.038 ug		11/06/19 03:40	1
ns-1,2-Dichloroethene	ND		0.29 ug		11/06/19 03:40	1
ns-1,3-Dichloropropene	ND	0.32	0.028 ug		11/06/19 03:40	1
chloroethene	ND	0.36	0.041 ug		11/06/19 03:40	1
chlorofluoromethane	1.3	0.19	0.032 ug	j/m3	11/06/19 03:40	1

Lab Sample ID: 140-17206-7 Matrix: Air

Job ID: 140-17206-1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Client Sample ID: AA - 103119 Date Collected: 10/31/19 16:15

Lab Sample ID: 140-17206-7

Matrix: Air

Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.10	0.066	ug/m3		****	11/06/19 03:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140					11/06/19 03:40	1
Method: D1946 - Fixed Gas Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Helium	ND		0.17				riepaieu	11/07/19 13:40	1.65
Client Sample ID: DUP	- 103119 00					L	ab Sampl	e ID: 140-17 Mat	206-8 rix: A

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Method: 10 15 LL - Volatile Org		Qualifier	RL		Unit	Ď	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/06/19 04:37	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/06/19 04:37	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.069	J	0.080	0.0080	ppb v/v			11/06/19 04:37	1
ne									
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/06/19 04:37	1
1,1-Dichloroethane	0.0097	J	0.080	0.0070	ppb v/v			11/06/19 04:37	1
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/06/19 04:37	1
1,2,3-Trimethylbenzene	0.068	J	0.080	0.036	ppb v/v			11/06/19 04:37	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/06/19 04:37	1
1,2,4-Trimethylbenzene	0.21		0.080	0.020	ppb v/v			11/06/19 04:37	1
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v			11/06/19 04:37	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.018	J	0.080	0.012	ppb v/v			11/06/19 04:37	1
ane									
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v			11/06/19 04:37	1
1,2-Dichloroethane	0.041	J	0.080	0.010	ppb v/v			11/06/19 04:37	1
1,2-Dichloropropane	ND		0.080	0.010	ppb v/v			11/06/19 04:37	1
1,3,5-Trimethylbenzene	0.044	J	0.080	0.022	ppb v/v			11/06/19 04:37	1
1,3-Butadiene	ND		0.16	0.019	ppb v/v			11/06/19 04:37	1
1,3-Dichlorobenzene	ND		0.080	0.016	ppb v/v			11/06/19 04:37	1
1,4-Dichlorobenzene	0.048	J	0.080	0.016	ppb v/v			11/06/19 04:37	1
1,4-Dioxane	ND		0.20	0.030	ppb v/v			11/06/19 04:37	1
2,2,4-Trimethylpentane	0.26		0.20	0.0080	ppb v/v			11/06/19 04:37	1
2,3-Dimethylpentane	0.12		0.080	0.026	ppb v/v			11/06/19 04:37	1
2-Butanone (MEK)	0.85		0.32	0.073	ppb v/v			11/06/19 04:37	1
2-Hexanone	0.029	J	0.20	0.016	ppb v/v			11/06/19 04:37	1
2-Methylbutane	6.7	1	0.20	0.063	ppb v/v			11/06/19 04:37	1
2-Methylpentane	0.88	1	0.080	0.014	ppb v/v			11/06/19 04:37	1
4-Ethyltoluene	0.11	J	0.16	0.021	ppb v/v			11/06/19 04:37	1
4-Methyl-2-pentanone (MIBK)	0.11	J	0.20		ppb v/v			11/06/19 04:37	1
Acetone	16	e+ \	2.0		ppb v/v			11/06/19 04:37	1
Benzene	0.92	euch	0.080	0.0080				11/06/19 04:37	1
Benzyl chloride	ND	ist ^{ar}	0.16		ppb v/v			11/06/19 04:37	1
Bromodichloromethane	0.067	J	0.080		ppb v/v			11/06/19 04:37	1
Bromoform	ND	LU	0.080	0.0090	• •			11/06/19 04:37	1

Matrix: Air

Lab Sample ID: 140-17206-8

Client Sample ID: DUP - 103119

Date Collected: 10/31/19 00:00 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Org Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
Bromomethane	0.051	J	0.080	0.022	ppb v/v			11/06/19 04:37	
Carbon disulfide	0.052	J	0.20		ppb v/v			11/06/19 04:37	
Carbon tetrachloride	0.11		0.032	0.0070) ppb v/v			11/06/19 04:37	
Chlorobenzene	ND		0.080	0.0060) ppb v/v			11/06/19 04:37	
Chloroethane	0.39		0.080	0.029	ppb v/v			11/06/19 04:37	
Chloroform	0.60	s.	0.080		ppb v/v			11/06/19 04:37	
Chloromethane	1.3	-cr /	0.20	0.066	ppb v/v			11/06/19 04:37	
cis-1,2-Dichloroethene	ND	23 ¹¹⁰	0.040		ppb v/v			11/06/19 04:37	
cis-1,3-Dichloropropene	ND		0.080		ppb v/v			11/06/19 04:37	
Cyclohexane	0.34		0.20		ppb v/v			11/06/19 04:37	
Dibromochloromethane	ND		0.080	0.0070	ppb v/v			11/06/19 04:37	
Dichlorodifluoromethane	0.29		0.080	0.014	ppb v/v			11/06/19 04:37	
Ethylbenzene	0.16		0.080	0.013	ppb v/v			11/06/19 04:37	
Heptane	0.30		0.20	0.014	ppb v/v			11/06/19 04:37	
Hexachlorobutadiene	ND	é	0.080	0.032	ppb v/v			11/06/19 04:37	
Hexane	1.2	and the second	0.20	0.013	ppb v/v			11/06/19 04:37	1
Indane	ND		0.080	0.035	ppb v/v			11/06/19 04:37	1
Indene	ND		0.16	0.039	ppb v/v			11/06/19 04:37	1
sopropyl alcohol	1.2		0.80	0.22	ppb v/v			11/06/19 04:37	1
sopropylbenzene	0.025	J	0.16	0.017	ppb v/v			11/06/19 04:37	1
Methyl tert-butyl ether	ND		0.16	0.052	ppb v/v			11/06/19 04:37	1
Methylene Chloride	5.2	-B ∖	0.40	0.16	ppb v/v			11/06/19 04:37	1
n-Xylene & p-Xylene	0.87	1	0.080	0.029	ppb v/v			11/06/19 04:37	1
Naphthalene	ND		0.20	0.076	ppb v/v			11/06/19 04:37	1
n-Butane	12		0.16	0.083	ppb v/v			11/06/19 04:37	1
ו-Decane	0.18	J	0.40	0.038	ppb v/v			11/06/19 04:37	1
n-Dodecane	ND		0.40	0.064	ppb v/v			11/06/19 04:37	1
n-Octane	0.14	J	0.16	0.016	ppb v/v			11/06/19 04:37	1
Vonane	0.075	J	0.20	0.018	ppb v/v			11/06/19 04:37	1
n-Undecane	0.072	J	0.40	0.048	ppb v/v			11/06/19 04:37	1
o-Xylene	0.28		0.080	0.015	ppb v/v			11/06/19 04:37	1
Pentane	4.9		0.40	0.079	ppb v/v			11/06/19 04:37	1
Propene	4.3 «	er∖	1.0		ppb v/v			11/06/19 04:37	1
Styrene	0.041	J	0.080	0.024	ppb v/v			11/06/19 04:37	1
etrachloroethene	0.087		0.080	0.0070				11/06/19 04:37	1
etrahydrofuran	ND		0.40		ppb v/v			11/06/19 04:37	1
hiophene	ND		0.080		ppb v/v			11/06/19 04:37	1
oluene	3.0	7	0.12		ppb v/v			11/06/19 04:37	1
rans-1,2-Dichloroethene	0.011	Ĵ	0.080	0.0070				11/06/19 04:37	1
ans-1,3-Dichloropropene	ND		0.080	0.0090				11/06/19 04:37	1
richloroethene	ND		0.036	0.0060				11/06/19 04:37	1
richlorofluoromethane	0.28		0.080		ppb v/v			11/06/19 04:37	1
'inyl chloride	ND		0.040		ppb v/v			11/06/19 04:37	1
nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	ND		0.44		ug/m3		. Toparou	11/06/19 04:37	
,1,2,2-Tetrachloroethane	ND		0.55	0.096				11/06/19 04:37	1
,1,2-Trichloro-1,2,2-trifluoroetha	0.53	1	0.61	0.061				11/06/19 04:37	1

Client Sample ID: DUP - 103119

Sample Container: Summa Canister 6L

Date Collected: 10/31/19 00:00 Date Received: 11/02/19 10:15

Lab Sample ID: 140-17206-8 Matrix: Air

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued) Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac 1,1,2-Trichloroethane ND 0.44 0.038 ug/m3 11/06/19 04:37 1 1.1-Dichloroethane 0.039 J 0.32 0.028 ug/m3 11/06/19 04:37 1 1,1-Dichloroethene ND 0.16 0.032 ug/m3 11/06/19 04:37 1 1,2,3-Trimethylbenzene 0.33 J 0.39 0.18 ug/m3 11/06/19 04:37 1 1,2,4-Trichlorobenzene ND 0.47 ug/m3 0.59 11/06/19 04:37 1 1,2,4-Trimethylbenzene 1.0 0.39 0.098 ug/m3 11/06/19 04:37 1 1,2-Dibromoethane (EDB) ND 0.61 0.054 ug/m3 11/06/19 04:37 1 1,2-Dichloro-1,1,2,2-tetrafluoroeth 0.13 J 0.56 0.084 ug/m3 11/06/19 04:37 1 ane 1,2-Dichlorobenzene ND 0.48 0.19 ug/m3 11/06/19 04:37 1 1,2-Dichloroethane 0.17 J 0.32 0.040 ug/m3 11/06/19 04:37 1 1,2-Dichloropropane ND 0.37 0.046 ug/m3 11/06/19 04:37 1 1.3.5-Trimethylbenzene 0.22 J 0.39 0.11 ug/m3 11/06/19 04:37 1 1.3-Butadiene ND 0.35 0.042 ug/m3 11/06/19 04:37 1 1,3-Dichlorobenzene ND 0.48 0.096 ug/m3 11/06/19 04:37 1 1.4-Dichlorobenzene 0.29 J 0.48 0.096 ug/m3 11/06/19 04:37 1 1.4-Dioxane ND 0.72 0.11 ug/m3 11/06/19 04:37 1 2,2,4-Trimethylpentane 1.2 0.93 0.037 ug/m3 11/06/19 04:37 1 2,3-Dimethylpentane 0.47 0.33 0.11 ug/m3 11/06/19 04:37 1 2-Butanone (MEK) 2.5 0.94 0.22 ug/m3 11/06/19 04:37 1 2-Hexanone 0.12 J 0.82 0.066 ug/m3 11/06/19 04:37 1 2-Methylbutane 20 - Approved 0.59 0.19 ug/m3 11/06/19 04:37 1 2-Methylpentane 3.1 0.28 0.049 ug/m3 11/06/19 04:37 1 4-Ethyltoluene 0.56 J 0.79 0.10 ug/m3 11/06/19 04:37 1 4-Methyl-2-pentanone (MIBK) 0.45 J 0.82 0.22 ug/m3 11/06/19 04:37 1 Acetone 38 -C†~ 4.8 1.3 ug/m3 11/06/19 04:37 1 Benzene 2.9 and and a second 0.26 0.026 ug/m3 11/06/19 04:37 1 Benzyl chloride ND 0.83 0.20 ug/m3 11/06/19 04:37 1 Bromodichloromethane 0.45 J 0.54 0.12 ug/m3 11/06/19 04:37 1 Bromoform ND US 0.83 0.093 ug/m3 11/06/19 04:37 1 Bromomethane 0.20 J 0.31 0.085 ug/m3 11/06/19 04:37 1 Carbon disulfide 0.16 J 0.62 0.034 ug/m3 11/06/19 04:37 1 Carbon tetrachloride 0.66 0.20 0.044 ug/m3 11/06/19 04:37 1 Chlorobenzene ND 0.37 0.028 ug/m3 11/06/19 04:37 1 Chloroethane 1.0 0.21 0.077 ug/m3 11/06/19 04:37 1 Chloroform 2.9 0.39 0.034 ug/m3 11/06/19 04:37 1 Chloromethane 2.6 er \ 041 0.14 ug/m3 11/06/19 04:37 1 cis-1,2-Dichloroethene ND 0.16 0.040 ug/m3 11/06/19 04:37 1 cis-1,3-Dichloropropene ND 0.36 0.073 ug/m3 11/06/19 04:37 1 Cyclohexane 1.2 0.69 0.079 ug/m3 11/06/19 04:37 1 Dibromochloromethane ND 0.68 0.060 ug/m3 11/06/19 04:37 1 Dichlorodifluoromethane 1.4 0.40 0.069 ug/m3 11/06/19 04:37 1 Ethylbenzene 0.70 0.35 0.056 ug/m3 11/06/19 04:37 1 Heptane 1.2 0.82 0.057 ug/m3 11/06/19 04:37 1 Hexachlorobutadiene ND 0.85 0.34 ug/m3 11/06/19 04:37 1 Hexane 4.2 0 70 0.046 ug/m3 11/06/19 04:37 1 Indane ND 0.39 0.17 ug/m3 11/06/19 04:37 1 Indene ND 0.76 0.19 ug/m3 11/06/19 04:37 1 Isopropyl alcohol 3.0 2.0 0.54 ug/m3 11/06/19 04:37 1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Client Sample ID: DUP - 103119

Date Collected: 10/31/19 00:00 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17206-8

Matrix: Air

Method: TO 15 LL - Volatil Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
lsopropylbenzene	0.13	J	0.79	0.084	ug/m3			11/06/19 04:37	1
Methyl tert-butyl ether	ND		0.58	0.19	ug/m3			11/06/19 04:37	1
Methylene Chloride	18	-B]	1.4	0.56	ug/m3			11/06/19 04:37	1
m-Xylene & p-Xylene	3.8	and the second s	0.35	0.13	ug/m3			11/06/19 04:37	1
Naphthalene	ND	ager.	1.0	0.40	ug/m3			11/06/19 04:37	1
n-Butane	29		0.38	0.20	ug/m3			11/06/19 04:37	1
n-Decane	1.1	J	2.3	0.22	ug/m3			11/06/19 04:37	1
n-Dodecane	ND		2.8	0.45	ug/m3			11/06/19 04:37	1
n-Octane	0.68	J	0.75	0.075	ug/m3			11/06/19 04:37	1
Nonane	0.40	J	1.0	0.094	ug/m3			11/06/19 04:37	1
n-Undecane	0.46	J	2.6	0.31	ug/m3			11/06/19 04:37	1
o-Xylene	1.2		0.35	0.065	ug/m3			11/06/19 04:37	1
Pentane	14		1.2	0.23	ug/m3			11/06/19 04:37	1
Propene	7.5	er	1.7	1.7	ug/m3			11/06/19 04:37	1
Styrene	0.17	J	0.34	0.10	ug/m3			11/06/19 04:37	1
Tetrachloroethene	0.59		0.54	0.047	ug/m3			11/06/19 04:37	1
Tetrahydrofuran	ND		1.2	0.45	ug/m3			11/06/19 04:37	1
Thiophene	ND		0.28	0.038	ug/m3			11/06/19 04:37	1
Toluene	11	1	0.45	0.29	ug/m3			11/06/19 04:37	1
trans-1,2-Dichloroethene	0.045	J	0.32		ug/m3			11/06/19 04:37	1
trans-1,3-Dichloropropene	ND		0.36	0.041	ug/m3			11/06/19 04:37	1
Trichloroethene	ND		0.19	0.032	ug/m3			11/06/19 04:37	1
Trichlorofluoromethane	1.6		0.45	0.062	ug/m3			11/06/19 04:37	1
Vinyl chloride	ND		0.10	0.066	ug/m3			11/06/19 04:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		60 - 140			-	•	11/06/19 04:37	1
Method: D1946 - Fixed Gas	es (Helium)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Helium	ND		0.14		% v/v			11/07/19 13:57	1.38

Eurofins TestAmerica, New York City Ser	47-32 32nd Place	Suite 1141	Long Island City, NY 11101-2425
Eur	47-33	Suite	rong

.

Canister Samples Chain of Custody Record

TestAmerica Laboratories, Inc. assumes no liability with respect to the collection and shipment of these samples.

cong isanio City, NT 11101-2425									Ē									
Client Contact Information		Client Pr	oject Mar	Client Project Manager: Bru	ce W. Ahrens	ens	Samples Col	Samples Cotlected Br. Boh Ameld / Altria D. J.	A Amold	/ Albino			lest	Amenca	Laborat	ories, Inc.	lestAmenca Laboratories, inc. d/b/a Eurofins TestAmerica	estAmerica
Company Name: Arcadis U.S., Inc		Phone: (Phone: (585) 662 4034	034				ierred by. NO		/ Aloina	Kedzepa	gic						
Address: 295 Woodcliff Drive		Email: br	uce.ahrei	arcac	lis.com						F		ŀ	ŀ	ŀ		of i COCs	cs
City/State/Zip: Fairport/ NY/ 14450												(uc				TALS P	TALS Project #:	
Phone: (585) 662 4034		Site Cont	Site Contact: Alhina Bodzor	Dodrow					(olloe					For Lab Use Only:	
FAX: (585) 385 4198		TelfFay 3	TeliFay 212-26E 46E4	AZDAU PI	pagic				θΛ¢			98 6				÷.,	Walk-in Client	
Project Name: Con Edison - East 11th Street			ador A) 7 A			elo				-	ab Sampling:	
Site/Location: E. 11th Street - Jacob Rils		10000	Analys	s I umar	ound Time				۲0۸			u u					 > -	
P O # 30005328		Rush (Specifiv):	Suandaro (specific): Rush (Specifiv):	101/02	0				1 p.1			ójijo	iA tr				Job / SDG No.:	
Sample Identification	Sample Start Date	Time Start	Sample End Date	Stop	Canister Vacuum in Field, "Hg	Canister Vacuum in Field, *Hg	Flow Controller ID	Canister ID	-18 SiM -18 (Stands	4 36C 4 3C	9461-0 MT 91/31 A	et (Please sp of (Please sp	oor AirlAmble	688	Vapor Extrac dfill Gas	91 (Please speci	(See below for Add'l Items)	ltems)
7K-170~2A-1	tolai 1.9	C430	okii n	1/ 23	(Start)	(Stop)	351700	7001					pul	lios	ueŋ		Sample Specific Notes:	otes:
		1000	-		+		0.0		<		-	3	×					
AN ITOLATION		UNCH	+	1614		1	294 11	11041	×			X	<u>``</u>					
, X	-+	tleO	_	1631	-29	ý	11522	11559	×			X	<`>					
I A -	-	0804		16 14	-29	-3	11990	11028	×			2	1					
47K-1115-IA-9		Sh to		1630	- 30	-2	09654	10562	×				5		+			
27 R~ 1115 - TA-4		0350		1613	- 30	7	ቲይት //	10407	×			×	\$3					
AA - 1031 M		0518		1615	-30	9-	90660	11681	×		-		$\overline{\Sigma}$		+			
Dup-103119	->	X	-0-	X	-29	8	1	09 508	×				$\langle \neg$		+	_		
												,			<u> </u>			
														<u> </u>	1			
		Γ		Ter	nperature	nperature (Fahrenheit)	÷		Ror		110.	h	ſ		ł			
		Stop	SOLIATIN		Amplent					いが	20	τ, ζ	5[х Г	じての	BYEN, FOR	o ito
	10	1 [Γ.	essure (in	essure (inches of Hg)				H 1	8		7	3	0	1.1		
		Stop	Journal		Ambient				Curted	<u><u></u></u>	-	- \	لہ	6 0 0	۶Ż	L'		
C Requirements 8			.								2	1 pd/	6/0/	Ł	ł		L	
Plus Helium and	(-	arget	Analyte	يو. ج	+M-	(att	at fached)		×	•	1							•
Samples Shipped by:	ſ		Date / Time		110	9:00	C DO Samples Received by:	ived by:	ŀ	\mathbf{k}	ł				┢			Τ
Samples Relinquished by: //	×	T	Date / Time-			02.1			E E	3 }	$\langle $							
Relinnished hur Por Hing				11/0	119	15:30	Keceiven by		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	臣	5/2		1	7/C				
;			Date / Time:				Received by:)					1		Γ	Q - 1	i v	c
15 db Use Only: Shipper Name:			Opened by:				Condition:									010	OCAPIS + Inly 80	Re
/20																		
019														Form	No. CA-C	2-WI-003, F	Form No. CA-C-Wi-003, Rev. 2.17, dated 10/22/2019	0/22/2019
9																		

Consolidated Edison Company of New York, Inc. – East 11th Street Site

DATA USABILITY SUMMARY REPORT

New York City, New York

Volatile Organic Compound (VOC) TO-15 Analysis

SDG #140-17207-1

Analyses Performed By: Eurofins-TestAmerica Knoxville Knoxville, Tennessee

Report #34802R Review Level: Tier III Project: 30005328.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 140-17207-1 for samples collected in association with the with the Con Edison East 11th Street site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample				Anal	ysis		
SDG	Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC	svoc	РСВ	EPH	ME T	MISC
	JR - 1223 - IA - 1-20191101	140-17207-1	Air	11/1/2019		х					
	JR - 1223 - IA - 2-20191101	140-17207-2	Air	11/1/2019		х					
	JR - 1223 - IA - 3-20191101	140-17207-3	Air	11/1/2019		x					
140-17207-1	JR - 1223 - IA - 4-20191101	140-17207-4	Air	11/1/2019		x					
	AA 110119- 20191101	140-17207-5	Air	11/1/2019		х					
	DUP - 110119- 20191101	140-17207-6	Air	11/1/2019	JR - 1223 - IA - 4-20191101	х					

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1. San	nple receipt condition		Х		Х	
2. Rec	quested analyses and sample results		Х		Х	
3. Mas	ster tracking list		Х		Х	
4. Met	hods of analysis		Х		Х	
5. Rep	porting limits		Х		Х	
6. San	nple collection date		Х		Х	
7. Lab	oratory sample received date		Х		Х	
8. San	nple preservation verification (as applicable)		Х		Х	
9. San	nple preparation/extraction/analysis dates		Х		Х	
10. Full	y executed Chain-of-Custody (COC) form		Х		Х	
	rative summary of Quality Assurance or sample blems provided		х		Х	
12. Data	a Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 and American Society for Testing and Materials (ASTM) Method D-1946. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31-Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15), NYSDEC Modifications to R9 TO-15 QA/QC Criteria October 2009.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

arcadis.com g:\project_data\project chemistry\data validation reports\2019\34501-35000\34802\34802r_for sdg 140-17207-1.docx

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15 and ASTM D-1946	Air	30 days from collection to analysis	Ambient Temperature	< -1" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
JR - 1223 - IA - 1-20191101 JR - 1223 - IA - 2-20191101 JR - 1223 - IA - 3-20191101 AA 110119-20191101 DUP - 110119-20191101	Methylene Chloride	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations within this SDG	ICAL %RSD	Acetone	32.8%
	CCV %D	Bromoform	-31.4%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF <0.05	Non-detect	R	
	KKF <0.05	Detect J		
Initial and Continuing	RRF <0.01 ¹	Non-detect	R	
Calibration	RRF <0.01	Detect	J	
		Non-detect		
	RRF >0.05 or RRF >0.01 ¹	Detect	No Action	
		Non-detect	UJ	
	%RSD > 30% or a correlation coefficient <0.99	Detect	J	
Initial Calibration		Non-detect	R	
	%RSD >90%	Detect	J	

arcadis.com

g:\project_data\project chemistry\data validation reports\2019\34501-35000\34802\34802r_for sdg 140-17207-1.docx

Initial/Continuing	Criteria	Sample Result	Qualification
		Non-detect	No Action
	%D >30% (increase in sensitivity)	Detect	J
Continuing Colibration	nuing Calibration %D >30% (decrease in sensitivity)	Non-detect	UJ
Continuing Calibration		Detect	J
		Non-detect	R
	%D >90% (increase/decrease in sensitivity)	Detect	J

Note:

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit a percent recovery within the established acceptance limits of 70% to 130%.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130% (60% to 140% for poor responding compounds).

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
All sample locations within this SDG	Bromoform	<ll but="">10%</ll>

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (III.) 4200/	Non-detect	No Action
> the upper control limit (UL) 130%	Detect	J

arcadis.com

g:\project_data\project chemistry\data validation reports\2019\34501-35000\34802\34802r_for sdg 140-17207-1.docx

Control Limit	Sample Result	Qualification
the lower control limit (11) 700/ but 100/	Non-detect	UJ
< the lower control limit (LL) 70% but > 10%	Detect	J
400/	Non-detect	R
< 10%	Detect	J

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Results for duplicate samples are summarized in the following table (ug/m3).

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	0.53 J	0.56 J	AC
	1,2,4-TRIMETHYLBENZENE	0.39 U	0.12 J	AC
	1,2-DICHLOROETHANE	0.06 J	0.06 J	AC
	1,2-DICHLOROTETRAFLUOROETHANE	0.13 J	0.12 J	AC
	1,4-DIOXANE (P-DIOXANE)	0.2 J	0.72 U	AC
	2,2,4-TRIMETHYLPENTANE	0.37 J	0.15 J	AC
	2,3-DIMETHYL PENTANE	0.17 J	0.33 U	AC
	2-HEXANONE	0.073 J	0.15 J	AC
	2-METHYL BUTANE	8.5	0.98	NC
JR - 1223 - IA - 4-20191101/	2-METHYL-PENTANE	1.2	0.27 J	NC
DUP - 110119-20191101	ACETONE	7.4	13	AC
	BENZENE	0.5	0.37	AC
	CARBON DISULFIDE	0.041 J	0.62 U	AC
	CARBON TETRACHLORIDE	0.44	0.5	AC
	CHLOROFORM	0.38 J	0.42	AC
	CHLOROMETHANE	1.5	1.3	AC
	CYCLOHEXANE	0.3 J	0.14 J	AC
	DICHLORODIFLUOROMETHANE	1.5	1.3	AC
	ETHYLBENZENE	0.15 J	0.11 J	AC

DATA USABILITY SUMMARY REPORT

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	ISOPROPANOL	12	14	15.3%
	M,P-XYLENES	0.44	0.32 J	AC
	METHYL ETHYL KETONE (2-BUTANONE)	0.84 J	1.1	AC
	METHYL ISOBUTYL KETONE (4-METHYL-2- PENTANONE)	0.25 J	0.82 U	AC
	METHYLENE CHLORIDE	11	2 U	NC
	N-HEPTANE	0.37 J	0.23 J	AC
	N-HEXANE	2	0.38 J	AC
	O-XYLENE (1,2-DIMETHYLBENZENE)	0.15 J	0.13 J	AC
	PROPYLENE	1.8	1.7 U	AC
	TETRACHLOROETHYLENE(PCE)	0.48 J	0.63	AC
	TOLUENE	2	0.72	AC
	TRANS-1,2-DICHLOROETHENE	0.028 J	0.32 U	AC
	TRICHLOROFLUOROMETHANE	1.5	1.3	AC
	n-BUTANE	20	3.8	136.1%
	PENTANE	5.6	0.64 J	NC
	n-OCTANE	0.14 J	0.13 J	AC
	NONANE	1.0 U	0.13 J	AC
	n-DECANE	2.3 U	0.39 J	AC
	n-DODECANE	2.5 J	2.8 U	AC

Notes:

AC = Acceptable

NC = Not Compliant

The compounds 2-Methylbutane, 2-Methylpentane, n-Butane, Pentane and Methylene Chloride associated with sample locations JR - 1223 - IA - 4-20191101 and DUP - 110119-20191101 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

DATA USABILITY SUMMARY REPORT

10. System Performance and Overall Assessment

Note: The "CI" qualifier was removed and replaced with a "J" qualifier to indicate that the detected compound results for the associated samples mentioned above are estimated (potential high bias).

- The laboratory qualified the detected Acetone results for sample locations JR 1223 IA 2-20191101, JR 1223 IA 3-20191101 and DUP 110119-20191101 with a "CI" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.
- The laboratory qualified the detected Chloromethane results for sample locations JR 1223 IA 1-20191101, JR 1223 IA 2-20191101, JR 1223 IA 3-20191101 and JR 1223 IA 4-20191101 with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.
- The laboratory qualified the detected Propene results for sample locations JR 1223 IA 1-20191101, JR 1223 IA 2-20191101, JR 1223 IA 3-20191101 and JR 1223 IA 4-20191101 with a "Cl" qualifier to indicate the peak identified by the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 and ASTM D-1946	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC/	MS)			
Tier II Validation					
Holding times		Х		X	
Canister return pressure (<-1"Hg)		X		X	
Reporting limits (units)		Х		Х	
Blanks	I				1
A. Method blanks		Х	Х		
B. Equipment blanks					Х
C. Trip blanks					Х
Laboratory Control Sample (LCS)		Х	Х		
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)	X				Х
Matrix Spike Duplicate(MSD)	X				Х
MS/MSD Precision (RPD)	X				Х
Field/Lab Duplicate (RPD)		X	Х		
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		X		Х	
Moisture Content		X		Х	
Tier III Validation	I	I			1
System performance and column resolution		Х		Х	
Initial calibration %RSDs		X	Х		
Continuing calibration RRFs		X		Х	
Continuing calibration %Ds		X	Х		
Instrument tune and performance check		X		Х	
Ion abundance criteria for each instrument used		X		Х	
Internal standard		X		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		X		Х	
B. Quantitation Reports		X		X	

arcadis.com

DATA USABILITY SUMMARY REPORT

Re	ported			Not
No	Yes	No	Yes	Required
RY (GC/I	MS)			
	x		x	
	Х		Х	
	Х		Х	
	No	RY (GC/MS) X X	Reported Acceleration No Yes No RY (GC/MS) X X X X X	No Yes No Yes RY (GC/MS) X X X X X

Notes:

%RSD Relative standard deviation

- %R Percent recovery
- RPD Relative percent difference
- %D Percent difference

Sample				Matrix		(Complianc	y ¹		
Delivery Group (SDG)	Sampling Date	Protocol Sample II	Sample ID		VOC	DRO/ GRO	Diss Gases	МЕТ	MISC	Noncompliance
	11/1/2019	USEPA	JR - 1223 - IA - 1-	Air	No					VOC: Compound Identification, LCS %Rec,
	11/1/2010	TO-15	20191101	7.01						ICAL %RSD, CCAL %D, Associated Blanks
11/1/2	11/1/2019	USEPA	JR - 1223 - IA - 2-	Air	No					VOC: Compound Identification, LCS %Rec,
	11/1/2019	TO-15	20191101	All	INU					ICAL %RSD, CCAL %D, Associated Blanks
	11/1/2010	11/1/2010 USEPA	JR - 1223 - IA - 3-	Air	No					VOC: Compound Identification, LCS %Rec,
	11/1/2019	TO-15	20191101	All	INU					ICAL %RSD, CCAL %D, Associated Blanks
140-17207-1	11/1/2010	USEPA	JR - 1223 - IA - 4-	Air	No					VOC: Compound Identification, LCS %Rec,
	11/1/2019	TO-15	20191101	All	INO					ICAL %RSD, CCAL %D, Field Duplicate RPD
	11/1/2010	USEPA	AA 110119-	Air	No					VOC: LCS %Rec, ICAL %RSD, CCAL %D,
11/1/20	11/1/2019	TO-15	20191101	All	INO					Associated Blanks
		USEPA	DUP - 110119-							VOC: Compound Identification, LCS %Rec,
	11/1/2019	TO-15	20191101	Air	No	No				ICAL %RSD, CCAL %D, Associated Blanks, Field Duplicate RPD

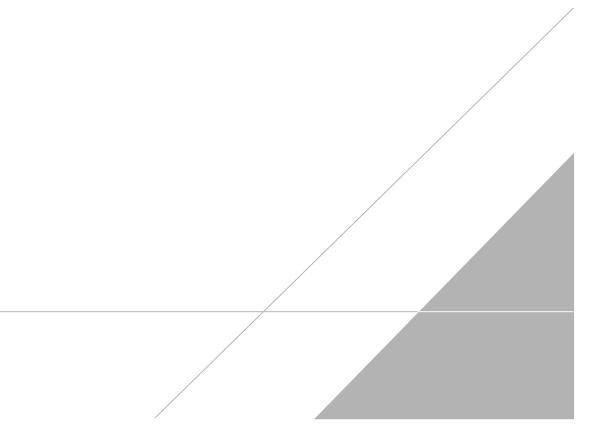
SAMPLE COMPLIANCE REPORT

Note:

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:


Joych & Home

DATE: January 28, 2020

PEER REVIEW: Dennis Capria

DATE: January 29, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Client Sample ID: JR - 1223 - IA - 1 Date Collected: 11/01/19 14:59 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-1

Matrix: Air

Method: TO 15 LL - Volatile Org. Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/05/19 16:10	
1,1,2,2-Tetrachloroethane	ND		0.080		ppb v/v			11/05/19 16:10	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.068	J	0.080		ppb v/v			11/05/19 16:10	
ne									
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 16:10	
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 16:10	
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/05/19 16:10	
1,2,3-Trimethylbenzene	0.051	J	0.080	0.036	ppb v/v			11/05/19 16:10	
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/05/19 16:10	
1,2,4-Trimethylbenzene	0.084		0.080	0.020	ppb v/v			11/05/19 16:10	
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v			11/05/19 16:10	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080	0.012	ppb v/v			11/05/19 16:10	
ane									
1,2-Dichlorobenzene	ND		0.080		ppb v/v			11/05/19 16:10	
1,2-Dichloroethane	0.029	J	0.080		ppb v/v			11/05/19 16:10	
1,2-Dichloropropane	ND		0.080		ppb v/v			11/05/19 16:10	1
1,3,5-Trimethylbenzene	0.026	J	0.080		ppb v/v			11/05/19 16:10	1
1,3-Butadiene	ND		0.16		ppb v/v			11/05/19 16:10	1
1,3-Dichlorobenzene	ND		0.080		ppb v/v			11/05/19 16:10	1
1,4-Dichlorobenzene	0.045		0.080		ppb v/v			11/05/19 16:10	1
1,4-Dioxane	0.082		0.20		ppb v/v			11/05/19 16:10	1
2,2,4-Trimethylpentane	0.047	J	0.20	0.0080	ppb v/v			11/05/19 16:10	1
2,3-Dimethylpentane	0.030	J	0.080		ppb v/v			11/05/19 16:10	1
2-Butanone (MEK)	0.30	J	0.32		ppb v/v			11/05/19 16:10	1
2-Hexanone	0.021	J	0.20	0.016	ppb v/v			11/05/19 16:10	1
2-Methylbutane	2.4		0.20	0.063	ppb v/v			11/05/19 16:10	1
2-Methylpentane	0.11		0.080	0.014	ppb v/v			11/05/19 16:10	1
4-Ethyltoluene	0.047	J	0.16	0.021	ppb v/v			11/05/19 16:10	1
4-Methyl-2-pentanone (MIBK)	0.089	J	0.20	0.054	ppb v/v			11/05/19 16:10	1
Acetone	4.6		2.0	0.57	ppb v/v			11/05/19 16:10	1
Benzene	0.16		0.080	0.0080	ppb v/v			11/05/19 16:10	1
Benzyl chloride	ND		0.16	0.038	ppb v/v			11/05/19 16:10	1
Bromodichloromethane	0.31		0.080	0.018	ppb v/v			11/05/19 16:10	1
Bromoform	ND	UΣ	0.080	0.0090	ppb v/v			11/05/19 16:10	1
Bromomethane	ND		0.080	0.022	ppb v/v			11/05/19 16:10	1
Carbon disulfide	0.070	J	0.20	0.011	ppb v/v			11/05/19 16:10	1
Carbon tetrachloride	0.076		0.032	0.0070	ppb v/v			11/05/19 16:10	1
Chlorobenzene	ND		0.080	0.0060	ppb v/v			11/05/19 16:10	1
Chloroethane	ND		0.080	0.029	ppb v/v			11/05/19 16:10	1
Chloroform	2.7	,	0.080	0.0070	ppb v/v			11/05/19 16:10	1
Chloromethane	0.76 -	et \	0.20	0.066	ppb v/v			11/05/19 16:10	1
sis-1,2-Dichloroethene	ND	Sec.2	0.040	0.010	ppb v/v			11/05/19 16:10	1
sis-1,3-Dichloropropene	ND		0.080	0.016				11/05/19 16:10	1
Cyclohexane	0.18	J	0.20	0.023				11/05/19 16:10	1
Dibromochloromethane	0.033		0.080	0.0070				11/05/19 16:10	1
Dichlorodifluoromethane	0.23		0.080	0.014	••			11/05/19 16:10	1
Ethylbenzene	0.080		0.080	0.013				11/05/19 16:10	1
leptane	0.11	J	0.20	0.014				11/05/19 16:10	1
- lexachlorobutadiene	ND		0.080	0.032				11/05/19 16:10	1

Client Sample Results

Matrix: Air

Lab Sample ID: 140-17207-1

Client Sample ID: JR - 1223 - IA - 1 Date Collected: 11/01/19 14:59 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Analyte Hexane		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Indane	0.22		0.20		ppb v/v			11/05/19 16:10	
Indene	ND		0.080		ppb v/v			11/05/19 16:10	
	ND		0.16		ppb v/v			11/05/19 16:10	
Isopropyl alcohol	2.3		0.80		ppb v/v			11/05/19 16:10	
Isopropylbenzene	ND		0.16		ppb v/v			11/05/19 16:10	
Methyl tert-butyl ether	ND	~	0.16		ppb v/v			11/05/19 16:10	
Methylene Chloride		-B-UB	0.40	0.16	ppb v/v			11/05/19 16:10	
m-Xylene & p-Xylene	0.32		0.080	0.029	ppb v/v			11/05/19 16:10	
Naphthalene	0.091	J	0.20	0.076	ppb v/v			11/05/19 16:10	
n-Butane	11		0.16	0.083	ppb v/v			11/05/19 16:10	
n-Decane	0.21	J	0.40	0.038	ppb v/v			11/05/19 16:10	
n-Dodecane	1.6		0.40	0.064	ppb v/v			11/05/19 16:10	
n-Octane	0.063	J	0.16	0.016	ppb v/v			11/05/19 16:10	
Nonane	0.054	J	0.20		ppb v/v			11/05/19 16:10	
n-Undecane	0.11	J	0.40		ppb v/v			11/05/19 16:10	
o-Xylene	0.15		0.080		ppb v/v			11/05/19 16:10	
Pentane	16		0.40		ppb v/v			11/05/19 16:10	
Propene	1.2	-e \	1.0		ppb v/v			11/05/19 16:10	
Styrene	0.037	12637	0.080		ppb v/v			11/05/19 16:10	
Tetrachloroethene	0.082	0	0.080		ppb v/v			11/05/19 16:10	
Tetrahydrofuran	ND		0.40		ppb v/v ppb v/v			11/05/19 16:10	•
Thiophene	ND		0.080		ppb v/v				
Toluene	4.3		0.12		ppb v/v			11/05/19 16:10	
trans-1,2-Dichloroethene	4.3 ND		0.080	0.078				11/05/19 16:10	-
trans-1,3-Dichloropropene	ND		0.080		••			11/05/19 16:10	
Trichloroethene	ND		0.080	0.0090				11/05/19 16:10	1
Trichlorofluoromethane	0.22		0.030	0.0060				11/05/19 16:10	1
Vinyl chloride	0.22 ND				ppb v/v			11/05/19 16:10	1
•			0.040	0.026	ppb v/v			11/05/19 16:10	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44		ug/m3			11/05/19 16:10	1
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	-			11/05/19 16:10	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.52	J	0.61	0.061	ug/m3			11/05/19 16:10	1
ne 1 1 2 Trichloroothone			.						
1,1,2-Trichloroethane	ND		0.44	0.038	-			11/05/19 16:10	1
1,1-Dichloroethane	ND		0.32	0.028				11/05/19 16:10	1
1,1-Dichloroethene	ND		0.16	0.032	•			11/05/19 16:10	1
1,2,3-Trimethylbenzene	0.25	J	0.39	0.18				11/05/19 16:10	1
1,2,4-Trichlorobenzene	ND		0.59	0.47	ug/m3			11/05/19 16:10	1
1,2,4-Trimethylbenzene	0.42		0.39	0.098	ug/m3			11/05/19 16:10	1
1,2-Dibromoethane (EDB)	ND		0.61	0.054	ug/m3			11/05/19 16:10	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.12	J	0.56	0.084	ug/m3			11/05/19 16:10	1
ane									
1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/05/19 16:10	1
1,2-Dichloroethane	0.12	J	0.32	0.040	ug/m3			11/05/19 16:10	1
1,2-Dichloropropane	ND		0.37	0.046	ug/m3			11/05/19 16:10	1
1,3,5-Trimethylbenzene	0.13	J	0.39	0.11	ug/m3			11/05/19 16:10	1
1,3-Butadiene	ND		0.35	0.042	ug/m3			11/05/19 16:10	1
1,3-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/05/19 16:10	1
1,4-Dichlorobenzene	0.27		0.48	0.096	-				

Eurofins TestAmerica, Knoxville

12/13/2019

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Matrix: Air

Lab Sample ID: 140-17207-1

Client Sample ID: JR - 1223 - IA - 1 Date Collected: 11/01/19 14:59 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Analyte I.4-Dioxane	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fa
,	0.30 J	0.72		ug/m3			11/05/19 16:10	
2,2,4-Trimethylpentane	0.22 J	0.93		ug/m3			11/05/19 16:10	
2,3-Dimethylpentane	0.12 J	0.33		ug/m3			11/05/19 16:10	
2-Butanone (MEK)	0.87 J	0.94		ug/m3			11/05/19 16:10	
2-Hexanone	0.088 J	0.82		ug/m3			11/05/19 16:10	
2-Methylbutane	7.1	0.59		ug/m3			11/05/19 16:10	
2-Methylpentane	0.38	0.28		ug/m3			11/05/19 16:10	
-Ethyltoluene	0.23 J	0.79		ug/m3			11/05/19 16:10	
I-MethyI-2-pentanone (MIBK)	0.37 J	0.82		ug/m3			11/05/19 16:10	
Acetone	11	4.8		ug/m3			11/05/19 16:10	-
Benzene	0.50	0.26		ug/m3			11/05/19 16:10	-
Senzyl chloride	ND	0.83		ug/m3			11/05/19 16:10	
Bromodichloromethane	2.1	0.54		ug/m3			11/05/19 16:10	1
Bromoform	ND U)	0.83		ug/m3			11/05/19 16:10	1
Bromomethane	ND	0.31		ug/m3			11/05/19 16:10	1
Carbon disulfide	0.22 J	0.62		ug/m3			11/05/19 16:10	1
Carbon tetrachloride	0.48	0.20	0.044	ug/m3			11/05/19 16:10	1
Chlorobenzene	ND	0.37		ug/m3			11/05/19 16:10	1
Chloroethane	ND	0.21	0.077	ug/m3			11/05/19 16:10	1
hloroform	13	0.39	0.034	ug/m3			11/05/19 16:10	1
hloromethane	1.6 - C +	0.41	0.14	ug/m3			11/05/19 16:10	1
s-1,2-Dichloroethene	ND	0.16	0.040	ug/m3			11/05/19 16:10	1
s-1,3-Dichloropropene	ND	0.36	0.073	ug/m3			11/05/19 16:10	1
yclohexane	0.62 J	0.69	0.079	ug/m3			11/05/19 16:10	1
ibromochloromethane	0.28 J	0.68	0.060	ug/m3			11/05/19 16:10	1
ichlorodifluoromethane	1.2	0.40	0.069	ug/m3			11/05/19 16:10	1
thylbenzene	0.35	0.35	0.056	ug/m3			11/05/19 16:10	1
eptane	0.44 J	0.82	0.057	ug/m3			11/05/19 16:10	1
exachlorobutadiene	ND	0.85	0.34	ug/m3			11/05/19 16:10	1
exane	0.76	0.70	0.046	ug/m3			11/05/19 16:10	1
dane	ND	0.39	0.17	ug/m3			11/05/19 16:10	1
dene	ND	0.76	0.19	ug/m3			11/05/19 16:10	1
opropyl alcohol	5.7	2.0	0.54	ug/m3			11/05/19 16:10	1
opropylbenzene	ND	0.79	0.084	ug/m3			11/05/19 16:10	1
ethyl tert-butyl ether	ND	0.58	0.19	ug/m3			11/05/19 16:10	1
ethylene Chloride	3.3-B-UIS	1.4	0.56	ug/m3			11/05/19 16:10	1
-Xylene & p-Xylene	1.4	0.35		ug/m3			11/05/19 16:10	1
aphthalene	0.48 J	1.0	0.40				11/05/19 16:10	1
Butane	26	0.38	0.20				11/05/19 16:10	1
Decane	1.2 J	2.3	0.22				11/05/19 16:10	1
Dodecane	11	2.8	0.45				11/05/19 16:10	1
Octane	0.29 J	0.75	0.075				11/05/19 16:10	1
onane	0.28 J	1.0	0.094				11/05/19 16:10	1
Undecane	0.68 J	2.6	0.31	-			11/05/19 16:10	1
Xylene	0.65	0.35	0.065				11/05/19 16:10	1
entane	47	1.2	0.23				11/05/19 16:10	1
opene	2.1 et)	1.7		ug/m3			11/05/19 16:10	1
yrene	0.16 J	0.34	0.10				11/05/19 16:10	1

Client Sample Results

Client Sample ID: JR - 1223 - IA - 1 Date Collected: 11/01/19 14:59 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-1

Matrix: Air

ittouit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.55		0.54	0.047	ug/m3			11/05/19 16:10	1
ND		1.2	0.45	ug/m3			11/05/19 16:10	1
ND		0.28	0.038	ug/m3			11/05/19 16:10	1
16		0.45					11/05/19 16:10	1
ND		0.32		-				1
ND		0.36						1
ND		0.19		•				1
1.2		0.45						1
ND		0.10		-			11/05/19 16:10	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
99		60 - 140					11/05/19 16:10	1
es (Helium)								
• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.16	0.16	% v/v			11/08/19 10:37	1.61
223 - IA - 2 55					La	ab Sample		207-2 rix: Air
	ND 16 ND ND 12 ND <i>%Recovery</i> 99 es (Helium) <u>Result</u> ND 223 - IA - 2	ND ND 16 ND ND ND 1.2 ND %Recovery 99 es (Helium) Result ND 223 - IA - 2	ND 1.2 ND 0.28 16 0.45 ND 0.32 ND 0.36 ND 0.19 1.2 0.45 ND 0.19 1.2 0.45 ND 0.10 %Recovery Qualifier Limits 99 60-140 es (Helium) Qualifier RL ND 0.16 0.16	ND 1.2 0.45 ND 0.28 0.038 16 0.45 0.29 ND 0.32 0.028 ND 0.36 0.041 ND 0.19 0.032 1.2 0.45 0.062 ND 0.10 0.066 %Recovery Qualifier Limits 99 60 - 140 60 - 140 es (Helium) 0.16 0.16 223 - IA - 2 V 0.16	ND 1.2 0.45 ug/m3 ND 0.28 0.038 ug/m3 16 0.45 0.29 ug/m3 ND 0.32 0.028 ug/m3 ND 0.32 0.028 ug/m3 ND 0.32 0.028 ug/m3 ND 0.36 0.041 ug/m3 ND 0.19 0.032 ug/m3 ND 0.19 0.032 ug/m3 ND 0.19 0.032 ug/m3 ND 0.10 0.066 ug/m3 ND 0.10 0.066 ug/m3 MD 0.10 0.066 ug/m3 MD 0.10 0.066 ug/m3 MD 0.16 0.16 WDL es (Helium) 0.16 0.16 % v/v 223 - IA - 2 V V V	ND 1.2 0.45 ug/m3 ND 0.28 0.038 ug/m3 16 0.45 0.29 ug/m3 ND 0.32 0.028 ug/m3 ND 0.32 0.028 ug/m3 ND 0.32 0.028 ug/m3 ND 0.36 0.041 ug/m3 ND 0.19 0.032 ug/m3 ND 0.19 0.032 ug/m3 ND 0.10 0.066 ug/m3 ND 0.10 0.066 ug/m3 ND 0.10 0.066 ug/m3 MD 0.10 0.066 ug/m3 MD 0.10 0.066 ug/m3 ess (Helium)	ND 1.2 0.45 ug/m3 ND 0.28 0.038 ug/m3 16 0.45 0.29 ug/m3 ND 0.32 0.028 ug/m3 ND 0.32 0.028 ug/m3 ND 0.32 0.028 ug/m3 ND 0.36 0.041 ug/m3 ND 0.19 0.032 ug/m3 ND 0.19 0.032 ug/m3 ND 0.19 0.032 ug/m3 ND 0.19 0.032 ug/m3 ND 0.10 0.066 ug/m3 MD 0.10 0.066 ug/m3 MD 0.10 0.066 ug/m3 MD 0.10 0.066 ug/m3 MD 0.16 0.16 W/w Prepared es (Helium) 0.16 0.16 % v/v Lab Sample 223 - IA - 2 Lab Sample Lab Sample	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 0.080 0.037 ppb v/v 11/05/19 17:07 1 1,1,2,2-Tetrachloroethane ND 0.080 0.014 ppb v/v 11/05/19 17:07 1 112-Trichlou 0-1 2 2-trifl 0 0 7 7

1,1,2-Trichloro-1,2,2-trifluoroetha	0.072	J	0.080	0.0080	ppb v/v	11/05/19 17:07	1
ne 1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v	44/05/40 47 07	
1,1-Dichloroethane	ND		0.080		ppb v/v	11/05/19 17:07	1
1,1-Dichloroethene	ND					11/05/19 17:07	1
1,2,3-Trimethylbenzene			0.040		ppb v/v	11/05/19 17:07	1
•	ND		0.080	0.036	ppb v/v	11/05/19 17:07	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v	11/05/19 17:07	1
1,2,4-Trimethylbenzene	0.046	J	0.080	0.020	ppb v/v	11/05/19 17:07	1
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v	11/05/19 17:07	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.018	J	0.080	0.012	ppb v/v	11/05/19 17:07	1
ane							•
 1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v	11/05/19 17:07	1
1,2-Dichloroethane	0.017	J	0.080		ppb v/v	11/05/19 17:07	1
1,2-Dichloropropane	ND		0.080	0.010	ppb v/v	11/05/19 17:07	1
1,3,5-Trimethylbenzene	ND		0.080		ppb v/v	11/05/19 17:07	1
1,3-Butadiene	ND		0.16		ppb v/v	11/05/19 17:07	1
1,3-Dichlorobenzene	ND		0.080		ppb v/v	11/05/19 17:07	1
1,4-Dichlorobenzene	0.040	J	0.080		ppb v/v	11/05/19 17:07	1
1,4-Dioxane	0.051	J	0.20		ppb v/v	11/05/19 17:07	1
 2,2,4-Trimethylpentane	0.034	J	0.20		ppb v/v	11/05/19 17:07	1
2,3-Dimethylpentane	ND		0.080		ppb v/v	11/05/19 17:07	1
 2-Butanone (MEK)	0.25	J	0.32		ppb v/v	11/05/19 17:07	1
2-Hexanone	0.024	J	0.20		ppb v/v	11/05/19 17:07	1
2-Methylbutane	0.54		0.20		ppb v/v	11/05/19 17:07	1
							•

Client Sample ID: JR - 1223 - IA - 2 Date Collected: 11/01/19 14:55 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-2

Matrix: Air

Analyte 2-Methylpentane	Result Qualifier			Unit	D Prepared	Analyzed	Dil Fa
4-Ethyltoluene		0.080		ppb v/v		11/05/19 17:07	
•	0.039 J	0.16		ppb v/v		11/05/19 17:07	
4-Methyl-2-pentanone (MIBK)	0.28	0.20		ppb v/v		11/05/19 17:07	
Acetone	3.5 -6+	2.0		ppb v/v		11/05/19 17:07	
Benzene Benzud eklaside	0.13	0.080		ppb v/v		11/05/19 17:07	1
Benzyl chloride	ND	0.16		ppb v/v		11/05/19 17:07	1
Bromodichloromethane	ND	0.080		ppb v/v		11/05/19 17:07	1
Bromoform	ND UJ	0.080		ppb v/v		11/05/19 17:07	1
Bromomethane	ND	0.080		ppb v/v		11/05/19 17:07	1
Carbon disulfide	0.031 J	0.20		ppb v/v		11/05/19 17:07	1
Carbon tetrachloride	0.074	0.032	0.0070	ppb v/v		11/05/19 17:07	1
Chlorobenzene	ND	0.080	0.0060	ppb v/v		11/05/19 17:07	1
Chloroethane	ND	0.080	0.029	ppb v/v		11/05/19 17:07	1
Chloroform	0.12	0.080	0.0070	ppb v/v		11/05/19 17:07	1
Chloromethane	0.73 – G +	0.20	0.066	ppb v/v		11/05/19 17:07	1
cis-1,2-Dichloroethene	ND	0.040	0.010	ppb v/v		11/05/19 17:07	1
cis-1,3-Dichloropropene	ND	0.080	0.016	ppb v/v		11/05/19 17:07	1
Cyclohexane	0.037 J	0.20	0.023	ppb v/v		11/05/19 17:07	1
Dibromochloromethane	ND	0.080	0.0070	ppb v/v		11/05/19 17:07	1
Dichlorodifluoromethane	0.26	0.080	0.014	ppb v/v		11/05/19 17:07	1
Ethylbenzene	0.040 J	0.080	0.013	ppb v/v		11/05/19 17:07	1
Heptane	0.072 J	0.20		ppb v/v		11/05/19 17:07	1
-lexachlorobutadiene	ND	0.080		ppb v/v		11/05/19 17:07	1
Hexane	0.10 J	0.20		ppb v/v		11/05/19 17:07	1
ndane	ND	0.080		ppb v/v		11/05/19 17:07	1
ndene	ND	0.16		ppb v/v		11/05/19 17:07	. 1
sopropyl alcohol	2.2	0.80		ppb v/v		11/05/19 17:07	1
sopropylbenzene	ND	0.16		ppb v/v		11/05/19 17:07	1
Methyl tert-butyl ether	ND	0.16		ppb v/v		11/05/19 17:07	, 1
Aethylene Chloride	0.53- B -ひ了	0.40		ppb v/v		11/05/19 17:07	1
n-Xylene & p-Xylene	0.13	0.080		ppb v/v		11/05/19 17:07	1
laphthalene	ND	0.20		ppb v/v		11/05/19 17:07	1
a-Butane	5.2	0.16	0.083			11/05/19 17:07	1
I-Decane	0.21 J	0.40	0.038			11/05/19 17:07	1
-Dodecane	0.086 J	0.40	0.064			11/05/19 17:07	1
-Octane	0.041 J	0.16	0.016			11/05/19 17:07	1
lonane	0.039 J	0.20	0.018				
-Undecane	ND	0.40	0.048			11/05/19 17:07	1
-Xylene	0.054 J	0.080	0.015			11/05/19 17:07	1
entane	0.26 J	0.40	0.079			11/05/19 17:07 11/05/19 17:07	1
ropene	1.2 -6+- \	1.0		ppb v/v ppb v/v			1
tyrene	ND	0.080	0.024			11/05/19 17:07	1
etrachloroethene	0.30	0.080	0.0070			11/05/19 17:07	1
etrahydrofuran	ND	0.000				11/05/19 17:07	1
hiophene	ND	0.40		ppb v/v		11/05/19 17:07	1
oluene	0.41	0.080	0.011			11/05/19 17:07	1
ans-1,2-Dichloroethene	0.016 J		0.078			11/05/19 17:07	1
	0.010 3	0.080	ا 0.0070	hho viv		11/05/19 17:07	1

Client Sample ID: JR - 1223 - IA - 2 Date Collected: 11/01/19 14:55 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-2

Matrix: Air

Analyte Trichloroethene	ND	Qualifier			Unit	D	Prepared	Analyzed	Dil Fa
			0.036		ppb v/v			11/05/19 17:07	
Trichlorofluoromethane Vinyl chloride	0.23		0.080		ppb v/v			11/05/19 17:07	
-	ND		0.040	0.026	ppb v/v			11/05/19 17:07	
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.44	0.20	ug/m3			11/05/19 17:07	
1,1,2,2-Tetrachloroethane	ND		0.55	0.096	ug/m3			11/05/19 17:07	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.55	J	0.61	0.061	ug/m3			11/05/19 17:07	
ne 1,1,2-Trichloroethane	ND		0.44	0.000					
1,1-Dichloroethane	ND		0.44 0.32		ug/m3			11/05/19 17:07	
1,1-Dichloroethene	ND		0.32		ug/m3			11/05/19 17:07	1
1,2,3-Trimethylbenzene	ND		0.18		ug/m3			11/05/19 17:07	1
1,2,4-Trichlorobenzene	ND		0.59		ug/m3			11/05/19 17:07	1
1,2,4-Trimethylbenzene	0.23		0.39		ug/m3			11/05/19 17:07	1
1,2-Dibromoethane (EDB)	0.23 ND	5	0.39		ug/m3			11/05/19 17:07	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.12	.1	0.56		ug/m3 ug/m3			11/05/19 17:07	1
ane	0.12	5	0.50	0.064	ug/m3			11/05/19 17:07	1
1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/05/19 17:07	1
1,2-Dichloroethane	0.069	J	0.32	0.040				11/05/19 17:07	1
1,2-Dichloropropane	ND		0.37	0.046				11/05/19 17:07	1
1,3,5-Trimethylbenzene	ND		0.39		ug/m3			11/05/19 17:07	1
1,3-Butadiene	ND		0.35	0.042	•			11/05/19 17:07	1
1,3-Dichlorobenzene	ND		0.48	0.096	0			11/05/19 17:07	1
1,4-Dichlorobenzene	0.24	J	0.48	0.096	-			11/05/19 17:07	1
1,4-Dioxane	0.1 9	J	0.72		ug/m3			11/05/19 17:07	1
2,2,4-Trimethylpentane	0.16	J	0.93	0.037	-			11/05/19 17:07	1
2,3-Dimethylpentane	ND		0.33	0.11	ug/m3			11/05/19 17:07	1
2-Butanone (MEK)	0.75	J	0.94	0.22	ug/m3			11/05/19 17:07	1
2-Hexanone	0.098	J	0.82	0.066	ug/m3			11/05/19 17:07	1
2-Methylbutane	1.6		0.59	0.19	ug/m3			11/05/19 17:07	1
2-Methylpentane	0.29		0.28	0.049	ug/m3			11/05/19 17:07	1
I-Ethyltoluene	0.19	J	0.79	0.10	ug/m3			11/05/19 17:07	1
I-Methyl-2-pentanone (MIBK)	1.1	a de la companya de la company	0.82	0.22	ug/m3			11/05/19 17:07	1
Acetone	8.3	GH~ [)	4.8	1.3	ug/m3			11/05/19 17:07	1
Benzene	0.43	1000 No.	0.26	0.026	ug/m3			11/05/19 17:07	1
Benzyl chloride	ND		0.83	0.20	ug/m3			11/05/19 17:07	1
Bromodichloromethane	ND	e	0.54	0.12	ug/m3			11/05/19 17:07	1
Iromoform	ND	υS	0.83	0.093				11/05/19 17:07	1
Iromomethane	ND	-	0.31	0.085	ug/m3			11/05/19 17:07	1
arbon disulfide	0.098 .	J	0.62	0.034	ug/m3			11/05/19 17:07	1
arbon tetrachloride	0.46		0.20	0.044 ı	ug/m3			11/05/19 17:07	1
hlorobenzene	ND		0.37	0.028 (ug/m3			11/05/19 17:07	1
hloroethane	ND		0.21	0.077 ı	ug/m3			11/05/19 17:07	1
hloroform	0.57	ŧ.	0.39	0.034 u	ug/m3			11/05/19 17:07	1
hloromethane	1.5 ୶	* _)	0.41	0.14 ı	ug/m3			11/05/19 17:07	1
s-1,2-Dichloroethene	ND		0.16	0.040 u	ug/m3			11/05/19 17:07	1
s-1,3-Dichloropropene	ND		0.36	0.073 ι	ug/m3			11/05/19 17:07	1
yclohexane	0.13 J	l	0.69	0.079 i	ıg/m3			11/05/19 17:07	1
ibromochloromethane	ND		0.68	0.060 ι	ug/m3			11/05/19 17:07	1

Client Sample ID: JR - 1223 - IA - 2 Date Collected: 11/01/19 14:55 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

1,1,2,2-Tetrachloroethane

Lab Sample ID: 140-17207-2

Matrix: Air

Method: TO 15 LL - Volati Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	1.3		0.40	0.069	ug/m3			11/05/19 17:07	
Ethylbenzene	0.17	J	0.35	0.056	iug/m3			11/05/19 17:07	
Heptane	0.29	J	0.82	0.057	′ug/m3			11/05/19 17:07	
Hexachlorobutadiene	ND		0.85	0.34	ug/m3			11/05/19 17:07	
Hexane	0.36	J	0.70	0.046	ug/m3			11/05/19 17:07	
Indane	ND		0.39	0.17	ug/m3			11/05/19 17:07	
Indene	ND		0.76	0.19	ug/m3			11/05/19 17:07	
Isopropyl alcohol	5.4		2.0	0.54	ug/m3			11/05/19 17:07	
Isopropylbenzene	ND		0.79	0.084	ug/m3			11/05/19 17:07	
Methyl tert-butyl ether	ND	~	0.58	0.19	ug/m3			11/05/19 17:07	
Methylene Chloride	1.8	-B-UB	1.4	0.56	ug/m3			11/05/19 17:07	
m-Xylene & p-Xylene	0.55		0.35	0.13	ug/m3			11/05/19 17:07	
Naphthalene	ND		1.0	0.40	ug/m3			11/05/19 17:07	
n-Butane	12		0.38	0.20	ug/m3			11/05/19 17:07	
n-Decane	1.2	J	2.3	0.22	ug/m3			11/05/19 17:07	
n-Dodecane	0.60	J	2.8	0.45	ug/m3			11/05/19 17:07	
n-Octane	0.19	J	0.75	0.075	ug/m3			11/05/19 17:07	
Nonane	0.21	J	1.0	0.094	ug/m3			11/05/19 17:07	
n-Undecane	ND		2.6	0.31	ug/m3			11/05/19 17:07	
o-Xylene	0.24	J	0.35	0.065	ug/m3			11/05/19 17:07	
Pentane	0.76	J	1.2	0.23	ug/m3			11/05/19 17:07	
Propene	2.1	-C+- \	1.7	1.7	ug/m3			11/05/19 17:07	
Styrene	ND	CALCULAR A	0.34	0.10	ug/m3			11/05/19 17:07	
Tetrachloroethene	2.0		0.54	0.047	ug/m3			11/05/19 17:07	
Tetrahydrofuran	ND		1.2	0.45	ug/m3			11/05/19 17:07	
Thiophene	ND		0.28	0.038	ug/m3			11/05/19 17:07	
Toluene	1.6		0.45	0.29	ug/m3			11/05/19 17:07	
trans-1,2-Dichloroethene	0.065	J	0.32	0.028	ug/m3			11/05/19 17:07	
trans-1,3-Dichloropropene	ND		0.36	0.041	ug/m3			11/05/19 17:07	
Trichloroethene	ND		0.19	0.032	ug/m3			11/05/19 17:07	
Trichlorofluoromethane	1.3		0.45	0.062	ug/m3			11/05/19 17:07	
Vinyl chloride	ND		0.10	0.066	ug/m3			11/05/19 17:07	
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	98		60 - 140					11/05/19 17:07	
Method: D1946 - Fixed Gas Analyte	· /	Qualifier	ы	MDI	Unit	P	Duononod	A	D11 F
Helium	ND	Quantiel			Unit % v/v	D	Prepared	Analyzed 11/08/19 10:54	Dil Fa
			0,10	0.10	/0 V/V				1.7
lient Sample ID: JR - 1						La	ab Sample	e ID: 140-17	
ate Collected: 11/01/19 14: ate Received: 11/02/19 10:								Mat	rix: A
ample Container: Summa	Canister 6L								
Wethod: TO 15 LL - Volatile						tion (G	C/MS)		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v	_		11/05/19 18:05	
			0.000						

Eurofins TestAmerica, Knoxville

11/05/19 18:05

0.080

0.014 ppb v/v

ND

1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Job ID: 140-17207-1

Client Sample ID: JR - 1223 - IA - 3 Date Collected: 11/01/19 14:58 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-3

Matrix: Air

Analyte		Qualifier	RL		Unit D	Prepared Analyzed	Dil Fa
1,1,2-Trichloro-1,2,2-trifluoroetha	0.071	J	0.080	0.0080	ppb v/v	11/05/19 18:05	
1,1,2-Trichloroethane	ND		0.080	0 0070	ppb v/v	11/05/19 18:05	
1,1-Dichloroethane	ND		0.080		ppb v/v	11/05/19 18:05	
1,1-Dichloroethene	ND		0.040		ppb v/v	11/05/19 18:05	
1,2,3-Trimethylbenzene	0.049	J	0.080		ppb v/v	11/05/19 18:05	
1,2,4-Trichlorobenzene	ND	•	0.080		ppb v/v	11/05/19 18:05	
1,2,4-Trimethylbenzene	0.096		0.080		ppb v/v	11/05/19 18:05	
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v	11/05/19 18:05	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	.1	0.080		ppb v/v	11/05/19 18:05	
ane	0.011	0	0.000	0.012	ppb 1/1	1703/19 18.03	
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v	11/05/19 18:05	1
1,2-Dichloroethane	0.018	J	0.080	0.010	ppb v/v	11/05/19 18:05	1
1,2-Dichloropropane	ND		0.080	0.010	ppb v/v	11/05/19 18:05	1
1,3,5-Trimethylbenzene	0.029	J	0.080		ppb v/v	11/05/19 18:05	1
1,3-Butadiene	ND		0.16		ppb v/v	11/05/19 18:05	1
1,3-Dichlorobenzene	ND		0.080		ppb v/v	11/05/19 18:05	1
1,4-Dichlorobenzene	0.057	J	0.080		ppb v/v	11/05/19 18:05	1
1,4-Dioxane	ND		0.20		ppb v/v	11/05/19 18:05	1
2,2,4-Trimethylpentane	0.035	J	0.20		ppb v/v	11/05/19 18:05	1
2,3-Dimethylpentane	ND		0.080		ppb v/v	11/05/19 18:05	1
2-Butanone (MEK)	0.48		0.32		ppb v/v	11/05/19 18:05	1
2-Hexanone	0.057	J	0.20		ppb v/v	11/05/19 18:05	1
2-Methylbutane	0.61		0.20	0.063	ppb v/v	11/05/19 18:05	1
2-Methylpentane	0.091		0.080		ppb v/v	11/05/19 18:05	1
I-Ethyltoluene	0.037	J	0.16		ppb v/v	11/05/19 18:05	1
I-Methyl-2-pentanone (MIBK)	0.074	J	0.20		ppb v/v	11/05/19 18:05	1
Acetone	5.1 -	-c+- \	2.0		ppb v/v	11/05/19 18:05	1
Benzene	0.57	atrack	0.080	0.0080		11/05/19 18:05	1
Benzyl chloride	ND		0.16		ppb v/v	11/05/19 18:05	1
Bromodichloromethane	0.18		0.080	0.018	ppb v/v	11/05/19 18:05	1
Bromoform	ND	LU	0.080	0.0090		11/05/19 18:05	1
Bromomethane	ND	- •	0.080		ppb v/v	11/05/19 18:05	1
Carbon disulfide	0.034	J	0.20		ppb v/v	11/05/19 18:05	1
Carbon tetrachloride	0.080		0.032	0.0070		11/05/19 18:05	1
Chlorobenzene	ND		0.080	0.0060		11/05/19 18:05	1
Chloroethane	ND		0.080		ppb v/v	11/05/19 18:05	1
Chloroform	1.4		0.080	0.0070		11/05/19 18:05	1
hloromethane	0.77	e \	0.20		ppb v/v	11/05/19 18:05	1
is-1,2-Dichloroethene	0.062	the second	0.040	0.010		11/05/19 18:05	1
is-1,3-Dichloropropene	ND		0.080	0.016		11/05/19 18:05	1
cyclohexane	0.057	J ·	0.20	0.023		11/05/19 18:05	1
libromochloromethane	0.019		0.080	0.0070		11/05/19 18:05	1
lichlorodifluoromethane	0.27		0.080	0.014		11/05/19 18:05	1
thylbenzene	0.16		0.080	0.013		11/05/19 18:05	1
leptane	0.084	J	0.20	0.014		11/05/19 18:05	1
exachlorobutadiene	ND	-	0.080	0.032		11/05/19 18:05	1
exane	0.13	J	0.20	0.002		11/05/19 18:05	1
ndane	0.59	-	0.080	0.035		11/05/19 18:05	1

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Job ID: 140-17207-1

Client Sample ID: JR - 1223 - IA - 3 Date Collected: 11/01/19 14:58 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile	Organic Com	pounds in	Ambient Air,	Low C	oncentrat	ion (GC/MS) (Co	ntinued)	
Analyte	Result	Qualifier	RL		Unit	Ď	Prepared	Analyzed	Dil Fac
Indene	ND		0.16	0.039	ppb v/v			11/05/19 18:05	1
Isopropyl alcohol	1.4		0.80	0.22	ppb v/v			11/05/19 18:05	1
Isopropylbenzene	0.033	J	0.16	0.017	ppb v/v			11/05/19 18:05	1
Methyl tert-butyl ether	ND		0.16	0.052	ppb v/v			11/05/19 18:05	1
Methylene Chloride	0.62 -	-ruß	0.40	0.16	ppb v/v			11/05/19 18:05	1
m-Xylene & p-Xylene	0.13		0.080	0.029	ppb v/v			11/05/19 18:05	1
Naphthalene	0.084	J	0.20	0.076	ppb v/v			11/05/19 18:05	1
n-Butane	7.4		0.16	0.083	ppb v/v			11/05/19 18:05	1
n-Decane	0.23	J	0.40	0.038	ppb v/v			11/05/19 18:05	1
n-Dodecane	0.22	J	0.40	0.064	ppb v/v			11/05/19 18:05	1
n-Octane	0.047	J	0.16		ppb v/v			11/05/19 18:05	1
Nonane	0.051	J	0.20	0.018	ppb v/v			11/05/19 18:05	1
n-Undecane	0.069	J	0.40		ppb v/v			11/05/19 18:05	1
o-Xylene	0.071	J	0.080	0.015	ppb v/v			11/05/19 18:05	1
Pentane	0.33	J	0.40		ppb v/v			11/05/19 18:05	1
Propene	2.3 -	e+- \	1.0		ppb v/v			11/05/19 18:05	1
Styrene	ND	edit.	0.080		ppb v/v			11/05/19 18:05	1
Tetrachloroethene	0.35		0.080		ppb v/v			11/05/19 18:05	1
Tetrahydrofuran	ND		0.40		ppb v/v			11/05/19 18:05	1
Thiophene	ND		0.080		ppb v/v			11/05/19 18:05	1
Toluene	0.32		0.12		ppb v/v			11/05/19 18:05	1
trans-1,2-Dichloroethene	0.016	J	0.080		ppb v/v			11/05/19 18:05	1
trans-1,3-Dichloropropene	ND	-	0.080	0.0090				11/05/19 18:05	1
Trichloroethene	0.011	J	0.036	0.0060	••			11/05/19 18:05	1
Trichlorofluoromethane	0.23		0.080		ppb v/v			11/05/19 18:05	1
Vinyl chloride	0.027	J	0.040		ppb v/v			11/05/19 18:05	1
Analyte		Qualifier	RL	MDL		D	Prepared		Dil Fac
1,1,1-Trichloroethane	ND		0.44		ug/m3		Перагеа	Analyzed 11/05/19 18:05	1
1,1,2,2-Tetrachloroethane	ND		0.55	0.096				11/05/19 18:05	
1,1,2-Trichloro-1,2,2-trifluoroetha		i i	0.61	0.061	-			11/05/19 18:05	1
ne	0.04	5	0.01	0.001	ug/mo			11/03/19 10:05	1
1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			11/05/19 18:05	1
1,1-Dichloroethane	ND		0.32	0.028	ug/m3			11/05/19 18:05	1
1,1-Dichloroethene	ND		0.16	0.032	ug/m3			11/05/19 18:05	1
1,2,3-Trimethylbenzene	0.24 、	J	0.39	0.18	ug/m3			11/05/19 18:05	1
1,2,4-Trichlorobenzene	ND		0.59		ug/m3			11/05/19 18:05	1
1,2,4-Trimethylbenzene	0.47		0.39	0.098	ug/m3			11/05/19 18:05	1
1,2-Dibromoethane (EDB)	ND		0.61	0.054				11/05/19 18:05	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	n 0.12 .	J	0.56	0.084				11/05/19 18:05	1
ane					-				·
1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/05/19 18:05	1
1,2-Dichloroethane	0.071 J	J	0.32	0.040	ug/m3			11/05/19 18:05	1
1,2-Dichloropropane	ND		0.37	0.046	ug/m3			11/05/19 18:05	1
1,3,5-Trimethylbenzene	0.14 J	J	0.39	0.11	ug/m3			11/05/19 18:05	1
1,3-Butadiene	ND		0.35	0.042	ug/m3			11/05/19 18:05	1
1,3-Dichlorobenzene	ND		0.48	0.096	ug/m3			11/05/19 18:05	1
1,4-Dichlorobenzene									
	0.35 J	l	0.48	0.096	ug/m3			11/05/19 18:05	1
1,4-Dioxane 2,2,4-Trimethylpentane	0.35 J ND 0.16 J		0.48 0.72	0.096 0.11	-			11/05/19 18:05 11/05/19 18:05	1 1

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17207-3 Matrix: Air

Matrix: Air

Lab Sample ID: 140-17207-3

Client Sample ID: JR - 1223 - IA - 3 Date Collected: 11/01/19 14:58

Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile O Analyte	Result Qualifie	er RL	MDI	Unit	D	Prepared Analyzed	Dil Fac
2,3-Dimethylpentane	ND	0.33		ug/m3		11/05/19 18:05	
2-Butanone (MEK)	1.4	0.94		ug/m3		11/05/19 18:05	-
2-Hexanone	0.24 J	0.82		ug/m3		11/05/19 18:05	1
2-Methylbutane	1.8	0.59		ug/m3		11/05/19 18:05	
2-Methylpentane	0.32	0.28		ug/m3			1
4-Ethyltoluene	0.18 J	0.79		ug/m3		11/05/19 18:05	1
4-Methyl-2-pentanone (MIBK)	0.30 J	0.82		ug/m3		11/05/19 18:05	1
Acetone	12 -er -	4.8		ug/m3		11/05/19 18:05	1
Benzene	1.8	0.26		ug/m3		11/05/19 18:05	1
Benzyl chloride	ND	0.83		ug/m3		11/05/19 18:05	1
Bromodichloromethane	1.2	0.54		ug/m3		11/05/19 18:05	1
Bromoform	ND US	0.83		ug/m3		11/05/19 18:05	1
Bromomethane	ND	0.31		-		11/05/19 18:05	1
Carbon disulfide	0.11 J	0.62		ug/m3		11/05/19 18:05	1
Carbon tetrachloride	0.51			ug/m3		11/05/19 18:05	1
Chlorobenzene	ND	0.20		ug/m3		11/05/19 18:05	1
Chloroethane	ND	0.37		ug/m3		11/05/19 18:05	1
Chloroform		0.21		ug/m3		11/05/19 18:05	1
Chloromethane	6.8	0.39		ug/m3		11/05/19 18:05	1
cis-1,2-Dichloroethene	1.6 GH~)	0.41		ug/m3		11/05/19 18:05	1
cis-1,3-Dichloropropene	0.25	0.16		ug/m3		11/05/19 18:05	1
	ND	0.36		ug/m3		11/05/19 18:05	1
Dibromochloromethane	0.20 J	0.69	0.079			11/05/19 18:05	1
	0.17 J	0.68	0.060			11/05/19 18:05	1
Dichlorodifluoromethane	1.4	0.40	0.069			11/05/19 18:05	1
Ethylbenzene	0.70	0.35	0.056	•		11/05/19 18:05	1
leptane	0.34 J	0.82	0.057	-		11/05/19 18:05	1
lexachlorobutadiene	ND	0.85		ug/m3		11/05/19 18:05	1
lexane	0.47 J	0.70	0.046	ug/m3		11/05/19 18:05	1
ndane	2.8	0.39	0.17	ug/m3		11/05/19 18:05	1
ndene	ND	0.76	0.19	ug/m3		11/05/19 18:05	1
sopropyl alcohol	3.6	2.0	0.54	ug/m3		11/05/19 18:05	1
sopropylbenzene	0.16 J	0.79	0.084	ug/m3		11/05/19 18:05	1
lethyl tert-butyl ether	ND	0.58	0.19	ug/m3		11/05/19 18:05	1
lethylene Chloride	2.2 -B- UB	1.4	0.56	ug/m3		11/05/19 18:05	1
n-Xylene & p-Xylene	0.57	0.35	0.13	ug/m3		11/05/19 18:05	1
laphthalene	0.44 J	1.0	0.40	ug/m3		11/05/19 18:05	1
-Butane	18	0.38	0.20	ug/m3		11/05/19 18:05	1
-Decane	1.4 J	2.3	0.22	ug/m3		11/05/19 18:05	1
-Dodecane	1.6 J	2.8	0.45			11/05/19 18:05	1
-Octane	0.22 J	0.75	0.075 (11/05/19 18:05	1
onane	0.27 J	1.0	0.094			11/05/19 18:05	1
-Undecane	0.44 J	2.6	0.31 ı	-		11/05/19 18:05	, 1
-Xylene	0.31 J	0.35	0.065 i			11/05/19 18:05	1
entane	0.97 J	1.2	0.23 i			11/05/19 18:05	1
ropene	3.9 -et- \	1.7		ug/m3		11/05/19 18:05	
tyrene	ND ND	0.34	0.10 L	-			1
etrachloroethene	2.4	0.54	0.047 t			11/05/19 18:05	1
etrahydrofuran	ND	1.2	0.45 t	-		11/05/19 18:05 11/05/19 18:05	1 1

Client Sample Results

Client Sample ID: JR - 1223 - IA - 3

Date Collected: 11/01/19 14:58 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-3

Matrix: Air

Method: TO 15 LL - Volatile Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thiophene	ND		0.28	0.038	ug/m3			11/05/19 18:05	1
Toluene	1.2		0.45	0.29	ug/m3			11/05/19 18:05	1
trans-1,2-Dichloroethene	0.064	J	0.32		ug/m3			11/05/19 18:05	1
rans-1,3-Dichloropropene	ND		0.36		ug/m3			11/05/19 18:05	1
Trichloroethene	0.057	J	0.19		ug/m3			11/05/19 18:05	1
Trichlorofluoromethane	1.3		0.45		ug/m3			11/05/19 18:05	1
Vinyl chloride	0.069	J	0.10		ug/m3			11/05/19 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Bromofluorobenzene (Surr)	98		60 - 140			-		11/05/19 18:05	1
Method: D1946 - Fixed Gas	es (Helium)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
lelium	ND		0.19	0.19	% v/v			11/08/19 11:11	1.85

Client Sample ID: JR - 1223 - IA - 4 Date Collected: 11/01/19 15:32 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-4

Matrix: Air

Method: TO 15 LL - Volatile Org Analyte	Result	Qualifier	RL		Unit	Ď	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/05/19 19:03	1
1,1,2,2-Tetrachloroethane	ND		0.080	0.014	ppb v/v			11/05/19 19:03	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.069	J	0.080	0.0080	ppb v/v			11/05/19 19:03	1
ne									•
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 19:03	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 19:03	1
1,1-Dichloroethene	ND		0.040	0.0080	ppb v/v			11/05/19 19:03	1
1,2,3-Trimethylbenzene	ND		0.080	0.036	ppb v/v			11/05/19 19:03	1
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v			11/05/19 19:03	1
1,2,4-Trimethylbenzene	ND		0.080		ppb v/v			11/05/19 19:03	
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v			11/05/19 19:03	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.018	J	0.080		ppb v/v			11/05/19 19:03	1
ane					FF			11/03/13 13:03	1
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v			11/05/19 19:03	1
1,2-Dichloroethane	0.015	J	0.080	0.010	ppb v/v			11/05/19 19:03	1
1,2-Dichloropropane	ND		0.080		ppb v/v			11/05/19 19:03	1
1,3,5-Trimethylbenzene	ND		0.080		ppb v/v			11/05/19 19:03	1
1,3-Butadiene	ND		0.16		ppb v/v			11/05/19 19:03	1
1,3-Dichlorobenzene	ND		0.080		ppb v/v			11/05/19 19:03	1
1,4-Dichlorobenzene	ND		0.080		ppb v/v			11/05/19 19:03	1
1,4-Dioxane	0.056	J	0.20		ppb v/v			11/05/19 19:03	4
2,2,4-Trimethylpentane	0.080	J	0.20	0.0080				11/05/19 19:03	1
2,3-Dimethylpentane	0.041	J	0.080		ppb v/v				1
2-Butanone (MEK)	0.28	-	0.32	0.073				11/05/19 19:03	1
2-Hexanone	0.018		0.20		ppb v/v ppb v/v			11/05/19 19:03	1
2-Methylbutane		2	0.20					11/05/19 19:03	1
2-Methylpentane	0.35	er e	0.20	0.063				11/05/19 19:03	1
4-Ethyltoluene	0.35 ND	and the	0.080	0.014 0.021				11/05/19 19:03	1

Matrix: Air

Lab Sample ID: 140-17207-4

Client Sample ID: JR - 1223 - IA - 4 Date Collected: 11/01/19 15:32 Date Received: 11/02/19 10:15

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile C Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	0.060	J	0.20	0.054	4 ppb v/v			11/05/19 19:03	
Acetone	3.1	1	2.0	0.57	7 ppb v/v			11/05/19 19:03	1
Benzene	0.16	48222	0.080	0.0080) ppb v/v			11/05/19 19:03	1
Benzyl chloride	ND		0.16	0.038	3 ppb v/v			11/05/19 19:03	1
Bromodichloromethane	ND		0.080	0.018	3 ppb v/v			11/05/19 19:03	1
Bromoform	ND	20	0.080) ppb v/v			11/05/19 19:03	1
Bromomethane	ND		0.080	0.022	2 ppb v/v			11/05/19 19:03	1
Carbon disulfide	0.013	J	0.20		ppb v/v			11/05/19 19:03	1
Carbon tetrachloride	0.070		0.032		ppb v/v			11/05/19 19:03	1
Chlorobenzene	ND		0.080		ppb v/v			11/05/19 19:03	1
Chloroethane	ND		0.080		ppb v/v			11/05/19 19:03	1
Chloroform	0.078	J	0.080		ppb v/v			11/05/19 19:03	1
Chloromethane	0.71	-e+- \	0.20		ppb v/v			11/05/19 19:03	1
cis-1,2-Dichloroethene	ND	en la cr	0.040		ppb v/v			11/05/19 19:03	
cis-1,3-Dichloropropene	ND		0.080		ppb v/v			11/05/19 19:03	1
Cyclohexane	0.087	J	0.20		ppb v/v			11/05/19 19:03	1
Dibromochloromethane	ND		0.080		ppb v/v			11/05/19 19:03	
Dichlorodifluoromethane	0.30		0.080		ppb v/v			11/05/19 19:03	1
Ethylbenzene	0.036	J	0.080		ppb v/v			11/05/19 19:03	1
Heptane	0.091		0.20		ppb v/v				1
Hexachlorobutadiene	ND		0.080		ppb v/v			11/05/19 19:03	1
Hexane	0.57		0.20		ppb v/v			11/05/19 19:03	1
Indane	ND		0.080		ppb v/v ppb v/v			11/05/19 19:03	1
Indene	ND		0.16		ppb v/v			11/05/19 19:03	1
sopropyl alcohol	4.8		0.80		ppb v/v			11/05/19 19:03	1
sopropylbenzene	ND		0.16		ppb v/v ppb v/v			11/05/19 19:03	1
Methyl tert-butyl ether	ND		0.16		ppb v/v ppb v/v			11/05/19 19:03	1
Vethylene Chloride	3.3 -	Renati 1	0.40		ppb v/v ppb v/v			11/05/19 19:03	1
m-Xylene & p-Xylene	0.10	لحسم	0.080		ppb v/v ppb v/v			11/05/19 19:03	1
Naphthalene	ND		0.20		ppb v/v			11/05/19 19:03	1
n-Butane	8.2		0.20		ppb v/v			11/05/19 19:03	1
1-Decane	ND	اللي	0.40		ppb v/v ppb v/v			11/05/19 19:03	1
n-Dodecane	ND		0.40		ppb v/v ppb v/v			11/05/19 19:03	1
n-Octane	0.030		0.40		••			11/05/19 19:03	1
Nonane	0.030 V ND	,	0.10		ppb v/v			11/05/19 19:03	1
-Undecane	ND		0.20		ppb v/v			11/05/19 19:03	1
o-Xylene	0.035		0.40		ppb v/v			11/05/19 19:03	1
Pentane	1.9				ppb v/v			11/05/19 19:03	1
Propene	1.9	č	0.40		ppb v/v			11/05/19 19:03	1
Styrene	ND	Hand I	1.0		ppb v/v			11/05/19 19:03	1
etrachloroethene	0.071 J	L	0.080		ppb v/v			11/05/19 19:03	1
etrahydrofuran			0.080	0.0070				11/05/19 19:03	1
hiophene	ND ND		0.40		ppb v/v			11/05/19 19:03	1
oluene			0.080		ppb v/v			11/05/19 19:03	1
ans-1,2-Dichloroethene	0.52		0.12	0.078				11/05/19 19:03	1
ans-1,3-Dichloropropene	0.0070 J		0.080	0.0070				11/05/19 19:03	1
richloroethene	ND		0.080	0.0090				11/05/19 19:03	1
	ND		0.036	0.0060				11/05/19 19:03	1
richlorofluoromethane	0.26		0.080	0.011				11/05/19 19:03	

Client Sample ID: JR - 1223 - IA - 4 Date Collected: 11/01/19 15:32 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-4

Matrix: Air

Method: TO 15 LL - Volatile Org Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fa
Vinyl chloride	ND		0.040	0.026	ppb v/v			11/05/19 19:03	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	
1,1,1-Trichloroethane	ND		0.44		ug/m3		Trepared	11/05/19 19:03	Dil Fa
1,1,2,2-Tetrachloroethane	ND		0.55		ug/m3			11/05/19 19:03	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.53	J	0.61		ug/m3			11/05/19 19:03	
ne								1000/10 10:00	
1,1,2-Trichloroethane	ND		0.44	0.038	ug/m3			11/05/19 19:03	1
1,1-Dichloroethane	ND		0.32	0.028	ug/m3			11/05/19 19:03	
1,1-Dichloroethene	ND		0.16	0.032	ug/m3			11/05/19 19:03	
1,2,3-Trimethylbenzene	ND		0.39	0.18	ug/m3			11/05/19 19:03	
1,2,4-Trichlorobenzene	ND		0.59	0.47	ug/m3			11/05/19 19:03	
1,2,4-Trimethylbenzene	ND		0.39	0.098	ug/m3			11/05/19 19:03	1
1,2-Dibromoethane (EDB)	ND		0.61	0.054	ug/m3			11/05/19 19:03	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.13	J	0.56	0.084	ug/m3			11/05/19 19:03	1
ane 1,2-Dichlorobenzene									
1,2-Dichloroethane	ND		0.48		ug/m3			11/05/19 19:03	1
1,2-Dichloropropane	0.060	J	0.32	0.040	-			11/05/19 19:03	1
1,3,5-Trimethylbenzene	ND		0.37	0.046	-			11/05/19 19:03	1
1,3-Butadiene	ND		0.39		ug/m3			11/05/19 19:03	1
1,3-Dichlorobenzene	ND		0.35	0.042	-			11/05/19 19:03	1
1,4-Dichlorobenzene	ND		0.48	0.096				11/05/19 19:03	1
1,4-Dioxane	ND		0.48	0.096	-			11/05/19 19:03	1
	0.20		0.72		ug/m3			11/05/19 19:03	1
2,2,4-Trimethylpentane 2,3-Dimethylpentane	0.37		0.93	0.037				11/05/19 19:03	1
2-Butanone (MEK)	0.17		0.33		ug/m3			11/05/19 19:03	1
2-Hexanone	0.84		0.94		ug/m3			11/05/19 19:03	1
	0.073		0.82	0.066				11/05/19 19:03	1
2-Methylbutane 2-Methylpentane		e l	0.59	0.19				11/05/19 19:03	1
4-Ethyltoluene	1.2	and a	0.28	0.049	-			11/05/19 19:03	1
•	ND		0.79	0.10				11/05/19 19:03	1
4-Methyl-2-pentanone (MIBK) Acetone	0.25		0.82	0.22				11/05/19 19:03	1
Benzene	7.4		4.8		ug/m3			11/05/19 19:03	1
Benzene Benzyl chloride	0.50		0.26	0.026	-			11/05/19 19:03	1
Bromodichloromethane	ND		0.83	0.20 (0			11/05/19 19:03	1
Bromoform	ND	e û.	0.54	0.12 ı	-			11/05/19 19:03	1
Bromomethane	ND (ら	0.83	0.093 ı				11/05/19 19:03	1
-	ND		0.31	0.085 u				11/05/19 19:03	1
Carbon disulfide Carbon tetrachloride	0.041	1	0.62	0.034 ı				11/05/19 19:03	1
Chlorobenzene	0.44		0.20	0.044 ı				11/05/19 19:03	1
Chloroethane	ND		0.37	0.028 i				11/05/19 19:03	1
	ND		0.21	0.077 L	ıg/m3			11/05/19 19:03	1
Chloroform	0.38 J	0	0.39	0.034 L	ıg/m3			11/05/19 19:03	1
hloromethane is-1,2-Dichloroethene	1.5 4	<u>it (</u>	0.41	0.14 u	•			11/05/19 19:03	1
	ND		0.16	0.040 u				11/05/19 19:03	1
s-1,3-Dichloropropene	ND		0.36	0.073 u	ıg/m3			11/05/19 19:03	1
yclohexane	0.30 J		0.69	0.079 u				11/05/19 19:03	1
ibromochloromethane	ND		0.68	0.060 u				11/05/19 19:03	1
ichlorodifluoromethane	1.5		0.40	0.069 u	g/m3			11/05/19 19:03	1
thylbenzene	0.15 J		0.35	0.056 u	g/m3			11/05/19 19:03	1

Eurofins TestAmerica, Knoxville

12/13/2019

Client Sample Results

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Client Sample ID: JR - 1223 - IA - 4 Date Collected: 11/01/19 15:32 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatil Analyte	Result	Qualifier	RL	MDL	Unit	D		Analyzed	Dil Fa
Heptane	0.37	J	0.82		ug/m3			11/05/19 19:03	
Hexachlorobutadiene	ND	1	0.85		ug/m3			11/05/19 19:03	
Hexane	2.0		0.70		ug/m3			11/05/19 19:03	
Indane	ND		0.39		ug/m3			11/05/19 19:03	
Indene	ND		0.76		ug/m3			11/05/19 19:03	
Isopropyl alcohol	12		2.0		ug/m3			11/05/19 19:03	
lsopropylbenzene	ND		0.79		ug/m3			11/05/19 19:03	-
Methyl tert-butyl ether	ND	ĸ	0.58		ug/m3			11/05/19 19:03	1
Methylene Chloride	11	-B \	1.4		ug/m3			11/05/19 19:03	1
m-Xylene & p-Xylene	0.44	Sant ²	0.35		ug/m3			11/05/19 19:03	1
Naphthalene	ND		1.0		ug/m3			11/05/19 19:03	1
n-Butane	20	and the second	0.38		ug/m3			11/05/19 19:03	1
n-Decane	ND		2.3		ug/m3			11/05/19 19:03	1
n-Dodecane	ND		2.8		ug/m3			11/05/19 19:03	
n-Octane	0.14	J	0.75		ug/m3			11/05/19 19:03	1
Nonane	ND	-	1.0		ug/m3				1
n-Undecane	ND		2.6		ug/m3			11/05/19 19:03 11/05/19 19:03	1
o-Xylene	0.15	J	0.35		ug/m3			11/05/19 19:03	1
Pentane	5.6		1.2		ug/m3			11/05/19 19:03	1
Propene		~G+~ \	1.7		ug/m3				1
Styrene	ND	· .	0.34		ug/m3			11/05/19 19:03	1
Tetrachloroethene	0.48	J	0.54		ug/m3			11/05/19 19:03	1
Tetrahydrofuran	ND	•	1.2		ug/m3			11/05/19 19:03	1
Thiophene	ND		0.28		ug/m3			11/05/19 19:03	1
Foluene	2.0		0.45		ug/m3			11/05/19 19:03	1
rans-1,2-Dichloroethene	0.028	.1	0.32		ug/m3			11/05/19 19:03	1
rans-1,3-Dichloropropene	ND	Ŭ	0.36	0.020	0			11/05/19 19:03	1
Frichloroethene	ND		0.19	0.032	•			11/05/19 19:03	1
[richlorofluoromethane]	1.5		0.45	0.052	-			11/05/19 19:03	1
/inyl chloride	ND		0.10	0.066				11/05/19 19:03 11/05/19 19:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	
-Bromofluorobenzene (Surr)	95		60 - 140				Trepared	11/05/19 19:03	Dil Fac
lethod: D1946 - Fixed Gase	es (Helium)							11100/10 10:00	,
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
lelium	ND		0.13	0.13				11/08/19 11:29	1.27

Client Sample ID: AA 110119

Date Collected: 11/01/19 15:03 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 0.080 0.037 ppb v/v 11/05/19 20:01 1 1,1,2,2-Tetrachloroethane ND 0.080 0.014 ppb v/v 11/05/19 20:01 1 1,1,2-Trichloro-1,2,2-trifluoroetha 0.069 J 0.080 0.0080 ppb v/v 11/05/19 20:01 1 ne 1,1,2-Trichloroethane ND 0.080 0.0070 ppb v/v 11/05/19 20:01 1

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17207-4 Matrix: Air

Matrix: Air

Client Sample ID: AA 110119

Date Collected: 11/01/19 15:03 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-5 Matrix: Air

1,1-Dichloroethane 1,1-Dichloroethene	ND					 		
1,1-Dichloroethene			0.080	0.0070	ppb v/v		11/05/19 20:01	
	ND		0.040	0.0080	ppb v/v		11/05/19 20:01	
1,2,3-Trimethylbenzene	ND		0.080	0.036	ppb v/v		11/05/19 20:01	
1,2,4-Trichlorobenzene	ND		0.080	0.064	ppb v/v		11/05/19 20:01	
1,2,4-Trimethylbenzene	0.030	J	0.080	0.020	ppb v/v		11/05/19 20:01	
1,2-Dibromoethane (EDB)	ND		0.080	0.0070	ppb v/v		11/05/19 20:01	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080	0.012	ppb v/v		11/05/19 20:01	
ane 1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v		11/05/19 20:01	
1,2-Dichloroethane	0.012	J	0.080		ppb v/v		11/05/19 20:01	
1,2-Dichloropropane	ND	•	0.080		ppb v/v		11/05/19 20:01	
1,3,5-Trimethylbenzene	ND		0.080		ppb v/v ppb v/v			•
1,3-Butadiene	ND		0.16		ppb v/v ppb v/v		11/05/19 20:01	
1,3-Dichlorobenzene	ND		0.080		ppb v/v ppb v/v		11/05/19 20:01	
1.4-Dichlorobenzene	ND		0.080		ppb v/v ppb v/v		11/05/19 20:01	
1,4-Dioxane	ND		0.000		ppb v/v		11/05/19 20:01	1
2,2,4-Trimethylpentane	0.040	1	0.20		ppb v/v ppb v/v		11/05/19 20:01	1
2,3-Dimethylpentane	0.040 ND	5	0.20				11/05/19 20:01	1
2-Butanone (MEK)	0.12	,	0.080		ppb v/v		11/05/19 20:01	1
2-Hexanone	ND	J	0.32		ppb v/v		11/05/19 20:01	1
2-Methylbutane	0.89		0.20		ppb v/v		11/05/19 20:01	1
2-Methylpentane	0.89				ppb v/v		11/05/19 20:01	1
4-Ethyltoluene	ND		0.080		ppb v/v		11/05/19 20:01	1
4-Methyl-2-pentanone (MIBK)	0.059		0.16		ppb v/v		11/05/19 20:01	1
Acetone	1.6		0.20		ppb v/v		11/05/19 20:01	1
Benzene	0.13	J	2.0		ppb v/v		11/05/19 20:01	1
Benzyl chloride	0.13 ND		0.080	0.0080			11/05/19 20:01	1
Bromodichloromethane	ND		0.16		ppb v/v		11/05/19 20:01	1
Bromoform		۲۵	0.080		ppb v/v		11/05/19 20:01	1
Bromomethane	ND		0.080	0.0090			11/05/19 20:01	1
Carbon disulfide	0.011		0.080		ppb v/v		11/05/19 20:01	1
Carbon tetrachloride		J	0.20		ppb v/v		11/05/19 20:01	1
Chlorobenzene	0.074 ND		0.032	0.0070			11/05/19 20:01	1
Chloroethane	ND		0.080	0.0060			11/05/19 20:01	1
Chloroform	0.054		0.080	0.029			11/05/19 20:01	1
Chloromethane	0.054	J	0.080 0.20	0.0070			11/05/19 20:01	1
cis-1,2-Dichloroethene	0.09 ND			0.066			11/05/19 20:01	1
cis-1,3-Dichloropropene	ND		0.040	0.010			11/05/19 20:01	1
Cyclohexane			0.080	0.016			11/05/19 20:01	1
Dibromochloromethane	0.050 ND	J	0.20	0.023			11/05/19 20:01	1
Dichlorodifluoromethane			0.080	0.0070			11/05/19 20:01	1
Ethylbenzene	0.25		0.080	0.014			11/05/19 20:01	1
Heptane	0.032		0.080	0.013			11/05/19 20:01	1
Hexachlorobutadiene	0.052	J	0.20	0.014			11/05/19 20:01	1
lexane	ND		0.080	0.032			11/05/19 20:01	1
ndane	0.15	J	0.20	0.013			11/05/19 20:01	1
ndene	ND		0.080	0.035			11/05/19 20:01	1
	ND		0.16	0.039			11/05/19 20:01	1
sopropyl alcohol	0.63	J	0.80	0.22	ppb v/v		11/05/19 20:01	1

Eurofins TestAmerica, Knoxville

12/13/2019

Client Sample ID: AA 110119

Date Collected: 11/01/19 15:03 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Analyte Methyl tert-butyl ether		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil F
	ND	-10	0.16		ppb v/v			11/05/19 20:01	
Methylene Chloride		ъUB	0.40		ppb v/v			11/05/19 20:01	
m-Xylene & p-Xylene	0.098		0.080		ppb v/v			11/05/19 20:01	
Naphthalene	ND		0.20		ppb v/v			11/05/19 20:01	
n-Butane	2.3		0.16		ppb v/v			11/05/19 20:01	
n-Decane	0.040	J	0.40	0.038	ppb v/v			11/05/19 20:01	
n-Dodecane	ND		0.40	0.064	ppb v/v			11/05/19 20:01	
n-Octane	0.026	J	0.16	0.016	ppb v/v			11/05/19 20:01	
Nonane	0.023	J	0.20	0.018	ppb v/v			11/05/19 20:01	
n-Undecane	ND		0.40	0.048	ppb v/v			11/05/19 20:01	
o-Xylene	0.039	J	0.080	0.015	ppb v/v			11/05/19 20:01	
Pentane	0.45		0.40	0.079	ppb v/v			11/05/19 20:01	
Propene	ND		1.0		ppb v/v			11/05/19 20:01	
Styrene	ND		0.080		ppb v/v			11/05/19 20:01	
etrachloroethene	0.074	J	0.080		ppb v/v			11/05/19 20:01	
etrahydrofuran	ND		0.40		ppb v/v			11/05/19 20:01	
hiophene	ND		0.080		ppb v/v			11/05/19 20:01	
oluene	0.23		0.12		ppb v/v			11/05/19 20:01	
ans-1,2-Dichloroethene	ND		0.080	0.0070					
ans-1,3-Dichloropropene	ND		0.080	0.0090				11/05/19 20:01	
ichloroethene	ND		0.036	0.0090				11/05/19 20:01	
richlorofluoromethane	0.23		0.080					11/05/19 20:01	
inyl chloride	0.23 ND		0.080		ppb v/v			11/05/19 20:01	
•					ppb v/v			11/05/19 20:01	
nalyte 1,1-Trichloroethane		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
	ND		0.44		ug/m3			11/05/19 20:01	
1,2,2-Tetrachloroethane	ND		0.55	0.096				11/05/19 20:01	
1,2-Trichloro-1,2,2-trifluoroetha	0.53	J	0.61	0.061	ug/m3			11/05/19 20:01	
= 1,2-Trichloroethane	ND		0.44	0.000					
1-Dichloroethane	ND			0.038				11/05/19 20:01	
1-Dichloroethene	ND		0.32	0.028				11/05/19 20:01	
2,3-Trimethylbenzene	ND		0.16	0.032	-			11/05/19 20:01	
2,4-Trichlorobenzene			0.39	0.18				11/05/19 20:01	
2,4-Trimethylbenzene	ND		0.59	0.47				11/05/19 20:01	
2-Dibromoethane (EDB)	0.15	J	0.39	0.098	•			11/05/19 20:01	
	ND		0.61	0.054	•			11/05/19 20:01	
2-Dichloro-1,1,2,2-tetrafluoroeth	0.12	J	0.56	0.084	ug/m3			11/05/19 20:01	
e 2-Dichlorobenzene	ND		0.49	0.40					
2-Dichloroethane			0.48	0.19				11/05/19 20:01	
2-Dichloropropane	0.048	J	0.32	0.040				11/05/19 20:01	
3,5-Trimethylbenzene	ND		0.37	0.046	=			11/05/19 20:01	
3-Butadiene	ND		0.39	0.11				11/05/19 20:01	
	ND		0.35	0.042				11/05/19 20:01	
	ND		0.48	0.096 (-			11/05/19 20:01	
-Dichlorobenzene	ND		0.48	0.096 ı				11/05/19 20:01	
l-Dioxane	ND		0.72	0.11 ı	ug/m3			11/05/19 20:01	
	0.40	1	0.93	0.037 u	Jg/m3			11/05/19 20:01	
	0.19		0.00		-			1100/10 20.01	
B-Dimethylpentane	0.19 ND	-	0.33	0.11 u	-			11/05/19 20:01	
2,4-Trimethylpentane 3-Dimethylpentane Butanone (MEK) Hexanone					ug/m3				

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-17207-5 Matrix: Air

.....

Client: ARCADIS U.S. Inc Project/Site: Con Edison - East 11th Street

Client Sample ID: AA 110119

Date Collected: 11/01/19 15:03 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-5 Matrix: Air

Method: TO 15 LL - Volatile O Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylbutane	2.6	<u> </u>	0.59	0.19	ug/m3			11/05/19 20:01	
2-Methylpentane	0.47		0.28	0.049	ug/m3			11/05/19 20:01	
4-Ethyltoluene	ND		0.79		ug/m3			11/05/19 20:01	
4-Methyl-2-pentanone (MIBK)	0.24	J	0.82		ug/m3			11/05/19 20:01	
Acetone	3.9	J	4.8		ug/m3			11/05/19 20:01	1
Benzene	0.41		0.26		ug/m3			11/05/19 20:01	1
Benzyl chloride	ND		0.83		ug/m3			11/05/19 20:01	1
Bromodichloromethane	ND		0.54		ug/m3			11/05/19 20:01	1
Bromoform	ND	U)	0.83	0.093	ug/m3			11/05/19 20:01	-
Bromomethane	ND		0.31		ug/m3			11/05/19 20:01	1
Carbon disulfide	0.035 、	J	0.62		ug/m3			11/05/19 20:01	
Carbon tetrachloride	0.46		0.20		ug/m3				1
Chlorobenzene	ND		0.37		ug/m3			11/05/19 20:01	1
Chloroethane	ND		0.21	0.077	-			11/05/19 20:01	1
Chloroform	0.26 J	Į	0.39	0.034				11/05/19 20:01	1
Chloromethane	1.4		0.41		ug/m3			11/05/19 20:01	1
cis-1,2-Dichloroethene	ND		0.16	0.040				11/05/19 20:01	1
cis-1,3-Dichloropropene	ND		0.36	0.073				11/05/19 20:01	1
Cyclohexane	0.17 J	1	0.69	0.079				11/05/19 20:01	1
Dibromochloromethane	ND		0.68	0.060				11/05/19 20:01	1
Dichlorodifluoromethane	1.2		0.40	0.069	-			11/05/19 20:01	1
Ethylbenzene	0.14 J		0.35	0.009	+			11/05/19 20:01	1
leptane	0.21 J		0.82	0.058	-			11/05/19 20:01	1
lexachlorobutadiene	ND		0.85					11/05/19 20:01	1
lexane	0.51 J		0.70	0.34 0.046	-			11/05/19 20:01	1
ndane	ND		0.39		-			11/05/19 20:01	1
ndene	ND		0.39	0.17				11/05/19 20:01	1
sopropyl alcohol	1.6 J		2.0	0.19	-			11/05/19 20:01	1
opropylbenzene	ND		0.79	0.54				11/05/19 20:01	1
lethyl tert-butyl ether	ND		0.79	0.084				11/05/19 20:01	1
lethylene Chloride		·vB		0.19 (11/05/19 20:01	1
-Xylene & p-Xylene	2.0 MB 0.42	- V D	1.4	0.56 (-			11/05/19 20:01	1
aphthalene	0.42 ND		0.35	0.13 ı				11/05/19 20:01	1
-Butane	5.5		1.0	0.40 i	•			11/05/19 20:01	1
-Decane	0.24 J		0.38	0.20 ι	-			11/05/19 20:01	1
Dodecane	0.24 J ND		2.3	0.22 ι				11/05/19 20:01	1
Octane			2.8	0.45 i				11/05/19 20:01	1
onane	0.12 J		0.75	0.075 u				11/05/19 20:01	1
Undecane	0.12 J		1.0	0.094 u				11/05/19 20:01	1
Xylene	ND		2.6	0.31 u				11/05/19 20:01	1
entane	0.17 J		0.35	0.065 u				11/05/19 20:01	1
opene	1.3		1.2	0.23 u	-			1/05/19 20:01	1
yrene	ND		1.7	1.7 u			1	1/05/19 20:01	1
trachloroethene	ND		0.34	0.10 u			1	1/05/19 20:01	1
trahydrofuran	0.50 J		0.54	0.047 u	-			1/05/19 20:01	1
•	ND		1.2	0.45 u			1	1/05/19 20:01	1
iophene	ND		0.28	0.038 u	g/m3			1/05/19 20:01	1
luene	0.86		0.45	0.29 u	g/m3			1/05/19 20:01	1
ns-1,2-Dichloroethene	ND		0.32	0.028 ug	g/m3			1/05/19 20:01	1

Client Sample ID: AA 110119

Date Collected: 11/01/19 15:03 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-5

Matrix: Air

Method: TO 15 LL - Volatil Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		0.36	0.041			Trepareu		DirFac
Trichloroethene	ND		0.19		- 3			11/05/19 20:01	
Trichlorofluoromethane			-		ug/m3			11/05/19 20:01	1
	1.3		0.45	0.062	ug/m3			11/05/19 20:01	1
Vinyl chloride	ND		0.10	0.066	ug/m3			11/05/19 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Applyrood	D# F.
4-Bromofluorobenzene (Surr)	95		60 - 140			-	riepareu	Analyzed 11/05/19 20:01	Dil Fac
Method: D1946 - Fixed Gas Analyte		Qualifier	RL	MDL	Unit	D	Promono d		
Helium	ND						Prepared	Analyzed	Dil Fac
	ND		0.18	0.18	% v/v			11/08/19 11:46	1.81

Client Sample ID: DUP - 110119 Date Collected: 11/01/19 00:00 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-6

Matrix: Air

Method: TO 15 LL - Volatile Org	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.080	0.037	ppb v/v			11/05/19 20:58	1
1,1,2,2-Tetrachloroethane	ND		0.080		ppb v/v			11/05/19 20:58	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.073	J	0.080		ppb v/v			11/05/19 20:58	1
ne 1.1.0 Trichlers attac					11.			11/03/19/20.36	1
1,1,2-Trichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 20:58	1
1,1-Dichloroethane	ND		0.080	0.0070	ppb v/v			11/05/19 20:58	1
1,1-Dichloroethene	ND		0.040		ppb v/v			11/05/19 20:58	1
1,2,3-Trimethylbenzene	ND		0.080		ppb v/v			11/05/19 20:58	1
1,2,4-Trichlorobenzene	ND		0.080		ppb v/v			11/05/19 20:58	
1,2,4-Trimethylbenzene	0.024	J	0.080		ppb v/v			11/05/19 20:58	1
1,2-Dibromoethane (EDB)	ND		0.080		ppb v/v			11/05/19 20:58	1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.017	J	0.080		ppb v/v				1
ane					PP0 1/1			11/05/19 20:58	1
1,2-Dichlorobenzene	ND		0.080	0.031	ppb v/v			11/05/19 20:58	1
1,2-Dichloroethane	0.015	J	0.080		ppb v/v			11/05/19 20:58	1
1,2-Dichloropropane	ND		0.080		ppb v/v			11/05/19 20:58	1
1,3,5-Trimethylbenzene	ND		0.080		ppb v/v			11/05/19 20:58	1
1,3-Butadiene	ND		0.16		ppb v/v			11/05/19 20:58	1
1,3-Dichlorobenzene	ND		0.080		ppb v/v			11/05/19 20:58	1
,4-Dichlorobenzene	ND		0.080		ppb v/v				1
,4-Dioxane	ND		0.20	0.030				11/05/19 20:58	1
2,2,4-Trimethylpentane	0.031	J	0.20	0.0080				11/05/19 20:58	1
2,3-Dimethylpentane	ND		0.080	0.026				11/05/19 20:58	1
-Butanone (MEK)	0.38		0.32	0.073				11/05/19 20:58	1
-Hexanone	0.037	I	0.32					11/05/19 20:58	1
-Methylbutane	0.33		0.20	0.016				11/05/19 20:58	1
-Methylpentane	0.076		0.20	0.063				11/05/19 20:58	1
-Ethyltoluene	ND	,		0.014				11/05/19 20:58	1
-Methyl-2-pentanone (MIBK)	ND		0.16		opb v/v			11/05/19 20:58	1
cetone		tana (0.20	0.054				11/05/19 20:58	1
enzene	5.3 🐔		2.0	0.57 p				11/05/19 20:58	1
	0.12		0.080	0.0080 p	opb v/v			11/05/19 20:58	1

Client Sample ID: DUP - 110119

Date Collected: 11/01/19 00:00 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-6

Matrix: Air

,1,1-Trichloroethane	ND		0.44	0.20			····	11/05/19 20:58	Dil Fac 1
nalyte	Result Q	ualifier	RL	MDL		D	Prepared	Analyzed	
/inyl chloride	ND		0.040	0.026				11/05/19 20:58	1
richlorofluoromethane	0.24		0.080	0.011				11/05/19 20:58	1
richloroethene	ND		0.036	0.0060				11/05/19 20:58	1
rans-1,3-Dichloropropene	ND		0.080	0.0090				11/05/19 20:58	1
rans-1,2-Dichloroethene	ND		0.080	0.0070				11/05/19 20:58 11/05/19 20:58	1
Toluene	0.19		0.12	0.078				11/05/19 20:58	1
Thiophene	ND		0.080	0.15	• •			11/05/19 20:58	1
Fetrahydrofuran	ND		0.000		ppb v/v ppb v/v			11/05/19 20:58	1
- Fetrachloroethene	0.094		0.080	0.024				11/05/19 20:58	1
Styrene	ND		0.080	1.0 0.024	ppb v/v			11/05/19 20:58	1
Propene	0.22 J ND		0.40 1.0		ppb v/v			11/05/19 20:58	1
Pentane	0.031 J 0.22 J		0.080		ppb v/v			11/05/19 20:58	1
o-Xylene	0.031 J		0.40		ppb v/v			11/05/19 20:58	1
n-Undecane	0.025 J ND	I	0.20		ppb v/v			11/05/19 20:58	1
Nonane	0.027 J		0.16		ppb v/v			11/05/19 20:58	1
n-Octane	ND	1	0.40		ppb v/v			11/05/19 20:58	1
n-Decane	0.068 J	1	0.40		ppb v/v			11/05/19 20:58	1
n-Decane	1.6		0.16		ppb v/v			11/05/19 20:58	
n-Butane	ND		0.20		ppb v/v			11/05/19 20:58	
n-Xylene & p-Xylene Naphthalene	0.074	J	0.080		ppb v/v			11/05/19 20:58	
Methylene Chloride		3-08)	0.40		ppb v/v			11/05/19 20:58	
Methyl tert-butyl ether	ND		0.16		ppb v/v			11/05/19 20:58	
Isopropylbenzene Methyl tert-butyl other	ND		0.16		ppb v/v			11/05/19 20:58	
Isopropyl alcohol	5.6		0.80		ppb v/v			11/05/19 20:58	
	ND		0.16		ppb v/v			11/05/19 20:58	
Indene	ND		0.080		ppb v/v			11/05/19 20:58	
Hexane Indane	0.11	J	0.20		ppb v/v			11/05/19 20:58	
	ND		0.080		ppb v/v			11/05/19 20:58	
Heptane Hexachlorobutadiene	0.057	J	0.20	0.014	ppb v/v			11/05/19 20:58	
Ethylbenzene	0.025		0.080	0.013	ppb v/v			11/05/19 20:58	
Dichlorodifluoromethane	0.26		0.080	0.014	ppb v/v			11/05/19 20:58	
Dibromochloromethane	ND		0.080	0.0070	ppb v/v			11/05/19 20:58	
Cyclohexane	0.041	J	0.20	0.023	ppb v/v			11/05/19 20:58	
cis-1,3-Dichloropropene	ND		0.080	0.016	ppb v/v			11/05/19 20:58	
cis-1,2-Dichloroethene	ND		0.040	0.010	ppb v/v			11/05/19 20:58	
Chloromethane	0.65		0.20		ppb v/v			11/05/19 20:58	
Chloroform	0.086		0.080) ppb v/v			11/05/19 20:58	
Chloroethane	ND		0.080		ppb v/v			11/05/19 20:58	
Chlorobenzene	ND		0.080) ppb v/v			11/05/19 20:58	
Carbon tetrachloride	0.080		0.032) ppb v/v			11/05/19 20:58	
Carbon disulfide	ND		0.20		l ppb v/v			11/05/19 20:58	-
Bromomethane	ND	10° 955	0.080		2 ppb v/v			11/05/19 20:58	
Bromoform	ND	20	0.080) ppb v/v			11/05/19 20:58 11/05/19 20:58	
Bromodichloromethane	ND		0.080		8 ppb v/v 8 ppb v/v			11/05/19 20:5	
	ND		0.16	11/130				44/05/40 00 5	-

Client Sample ID: DUP - 110119

Date Collected: 11/01/19 00:00 Date Received: 11/02/19 10:15 Sample Container: Summa Canister 6L

Lab Sample ID: 140-17207-6

Matrix: Air

Method: TO 15 LL - Volatile Org Analyte 1,1,2,2-Tetrachloroethane	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	ND		0.55		ug/m3			11/05/19 20:58	· · · · ·
1,1,2-Trichloro-1,2,2-trifluoroetha	0.56	J	0.61	0.061	ug/m3			11/05/19 20:58	
1,1,2-Trichloroethane	ND		0.44	0 0 0 0					
1,1-Dichloroethane	ND		0.44		ug/m3 ug/m3			11/05/19 20:58	
1,1-Dichloroethene	ND		0.32		ug/m3			11/05/19 20:58	
1,2,3-Trimethylbenzene	ND		0.10		•			11/05/19 20:58	
1,2,4-Trichlorobenzene	ND		0.59		ug/m3 ug/m3			11/05/19 20:58	
1,2,4-Trimethylbenzene	0.12	.1	0.39		ug/m3			11/05/19 20:58	
1,2-Dibromoethane (EDB)	ND	•	0.61		ug/m3 ug/m3			11/05/19 20:58	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.12	.1	0.56		ug/m3 ug/m3			11/05/19 20:58	
ane	0.12	0	0.50	0.064	ug/ms			11/05/19 20:58	1
1,2-Dichlorobenzene	ND		0.48	0.19	ug/m3			11/05/19 20:58	
1,2-Dichloroethane	0.060	J	0.32		ug/m3				1
1,2-Dichloropropane	ND		0.37	0.046				11/05/19 20:58 11/05/19 20:58	1
1,3,5-Trimethylbenzene	ND		0.39		ug/m3				1
1,3-Butadiene	ND		0.35	0.042				11/05/19 20:58	1
1,3-Dichlorobenzene	ND		0.48	0.096				11/05/19 20:58	1
1,4-Dichlorobenzene	ND		0.48	0.096	-			11/05/19 20:58	1
1,4-Dioxane	ND		0.72		ug/m3			11/05/19 20:58	1
2,2,4-Trimethylpentane	0.15	J	0.93	0.037				11/05/19 20:58	1
2,3-Dimethylpentane	ND		0.33		ug/m3			11/05/19 20:58	1
2-Butanone (MEK)	1.1		0.94		ug/m3			11/05/19 20:58	1
2-Hexanone	0.15	J	0.82	0.066				11/05/19 20:58	1
2-Methylbutane	0.98	_	0.59	0.19	-			11/05/19 20:58	1
2-Methylpentane	0.27	J	0.28	0.049	-			11/05/19 20:58	1
l-Ethyltoluene	ND		0.79	0.10	-			11/05/19 20:58	1
-Methyl-2-pentanone (MIBK)	ND		0.82	0.22				11/05/19 20:58	1
Acetone	13 (S+- \	4.8		ug/m3			11/05/19 20:58	1
Benzene	0.37	600 ⁰	0.26	0.026				11/05/19 20:58	1
Benzyl chloride	ND		0.83	0.20	-			11/05/19 20:58	1
romodichloromethane	ND		0.54	0.12 1				11/05/19 20:58	1
romoform	ND (10	0.83	0.093 ι	-			11/05/19 20:58	1
romomethane	ND	and the second s	0.31	0.085 t				11/05/19 20:58	1
arbon disulfide	ND		0.62	0.034 i				11/05/19 20:58	1
arbon tetrachloride	0.50		0.20	0.034 t	-			11/05/19 20:58	1
hlorobenzene	ND		0.37	0.028 i	-			11/05/19 20:58	1
hloroethane	ND		0.21	0.020 t				11/05/19 20:58	1
hloroform	0.42		0.39	0.034 u				11/05/19 20:58	1
hloromethane	1.3		0.41	0.034 U 0.14 u				11/05/19 20:58	1
s-1,2-Dichloroethene	ND		0.16					11/05/19 20:58	1
s-1,3-Dichloropropene	ND		0.36	0.040 u 0.073 u				11/05/19 20:58	1
yclohexane	0.14 J		0.69	0.073 u 0.079 u				11/05/19 20:58	1
bromochloromethane	ND		0.68					11/05/19 20:58	1
ichlorodifluoromethane	1.3		0.68	0.060 u 0.069 u				11/05/19 20:58	1
thylbenzene	0.11 J		0.40	0.069 u 0.056 u	-			11/05/19 20:58	1
eptane	0.11 J		0.35					11/05/19 20:58	1
exachlorobutadiene	0.23 J ND		0.82	0.057 u				11/05/19 20:58	1
exane	0.38 J		0.85	0.34 u	-			11/05/19 20:58	1
	0.00 3		0.70	0.046 u	y/ma			11/05/19 20:58	1

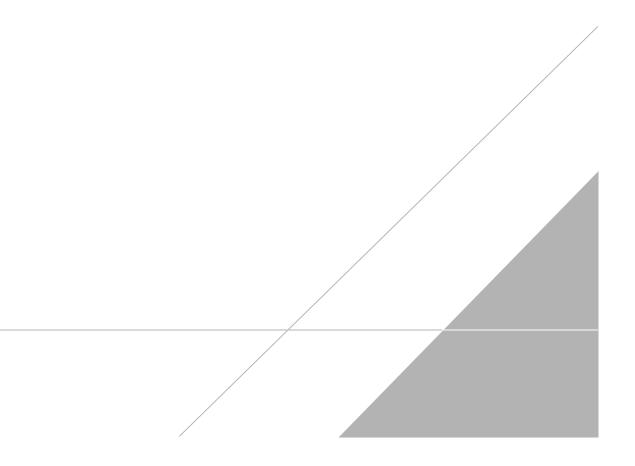
Matrix: Air

Lab Sample ID: 140-17207-6

Client Sample ID: DUP - 110119 Date Collected: 11/01/19 00:00 Date Received: 11/02/19 10:15

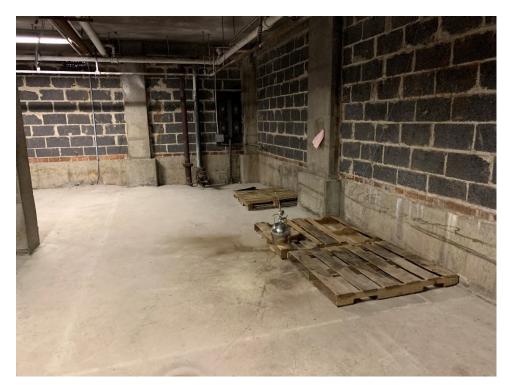
Sample Container: Summa Canister 6L

Method: TO 15 LL - Volati Analyte	Resu	it Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	N	5	0.39		ug/m3			11/05/19 20:58	
Indene	N	C	0.76		ug/m3			11/05/19 20:58	
Isopropyl alcohol	14	4	2.0		ug/m3			11/05/19 20:58	
Isopropylbenzene	N)	0.79		ug/m3			11/05/19 20:58	
Methyl tert-butyl ether	NE)	0.58		ug/m3			11/05/19 20:58	•
Methylene Chloride	2.0	-B- UB \	1.4		ug/m3			11/05/19 20:58	
m-Xylene & p-Xylene	0.32	2 J	0.35		ug/m3			11/05/19 20:58	
Naphthalene	NE)	1.0		ug/m3			11/05/19 20:58	
n-Butane	3.8	8	0.38		ug/m3			11/05/19 20:58	1
n-Decane	0.39	(DAP	2.3		ug/m3			11/05/19 20:58	1
n-Dodecane	ND)	2.8		ug/m3			11/05/19 20:58	1
n-Octane	0.13	J	0.75		ug/m3			11/05/19 20:58	1
Nonane	0.13	J	1.0		ug/m3			11/05/19 20:58	1
n-Undecane	ND		2.6		ug/m3			11/05/19 20:58	1
o-Xylene	0.13	J	0.35		ug/m3				1
Pentane	0.64	J	1.2		ug/m3			11/05/19 20:58	1
Propene	ND		1.7		ug/m3			11/05/19 20:58	1
Styrene	ND		0.34		ug/m3			11/05/19 20:58	1
Tetrachloroethene	0.63		0.54	0.047				11/05/19 20:58	1
Tetrahydrofuran	ND		1.2		ug/m3			11/05/19 20:58	1
Thiophene	ND		0.28	0.038	-			11/05/19 20:58	1
Toluene	0.72		0.45		ug/m3			11/05/19 20:58	1
rans-1,2-Dichloroethene	ND		0.32	0.028	-			11/05/19 20:58	1
rans-1,3-Dichloropropene	ND		0.36	0.041	÷			11/05/19 20:58	1
Frichloroethene	ND		0.19	0.032	-			11/05/19 20:58	1
Frichlorofluoromethane	1.3		0.45	0.052	0			11/05/19 20:58	1
/inyl chloride	ND		0.10	0.062	-			11/05/19 20:58	1
			0.10	0.000	ug/m3			11/05/19 20:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Bromofluorobenzene (Surr)	94		60 - 140					11/05/19 20:58	1
/lethod: D1946 - Fixed Gas	oc (Holium)							•	•
nalyte	• • •	Qualifier	RL	MDL	1		. .		
lelium	ND		0.16	0.16		D	Prepared	Analyzed 11/08/19 12:03	Dil Fac


20.7271 Children 20.7211 Children <td< th=""><th></th><th>C (2) C 2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)</th><th>Eurofins TestAmerica, New York City Ser</th><th></th><th></th><th></th><th></th><th>Cani</th><th>ster S</th><th>amole</th><th>e Chair</th><th>نىن</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		C (2)	Eurofins TestAmerica, New York City Ser					Cani	ster S	amole	e Chair	نىن									
Total Discrete Technical Biology	для со	production in the constraint of constrain	47-32 32nd Place Suite 1141 Long Island City, NY 11101-2425				TestAme	arica Labora	tories, Inc.	assumes no li	ability with resp	ect to the c	ollection a	andirits bri	nt of these	samples.	46	17207 0	Chain o	of Custody	⊉⁄
1. Montening Control	Contract contraction Description Descripion Description <thdescription< th="" th<=""><th>Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<></th><th>phone 347.507.0579 fax</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ţ</th><th>st∆meri</th><th>ode i en</th><th>- Contraction</th><th></th><th></th></thdescription<>	Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	phone 347.507.0579 fax													ţ	st∆meri	ode i en	- Contraction		
Marken Line Function	Мание советствание Прили (свор) 684 сода. Анлики и и и и и и и и и и и и и и и и и и	Acceleration (acceleration) Description (acceleration) Description) Description (acceleration) Description) Description Description <thdescription< th=""></thdescription<>	Client Contact Information		Slient Pro	ect Mana	ger: Bruc	e W. Ahre	su	Samples (Collected By	Rob Am	old / Alb	na Redz	anic					o, inc. a/b/a Euronns lest	America
Полити подати предативија са дание д	Constraints: Entert Entree Survey Entert Entere Survey Entert Enterestion Entert Enterestion Entert Enterestion Enter Ent	Consistent internation	Address: 206 Mondates Public		hone: (5	35) 662 40	2														
(1) (1)<	Physical constraint Difference of the state	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	City/State/Zip: Fairport/ NY/ 14450		cmail: bru	ce.ahren	Carcadi	s.com					_		(u	-	\vdash	F			
Contribution East 115 Street - 123-5854-6667 Electronic States Electron	PMX Microsoft and the instruction of the instructin instruction of the instructin instruction of the ins	Полнати странати странат	Phone: (585) 662 4034		ite Conta	ct: Albina	Redzens	oio				()			oiloe	- 1 <u>-</u>				or Lab Use Only:	
Спонставии Солоти свети (16) Солоти	Production from Contraction Amayor Line Amayor	Medication: East fragment fragment Aussist fragment Medication: <	FAX: (585) 385 4198	F	el/Fax 21	2-366-466	-	216				BAƏ"			6 69					Valk-in Client:	
2. Пала волно на солона Пала на правита (Зронства) 40 (1) 2. <	Orientering Bandian (Принатися) Contraction Contraction </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Project Name: Con Edison - East 11th Street</td> <td></td> <td></td> <td>Analysis</td> <td>Tumaro</td> <td>und Time</td> <td></td> <td>т</td> <td></td> <td>) MO</td> <td></td> <td></td> <td>ton r</td> <td></td> <td></td> <td>(3A5)</td> <td></td> <td>ab Sampling:</td> <td></td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Project Name: Con Edison - East 11th Street			Analysis	Tumaro	und Time		т) MO			ton r			(3A5)		ab Sampling:	
Cantole Identification Sampa Time Sampa Time Canter Canter France Canter Fran	Survise locatification Survise location survises The location survises The location survises The location survises Survises location survises The location survises Survises Image location survises The location survises Survises Survise <	Sample Identification Sample Sample The sample frame Cantern frame Cantern frame Control	P 0 # 30005328		standard (Specific):	Ę	01				ч / р.			city ir	1A 3		s) uo	_	ob / SDG No.:	
Burnol Identification Sample Sam	Sample identification Sample and image in the second of the second in the	Sample (dentification Sample (dentification) Sample (dentification) </td <td></td> <td></td> <td>ado) lien</td> <td>i/ilit</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>iepi</td> <td></td> <td></td> <td>ede</td> <td>nel</td> <td></td> <td>lion</td> <td>lan</td> <td>(See helow for Add' Iton</td> <td>1</td>			ado) lien	i/ilit						iepi			ede	nel		lion	lan	(See helow for Add' Iton	1
3: TA-1 0 /(7:20) 0 /(7:00) 0 / 1 /(7:00) 0 / 7:00) <td>JR-12-3 - T.A - 1 II/lol/I(T 7:30 I/lol/I(T 7:30) I/lol/I(T 7:30) <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td>Sample Start Date</td><td></td><td>Sample End Date</td><td>Time Stop</td><td>Camister Vacuum in Field, "Hg (Start)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Hall IDDY JOI MOISO 2001</td><td>(S)</td></t<></td>	JR-12-3 - T.A - 1 II/lol/I(T 7:30 I/lol/I(T 7:30) I/lol/I(T 7:30) <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td>Sample Start Date</td><td></td><td>Sample End Date</td><td>Time Stop</td><td>Camister Vacuum in Field, "Hg (Start)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Hall IDDY JOI MOISO 2001</td><td>(S)</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sample Start Date		Sample End Date	Time Stop	Camister Vacuum in Field, "Hg (Start)												Hall IDDY JOI MOISO 2001	(S)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1223-IA-1	. b1/10/11		1/10/1	14:59	11 '	.	11930	3460174	ار	-#				-#			Sample Specific Notes	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: State of the state	TXB-123-14.3 $7:24$ $11:33$ $5:24$ $11:33$ $5:24$ $11:33$ $5:24$ $11:33$ $5:24$ $12:35$ $5:24$ $12:35$ $5:24$ $12:35$ $5:24$ $12:35$ $5:24$ $12:35$ $5:24$ $12:35$ $5:24$ $12:35$ $5:24$ $12:35$ $5:24$ $12:35$ $5:26$ $16:321$ $5:26$ $16:321$ $5:26$ $12:34$ $11:54$ <th< td=""><td>TR-1223 - TA-</td><td> </td><td></td><td></td><td>14.52</td><td></td><td>1</td><td>2</td><td>12000</td><td>\$</td><td>+</td><td>+</td><td>4</td><td>$\langle \rangle$</td><td>_</td><td></td><td>1</td><td></td><td></td></th<>	TR-1223 - TA-				14.52		1	2	12000	\$	+	+	4	$\langle \rangle$	_		1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TO 17.2 4.			1-				61011		<			\leq	X	_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u></u>		97:		86.41	- 30	91	10140		X			\ge	Х					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S DUP-II0119 L 15:8 -3c -6 10:49 07672 X S DUP-II0119 L X -14 115:49 11674 X X S DUP-II0119 L X -14 115:49 11674 X X S DUP-II0119 L X -14 115:49 11674 X X State Interior Terrensteal Rec. (17.14) (17.14) (17.14) State Interior Pressure (incluse of Hg) Nec. (1974) (17.14) State Interior Pressure (incluse of Hg) Nec. (1974) (17.14) State Interior Pressure (incluse of Hg) Nec. (1974) (17.14) State Interior Pressure (incluse of Hg) Nec. (1974) (17.14) State Interior Pressure (incluse of Hg) Nec. (1977) (17.14) State Interior Interior Interior Interior Interior Interior State Interior Interior Interior Interior Interior Interior Interior State Interior Interior <t< td=""><td>S DUP-II0119 Little Little<</td><td>- VT - 577</td><td></td><td>a T</td><td></td><td>15:33</td><td>ۍ ۲</td><td></td><td>10301</td><td>04978</td><td>X</td><td></td><td></td><td>X</td><td></td><td> </td><td></td><td></td><td></td><td></td></t<>	S DUP-II0119 Little Little<	- VT - 577		a T		15:33	ۍ ۲		10301	04978	X			X						
10119 V V 30 -44 11549 11676 X X X 10119 N N 30 -44 11549 11676 X X 10119 N N N 1019 N N N N 10119 N N N N N N N N N 11011 N N N N N N N N N N 111 N N N N N N N N N N N 111 N	i DVP-110119 V V 32 -4 115'49 11676 X X X X 20P-110119 V V 20P 115'4 115'49 11676 X 115'49 11676 X 115'49 1167	i DVP-II0119 V X 32 -44 11549 11674 X X X X 20 -44 11549 11674 X X X X 20 11540 11560 11560 1150	_		1:48		15:03	-30	9 ¢	10049	24960	X			\mathbf{X}		$\left \right $	-			
Bits Interior Temperature (Fahrenheit) Re CRIY of Q Und bient) Star Interior Temperature (Fahrenheit) Re CRIY of Q Und bient) Star Interior Ambient Re CRIY of Q Und bient) Star Interior Ambient Re CRIY of Q Und bient) Star Interior Ambient Re CRIY of Q Und bient) Star Interior Ambient Re CRIY of Q Und bient) Star Interior Ambient Received bient) Star Interior Ambient Received biend) Star Interior Ambient Received biend) Star Interior Ambient Received biend) Star Interior Received biend) Ambient State I Time: M/1/19 Rei / 11 Samples Received biend) State I Time: Date / Time: Received biend) Ambiend State Name: Option Date / Time: Condition: Condition:	Plus	Plan Start Interior Temperature (Fahrenneth) Re Carly of Or Specific Interior Temperature (Fahrenneth) Re Carly of Or Or Specific Interior Interior Interior Interior Carly of Or Specific Interior Interior Interior Interior Carly of Or Specific Interior Interior Interior Interior Interior Simplex Statique day: Interior Interior Interior Interior Statig Interior Interior Interi Interior </td <td>& DUP-110119</td> <td>></td> <td>X</td> <td>></td> <td>X</td> <td>28-</td> <td>1</td> <td>5.</td> <td>11676</td> <td>X</td> <td></td> <td></td> <td>X</td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td>	& DUP-110119	>	X	>	X	28-	1	5.	11676	X			X	X					
Bart Interior Temperature (Fahrenheit) R. e. C. e.j. Y. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. D. e. X, F. e. O.g. of w. b. i. e. h. J. J. e. X, F. e. O.g. of w. b. i. e. h. J. J. e. X, F. e. O.g. of w. b. i. e. h. J. J. e. X, F. e. O.g. of w. b. i. e. h. J. J. e. X, F. e. O.g. of w. b. i. e. h. J. J. e. X, F. e. O.g. of w. b. i. e. h. J. J. e. K. J. J. f. M.	Protection Start Interior Temperature (framement) Stop Stop Stop Stop Stop Stop Stop Ambient Stop Stop Pressure (incluse of Hg) R.e.C.H. of G. O.M. & G. U.o.Y. & G. U.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.	Plus Helium Antoinn Recent of Helium Plus Helium And Helium Recent of Helium Andreen Bate / Time: H////19 K: / / 1 Andreen Date / Time: H////19 K: / 1 Andreen Bate / Time: Andreen Andreen				i															
Bate Interior Entrementing Start Interior Entrementing Start Interior Ambient Start Interior Pressure (incluse of Hg) Odd by: Add J + 2a(Licli) J + 2a(Licli) Odd by: Add J + 2a(Licli) Add	Pressure (incritor) Temperature (Fahrenheith) Rec Caily ed Carl Plus Barr Interior Emperature (Fahrenheith) Rec Caily ed Carl Plus Heliuum Curd Trans No. Curd Trans Plus Heliuum No. Curd Trans No. Curd Trans Plus Heliuum Shipper Name: No. Curd Trans Plus Me No. Curd Trans No. Curd Trans Plus Heliuum Shipper Name: Date / Time: No. Curd Trans All unished by: Shipper Name: Opened by: Condition:	Plan Earning Earning Stop Interior Earning Stop Stop Interior Stop Stop Interior Stop Stop Interior Stop Interior Earning PULS Helium Recent of Ha Stop Interior Pressure (incluse of Ha) Stop No. CUST PSM pSCal Stop No. CUST PSM pSCal Stop No. CUST PSM pSCal Stop Interior Received by: No. CUST PSM pSCal Stop IS Stop																			
Start Temperature (Fahrenheit) R.e. C. ELIY ed Q. Q. M. B. i. en J. J. B.e. X, F. ed Q. Stop Start Interior Temperature (Fahrenheit) Stop Start Interior Ambient Stop Start Interior Pressure (incluse of Hg) Stop Start Interior Pressure (incluse of Hg) Stop Start Interior Pressure (incluse of Hg) Vector Stop No C. Vol 7 M. No Secal Jeliu C. M. Stop No C. Vol 7 M. No Secal Jeliu C. M. Stop No C. Vol 7 M. No Secal Jeliu C. M. Stop No C. Vol 7 M. No Secal Jeliu M. Stop No C. Vol 7 M. No Secal Jeliu M. Stop No C. Vol 7 M. No Secal Jeliu M. Stop No C. Vol 7 M. No Secal Jeliu M. No C. Vol 7 M. No Secal No C. Vol 7 M. No Secal Jeliu M. No C. Vol 7 M. No Secal No C. Vol 7 M. No Secal Jeliu M. No Secal Vol 7 M. No Secal No Secal Jeliu M. No Secal Vol 7 M. No Secal No Secal Jeliu M. No Secal Vol 7 M. No Secal No Secal Jeliu M. No Secal Vol 7 M. No Secal No Secal Jeliu M. No Secal Vol 7 M. No Secal No Secal	Plus Heritor Temperature framenterity Re Curry Old Stop Stop Interior Temperature framenterity Re Curry Old Stop Stop Interior Pressure (inches of Hg) Re Curry Old Old Plus Helium and a 4 4 ach ed 154 cf Antilient K/1//19 K/1//19 K/1//19 Plus Helium and a 4 4 ach ed 154 cf Antilient K/1//19 K/1//19 amples Shipped by: Mec Date / Time: K/1//19 K/1//19 K/1//19 amples Reinquished by: Date / Time: Line: Received by: Mig ables Oniv: Shipper Name: Opened by: Condition:	Start Temperature frammetic Temperature frammetic Stop Stop Stop Stop Stop Pressue (inches of Hg) Stop Start Interior Stop Start Interior Stop Start Interior Start Interior Pressue (inches of Hg) PluS Helium Custoperature Received by: No.Custoperature Received by: No.Custoperature Received by: No.Custoperature Industriat by: Date / Time: Industriat by: Date / Time: Industriat by: Stipper Name: Stipper Name: Opened by:																			
Stop Interior Ambient Ne Chi Y of U Y	Start Interior Ambient Are Called Special Instructions/OC Requiraments & Comments: Start Interior Pressure (inches of Hg) Plus Helium Cud7A Mo Stop Interior Ambient No Stop Interior Ambient No Stop Stop Interior Ambient Stop Stop Ambient No Stop Stop Ambient No Stop Mo Ambient No Stop Anti-Action No No Stop Anti-Action Anti-Action No Stop Anti-Action No <	Stop Interior Ambient Control					Tem	perature	Fahrenhe	<u> </u>		1		1		_		-			
Start Pressure (inclues of Hg) MCK, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	Plus Interior Pressure (increas of Hg) Mr. H.	Start Interior Pressure (incres of Hg) Net Hg H		<u></u> 20		terior		Ambient				دی T	E.F.	200	\sim	کې چ	م ر	2	/ Pr	X, Foll	
ctons/OC Requirements & Comments. He firu M and a 4 fach ed fist of Analytes (Appendix C) ad by: A ach a 4 fach ed fist of Appendix C) ad by: A ach a 4 fach ed fist of Appendix C) ad by: A ach a 4 fach ed fist of Appendix C) ad by: A ach a 4 fach ed fist of the fist of the fist of the former austration by: Date / Time: 1/1/1 of 16:1/1 Samples Received by: A 1/2/2 fert austration by: Date / Time: A 1/1/1 of 16:1/1 Samples Received by: A 1/2/2 fert by: Date / Time: A fach by: Condition: Shipper Name: Opened by: Condition:	Special Instructions/OC Requirements & Comments: Mathematications Plus Helium and a 4 ach ed 1:54 of any 14 es (Appedix C) amples Shipped by: Mapped by: amples Relinquished by: Date / Time: ab Use Only: Shipper Name:	Plus Helium and a Heurichted list uf and a Heurie komments Multiple and a Heurie komments Plus Helium and a Heurie komments Anulytes (Appledix C) Ramptes Shipped by: And a Heurie killing Killing Received by: Antiple filting Killing		J			1º		hes of Ho						ر الا		\$				
chons/oc Requirements & Comments: Heliu M and a 4 ach ed 1:54 of analytes ("Appendix C) ad by: A ach a 4 ach ed 1:54 of analytes ("Appendix C) ad by: A ach a 4 ach ed 1:54 of and 1.1 and	Plus Helium and a 4 ached 154 of analytes (Appendix C) amples Shipped by: A ached bist of analytes (Appendix C) amples Shipped by: A ached by: A A A A A A A A A A A A A A A A A A A	Plus Helium and a fached list of analytes (Appendix C) amples Shipped by: A and a fached list of analytes (Appendix C) amples Shipped by: A A A A A A A A A A A A A A A A A A A						Ampient				23 T	5	R	202	60/					
Out Date / Time: I///! of 16: / // Samples Received by: I/// quished by: Date / Time: Received by: I/// I/// ov: Date / Time: Received by: I/// I/// ov: Date / Time: Received by: I/// I/// ov: Date / Time: Condition: Condition:	amples Snipped by: M. C.C. Date / Time: 1/// 9 16; / 1 Samples Received by: M. M. M. M. A. A. M.	amples Snipped by: No. C.R. Date / Time: 1/// 2/16 1/1 / 18 amples Received by: A. M. M. A. Le Le Inquisited by: A. M. M. M. A. Le Le Inquisited by: A. M. M. M. A. Le Le Inquisited by: A. M. M. M. M. M. Le Le Le Centre du Strain Shipper Name: Opened by: Condition: Condition:	special instructions/QC Requirements & comment Plus Helium apple attach	5	十一	anal	y ì es	(APP	odix C	5		4 >									
quished by: Date / Time: Received by: Shipper Name: Opened by: Condition:	amples Relinquished by: Received by: AMINA Pate / Time: Received by: AMINA PATE / PL	amples Relinquished by: Received by: AMMAN Pate / Time: Received by: ab Use Only: Shipper Name: Opened by: Condition:	de la		٥	ate / Time		119	19:11	Samples Re	sceived by:	Æ		K				Γ			Τ
y: Shipper Name: Other Condition: Condition: Condition:	telinquished by: Cf B 1 (C) C (C) C (C) C (C) C (C) C)	telinquished by: Received by: C1 + C + C + C + C + C + C + C + C + C	samples Relinquished by:		<u>0</u>	ate / Time				Received		K			0						
Shipper Name:	ab Use Only:	ab Use Only: The second s	ž		<u> </u>	ate / Time				Received by				8	\downarrow	7	1	Τ		۲ ۲	~
						pened by				Condition:									g	dins 1 6 + lend	S

۰.

-


APPENDIX E

Photographic Logs – Indoor Air Monitoring Locations

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 1

Description: JR-170-IA-2 in north storage area

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Description: JR-170-IA-2 in northern storage area

Location: Building 170

Photograph taken by: Rob Arnold

Date: 10/30/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 3

Description: JR-170-IA-3 in cabinet room

Location: Building 170

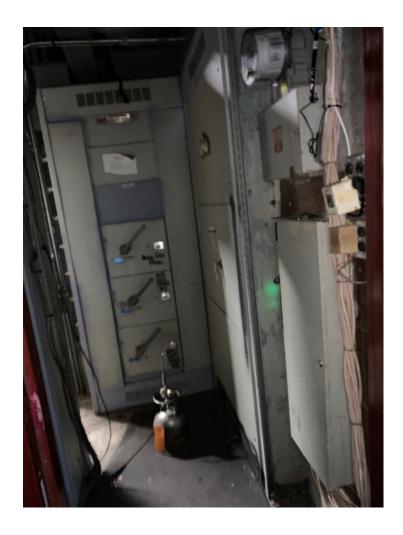
Photograph taken by: Rob Arnold

Date: 10/30/2019

Photograph: 4

Description: JR-170-IA-3 in cabinet room

Location: Building 170

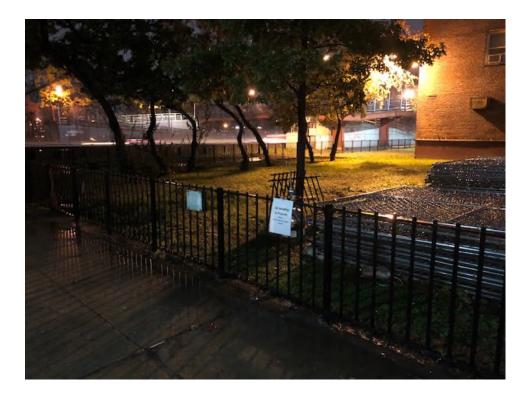

Photograph taken by: Rob Arnold

Date: 10/30/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 5

Description: JR-178-IA-3 in meter room


Location: Building 178

Photograph taken by: Rob Arnold

Date: 10/30/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 6

Description: Ambient air sample setup.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Photograph: 7

Description: Ambient air sample setup.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 8

Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Photograph: 9

Description: Tank room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 10

Description: Cabinet storage room.

Location: Building 1115

Photograph taken by: Albina Redzepagic

Date: 10/31/2019

Photograph: 11

Description: Crawl space vault on northwest wing on building – JR-1141-IA-3

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 12

Description: AA-102919

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 13

Description: AA-102919 looking north along the west fence to building 1141

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 14

Description: JR-1141-IA-1 in tank room above sump

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Photograph: 15

Description: JR-1141-IA-2 in meter room

Location: Building 1141

Photograph taken by: Albina Redzepagic

Date: 10/29/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 16

Description: JR-1141-IA-3 in crawl space

Location: Building 1141

Photograph taken by: Albina Redzepagic

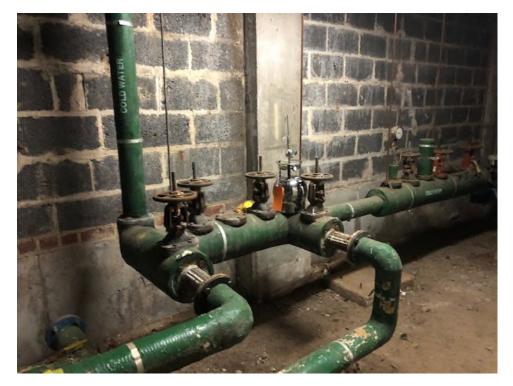
Date: 10/29/2019

Photograph: 17

Description: JR-1223-IA-1 in south east storage room

Location: Building 1223

Photograph taken by: Albina Redzepagic


Rob Arnold

Date: 11/1/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 18

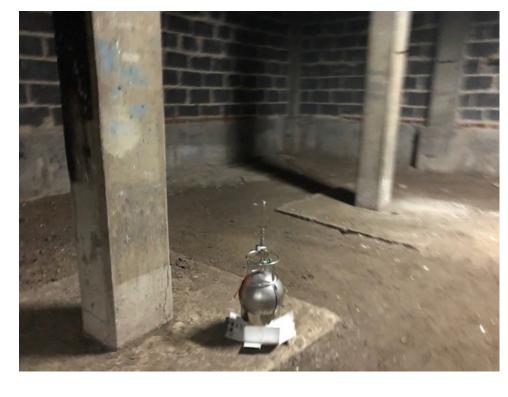
Description: JR-1223-IA-3 in east end of basement

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Photograph: 19


Description: JR-1223-IA-2 in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019

Consolidated Edson Company of New York, Inc. E. 11th Street / 30005328 Manhattan NY

Photograph: 20

Description: JR-1223-IA-2 in northern storage area

Location: Building 1223

Photograph taken by: Albina Redzepagic

Rob Arnold

Date: 11/1/2019

Photograph: 21

Description: JR-1223-IA-4 and DUP-110119 outside tank room

Location: Building 1223

Photograph taken by: Albina Redzepagic Rob Arnold

Date: 11/1/2019

Arcadis of New York, Inc.

295 Woodcliff Drive Third Floor Suite 301 Fairport, New York 14450 Tel 585 385 0090 Fax 585 385 4198

www.arcadis.com