

EAST SIDE ACCESS PROJECT

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION FINDINGS REPORT SUMMARY for PHASE 2

DESIGN PACKAGE No.CQ028 PART 1 (100% SUBMITTAL) EXISTING RAIL YARD PREPARATION & DEMOLITION OF SUPERIOR REED REVISION 1

December 28, 2001

Prepared by PB/STV Joint Venture Prepared for MTA East Side Access Project

Prepared by:	P. Oelerich
Reviewed by:	J. Butler

-16637 -

Parsons Brinckerhoff Quade & Douglas, Inc./STV Incorporated

16637

PB/STV

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION FINDINGS REPORT SUMMARY

for

PHASE 2 DESIGN PACKAGE No. CQ028 Part 1 (100% SUBMITTAL) EXISTING RAIL YARD PREPARATION & DEMOLITION OF SUPERIOR REED Revision 1

TABLE OF CONTENTS

<u>SEC</u>	<u>TION</u>		r	<u>PAGE</u>
1.0	INTRO	ODUCTI	ON	1
2.0			ORK AND OBJECTIVES	
3.0	FINDI	NGS		6
	3.1	Enviro	nmental Survey 1 – Superior Reed Building Complex	6
		3.1.1	ACM Sample Collection	6
		3.1.2	LBP Sample Collection	7
		3.1.3	Storm Drain Sediment Sample Characterization	7
		3.1.4	Soil Sample Characterization	8
		3.1.5	Soil Sample Analytical Results	8
		3.1.6	Groundwater Sample Collection	9
-		3.1.7	Inspection for Undocumented Environmental Liabilities	10
	3.2	Enviro	nmental Survey 2 – Existing Rail Yard, Abandoned Substation,	
		Aband	oned Cover Platform	11
		3.2.1	Surficial Petroleum Impact Characterization	11
		3.2.2	Substation Concrete Characterization	12
		3.2.3	ACM Sample Collection	12
		3.2.4	LBP Sample Collection	13

i

		2 Horardous Levels of Lead in Soil, Located	
	3.3	Environmental Survey 3 – Hazardous Levels of Lead in Soil, Located	13
		Environmental Survey 3 – Hazardous Berrar South of NYAR Maintenance Shop Environmental Survey 4 – Abandoned Crew Quarters, Suspect Buried Material	14
-	3.4	Environmental Survey 4 – Abandoned Crew Quarters, Survey	14
	5	 Environmental Survey 4 – Abandoned Crow C 3.4.1 Geophysical Survey of Suspect Mounds	
		3.4.2 Test Pits	17
		tion Somples	
		3.4.3 Waste Characterization Samples	
4.0	CON	3.4.4 Additional Test Pits and Environmentation 1 CLUSIONS AND RECOMMENDATIONS Environmental Survey 1 – Superior Reed Building Complex	
	4.1	superior Reed Building Comparison	
	4.1	Environmental Survey 2 – Existing Rail Yard – Abandoned Substation Environmental Survey 2 – Existing Rail Yard – Abandoned Substation And Abandoned Covered Platform	
		And Abandoned Covered Platform	
	4.3	And Abandoned Covered Platform Environmental Survey 3 – Hazardous Levels of Lead in Soil Environmental Survey 4 – Abandoned Crew Quarters, Suspect Buried Material	
	4.4	Environmental Survey 4 – Abandoned Crew Quaters, a 1	21
5.0	REF	Environmental Survey 4 – Abandoned Crow Que	

$\overline{\mathbb{D}}$	E	C	E	[]	\mathbb{V}	E	M
		JAN	2.	2	2002)	U
ESA	D(DCU	ME	NT	- C0	NTI	ROL

TABLE OF CONTENTS (Continued)

TABLES

- 1 Phase 1A, Contract CQ025: Asbestos Containing Material Results
- 2 Phase 1A, Contract CQ025: Lead Based Paint Results
- Phase 1A, Contract CQ025: Summary of Sediment Results for Total
 Petroleum Hydrocarbons
- 4 Phase 1A, Contract CQ025: Summary of Sediment and Concrete Results for Polychlorinated Biphenyls
- 5 Phase 1A, Contract CQ025: Summary of Sediment and Concrete Results for Toxicity Characteristics Leaching Procedure Metals
- 6 Phase 1A, Contract CQ025: Summary of Sediment and Concrete Results for Volatile Organic Compounds (VOCs)
- Phase 1A, Contract CQ025: Summary of Sediment and Concrete Results
 for Semi-Volatile Organic Compounds (SVOCs)
- 8 Phase 1A, Contract CQ025: Summary of Groundwater Sample Results for VOCs
- 9 Phase 1A, Contract CQ025: Summary of Groundwater Sample Results for SVOCs
- 10 Phase 1A, Contract CQ025: Summary of Concrete Results for Total Metals

FIGURES

- 1 Site Location Map
- 2 Yard A Areas of Environmental Concern
- 3 CQ025-CT-5102
- 4 CQ025-CT-5103
- 5 CQ025-CT-5104
- 6 CQ025-CT-5107

APPENDICES

- A AMRO Laboratory Report
- B NAEVA Geophysics Report

1.0 INTRODUCTION

The Metropolitan Transportation Authority/Long Island Rail Road (MTA/LIRR) has contracted the joint venture team of Parsons Brinckerhoff Quade & Douglas, Inc. and STV Incorporated (PB/STV) to provide tunnel engineering consulting services for the East Side Access (ESA) Project (the Project). The PB/STV team is known as the Tunnel Engineer (TE) of the Project. The TE is responsible for providing the conceptual design, preliminary and final design engineering. construction services (including pre-construction environmental phase assessments), and coordination services for the Project. The TE's work is conducted under the direction of the Program Management (PM) firm. Other Project consultants include the Systems Engineer (SE), involved with system design elements and the Environmental Consultant (EC), involved with the preparation of the Draft Environmental Impact Statement (DEIS) and Final Environmental Impact Statement (FEIS). The completed Project will provide direct LIRR service into Manhattan's Grand Central Terminal (GCT) and a new LIRR Sunnyside Station located in western Queens County, New York. Direct access to east midtown Manhattan will improve the regional mobility of Long Island and Queens County residents and commuters.

The TE has completed Project Phase 1 Preliminary Engineering Environmental Site Investigations (ESIs) within the Project's proposed right-of-ways (ROWs) and replacement rail yards. The ROWs are known as the Manhattan Alignment with GCT and the Queens Alignment with Sunnyside Yard, Existing Rail Yard, Harold Interlocking and Sunnyside Station. The replacement yards include Highbridge Yard, Fresh Pond Yard, and Blissville Yard. The results of the Phase 1 ESIs were issued in separate Findings Reports that recommended additional environmental investigations.

This Findings Report provides the results for the Supplemental ESI conducted for Phase 1A Design Package CQ025, Superior Reed Demolition and Prepare the Existing Rail Yard for Queens Open-Cut. One additional Findings Report will be issued during Phase 1A for environmental surveys conducted within the area defined by design package CQ026. The ESI

for package CQ028 will be submitted in Phase 2. The ESI was conducted according to the "Sampling and Analysis Plan for the Supplemental Environmental Site Investigation of the Queens Alignment (Phase 1A), Design Package Nos. CQ025, CQ026, and CQ028," (TE, 2001). The scope of work was based on the findings of Phase I ESIs conducted within the Queens Alignment for Sunnyside Yard, The Existing Rail Yard, Harold Interlocking, and Sunnyside Station.

Areas of Concern (AOCs) were defined for soils and structures within proposed construction areas if samples taken in these areas detected substances above regulatory thresholds (as defined in section 3.0 Findings), or if site reconnaissance indicated the potential for contamination. An AOC indicates an area that will require specific testing, handling and disposal protocols during construction and for which contaminant controls may be required to safeguard against potential impacts to the construction work force. (TE, October 2001)

2.0 SCOPE OF WORK AND OBJECTIVES

Contract package CQ025 includes the demolition of the Superior Reed Building Complex controlled by New York City Transit (NYCT) and the preparation of The Existing Rail Yard for the Queens Open-Cut. The areas of investigation and associated tasks are as follows:

Environmental Survey 1 - Superior Reed Building Complex

The objective of the survey was to investigate the environmental liabilities identified in the Limited Phase I Environmental Site Assessment Report of the Superior Reed Building Complex produced for the Project (TE, 2000A). The Superior Reed Building Complex is included in AOC 6. (See Figure 2) Hazardous materials identified during the survey were delineated and quantified in this ESI Report and utilized for the design of remedial options presented in the Construction Contaminant Management Plan (CCMP) (TE, 2001).

- Investigate and delineate suspect Asbestos Containing Material (ACM)
- Investigate and delineate suspect Lead Based Paint (LBP)
- Storm drain sediment sample collection
- Soil sample collection
- Groundwater sample collection
- Undocumented environmental liabilities inspection

Environmental Survey 2 – Existing Rail Yard, Abandoned Substation and Abandoned Covered Platform

The objective of the survey was to investigate the environmental liabilities noted in Document 1 (TE, 2000B). Hazardous materials identified during the survey were delineated and quantified in this ESI Report and utilized for the design of remedial options presented in the CCMP (TE,

2001). The abandoned substation is included in AOC 12 (see Figure 3) and the abandoned covered platform has not been considered an AOC.

- Surficial survey of petroleum-impacted material in the western Existing Rail Yard
- Concrete sample collection from Abandoned Substation floor
- ACM survey of Abandoned Substation and the Abandoned Covered Platform
- LBP survey of Abandoned Substation and the Abandoned Covered Platform

Please note that the New York and Atlantic Railroad (NYAR) Maintenance Shop and the Yardmaster's Building will be not be demolished during the Existing Rail Yard preparation activities of Design Package CQ025. The findings for the supplemental environmental investigation of the NYAR Maintenance Shop and the Yardmaster's Building will be presented in an appropriate Project Phase 2 design package. These findings will include the ACM and LBP survey, maintenance pit concrete samples, and sediment drain samples.

Environmental Survey 3 - Hazardous Levels of Lead in Soil, South of the NYAR Maintenance Shop

The objective of the survey was to delineate soil surrounding the hazardous level of lead soil documented in Document 1 (TE, 2000B). The area of potential lead hazardous soil was delineated and quantified in this ESI Report and utilized for the design of remedial options presented in the CCMP (TE, 2001). This area is considered part of AOC 3. (See Figure 3)

- Soil sample collection
- Soil sample analysis

Environmental Survey 4 - Abandoned Crew Quarters, Suspect Buried Material

The objective of the survey was to investigate the suspect mounds located north of the Abandoned Crew Quarters noted in the Document 1 (TE, 2000B). No hazardous waste was documented during this survey. The test pits were excavated in the area that has been designated as AOC 9. (See Figure 2)

- Surface debris inspection
- Geophysical survey of suspect mounds
- Test pit excavation of subsurface geophysical anomalies
- Waste characterization sample collection at suspect subsurface objects

Environmental Survey 5 - Eastern Existing Rail Yard - PCB-Contaminated Petroleum Plume

Please note that the PCB-Contaminated Petroleum Plume well monitoring findings will be presented in the Supplemental ESI Findings Report Summary for Phase 1A Design Package CQ028.

Environmental Survey 6 and 7- Existing Rail Yard Storm Sewer and Dutch Kills Outfall

Please note that the storm sewer sediment samples findings will be presented in the Supplemental ESI Findings Report Summary for Phase 1A Design Package CQ028.

3.0 FINDINGS

3.1 Environmental Survey 1 - Superior Reed Building Complex

3.1.1 ACM Sample Collection

The NYCT Superior Reed building complex at 29-50, 29-54, and 29-60 Northern Boulevard was inspected and sampled by JLC Environmental (JLC) on March 6 and 7, 2001. The building complex is included in AOC 6. The material inspected for ACM included brick mortar, window putty, stucco, floor tiles, ceiling tiles mastic, coping stone tar, baseboard mastic, sheetrock, roof membrane, screed coat, vapor barrier, flashing, and insulating material. Bulk samples were collected and analyzed using Polarized Light Microscopy (PLM) and Transmission Electron Microscopy (TEM) methods. Material that contains more than 1% by weight of asbestos is classified as ACM. The following samples were classified as ACM: window putty, 9"x9" floor tiles and mastic, baseboard and mastic, roof membrane, and coping stone tar. See Table 1 for the ACM sample locations and approximate quantity.

The MTA Publication office building at 29-70 Northern Boulevard was inspected by JLC on April 30, 2001. The material inspected for ACM included ceiling plaster, wall sheetrock, cement block mortar, pipe insulation, floor tile, floor tile mastic, baseboard mastic, ceramic tile grout. Bulk samples were collected and analyzed using PLM and TEM methods. No sampled material was classified as ACM. See Table 1 for the ACM sample locations.

Electrical wire insulation with suspect ACM was inspected and sampled by JLC on June 26, 2001 at the Superior Reed Buildings A, B, C, and 29-70 Northern Boulevard. The findings of the electrical insulation survey will be issued as an addendum to this report.

3.1.2 LBP Sample Collection

The NYCT Superior Reed building complex was inspected and sampled by JLC on March 6 and 7, 2001. A portable Lead Paint Analyzer manufactured by Niton Corporation was used to test all accessible painted surfaces. The materials inspected for LBP included doors, windows, and ceiling paint. LBP is defined as a dried paint film with a lead concentration of greater than or equal to 1.0 mg/cm² or 0.5% by weight according to US Department of Housing and Urban Development (HUD) guidelines. The following samples were classified as LBP: doors and components, freight elevator doors, shelving units, stair baluster and treads, and wrought iron fence. See Table 2 for the LBP locations.

The MTA Publication office building was inspected by JLC on April 30, 2001. The materials inspected for LBP included doors, windows, walls, ceiling, stair rails, and steps. The following samples were classified as LBP: yellow paint on the exterior steps and red paint on the exterior stair rails. See Table 2 for the LBP sample locations.

3.1.3 Storm Drain Sediment Sample Characterization

Sediment sample TE-1A-SD-1 was collected from a blocked storm drain within the parking area of the Superior Reed complex. The sample location is indicated on Figure 6. The sample was submitted for the following analytical parameters: Total Petroleum Hydrocarbons over the Diesel and Gasoline Organic Ranges (TPH DRO/GRO), Target Compound List Polychlorinated Biphenyls (TCL PCBs), and Toxicity Characteristic Leaching Procedure (TCLP) Metals.

TPH-GRO was detected at 3,400 ppb and TPH-DRO at 860,000 ppb. The PCB Aroclor 1260 was detected at 55 ppb. Lead was detected at 5,500 ppb above the EPA Hazardous Waste Regulatory level of 5,000 ppb.

Tables 3 to 5 provide summaries of the analytical findings and the complete analytical data are included in Appendix A.

3.1.4 Soil Sample Characterization

Soil borings were advanced within the Superior Reed property to characterize the existing environmental conditions. Soil boring TE-1A-A1 was installed in the eastern portion of the property utilizing a Geoprobe[®] direct-push rig. Borings TE-1A-H1 and TE-1A-H2 were installed in the southern portion of the property utilizing a stainless steel hand-auger. The sample locations are indicated on Figure 4.

The boring location TE-1A-A1 was installed to 16 feet below surface grade (ft-bsg). Recovered material was characterized as dark brown to black, moist, fine sand. Material was wet from 12 to 13 ft-bsg and saturated below 13 feet. Recovered samples were field screened for VOCs with a Photovac[®] photo-ionization detector (PID), and no VOCs were detected.

The hand auger locations TE-1A-H1 and TE-1A-H2 were installed to 5 ft-bsg. Recovered material from both locations was characterized as dark brown, moist, fine sand with some gravel. Groundwater was encountered at approximately 3 ft-bsg at location TE-1A-H2. No VOCs were detected during the field screenings.

3.1.5 Soil Sample Analytical Results

Two soil samples for analytical analysis were collected at boring location TE-1A-A1 from 0 to 4 ft-bsg and 12 to 16 ft-bsg. One soil sample for analytical analysis was collected from 0 to 5 ft-bsg at each of the boring locations TE-1A-H1 and TE-1A-H2. Samples were submitted for laboratory analysis for the following analytical parameters: TCL VOCs, TCL semi-volatile organic compounds (SVOCs), and TCLP Metals.

Sample TE-1A-A1 (0 to 4 ft-bsg) results include the following: total SVOCs were detected at 8,770 ppb below the NYSDEC TAGM 94-4046 Recommended Soil Cleanup Objective of 50,000 and total carcinogenic SVOCs were detected at 890 ppb below the 1997 NYSDEC Record of Decision (ROD) value of 10,000 ppb.

Sample TE-1A-H1 (0 to 5 ft-bsg) results include the following: total SVOCs were detected at 36,400 ppb below the Recommended Soil Cleanup Objective and total carcinogenic SVOCs were detected at 2,200 ppb below the ROD value.

Sample TE-1A-H2 (0 to 5 ft-bsg) results include the following: total SVOCs were detected at 51,130 ppb below the Recommended Soil Cleanup Objective and total carcinogenic SVOCs were detected at 3,650 ppb below the ROD value.

VOCs and TCLP metals were not detected in any of the soil boring samples. SVOCs were not detected in the soil sample from TE-1A-A1 (12 to 16 ft-bsg).

Tables 4 to 7 provide summaries of the analytical findings and the complete analytical data are included in Appendix A.

3.1.6 Groundwater Sample Collection

A groundwater sample was collected utilizing the Geoprobe[®] sampling system at location TE-1A-A1. The sample was collected across the groundwater table interface from approximately 12 ft-bsg.

A second groundwater sample was collected from monitoring well QB-120 previously installed during Phase 1 of the Project. Depth to water was measured at 2.00 ft-bsg, and total depth was measured at 50.5 ft-bsg. Approximately 3 gallons were purged from the

Parsons Brinckerhoff Quade & Douglas, Inc./STV Incorporated

PB/STV

well prior to groundwater sampling. The following parameters were measured with a Horiba U10 water quality checker: pH, 11.25; conductivity, 1.40 mS/cm; turbidity, 217 NTU; dissolved oxygen, 12.91 mg/L; temperature, 12.8 degrees Celsius; salinity, 0.06%.

Groundwater samples were submitted for the laboratory analysis of TCL VOCs and TCL SVOCs.

The results for sample TE-1A-A1 at 12 ft-bsg included the VOC metyl tert-butyl ether (MTBE) detected at 4.5 ppb below the NYSDEC standard for Class GA water quality standard according to TOGS 1.1.1 from June 1998. No other VOCs were detected and no SVOCs were detected.

The results for sample QB-120 included the VOCs 2-butanone and acetone detected below the Class GA standard, the VOC trichloroethene detected at 14 ppb and the SVOC phenol detected at 37 ppb above their respective Class GA standards of 5 ppb and 1 ppb.

Groundwater sample location TE-1A-A1 and QB-120 are not included in a designated plume.

Tables 8 to 9 provide summaries of the analytical findings and the complete analytical data are included in Appendix A.

3.1.7 Inspection for Undocumented Environmental Liabilities

The Superior Reed property was inspected for undocumented environmental liabilities. The Limited Phase I Environmental Site Assessment Report of the Superior Reed Building Complex (TE, 2000A) noted debris piles immediately south of the Superior Reed buildings and adjacent to the northern boundary of the Existing Rail Yard. Debris included bags of trash, plastic buckets, automotive parts, and other miscellaneous debris.

No evidence of USTs, suspect mounding or steel drums were observed. No additional investigation of this area is recommend.

A 5,000 gallon UST within the central parking areas was closed in-place during NYCTdirected activities in 1992 (URS Greiner, 2000). The approximate location of the abandoned UST is indicated on Figure 6.

Possible biologic hazards were observed in Superior Reed Building A. Building A is occupied by a number of pigeons that have covered the floor and walls with pigeon waste.

3.2 <u>Environmental Survey 2 - Existing Rail Yard, Abandoned Substation, Abandoned</u> <u>Covered Platform</u>

The western Existing Rail Yard was inspected for surficial petroleum impact to the asphalt and ballast cover. The Abandoned Substation adjacent to Dutch Kills Street is included in AOC 12 and was inspected for petroleum-impact to the concrete floor. The Abandoned Substation and Abandoned Covered Platform were inspected for suspect ACM and LBP. The abandoned covered platform has not been considered an AOC.

3.2.1 Surficial Petroleum Impact Characterization

Field characterization of surficial petroleum impact was conducted by visual inspection. Petroleum-stained ballast from apparent diesel train drippings was observed in the area of proposed track realignment north of the NYAR maintenance facility. The area is included in AOC 3 and is approximately 10,400 square feet and is indicated on Figure 3.

3.2.2 Substation Concrete Characterization

An inspection of the Abandoned Substation was conducted on April 30, 2001. Debris covered approximately 70% to 80% of the concrete floor to a depth of 3 to 4 feet. The debris included wood scraps, metal, plywood, bricks, and household trash. No areas of petroleum impact were observed on the visible areas of the floor.

The concrete sample TE-1A-C-5 was collected in the northern portion of the floor in order to test for possible RCRA metal and PCB contamination not detected by the visual inspection. The composite concrete sample was collected with a cold chisel and hammer. The sample was submitted for laboratory analysis for TCL PCBs and Total RCRA metals. The approximate location of the concrete sample is indicated on Figure 3.

The only PCB detected was Aroclor 1260 at 49 ppb below the ROD total PCBs guidance value of 25,000 ppb. Total barium was detected at 370 ppb, total chromium was detected at 58 ppb, and total lead was detected at 1,500 ppb. The ROD guidance value for total lead is 1,000,000 ppb.

Tables 4 and 10 provide summaries of the analytical findings and the complete analytical data are included in Appendix A.

3.2.3 ACM Sample Collection

The interior of the Abandoned Substation was inspected and sampled by JLC on April 30, 2001. The interior brick mortar was sampled as suspect ACM. During a previous inspection on April 12, 2000, JLC collected exterior brick mortar samples for suspect ACM. Both the exterior and interior mortar samples were analyzed by PLM. No asbestos was detected in the samples. See Table 1 for the ACM sample locations.

The Abandoned Covered Platform was inspected and sampled by JLC on June 5, 2001. Insulating material of a free standing heating unit was sampled for suspect ACM. ACM was confirmed positive in the samples. See Table 1 for the ACM sample locations.

3.2.4 LBP Sample Collection

The interior of the Abandoned Substation was inspected and sampled by JLC on April 30, 2001. A portable Lead Paint Analyzer manufactured by Niton Corporation was used to test accessible painted surfaces. The steel building support beams and wall mounted equipment dividers were inspected for LBP. LBP is defined as a dried paint film with a lead concentration of greater than or equal to 1.0 mg/cm2 or 0.5% by weight according to US Department of HUD guidelines. The four samples collected from beams and the four samples collected from the dividers were classified as LBP. See Tables 2 for the LBP locations. No suspect LBP was determined during a previous inspection on April 12, 2000 of the exterior of the substation.

The Abandoned Covered Platform was inspected by JLC on June 5, 2001. LBP was confirmed positive on the overhead support beams and a vertical pipe on the southern portion of the platform. See Table 1 for the ACM sample locations.

3.3 Environmental Survey 3 – Hazardous Levels of Lead in Soil, Located South of NYAR Maintenance Shop

Hazardous levels of lead were detected in the soil sample TE-YA-48 installed south of the NYAR Maintenance Shop. TCLP Lead was detected in the sample from 0 to 3.5 feet below surface grade at 84 ppm; this is above the RCRA hazardous waste criterion of 5 ppm. This area is included in AOC 3. Eight soil borings were installed in a grid surrounding the sample point TE-YA-48 to quantify and delineate lead-impacted soil. At each location, one composite soil

Parsons Brinckerhoff Quade & Douglas, Inc./STV Incorporated

PB/STV

sample was collected from 0 to 4 feet below surface grade utilizing a stainless-steel hand auger. The locations of the soil samples are indicated on Figure 3.

TCLP lead was not detected during laboratory analysis of the eight soil samples TE-1A-L1 to TE-1A-L8. Table 5 provides summaries of the analytical findings and the complete analytical data are included in Appendix A.

3.4 Environmental Survey 4 - Abandoned Crew Quarters, Suspect Buried Material

3.4.1 Geophysical Survey of Suspect Mounds

Mounded areas north of the Abandoned Crew Quarters were inspected for suspect subsurface debris. A geophysical site survey was conducted by NAEVA Geophysics Inc. (NAEVA) to detect and map the location of subsurface obstructions, such as USTs, buried drums, former structures, and subsurface utilities. A total magnetic field strength survey could not be conducted due to the close proximity of buildings, fences, rail tracks, and metallic surface debris. Instead, an electromagnetic metal-detector investigation was conducted utilizing a Fisher TW-6 pipe and cable locator. The detector was carried over the site in a series of parallel traverses at 3-foot spaces. Anomalies were marked on the ground for further investigation with a Sensors and Software ground-penetrating radar (GPR) with a 250 MHz antenna.

Three significant magnetic anomalies were identified. The largest anomaly was located in the northwest corner of the area of investigation. The irregular surface trace of the anomaly and the slight ground surface depression suggested a subsiding disposal pit as a likely source. The second anomaly was located near the northern fence-line over a 4 by 7-foot rectangular area. A manhole at the center of this anomaly suggested a utility or UST-related vault as the source. The manhole cover was removed, however the interior of the vault was filled with concrete and fill debris. The third anomaly was located

Parsons Brinckerhoff Quade & Douglas, Inc./STV Incorporated

PB/STV

between the Abandoned Crew Quarters and the fence-line over a 3 by 5-foot area. A buried metal object protruded within the center of this anomaly and the size suggested a possible UST. GPR data profiles collected across the three large anomalies provided no additional information concerning the source. The locations of the anomalies are indicated in the NAEVA report drawing in Appendix B.

Nine smaller anomalies were identified in addition to the significant anomalies. These anomalies were attributed to small amounts of metallic debris. The locations of the anomalies are indicated in the NAEVA report drawing in Appendix B.

The utility locating instruments were used to delineate the surface traces of detectable utilities. In the northeast corner of the Abandoned Crew Quarters, a (water) utility line was mapped exiting the building and continuing westward across the area of investigation. Two utilities of unknown usage were mapped within the area of investigation. The locations of the utilities are indicated in the NAEVA report drawing in Appendix B.

3.4.2 Test Pits

Two test pits were excavated to investigate largest geophysical anomalies. Test pits were dug with a rubber-tire Case 560 backhoe. Additional hand excavations were conducted at smaller anomalies. The test pits were excavated in the area that is considered AOC 9. (See Figure 9) All excavations were performed in conformance with applicable Project and OSHA requirements.

The test pits were excavated using the bucket of the backhoe in 6-inch increments to a maximum depth of approximately 3 to 4 feet when groundwater was encountered. Upon completing each test pit, excavated soil was returned to the excavation in a similar

stratigraphic sequence as removed. The original cover material was placed on top of the excavation.

The first test pit was installed at the anomaly located near the northern fence-line over a 4 by 7-foot rectangular area. A manhole at the center of this anomaly suggested a utility or UST-related vault as the source. The excavation revealed an 8 by 5-foot concrete vault located in the middle of buried rail tracks. The concrete vault was 3 to 4 feet deep and no lines were exposed around the vault. Groundwater was encountered at approximately 3.5 ft-bsg and a heavy layer of petroleum was observed on the groundwater. VOCs levels in the excavation were measured at 25 ppm. The sample TE-1A-TP1 was collected above the groundwater table at approximately 3 ft-bsg on the eastern side of the vault. VOCs levels of the sample were measured at 35 ppm and petroleum odors were observed. The soil was moist, dark black fine-sand.

The petroleum contamination observed at the first test pit is attributed to the documented PCB-Contaminated Petroleum Plume and not the buried vault observed during the test pit excavation.

The second test pit installed at the largest anomaly, located in the northwest corner of the area, exposed buried scrap metal including lockers, steel plates, and a crushed and rusted steel drum. The sample TE-1A-TP2 was collected from 3 ft-bsg immediately adjacent the rusted drum. The soil was screened with a PID and no VOCs were detected. The soil had no odor and was moist, light brown fine-sand.

The locations of the test pit sample locations are indicated on Figure 5. Buried scrap metal was excavated at the other anomalies and no additional soil samples were collected.

3.4.3 Waste Characterization Samples

Two waste characterization samples were collected immediately during the excavation of the test pits. Waste characterization samples were submitted for analysis of TCLP VOCs, TCLP SVOCs, TCLP Metals, TCL PCBs, corrosivity, and reactivity.

The results of the sample TE-1A-TP1 included the PCB Aroclor 1260 detected at 270 ppb below the ROD total PCBs guidance value of 25,000 ppb. No VOCs, SVOCs, or TCLP metals were detected.

The results of the sample TE-1A-TP2 found no VOCs, SVOCs, PCBs, or TCLP metals.

Table 4 to 7 provides summaries of the analytical findings and the complete analytical data are included in Appendix A.

3.4.4 Additional Test Pits and Environmental Sampling

Based upon the findings of the test pit excavations, no additional test pits or soil and groundwater samples were installed.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations for contract package CQ025 based upon the findings of the supplemental ESI follow.

4.1 Environmental Survey 1 - Superior Reed Building Complex

Both ACM and LBP were documented in the Superior Reed Complex, which is included in AOC 6. Prior to and during demolition activities, ACM and LBP should be handled and disposed of as directed in the Asbestos Abatement Technical Specifications and the Lead Based Paint Technical Specifications for MTA/LIRR East Side Access Project, Contract Package CQ025.

Possible biologic hazards were observed in Superior Reed Building A. Building A is occupied by a number of pigeons that have covered the floor and walls with pigeon waste. The CCMP will direct the use personal protective equipment by workers during demolition.

Sediment sample TE-1A-SD-1 was collected from a blocked storm drain within the parking area of the Superior Reed complex. Lead was detected 5,500 ppb above the EPA Hazardous Waste Regulatory level of 5,000 ppb. TPH-GRO was detected at 3,400 ppb and TPH-DRO at 860,000 ppb. The storm drain sediment from location TE-1A-SD-1 should be handled and disposed as hazardous material. The CCMP and specifications for CQ025 will direct the proper handling and disposal procedures for this sediment.

The results for sample QB-120 included the VOC trichloroethene detected at 14 ppb and the SVOC phenol detected at 37 ppb above their respective Class GA standards of 5 ppb and 1 ppb. These VOCs and SVOCs have been documented at other Project monitoring wells. CCMPs for CQ026 and CQ028 will direct the proper groundwater management procedures for these compounds. This sample location is not within any of the designated AOCs.

4.2 <u>Environmental Survey 2 - Existing Rail Yard, Abandoned Substation and Abandoned</u> <u>Covered Platform</u>

Petroleum-stained ballast from apparent diesel train drippings was observed in the area of proposed track realignment north of the NYAR maintenance facility. This area is included in AOC 3, is approximately 10,400 square feet and is indicated on Figure 3. The CCMP and specifications for CQ025 will direct the proper handling and disposal procedures.

The LBP samples at beams and the dividers of the Abandoned Substation were classified as LBP. Prior to and during demolition activities, LBP should be handled and disposed of as directed in the Lead Based Paint Technical Specifications for MTA/LIRR East Side Access Project, Contract Package CQ025.

Insulating material of a free standing heating unit on the Abandoned Covered Platform was classified as ACM, however, the platform is not included in any of the designated AOCs. Prior to and during demolition activities, ACM should be handled and disposed of as directed in the Asbestos Abatement Technical Specifications for MTA/LIRR East Side Access Project, Contract Package CQ025.

Overhead support beams and a vertical pipe of the Abandoned Covered Platform were classified as LBP. Prior to and during demolition activities, LBP should be handled and disposed of as directed in the Lead Based Paint Technical Specifications for MTA/LIRR East Side Access Project, Contract Package CQ025.

4.3 Environmental Survey 3 - Hazardous Levels of Lead in Soil

No TCLP lead was detected in the samples collected around the potentially hazardous soil of location TE-YA-48. This are is included in AOC 3. The soil at TE-YA-48 should be handled

Parsons Brinckerhoff Quade & Douglas, Inc./STV Incorporated

PB/STV

and disposed as hazardous material during future construction contracts. No construction or demolition activity will be conducted in the vicinity of TE-YA-48 for contract package CQ025.

4.4 Environmental Survey 4 - Abandoned Crew Quarters, Suspect Buried Material

No further investigation of the Abandoned Crew Quarters area is warranted for CQ025. However, the PCB-Contaminated Petroleum Plume will be further investigated for CQ028.

5.0 **REFERENCES**

Draft Environmental Status and Construction Plan for the Queens Alignment, TE, October 2001.

Supplemental ESI Findings Report Summary for Phase 1A Design Package No CQ026 Queens Open Cut Excavation for the Bellmouth Area, TE, April 2001.

Construction Contaminant Management Plan (CCMP) for Construction Packages: CQ025 Existing Rail Yard Preparation and Demolition of Superior Reed and CQ026 Queens Bellmouth Structure, Sunnyside, Queens New York, East Side Access Project, Alignments and Replacement Yard, (100% Submittal), TE, June 2001.

Limited Phase I ESA Report Property Located at 29-50, 29-54, 29-60 and 29-70 Northern Boulevard Queens, New York 11101 Part of Queens Alignment East Side Access Project, TE, October 2000A.

Referenced, as Document No 1 is Findings Report for the ESI of Yard A, Queens, New York East Side Access Project Alignments and Replacement Yards Study, TE, August 2000B.

NYSDEC, 1997 Record of Decision, ROD for OU-1 of Sunnyside Yard

URS Greiner, 2000

•

Table 1 Asbestos Containing Material Results

Phase 2: CQ028 Part 1 PB/STV Access Project Sunnyside, Queens

SAMPLE NUMBERS	BUILDING/ FLOOR	SAMPLE LOCATION	MATERIAL SAMPLED	SAMPLE RESULTS	ESTIMATED ACM QUANTIT
	Superior Reed Buildings				
070-072	Building A/ 1st Floor	Main Room	Brick Mortar	NON-ACM	NA
073-075	Building A/ 1st Floor	Fuel-Oil AST Room	Interior Wall Stucco	NON-ACM	NA
NS	Building A/Roof	Roof	Roof Material and Membrane	To Be Determined	12,000 SF
007-009	Building B/ Basement	Exterior	Window Putty	ACM	70 LF
010-012	Building B/ Basement	Interior Walls	Brick Mortar	NON-ACM	NA
076-078	Building B/ 1st Floor	Locker Room	12"x12" White Floor Tile	NON-ACM	<u>NA</u>
079-081	Building B/ 1st Floor	Locker Room	12"x12" White Floor Tile Mastic Base Board Mastic	NON-ACM NON-ACM	NA NA
089	Building B/ 1st Floor Building B/ 1st Floor	Locker Room Training Area	Sheetrock	NON-ACM	NA NA
090	Building B/ 1st Floor	Locker Room	Sheetrock	NON-ACM	NA NA
093-095	Buildings B&C/ 1st Floor	East Elevation	Window Putty	ACM	50 LF
013-015	Building C/ Basement	Southeast Section	Electrical Wire Insulation	NON-ACM	NA
016-018	Building C/ Basement	Interior Walls	Brick Mortar	NON-ACM	NA
019-021	Building C/ Basement	Boiler Room	Brick Mortar	NON-ACM	NA
022-027	Building C/ Basement	Boiler Room	Electrical Wire Insulation	NON-ACM	NA
028-030	Building C/ Basement	Electrical Room	Insulation	NON-ACM	NA
031-033	Building C/ Basement	Electrical Room	Brick Mortar	NON-ACM	NA
034-036	Building C/ Basement	Electrical Room	Ceiling Stucco	NON-ACM	NA
082-084	Building C/ 1st Floor	Lunch Room	12"x12" Floor Tile	NON-ACM	NA
085-087	Building C/ 1st Floor	Lunch Room	12"x12" White Floor Tile Mastic	NON-ACM	NA NA
088	Building C/ 1st Floor Building C/ 1st Floor	Training Area	Base Board Mastic	NON-ACM NON-ACM	NA NA
092	Building C/ 2nd Floor	Museum Storage Area	9"x9" Floor Tile & Mastic	ACM	510 SF
043-048	Building C/ 2nd Floor	Storage Area	9"x9" Floor Tile & Mastic	ACM	210 SF
049-051	Building C/ 2nd Floor	Storage Area	1'x1' Fiber Glass Ceiling Tile Mastic	NON-ACM	NA
052-057	Building C/ 2nd Floor	Museum Storage	Baseboard & Mastic	ACM	400 SF
058-060	Building C/ 2nd Floor	Mechanical Room	Sheetrock	NON-ACM	NA
061-063	Building C/ 2nd Floor	Mechanical Room	Brick Mortar Interior	NON-ACM	NA
064-066	Building C/ 2nd Floor	Employee Restroom	12"x12" Beige Floor Tile	NON-ACM	NA
067-069	Building C/ 2nd Floor	Employee Restroom	12"x12" Beige Floor Tile Mastic	NON-ACM	NA
096-098	Building C/ 2nd Floor	Museum Storage Area	Glass Block Mortar	NON-ACM	NA
099	Building C/ 3rd Floor	Storage Area	Glass Block Mortar	NON-ACM	NA
100-102	Building C/ 3rd Floor	Storage Area	Window Putty	ACM	60 LF
103-105 117	Building C/ Roof Building C/ Roof	Roof Roof	Roof Membrane Coping Stone Tar	ACM ACM	4,000 SF 1,000 SF
001-003	29-70 Northern Blvd/ Basement	Ceiling	White Plaster	NON-ACM	NA
004-006	29-70 Northern Blvd/ Basement	Ceiling	Brown Plaster	NON-ACM	NA
007-009	29-70 Northern Blvd/ Basement	Walls	Sheetrock	NON-ACM	NA
010-012	29-70 Northern Blvd/ Basement	Walls	Cement Block Mortar	NON-ACM	NA
013-015	29-70 Northern Blvd/ Basement	Eastern Portion	Water Heater Pipe Insulation	NON-ACM	NA
016-018	29-70 Northern Blvd/ 1st Floor	Floor	12"x12" Beige Floor Tile	NON-ACM	NA
019-021	29-70 Northern Blvd/ 1st Floor	Floor	Mastic of 12"x12" Beige Floor Tile	NON-ACM	NA
025-027	29-70 Northern Blvd/ 1st Floor	Walls	Mastic of Baseboard	NON-ACM	NA
037-039	29-70 Northern Blvd/ 2nd Floor	Floor	12"x12" Black Floor Tile	NON-ACM	NA
040-042	29-70 Northern Blvd/ 2nd Floor	Floor	Mastic of 12"x12" Black Floor Tile	NON-ACM	NA
046-048	29-70 Northern Blvd/ 2nd Floor	Bathroom	Mastic of Ceramic Wall Tile	NON-ACM	NA ND
NS	Superior Reed Buildings Existing Rail Yard Buildings	Electrical Wiring	Throughout Buildings	To Be Determined	ND
059-061	Abandoned Substation	Exterior	Brick	NON-ACM	NA
062-064	Abandoned Substation	Exterior	Brick Mortar	NON-ACM	NA NA
065-067	Abandoned Substation	Exterior	Brick	NON-ACM	NA
068-070	Abandoned Substation	Exterior	Brick Mortar	NON-ACM	NA
071-073	Abandoned Substation	Exterior	Brick	NON-ACM	NA
074-076	Abandoned Substation	Exterior	Brick Mortar	NON-ACM	NA
077-079	Abandoned Substation	Exterior	Brick	NON-ACM	NA
080-082	Abandoned Substation	Exterior	Brick Mortar	NON-ACM	NA
001	Abandoned Substation	Interior/North Side	Brick Mortar	NON-ACM	NA
002	Abandoned Substation	Interior/South Side	Brick Mortar	NON-ACM	NA NA
003	Abandoned Substation	Interior/East Side	Brick Mortar	NON-ACM	NA 700 SE
NS	Abandoned Substation	Roof	Roofing Material	Suspect ACM	300 SF
001-003	Abandoned Crew Quarters	Interior	Stucco	NON-ACM	NA NA
004-006	Abandoned Crew Quarters Abandoned Crew Quarters	Exterior	Stucco	NON-ACM NON-ACM	NA NA
		Exterior	Brick Mortar Window Putty	NON-ACM	NA NA
010-012 013-015	Abandoned Crew Quarters Abandoned Crew Quarters	Exterior Roof	Roof Membrane	NON-ACM	NA NA
		Roof	Roof Flashing	NON-ACM	NA
			TINGA I IGOLIULE		1 110
016-018	Abandoned Crew Quarters				ND
	Abandoned Crew Quarters Abandoned Covered Platform	Platform	Insulation Material for Free Standing Heating Unit	ACM	ND

NOTES:

* Material is defined ACM if the sample contained greater than 1% asbestos.

Samples were prepared and analyzed in accordance with EPA "Method

for the Determination of Asbestos in Bulk Building Materials"

USEPA/600/R-93/116, July 1993

ACM = Asbestos Containing Materials

PLM-DS = Polarized Light Microscopy

NA = Not Applicable

ND = No Area Determined

SF = Square Feet

Table 2 Lead Based Paint Sample Summary

Phase 2: CQ028 Part 1 PB/STV Access Project Sunnyside, Queens

SAMPLE	SAMPLE LOCATION	PAINT	SUBSTRATE	COMPONENT	LEAD CONTENT
NUMBER		COLOR		j.	(mg/cm2)
	Abandoned Crew Quarters				
003-004	Abandoned Crew Quarters	NA	Wood	NA	0.337-2.331
005-006	Abandoned Crew Quarters	NA	Window Sash	NA	0.783-1.076
	Abandoned Substation				
6	Abandoned Substation/South Side	Grey	Metal	Beam	6.23
7	Abandoned Substation/North Side	Grey	Metal	Beam	6.57
8	Abandoned Substation/West Side	Grey	Metal	Beam	9.91
9	Abandoned Substation/East Side	Grey	Metal	Beam	8.96
10	Abandoned Substation/East Side	Grey	Metal	Divider	9.83
11	Abandoned Substation/South Side	Grey	Metal	Divider	7.19
12	Abandoned Substation/West Side	Grey	Metal	Divider	8.99
13	Abandoned Substation/North Side	Grey	Metal	Divider	6.38
	Abandoned Covered Platform				
6	Communications Pole/South Side	Yellow	Metal	Pipe	3.5
7	Overhead Beam/South Side	Green	Metal	Beam	1.4
10	Overhead Beam/West Side	Green	Metal	Beam	1.09
11	Overhead Beam?West Side	Green	Metal	Beam	1.01
	Superior Reed Building A				
15	Basement Facility Storage Sliding Door	Brown	Metal	Door	16.24
25	1st Floor North/ Uniform Distributions	Blue	Metal	Shelving Unit	1.24
27	1st Floor North/ Uniform Distributions	Blue	Metal	Shelving Unit	1.12
30	1st Floor Northeast/ Uniform Distributions	Blue	Metal	Shelving Unit	1.38
	Superior Reed Building B				
20	Basement Facility Storage Wall B	White	Concrete	Wall B	1.73
	Superior Reed Building C				
26	Basement Facility Storage Exit Fire Door	Brown	Metal	Door	17.28
27	Basement Facility Storage Exit Fire Door	Brown	Metal	Casing	12.74
28	Basement Facility Storage Exit Fire Door	Brown	Metal	Jamb	5.64
37	Basement Facility Storage Room	Brown	Metal	Door	13.84
42	Basement Facility Storage Freight Elevator	Brown	Metal	Door	14.12
47	Basement Facility Storage Door	Brown	Metal	Door	15.35
50	Basement Facility Storage Exit Door	Brown	Metal	Door	10.04
66	2nd Floor/ Transit Museum Storage Door	White	Metal	Door	4.68
67	2nd Floor/ Transit Museum Storage	White	Metal	Door	8.54
70	2nd Floor Hall/ Freight Elevator	Brown	Metal	Door	6.8
· 79	2nd Floor Storage Area/ Freight Elevator	Brown	Metal	Door	11.92
	2nd Floor Bath Door	Brown	Wood	Door	2.56
	2nd Floor Bath Door	Brown	Wood	Casing	2.47
82	2nd Floor Bath Door	Brown	Wood	Jamb	4.94
85	2nd Floor Bath	Brown	Metal	Door	15.54
88	3rd Floor Uniform Distributions	Tan	Metal	Shelving Unit	1.95
89	3rd Floor Uniform Distributions	Tan	Metal	Shelving Unit	5.16
90	3rd Floor Uniform Distributions	Tan	Metal	Shelving Unit	3.86
93	3rd Floor Uniform Distributions	Brown	Metal	Fire Door	14.92
95	3rd Floor Uniform Distributions	Brown	Metal	Freight Elevator	
96	3rd Floor Uniform Distributions	Brown	Metal	Freight Elevator	
97	3rd Floor Uniform Distributions	Brown	Metal	Fire Door	14.78
	3rd Floor Hall	Brown	Metal	Stairs	9.29
	3rd Floor Hall	Brown	Metal	Stairs	3.96
	Superior Reed Building 29-70 Northern B				
	Exterior Stairs	Yellow	Concrete	Stairs	1.23
	Exterior Stairs	Yellow	Concrete	Stairs	2.51
	Exterior Stairs	Red	Metal	Pipe	3.8
55	Exterior Stairs	Red	Metal	Pipe	1.11

NOTES:

LBP is Lead Based Paint

LBP is classified by HUD guidelines as paint containing lead levels equal

or greater than 1.0 mg/cm2 or 5% by weight (5,000 ppm).

LBP was analyzed in the field utilizing a portable XRF unit according to all applicable regulations.

Phase 2, Contrau. ن2028 Part 1 Summary of Sediment Results for Total Petroleum Hydrocarbons (TPH)

Ta'

1

 $(\hat{\mathbb{C}})$

. 1 1

> Superior Reed Complex PB/STV East Side Access Project Sunnyside, Queens

Sample Identification	TE-1A-SD-1
Laboratory Identification	0103093-11A
Sample Date	3/12/01
ANALYTE	Concentration (ppb)
Gasoline Range Organics	3,400
Diesel Range Organics	860,000

NOTES:

Soil samples analyzed for Total Petroleum Hydrocarbons (TPH) by Method SW8260B Modified 8260B. Results reported in parts per billion (ppb)

•

Phase 2, Contract CQ028 Part 1 Summary of Sediment and Concrete Results for Polychlorinated Biphenyls (PCBs)

Yard A and Superior Reed Complex PB/STV East Side Access Project Sunnyside, Queens

Sample	Sample Identification	TE-1A-SD-1	TE-1A-TP-1	TE-IA-SD-I TE-IA-TP-1 TE-IA-TP-2 TE-IA-C-5	TE-1A-C-5
Laborator	Laboratory Identification	0103093-11B	0103298-01A	0103093-11B 0103298-01A 0103298-02A 0105001-01A	0105001-01A
San	Sample Date	3/12/01	3/29/01	3/29/01	4/30/01
ANALYTE	Guidance Value* (ppb)	Concentration (ppb)	(qdd)		
Aroclor 1254	8	QN	ND	an	QN
Aroclor 1260		55	270	DN	49
TOTAL PCBs	25,000*	55	270	DN	49

NOTES:

Soil samples analyzed for PCBs by EPA Method 8082. Analytical data reported in parts per billion (ppb) or

micrograms per kilogram (ug/Kg). *: Guidance value is the Site Specific guidance value

for Total PCBs in surface and subsurface soils as per 1997 NYSDEC ROD for OU-1 of Sunnyside Yard ND: Not Detected

1

1

Phase 2, Contract C0028 Part 1 Summary of Sediment and Concrete Results for Toxicity Characteristics Leaching Procedure (TCLP) Metals

⊢

I.

İ

Yard A and Superior Reed Complex PB/STV East Side Access Project Sunnyside, Queens

	Sample Identification	TE-IA-SD-I	TE-1A-A1 (0-4')	[TE-1A-A1 (0-4')] TE-1A-A1 (12-16')] TE-1A-H1 (0-5')] TE-1A-H2 (0-5')] TE-1A-L1(0-4')] TE-1A-L2(0-4')	TE-1A-H1 (0-5')	TE-1A-H2 (0-5°)	TE-1A-L1(0-4°)	TE-1A-L2(0-4°)
•	Laboratory Identification	0103093-11C	0103093-05B	0103093-06A	0103093-07B	0103093-08B 0103139-017	0103139-01A	0103139-02A
	Sample Date	3/12/01	3/12/01	3/12/01	3/12/01	3/12/01	3/15/01	3/15/01
METAL	Hazardous Waste Standard* (ppb)	Concentration (ppb)	(q					
Lead	5,000	5,500	QN	DN	QN	QN	£	Q

NOTES:

Soil samples analyzed for TCLP Metals by Method SW846. TCLP: Toxicity Characteristic Leaching Procedure

Analytical data reported in parts per billion (ppb) or micrograms per liter (ug/L). *: Standard is EPA Hazardous Waste Regulatory Levels for Toxicity Characteristics. Bold Values: Exceed standards

NA: Not Analyzed ND: Not Detected

Ta) .

i

ī

Phase 2, Contract CQ028 Part 1 Summary of Sediment and Concrete Results for Toxicity Characteristics Leaching Procedure (TCLP) Metals

Yard A and Superior Reed Complex PB/STV East Side Access Project Sunnyside, Queens

		0103139-03A 3/15/01	0103139-04A 3/15/01	0103139-03A 0103139-04A 0103139-05A 0103139-06A 0103139-07A 0103139-08A 0103298-01B 0103298-02B 3/15/01 3/15/01 3/15/01 3/29/01 3/29/01 3/29/01	0103139-06A 3/15/01	0103139-07A 3/15/01	0103139-08A 3/15/01	0103298-01B 3/29/01	0103298-02B 3/29/01
METAL	Hazardous Waste Standard* (ppb)	Concentration (ppb)	(qdd						
Lead	5,000	£	Ð	Ð	QN	Ð	Ð	Ð	£

NOTES: Soil samples analyzed for TCLP Metals by Method SW846. TCLP: Toxicity Characteristic Leaching Procedure

Analytical data reported in parts per billion (ppb) or micrograms per liter (ug/L). *: Standard is EPA Hazardous Waste Regulatory Levels for Toxicity Characteristics. Bold Values: Exceed standards NA: Not Analyzed ND: Not Detected

÷

.

Page 2 of 2

Phase 2, Contract CQ028 Part 1 Summary of Sediment and Concrete Results for Volatile Organic Compounds (VOCs)

Yard A and Superior Reed Complex PB/STV East Side Access Project Sunnyside, Queens

Sample ID Lab ID Sample Date) tte	TE-1A-A1 (4') 0103093-01A 3/12/01	TE-1A-A1 (4') TE-1A-A1 (12') TE-1A-H1 (5') TE-1A-H2 (5') TE-1A-T2-1 0103093-01A 0103093-02A 0103093-03A 0103093-04A 0103298-01C 3/12/01 3/12/01 3/12/01 3/12/01 3/29/01	TE-1A-H1 (5') 0103093-03A 3/12/01	TE-1A-H2 (5') 0103093-04A 3/12/01	TE-1A-TP-1 0103298-01C 3/29/01	TE-1A-TP-2 0103298-02C 3/29/01
ANALYTE	Guidance Value (ppb)						
Napthalene	13,000	Q	QN	QN	QN	QN	QN
Styrene		QN	ND	QN	DN	QN	ND
1,2,4-Trimethylbenzene	12,950	Q	QN	- Q	Q	Q	Ð

NOTES:

Soil samples analyzed for TCL VOCs by EPA Method 8260B. TCL: Target Compound List VOCs: Volatile Organic Compounds

Analytical data reported in parts per billion (ppb) or micrograms per kilogram (ug/Kg).

Guidance values are the "Recommended Soil Cleanup Objectives" from NYSDEC TAGM #94-4046.

ND: Not Detected

Τe

Aller Neder

ı

Phase 2, Contract CQ028 Part 1 Summary of Sediment and Concrete Results for Semi-Volatile Organic Compounds (SVOCs)

Yard A and Superior Reed Complex PB/STV East Side Access Project Sunnyside, Queens

	lication	TE-IA-AI (0-4')	TE-1A-A1 (12-16')	TE-1A-H1 (0-5')	TE-1A-H2 (0-5')	TE-1A-TP-1	TE-1A-TP-2
Laboratory Identification	utification	0103093-05A	0103093-06A	0103093-07A	0103093-08A	0103298-01D	0103297-02D
Sample Date	ate	3/12/01	3/12/01	3/12/01	3/12/01	3/29/01	3/29/01
ANALYTE	Guidance Value** (ppb) Concentration (ppb)	Concentration (ppb					
2-Methylnaphthalene	36,400	CN .	Ð	£	390	£	£
	90,000	Q	Q	780	1,400	£	Ð
	700,000	290	DN	1,400	2,400	Q	QN
Benzo(a)pyrene [¢]	11,000	890	QN	2,200	2,900	Ð	Ð
Benz(a)anthracene	-	660	QN	2,500	3,600	Q	QN
Benzo(b)fluoranthene	1,100	910	QN	2,700	3,700	Q	Ð
Benzo(g,h,i)perylene	800,000	750	QN	1,300	1,500	Q	Ð
Benzo(k)fluoranthene	1,100	ND	GN N	960	1,100	Ð	Q
Bis(2-ethylhexyl)phthalate ^{\$\$}	435,000	Ð	Ð	QN	320	Ð	Ð
Butyl benzyl phthalate	122,000	ŪN.	Ð	Q	500	Ð	QN
		Q	Ð	510	770	Ð	Ð
	400	720	£V.	2,600	3,500	QN	QN
Dibenz(a,h)anthracene ^{\$}	165,000,000	Ð	Ð	Q	430	Ð	Ð
	1,900,000	1,100	Ð	5,900	8,400	QN	QN N
	350,000	QN	QN	069	1,300	QN	QN
Indeno(1,2,3-cd)pyrene	3,200	600	QN	1,500	1,700	QN	QN
	13,000	Q	Q	490	490	QN	£
	220,000	730	Q	4,900	8,900	EN EN	QN
	665,000	1,600	QN	5,400	7,400	DN DN	QN
	6,200	Ð	Q	370	820	ND	QN
Acenaphthylene	41,000	520	£	£	£	Ð	Ð
TOTAL Carcinogenic SVOCs	10,000***	890	Q	2,200	3,650	QN	Ð
TOTAL SVOCs	50,000	8,770	Ð	36,400	51,130	EN EN	Ð

NOTES:

Soil samples analyzed for TCL SVOCs by EPA Method 8270C. TCL : Target Compound List

;

SVOCs : Semi-Volatile Organic Compounds

Analytical data reported in parts per billion (ppb) or micrograms per kilogram (ug/Kg). **: Secondary Guidance values are the "Recommended Soil

Cleanup Objectives" from NYSDEC TAGM 94-4046. ***: Primary guidance values are the site specific guidance values for Total Carcinogenic SVOCs in

surface and subsurface soils as per 1997 NYSDEC ROD for OU-1 of Sunnyside Yard. ϕ : Carcinogenic compounds, as listed in TAGM 94-4046

Bold Values : Exceed guidance values ND: Not Detected

Phase 2, CQ028 Part 1 Summary of Groundwater Sample results for VOCs

Sunnyside Yard PB/STV East Side Access Project Sunnyside, Queens

Boring Identification Laboratory Identification Laboratory Identification Sample Date Compound Compound </th <th>TE-1A-A1 (12°) 0103093-09A 3/12/01</th> <th>QB-120</th>	TE-1A-A1 (12°) 0103093-09A 3/12/01	QB-120
Laboratory Identification Sample Date Groundwater Standard (ppb) 50 50 10	0103093-09A	
Sample Date Groundwater Standard (ppb) 50 50 10	10/61/2	0103093-14A
Groundwater Standard (ppb) 50 50 50 50 10 50 50 50 50 50 50 50 50 50 50 50 50 50		3/12/01
(ppb) 50 50 50 10	ıdard	
uttel athar (MTRF)	Concentration (ppb)	
Acetone 50 Moted fort huted other (MTBE) 10	ND	40
Matul tert butul ather (MTBE) 10	DN	32
	4.5	QN
Trichloroethene 5	DN	14

NOTE:

Samples analyzed for TCL VOCs by EPA Method 624/8260B.

Data reported in micrograms per liter (ug/L) or

parts per billion (ppb).

Only detected compounds are reported.

TCL = Target Compound List

VOCs = Volatile organic compounds ND = Not detected

Standards are the NYSDEC Class GA Water Quality Standard as per T.O.G.S. 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations," June 1998. Bold: Value exceeds GA groundwater standard

Т, 8

ч Ц Phase 2, CO028 Part 1 Summary of Groundwater Sample Results For SVOCs

Sunnyside Yard PB/STV East Side Access Project Sunnyside, Queens

Boring Identification TE-IA-AI (12') QB-12(12) Laboratory Identification 0103093-09B 0103093-1 Sample Date 3/12/01 3/12/01 Compound Concentration (ppb) 0103093-1 Phenol 1* ND 37				
Laboratory Identification 0103093-09B 0 Sample Date 3/12/01 3 Compound Groundwater Standard 3/12/01 Compound (ppb) 0 1* ND	Boring Identification	u	TE-IA-AI (12')	QB-120
Sample Date 3/12/01 Groundwater Standard Concentration (ppb) or (ug/L) 1* ND	Laboratory Identifica	ition	0103093-09B	0103093-14B
Compound Groundwater Standard (ppb) 0	Sample Date		3/12/01	3/12/01
Compound (ppb) (Groundwater Standard		
Phenol 1* ND 37	Compound	(qdd)	Concentration (ppb) o	r (ug/L)
	Phenol	1*	Q	37

NOTES:

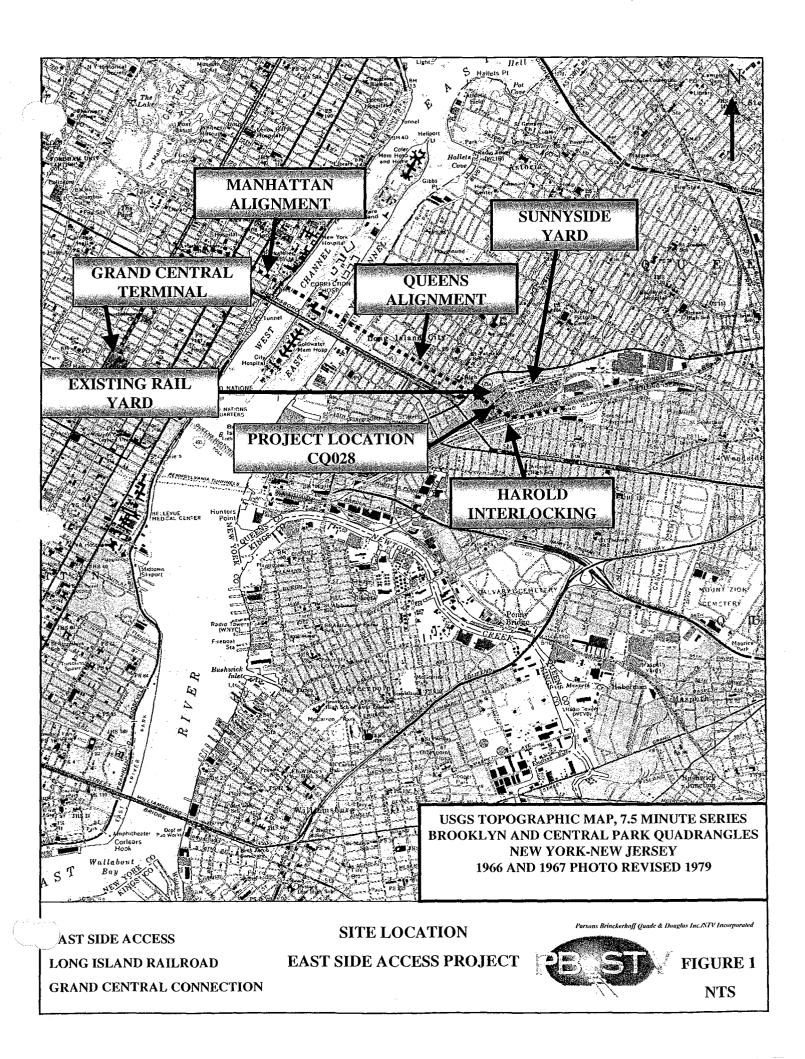
Samples analyzed for TCL SVOCs by EPA Method 3550B/8270C. Data reported in parts per billion (ppb) or micrograms per liter (ug/L). Only detected compounds are reported. TCL: Target Compound List SVOCs:Semi-Volatile organic compounds ND: Not detected Standards are the NYSDEC Class GA Water Quality Standard as per T.O.G.S. 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations," June 1998 * Phenolic compound regulated by Total Phenol concentration of 1 ug/L. Bold: Value exceeds GA groundwater standard

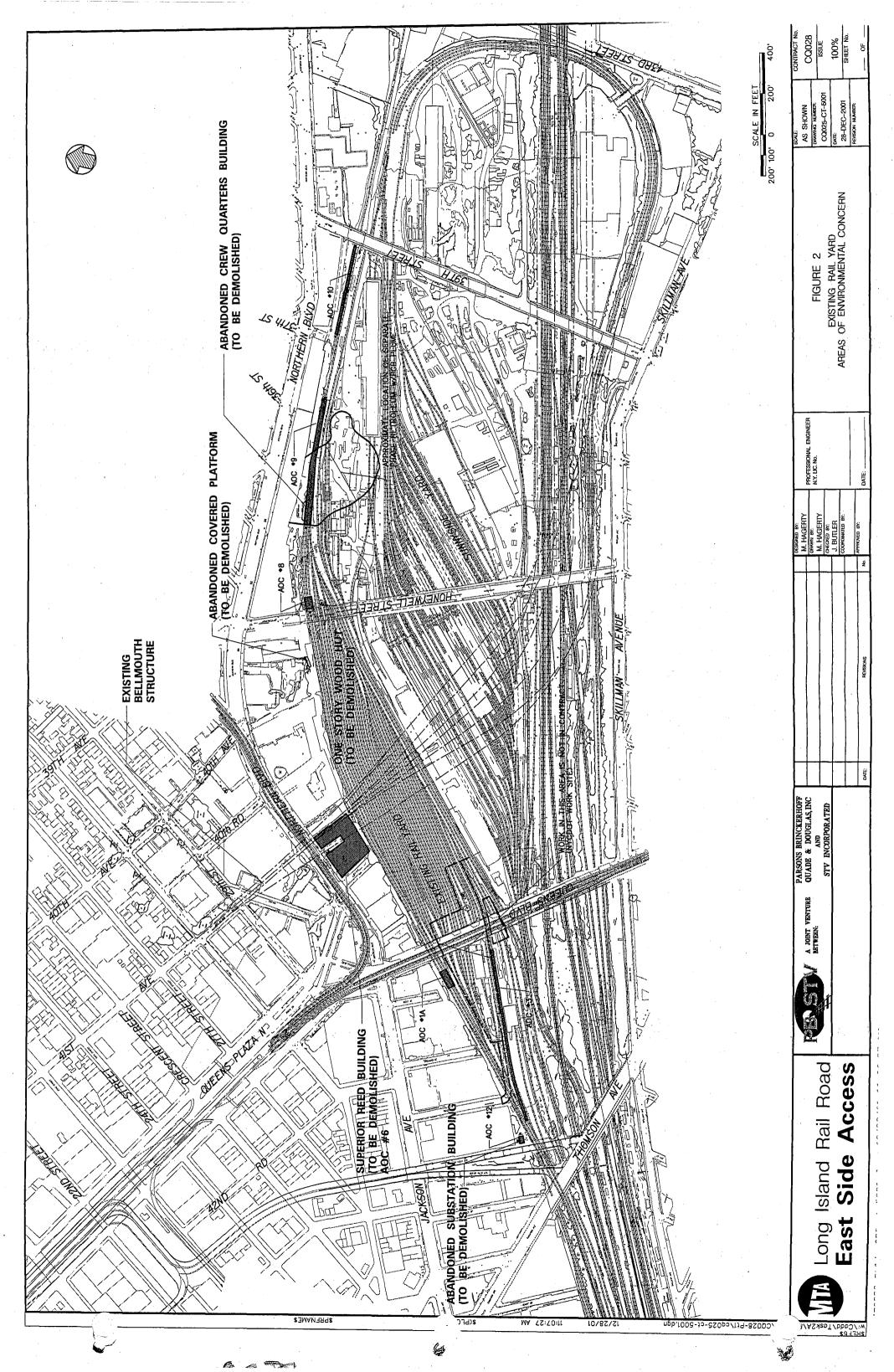
Summary of Concrete Results for Total Metals Phase 2, Contract CQ028 Part 1

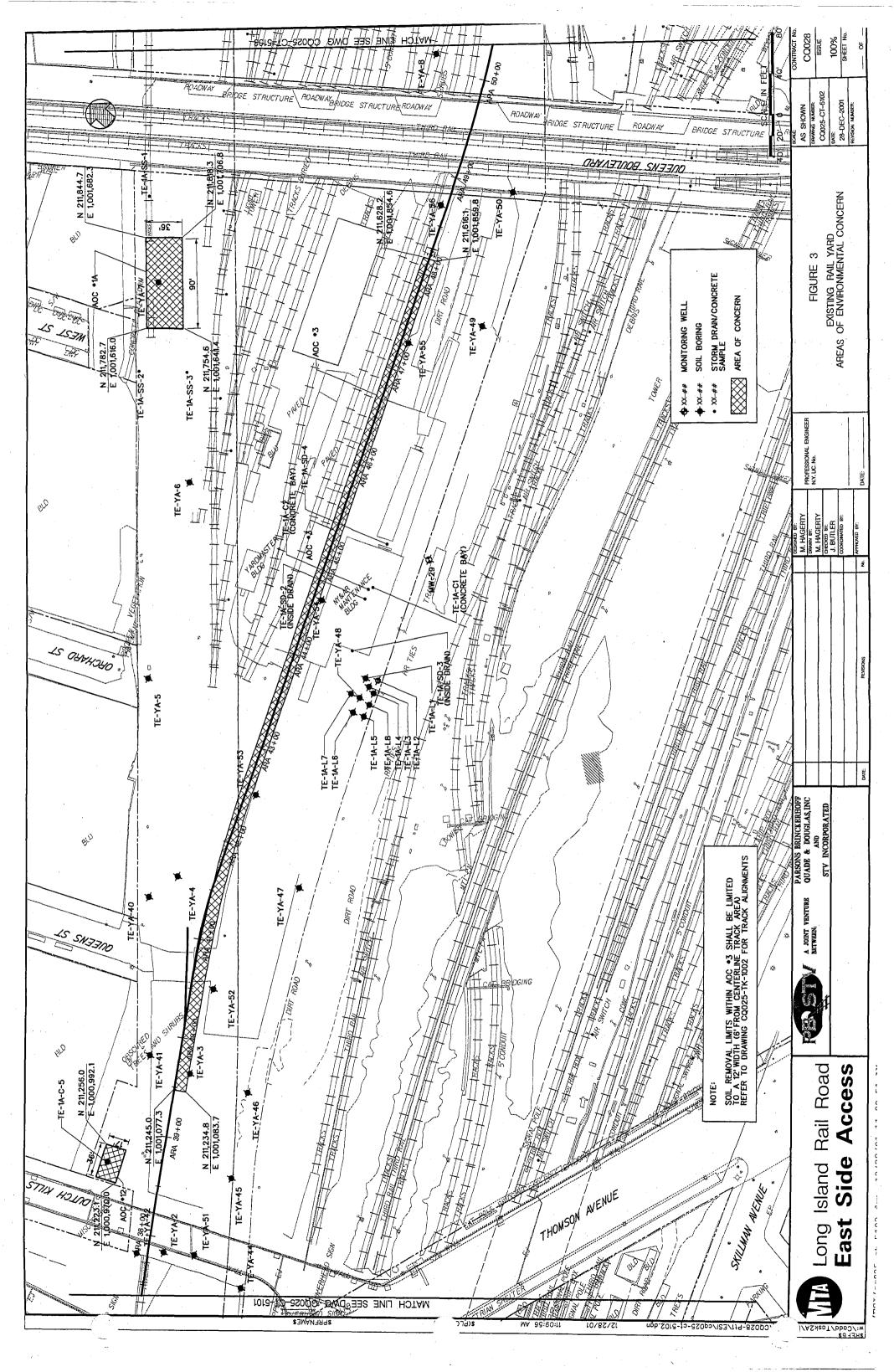
Yard A and Superior Reed Complex PB/STV East Side Access Project Sunnyside, Queens

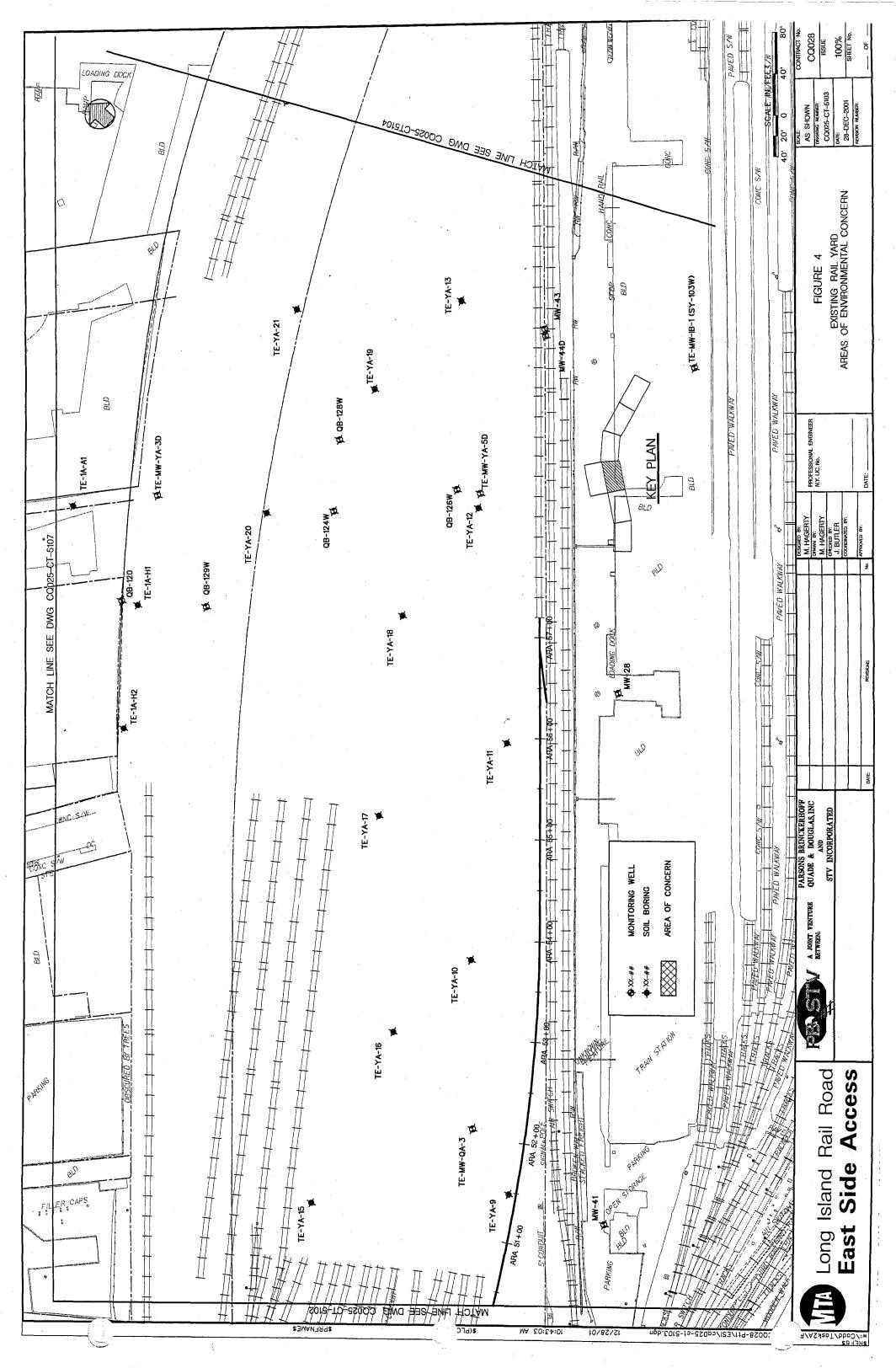
C.	Comula Identification	1 TE-1 A-C-S
	mpromunution and m	
Labo	Laboratory Identification	0105001-01A
	Sample Date	4/30/01
METAL	Guidance Value* (ppb)	Concentration (ppm)
Barium		370,000
Chromium		58,000
Lead	1,000,000	1,500,000

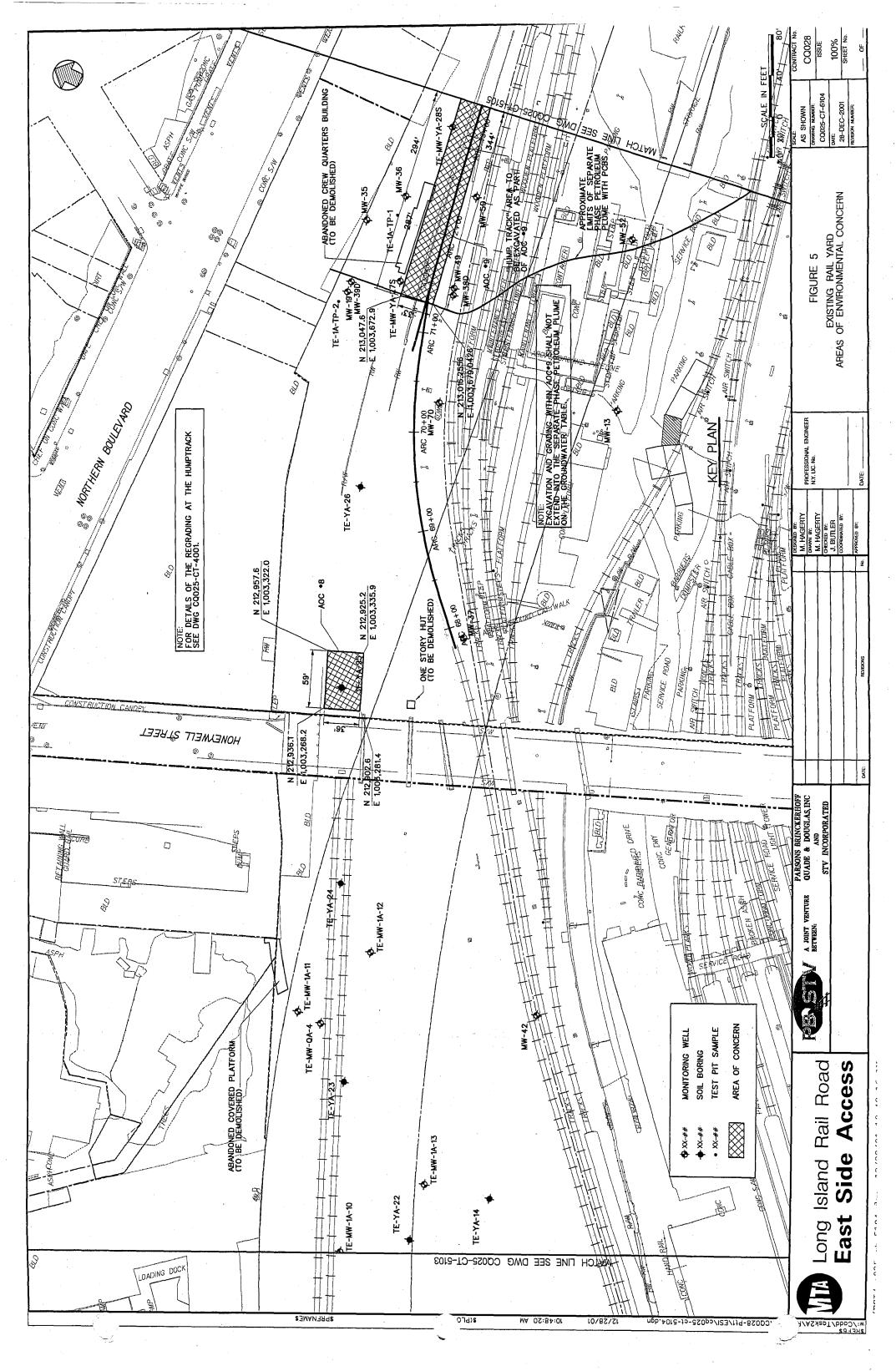
NOTES:

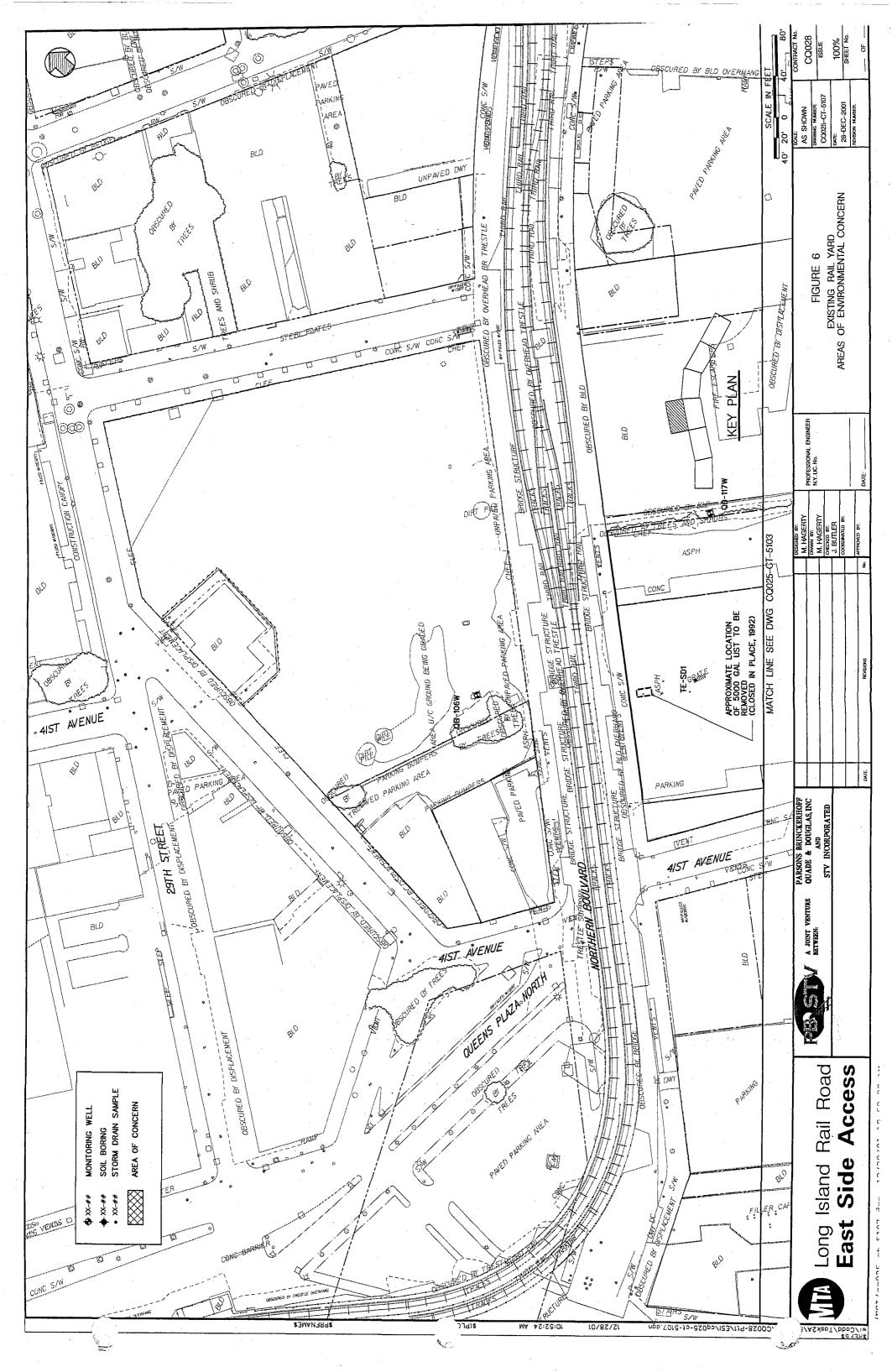

Soil samples analyzed for TCLP Metals by Method SW6010B.

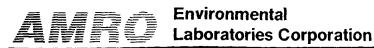

Analytical data reported in parts per billion (ppb) or micrograms per kilogram (ug/Kg). *: Guidance Value is the Site Specific guidance value for Total Lead in surface and subsurface soils as per 1997 NYSDEC ROD for OU-1 of Sunnyside Yard . Bold Value: Exceeds standard


an E


FIGURES


enseraa L





APPENDIX A

1

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 · FAX: (603) 429-8496

March 29, 2001

Jeff Butler STV Incorporated 225 Park Avenue South New York, NY 10003 TEL: (212) 777-4400 FAX:

RE: 07-02184 ESA- Phase1A- Yard A

Order No.: 0103139

Dear Jeff Butler:

AMRO Environmental Laboratories Corp. received 9 samples on 3/16/01 for the analyses presented in the following report.

AMRO operates a Quality Assurance Program which meets or exceeds National Environmental Laboratory Accreditation Conference (NELAC), state, and EPA requirements. A copy of the appropriate state and/or NELAC Certificate is attached.

The enclosed Sample Receipt Checklist details the condition of your sample(s) upon receipt. Please be advised that any unused sample volume and sample extracts will be stored for a period of thirty (30) days from this report date. After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of $\underline{15}$ pages. This letter is an integral part of your data report. If you have any questions regarding this project in the future, please refer to the Order Number above.

Sincerely,

2ena Bri

Nancy Stewart Vice President / Lab Director

Date: 29-Mar-01

CLIENT: Project: Lab Order: Date Received:	STV Incorporated 07-02184 ESA- Phase1A- Yard A 0103139 3/16/01	Work Order Sample Summary
Lab Sample ID	Client Sample ID	Collection Date
0103139-01A	TE-L1 (03')	3/15/01
0103139-02A	TE-L2 (0-3)	3/15/01
0103139-03A	TE-L3 (0-3)	3/15/01
0103139-04A	- TE-L4 (0-3)	3/15/01
0103139-05A	TE-L5 (0-3)	3/15/01
0103139-06A	TE-L6 (0-3)	3/15/01
0103139-07A	TE-L7 (0-3)	3/15/01
0103139-08A	TE-L8 (0-3)	3/15/01
0103139-09A	TE-1A-SD-3	3/15/01

Date: 29-Mar-01

CLIENT:	STV Incorporated		C	lient Sample ID:	TE-L1 (03')
Lab Order: Project: Lab ID:	0103139 07-02184 ESA- Phase1A- Ya 0103139-01A	ırd A		Collection Date: Matrix:		
Analyses	Res	sult	RL Qual	Units	DF	Date Analyzed
ICP METALS,	TCLP LEACHED	SV	v1311/6010B			Analyst: RK
Lead		ND	1.0	mg/L	1	3/22/01 2:13:29 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 29-Mar-01

CLIENT:	STV Incorporated			C	lient Sample ID:	TE-L3 (0-3)
Lab Order: Project: Lab ID:	0103139 07-02184 ESA- Phase1A- Yard 0103139-03A	İA			Collection Date: Matrix:		
Analyses	Resu	lt	RL (Qual	Units	DF	Date Analyzed
ICP METALS,	TCLP LEACHED	SW131	1/6010)В			Analyst: RK
Lead	N	D	1.0		mg/L	1	3/22/01 2:28:51 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- H Method prescribed holding time exceeded
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 29-Mar-01

and the second sec

CLIENT:	STV Incorporated		C	lient Sample ID:	TE-L5 (0-3)
Lab Order:	0103139					
Project:	07-02184 ESA- Phase1.	A- Yard A		Collection Date:	3/15/01	
Lab ID:	0103139-05A			Matrix:	SOIL	
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	RL Quai	Units	DF	Date Analyzed
ICP METALS,	TCLP LEACHED	SW	/1311/6010B			Analyst: RK
Lead		ND	1.0	mg/L	1	3/22/01 2:35:53 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- H Method prescribed holding time exceeded
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 29-Mar-01

CLIENT:	STV Incorporated		· · · · · · ·	С	lient Sa	mple ID:	TE-L7 (0-3)
Lab Order: Project: Lab ID:	0103139 07-02184 ESA- Phase1A- 0103139-07A	Yard A		-	Collect	ion Date: Matrix:		
Analyses	· I	Result	RL	Qual	Units		DF	Date Analyzed
ICP METALS,	TCLP LEACHED	S	SW1311/601	10B				Analyst: RK
Lead		ND	1.0		mg/L		1	3/22/01 2:42:55 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- H Method prescribed holding time exceeded
- S Spike Recovery outside accepted recovery limits

i

- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 29-Mar-01

CLIENT:	STV Incorporated			Client S	ample ID:	TE-1A	5D-3-TE-1A-55-2
Lab Order: Project:	0103139 07-02184 ESA- Phase1A- V	Yard A		Collec	tion Date: Matrix:		
Lab ID:	0103139-09A					DF	Date Analyzed
Analyses		esult	KL	Qual Units	, 		
MERCURY, TC	EP		SW7470				Analyst: MT
Mercury		ND	0.0010	mg/L		1	3/27/01
PERCENT MOI	STURE		D2216				Analyst: CB
Percent Moistur	re	20.9	0	wt%		1	3/19/01
CP METALS, 1	TCLP LEACHED		SW1311/601	10B			Analyst: RK
Arsenic		ND	1.0	mg/L		1	3/22/01 2:49:58 PM
Barium		ND	2.0	mg/L		1	3/22/01 2:49:58 PM
Cadmium		ND	0.10	mg/L		1	3/22/01 2:49:58 PM
Chromium		ND	0.10	mg/L		1	3/22/01 2:49:58 PM
Lead		1.3	1.0	mg/L		1	3/22/01 2:49:58 PM
Selenium		ND	0.58	mg/L		1	3/22/01 2:49:58 PM
Silver		ND	0.10	mg/L		. 1	3/22/01 2:49:58 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 29-Mar-01

1

1

3/21/01 2:28:00 PM

3/21/01 2:28:00 PM

CLIENT: Lab Order:	STV Incorporated 0103139		Client Sample II	D: TE-14	VSD-3 TE-1A-55-7
Project:	07-02184 ESA- Phase1A- Yard	A	Collection Dat	e: 3/15/0)1
Lab ID:	0103139-09A		Matri	x: SOIL	
Analyses	Resul	lt RL	Qual Units	DF	Date Analyzed
PCBS BY EPA	3082	SW8082			Analyst: RAP
Aroclor 1016	N	D 30	µg/Kg-dry	1	3/21/01 2:28:00 PM
Aroclor 1221	N	D 30	µg/Kg-dry	1	3/21/01 2:28:00 PM
Aroclor 1232	N	D 30	µg/Kg-dry	1	3/21/01 2:28:00 PM
Aroclor 1242	N	D 30	µg/Kg-dry	1	3/21/01 2:28:00 PM
Arocior 1248	N	D 30	µg/Kg-dry	1	3/21/01 2:28:00 PM
7 4 6 6 6 F 1 E 1 6					0/04/04 0.00.00 DM

30

30

µg/Kg-dry

µg/Kg-dry

ND

280

Qualifiers:

Aroclor 1254

Aroclor 1260

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- H Method prescribed holding time exceeded
- S Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

- E Value above quantitation range
- # See Case Narrative

Matrix CLP Date Prep Date Matrix Test Name TCLP Date Prep Date Soil ICP METALS, TCLP 3/20/01 3/21/01 ICP METALS, TCLP 3/20/01 3/21/01 3/21/01	AMIN EI	AMK Environmental Laboratories Corp.				29-Mar-01	10	
Of-02184 ESA- Phase1A - Yard A Tcl. Non Tcl. Non Tcl. Phase1A - Yard A Client Sample ID Collection Date Matrix Test Name Tcl. Phase Prep Date Antise TE-L1 (09) 315001 Soil CPMETALS, TCLP 320001 321001 321001 TE-L1 (09) 315001 Soil CPMETALS, TCLP 320001 321001 321001 TE-L1 (0-3) CIPMETALS, TCLP 320001 321001 321001 321001 TE-L2 (0-3) CIPMETALS, TCLP 322001 321001 321001 321001 TE-L2 (0-3) TE-L4 (0-3) CPMETALS, TCLP 322001 321001 32101 TE-L2 (0-3) TE-L4 (0-3) CPMETALS, TCLP 322001 321001 32101 TE-L3 (0-3) TE-L4 (0-3) CPMETALS, TCLP 322001 32101 22101 TE-L4 (0-3) TE-L4 (0-3) CPMETALS, TCLP 322001 32101 22101 TE-L2 (0-3) TE-L4 (0-3) TE-L4 (0-3) 22001 32101 22101 TE-L4 (0	Lab Order: Client:	0103139 STV Incorporated		- - - - - -		DAT	ES REPORT	
Client Sample ID Contection Date Matrix Test Name TCLP Date Prep Date Matrix TE-L1 (03) 315001 Soit ICP METALS, TCLP 322001 321001 321001 TE-L2 (0-3) 315001 Soit ICP METALS, TCLP 322001 321001 321001 TE-L2 (0-3) TE-L2 (0-3) ICP METALS, TCLP 322001 321001 321001 TE-L2 (0-3) ICP METALS, TCLP 322001 321001 321001 321001 TE-L2 (0-3) ICP METALS, TCLP 322001 321001 321001 321001 TE-L5 (0-3) ICP METALS, TCLP 322001 321001 321001 321001 TE-L5 (0-3) ICP METALS, TCLP 322001 321001 321001 321001 TE-L5 (0-3) ICP METALS, TCLP 322001 322101 1161 1161 TE-L5 (0-3) ITE-L6 (0-3) ICP METALS, TCLP 322001 321001 1161 TE-L5 (0-3) ITE-L6 (0-3) ITE-L6 (0-3) ITE-L6 (0-3) 1161 1161 <th>Project:</th> <th>07-02184 ESA- Phase1</th> <th>A- Yard A</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Project:	07-02184 ESA- Phase1	A- Yard A					
TE-L1 (03) 3/15/01 Soil ICP METALS, TCLP 3/20/01 3/21/01 TE-L2 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L2 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L2 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/21/	Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
TE-L2 (0-3) 12001 321/01 TE-L2 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L2 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-L4 (0-3) 1CP METALS, TCLP 32001 321/01 TE-LA (0-3) 1CP METALS, TCLP 32001 321/01 TE-LA (0-3) 1CP METALS, TCLP 32001 321/01 TE-LA (0-3) 1CP METALS, TCLP 32001 321/01 TE-LA (0-3) 1CP METALS, TCLP 32001 321/01 TE-LA (0-3) 1CP METALS, TCLP 32001 321/01 <	0103139-01A	TE-L1 (03')	3/15/01	Soil	ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
TE-L2 (0-3) ICP METALS, TCLP 32001 321/01 TE-L2 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 32001 321/01 TE-L4 (0-3) ICP METALS, TCLP 372/01 322/01 TE-L4 (0-3) ICP METALS, TCLP 372/01 372/01 TE-L4 (0-3) ICP METALS, TCLP 372/01					ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
TE-Ja (0-3) ICP METALS, TCLP 32001 321/01 TE-Ja (0-3) ICP METALS, TCLP 32001 321/01 TE-Ja (0-3) ICP METALS, TCLP 372001 321/01 TE-Ja (0-3) ICP METALS, TCLP 372/01 321/01 METALS, TCLP 372/01 321/0	0103 <u>1</u> 39-02A	TE-L2 (0-3)			ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
TE-L3 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L5 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L5 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L5 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L3 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L3 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L4 (0-3) ICP					ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
TE-L4 (0-3) TE-L4 (0-3) 3/20/01 3/21/01 TE-L5 (0-3) TE-L6 (0-3) 3/20/01 3/21/01 TE-L6 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L8 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L8 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L8 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-LA (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-LA (0-3) ICP METALS, TCLP 3/20/01 3/21/01 MECURY, TCLP 3/20/01 3/21/01 3/21/01 PERCURY, TCLP 3/20/01 3/21/01	0103139-03A	TE-L3 (0-3)			ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
TE-15 (0-3) TE-15 (0-3) 320/01 321/01 TE-16 (0-3) ICP METALS, TCLP 320/01 321/01 TE-17 (0-3) ICP METALS, TCLP 320/01 321/01 TE-17 (0-3) ICP METALS, TCLP 320/01 321/01 TE-18 (0-3) ICP METALS, TCLP 322/01 321/01 TE-18 (0-3) ICP METALS, TCLP 322/01 322/01 TE-1A-SD-3 DIESEL RANGE ORGANICS 322/01 322/01 TE-1A-SD-3 DIESEL RANGE ORGANICS 372/01 372/01 TE-1A-SD-3 DIESEL RANGE ORGANICS 372/01 372/01 MERCURY, TCLP 372/01 372/01 372/01 PESEL NOULS 372/01 372/01 372/01 PESEL RANGE ORGANICS 372/01 372/01 <td< td=""><td>0103139-04A</td><td>TE-L4 (0-3)</td><td></td><td></td><td>ICP METALS, TCLP</td><td>3/20/01</td><td>3/21/01</td><td>3/22/01</td></td<>	0103139-04A	TE-L4 (0-3)			ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
TE-L6 (0-3) TE-L7 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L7 (0-3) TE-L7 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L8 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 3/22/01 TE-IA-SD-3 DIESEL RANGE ORGANICS 3/22/01 3/22/01 3/22/01 MERCURY, TCLP 3/20/01 3/21/01 3/21/01 3/21/01 PESEN SOIL/SOLIDS 3/20/01 3/21/01 3/21/01 3/21/01 Percent Moisture Percent Moisture 3/20/01 3/21/01 3/21/01	0103 j 39-05A	TE-L5 (0-3)			ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
TE-L7 (0-3) TE-L7 (0-3) 3/20/01 3/21/01 TE-L8 (0-3) ICP METALS, TCLP 3/20/01 3/21/01 TE-L8 (0-3) DIESEL RANGE ORGANICS 3/22/01 3/22/01 TE-IA-SD-3 DIESEL RANGE ORGANICS 3/22/01 3/22/01 CASOLINE RANGE ORGANICS 3/20/01 3/21/01 3/21/01 MERCURY, TCLP 3/20/01 3/21/01 3/21/01 PCBS IN SOIL/SOLIDS 3/20/01 3/20/01 3/20/01 Percent Moisture Percent Moisture 3/20/01 3/20/01	0103 39-06A	TE-L6 (0-3)			ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
Te-La (0-3) Te-La (0-3) 3/20/01 3/21/01 Te-IA-SD-3 DIESEL RANGE ORGANICS 3/22/01 3/22/01 Te-IA-SD-3 DIESEL RANGE ORGANICS 3/22/01 3/22/01 GASOLINE RANGE ORGANICS 3/20/01 3/21/01 3/15/01 MERCURY, TCLP 3/20/01 3/21/01 3/21/01 PCBS IN SOIL/SOLIDS 3/20/01 3/21/01 3/21/01 Preent Moisture DIESEL NOLIDS 3/20/01 3/21/01	0103139-07A	TE-L7 (0-3)			ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
Te-IA-SD-3 DIESEL RANGE ORGANICS 3/22/01 DIESEL RANGE ORGANICS 3/22/01 3/22/01 GASOLINE RANGE ORGANICS 3/15/01 3/15/01 ICP METALS, TCLP 3/20/01 3/21/01 MERCURY, TCLP 3/20/01 3/21/01 PCBS IN SOIL/SOLIDS 3/20/01 3/20/01 Percent Moisture Percent Moisture 3/20/01	0103139-08A	TE-L8 (0-3)			ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
3/22/01 ICS 3/15/01 3/20/01 3/21/01 3/20/01 3/20/01 3/20/01	0103139-09A	TE-1A-SD-3			DIESEL RANGE ORGANICS		3/22/01	3/28/01
3/15/01 3/20/01 3/21/01 3/27/01 3/20/01					DIESEL RANGE ORGANICS		3/22/01	3/28/01
3/20/01 3/21/01 3/20/01 3/27/01 3/20/01					GASOLINE RANGE ORGANICS		3/15/01	3/24/01
3/20/01 3/27/01 3/20/01					ICP METALS, TCLP	3/20/01	3/21/01	3/22/01
3/20/01					MERCURY, TCLP	3/20/01	3/27/01	3/27/01
					PCBS IN SOIL/SOLIDS		3/20/01	3/21/01
					Percent Moisture			3/19/01

16

. <u>.</u> .

34343	o o o ho ho	20 w 20 30		Hematks								>	H H V DAESERE			PRIORITY TURNAROUND TIME AUTHORIZATION Before submitting samples for expedited T.A.T., you must have requested in advance and received a coded T.A.T. AUTHORIZATION NUMBER.	T.A.T. authorized by:	Send Results to:	<u>I</u> fi,	72	Rèmarks			
STC~ / RECORD	MATRIX Water - A	Soil/Solid-S Waste-W	Explain	1 v		2 7	2 2	2	2 2	2 2	S V	402 S 1 V V	YOM A			PRIORITY TURNARC Before submitting samples received a coded T.A.T. AL	AUTHORIZATION NO.	C Fax to (phone)	Results needed	PO#	AMRO Project No.	11	Seal Intact?	DN
CHAIN OF CUSTOL	ソタメム Project State ルイ	J M	Station Contained	1 (0-3') 8 02		.3 (0.31)	1 (e-31) (1	" (, 2-9/ 57	-26 10-31) 4	+ (10-31) +	5	-3 4-	0			Pléase print clearly, legibly and completely. Samples cannot be logged in and the turnaround time clock will not start until any ambiguities are resolved.	1	Received by (Signature)	CED EX	Received by (Signature)	Received by (Signature)		Received for Laboratory by: (Signature)	C (Date K Car Pink: Client copy /
MRO Environmental Laboratories Corporation 1 Herrick Street errimack, N.H. 0300 fice: 603-424-2022 Fax: 603-429-8496	0445C/A-	1 5	-	1 76-1	V te ca	V 7E-1	r . TE-L	1-21 /	V 72 -	1 - 22 /	V 74. 18	V TE-14-50	1 0B-12		 	gibly and completely. Se time clock will not start	~		3150	Date Time R	, Date Time		Date Time	3/16/01 /0:00
MRO Environmental 1 Herrick Street errimack, N.H. 030 frice: 603-424-2022 Fax: 603	Proj. No. Project Name	Samplers (Signature) Michael Hager ty Nington Hage	DATE +INE	1 0.0230	3/15/01 0845	2115/bi 0.900	3/15/01 0915	3/15/6 0930	3/15/61 1000	2/15/61 1020	3/15/6/ 11:15	3/15/01 12:00	3/15/01 1:00	~		Pléase print clearly, le in and the turnaround resolved.		Relinquished by (Signature)	hickelitant	Relinquished by (Signature)	Relinquished by (Signature)	ر المراجع ا	Belinquished by (Signature)	

i i Environmental Laboratories Corporation

1

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 · FAX: (603) 429-8496

March 26, 2001

Jeff Butler STV Incorporated 225 Park Avenue South New York, NY 10003 TEL: (212) 777-4400 FAX:

RE: 07-02184 ESA-Phase 1A Superior Reed

Order No.: 0103093

Dear Jeff Butler:

AMRO Environmental Laboratories Corp. received 14 samples on 3/13/01 for the analyses presented in the following report.

AMRO operates a Quality Assurance Program which meets or exceeds National Environmental Laboratory Accreditation Conference (NELAC), state, and EPA requirements. A copy of the appropriate state and/or NELAC Certificate is attached.

The enclosed Sample Receipt Checklist details the condition of your sample(s) upon receipt. Please be advised that any unused sample volume and sample extracts will be stored for a period of thirty (30) days from this report date. After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of $\underline{53}$ pages. This letter is an integral part of your data report. If you have any questions regarding this project in the future, please refer to the Order Number above.

Sincerely,

Nancy Stewart Vice President / Lab Director

Date: 26-Mar-01

CLIENT: Project: Lab Order:	STV Incorporated 07-02184 ESA-Phase 1A Superior Reed 0103093	Work Order Sample Summary
Date Received:	3/13/01	·
Lab Sample ID	Client Sample ID	Collection Date
0103093-01A	TE-1A-A1 (4')	3/12/01
0103093-02A	TE-1A-A1 (12')	3/12/01
0103093-03A	TE-1A-H1 (5')	3/12/01
0103093-04A	TE-1A-H2 (5')	3/12/01
0103093-05A	TE-1A-A1 (0-4')	3/12/01
0103093-05B	TE-1A-A1 (0-4')	3/12/01
0103093-06A	TE-1A-A1 (12-16')	3/12/01
0103093-06B	TE-1A-A1 (12-16')	3/12/01
0103093-07A	TE-1A-H1 (0-5')	3/12/01
0103093-07B	TE-1A-H1 (0-5')	3/12/01
0103093-08A	TE-1A-H2 (0-5')	3/12/01
0103093-08B	TE-1A-H2 (0-5')	3/12/01
0103093-09A	TE-1A-A1 (GW) 12'	3/12/01
0103093-09B	TE-1A-A1 (GW) 12'	3/12/01
0103093-10A	TRIP BLANK	3/12/01
0103093-11A	TE-IA-SD1	3/12/01
0103093-11B	TE-1A-SD1	3/12/01
0103093-11C	TE-1A-SD1	3/12/01
0103093-12A	QB-5	3/12/01
0103093-12B	QB-5	3/12/01
0103093-13A	QB-22	3/12/01
0103093-13B	QB-22	3/12/01
0103093-14A	QB-120	3/12/01
0103093-14B	QB-120	3/12/01

Date: 26-Mar-01

CLIENT:	STV Incorporated			C	Client Sample ID:	TE-1A-	A1 (4')
Lab Order: Project: Lab ID:	0103093 07-02184 ESA-Phas 0103093-01A	e 1A Superior I	Reed		Collection Date: Matrix:		
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
PERCENT MO	STURE	D:	2216				Analyst: SL
Percent Moistu	re	13.8	0		wt%	1	3/15/01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorporated	•			lient Sample ID:	TE-1A-H1 (5')		
Lab Order: Project: Lab ID:	0103093 07-02184 ESA-Phase 1A Superior Reed 0103093-03A				Collection Date: Matrix:			
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	
PERCENT MO	STURE	D2:	216				Analyst: SL	
Percent Moistu	re	13.7	0		wt%	1	3/15/01	

Qualifiers:

ſ

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- H Method prescribed holding time exceeded
- S Spike Recovery outside accepted recovery limits

I

- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorporated			Client Sample ID: TE-1A-A1 (0-4')			A1 (0-4')
Lab Order: Project: Lab ID:	0103093 07-02184 ESA-Phase 1A Superior Reed 0103093-05A				Collection Date: Matrix:		
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
PERCENT MO	STURE	D22	16				Analyst: SL
Percent Moistu	re	11.2	0	Ì	wt%	1	3/15/01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorporated			Client Sample]	D: TE-1A	: TE-1A-A1 (12-16')		
Lab Order:	0103093							
Project:	ject: 07-02184 ESA-Phase 1A Superior Reed			Collection Da	te: 3/12/0	3/12/01		
Lab ID: 0103093-06B				Matr	ix: SOIL	SOIL		
Analyses		Result	RL Q	ual Units	ÐF	Date Analyzed		
MERCURY, TCL	P	S	W7470			Analyst: MT		
Mercury		ND	0.0010	mg/L	1	3/16/01		
ICP METALS, TO	CLP LEACHED	S	W1311/6010	В		Analyst: RK		
Arsenic		ND	1.0	mg/L	1	3/16/01 3:01:15 PM		
Barium		ND	2.0	mg/L	1	3/16/01 3:01:15 PM		
Cadmium		ND	0.10	mg/L	1	3/16/01 3:01:15 PM		
Chromium		ND	0.10	mg/L	1	3/16/01 3:01:15 PM		
Lead		ND	1.0	mg/L	1	3/16/01 3:01:15 PM		
Selenium		ND	0.58	mg/L	1	3/16/01 3:01:15 PM		
Silver		ND	0.10	mg/L	1	3/16/01 3:01:15 PM		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

S - Spike Recovery outside accepted recovery limits

1

- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorporated		С	lient Sample ID:	TE-1A-I	H1 (0-5')
Lab Order: Project: Lab ID:	0103093 07-02184 ESA-Phase 1A Superior Reed 0103093-07A	Collection Date: Matrix:				
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
PERCENT MO	ISTURE D2216	5				Analyst: SL
Percent Moistu	re 24.8	0		wt%	1	3/15/01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

S - Spike Recovery outside accepted recovery limits

1

- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorporated	STV Incorporated			Client Sample ID:			12 (0-5')
Lab Order: Project: Lab ID:	0103093 07-02184 ESA-Phase 1A Superior Reed 0103093-08A			Collection Date: Matrix:				
Analyses	Result		RL	Qual	Units		DF	Date Analyzed
PERCENT MO	STURE	D2216	5					Analyst: SL
Percent Moistu	re 22.5		0		wt%		1	3/15/01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

S - Spike Recovery outside accepted recovery limits

1

- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorporated	STV Incorporated			lient Sample ID:	TE-1A-S	SD1
Lab Order: Project: Lab ID:	0103093 07-02184 ESA-Phase 1A Superior Reed 0103093-11B				Collection Date: Matrix:		
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
PERCENT MO	STURE	D	2216				Analyst: SL
Percent Moistu		11.0	0		wt%	1	3/15/01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- # See Case Narrative

STV Incorp	oorated			(Client Sample ID:	TE-1A-	Al (4')
0103093							
07-02184	ESA-Phase 1/	A Superi	ior Reed		Collection Date:	3/12/01	
		×		-	Matrix:	SOIL	
		Result		RL Qua	Units	DF	Date Analyzed
C/MS	· · · · · · · · · · · · · · · · · · ·		SW826	0B			Analyst: Sh
thane		ND		53	µg/Kg-dry	1	3/17/01 7:29:00 PM
		ND		53		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND		53		1	3/17/01 7:29:00 PM
		ND		53		1	3/17/01 7:29:00 PM
nane		ND				1	3/17/01 7:29:00 PM
		ND				1	3/17/01 7:29:00 PM
I		ND		27		1	3/17/01 7:29:00 PM
		ND		53		1	3/17/01 7:29:00 PM
		ND				1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1.	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND	:			1	3/17/01 7:29:00 PM
e		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
ne		ND		27		1	3/17/01 7:29:00 PM
ne		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1/	3/17/01 7:29:00 PM
е		ND		27		1	3/17/01 7:29:00 PM
		ND		27		1	3/17/01 7:29:00 PM
ч. 							3/17/01 7:29:00 PM
ne						1	3/17/01 7:29:00 PM
			-				3/17/01 7:29:00 PM
							3/17/01 7:29:00 PM
ropene						•	3/17/01 7:29:00 PM
							3/17/01 7:29:00 PM
							3/17/01 7:29:00 PM
							3/17/01 7:29:00 PM
۵			4				3/17/01 7:29:00 PM
•							3/17/01 7:29:00 PM
200	-		· · · · · · · ·				3/17/01 7:29:00 PM
2110		ND		27	µg/Kg-dry µg/Kg-dry	1. 1	3/17/01 7:29:00 PM 3/17/01 7:29:00 PM
	0103093 07-02184 0103093-0 GC/MS ethane hane hane hane hane hane hane hane	0103093 07-02184 ESA-Phase 1/ 0103093-01A SC/MS athane hane her thene e e e e e e ne ne e e e e e e e e e	0103093 07-02184 ESA-Phase 1A Super 0103093-01A Result CC/MS whane ND ND ND ND ND ND ND ND ND ND	0103093 07-02184 ESA-Phase 1A Superior Reed 0103093-01A Result Result Result Result SC/MS SW826 SW826 SW826 SW826 SW826 SW826 ND ND ND ND ND ND ND ND ND ND	0103093 Result RL_Qual Result RL_Qual GC/MS SW8260B SW8 SW8 SW8	0103093 Orio2184 ESA-Phase IA Superior Reed Collection Date: 0103093-01A Result RL_Qual Units Collection Date: OCIMS SW8260B SW8260B SW8260B Whane ND 53 µg/Kg-dry ND SW8260B SW8260B WM SW8260B MD 53 µg/Kg-dry ND 27 µg/Kg-dry	0103093 07-02184 ESA-Phase 1A Superior Reed Collection Date: 3/12/01 0103093-01A Result RL_Qual Units DF SC/MS SW8260B sthane ND 53 µg/Kg-dry 1 nane ND 53 µg/Kg-dry 1 nane ND 27 µg/Kg-dry 1 nane ND 27

Date: 26-Mar-01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Method prescribed holding time exceeded

- See Case Narrative

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT:	STV Incorporated	ł		Client Sample ID:	: TE-1A-	A1 (12')
Lab Order:	0103093			-		
Project:	07-02184 ESA-P	hase IA Superio	r Reed	Collection Date:	3/12/01	
Lab ID:	0103093-02A	nuse in Superio	I NOCU	Matrix:		
				· · · · · · · · · · · · · · · · · · ·		
Analyses	• *** * * .	Result	RL ; -	Qual Units	DF	Date Analyzed
VOLATILES BY	GC/MS		SW8260B			Analyst: SK
Dichlorodifluoron	nethane	ND	59	µg/Kg-dry	1	3/17/01 8:05:00 PM
Chloromethane		ND	59	µg/Kg-dry	1	3/17/01 8:05:00 PM
Vinyl chloride		ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Chloroethane		ND	59	µg/Kg-dry	1	3/17/01 8:05:00 PM
Bromomethane		ND	59	µg/Kg-dry	1	3/17/01 8:05:00 PM
Trichlorofluorom	ethane	ND	59	µg/Kg-dry	1	3/17/01 8:05:00 PM
Acetone		ND	290	µg/Kg-dry	1	3/17/01 8:05:00 PM
1,1-Dichloroethe	ne	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Carbon disulfide		ND	59	µg/Kg-dry	1	3/17/01 8:05:00 PM
Methylene chlorid	de	ND	59	µg/Kg-dry	1	3/17/01 8:05:00 PM
Methyl tert-butyl	ether	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
trans-1,2-Dichlor	oethene	ND	29	µg/Kg-dry	1.	3/17/01 8:05:00 PM
1,1-Dichloroetha	ne	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
2-Butanone		. ND	290	µg/Kg-dry	1	3/17/01 8:05:00 PM
2,2-Dichloroprop	ane	ND	29	µg/Kg-dry	· 1	3/17/01 8:05:00 PM
cis-1,2-Dichloroe	thene	ND	.29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Chloroform		ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Bromochlorometh	hane	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
1,1,1-Trichloroeth	hane	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
1,1-Dichloroprope	ene	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Carbon tetrachlor	ride	ND	29	μg/Kg-dry	1	3/17/01 8:05:00 PM
1,2-Dichloroethai	ne	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Benzene		ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Trichloroethene		ND	29	µg/Kg-dry	1/	3/17/01 8:05:00 PM
1,2-Dichloropropa	ane	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Bromodichlorome	ethane	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Dibromomethane	•	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
4-Methyl-2-penta	none	ND	290	μg/Kg-dry	1	3/17/01 8:05:00 PM
cis-1,3-Dichlorop	ropene	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
Toluene		ND	29	μg/Kg-dry	1	3/17/01 8:05:00 PM
trans-1,3-Dichloro	opropene	ND	29	µg/Kg-dry	1	3/17/01 8:05:00 PM
1,1,2-Trichloroeth	nane	ND	29	μg/Kg-dry	1	3/17/01 8:05:00 PM
1,2-Dibromoetha		ND	- 29	µg/Kg-dry	1	3/17/01 8:05:00 PM
2-Hexanone		ND	290	µg/Kg-dry	1	3/17/01 8:05:00 PM
1,3-Dichloropropa	ane	ND	29	μg/Kg-dry	1	3/17/01 8:05:00 PM
Tetrachloroethen		ND	29	ung/Kg-dry		-3/17/01:8:05:00 PM
Dibromochlorome		ND	29	μg/Kg-dry	1	3/17/01 8:05:00 PM
Chlorobenzene		ND	29	μg/Kg-dry	1	3/17/01 8:05:00 PM

Date: 26-Mar-01

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

- R RPD outside accepted recovery limits
- E Value above quantitation range

H - Method prescribed holding time exceeded

- See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorporated			Client Sample II): TE-1A	-H1 (5')
Lab Order:	0103093			<u>.</u>		
Project:	07-02184 ESA-Ph	ase 1A Superior I	Reed	Collection Dat	e: 3/12/0	1
Lab ID:	0103093-03A	*		- Matri	k: SOIL	
Analyses		Result	RL Q	al Units	DF.	Date Analyzed
VOLATILES BY	GC/MS	S	V8260B			Analyst: SK
Dichlorodifluoror	methane	ND	55	µg/Kg-dry	1	3/17/01 8:41:00 PM
Chloromethane		ND	55	µg/Kg-dry	1	3/17/01 8:41:00 PM
Vinyl chloride		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Chloroethane		ND	55	µg/Kg-dry	1	3/17/01 8:41:00 PM
Bromomethane		ND	55	µg/Kg-dry	1	3/17/01 8:41:00 PM
Trichlorofluorom	ethane	ND	55	µg/Kg-dry	1	3/17/01 8:41:00 PM
Acetone		ND	280	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,1-Dichloroethe	ne	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Carbon disulfide		ND	55	µg/Kg-dry	1	3/17/01 8:41:00 PM
Methylene chlori	de	ND	55	µg/Kg-dry	1	3/17/01 8:41:00 PM
Methyl tert-butyl	ether	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
trans-1,2-Dichlor	oethene	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,1-Dichloroetha	ne	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
2-Butanone		ND	280	µg/Kg-dry	1	3/17/01 8:41:00 PM
2,2-Dichloroprop	ane	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
cis-1,2-Dichloroe	thene	ND	28	µg/Kg-dry	_ 1	3/17/01 8:41:00 PM
Chloroform		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Bromochloromet	hane	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,1,1-Trichloroet	hane	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,1-Dichloroprop		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Carbon tetrachlo		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,2-Dichloroetha	ne	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Benzene		ND	28	µg/Kg-dry	1.	3/17/01 8:41:00 PM
Trichloroethene		ND	28	µg/Kg-dry	1/	3/17/01 8:41:00 PM
1,2-Dichloroprop		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Bromodichlorom	ethane	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Dibromomethane	1	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
4-Methyl-2-penta		ND	280	µg/Kg-dry	1	3/17/01 8:41:00 PM
cis-1,3-Dichlorop	ropene	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Toluene		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
trans-1,3-Dichlor		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,1,2-Trichloroet		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,2-Dibromoetha	ne	• ND	28	µg/Kg-dry	1.	3/17/01-8:41:00 PM
2-Hexanone		. ND	280	µg/Kg-dry	1	3/17/01 8:41:00 PM
1,3-Dichloroprop		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Tetrachloroethen						3/17/01 8:41:00 PM
Dibromochlorome	ethane	ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM
Chlorobenzene		ND	28	µg/Kg-dry	1	3/17/01 8:41:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Method prescribed holding time exceeded

- See Case Narrative

Date: 26-Mar-01

CLIENT:	STV Incorpor	ated		Client Sampl	e ID: TE-1A	A-H2 (5')
Lab Order:	0103093					
Project:	07-02184 ES	A-Phase 1A Superior Re	ed	Collection 1	Date: 3/12/0)1
Lab ID:	0103093-04A	=		Ma	atrix: SOIL	
Analyses		Result	RL Q	ual Units	DF	Date Analyzed
VOLATILES BY	GC/MS	SW	3260B			Analyst: SK
Dichlorodifluoror	methane	ND	59	µg/Kg-dry	1	3/19/01 4:06:00 PM
Chloromethane		ND	59	µg/Kg-dry	1	3/19/01 4:06:00 PM
Vinyl chloride		ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Chloroethane		ND	59	µg/Kg-dry	1	3/19/01 4:06:00 PM
Bromomethane		ND	59	µg/Kg-dry	1	3/19/01 4:06:00 PM
Trichlorofluorom	ethane	ND	59	µg/Kg-dry	1	3/19/01 4:06:00 PM
Acetone		ND	290	µg/Kg-dry	1	3/19/01 4:06:00 PM
1,1-Dichloroethe	ene	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Carbon disulfide		ND	59	µg/Kg-dry	1	3/19/01 4:06:00 PM
Methylene chlori	de	ND	59	µg/Kg-dry	1	3/19/01 4:06:00 PM
Methyl tert-butyl	ether	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
trans-1,2-Dichlor	roethene	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
1,1-Dichloroetha	ne	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
2-Butanone		ND	290	µg/Kg-dry	1	3/19/01 4:06:00 PM
2,2-Dichloroprop	ane	ND	29	µg/Kg-dry	ŕ 1	3/19/01 4:06:00 PM
cis-1,2-Dichloroe	ethene	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Chioroform		ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Bromochloromet	hane	ND	29	µg/Kg-dry	· 1	3/19/01 4:06:00 PM
1,1,1-Trichloroet	hane	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
1,1-Dichloroprop	ene	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Carbon tetrachlo	ride	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
1,2-Dichloroetha	ne	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Benzene		ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Trichloroethene		ND	29	µg/Kg-dry	1/	3/19/01 4:06:00 PM
1,2-Dichloroprop	ane	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Bromodichlorom	ethane	ND	29	µg/Kg-dry	. 1	3/19/01 4:06:00 PM
Dibromomethane	e	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
4-Methyl-2-penta	none	ND	290	µg/Kg-dry	1	3/19/01 4:06:00 PM
cis-1,3-Dichlorop	propene	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Toluene		ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
trans-1,3-Dichlor	оргорепе	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
1,1,2-Trichloroet	hane	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
1,2-Dibromoetha		ND	-29	µg/Kg-dry	· · · · · 1	3/19/01 4:06:00 PM
2-Hexanone		ND	290	µg/Kg-dry	1	3/19/01 4:06:00 PM
1,3-Dichloroprop	ane	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Tetrachloroethen	e ·	and the second ND area and		······μg/Kg-dry		3/19/01 4:06:00 PM
Dibromochlorom	ethane	ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM
Chlorobenzene		ND	29	µg/Kg-dry	1	3/19/01 4:06:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank

- H Method prescribed holding time exceeded
- # See Case Narrative

Date: 26-Mar-01

Client Sample ID: TE-1A-A1 (GW) 12' **CLIENT:** STV Incorporated 0103093 Lab Order: Collection Date: 3/12/01 07-02184 ESA-Phase 1A Superior Reed **Project:** Matrix: AQUEOUS 0103093-09A Lab ID: 100 B DF RL Qual Units **Date Analyzed** Result Analyses Analyst: JSL VOLATILES BY GC/MS SW8260B 3/16/01 8:44:00 PM 1 Dichlorodifluoromethane ND 5.0 µg/L 3/16/01 8:44:00 PM ND 5.0 μg/L 1 Chloromethane Vinyl chloride ND 2.0 µg/L 1 3/16/01 8:44:00 PM 3/16/01 8:44:00 PM ND 5.0 µg/L 1 Chloroethane 1 3/16/01 8:44:00 PM Bromomethane ND 2.0 µg/L 3/16/01 8:44:00 PM 2.0 µg/L 1 Trichlorofluoromethane ND 3/16/01 8:44:00 PM Acetone ND 10 µg/L 1 1 3/16/01 8:44:00 PM 1.1-Dichloroethene ND 1.0 µg/L 3/16/01 8:44:00 PM ND 2.0 µg/L 1 Carbon disulfide 3/16/01 8:44:00 PM 1 Methylene chloride ND 5.0 µg/L 3/16/01 8:44:00 PM 4.5 2.0 µg/L 1 Methyl tert-butyl ether 3/16/01 8:44:00 PM trans-1,2-Dichloroethene ND 2.0 µg/L 1 1,1-Dichloroethane ND 2.0 µg/L 1 3/16/01 8:44:00 PM 3/16/01 8:44:00 PM 2-Butanone ND 10 µg/L 1 3/16/01 8:44:00 PM ND 2.0 µg/L 1 2,2-Dichloropropane 2.0 1 3/16/01 8:44:00 PM cis-1,2-Dichloroethene ND µg/L 3/16/01 8:44:00 PM ND 2.0 µg/L 1 Chloroform 3/16/01 8:44:00 PM Bromochloromethane ND 2.0 µg/L 1 3/16/01 8:44:00 PM ND 2.0 μg/L 11 1,1,1-Trichloroethane 2.0 3/16/01 8:44:00 PM ND µg/L 1 1,1-Dichloropropene µg/L 3/16/01 8:44:00 PM ND 2.0 1 Carbon tetrachloride ND 2.0 µg/L 1 3/16/01 8:44:00 PM 1.2-Dichloroethane ND 1.0 1 3/16/01 8:44:00 PM µg/L Benzene 1/ 3/16/01 8:44:00 PM ND 2.0 µg/L Trichloroethene 3/16/01 8:44:00 PM ND 2.0 µg/L 1 1.2-Dichloropropane Bromodichloromethane ND 2.0 µg/L 1 3/16/01 8:44:00 PM ND 2.0 µg/L 1 3/16/01 8:44:00 PM Dibromomethane 10 3/16/01 8:44:00 PM 4-Methyl-2-pentanone ND µg/L 1 3/16/01 8:44:00 PM cis-1,3-Dichloropropene ND 1.0 µg/L 1 3/16/01 8:44:00 PM Toluene ND 2.0 µg/L 1 ND 1.0 µg/L 1 3/16/01 8:44:00 PM trans-1,3-Dichloropropene ND 2.0 µg/L 3/16/01 8:44:00 PM 1 1,1,2-Trichloroethane ND 2.0 µg/L 1 3/16/01 8:44:00 PM 1,2-Dibromoethane 3/16/01 8:44:00 PM ND 10 1 2-Hexanone µg/L ND 2.0 µg/L 1 3/16/01 8:44:00 PM 1,3-Dichloropropane -1 3/16/01 8:44:00 PM Tetrachloroethene ND 2.0 µg/L ND 2.0 µg/L 1 3/16/01 8:44:00 PM Dibromochloromethane 3/16/01 8:44:00 PM Chlorobenzene ND 2.0 µg/L 1

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

E - Value above quantitation range

R - RPD outside accepted recovery limits

- See Case Narrative

Date: 26-Mar-01

AMRO Er	nvironmental	Laboratories	Date:	26-Mar-01		
CLIENT:	STV Incorporate	ed	•	Client Sample ID:	TRIP BLANK	
Lab Order:	0103093			•		
Project:		Phase IA Superior	Reed	Collection Date:	3/12/01	
-	-		Recu			
Lab ID:	0103093-10A		· · · · · · · · · · · · · · · · · · ·		AQUEOUS	
Analyses		Result	RL Q	ual Units	DF Date	e Analyzed
VOLATILES B	Y GC/MS		SW8260B			Analyst: JSI
*** Sample receip	ot problems were obser	ved for this test meth	od. See Case N	arrative for details. ***		
Dichlorodifluoro	omethane	ND	5.0	µg/L	1 3/16/0	1 8:11:00 PM
Chloromethane		ND	5.0	μg/L	1 3/16/0	1 8:11:00 PM
Vinyl chloride		ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
Chloroethane		ND	5.0	µg/L	1 3/16/0	1 8:11:00 PM
Bromomethane		ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
Trichlorofluorom	nethane	ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
Acetone		ND	10	µg/L	1 3/16/0	1 8:11:00 PM
1,1-Dichloroethe	ene	ND	1.0	µg/L	1 3/16/0	1 8:11:00 PM
Carbon disulfide	9	ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
Methylene chlor	ride	ND	5.0	µg/L	1 3/16/0	1 8:11:00 PM
Methyl tert-buty	i ether	ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
trans-1,2-Dichlo	proethene	ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
1,1-Dichloroetha	ane	ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
2-Butanone		ND	10	µg/L	1 3/16/0	1 8:11:00 PM
2,2-Dichloroprop	pane	ND	2.0	μg/L	1 3/16/0	01 8:11:00 PM
cis-1,2-Dichloro	ethene	ND	2.0	µg/L	1 3/16/0	1 8:11:00 PM
Chloroform		ND	. 2.0	µg/L	1 3/16/0	1 8:11:00 PM
Bromochlorome	thane	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
1,1,1-Trichloroe	thane	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
1,1-Dichloroprop	pene	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
Carbon tetrachio	oride	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
1,2-Dichloroetha	ane	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
Benzene		ND	1.0	µg/L	1 3/16/0	01 8:11:00 PM
Trichloroethene	•	ND	2.0	µg/L	1/ 3/16/0	01 8:11:00 PM
1,2-Dichloroprop	pane	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
Bromodichlorom	nethane	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
Dibromomethan	e	ND	2.0	µg/L	1 3/16/0	01 8:11:00 PM
			10			

10

1.0

2.0

1.0

2.0

2.0

10

2.0

2.0

2.0

2.0

µg/L

Qualifiers:

Toluene

4-Methyl-2-pentanone

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,2-Dibromoethane

1,3-Dichloropropane

Dibromochloromethane

Tetrachloroethene

Chlorobenzene

2-Hexanone

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

1

1

1

1

1

1

1

1

4

1

1

3/16/01 8:11:00 PM

/16/01 8:11:00 PM

3/16/01 8:11:00 PM

J - Analyte detected below quantitation limits B - Analyte detected in the associated Method Blank R - RPD outside accepted recovery limits E - Value above quantitation range

H - Method prescribed holding time exceeded

- See Case Narrative

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND

Date: 26-Mar-01

CLIENT:	STV Incorporated
Lab Order:	0103093
Project:	07-02184 ESA-Phase 1A Superior Reed
Lab ID:	0103093-14A

Client Sample ID: QB-120

Collection Date: 3/12/01 Matrix: AQUEOUS

Analyses	Result	RL Q	al Units	DF	Date Analyzed
OLATILES BY GC/MS	SI	V8260B			Analyst: JSL
Dichlorodifluoromethane	ND	5.0	µg/L	1	3/16/01 9:19:00 PM
Chloromethane	ND	5.0	μg/L	1	3/16/01 9:19:00 PM
Vinyl chloride	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Chloroethane	ND	5.0	µg/Ľ	1	3/16/01 9:19:00 PM
Bromomethane	ND	2.0	μg/L	1	3/16/01 9:19:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Acetone	32	10	µg/L	1	3/16/01 9:19:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/16/01 9:19:00 PM
Carbon disulfide	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Methylene chloride	ND	5.0	µg/L	1	3/16/01 9:19:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	3/16/01 9:19:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	່ 1	3/16/01 9:19:00 PM
2-Butanone	40	10	μg/L	<u>,</u> 1	3/16/01 9:19:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1 1	3/16/01 9:19:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	. 1	3/16/01 9:19:00 PM
Chloroform	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Bromochloromethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Benzene	ND	1.0	µg/L	1	3/16/01 9:19:00 PM
Trichloroethene	14	2.0	µg/L	17	3/16/01 9:19:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Dibromomethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	3/16/01 9:19:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/16/01 9:19:00 PM
Toluene	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/16/01 9:19:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
1,2-Dibromoethane	ND	2:0	µg/L	1	3/16/01 9:19:00 PM
2-Hexanone	· ND	10	μg/L	1	3/16/01 9:19:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	3/16/01 9:19:00 PM
Tetrachloroethene	ND	2.0	µg/L		3/16/01 9:19:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	3/16/01 9:19:00 PM
Chlorobenzene	ND	2.0	μg/L	1	3/16/01 9:19:00 PM

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

- See Case Narrative

CLIENT:	STV Incorporated	C
Lab Order:	0103093	
Project:	07-02184 ESA-Phase 1A Superior Reed	(
Lab ID:	0103093-05A	

Client Sample ID: TE-1A-A1 (0-4')

Collection Date: 3/12/01

Matrix: SOIL

Analyses	Result	RL Q	al Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS	SV	V8270C			Analyst: KD
Phenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Bis(2-chloroethyl)ether	ND	280	µg/Kg-dry	. 1	3/15/01 9:55:00 PM
2-Chlorophenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
1,3-Dichlorobenzene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
1,4-Dichlorobenzene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Benzyl alcohol	ND	550	µg/Kg-dry	1	3/15/01 9:55:00 PM
2-Methylphenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
1,2-Dichlorobenzene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Bis(2-chloroisopropyl)ether	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
4-Methylphenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
N-Nitrosodi-n-propylamine	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Hexachloroethane	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Nitrobenzene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Isophorone	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
2,4-Dimethylphenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Benzoic acid	ND	550	µg/Kg-dry	1	3/15/01 9:55:00 PM
2-Nitrophenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Bis(2-chloroethoxy)methane	ND	280	µg/Kg-dry ⁻	1	3/15/01 9:55:00 PM
2,4-Dichlorophenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
1,2,4-Trichlorobenzene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Naphthalene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
4-Chloroaniline	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Hexachlorobutadiene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
4-Chloro-3-methylphenol	ND	550	µg/Kg-dry	1/	3/15/01 9:55:00 PM
2-Methylnaphthalene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Hexachlorocyclopentadiene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
2,4,6-Trichlorophenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
2,4,5-Trichlorophenol	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
2-Chloronaphthalene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
2-Nitroaniline	ND	550	µg/Kg-dry	1	3/15/01 9:55:00 PM
Dimethyl phthalate	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
2,6-Dinitrotoluene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
Acenaphthylene	520	280	μg/Kg-dry	· 1	3/15/01 9:55:00 PM
3-Nitroaniline	ND	550	µg/Kg-dry	1	3/15/01 9:55:00 PM
4-Nitrophenol	ND	550	µg/Kg-dry	1	3/15/01 9:55:00 PM
2,4-Dinitrophenol	ND STATE	550	µg/Kg-dry	so axis 1 sa is	3/15/01-9:55:00 PM
Acenaphthene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM
2,4-Dinitrotoluene	ND	280	µg/Kg-dry	1	3/15/01 9:55:00 PM

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

H - Method prescribed holding time exceeded

- See Case Narrative

MRO Environmental Laboratories Corp.

Date: 26-Mar-01

CLIENT:	STV Incorporated		, C	Client Sample ID:	TE-1A-A	41 (12-16')
Lab Order:	0103093					
Project:	07-02184 ESA-Pha	se 1A Superior I	Reed	Collection Date:	3/12/01	
Lab ID:	0103093-06A			Matrix:	SOIL	
Analyses		Result	RL Qual	Units	*DF	Date Analyzed
SEMIVOLATILE	ORGANICS	SI	N8270C			Analyst: KD
Phenol		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Bis(2-chloroethy	l)ether	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
2-Chlorophenol		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
1,3-Dichlorobenz	zene	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
1,4-Dichlorobenz	zene	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Benzyl alcohol		ND	650	µg/Kg-dry	1	3/15/01 11:12:00 PM
2-Methylphenol		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
1,2-Dichlorobenz	ene	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Bis(2-chloroisopr		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
4-Methylphenol		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
N-Nitrosodi-n-pro	pylamine	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Hexachloroethan		ND	330	µg/Kg-dry	·1·	3/15/01 11:12:00 PM
Nitrobenzene		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Isophorone		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
2,4-Dimethylpher	nol	ND	330	µg/Kg-dry	· 1	3/15/01 11:12:00 PM
Benzoic acid		ND	650	µg/Kg-dry	1	3/15/01 11:12:00 PM
2-Nitrophenol		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Bis(2-chloroetho)	(y)methane	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
2,4-Dichlorophen		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
1,2,4-Trichlorobe		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Naphthalene		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
4-Chloroaniline		ND	330	ug/Kg-dry	1	3/15/01 11:12:00 PM
Hexachlorobutad	liene	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
4-Chloro-3-methy		ND	650	µg/Kg-dry	1/	3/15/01 11:12:00 PM
2-Methylnaphtha		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
Hexachlorocyclo		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
2,4,6-Trichloroph		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
2,4,5-Trichloroph		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
2-Chloronaphtha		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PM
2-Nitroaniline	10110	ND	650	µg/Kg-dry	1	3/15/01 11:12:00 PM
Dimethyl phthala	te	ND	330	µg/Kg-dry	1	3/15/01 11:12:00 Pt
2,6-Dinitrotoluen		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PI
-		ND	330	µg/Kg-dry	1 1	3/15/01 11:12:00 Pt
Acenaphthylene		ND	650	µg/Kg-dry	1	3/15/01 11:12:00 PI
3-Nitroaniline		ND	650		• 1	3/15/01 11:12:00 PI
4-Nitrophenol				µg/Kg-dry		
2,4-Dinitrophenol	- 9042			• =	1 ×1 *** ***	••••••••••
Acenaphthene		ND	330	µg/Kg-dry	1	3/15/01 11:12:00 PI

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- H Method prescribed holding time exceeded
- # See Case Narrative

AMRO	Environmental	Laboratories	Corp.
------	---------------	--------------	-------

Date: 26-Mar-01

CLIENT:STV IncorporatedClient Sample ID:TE-1A-H1 (0-5')Lab Order:010309307-02184 ESA-Phase 1A Superior ReedCollection Date:3/12/01Lab ID:0103093-07AMatrix:SOIL

Analyses	Result	RL	Qual Units	D F	Date Analyzed
SEMIVOLATILE ORGANICS		SW8270C			Analyst: KD
Phenol	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Bis(2-chloroethyl)ether	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
2-Chlorophenol	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
1,3-Dichlorobenzene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
1,4-Dichlorobenzene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Benzyi alcohol	ND	650	µg/Kg-dry	1	3/15/01 11:37:00 PM
2-Methylphenol	ND	320	μg/Kg-dry	1	3/15/01 11:37:00 PM
1,2-Dichlorobenzene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Bis(2-chloroisopropyl)ether	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
4-Methylphenol	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
N-Nitrosodi-n-propylamine	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Hexachloroethane	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Nitrobenzene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Isophorone	ND	320	µg/Kg-dry	ຸ1	3/15/01 11:37:00 PM
2,4-Dimethylphenol	ND	320	µg/Kg-dry	· 1	3/15/01 11:37:00 PM
Benzoic acid	ND	650	μg/Kg-dry	1	3/15/01 11:37:00 PM
2-Nitrophenol	ND	320	µg/Kg-dry	. 1	3/15/01 11:37:00 PM
Bis(2-chloroethoxy)methane	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
2,4-Dichlorophenol	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
1,2,4-Trichlorobenzene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Naphthalene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
4-Chloroaniline	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Hexachlorobutadiene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
4-Chioro-3-methylphenol	ND	650	µg/Kg-dry	1/	3/15/01 11:37:00 PM
2-Methylnaphthalene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Hexachlorocyclopentadiene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
2,4,6-Trichlorophenol	ND	320	μg/Kg-dry	1	3/15/01 11:37:00 PM
2,4,5-Trichlorophenol	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
2-Chloronaphthalene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
2-Nitroaniline	ND	650	µg/Kg-dry	1	3/15/01 11:37:00 PM
Dimethyl phthalate	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
2,6-Dinitrotoluene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
Acenaphthylene	ND -	320			3/15/01 11:37:00 PM
3-Nitroaniline	ND	650	µg/Kg-dry	1	3/15/01 11:37:00 PM
4-Nitrophenol	ND	650	µg/Kg-dry	1	3/15/01 11:37:00 PM
2,4-Dinitrophenol					3/15/01 11:37:00 PM
Acenaphthene	780	320	µg/Kg-dry	1	3/15/01 11:37:00 PM
2,4-Dinitrotoluene	ND	320	µg/Kg-dry	1	3/15/01 11:37:00 PM

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

uantitation limits R - RPD outside accepted recovery limits ssociated Method Blank E - Value above quantitation range

B - Analyte detected in the associated Method Blank

- H Method prescribed holding time exceeded # See
 - # See Case Narrative

AMRO Environmental Laboratories Corp.

Date: 26-Mar-01

CLIENT:	STV Incorporated	Client Sampl
Lab Order:	0103093	
Project:	07-02184 ESA-Phase 1A Superior Reed	Collection 3
Lab ID:	0103093-08A	Ma

	Client Sample ID:	TE-1A-H2 (0-5')
se 1A Superior Reed	Collection Date:	3/12/01

latrix: SOIL

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS		SW8270C				Anaiyst: KD
Phenol	ND	310	1	ug/Kg-dry	. 1	3/16/01 12:03:00 AM
Bis(2-chloroethyl)ether	ND	310	1	ug/Kg-dry	1	3/16/01 12:03:00 AM
2-Chlorophenol	ND	310	1	ug/Kg-dry	1	3/16/01 12:03:00 AM
1,3-Dichlorobenzene	ND	310	1	ug/Kg-dry	1	3/16/01 12:03:00 AM
1,4-Dichlorobenzene	ND	310	i	Jg/Kg-dry	1	3/16/01 12:03:00 AM
Benzyi alcohol	ND	620	I	ıg/Kg-dry	1	3/16/01 12:03:00 AM
2-Methylphenol	ND	310	I	Jg/Kg-dry	1	3/16/01 12:03:00 AM
1,2-Dichlorobenzene	ND	310	1	lg/Kg-dry	1	3/16/01 12:03:00 AM
Bis(2-chloroisopropyl)ether	ND	310	1	Jg/Kg-dry	1	3/16/01 12:03:00 AM
4-Methylphenol	ND	310	1	Jg/Kg-dry	1	3/16/01 12:03:00 AM
N-Nitrosodi-n-propylamine	ND	310	ţ	ıg/Kg-dry	1	3/16/01 12:03:00 AM
Hexachloroethane	ND	310	ł	ıg/Kg-dry	1	3/16/01 12:03:00 AM
Nitrobenzene	ND	310	4	ıg/Kg-dry	1	3/16/01 12:03:00 AM
Isophorone	ND	310	ł	ıg/Kg-dry	<u>,</u> 1	3/16/01 12:03:00 AM
2,4-Dimethylphenol	ND	310	ł	ıg/Kg-dry	· 1	3/16/01 12:03:00 AM
Benzoic acid	ND	620	ł	ıg/Kg-dry	1	3/16/01 12:03:00 AM
2-Nitrophenol	ND	310	ł	ıg/Kg-dry	1	3/16/01 12:03:00 AM
Bis(2-chloroethoxy)methane	ND	310	ł	ıg/Kg-dry	1	· 3/16/01 12:03:00 AM
2,4-Dichlorophenol	ND	310	ŀ	ıg/Kg-dry	1	3/16/01 12:03:00 AM
1,2,4-Trichlorobenzene	ND	310	1	ıg/Kg-dry	1	3/16/01 12:03:00 AM
Naphthalene	490	310	ł	ıg/Kg-dry	1	3/16/01 12:03:00 AM
4-Chloroaniline	ND	310	ł	ug/Kg-dry	1	3/16/01 12:03:00 AM
Hexachlorobutadiene	ND	310	1	Jg/Kg-dry	1	3/16/01 12:03:00 AM
4-Chioro-3-methylphenol	· ND	620	i	Jg/Kg-dry	1/	3/16/01 12:03:00 AM
2-Methylnaphthalene	390	310	1	ug/Kg-dry	1	3/16/01 12:03:00 AM
Hexachlorocyclopentadiene	ND	310	I	Jg/Kg-dry	1	3/16/01 12:03:00 AM
2,4,6-Trichlorophenol	ND	310	. 1	Jg/Kg-dry	1	3/16/01 12:03:00 AM
2,4,5-Trichlorophenol	ND	310	1	ıg/Kg-dry	1	3/16/01 12:03:00 AM
2-Chloronaphthalene	ND	310	I	Jg/Kg−dry	1	3/16/01 12:03:00 AM
2-Nitroaniline	ND	620	i	Jg/Kg-dry	1	3/16/01 12:03:00 AM
Dimethyl phthalate	ND	310	1	Jg/Kg-dry	1	3/16/01 12:03:00 AM
2,6-Dinitrotoluene	ND	310	I	ug/Kg-dry	1	3/16/01 12:03:00 AM
Acenaphthylene	ND	310	n	.ıg/Kg-dry	1	3/16/01 12:03:00 AM
3-Nitroaniline	ND	620	1	ug/Kg-dry	1	3/16/01 12:03:00 AM
4-Nitrophenol	ND	620	I	ug/Kg-dry	·1	3/16/01 12:03:00 AM
2,4-Dinitrophenol		620		ug/Kg-dry	11 1 - 11	3/16/01 12:03:00 AM
Acenaphthene	1,400	310	I	ug/Kg-dry	1	3/16/01 12:03:00 AM
2,4-Dinitrotoluene	ND	310		Jg/Kg-dry	1	3/16/01 12:03:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits E - Value above quantitation range

H - Method prescribed holding time exceeded

- See Case Narrative

MRO Environmental Laboratories Corp.

Date: 26-Mar-01

CLIENT:STV IncorporatedLab Order:0103093Project:07-02184 ESA-Phase 1A Superior ReedLab ID:0103093-09B

Client Sample ID: TE-1A-A1 (GW) 12'

Collection Date: 3/12/01

Matrix: AQUEOUS

Analyses	Result	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS		SW8270C			Analyst: KD
Phenoi	ND	10	µg/L	1	3/16/01 2:59:00 PM
Bis(2-chloroethyl)ether	ND	10	µg/L	1	3/16/01 2:59:00 PM
2-Chlorophenol	ND	10	µg/L	1	3/16/01 2:59:00 PM
1,3-Dichlorobenzene	ND	10	µg/L	1	3/16/01 2:59:00 PM
1,4-Dichlorobenzene	ND	10	µg/L	1	3/16/01 2:59:00 PM
Benzyl alcohol	ND	20	µg/L	1	3/16/01 2:59:00 PM
2-Methylphenol	ND	10	· µg/L	1	3/16/01 2:59:00 PM
1,2-Dichlorobenzene	ND	10	µg/L	1	3/16/01 2:59:00 PM
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	3/16/01 2:59:00 PM
4-Methylphenol	ND	10	µg/L	1	3/16/01 2:59:00 PM
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	· 3/16/01 2:59:00 PM
Hexachloroethane	ND	10	µg/L	1	3/16/01 2:59:00 PM
Nitrobenzene	ND	10	µg/L	1	3/16/01 2:59:00 PM
Isophorone	ND	10	µg/L	, 1	3/16/01 2:59:00 PM
2,4-Dimethylphenol	ND	10	µg/L	· 1	3/16/01 2:59:00 PM
Benzoic acid	ND	20	µg/L	1	3/16/01 2:59:00 PM
2-Nitrophenol	ND	10	µg/L	1	3/16/01 2:59:00 PM
Bis(2-chloroethoxy)methane	ND	10	µg/L	. 1	3/16/01 2:59:00 PM
2,4-Dichlorophenol	ND	10	μg/Ĺ	1	3/16/01 2:59:00 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	1	3/16/01 2:59:00 PM
Naphthalene	ND	10	µg/L	1	3/16/01 2:59:00 PM
4-Chloroaniline	ND	10	µg/L	1	3/16/01 2:59:00 PM
Hexachlorobutadiene	ND	10	µg/L	1	3/16/01 2:59:00 PM
4-Chloro-3-methylphenol	ND	20	µg/L	1/	3/16/01 2:59:00 PM
2-Methylnaphthalene	ND	10	µg/L	1	3/16/01 2:59:00 PM
Hexachlorocyclopentadiene	ND	10	µg/L	1	3/16/01 2:59:00 PM
2,4,6-Trichlorophenol	ND	10	µg/L	1	3/16/01 2:59:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	3/16/01 2:59:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	3/16/01 2:59:00 PM
2-Nitroaniline	ND	20	µg/L	1	3/16/01 2:59:00 PM
Dimethyl phthalate	ND	10	µg/L	1	3/16/01 2:59:00 PM
2,6-Dinitrotoluene	ND	10	µg/L	1	3/16/01 2:59:00 PM
Acenaphthylene	ND *	10	· μg/L	· · · · 1 ·	3/16/01 2:59:00 PM
3-Nitroaniline	ND	20	µg/L	1	3/16/01 2:59:00 PM
4-Nitrophenol	ND	20	µg/L	·1	3/16/01 2:59:00 PM
2,4-Dinitrophenol	ND-	20	μg/L	e e e e e e 1 12 es	3/16/01 2:59:00 PM
Acenaphthene	ND	10	µg/L	1	3/16/01 2:59:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	3/16/01 2:59:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank

- H Method prescribed holding time exceeded
- # See Case Narrative

AMRO Environmental Laboratories Corp.

Date: 26-Mar-01

CLIENT:	STV Incorporated			Client Sample	e ID: QB-12	20
Lab Order:	0103093					
Project:	07-02184 ESA-Phase	1A Superior R	eed	Collection I	Date: 3/12/0)1
Lab ID:	0103093-14B	A		Ma	trix: AQUI	EOUS
Analyses		Result	RL C	ual Units	DF	Date Analyzed
SEMIVOLATIL	E ORGANICS	SV	/8270C			Analyst: KD
Phenol		37	10	µg/L	1	3/16/01 3:25:00 PM
Bis(2-chloroethy	yl)ether	ND	10	µg/L	1	3/16/01 3:25:00 PM
2-Chlorophenol		ND	10	µg/L	1	3/16/01 3:25:00 PM
1,3-Dichloroben	zene	ND	10	µg/L	1	3/16/01 3:25:00 PM
1,4-Dichloroben	zene	ND	10	µg/L	1	3/16/01 3:25:00 PM
Benzyl alcohoł		ND	20	µg/L	1	3/16/01 3:25:00 PM
2-Methylphenol		ND	10	µg/L	1	3/16/01 3:25:00 PM
1,2-Dichloroben	zene	ND	10	μg/L	1	3/16/01 3:25:00 PM
Bis(2-chloroisop	propyl)ether	ND	10	µg/L	1	3/16/01 3:25:00 PM
4-Methylphenol		ND	10	μg/L	1	3/16/01 3:25:00 PM
N-Nitrosodi-n-pr	ropylamine	ND	10	μg/L	1	3/16/01 3:25:00 PM
Hexachloroetha	ne	ND	10	μg/L	1	3/16/01 3:25:00 PM
Nitrobenzene		ND	10	μg/L	1	3/16/01 3:25:00 PM
Isophorone		ND	10	µg/L	, 1	3/16/01 3:25:00 PM
2,4-Dimethylphe	enol	ND	10	µg/L	· 1	3/16/01 3:25:00 PM
Benzoic acid		ND	20	µg/L	1	3/16/01 3:25:00 PM
2-Nitrophenol		ND	10	µg/L	1	3/16/01 3:25:00 PM
Bis(2-chloroetho	oxy)methane	ND	10	µg/L	1	3/16/01 3:25:00 PM
2,4-Dichlorophe	nol	ND	10	µg/L	1	3/16/01 3:25:00 PM
1,2,4-Trichlorob	enzene	ND	10	µg/L	1	3/16/01 3:25:00 PM
Naphthalene		ND	10	μg/L	1	3/16/01 3:25:00 PM
4-Chloroaniline		ND	10	µg/L	1	3/16/01 3:25:00 PM
Hexachlorobuta	diene	ND	10	µg/L	1	3/16/01 3:25:00 PM
4-Chloro-3-meth	hylphenol	ND	20	µg/L	· 1 ⁷	3/16/01 3:25:00 PM
2-Methylnaphth	alene	ND	10	µg/L	1	3/16/01 3:25:00 PM
Hexachlorocycl	opentadiene	ND	10	µg/L	1	3/16/01 3:25:00 PM
2,4,6-Trichlorop	henol	ND	10	µg/L	1	3/16/01 3:25:00 PM
2,4,5-Trichlorop	henol	ND	10	µg/L	1	3/16/01 3:25:00 PM
2-Chloronaphth	alene	ND	10	µg/L	1	3/16/01 3:25:00 PM
2-Nitroaniline		ND	20	µg/L	1	3/16/01 3:25:00 PM
Dimethyl phthal	ate	ND	10	µg/L	1	3/16/01 3:25:00 PM
2,6-Dinitrotolue	ne	ND	10	µg/L	1	3/16/01 3:25:00 PM
Acenaphthylene	9	ND	10	µg/L	· 1	3/16/01 3:25:00 PM
3-Nitroaniline		ND	20	µg/L	1	3/16/01 3:25:00 PM
4-Nitrophenol		ND	20	µg/L	-1	3/16/01 3:25:00 PM
2,4-Dinitrophen	ol	ND -		`` μg/Ľ ``	an st a teri	3/16/01 3:25:00 PM
Acenaphthene		ND	10	µg/L	1	3/16/01 3:25:00 PM
2,4-Dinitrotolue	ne	ND	10	μg/L	1	3/16/01 3:25:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

E - Value above quantitation range

- See Case Narrative

Date: 26-Mar-01 AMRO Environmental Laboratories Corp. Client Sample ID: TE-1A-SD1 TE-1A-55-1 STV Incorporated **CLIENT:** 0103093 Lab Order: Collection Date: 3/12/01

07-02184 ESA-Phase 1A Superior Reed

0103093-11B

Matrix: SOIL

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	· • • • •
PCBS BY EPA8082	SW	3082			Analyst: RAP	
Aroclor 1016	ND	28	µg/Kg-dry	1	3/16/01 12:23:00 PM	
Aroctor 1221	ND	28	µg/Kg-dry	1	3/16/01 12:23:00 PM	
Aroclor 1232	ND	28	µg/Kg-dry	- 1	3/16/01 12:23:00 PM	
Aroclor 1242	ND	28	μg/Kg-dry	1	3/16/01 12:23:00 PM	
Aroclor 1242 Aroclor 1248	ND	28	µg/Kg-dry	1	3/16/01 12:23:00 PM	
Aroclor 1254	ND	28	µg/Kg-dry	1	3/16/01 12:23:00 PM	
Aroclor 1260	55	28	µg/Kg-dry	1	3/16/01 12:23:00 PM	

Qualifiers:

Project:

Lab ID:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

- E Value above quantitation range
- # See Case Narrative

Date: 26-Mar-01 AMRO Environmental Laboratories Corp. Client Sample ID: TE-1A-SD1 STV Incorporated **CLIENT:** 0103093 Lab Order: Collection Date: 3/12/01 07-02184 ESA-Phase 1A Superior Reed **Project:** Matrix: SOIL 0103093-11A Lab ID: **Date Analyzed** RL Qual Units DF Result Analyses Analyst: KD SW8015B DIESEL RANGE ORGANICS 3/15/01 7:06:00 PM 860 56 mg/Kg-dry 1 **Diesel Range Organics**

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

S - Spike Recovery outside accepted recovery limits

I

R - RPD outside accepted recovery limits

E - Value above quantitation range

- See Case Narrative

AMN	AMN Environmental Laboratories Corp.	ooratories Corp.	· · · · · · · · · · · · · · · · · · ·		26-Mar-01	10	
Lab Order: Client: Project:	0103093 STV Incorporated 07-02184 ESA-Phase 1A Superio	se 1A Superio				DATES REPORT	
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
0103093-11A	TE-IA-SDI	3/12/01	Soil	GASOLINE RANGE ORGANICS		3/12/01	3/23/01
0103093-11B				PCBS IN SOIL/SOLIDS		3/15/01	3/16/01
				Percent Moisture			3/15/01
0103093-11C				ICP METALS, TCLP	3/15/01	3/16/01	3/16/01
				ICP METALS, TCLP	3/15/01	3/16/01	3/22/01
				MERCURY, TCLP	3/15/01	3/16/01	3/16/01
0103093-14A	QB-120		Aqueous	VOLATILES by GC/MS		3/15/01	3/16/01
0103093-14B	-			SEMIVOLATILE ORGANICS, Aqueous		3/15/01	3/16/01

48

i

AMRO Environmental Laboratories Corporation

111 Herrick Street Merrimack, NH 03054 (603) 424-2022


Please Gircle if: Sample= Soil

Sample ID	Analysis	[·] Volume Sample	Preserv. Listed	Initial pH	Acceptable? Y or N	List Preserv. Added by AMRO	Solution ID # of Preserv.	Volume Preservative Added	Final adjusted pH
094	VOC	1×44ml				· · · ·			
12A	VOC							······	
12A	SVOC	IXILA		6	y .				
13A	VOC								
13B	SVOC	IXILA		6	Y	•			
14A	VOC								
14B	SVOC	IXILA.		10	N				
09B	SVOC	1XILĂ		6	Ý				ļ
	:				[
									L
							·		
					· · · · · · · · · · · · · · · · · · ·			• .	<u> </u>
									ļ
									ļ
			-						<u></u>
									1
									ļ
									ļ
	·								ļ
									<u> </u>
							ļ	<u> </u>	<u></u>
							<u></u>	ļ	
							L		
						· · · · · · · · · · · · · · · · · · ·			
						-	L	ļ	·
							ļ.,	:	
									<u> </u>
						··· .			
									.

34341	PAGEOF	Remarks	* 1 of the vocs is unpreserved, prevende and yze preserved	eurbing #1	L A X X PRIORITY TURNAROUND TIME AUTHORIZATION Before submitting samples for expedited T.A.T.; you must have requested in advance and received a coded T.A.T. AUTHORIZATION NUMBER. AUTHORIZATION NO. T.A.T. authorized by:	Send Results to: Jeff Butler	2-5 and Remarks -22 - Jold 61 nalyris
N OF CUSTODY RECORD	Project State MATRIX Nater - A Size, Soil/Solid-S Waste-W Waste-W Other-O Contained	C102 X S col-1		011-1-1- 202 202	1-1/20	Tex to (phone) Send R Results needed Sed	AMRO Project No. AMRO Project No. AMRO Project No. AMRO Project No. AMRO Project No. AMRO Project No. Amro Project No. Amro Project No. Signature) Seal Intact? Yes No
itories Corporation CHAI	Phase 1A Suguran lead	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TE - IA - TE - IA - TE - IA - TE - IA -	* ('2) CH- ('2) CH- 100, 00	Please print clearly, legibly and completely. Samples cannot be logged in and the turnaround time clock will not start until any ambiguities are resolved.	Date Time Received by (Signature) ス/レ/o i ルロロ Date Time Received by (Signature)	Date Time Received by (Signature) Date Time Received tor Laboratory by: (Signature) 3/13/0/11:00 0.00
AMRO Enviror ntal Labora 11 Herrick Street 16rrimack, N.H. 0305-4 16rrimack, N.H. 0305-4 16rrimack, N.H. 0305-429-8496	Proj. No. Project Name O7 - 02184 ESA- F Samplers (Signature) Drica Becore	Sta. No. Date Time 3/12/61 10:30 1 11 10:30 1		11 13:15 11 13:30 11 13:45 11 13:45	Please print clearly, legibly in and the turnaround time resolved.	Reve. uished by Bignature) Helinquished by (Signature)	Relinquished by (Signature) Gelinquished by (Signature)

•

•

Department of Environmental Protection

Division of Environmental Analysis Senator William X. Wall Experiment Station

certifies

M-NH012

AMRO ENVIRONMENTAL LAB 111 HERRICK ST MERRIMACK, NH 03054-0000

Laboratory Director: Nancy Stewart

for the analysis of NON POTABLE WATER (CHEMISTRY) POTABLE WATER (CHEMISTRY)

pursuant to 310 CMR 42.00

This certificate supersedes all previous Massachusetts certificates issued to this laboratory. The laboratory is regulated by and shall be responsible for being in compliance with Massachusetts regulations at 310 CMR 42.00.

This certificate is valid only when accompanied by the latest dated Certified Parameter List ... as issued by the Massachusetts D.E.P. Contact the Division of Environmental Analysis to verify the current certification status of the laboratory.

Certification is no guarantee of the validity of the data. This certification is subject to unannounced laboratory inspections.

Director, Division of Environmental Analysis

Issued: 01 JUL 2000 Expires: 30 JUN 2001

APPENDIX B

Ç)

HEVA GEOPHYSICS INC.

SUBSIDIARY OF NORTH AMERICAN EXPLORATION OF VIRGINIA INC. Subsurface Geophysical Surveys

GPR MAGNETICS ECTROMAGNETICS SEISMICS RESISTIVITY ITILITY LOCATION DREHOLE LOGGING DREHOLE CAMERA STAFF SUPPORT A

Results of Geophysical Investigation

Long Island Rail Road: Yard A East Side Access Project Queens, New York

Prepared for: STV Incorporated New York, New York

Date of Investigation: March 19, 2001

Prepared by:

ł

Mark E. Weis Project Geologist NAEVA Geophysics, Inc. P.O. Box 576 Tappan, NY 10983

Contents

Introduction

Methods

Results

Plate 1

Area of Geophysical Investigation on a Portion of the Long Island Rail Road's Yard A, East Side Access Project, Queens, New York

NEW YORK

P.O. Box 576 Tappan New York 10983 (914) 268-1800 (914) 268 1802 Fax

P.O. Box 7325 Charlottesville Virginia 22906 (804) 978-3187 (804) 973-9791 Fax Results of Geophysical Investigation Long Island Rail Road – Yard A East Side Access Project Queens, New York

Introduction As part of the Long Island Rail Road's East Side Access Project, on March 19, 2001, NAEVA Geophysics Inc. conducted a geophysical investigation on a portion of the Yard A property in Queens, New York. The purpose of the investigation was to identify underground storage tanks (USTs), drums, and buried metallic debris suspected to exist at the site, and to mark-out detectable subsurface utilities. The area of investigation was an approximately 40 by 300-foot vacant lot north and east of an abandoned crew building (see Plate 1) at the northern edge of the tract between Honeywell and 39th Streets.

Methods Where site conditions allow, the most effective technique when searching for buried ferrous objects such as drums and USTs is usually to conduct either magnetic or electromagnetic (EM) investigations. For these types of investigations, a grid of parallel lines is laid out over the area of interest. The magnitude of the Earth's magnetic field (magnetic investigations) or an induced EM field (EM investigations) is then measured at regular intervals along each line. The data is processed to produce contour maps of the magnetic field or EM response at the site. Large ferrous objects such as USTs or drums can be expected to produce anomalies in these contour maps. The EM instrument, unlike the magnetometer, is also capable of detecting non-ferrous metals such as aluminum, copper, and brass.

At this site, the close proximity of the buildings, fences, and railroad tracks, and the presence of metallic debris piles at the surface (all of which would have affected the magnetic or EM data) prevented the use of these methods. Also, a large percentage of the site was covered by trees and waist-high brush that would have made the installation of a survey grid and the collection of coherent data difficult. It was decided, therefore, to conduct a metal-detector investigation over accessible portions of the site.

The advantages of a metal-detector investigation are that it is quick and the investigator can work around cultural obstructions such as buildings and parked vehicles. The disadvantages are that while a magnetometer can sense ferrous objects at a distance, the metal-detector must pass almost directly over a UST or drum for the target to be detected. In addition, the magnetometer responds to the mass of ferrous objects but the metaldetector responds to surface area. Hence, a UST and a buried sheet of corrugated steel, which will have very different magnetic signatures, can evoke a similar response from the metal-detector.

The equipment selected for this investigation included a Fisher TW-6 Pipe and Cable Locator (an electromagnetic metal-detector), a Sensors & Software ground-penetrating radar (GPR) with a 250 MHz antenna, Radiodetection RD400PDL2 and RD600 utility locators, and a Dynatel 2250 cable locator.

The area of investigation was first visually inspected for evidence of fill ports, vent pipes, subsurface utilities, and other buried features. Much of the brush and low-lying tree limbs were cut down using hand tools. The metal-detector was then used in a reconnaissance investigation of the site for evidence of metallic objects that could represent USTs, utilities, or other buried metallic objects. The metal-detector was carried over the site in a series of parallel traverses at a 3-foot line spacing. Anomalies were marked on the ground for further investigation using the GPR. The GPR data profiles that were collected over significant anomalies were examined for evidence of reflections that could be interpreted as being caused by USTs or other subsurface features.

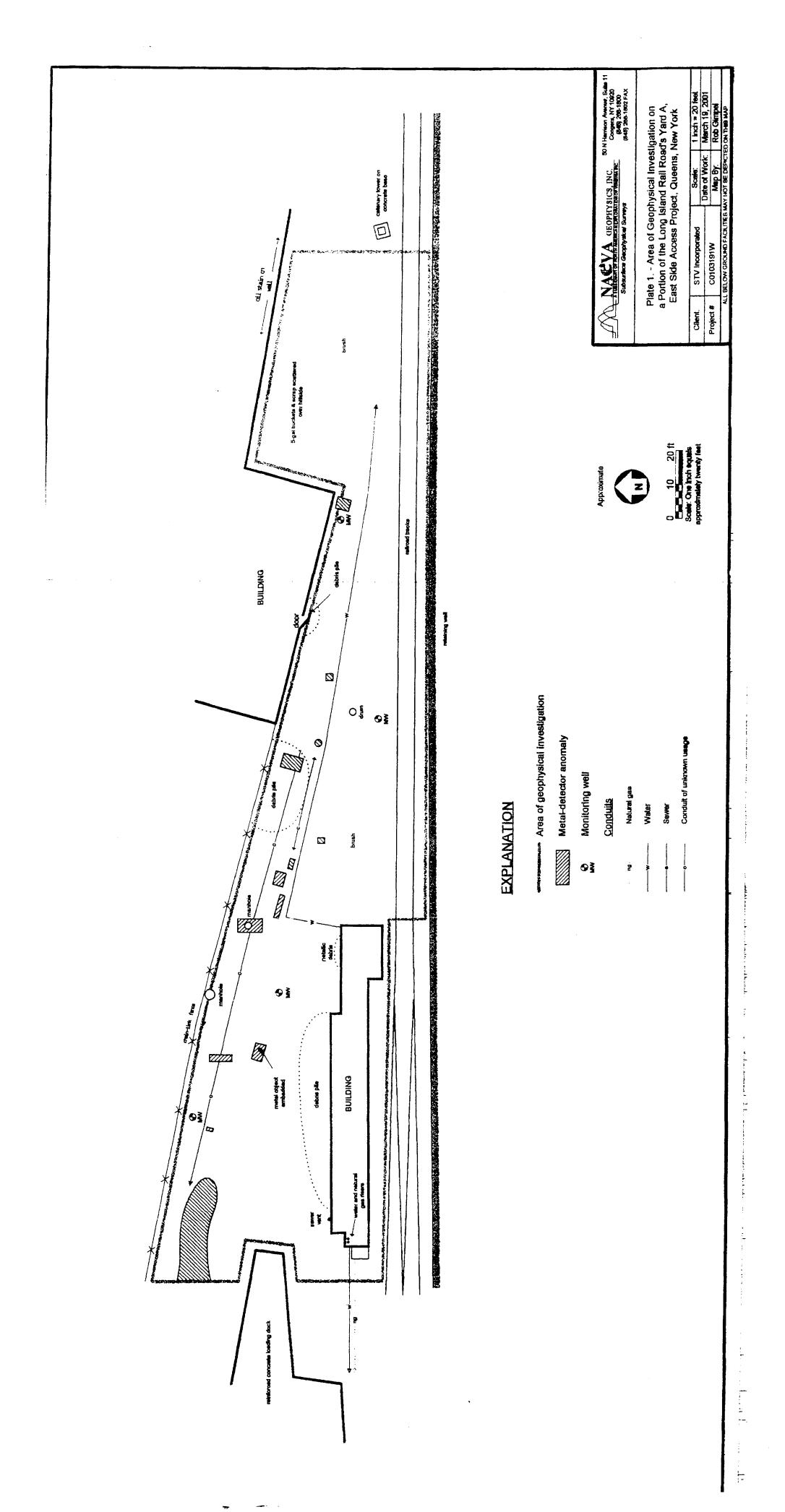
The utility locating instruments were used to delineate the surface traces of detectable utilities at the site. Whenever a metallic/electrically conductive utility was noted, a radio-frequency signal was conducted or induced onto the line using one of the instruments' transmitters. This signal was then used to trace out the utility. Many utilities carry electric currents, and therefore produce electromagnetic fields that can be detected at the surface. In addition, buried metallic conduits, acting as antennas, often pick up background radar and commercial radio signals and reradiate them. The site was investigated for evidence of these signals using the RD600 operating in a passive mode.

The Dynatel was used in the split-box fashion to examine the area for buried utilities. Two operators, one carrying the transmitter and one carrying the receiver, walked bi-directionally across portions of the site at a fixed distance to one another while listening for increases in signal strength which would suggest possible subsurface utilities. Where signal increases were noted, they were further investigated in an attempt to discern a signal propagating utility. The Dynatel is particularly suited to locating the surface trace of telephone, electric, and other narrow-gauge wiring, but can also detect larger metallic conduits and piping. **Results** While NAEVA found no conclusive evidence to suggest the presence of undocumented USTs or buried drums within the area of investigation; indications of expensive amounts of buried metallic scrap were seen and three significant metal-detector anomalies were identified.

The largest anomaly is located in the northwest corner of the area of investigation. The irregular surface trace of this anomaly, as well as a slight depression visible at the ground surface, suggests a subsiding disposal pit as a likely source.

The second metal-detector anomaly is a 4 by 7-foot rectangular feature located near the fenceline north of the eastern side of the crew building. A manhole at the center of this anomaly suggests a utility or UST-related vault as the likely identity of this object. The manhole cover was removed, but the interior of the vault had been backfilled with soil and construction debris.

The third metal-detector anomaly is located roughly midway between the center of the crew building and the fenceline, and has dimensions of approximately 3 by 5 feet. A metal appendage that appears to be associated to this buried object protrudes through the surface. The dimensions of this anomaly are about the same as a 275-gallon UST.


The GPR data profiles collected across the metal-detector anomalies gave no additional information as to their sources. No evidence of the hyperbolic reflections typically caused by USTs or horizontally oriented drums was seen in the GPR data profiles collected over the anomalies. However, the GPR's depth of penetration, which is typically less than 3 feet in this portion of Long Island, may have been insufficient to image most USTs.

While NAEVA believes the many remaining small metal-detector anomalies indicated on the site map are most likely caused by small amounts of metallic debris, it might be prudent to carefully excavate them to determine their sources. The surface traces of all metal-detector anomalies were delineated using pink spray paint and white plastic pin flags were placed at their centers.

From our inspection of the former crew building's interior, it was found that the water and natural gas service lines enter the building from the west. A utility, believed to be a water line, exits the northeast corner of the building and continues eastward across the area of investigation. We were unable to locate the sanitary line for the building, but a gooseneck vent attached to the northwest corner of the building indicates that the line probably exits at that point and runs northward to the sewer main that parallels the northern fenceline.

Two utilities of undetermined usage were detected within the area of investigation. One line runs along the northern property line and through the large vault-like metal-detector anomaly. The line was traced eastward for about 50 feet beyond the manhole cover of the anomaly, while the western end of this line was lost in the suspected burial pit area. A second possible conduit, which appears to be only about 30 feet long, runs parallels to and about 5 feet south of the previously described line. The relatively short apparent length of this line suggests it may be caused by a linear piece of metal such as a section of railroad track. The surface traces of these lines were delineated using pink paint.

- N.

