1/95

THE RESULTS OF THE SOIL SAMPLING ALONG THE DUCTLINE TRENCH ROUTE TO SUPPORT THE STATIC FREQUENCY CONVERTER STATION CONSTRUCTION PROJECT

Sunnyside Yard Queens, New York

ENVIRONMENTAL CONSULTING & MANAGEMENT

1377 Motor Parkway • Islandia, NY 11788 Tel: (516) 232-2600 • Fax: (516) 232-9898

, P

THE RESULTS OF THE SOIL SAMPLING ALONG THE DUCTLINE TRENCH ROUTE TO SUPPORT THE STATIC FREQUENCY CONVERTER STATION CONSTRUCTION PROJECT

Sunnyside Yard Queens, New York

January 12, 1995

Prepared for:

The National Railroad Passenger Corporation Philadelphia, Pennsylvania

Prepared by:

ROUX ASSOCIATES, INC. 1377 Motor Parkway Islandia, New York 11788

ROUX

CONTENTS

1.0	INTRODUCTION 1.1 Project Description 1.2 Objectives	1 1 1
2.0	PREVIOUS INVESTIGATIONS	2
3.0	METHODS OF INVESTIGATION	3
4.0	DISCUSSION OF RESULTS4.1 Ductline Construction Area4.2 Summary	5 6 8
5.0	REFERENCES	10

TABLES

- 1. Summary of Soil-Quality Sampling, Ductline Route, Sunnyside Yard, Queens, New York
- 2. Summary of Total Petroleum Hydrocarbon Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York
- 3. Summary of Polychlorinated Biphenyl Compound Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York
- 4. Summary of Volatile Organic Compound Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York
- 5. Summary of Semivolatile Organic Compound Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York
- 6. Summary of Metal Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York
- 7. Summary of Pesticide Compound Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York

FIGURES

1. Location of Site

APPENDICES

- A. Soil Boring Logs
- B. Chain of Custody Forms

ROUX ASSOCIATES INC

-i-

PLATES

1. Concentrations of Polychlorinated Biphenyls, Semivolatile Organic Compounds and Metals Detected Above Background Levels - Ductline Route

-

48.ce

首轴

1.0 INTRODUCTION

The ductline route soil sampling to support the Static Frequency Converter Station (SFC) construction project at Sunnyside Yard, Queens, New York (Yard) was performed by Roux Associates, Inc. (Roux Associates) on September 14, 1994. The location of the Yard is shown in Figure 1. The work was completed in accordance with the January 6, 1994 (revised February 22, 1994) "Work Plan for Soil Sampling to Support the Static Frequency Converter Station Construction Project, Sunnyside Yard, Queens, New York" (Roux Associates, 1994).

The Work Plan was prepared in accordance with AMTRAK's September 1, 1993 "Static Frequency Converter Station AMTRAK/NJT Project at Sunnyside Yard Environmental Investigations - Statement of Work" (Amtrak, 1993). As requested in the Statement of Work, the Work Plan was designed to determine the nature and extent of hazardous materials within the project limit lines of the SFC and ductline route. This report is focused on the soil sampling for the ductline portion of the construction project, which was delayed pending determination of the final route, and is a supplement to the Roux Associates <u>October 6, 1994 report titled "The Results of the Soil Sampling to Support the Static</u> Frequency Converter Station Construction Project".

1.1 Project Description

The ductline construction will extend southwest from the SFC to the elevated Long Island Rail Road (LIRR) right-of-way where it will be located parallel to the main line tracks on the north side of the LIRR right-of-way. The ductline will continue westerly until it passes under the LIRR main line tracks in the vicinity of the Honeywell Street Bridge, and then it will continue westerly to Substation 44.

1.2 Objectives

The objective of the investigation was to characterize the environmental (i.e., soil quality) conditions of the soil to be excavated/removed within the limits of the ductline construction project.

2.0 PREVIOUS INVESTIGATIONS

Previous work was performed in this area by Roux Associates (1990 and 1993). These investigations are discussed below.

Roux Associates investigated the ductline area during the Phase I and Phase II remedial investigations. As reported in the January 22, 1992 report titled "Phase I Remedial Investigation, Sunnyside Yard, Queens, New York" (Roux Associates, 1992), two soil borings (S-22 and S-84) were completed and sampled in this area. One soil sample was collected from each boring and both were analyzed for total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs). In addition one sample, S-22 (0 to 2 feet), was analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, and metals. The analytical results for the samples analyzed from the ductline area are summarized below.

Phase I analytical results indicated TPH ranged in concentration from 1,145 milligrams per kilogram (or parts per million [ppm]) in S-22 (0 to 2 feet) to 15,370 ppm in S-84 (0 to 2 feet). PCBs ranged in concentration from not detected in S-84 to 0.435 ppm in S-22. The additional analyses performed on S-22 indicated the following:

- detections of VOCs consisting of toluene, carbon disulfide and methylene chloride;
- no detections of SVOCs (at elevated detection limits);
- no detections of pesticides; and
- arsenic and copper were the only metals detected above background (see Section 4.0).

Of the VOCs detected, methylene chloride is a common laboratory contaminant.

During the Phase II investigation, a confirmatory sample was collected from Soil Boring S-22 and analyzed for PCBs. The results of the confirmatory analysis indicated PCBs were detected at a concentration of 23 ppb (parts per billion) or 0.023 ppm.

3.0 METHODS OF INVESTIGATION

The ductline soil boring and sampling program, with the exception of Soil Boring FC-16 which was completed during the initial investigation period on April 4, 1994, was completed on September 14, 1994. The soil borings were completed by Land, Air, Water Environmental Services, Inc. of Center Moriches, New York under the supervision of Roux Associates and the soil sampling was performed by Roux Associates. All field work was completed in accordance with the scope of work outlined in the Work Plan. The analytical program was completed by IEA, Inc., Monroe, Connecticut.

The soil boring and sampling program, as initially proposed in the Work Plan, included 16 soil borings (FC-1 through FC-16) along the ductline route. Soil borings (FC-12 through FC-16) were completed before the ductline route was revised and sampling was temporarily postponed. Soil Boring FC-16 was the only initial boring that remained in the revised ductline route and the results of the soil sample from that boring are included in this report. The results of the initial soil sampling from Soil Borings FC-12 through FC-15 will not be discussed as they are located outside the final ductline route area and, therefore, are not representative of the soil to be excavated.

All downhole equipment was decontaminated between each soil boring location and each soil sample collected in accordance with the procedures described in the Work Plan. All soil sampling equipment (i.e., split-spoon samplers, spatulas, etc.) was cleaned prior to each use using a solution of non-phosphate laboratory grade detergent and potable water and a scrub brush. The sampling equipment was then rinsed with potable water followed by distilled water. A methanol rinse followed by a second distilled water rinse completed the decontamination procedure. Split-spoon samplers were then reassembled on clean plastic sheeting and sealed in plastic bags prior to sample collection.

Each soil boring was completed to a depth of 5 feet below land surface (bls) manually (i.e., post-hole digger and hand-driven split-spoon sampler).

-3-

Each soil sample was visually inspected and a log describing the subsurface conditions at each soil boring location was developed. Soil samples were also inspected in the field for any evidence of contamination (i.e., staining, presence of separate-phase petroleum and odors) and screened using a photoionization detector (PID). Soil boring logs are provided in Appendix A.

In accordance with the Work Plan, based upon the consistency of subsurface conditions encountered within and between the soil borings, and the lack of evidence of contamination, only the 0 to 2 feet bls interval samples from each soil boring were submitted for laboratory analysis. The analyses included the following:

- total petroleum hydrocarbons using a hydrocarbon scan (Modified United States Environmental Protection Agency [USEPA] Method 8015);
- polychlorinated biphenyls (USEPA Method 8080);
- pesticides (chlorinated herbicides and dioxins/furans) (USEPA Method 8150 and 8280, respectively);
- Target Compound List (TCL) volatile organic compounds (USEPA Method 8240);
- TCL semivolatile organic compounds (USEPA Method 8270);
- Target Analyte List (TAL) metals (USEPA Method Series 6000 and 7000); and
- Resource Conservation and Recovery Act (RCRA) characteristics (i.e, corrosivity, reactivity and ignitability) for disposal purposes.

A total of 16 soil samples were submitted to the laboratory for PCB and TPH analysis. In accordance with the Work Plan, to further characterize soil-quality conditions for disposal purposes, four of these samples (25 percent of the total) were analyzed for the additional parameters listed above. The soil-quality sampling and analytical program is summarized in Table 1.

Consistent with the Quality Assurance Project Plan (QAPP), a field blank for all analytes was collected during sampling and a trip blank for VOCs accompanied the VOC sample shipment. All samples submitted for laboratory analysis were placed in ice-filled coolers, protected from light and delivered to the laboratory via overnight carrier under chain of custody protocol. Chain of custody documentation is provided in Appendix B.

4.0 DISCUSSION OF RESULTS

The results of the laboratory analyses of soil samples are summarized in Tables 2 through 7 and are discussed below. Although the recommended soil cleanup objectives (RSCOs) published in the January 24, 1994 NYSDEC Technical and Administrative Guidance Memo (TAGM) (NYSDEC, 1994) are considered to be overly protective for an active industrial facility located in an urban area, they will be used as basis for comparison of VOC, SVOC (excluding polycyclic aromatic hydrocarbons [PAHs]), and PCB detections in this report to determine if excavated soil can be used as backfill. The RSCOs are being considered because a comprehensive health-based risk assessment for the Yard is not yet completed, and the construction schedule cannot be delayed until completion of the risk assessment. In addition to its urban setting, most of the Yard is underlain by fill material.

Because very limited sampling took place along the LIRR right-of-way during the remedial investigation, there was insufficient data to develop site-specific background concentrations for metals in this area. Metals and PAHs occur naturally in soil and PAHs are produced from incomplete combustion processes, and are, therefore, present throughout the environment (ATSDR, 1993). PAHs commonly occur in fill material containing cinders and asphaltic material, including treated railroad ties. In the absence of site-specific background levels for metals and PAHs, the following sources were used for comparison to determine if excavated material can be used as backfill.

- Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for PAHs Update, October 1993.
- United States Geological Survey (USGS) database from USGS Professional Paper 1270, Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, 1984.

Concentrations of PAHs detected at the Yard were compared to the urban soil concentrations in Table 5-2 of the October 1993 ATSDR document titled "Background Soil Concentrations of PAHs." ATSDR did not present a background level for dibenz(a,h)anthracene. Therefore, the RSCO method detection limit (MDL), which is 20 ppb, was used for comparison. Concentrations of metals detected at the Yard were compared to the results of 22 samples collected as part of the USGS study, which was designed to determine background metals concentrations across the United States. The

sample results considered in this report were collected within a "box" that is ± 2 degrees from the Yard (i.e., samples with latitudes between 38.75 to 42.75 and longitudes between 71.93 to 75.93). A 1 degree search was considered, however, it resulted in only five samples for comparison.

The results of the TPH analyses were compared to Yard background TPH levels since no New York State or Federal action levels are available. As discussed in the January 22, 1992 report titled "Phase I Remedial Investigation, Sunnyside Yard, Queens, New York" (Roux Associates, 1992), TPH concentrations in excess of 500 ppm at the Yard were considered indicative of a potential hydrocarbon impact and concentrations less than 500 ppm were considered to be background at an industrial area underlain by fill material.

Since there is no RSCO for polychlorinated dibenzodioxins (PCDDs), the concentrations detected along the ductline route were compared to the industrial risk-based concentration (RBC) tables compiled by the USEPA Region III office (USEPA, 1994a). The RBC table reports concentrations in soil that would result in a 1E-6 incremental lifetime cancer risk under an upperbound conservative industrial exposure scenario.

4.1 Ductline Construction Area

Sixteen soil samples were collected along the ductline route from the 0 to 2 feet bls sample interval. All 16 soil samples were analyzed for PCBs and TPH. Additionally, four samples (i.e., FC-4, FC-5, FC-8 and FC-11) were analyzed for VOCs, SVOCs, pesticides, metals and RCRA characteristics. No PID readings were detected above background levels. Detections of concentrations above background, the RSCOs, or the RBC are shown in Plate 1.

TPH (reported as No. 2 fuel oil) was detected in one sample, FC-16, at a concentration of 56 ppm, which is below Yard background levels (Table 2). PCBs (Aroclors 1254 and 1260) were detected in 15 of the 16 samples analyzed. PCB concentrations ranged from 25 ppb (0.025 ppm) in sample FC-3 to 6,400 ppb (6.4 ppm) in sample FC-9 (Table 3). With the exception of FC-9, all samples are below the RSCO (1 ppm) for surficial soil.

-6-

No VOCs or SVOCs (excluding PAHs) were detected above the RSCOs (Tables 4 and 5, respectively). The PAHs chrysene (in sample FC-5) and benzo(a)pyrene (in samples FC-4, FC-5, and FC-11) were detected at concentrations above background levels. Dibenzo(a,h)anthracene was detected above the MDL in samples FC-4, FC-5, and FC-11.

Copper and lead were detected in samples FC-4, FC-5, FC-8 and FC-11; zinc in samples FC-4 and FC-5; and arsenic in samples FC-8 and FC-11 at concentrations above background levels (Table 6).

No chlorinated herbicide or polychlorinated dibenzofuran (PCDF) compounds were detected. The PCDD compound heptachlorinated dibenzo-p-dioxin (H_pCDD) was detected in samples FC-4 and FC-11 and octachlorinated dibenzo-p-dioxin (OCDD) was detected in samples FC-4, FC-5, FC-8, and FC-11 (Table 7).

PCDDs have been found throughout the world in soil, air, sediment, and agricultural food products. The highest levels are found in soils, sediments and biota; very low levels are found in water and air. This is not unexpected considering the numerous sources that emit these compounds into the atmosphere in industrialized areas, and the overall resistance of these compounds to biotic and abiotic transformation (USEPA, 1994b).

The environmental fate and distribution of PCDDs is not yet understood, however, they are primarily associated with particulate and organic matter because of their high lipophilicity and low water solubility. They exhibit little potential for significant leaching or volatilization once sorbed to particulate matter (USEPA, 1994b).

The most widely studied of the dioxin compounds is 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). This compound, commonly referred to as dioxin, is frequently used as the reference compound for all chemicals represented by this class of compounds. By international convention, PCDD compounds with chlorines substituted in the 2, 3, 7, and 8 positions have been assigned toxicity equivalence factors (TEFs) that are estimates of the toxicity of the dioxin-like compounds relative to the toxicity of TCDD (USEPA, 1989,

-7-

1994b). The TEFs for H_pCDD and OCDD are 0.01 and 0.001, respectively. To derive TCDD equivalents, the reported concentration of a 2,3,7,8-PCDD is multiplied by the TEF for that congener.

The industrial RBC for TCDD is 0.018 μ g/kg (USEPA, 1994a). As shown in Table 7, the TCDD equivalents for all samples are well below this concentration. A significant additional margin of safety can be assumed because in the generic industrial exposure scenario, frequent exposure to soils is anticipated. The ductline route (sampling locations during this investigation) will not be visited on a routine basis, therefore, the frequency of exposure, one factor that impacts potential risk associated with carcinogenic chemicals, is significantly reduced.

4.2 Summary

A review of the analytical results indicates the following:

- no TPHs were detected above the Yard background level;
- no VOCs or SVOCs (excluding PAHs) were detected above the RSCOs;
- no chlorinated herbicides or PCDF compounds were detected;
- no PCDDs were detected above the industrial RBC;
- PCBs were detected above the RSCO in only one borehole;
- metals were detected above background levels in four boreholes; and
- PAHs were detected above background levels in three boreholes.

As presented in the Work Plan, a remediation plan will be developed, based upon the analytical results, to address the handling, storage, and final disposition of soil excavated from the ductline route for the SFC station construction.

-8-

Respectfully Submitted,

ROUX ASSOCIATES, INC.

Harry Gregary @

Harry Gregory Project Hydrogeologist

1 5 ١ ⊃seyp

Joseph D. Duminuco Principal Hydrogeologist/ Project Manager

•

5.0 REFERENCES

- Agency for Toxic Substances and Disease Registry, Toxicological Profile for Polycyclic Aromatic Hydrocarbons Update, October 1993.
- AMTRAK, 1993. Static Frequency Converter Station AMTRAK/NJT Project at Sunnyside Yard Environmental Investigations - Statement of Work, September 1993.
- New York State Department of Environmental Conservation, 1994. Division of Hazardous Waste Remediation Revised Technical and Administrative Guidance Memorandum on Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994.
- Roux Associates, Inc., 1989. Work Plan for the Remedial Investigation and Feasibility Study, Sunnyside Yard, Queens, New York, March 1989.
- Roux Associates, Inc., 1992. Phase I Remedial Investigation, Sunnyside Yard, Queens, New York, January 1992.
- Roux Associates, Inc., 1992. Work Plan for the Phase II Remedial Investigation, Sunnyside Yard, Queens, New York, August 1992.
- Roux Associates, Inc., 1994. Work Plan for Soil Sampling to Support the Static Frequency Converter Station Construction Project, Sunnyside Yard, Queens, New York, January 1994.
- USEPA, 1989. Review of Draft Documents: A Cancer Risk Specific Dose Estimate for 2,3,7,8-TCDD and Estimating Exposure to 2,3,7,8-TCDD. Washington, D.C. EPA Science Advisory Board Ad Hoc Dioxin Panel.
- USEPA, 1994a. Risk-Based Concentration Table, Third Quarter 1994. Memorandum from Roy L. Smith, Ph.D., Technical Support Section, United States Environmental Protection Agency, Region III, Philadelphia, PA.
- USEPA, 1994b. Review Draft: Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds. United States Environmental Protection Agency, Office of Research and Development, Washington, D.C. EPA/600/BP-92/001a-c. August 1994.

ROUX ASSOCIATES INC

-10-

TABLES ŧ

Table 1. Summary of Soil-Quality Sampling, Ductline Route, Sunnyside Yard, Queens, New York							
Soil Boring Designation	Sample Depth Interval (feet below land surface)	Analytical Parameters					
FC-1	0-2	РСВ/ТРН					
FC-2	0-2	РСВ/ТРН					
FC-3	0-2	РСВ/ТРН					
FC-4	0-2	PCB/TPH/VOC/SVOC/Metals/Pesticides					
FC-5	0-2	PCB/TPH/VOC/SVOC/Metals/Pesticides					
FC-6	0-2	РСВ/ТРН					
FC-7	0-2	РСВ/ТРН					
FC-8	0-2	PCB/TPH/VOC/SVOC/Metals/Pesticides					
FC-9	0-2	РСВ/ТРН					
FC-10	0-2	РСВ/ТРН					
FC-11	0-2	PCB/TPH/VOC/SVOC/Metals/Pesticides					
FC-12	0-2	РСВ/ТРН					
FC-13	0-2	РСВ/ТРН					
FC-14	0-2	РСВ/ТРН					
FC-15	0-2	РСВ/ТРН					
FC-16	0-2	РСВ/ТРН					

RESULTS

PCB -Polychlorinated Biphenyl

TPH -Total Petroleum Hydrocarbon

VOC -Volatile Organic Compound

-SVOC Semivolatile Organic Compound

Pesticides Chlorinated Herbicides and Dioxins/Furans Page 1 of 1

Summary of Total Petroleum Hydrocarbon Compound Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York. Table 2.

-1500

ومحن

-

- 176

Varsol		ממממ	ככככ	מממממ
#6 Fuel Oil		2000		n NA NA
#4 Fuel Oil	ng/kg)	פססס	ככככ	U U NA NA
#2 Fuel Oil	rations in n	ממממ	99999	0 0 0 0 56
Diesel	(Concent	ממממ	0000	U U NA NA
Kerosene		ככככ	ככככ	999999
Gasoline		ממממ	ככככ	מממממ
Sample Date		9/14/94 9/14/94 9/14/94 9/14/94 9/14/94	9/14/94 9/14/94 9/14/94 9/14/94	9/14/94 9/14/94 9/14/94 9/14/94 9/14/94 4/4/94
Sample Depth (ft bls)		00000 0000	00000	00000000000000000000000000000000000000
Sample Designation		FC - 2 FC - 2 FC - 3 FC - 3 FC - 4	FC-6 FC-7 FC-8 FC-9 FC-10	FC-11 FC-12 FC-13 FC-14 FC-15 FC-16

ft bls - Feet below land surface mg/kg - Milligrams per kilogram U - Indicates analyte result less than quantitation limit. NA - Not analyzed

ROUX ASSOCIATES INC

Page 1 of 1

Sample Designation:	FC-1	FC-2	FC-3	FC-4	FC-5	FC-6
Sample Depth (ft bls):	0-2	0-2	0-2	0-2	0-2	0-2
Sample Date:	9/14/94	9/14/94	9/14/94	9/14/94	9/14/94	9/14/94
Polychlorinated Biphenyl						
Compounds						
(Concentrations in ug/kg)						
					<u> </u>	
Aroclor-1016	33 U	33 U	33 U	33 U	33 U	33 U
Aroclor-1221	67 U	67 U	67 U	67 U	67 U	67 U
Aroclor-1232	33 U	33 U	33 U	33 U	33 U	33 U
Aroclor-1242	33 U	33 U	33 U	33 0	33 U	33 U
Aroclor-1248	33 U	33 U	33 U	33 U	33 U	33 U
Aroclor-1254	81	44	11 J	52	110	29 J
Aroclor-1260	120	47	25 J	63	140	34 J
· · · · · · · · · · · · · · · · · · ·		· -	<u> </u>			
Sample Designation:	FC-7	FC-8	FC-9	FC-10	FC-11	FC-12
Sample Depth (ft bls):	0-2	0-2	0-2	0-2	0-2	0-2
Sample Date:	9/14/94	9/14/94	9/14/94	9/14/94	9/14/94	9/14/94
Polychlorinated Biphenyl						
Compounds						
(Concentrations in ug/kg)						
·						
Aug = 1 - 1 - 101 C		22.17	<u></u>			
Aroclor-1016	33 0	33 0	33 U	33 0	33 0	33 0
Aroclor-1221	67 U	67 U	67 U	67 U	67 U	67 U
Aroclor-1232	33 0	33 0	33 U	33 0	33 U	33 U
Aroclor-1242	33 0	33 0	33 U	33 0	33 U	33 U
Aroclor-1248	33 U	33 0	33 U	33 0	33 U	33 U
Aroclor-1254	68	180	2,800	400	83	10 J
Aroclor-1260	89	270	3,600	500	110	15 J
· · · · · · · · · · · · · · · · · · ·			1.0	<u>, , , , , , , , , , , , , , , , , , , </u>	······································	<u>.</u>
			0 1			
Sample Designation:	FC-13	FC-14	FC-15	FC-16		
Sample Depth (ft bls): Sample Date:	0-2 9/14/94	0-2 9/14/94	0-2 9/14/94	0-2 4/4/94		
Polychlorinated Binhenyl						
Compounds						
(Concentrations in us/kg)						
(Concentrations in ug/kg)						
(Concentrations in ug/kg)						
(Concentrations in ug/kg) Aroclor-1016	33 U	33 U	33 U	33 U		
(Concentrations in ug/kg) Aroclor-1016 Aroclor-1221	33 U 67 U	33 U 67 U	33 U 67 U	33 U 67 U		
(Concentrations in ug/kg) Aroclor-1016 Aroclor-1221 Aroclor-1232	33 U 67 U 33 U	33 U 67 U 33 U	33 U 67 U 33 U	33 U 67 U 33 U		
(Concentrations in ug/kg) Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1242	33 U 67 U 33 U 33 U	33 U 67 U 33 U 33 U	33 U 67 U 33 U 33 U	33 U 67 U 33 U 33 U		
(Concentrations in ug/kg) Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1248	33 U 67 U 33 U 33 U 33 U 33 U	33 U 67 U 33 U 33 U 33 U	33 U 67 U 33 U 33 U 33 U 52	33 U 67 U 33 U 33 U 33 U 70		
(Concentrations in ug/kg) Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254	33 U 67 U 33 U 33 U 33 U 33 U 33 U	33 U 67 U 33 U 33 U 33 U 260	33 U 67 U 33 U 33 U 33 U 52	33 U 67 U 33 U 33 U 33 U 170 260		

Table 3. Summary of Polychlorinated Biphenyl Compound Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York.

्यम् 1-1-1-19

......

227-8

monte

7.6.98

- club

1044

ند دف

All all

. even

ft bls - Feet below land surface ug/kg - Micrograms per kilogram. U - Indicates that the compound was analyzed for but not detected.

J - Estimated value

ROUX ASSOCIATES INC

Sample Designation: Sample Depth (ft bls): Sample Date:	FC-4 0-2 9/14/94	FC-5 0-2 9/14/94	FC-8 0-2 9/14/94	FC-11 0-2 9/14/94
Volatile Organic Compounds (Concentrations in ug/kg)				
Chloromethane	10 U	10 U	10 U	10 U
Bromomethane	10 U	10 U	10 U	10 U
Vinyl Chloride	10 U	10 U	10 U	10 U
Chloroethane	10 U	10 U	10 U	10 U
Methylene Chloride	5 U	5 U	5 U	3 J
Acetone	32 UV	14 UV	15 UV	10 U
Carbon Disulfide	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5 U	5 U	5 U	5 U
1,2-Dichloroethene (total)	5 U	5 U	5 U	5 U
Chloroform	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U
2-Butanone	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U
Carbon Tetrachloride	5 U	5 U	5 U	5 U
Vinyl Acetate	10 U	10 U	10 U	10 U
Bromodichloromethane	5 U	5 U	5 U	5 U
1,2-Dichloropropane	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U
Trichloroethene	5 U	5 U	3 J	5 U
Dibromochloromethane	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U
Benzene	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U
Bromoform	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 U
2-Hexanone	10 U	10 U	10 U	10 U
Tetrachloroethene	5 U	5 U	5 J	5 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U
Toluene	3 J	2 J	3 J	5 U
Chlorobenzene	5 U	5 U	5 U	5 U
Ethylbenzene	5 U	5 U	5 U	5 U
Styrene	5 U	5 U	5 U	5 U
Xvlene (total)	5 11	5 11	5 11	5 11

Table 4. Summary of Volatile Organic Compound Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York.

ft bls - Feet below land surface

ug/kg - Micrograms per kilogram. U - Indicates that the compound was analyzed for but not detected.

J - Estimated value
V - Qualifier added and/or value altered during validation.

116

1.4

10 MR-21

the set

1.84.53A

Sample Sample Dep	Designation: oth (ft bls): Sample Date:	FC-4 0-2 9/14/94	FC-5 0-2 9/14/94	FC-8 0-2 9/14/94	FC-11 0-2 9/14/94
emivolatile Organic Compounds Concentrations in ug/kg)	PAH Background Level				
nenol		330 U	330 U	330 U	330 U
is(2-Chloroethyl)ether		330 U	330 U	330 U	330 U
-Chlorophenol		330 0	330 0	330 0	330 U 330 U
4-Dichlorobenzene		330 0	330 11	330 0	330 0
enzyl alcohol		330 U	330 U	330 U	330 U
1.2-Dichlorobenzene		330 U	330 U	330 U	330 U
2-Methylphenol		330 U	330 U	330 U	330 U
ois(2-Chloroisopropyl)ether		330 U	330 U	330 U	330 U
-Methylphenol		330 U	330 U	330 U	330 U
N-Nitroso-di-n-propylamine		330 U	330 U	330 U	330 U
dexachloroethane		330 0	330 U 220 U	330 U	330 U 330 U
Nillogenzene		330 0	330 0	330 0	330 U 330 II
2-Nitrophenol		330 11	330 11	330 U	330 II
2,4-Dimethylphenol		330 U	330 U	330 U	330 U
Senzoic acid		1600 U	110 J	290 J	84 J
is(2-Chloroethoxy)methane		330 U	330 U	330 U	330 U
2,4-Dichlorophenol		330 U	330 U	330 U	330 U
,2,4-Trichlorobenzene		330 U	330 U	330 U	330 U
aphthalene Chlementites		10 J	26 J	49 J	26 J
		330 0	330 0	330 0	330 U
-Chloro-3-Methylphenol		330 11	330 11	330 11	330 11
-Methylnaphthalene		10 J	27 J	71 J	26 J
exachlorocyclopentadiene		330 U	330 U	330 U	330 U
,4,6-Trichlorophenol		330 U	330 U	330 U	330 U
,4,5-Trichlorophenol		1600 U	1600 U	1600 U	1600 U
-Chloronaphthalene		330 U	330 U	330 U	330 U
-Nitroaniline		1600 U	1600 U	1600 U	1600 U
imethyiphthalate	·	330 U 95 T	330 U 130 T	330 U 55 T	330 U 170 T
6-Dinitrotoluene		330 U	330 11	330 U	330 11
-Nitroaniline		1600 U	1600 U	1600 U	1600 U
cenaphthene		14 J	79 J	330 U	14 J
,4-Dinitrophenol		1600 U	1600 U	1600 U	1600 U
-Nitrophenol		1600 U	1600 U	1600 U	1600 U
ibenzofuran		11 J	37 J	32 J	16 J
4-Dinitrotoluene		330 0	330 U	330 U	330 0
-Chlorophenyl-phonylethor		320 II 11 022	11 022	10 J	330 0
luorene		18 J	76 J	11 J	20 .7
-Nitroaniline		1600 U	1600 U	1600 U	1600 U
,6-Dinitro-2-methylphenol		1600 Ū	1600 U	1600 U	1600 U
-Nitrosodiphenylamine (1)		330 U	330 U	330 U	330 U
-Bromophenyl-phenylether		330 U	330 U	330 U	330 U
exachlorobenzene		330 U	330 U	330 U	330 U
entachlorophenol		1600 U	1600 U	1600 U	100 0
nenantnrene nthracene		200 J	020 210 T	200 J 84 T	150 J 150 T
i-n-butylohthalate		37 JR	51 JR	36 JR	120 JB
luoranthene	166.000	530	1000	250 J	460
yrene	147,000	560	980	240 J	500
utylbenzylphthalate		31 J	21 J	21 J	18 J
,3'-Dichlorobenzidine		660 U	660 U	660 U	660 U
enzo(a)anthracene	59,000	310 J	520	130 J	380
hrysene	640	440	690	330 J	550 170 TB
is (2-Ethylhexyl) phthalate		13 IB 180 JB	1/U JB	200 JB 24 TB	17U JB 17U JB
enzo(b)fluorenthene	62.000	510	1500	540	1600
Senzo(k)fluoranthene	26,000	480	980	200 J	720
Senzo(a)pyrene	220	330 J	560	100 J	490
ndeno(1,2,3-cd)pyrene	61,000	81 J	180 J	330 U	200 J
libenz(a,h)anthracene		25 J	33 J	330 U	66 J
Benzo(g,h,i)perylene	47,000	81 J	200 J	330 U	230 J

3**19**

x 38-968

19**63**

48**4**

0.000

- Dei

turini Land

1.910**4**

ورد و

984d

هي جر د

સગર જાણ

10.44

Gisab

- Archil

649-08g

. Aligned

~994**9**

ومحتب ا

699.9

ft bls ug/kg U J B PAH	ft bls - Feet below land surface ug/kg - Micrograms per kilogram U - Indicates that the compound was analyzed for but not detected. J - Estimated value. B - Indicates the analyte was found in the blank as well as the sample. PAH - Polycyclic Aromatic Hydrocarbons							
NOTE :	NOTE: PAH background levels taken from Table 5-2 contained in document titled "Background So Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs)" in United States Department of Health and Human Services Toxicological Profile for Polycyclic Aromatic Htdrocarbon							

Sampl Sample D	e Designation: epth (ft bls): Sample Date:	FC-4 0-2 9/14/94	FC-5 0-2 9/14/94	FC-8 0-2 9/14/94	FC-11 0-2 9/14/94	
Metals (Concentrations in mg/k;	2 Degree Background 3 Level					
Aluminum	100,000	5150	3710	1690	5280	
Antimony		12.3 U	12.6 U	13.7 U	13.3 U	
Arsenic	16	3.7	13.4	45.6	20.7	
Barium		54.1	85.5	77.9	58.4	
Beryllium		1.0 U	1.0 U	1.9	1.6	
Cadmium	no data	1.0 U	1.0 U	1.1 U	1.1 U	
Calcium	14,300	1770	706	626	855	
Chromium	100	12.5	16.7	11.9	19.8	
Cobalt		10.2 U	10.5 U	11.4 U	11.1 U	
Copper	70	123	424	138	393	
Iron	70,000	11600	19900	33700	29400	
Lead	50	107	345	90.6	344	
Magnesium		2060	1040	228 U	1320	
Manganese	2,000	265	287	36.5	285	
Mercury	0.39	0.093 U	0.25	0.11 U	0.27	

12.0

624

1.0 U

2.0 U

205 U

2.0 U

17.5

137

Table 6. Summary of Metal Concentrations Detected in Soil Samples, Sunnyside Yard, Queens, New York.

ft bls - Feet below land surface

30

27,700

--

--

--

130

5. decise

0.00

Nickel

Silver

Sodium

Zinc

Thallium

Vanadium

Potassium

Selenium

mg/kg - Milligrams per kilogram U - Indicates analyte result less than instrument detection limit (IDL).

NOTE: 2 degree background levels taken from database contained in the U.S. Geological Survey Professional Paper 1270 titled "Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States".

17.0

370

1.0 U

2.1 U

209 U

2.1 U

48.2

142

13.7

400

1.9

2.3 U

228 U

2.3 U

37.6

26.7

-

23.6

382

1.2

2.2 U

222 U

2.2 U

33.6

107

Table 7.	Summary of Pesticide	Compound	Concentrations	Detected	in S	Soil	Samples,	Sunnyside	Yard,	Queens,
	New York.	-								

(16**8**),

-

2.03

ione de

 $2 \cos i \phi$

10.06

-

n Norda

10.045 1.00.08

. 02966

. 45-19

20244

24078

ي ومرد م

19100

1.5 فنمح

6.6.66

wind

6.96

×74-3

mitale

- 14-14

Sample Designation: Sample Depth (ft bls):	FC-4 0-2 9/16/94	FC-5 0-2 9/16/94	FC-8 0-2 9/16/94	FC-11 0-2 9/16/94	
Chlorinated Herbicides (Concentrations in ug/kg)	,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2,4-D	20 U 40 U	20 U 40 U	20 U 40 U	20 U 40 U	
2,4-DB	20 U	20 U	20 U	20 U	
Dichloroprop	5.0 U	5.0 U	5.0 U	5.0 U	
)inoseb 4CPA	5.0 U 500 U	5.0 U 500 U	5.0 U 500 U	5.0 U 500 U	
ICPP	5,000 U	5,000 U	5,000 U	5,000 U	
Silvex 2.4.5-T	20 U 5.0 U	20 U 5.0 U	20 U 5.0 U	20 U 5.0 U	
Sample Designation:	FC-4	TCDD	FC-5	7000	
Sample Depth (it bis): Sample Date:	9/16/94	Equivalent	9/16/94	Equivalent	
Dioxans/Furans (Concentrations in ug/kg)					
2.3.7.8-TCDD	0.0704 U		0.0713 U		
L,2,3,7,8-PeCDD	0.122 U		0.124 U		
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	0.2 U 0.101 U		0.203 U 0.102 U		
L,2,3,7,8,9-HxCDD	0.17 U		0.173 U		
1,2,3,4,6,7,8-HpCDD 1.2.3.4.6.7.8.9-OCDD	2.47	0.0022	0.207 0	0.0006	
2,3,7,8-TCDF	0.0612 U		0.062 U		
1,2,3,7,8-PeCDF 2.3.4.7.8-PeCDF	0.0958 U 0.0999 U		0.0972 U 0.101 U		
L,2,3,4,7,8-HxCDF	0.112 U		0.114 U		
2,3,4,6,7,8-HxCDF	0.162 U		0.164 U		
L,2,3,7,8,9-HxCDF	0.209 U		0.212 U 0.17 U		
L,2,3,4,6,7,8,9-HpCDF	0.179 U		0.182 U		
1,2,3,4,6,7,8,9-OCDF	0.334 U		0.339 U		
Sample Designation:	FC-8		FC-11		
Sample Depth (it bls): Sample Date:	0-2 9/16/94	TCDD Equivalent	0-2 9/16/94	TCDD Equivalent	
)ioxans/Furans (Concentrations in ug/kg)					
2.3.7.8-TCDD	0.0776 U	**	0.0753 U		
L,2,3,7,8-PeCDD	0.135 U		0.131 U		
1.2.3.4.7.8-HxCDD	0.22 1		0.214 U		
2 3 6 7 8-HxCDD	0.111 11		0.108.11	= =	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	0.111 U 0.188 U		0.108 U 0.182 U		
1,2,3,6,7,8-HxCDD L,2,3,7,8,9-HxCDD L,2,3,4,6,7,8-HpCDD L,2,3,4,6,7,8-HpCDD	0.111 U 0.188 U 0.225 U 0.701	 0.0007	0.108 U 0.182 U 0.696 2.29	0.0070	
1,2,3,6,7,8-HxCDD L,2,3,7,8,9-HxCDD L,2,3,4,6,7,8-HpCDD L,2,3,4,6,7,8,9-OCDD L,2,3,4,6,7,8,9-OCDD L,3,7,8-TCDF	0.111 U 0.188 U 0.225 U 0.701 0.0674 U	0.0007	0.108 U 0.182 U 0.696 2.29 0.0655 U	0.0070 0.0023	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,7,8-PeCDF	0.111 U 0.188 U 0.225 U 0.701 0.0674 U 0.106 U 0.11 U	0.0007	0.108 U 0.182 U 0.696 2.29 0.0655 U 0.103 U 0.107 U	0.0070 0.0023	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF	0.111 U 0.188 U 0.225 U 0.701 0.0674 U 0.106 U 0.11 U 0.124 U	0.0007	0.108 U 0.182 U 0.696 2.29 0.0655 U 0.103 U 0.107 U 0.12 U	0.0070 0.0023 	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.111 U 0.188 U 0.225 U 0.701 0.0674 U 0.106 U 0.11 U 0.124 U 0.0967 U 0.179 U	0.0007	0.108 U 0.182 U 0.696 2.29 0.0655 U 0.103 U 0.107 U 0.12 U 0.0939 U 0.174 U	0.0070 0.0023 	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	0.111 U 0.188 U 0.225 U 0.701 0.0674 U 0.106 U 0.11 U 0.124 U 0.0967 U 0.179 U 0.23 U	0.0007	0.108 U 0.182 U 0.696 2.29 0.0655 U 0.103 U 0.107 U 0.12 U 0.0939 U 0.174 U 0.224 U	0.0070 0.0023 	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,	0.111 U 0.188 U 0.225 U 0.701 0.0674 U 0.106 U 0.11 U 0.124 U 0.0967 U 0.179 U 0.23 U 0.184 U 0.188 U	0.0007	0.108 U 0.182 U 0.696 2.29 0.0655 U 0.103 U 0.107 U 0.12 U 0.0939 U 0.174 U 0.224 U 0.179 U 0.192 U	0.0070 0.0023 	

ft bls - Feet below land surface
ug/kg - Micrograms per kilogram.
U - Indicates that the compound was analyzed for but not detected.
J - Estimated value

NOTE: Toxicity equivalence factors used to derive TCDD equivalents. USEPA 1994b.

FIGURES

APPENDICES

r, APPENDIX A

APPENDIX A

Soil Boring Logs

3446

278036

75%

States,

Non

Preside

- ukos

-

anani.

989426

NAME

1922.0

6.56

. v. oka

.

			JEOL	OGIC LOG
tudy No. <u>05551Y</u> Date <u>09/1</u> roject <u>AMTRAK SFC Ductline</u> Client <u>AMTRAK, Sunnyside Yard</u> age <u>1</u> of <u>1</u> ogged By <u>A. Farrell</u> Vell/Boring No. <u>FC-1</u> occation	/94 Hole Diam. (in.) Final Depth (ft.) Casing Diam. (in.) Casing Length (ft. Screen Setting (ft. Screen Slot & Typ Well Status	/ELL DA	<u>TA</u>	G-W READINGS (1) Date DTW MP (2) Elev. W
Drilling Started <u>15:20</u> Ended <u>1</u> Driller <u>Land, Air, Water</u> Ype of Rig <u>Hand Boring</u>	30 Type HAND Hammer Fall		lb. in.	
ID SAMPLE	Strata Change ws 6 & Gen. Desc.	Depth (ft)	5	SAMPLE DESCRIPTION ⁽³⁾
GRASAN	B PLE		Dark brov dry. Orange-br moist. Color cha Bottom o Sample c	wn fine SAND and silt, trace cobbles; rown medium SAND, trace cobbles; ange to pinkish red-brown of Boring 5'bls. ollected 0-2' composite for PCB/TPH.

dy No. <u>05551Y</u> Date <u>09/14/94</u> ject <u>AMTRAK SFC Ductline</u> ent <u>AMTRAK, Sunnyside Yard</u> e <u>1</u> of <u>1</u> ged By <u>A. Farrell</u> I/Boring No. <u>FC-2</u>	Hole Diam. (in.) Final Depth (ft.) Casing Diam. (in Casing Length (ft	<u>VELL D</u>	ATA	<u>G-W READINGS (1)</u> Date DTW MP (2) Elev. W
ation	Screen Slot & Ty Well Status	rpe		
 Elevation ling Started 15:05Ended 15:15 ller Land, Air, Water e of Rig Hand Boring 		PLER	lb. in.	DEVELOPMENT
No. Rec. Depth Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAMPLE DESCRIPTION ⁽³⁾
SAMPLE		$ \begin{array}{c} 0 \\ - \\ - \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	Bottom Sample	of Boring 5'bls. collected 0-2' composite for PCB/TPH.

ROUX	ASSOCIA	TES, INC	•			GEU		
				W	ELL DA	ATA	G-W READINGS (
Study	No. 05551Y	Dat	e <u>09/14/94</u>	Hole Diam. (in.)			Date DTW MP (2) Elev.	
Project	AMTRAK S	SFC Ductline		Final Depth (ft.)				
Client	AMTRAK, S	unnyside Ya	rd	Casing Diam. (in.)			
Page	1	of 1		Casing Length (ft	.)			
Logge	By A. Farre	11		Screen Setting (ft	.)			
Well/B	oring No. F	C-3		Screen Slot & Ty	ре			
Locatio	on			Well Status				
M.P. E	Elevation			<u>S</u> AMI	<u>PLER</u>		DEVELOPMENT	
Drillin	g Started <u>14:</u>	<u>48</u> En	ded 15:00	Type <u>HAND</u>				
Driller	Land, Air, W	ater		lb.				
Туре с	of Rig <u>Hand</u> E	Boring		Fall		in.		
סות		SAMPL	E	Strata Change	Depth		(A) (DI E DECODIDITIO) (3)	
opm)	No. Rec.	Depth	Blows 6	& Gen. Desc.	(ft)		SAMPLE DESCRIPTION	
0			GRAB		0-	Light o	orange-brown fine SAND and silt, trace	
			SAMPLE			cobbles.	S.	
					2-	Red-bro	rown medium SAND, trace cobbles.	
	-				-			
		l			4-			
						Bottom	n of Boring 5'bls.	
					_	Sample	e collected 0-2' composite for PCB/TPI	
					6-			
			1					
					_			
					87			
					-			
					10			
					-			
					12			
					-			
					14-			
		ĺ	1		-			
					16-			
					-{			
					18-			
		<u>.l</u>	I	_I				
REM	ARKS (1) ir	n feet relative	to a common of PVC casing	latum				

EOLOGIC LOG
G-W READINGS (1) Date DTW MP (2) Elev. Date DTW MP (2) Elev. DEVELOPMENT DEVELOPMENT
lb. in.
SAMPLE DESCRIPTION ⁽³⁾
cobbles; dry. Pinkish red-brown medium to coarse SAND, trace cobbles; dry. Bottom of boring 5'bls. Sample collected 0-2' composite for PCB/TPH Herbicides, Dioxins, SVOC, VOC, Metals RCRA.

ROUX	ASS	OCIA]	TES, INC	•			GEO]	LOGIC LOG		
C 4 J		5551V	Dat	00/14/04		ÆLL DA	ATA	<u>G-W READINGS (1)</u>		
Draiaat	NO. <u>U</u>		Date	<u> </u>	Final Danth (ff.)			Date D1 w MF (2) Elev.		
Client		IKAK SI	FC Ductime		Casing Diam (ii.)	·				
Client	AMII	<u>KAK, Su</u>	nnyside Yar	d	Casing Diam. (in.)				
Page _			01 _1		Casing Length (It	·)				
Logged	а Ву <u>/</u>	A. Farrell			Screen Setting (It	·)				
Well/B	oring	No. <u>FC</u>	-5		Screen Slot & Ty Well Status	pe				
Locatio	on							DEVELOPMENT		
M.P. E		on	<u>ح</u>	1.1.12.45	<u>SAIVII</u>	LEK				
Drillin	g Start	ed <u>13:3</u>	<u> </u>	led <u>13:45</u>	Type <u>HAND</u>		 !h			
Driffer	Land,	<u>Air, wa</u>	ter				10.			
Type c	of Rig	Hand Bo	oring				in.			
PID			SAMPLI	3	Strata Change	Depth		SAMPLE DESCRIPTION ⁽³⁾		
ppm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	(ft)				
0				GRAB SAMPLE		0-	Dark gi trace co	grey-brown fine to medium SAND and sobbles.		
						2-	Pinkish	n red-brown medium to coarse SAND,		
							trace co	oddies.		
					1	4-				
						-	Bottom	a of Boring Sible		
							Sample	es collected 0-2' composite for PCB. The		
						6-	Herbici	ides, Dioxins, RCRA, Metals, SVOC,		
						-	VOC.			
					1	8-				
						-				
						10-				
						-				
					1]				
						12-				
		}			}	-				
		1								
						14-				
						16-				
					1					
REM	IARK	S (1) in (2) (3)	feet relative from top o logged cutt	to a common d f PVC casing ings	latum					

OUX ASSOCIAT	ES, INC.			GEOI	LOGIC LOG
Study No. <u>05551Y</u> Project <u>AMTRAK SF(</u> Client <u>AMTRAK, Sun</u> Page <u>1</u> Logged By <u>A. Farrell</u> Well/Boring No. <u>FC-(</u> Location <u></u> M.P. Elevation <u></u> Drilling Started 13:10	Date <u>09/14/94</u> <u>C Ductline</u> nyside Yard of <u>1</u> 6 Ended 13:30	W Hole Diam. (in.) Final Depth (ft.) Casing Diam. (in. Casing Length (ft Screen Setting (ft Screen Slot & Ty Well Status <u>SAMI</u> Type HAND	/ELL DA) .) .) pe PLER	G-W READINGS (1) Date DTW MP (2) Elev.	
Driller Land, Air, Wate	er	Hammer		lb. in	
PID No Rec	SAMPLE Depth Blows 6	Strata Change & Gen, Desc.	Depth (ft)		SAMPLE DESCRIPTION ⁽³⁾
	GRAB SAMPLE		$\begin{array}{c} 0 - \\ - \\ - \\ 2 - \\ - \\ - \\ - \\ - \\ - \\ -$	Brown f	fine SAND and silt, trace cobbles. -brown fine SAND and silt, trace cobble of Boring 5'bls. collected 0-2' composite for PCB/TPH

ioni een	ENVIRON ROUX	IMENTA	AL CONST	ULTING & MA	NAGEMENT	···		GEOI	L00	GIC L	ØG		
- 168 1	Study	No 0	5551V	Deta	. 00/14/04	Hole Diam (in)	ÆLL DA	ТA	-	<u>G</u> . Date	W READI	NGS	(1)
200	Draiaat			Datt	0/14/74	Final Danth (ft)	······································	• • • • • • • • • • • • • • • • • • • •		Date			·V. VV.D
-and	Cline		DAV C				·						
	Client	AMII	KAK, SU	innyside Yar	u	Casing Diam. (in.	<u>ر</u>						
200	Page _	1	<u></u>	of		_ Casing Length (ff	.)						
-nai	Logged	i By _/	A. Farrell	l		Screen Setting (ft	.)						
	Well/B	oring	No. <u>FC</u>	2-7		Screen Slot & Ty	pe						
- 16 9 0	Locatio	on	·····			Well Status							
1. intel	M.P. E	Elevatio	on			SAM	PLER			DEVE	<u>LOPMEN</u>		
	Drillin	g Starte	ed <u>12:4</u>	5End	ed <u>13:00</u>	Type <u>HAND</u>							
covici ne	Driller	Land,	Air, Wa	iter		Hammer		lb.					
ian s	Туре с	of Rig	Hand Be	oring		Fall	<u></u>	in.					
				SAMPLE	7		T			<u>L.</u>			
200	PID (ppm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	Depth (ft)	<u>.</u>	SAM	PLE DE	ESCRIPTIO	N ⁽³⁾	
ing in	0				GRAB SAMPLE		0- -	Black to cobbles,	o dark trace	grey fine silt; dry;	to medium S cinders.	AND,	trace
- 4 ⁻¹ -6							2-	Brown	to oran	ige-brown	medium to c	oarse	
:~*¥ A								SAND,	trace of	cobbles in	terbedded wi	th abo	ve.
500 0							4						
-ciap							-	Bottom Sample	of Bor	ring 5'bls. ted 0-2' c	omposite for	PCB.	
Maj							6 <u>-</u>	•			×		
. Ander							-						
o~4							 10-						
-199 4													
3-68							12-						
e%a7 %													
1 - A													
625qg							 16-						
oral Coral													
ംരമ							18-						
5-0096													
ara	REM	ARK	S (1) in (2) (3)	feet relative from top of logged cutt	to a common of FPVC casing ings	latum	·						

ENVIRONI	MENTAL (CIATI	ES, INC	NAGEMENT			GEO	LOC	GIC L	OG	
Study N Project Client Page Logged Well/Bo Location M.P. El Drilling Driller Type of	No. <u>0555</u> <u>AMTRA</u> <u>AMTRAF</u> <u>1</u> By <u>A. F</u> pring No. n evation <u>_</u> Started <u>Land, Ain</u> f Rig <u>Har</u>	1Y K SFC ζ, Sum rarrell FC-8 12:20 r, Wate nd Bor	Date C Ductline nyside Yar of 1 B End r 	ed <u>12:40</u>		/ELL_DA	<u>ATA</u>		<u>G</u> Date	W READIN DTW MP (2)	I <u>GS (1</u>)) Elev. W
PID .	No. R	lec.	SAMPLI Depth	Blows 6	Strata Change & Gen. Desc,	Depth (ft)		SAM	IPLE DE	ESCRIPTION	1(3)
0				GRAB SAMPLE		$\begin{array}{c} 0 - \\ - \\ - \\ 2 - \\ - \\ - \\ - \\ - \\ - \\ -$	Black t silt, trad orange- trace co Sample Herbici Dioxins	o dark ce cobb brown obbles. s colle des, Di 5, RCR	grey fine oles; dry; o bles; dry; o Fine to m Bottom o conted 0-2' o ioxins, SV A.	to medium SA cinders. to medium SA cinders. Interb edium SAND of Boring at 5' composite for OC, VOC, Me	ND and bedded with and silt, bls. PCB, TPH, etal,
REMA	ARKS (1) in fe (2) f (3) le	et relative rom top of ogged cutt	to a common of PVC casing ings	latum		_,				

tudy No. 05551Y Date 09/14/94 H roject AMTRAK SFC Ductline F Client AMTRAK, Sunnyside Yard C rage 1 of 1 C ogged By A. Farrell S Vell/Boring No. FC-9 S occation	W Hole Diam. (in.) Final Depth (ft.) Casing Diam. (in. Casing Length (ft Screen Setting (ft Screen Slot & Ty Well Status <u>SAMI</u> Type <u>HAND</u> Hammer Fall Strata Change & Gen. Desc.	Depth Depth 0- - <	ATA	SAM o black iders.	<u>G</u> - Date DEVE PLE DE fine SAN	W READIN DTW MP (2) DTW MP (2) CLOPMENT CLOPMENT	GS (1) Elev. W. Image: state stat
Drilling Started 11:55 Ended 12:10 7 Driller Land, Air, Water H Ype of Rig Hand Boring F ID SAMPLE m) No. Rec. Depth Blows 6 GRAB SAMPLE	Type <u>HAND</u> Hammer Fall Strata Change & Gen. Desc.	Depth (ft) 0- - - 2- - - - - - - - - - - - - - - -	lb. in. Grey to dry; cin Orange-	SAM o black iders.	PLE DE fine SAN	ESCRIPTION D and silt, trac	[⁽³⁾ e cobbles :e cobbles
ID SAMPLE ID No. Rec. Depth Blows 6 GRAB SAMPLE	Strata Change & Gen. Desc.	Depth (ft) 	Grey to dry; cin Orange-	SAM black ders.	PLE DE fine SAN	ESCRIPTION D and silt, trac	I ⁽³⁾ e cobbles
GRAB SAMPLE		0- - - 2- - - - - - - - - - - - - - - -	Grey to dry; cin Orange-	b black iders. -brown	fine SAN	D and silt, trac	e cobbles
			Bottom Sample	of Bor collect	ing at 5'b ed 0-2' co	ols. omposite for P	CB/TPH.

ROUX	ASS	OCIA7	TES, INC	•			GEOI		GIC L	JOG	
				00/11/10/	<u>v</u>	VELL DA	ATA	-	G	-W READIN	<u>GS (1)</u>
Study	No0	5551Y	Dat	e <u>09/14/94</u>	Hole Diam. (in.)				Date	DTW MP (2)	Elev. V
Project	AMT	RAK SI	FC Ductline		Final Depth (ft.)						
Client	AMT	<u>RAK, Su</u>	nnyside Ya	rd	_ Casing Diam. (in						
Page _	1		of		_ Casing Length (ft.)						
Logged	i By _/	A. Farrell			Screen Setting (f	.)					
Well/B	oring 1	No. <u>FC</u>	-10		Screen Slot & Ty	ре					
Locatio	on				Well Status						
M.P. E	levatio	n			<u>SAM</u>	<u>PLER</u>			DEVI	ELOPMENT	-
Drillin	g Starte	ed <u>11:00</u>	0Eno	led <u>11:40</u>	Type <u>HAND</u>						
Driller	Land,	<u>Air, Wa</u>	ter		Hammer		lb.				
Туре с	be of Rig Hand Boring Fall					1n.					
סופ			SAMPL	E	Strata Change	Depth		SAM	ות בזמ	FSCRIPTION	<u>1</u> (3)
ppm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	(ft)		SAW			N · · ·
0				GRAB SAMPLE		0	Dark br cobbles	own to ; dry; (o black si cinders.	lt and fine SAN	ID, some
						2-	Pinkish	-red-br	own med	ium to coarse S	SAND,
							some co	obbles;	dry.		
						_					
						4-					
							Grades	to ninl	cish red-h	rown fine to m	edium
							SAND,	trace of	cobbles; c	iry.	curum
						6-	Bottom	of Bo	ring at 5'	bls. composite for P	СВ/ТРН
							Bumpie	conce			
		-				10-					
						14-					
REM	ARKS	S (1) in (2) (3)	feet relative from top o logged cut	to a common of PVC casing tings	latum	<u></u>					

DCIATES, INC. GEOLOGIC LOG
JCIATES, INC. GEOLOGIC LOG S51Y Date 09/14/94 Hole Diam. (in.)
CRAB GRAB SAMPLE 0 Dark brown to black and fine to medium SANI trace cobbles; damp; cinders. 2- Orange-brown SAND and silt, some medium gravel; damp. Red-brown fine to medium SAND. Bottom of Boring at 5'bls. Samples collected 0-2' composite for PCB/TPF Herbicides, Dioxins, SVOC, VOC, Metals, RCRA. 10 11 12 14 16 16 18
(1) in feet relative to a common datum (2) from top of PVC casing (3) logged cuttings

ROUX	K ASSO	OCIAT	ES, INC	•			GEO	LOC	FIC L	OG	
					<u></u>	/ELL_DA	ATA	_	G	W READIN	IGS (1
Study	No. 055	551Y	Dat	e <u>09/14/94</u>	Hole Diam. (in.)				Date	DTW MP (2) Elev.
Projec	t AMTR	RAK SF	C Ductline		Final Depth (ft.)						
Client	AMTRA	AK, Sui	nnyside Ya	rd	Casing Diam. (in.)						
Page	1		of		Casing Length (ft	.)					
Logge	d By <u>A</u> .	Farrell			Screen Setting (ft.)						
Well/E	Boring No	o. <u>FC</u> -	-12		Screen Slot & Ty	pe					
Locati	on				Well Status			l			
M.P. I	Elevation		·····		SAMI	PLER	DEVELOPMENT			_	
Drillin	g Started	10:00) End	led 10:25	Type <u>HAND</u>	pe <u>HAND</u>					
Driller	Land, A	Air, Wat	ter		Hammer	Hammer lb. Fall in.					
Туре	of Rig <u>H</u>	land Bo	oring		Fall						
PID			SAMPL	E	Strata Change	Depth		SANA		SCRIPTIO	N ⁽³⁾
(ppm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	(ff)	· · · · · · · · · · · · · · · · · · ·	SAIVI			N 1
0				GRAB		0-	Brown	to orang	ge-brown	SAND and si	lt; damp
				SAMPLE							
						-					
						2-					
							Brown	to orang	ge-brown	SAND and si	ilt; damp
						-			0		· ·
						4-					
						_	Bottom	of Bor	ing at 5'b	ols.	
						_	Sample	collect	ed 0-2' c	omposite for I	PCB/TPH
						-					
						8-					
						- ⁻					
						-					
						10-					
						-					
						12-					
						-					
						14-					
					1	_					
						16-					
						-					
						-					
REM	IARKS	(1) in (2)	feet relative from top o	to a common d f PVC casing	latum						

ENVIRONI ROUX	MENTAL CON	SULTING & M. ATES, INC	ANAGEMENT			GEO	LOC	GIC L	OG																																	
Study N Project Client Page Logged Well/Bo Location M.P. El Drilling Driller Type of	Io. <u>05551Y</u> <u>AMTRAK</u> <u>AMTRAK, S</u> <u>I</u> By <u>A. Farre</u> bring No. <u>I</u> n evation <u></u> started <u>09</u> Land, Air, V `Rig <u>Hand</u>	Dat <u>SFC Ductline</u> <u>Sunnyside Ya</u> of <u>1</u> ell CC-13 <u>30</u> End /ater Boring	e _09/14/94 rd ded _10:00		VELL D/ .))))))))) <tr tr=""> <tr tr=""> <td>ATA</td><td></td><td><u>G</u> Date</td><td><u>IGS (1</u>)) Elev. W</td></tr><tr><td>PID . (ppm)</td><td>No. Rec.</td><td>SAMPL Depth</td><td>E Blows 6</td><td>Strata Change & Gen. Desc.</td><td>Depth (ft)</td><td></td><td>SAM</td><td>IPLE DE</td><td>ESCRIPTION</td><td>V⁽³⁾</td></tr><tr><td>0</td><td></td><td></td><td>GRAB SAMPLE</td><td></td><td></td><td>Grey gi SAND, cobbles Grey gi SAND, cobbles Bottom Sample</td><td>rading some ; dry. ading some ; dry. of Bo collec</td><td>to light or medium to to light or medium to ring at 5't ted 0-2' co</td><td>range brown si o coarse grave range brown si o coarse grave ols. omposite for F</td><td>It and fine I, trace It and fine I, trace PCB/TPH.</td></tr><tr><td>REMA</td><td>ARKS (1) i</td><td>n feet relative 2) from top o 3) logged cutt</td><td>to a common d f PVC casing iings</td><td>atum</td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tr>	ATA		<u>G</u> Date	<u>IGS (1</u>)) Elev. W	PID . (ppm)	No. Rec.	SAMPL Depth	E Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	IPLE DE	ESCRIPTION	V ⁽³⁾	0			GRAB SAMPLE			Grey gi SAND, cobbles Grey gi SAND, cobbles Bottom Sample	rading some ; dry. ading some ; dry. of Bo collec	to light or medium to to light or medium to ring at 5't ted 0-2' co	range brown si o coarse grave range brown si o coarse grave ols. omposite for F	It and fine I, trace It and fine I, trace PCB/TPH.	REMA	ARKS (1) i	n feet relative 2) from top o 3) logged cutt	to a common d f PVC casing iings	atum						
ATA		<u>G</u> Date	<u>IGS (1</u>)) Elev. W	PID . (ppm)	No. Rec.	SAMPL Depth	E Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	IPLE DE	ESCRIPTION	V ⁽³⁾	0			GRAB SAMPLE			Grey gi SAND, cobbles Grey gi SAND, cobbles Bottom Sample	rading some ; dry. ading some ; dry. of Bo collec	to light or medium to to light or medium to ring at 5't ted 0-2' co	range brown si o coarse grave range brown si o coarse grave ols. omposite for F	It and fine I, trace It and fine I, trace PCB/TPH.	REMA	ARKS (1) i	n feet relative 2) from top o 3) logged cutt	to a common d f PVC casing iings	atum												
ATA		<u>G</u> Date	<u>IGS (1</u>)) Elev. W																																							
PID . (ppm)	No. Rec.	SAMPL Depth	E Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	IPLE DE	ESCRIPTION	V ⁽³⁾																																
0			GRAB SAMPLE			Grey gi SAND, cobbles Grey gi SAND, cobbles Bottom Sample	rading some ; dry. ading some ; dry. of Bo collec	to light or medium to to light or medium to ring at 5't ted 0-2' co	range brown si o coarse grave range brown si o coarse grave ols. omposite for F	It and fine I, trace It and fine I, trace PCB/TPH.																																
REMA	ARKS (1) i	n feet relative 2) from top o 3) logged cutt	to a common d f PVC casing iings	atum																																						

前通

ROUX	ASS	OCIA	TES, INC	•		GEOLOGIC LOG						
						VELL DA	ATA	G-W READINGS (1)				
Study]	No0	5551Y	Date	09/14/94	Hole Diam. (in.)			Date DTW MP (2) Elev. W.				
Project	AMT	rak s	FC Ductline		Final Depth (ft.)							
Client	AMT	RAK, Su	innyside Yar	d	_ Casing Diam. (in	.)						
Page _	1		of		_ Casing Length (fi)						
Logged	l By <u> </u>	A. Farrell	l		Screen Setting (ft	.)	····					
Well/B	oring 1	No. <u>FC</u>	2-14		Screen Slot & Ty	ре						
Locatio	on				Well Status							
M.P. E	levatio	n			SAM	SAMPLER DI		DEVELOPMENT				
Drilling	g Starte	ed <u>09:0</u>	0Enc	led <u>09:35</u>	Type <u>HAND</u>							
Driller	Land,	Air, Wa	iter		Hammer		lb.					
Туре о	f Rig	Hand B	oring		Fall							
рір			SAMPLI	3	Strata Change	Depth		SAMDIE DESCOIDTIONI(3)				
opm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	(ft)		SAMPLE DESCRIPTION'				
0				GRAB		0-	Brown	fine to medium SAND and silt, trace				
				SAMPLE			CODDIES Orange	brown to brown medium to coarse				
						-	SAND,	trace cobbles; damp.				
	-					2-						
						_						
						4-						
						-	Bottom	of Boring at 5'bls.				
							Sample	collected composite 0-2' for PCB/TPH.				
						-						
						10-						
			·			-						
						12-						
]						
						14-						
]						
	i											
						16-						
]						
						-						
REM	ARK	S (1) in (2) (3)	feet relative) from top o) logged cutt	to a common f PVC casing ings	datum							

		GEOLOGIC LOG					
udy No. <u>05551Y</u> Date <u>09</u> oject <u>AMTRAK SFC Ductline</u>	<u></u>	WELL DATA Hole Diam. (in.) Final Depth (ft.) Casing Diam. (in.) Casing Length (ft.) Screen Setting (ft.) Screen Slot & Type Well Status			<u>G-W READINGS (1)</u> Date DTW MP (2) Elev. W		
Inent AMTRAK, Sunnyside Yard age 1 of 1 bgged By A. Farrell fell/Boring No. FC-15 bcation	Casing Diam. (in Casing Length (f Screen Setting (f Screen Slot & Ty Well Status						
.P. Elevation illing Started <u>08:50</u> Ended iller Land, Air, Water upe of Rig Hand Boring	<u>SAM</u> 09:15 Type <u>HAND</u> Hammer Fall	_ <u>SAMPLER</u> _ Type <u>HAND</u> Hammer Fall		lbin.			
D m) No. Rec. Depth	Blows 6 & Gen. Desc.	Depth (ft)	SA	MPLE DE	ESCRIPTION	J(3)	
GI GI SA	RAB MPLE		Grey-brown sample for Grades to I Pinkish-red gravel inter silt. Bottom of Sample col	a silt and fin PCB/TPH. ight orange b -brown medi bedded with Boring at 5't lected 0-2' c	e SAND; orgar prown fum SAND, tra orange-brown ols. omposite for P	iics; dry ce fine sand and CB/TPH	

ROUX	ASS	OCIA]	TES, INC	•	GEOLOGIC LOG					
					ÆLL DÆ	G-W READINGS (1				
Study No. 05551V Date 04/04/94				e 04/04/94	Hole Diam. (in.)			Date DTW MP (2) Elev.		
Project AMTRAK SEC Ductline			Final Depth (ft.)							
Client	AMT		innyside Ya		Casing Diam (in)				
Client AMTRAK, Sunnyside Yard Page 1 of 1 Logged By J. Gerlach Well/Boring No. FC-16 Location			Casing Length (ff	·)						
			Casing Length (In	··)						
			_ Screen Setting (It	・)						
			Well Status	pe						
M.P. Elevation			<u>SAMPLER_</u>			DEVELOPMENT				
Drillin	Drilling Started 13:00 Ended 13:20			Type HAND			-1			
Driller	<u>A.D.T</u>	•			Hammerlb.					
Туре с	f Rig_				Fall <u>30</u>		in.			
DID			SAMPLI	3	Strata Change	Danth				
DDM)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	(ft)		SAMPLE DESCRIPTION ⁽³⁾		
0			0 - 0.5'			0-	Brown	fine Sand and Silt. trace Clay.		
-			0.5 - 1'		1		roots(to	opsoil); damp.		
			1 - 5'		Fine SAND	-	Brown	fine SAND with some Silt; damp.		
							Light o	orange-brown fine SAND with trace		
						_	cobbles	es and Silt; damp; no odor.		
						-				
						4				
							Bottom	n of Boring at 5'		
							20000			
						6-	<u> </u>			
						-	Collect	t one sample for PCB/TPH from $0 - 2'$.		
						8-				
						-				
						_				
	Í					10-				
						_				
						-				
						-				
						16-				
						18-				
	, İ					_				
REM	ARKS	S (1) in	feet relative from top o	to a common of f PVC casing	latum					

APPENDIX B

.

APPENDIX B

Chain of Custody Forms

-**234**

10.00

10.00

2.4

· 388

-

rissing

2 mag

.

inthe

e dera.

فرد

, - est

化麻醉 14,924 e de ling diriye. فيدد ting. inanj

- 7453

-244

یست. معید میرده میرده

ः : de 19

SEAL INTACT Y OR N SEAL INTACT Y OR N SEAL INTACT Y OR N N Ŕ PRESERVATION PAGE BML TIME TIME EDEN BOFFLES DATE DATE DATE 5 く -FOR FOR ANALYSES FOR 'DDj 112 RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) \mathcal{F} 7 CUSTODY Not Ast ٢ > XISTOM 3JOMPS \mathbf{X} \succ \geq لا \succ ЧO Ł X × 5 SEAL NIACT Y OR N SEAL INTACT Y OR N SEAL INTACT Y OR N CHAIN PROJECT NUMBER TIME an 1 0420 Vir CV D635 2507 1115 12:00 1230 どく いと TIME TIME TIME 7537 Ś COMMENTS DÂTE DATE DATE DATE COLLECTED 9/11/194 FOR FOR FOR town SAMPLE DESIGNATION/LOCATION R SAMPLER'S RELINQUISHED/BY: (SIGNATURE) RELINQUISHED BK: (SIGNATURE) RELINQUISHED BY: (SIGNATURE) ROUX ASSOCIATES INC HW MEAN Ground-Water Consultants ANALYTICAL LABORATORY \subset DELIVERY METHOD 57 PROJECT LOCATION - 11-PROJECT NAME - /3 - 14 1/0 2 1 - 1 G 5 6 5 1 ۱ Í í SAMPLER(S) ł FC U A FC Ľ 4 1 1 Ŀ

- 28

ł

SEAL INTACT Y OR N SEAL INTACT Y OR N SEAL INTACT Y OR N ょ Р PRESERVATION N PAGE TIME TIME TIME 103 FORK BOFFLES DATE DATE DATE ア M ANALYSES FOR FOR FOR YCEA RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) Y CUSTODY -5,0p ちょうどう No. Hal X ž an XIGTON 3JOMPS Wit AsP X X X × L O CHAIN SEAL INTACT Y OR N SEAL INTACT Y OR N SEAL INTACT Y OR N 14 5 PROJECT NUMBER TIME COLLECTED 1530 1340 1210 いい TIME TIME TIME 1600 ſ COMMENTS 194 DATE DATE DATE DATE COLLECTED Shoffy Ħ FOR FOR FOR Ż Minrov. SAMPLE DESIGNATION/LOCATION 8 SAMPLER'S BY: (SIGNATURE) RELINQUISHED BY (SIGNATURE) RELINQUISHED BY: (SIGNATURE) ROUX ASSOCIATES INC mil Ground-Water Consultants ANALYTICAL LABORATORY DELIVERY METHOD Leson PROJECT LOCATION PROJECT NAME RELINQÚISHED Ĭ SAMPLER(S) ۱ ١ 4

140168

PLATES

